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ABSTRACT

OPTIMIZATION OF AN EDUCATIONAL SEARCH
ENGINE USING LEARNING TO RANK ALGORITHMS

Arif Usta

M.S. in Computer Engineering

Advisor: Prof. Dr. Özgür Ulusoy

September, 2015

Web search is one of the most popular internet activities among users. Due

to high usage of search engines, there are huge data available about history of

user search issues. Using query logs as a source of implicit feedback, researchers

can learn useful patterns about general search behaviors. We employ a detailed

query log analysis provided by a commercial educational vertical search engine.

We compare the results of our query log analysis with the general web search char-

acteristics. Due to difference in terms of search behavior between web users and

students, we propose an educational ranking model using learning to rank algo-

rithms to better reflect the search habits of the students in the educational domain

to further enhance the search engine performance. We introduce novel features

best suited to the educational domain. We show that our model including edu-

cational features outperforms two baseline models which are the original ranking

of the commercial educational vertical search engine and the model constructed

using the state of the art ranking functions, up to 14% and 11%, respectively.

We also employ different learning to rank models for different clusters of queries

and the results indicate that having models for each cluster of queries further

enhances the performance of our proposed model. Specifically, the course of the

query and the grade of the user issuing the query are good sources of feedback

to have a better model in the educational domain. We propose a novel Propaga-

tion Algorithm to be used for queries having lower frequencies where information

derived from query logs is not enough to exploit. We report that our model con-

structed using the features generated by our proposed algorithm performs better

for singleton queries compared to both the educational learning to rank model we

introduce and models learned with common features introduced in the literature.

Keywords: Information Retrieval, Web Search, Vertical Search Engine, Learning

to Rank Algorithms, Educational Domain.
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ÖZET

SIRALAMA AMAÇLI ÖĞRENME ALGORİTMALARI
KULLANARAK EĞİTİM TABANLI ARAMA MOTORU

OPTİMİZASYONU

Arif Usta

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Prof. Dr. Özgür Ulusoy

Eylül, 2015

İnternet üzerinden arama yapmak, İnternet kullanıcılarının tercih ettiği en

popüler aktivitelerden birisidir. Arama motorlarının oldukça fazla kullanılması

sayesinde, kullanıcıların yapmış oldukları aramaların yer aldığı bilgilerin kul-

lanılabilmesi oldukça kolaylaşmıştır. Araştırmacılar bu bilgileri kullanarak kul-

lanıcıların sahip oldukları arama davranışları ile ilgili faydalı sonuçlar elde

etmişlerdir. Çalışmamızda, ticari olarak kullanılan eğitim amaçlı arama mo-

toruna ait sorgu bilgilerini detaylı bir şekilde analiz ettik. Analiz sonrası

aldığımız sonuçları, İnternet kullanıcılarının sahip olduğu arama davranışlarıyla

karşılaştırarak aralarındaki farkları belirledik. Bu farkları da göz önünde bu-

lundurarak eğitim alanına daha iyi uyum sağlayacak, sıralama amaçlı öğrenme

algoritmalarını kullanarak bir model ortaya çıkardık. Sahip olduğumuz sorgu

kümesi öğrencilere ait olduğu için, modeli oluştururken eğitim alanına has

özgün özellikler kullandık. Modelin performansını karşılaştırmak adına, sahip

olduğumuz sorgu kütüklerindeki orjinal sıralamayı ve bu alanda sıklıkla kullanılan

modern yöntemlerle oluşturulan modeli referans olarak aldık. Sonuçlarımıza göre

her iki referans modeline kıyasla sırasıyla %14 ve %11’lik bir gelişme sağladık.

Bunun yanında, yapılan sorgunun türlerine göre ayrılmak kaydı ile, her bir sorgu

grubu için farklı öğrenme modelleri tanımladık. Elde ettiğimiz verilere göre,

sorgunun ders bilgisinin ve sorguyu soran öğrencinin sınıf bilgisinin farklı model

oluştururken oldukça fayda sağladığını öğrendik. Sorgu kütük kümesinde yer alan

bazı sorgular (yalnızca bir defaya mahsus sorulan sorgular) için elimizde yeteri

kadar bilgi olmadığından, modelin genel performansını artırmak adına bu sorgular

için özgün bir algoritma geliştirdik. Yaptığımız deneylere göre, bu özel sorgular

için geliştirdiğimiz algoritma, oluşturduğumuz genel modelin performansını da

artırmaktadır.
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Anahtar sözcükler : Bilgi Erişimi, Dikey Arama Motorları, Sıralama Amaçlı
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Chapter 1

Introduction

1.1 Motivation and Scope

Document retrieval has been one of the hottest research topics in Information Re-

trieval. The problem of document retrieval gets more interesting when web search

is the activity to retrieve the documents due to characteristics of web users. Web

users tend to leave the search engine by only considering documents appearing in

the first page while avoiding all documents displayed at latter pages, which makes

document retrieval problem more challenging. State of the art document retrieval

methods do not take the order of the documents into consideration. Therefore, a

new approach is introduced, called learning to rank, which is basically a machine

learning approach with the purpose of ranking.

Recently, various works have been performed on the subject of learning to rank

algorithms, including different types of machine learning algorithms involving

different approaches in terms of preparing the training and test datasets and

the annotation methodology to be used. The learning to rank methodology is

a supervised machine learning process, therefore it requires an annotation of

the instances to be used in the learning phase. Depending on the approach

used, generally the learning to rank algorithms are modified versions of either

1



classification or regression problems. However, the only and the most important

difference with the learning to rank algorithms is that they are not interested

in the final classified or regressed class value but rather deal with the order of

instances classified or regressed.

Since the learning to rank algorithms are basically machine learning algo-

rithms, what determines their performance is the choice of features to be used in

the learning. In the literature of web search, numerous features are introduced.

Yet, the choice of the features highly depends on the environment of the search

including the domain of the search, the context of the documents available, the

characteristics of the users making searches, etc. Therefore, generating the fea-

tures to be used in the learning is the core of learning to rank algorithms and

mostly query logs are good sources of implicit feedback about user behavior while

figuring out the possible features to be extracted.

In this thesis, we try to exploit a query log provided from a commercial educa-

tional vertical search engine. We carry out detailed analysis on the query log to

find out user behaviors to further use them as features in the model we propose

using the learning to rank algorithms.

1.2 Contributions

Our contributions in the thesis are three fold, which are explained as follows:

• We perform a detailed analysis on a query log provided by an educational

vertical search engine. We compare our findings with the general search

behaviors web users have. We show that students in the scope of educational

domain have different search habits and therefore the problems defined in

the information retrieval area should be addressed accordingly. Specifically,

we also try to find the Refinding behavior in our query log, that is, we

analyze how often students tend to find the documents they once visited

while searching for an education material with the goal of learning.

2



• Using the learning to rank algorithms, we employ learning models to rank

the educational materials provided in our query log. Analyzing the query

log, we use our findings to further improve the learning model to better cap-

ture the search behaviors of students. We introduce novel learning to rank

features specifically better suited for the educational domain. We employ a

learning model designed for educational domain and show that our model

outperforms both the original ranking of the documents and baselines cre-

ated using the state of the art ranking functions in the literature in terms of

search engine performance. We also employ different models for query types

by clustering queries regarding their different properties, which are namely

the course of the query, the grade of the user issuing query and the query

frequency. We show that using different models considering query types

improves the search engine performance compared to the general model we

introduce.

• We propose a feature generation algorithm to be used specifically for queries

having low frequencies, where query log fails to give useful and adequate

feedback to exploit in the learning phase. We also implement a similar idea

of generating feature values introduced in [1] to make a comparison. We

report that our proposed algorithm outperforms both the referenced model

and the general model for queries having a single issue (singleton queries).

1.3 Thesis Organization

The rest of the thesis is organized as follows:

In Chapter 2, we review the early work done on both query log analysis and

the web search problems using learning to rank algorithms. For each category,

we first consider the general works in the literature and then give examples of

more specific works. We put more emphasis on works that are closely related to

our work.

We present the results of our detailed query log analysis in Chapter 3. We

3



categorize our findings into two categories which are Search Characteristics and

Refinding Behavior. In the first section, we analyze the search habits of the users

and compare our findings with the users in general web search. In the latter

section, we try to analyze the Refinding behavior students have and explain our

results with their reasoning regarding the educational domain.

In Chapter 4, we explain the learning to rank algorithms. We give their struc-

ture to use the algorithms and explain how to obtain the learning setup to employ

a better model. We briefly discuss the approaches used in the learning to rank

environments. Then, we provide the evaluation metrics that are used in the

literature to evaluate proposed models.

In Chapter 5, we provide our proposed educational learning to rank model.

We give our constructed features along with their correspondence category and

explain how each feature is calculated. We discuss the cluster models generated

regarding the different query types we have in our query log. We also provide

our Propagation Algorithm to be used for singleton queries to further improve

the model we learned.

We report the results of our experiments in Chapter 6. We compare our find-

ings with state of the art baselines and show that our proposed models improve

search engine performance significantly. We conclude the thesis in Chapter 7.
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Chapter 2

Related Work

2.1 Query Log Analysis

Due to immense online information available on the Web, online search is one of

the most popular internet activities users prefer. According to statistics available

on [2], the web sites providing search engine service are among the top visited

sites. Google is at the top of the list while Yahoo and Baidu (the leading search

engine provider in China) are among the top five. As a result, there are huge

data available to exploit to learn some patterns. Therefore, in recent years there

has been a growing interest in analyzing query logs of search engines to find out

possible search characteristics that may lead to different research aspects. The

idea behind the query log analysis is to figure out how web users deploy a search

engine. In other words, it is a tool to find answers for the rel ated research

questions such as: What do users search in Web? What are the characteristics

of the user using search engines? How do they search? Answering such questions

may lead researchers to new research aspects in web search area, where they can

use the results from the query log analysis to further exploit potential solutions.

One of the very first large scale query log analysis papers explores search

characteristics of the search engine users using query logs gathered from AltaVista
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[3]. They did their calculations on a query log consisting of 1 billion queries over

a period of six week time. Their findings include that queries mostly consist of

1-3 query terms, the most popular query terms in the query log are generally

sexual related terms and most sessions include single query, which means users

are unlikely to reformulate their queries as a result of a possible unsatisfied query

issue. They also state that users tend look at only the first page, therefore they

indicate that traditional information retrieval techniques may fail in the scope of

the web search.

Queries are what users use for defining their search intents through search en-

gines, therefore they are the answers for what users search in Web. One of the

research aspects in search is to determine user intents. Hence, it is important

to classify the user intents if possible prior to retrieving the search results to be

shown to the user. One of the early works on this problem [4] tries to classify the

queries according to their intents, which are mainly informational, navigational

and transactional. Informational queries are described as queries that cover broad

range of topic for which there may thousands of relevant documents, while nav-

igational and transactional queries are defined as queries carrying an intent of

finding a particular web site and completing a transaction such as downloading a

video, respectively. An exploration of query log data reveals that most queries in

a search engine are of informational (40 − 50%), followed by transactional ones

(30− 36%).

Session is another important aspect of the search. The decision of how to

choose session highly affects the certain behaviors of the search engine. According

to Spink et al. [5], a search session is described as the time interval between

the first query issued by the user and the time the user leaves the search engine.

Time based search session detection techniques are among the most popular ones.

Generally, a cut of value (threshold value) is used to determine whether two

consecutive search issues by a particular user belongs to the same session or not.

Jansen et al. [6] use 30 minutes as cut off value to determine search sessions

in and they state that the cut off value they introduced is better to explore the

different query types a user issues in a single search session.

6



In recent years, there is a growing interest in analyzing the vertical search

engines which are used to search for particular type of information. These vertical

engines are important to gather results to use them in general ones. One of the

early works on vertical search engines is done by Lawrence at al. [7], in which

they try to retrieve scientific documents only. Weerkamp at al. [8] try to find

search characteristics of a commercial vertical search engine in which users search

for people only. We followed the practices they made to compare our findings

with theirs and general Web as well.

2.2 Refinding Analysis

One of the problems in web search is the behavior of the users having intent to

find out the documents that they once visited, which is called Refinding. There

have not been many works on this subject, until it is noted in [9] that, 17% of

the web users surveyed reported that “Not being able to find out a page once I

visited” is one of the biggest problems to be solved in web search.

Cockburn at al. distill several years of knowledge on the Refinding behavior

to improve how people return to their previously visited pages in [10]. Being one

of the early extensive studies on Refinding, they state that their results indicate

revisitation in Web is one of the most dominant activities, with an average of 4

out of 5 page visits being to previously seen pages. They also introduce three

different interfaces to help users to find out their previously visited pages when

desired using back and forward buttons. They also strongly suggest that using

temporally ordered lists of previously visited pages can significantly improve the

revisitation in Web.

People often repeat Web searches whether to find new information for a topic

they have already explored or to find what they once found about a particular

topic. Queries associated with a repeat behavior may have different texts, yet

they lead users into same clicks. Teevan et al. [11] demonstrate that as many as

40 % of all queries lead users into repeat behavior. They describe the intent of

7



user issuing the search with categorization of different types to be derived using

query string and click-through sets.

Sanderson et al. [12] confirmed refinding behavior observed by Teevan et al.[11]

and extended their work to include temporal properties of repeat searches and

clicks. They indicate that users show seven day and 24 hour periodicities in their

search, which is also consistent throughout entire period of time of the query log.

Queries issued repeatedly from different users tend to show the information need

of users for a particular temporary event or news.

2.3 Learning to Rank - LETOR

In recent years, there has been significant works on learning to rank for infor-

mation retrieval. Many powerful algorithms have been developed for learning

to rank information retrieval and some of them have been applied to the some

particular problems such as web search. One of the indepth papers on this area

is published by Qin et al. [13]. They constructed a benchmark dataset called

LETOR to be used by the researchers interested in learning to rank in the scope

of information retrieval. They introduced the features to be used in learning al-

gorithms and they categorized their features into four groups, which are low-level

content features (e.g., tf*idf [14]), high-level content features (e.g., BM25 [15]

and LMIR [16]), hyperlink features (e.g., PageRank [17]), and hybrid features. In

total, they extracted 44 features, which are still mainly used by the researches in

the learning to rank setups. Besides, they discussed data partitioning methods

to split the data set to be used as training and test separately and they pro-

vided with the performance results of the benchmark dataset using precision and

NDCG metrics.

There is a book published by Li [18] devoted to the learning to rank for in-

formation retrieval area. The algorithms and their corresponding approaches,

which are pointwise, pairwise and listwise, are explained in an exhaustive man-

ner. Learning to rank can be applied to many problems arising in the area of
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information retrieval, specifically web search. Giannopoulos et al. [19] try to find

out the user intent using learning to rank algorithms. They state that user intents

in web search are subject to change and hard to capture. In order to capture the

user intent, they exploit the click-through feedback of users using the learning to

rank approaches. They cluster the user intents considering the query log data

to learn different ranking models for each cluster. They assert that their cluster

models significantly outperform the baseline which is a single model.

Query auto-completion (QAC) is one of most prominent features in modern

search engines, which makes it an important research topic in information re-

trieval area. In [20], Shokouhi introduces a supervised framework for personalizing

auto-completion ranking. He compares existing features including user-specific

and demographic features to find out their effectiveness in the scope of person-

alization of auto-completion. He concludes that user’s long search history and

location information perform best among the features used. Besides, he asserts

that his ranking models supported by personalization features outperforms the

existing popularity based baselines, in terms of mean reciprocal rank (MRR) by

up to 9%.

One of the hot topics in information retrieval related to the learning to rank

methodologies are click models. In a learning to rank environment for a model to

be learned, an annotation must be done since it is a supervised learning process.

Making relevance annotation by judges is of high cost, which leads the researchers

to come up with models that try to predict the relevance of the documents auto-

matically with high effectiveness.

In one of the early works on click models, Dupret et. al. [21] propose a

set of assumptions made on user browsing behavior that allows predicting the

relevance of the documents using estimation of the probability that a document

is seen. They try to estimate the probability of a result document being clicked as

the ratio of the number of times a user clicked on the document to the expected

number of times the document is examined, instead of pure click through rate

(CTR) values. Apart from the position and the cascade model [22], they give a

baseline model, which only depends on the attractiveness of the document (URL,
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snippet etc.) They also state that, the cascade model outperforms significantly

the other models in explaining the clicks at higher ranks. On the other hand

at lower ranks, it is slightly worse than the other models, including the baseline

model they proposed.

Click through can provide an important source of user feedback and therefore

can be used to determine the relevance labels of the documents using clicks of

users rather than editorial judgment. However, due to the position bias, doc-

uments appearing at lower ranks are less likely to be clicked, which makes it

difficult to capture the relevance information for such documents.

Chapelle at al. [23] propose a Dynamic Bayesian Network to give an unbiased

estimation of the relevance from click logs. Their model tries to combine the

advantages of both the position model and the cascade model. They claim that

their model is similar to the position model in the sense that a click occurs if

and only if the user examines the URL and finds it relevant. Similar to the

cascade model, their model assumes that user sequentially looks at all the results

and clicks based on the perceived relevance. The user keeps examining the next

URLs if he is not satisfied with the current URL (based on actual relevance).

The difference between their proposed model and the cascade model is that click

does not necessarily mean that document is relevant. Also, there is no limit in

terms of click numbers in their model. They assert that their experiments show

that their proposed model outperforms existing click models in predicting both

click-through data and relevance.

Clicks on search results are helpful source determining the user satisfaction in

a search session. Yet, click information can be noisy due to position and caption

bias and some other factors. A common approach to remove the noisy clicks may

have is to use 30 seconds threshold [24] to categorize clicks as satisfied (SAT) or

dissatisfied (DSAT) clicks. However, Kim et al. [25] claim that using a single

threshold value (e.g., 30 seconds) to determine whether the user is satisfied by

the click is not rational due to different page characteristics. They state that

topic of the page, its readability level and its length are crucial in determining

the amount of dwell time needed to figure out whether any click can be labeled

10



as satisfied.

To understand whether a user is satisfied with the current search results, im-

plicit behavior is a useful data source, with clicks being the best-known implicit

signal. Yet, it is possible that a non-clicking user to be satisfied and a clicking

user to be dissatisfied. In [26], Hassan et al. used the user behavior among

search sessions as the implicit signal to determine whether a click is satisfied or

not. Specifically, they focused on reformulation behavior, which is defined as

consecutive queries having similarities in textual content and interior time less

than a certain threshold. They claim that their query based model with addi-

tional query specific features is better to figure out user satisfaction than the click

based models.

The click through data has been used in various subjects in web search using

the learning to rank algorithms. However, there is a limit to the usage of click

logs when there is not enough information about some particular queries in the

query log. This problem generally occurs for the queries having low frequencies,

called tail queries. In recent years, researchers have started to focus on this is-

sues trying to generalize learned models to perform well enough for tail queries

as well. Aktolga et al [27] try to boost rarely clicked queries in a system where

limited click-through data are available. They proposed a probabilistic approach

to re-rank the result list of documents for sparse queries. They utilized the in-

formation of co-click queries, which share clicks on the same documents. They

try to generate click-through features using the set of queries similar to the given

query which has no to little click data available. They categorized similar queries

into three groups, which are similar queries that share at least one co-click, syn-

onym queries that are lexically related to each other and subset queries where one

is included in the other as a subset. They assert that their models using three

sets of similar query sets are significantly better than the Lucene based baseline

model.

Incorporating click-through features using query logs to the learning to rank

algorithms is useful to have better performing model, yet there may be some occa-

sions where click-through features cannot be calculated. Gao et al. [1] introduce
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clickthrough stream as the set of queries having co-click for a particular document

in the query log given a certain document. Their calculation of click-through fea-

tures differs from the ones in the literature in the sense that they also consider

whether a click is the last click in the search session to give more importance for

the documents that are clicked last.

They further try to improve the performance of features by using two smooth-

ing techniques, which are Discount method and Random Walk. There are certain

queries in the query log whose result lists include documents that have insufficient

clickthrough stream that is not big enough to calculate the features effectively.

For those queries, they use random walk approach to generate artificial con-

nections between the query having a sparse click through stream for associated

documents in the result list and other random queries. However, this method

is not applicable for queries that have zero click in the query log and therefore

zero queries in their click-through streams. For those queries, they simply try to

estimate the values of the click through features, initially calculated as zero prior

to Discount method, by using the values of the features of the queries having a

single query in their clickthrough stream. The motivation behind this idea is to

reduce the penalization of the ranker training instances which have zero valued

features. They report that using Discount method and Random Walk along with

their combination they further improve the model learned by the state of the art

ranking functions by up to 4%
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Chapter 3

Query Log Analysis

Search is a key web activity among all kinds of users towards a large variety of

goals. While the lion’s share of previous works on query analysis focus on general

web search, the need for analyzing the search behavior of certain user groups

and/or users searching for a certain type of information has emerged as an im-

portant research direction. Recent studies show that children and teenagers, who

constitute a large and dynamic subset of web users, deserve special attention as

their search behavior differ from the adults in several ways while using search

engines [29, 30, 31]. Other studies address alternative search tasks that are usu-

ally carried out via verticals, and analyze query logs obtained from the systems

specialized for digital libraries, audio-visual archives and searching people on the

web [8].

In this chapter1, we analyze the query logs of a commercial educational content

developer and service provider for Turkish students at K-12 level. Turkey has the

youngest population in Western Europe (by median age) and 42.9% of its total

population, which is estimated to be around 77 millions as of December 2013,

is young, i.e., under 24 years old. According to national statistics, the number

1This chapter is based on the work [28] published in Proceedings of the 37th International ACM

SIGIR Conference. SIGIR’14, July 6–11, 2014, Gold Coast, Queensland, Australia.

http://dx.doi.org/10.1145/2600428.2609532.
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of students at primary and secondary schools adds up to 16,156,519 (excluding

pre-school and open-education students) [32]. Not surprisingly, there are several

governmental and industrial efforts to develop education services and products

targeting this young and dynamic population. VitaminTM is a commercial web-

based educational framework that provides interactive content and performance

assessment mechanisms for a large variety of courses covered in K-12 curriculum

in Turkey. As of December 2013, Vitamin has more than 1.2 million registered

users and about 4.3 million site visits per month. These users can utilize the

navigational interface to reach to the content they need, or they can perform

search over the entire set of educational materials.

3.1 Search Characteristics

Following the practice in [8], we provide the characteristics of search in Vita-

min with respect to four major dimensions; namely, queries, sessions, users, and

clicked results. We also compare and contrast our findings to those on general web

search engines and/or earlier results on children’s search behaviors. Our analysis

helps understanding how students search with the purpose of learning in an ed-

ucational vertical, and reveals new directions to improve the search performance

in the education domain.

Vitamin search engine allows users to issue a keyword query along with a num-

ber of category filters, namely, content type, grade, and course filters. Figure 3.1

shows the GUI of the Vitamin’s search system for the query “carbon dioxide”.

Then, users can click and display a particular query result, which is called a

learning object and presented in text and/or audio-visual formats; or navigate to

certain point in a topic hierarchy where this learning object belongs to. The sys-

tem stores the queries and clicked results in the search log, while the navigational

type of interaction is recorded separately as a different kind of event. Therefore,

our preliminary analysis here involves a query log that includes a sample from the

queries submitted to Vitamin’s search system in December 2013 by the logged-in

users (i.e., with paying or trial accounts), and followed by at least one click on
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Figure 3.1: Vitamin search GUI for the query carbon dioxide (with annotations
in English)

the displayed results.

3.1.1 Query Characteristics

According to Table 3.1, 27.8% of the query volume are unique queries and 69.3%

of the latter are singletons, i.e., asked only once. These values differ from the

web search trends, where 50% of the queries in a typical search log are unique

and 88% of them are singletons [33]; and more similar to the trends obtained

for a vertical for searching people [8]. This means that the queries are more

likely to be repeated in this educational search engine, which is a good news for

the mechanisms that exploit temporal locality, such as caching. On the other

hand, distribution of query frequencies shown in Figure 3.2 confirms the power

law distribution characteristics as in the case of web search [33].

On the average, a query includes 2.16 terms, which is slightly shorter than

typical web queries (around 2.5 terms as reported in [33]) as well as the queries

submitted to a major web search engine by the users between 10 and 18 years old
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Table 3.1: Query characteristics

Number of queries 66,908
Number of unique queries 18,638 (27.8%)
Number of singleton queries 12,926 (19.3%)

Average number of queries per day 2,230
Busiest day in number of queries 3,855

Average number of terms per query 2.16
Average number of users per query 3.58
Average number of results per query 114
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Figure 3.2: Distribution of query frequencies. The x-axis represents the rank
according to the query frequency in the plot.

(around 2.6 terms [29]). This difference might be attributed to the fact that the

educational search setup is a more restricted domain than web and even a couple

of terms can yield the relevant resources from the available content.

Table 3.2 lists top-10 most frequent queries, which yields interesting findings.

First, top-2 queries are “games” and “game”, which means that the students

enjoy the educational games provided by this system. Among the remaining 8

queries, 3 of them are simply the course names and too general to be useful (i.e.,

“science”, “math”, “Turkish”). This implies that the students who want to find

a certain course still use the search box, rather than browsing through the list of

courses. The other popular queries are related to Turkish and Math courses, and

might be related to the topics that are being discussed in these courses at this

time of the year.
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Table 3.2: Top-10 popular queries in terms of the query frequencies and unique

users.
Query Frequency Users

oyunlar (games) 3898 2290

oyun (game) 3197 1576

fen (science) 708 320

zarflar (adverbs) 683 466

trke (Turkish) 605 344

matematik (math) 571 368

fiilde atı (verb forms) 461 321

ses bilgisi (phonetics) 417 248

standart sapma (standard deviation) 384 309

olasılık (probability) 335 249

As mentioned before, Vitamin’s search interface allows setting various filters

along with a query, which we analyze next. Figure 3.3 shows the distribution of

content type filters selected while submitting queries. It is seen that all content

types are selected in the majority of the queries, which is the default setting in

the GUI. This means that users leave this filter as-is most of the time, probably

because they want to see all available content relevant to their query. We observe

similar trends for the use of course filter, as shown in Figure 3.5.
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Figure 3.3: Distribution of content type filters used in queries.
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Figure 3.5: Distribution of course filters used in queries.

In contrast, the grade filter, at a first look, seems to be used more effectively

as the majority (more than 70%) of the searches are restricted to a certain grade

level (Figure 3.4); grades 5, 6 and 7 being the most popular ones. However,

this difference in the behavior may not necessarily be caused by the students’

awareness of this filter, as the search GUI for the trial accounts, by default,

shows only the user’s own grade level as selected. Therefore, for most of the

searches, we can still claim that students are reluctant to change the default filter

settings. This is an interesting finding that deserves further analysis, as it can

provide useful insight for designing a better search interface.

18



Table 3.3: Session characteristics

Number of sessions 35,225
Number of sessions having single query 20,914 59%
Avg. num. of queries in all sessions 1.74
Avg. num. of queries in sessions with >1 query 1.86

Longest session duration 133 min
Avg. duration in all sessions 4.7 min
Avg. duration in sessions with >1 query 7.1 min

3.1.2 Session Characteristics

As in the previous studies [29], we detect sessions by grouping together a partic-

ular user’s successive searches that has a time gap less than a time-out value (30

minutes). Table 3.3 presents several statistics about query sessions. Among the

total of 35K sessions, about 59% include only one query.
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Figure 3.6: Distribution of session lengths. The x-axis represents the rank ac-

cording to the session length in query count in the plot.

This skewed distribution of session length in number of queries can be seen in

Figure 3.6. Users submit around two queries in a session on average (computed

by macro-averaging over users). The average number of queries submitted to a

commercial search engine is 2.4 [34]. The average session duration in our log is 4.7

minutes and this is slightly longer than the session duration for children (between

ages 6-18) reported in [29]. However when it is compared to a general user’s query
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session in a web search engine (around 7 minutes in [34]), it is shorter. This again

indicates that the students can effectively find what they look for in this context

of educational search.

3.1.3 User Characteristics

We present the characteristics of users in Table 3.4. Among 18K total users, 40%

of them issue only one query during the one month period of our log. This skewed

distribution can also be seen in Figure 3.7 (left plot), where a large portion of

users asks very few queries but a few users submit large number of queries. The

distribution of the number of sessions over users shown in Figure 3.7 (right plot)

is even more skewed since 60% of users interact in only one session. On the

average, users ask 3.61 queries in 1.92 sessions.
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Figure 3.7: Distribution of number of queries (left plot) and sessions (right plot)

over users. The x-axis represents the rank according to the number of queries

(sessions) per user in the left (right) plot, respectively.

Figure 3.8 shows the distribution of query submissions over time. Monthly

analysis (left plot) shows weekly patterns clearly. Students submit the largest

number of queries on Sunday and least number of queries on Friday, according to

the daily analysis in Figure 3.8 (center). This provides some interesting clues in

students’ studying habits: the students heavily search for information on Sunday,
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Table 3.4: User characteristics

Number of users 18,534
Number of users with >1 query 11,402 62%
Number of users with >1 session 7,590 40%

Avg. num. of queries per user 3.61
Avg. num. of queries per user with >1 query 5.24

Avg. num. of sessions per user 1.92
Avg. num. of sessions per user with >1 query 3.31

during when they might be doing homeworks for the upcoming week. Then,

their activity in the search engine decreases gradually in the weekdays and reach

the minimum on Friday, when most of the students seem to enjoy the weekend.

Hourly analysis in Figure 3.8 (right) shows the percentage of queries submitted

to the system in different hours of a day separately for weekdays and weekends.

It is seen that students prefer to use the system mostly between 18:00-21:00 on

weekdays (after school) and between 12:00-21:00 on weekends.
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Figure 3.8: Distribution of query submissions over time. Left: Number of query

submissions per day in December 2013. Center: Distribution of queries over

weekdays. Right: Percentage of queries submitted per hour of the weekdays and

weekend days.

3.1.4 Out Click Characteristics

In this part, we analyze the clicks on the query results. Table 3.5 presents basic

statistics about clicks. On the average, users click 2.56 results per query and 2.29

clicks are unique. In terms of a session scope, there are 5.33 clicks on the average

and 4.80 clicks are unique. The log-log scale plots in Figure 3.9 shows that the
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Table 3.5: Out click characteristics

Total number of clicks 155,537
Average number of clicks per query 2.56
Average number of clicks per session 5.33
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Figure 3.9: Distribution of click counts per query (left plot) and per session
(right).

distribution of number of clicks again follows a power law distribution.

Figure 3.10 shows the percentage of clicks for each type of learning objects.

It is seen that users mostly prefer “animation” and “interactive exercise” type

of contents. Furthermore, “interactive activity” and “lecture” type of contents

are also clicked frequently, while textual resources (“Text”) are less likely to be

clicked. These findings reflect the students preference of interactive content over

purely textual material, which actually leads most educational content to be

presented in the former format in Vitamin.
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Figure 3.11: Distribution of clicks by rank.

Finally, we focus on ranks of clicked results in Figure 3.11. We see that while

top-2 results, non-surprisingly, take the largest share of the clicks, there is a non-

negligible fraction of clicks for the results placed at much lower ranks, even after
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rank 20. According to a general web search engine log [35], clicks for top-2 results

account for 58% of all clicks and only 9% of clicks are below rank 10. However,

in our log, top-2 clicks and clicks after rank 10 constitute 36% and 20% of all

clicks, respectively. This might either indicate the students’ dissatisfaction of the

results, or their preference to see several relevant results while learning a topic.

3.1.5 Findings

In this section, we presented an in-depth analysis of a query log from a popular

K-12 educational search system with real user queries. Our analysis revealed

that the trends in this context differ from general web search in various aspects,

which might be exploited for building educational search engines that are better

tailored for students’ needs and behaviors. In particular, the high fraction of

repeated queries indicates that system components that rely on the query history

(such as caching and query suggestion) can be made more effective. The students’

preferences in using the query filters call for reconsidering the design of the search

interface. Finally, our out-click analysis shows that students prefer active content

formats (like animations and interactive lectures) over the static content (like

text) and can click further lower ranks in the results list other than the first few

results. Such findings can help designing better features for the machine-learned

ranking algorithms and lead higher user satisfaction.

3.2 Refinding Analysis

In literature, query log analysis has been done on various query logs provided

by some commercial search engines or by some vertical search engines. There

exist few query log data which are distributed as public data to help researchers

to exploit possible works to be done in search problems. One of the issues that

arise from search problems is refinding problem. Refinding is the behavior of a

user that searches particular document and as a result clicks the same document

multiple times from different search sessions. In the work [9], it is noted that 17%
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of those surveyed people complained about finding the page once they visited and

stated that this is one of the biggest problems in using Web.

Using the query log data provided by SEBIT, we tried to explore refinding be-

havior of students who issue searches. The data is comparable to other statistical

datasets used in query log analysis, which is already explained in the previous

section in detail. Query log data gives helpful feedback about user actions, yet it

is not enough to explain the underlying motivation behind user search. Refinding

can be considered as one of the motivations users may have during search.

We tried to capture Refinding behavior by first grouping user issues according

to their unique userids derived from query log. Then for each user, search issues

are sorted considering their timestamp provided in data. We assumed that if a

user clicks for a document and later on in a different search session clicks again

that particular document, this behavior is labeled as refinding. Note that, to have

Refinding behavior, one has to click for a particular document from two different

search sessions having different timestamps. Also note that, even if those two

search sessions do not have the same query text as an input to the search engine,

we considered this as Refinding behavior as well. What is important for us is

to find out whether the same document is clicked multiple times for a particular

user in order to label as Refinding.

For instance, a user searches for the query “Math functions” and clicks a

learning object (page in Web) shown in the result list for that query. Later the

same user searches “functions” at a different time and clicks the same document

again, which we assumed has underlying motivation to find the same document

clicked once before. Therefore we consider it Refinding.

In this section, we show the results of Refinding behavior we observed in our

query log data. While doing that, we choose the particular observations stated

in [11]. For each analysis we make, we first state the case for general web and

provide our results to compare with theirs.

We categorized queries as either Refinding or Newfinding queries as stated in
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[11]. Refinding query is the query session in which user clicked a document that is

clicked before on another search session by again that particular user. Newfinding

query is the opposite, having no documents clicked before on any other search

session user has. The results along with their comparison to their corresponding

results in Web are as follows:

1. In Web, in 40% of all search sessions users have in general web search engines,

there is at least a document retrieved in the result list and clicked by the user

who clicked that particular document at least one time in any of the past

searches. In other words, 40% of users have tendency and motivation to find

and therefore click the document they once visited.

⇒ In our findings, the results are significantly different. In our query log

data, we have 66908 query issues in total. Of those, we found Refinding

behavior in 17218 queries, which is approximately 25%.

The reason could be that in educational search environment, students

periodically study different materials related to the subjects listed in cur-

riculum. Therefore, they are likely to search for another subject different

than what they already searched. Another reason could be that students

advertently try to avoid those documents once they already discovered.

In terms of learning aspect, it might be rational and wise to choose a doc-

ument they have never visited to explore what that particular material

can offer for them to learn the subject better.

2. If we are to repeat the previous analysis in terms of document perspective, the

results again show differences. In other words, among all documents clicked by

all users, 28% of them are clicked multiple times by the same user at different

search sessions having different timestamps.

⇒ In our query log data, we have 165,587 learning objects (documents)

clicked at least one time by a user in any search session. Of those, only

20,594 documents are clicked multiple times by the same user at a differ-

ent time, which roughly corresponds to only 12% of all documents.

The reasoning behind this behavior is the same as the previous one, that
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is, students are less likely to search the same subject due to having multi-

ple subjects listed in their course curriculum and students tend to look for

new learning objects to enhance their knowledge about subjects covering

different parts mentioned in different documents.

3. Another difference is observed in the number of documents clicked by multiple

users in any search sessions. Among all clicked documents, in web only 7%

of documents are clicked by multiple users. However, this behavior must be

handled regarding the immense number of documents across web.

⇒ The results for our query log indicate completely different story. Among

all documents clicked, 99% of them are also clicked by another user in

a different search session. This is the reflection of our learning object

set, which includes only 3500 different objects to be retrieved in result

lists. Hence, students are shown similar document lists even if queries

written might be different. However, considering the amount of query

sessions (66K) we have in our query log, it is not reasonable to explain

this behavior only considering the amount of documents we have. Since

students share same documents in terms of click information, which can

indicate students are likely to find similar documents relevant compared

to general web users.

4. Another statistic is to find out the tendency users have to prefer documents

that they have never visited before, specifically in search sessions they explore

documents that they visited once. In other words, among all Refinding queries

in Web, 14% of them include user clicks on new documents that are not clicked

before by that particular user.

⇒ The above analysis given in [11] is one of the behaviors where results show

significant difference compared to our results. In our query log, students

are more likely to click new documents in search sessions in which they

already clicked on a document they once visited. In Refinding query

sessions, it is observed that 43% students also click new documents that

they never visited before.

We believe that there are two specific reasons behind this behavior from
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students according to our observations. The first one is willing of the stu-

dents to explore new learning objects while trying to cover more aspects

of a particular subject. Another reason is more general, that is, as men-

tioned in previous section, students are more likely to click documents

on average compared to general web searches, which essentially results in

newly clicked documents.

5. Another aspect of the analysis is to find out the correlation between query

texts that resulted in Refinding behavior. In web, within the user issues, users

generally prefer the same query text while trying to visit a document that they

visited once. Among all query sessions including Refinding behavior, 71% of

them come from the same query texts. The calculation is made by simply

taking the ratio of unique query texts over all query issues having Refinding

click.

⇒ The behavior for this particular statistic is similar for the students as

well. In our query log, students generally prefer the same query texts

that result in Refinding click, which accounts for 64% of all query issues

having Refinding behavior.

6. Similar to the previous analysis, users tend to click documents that they once

visited in search sessions where they prefer the same query texts, which account

for 87% of all query issues that have the same query text by the same user.

⇒ Unlike the previous analysis, there is a difference between Web and our

query log in terms of this particular behavior of users. The probability

of a search session in which Refinding happens to have the same query

text as the ones where the users clicked the same document before, is

considerably high. However, the probability of a student to click on a

document that he visited once before in search sessions where he prefers

the same query text is only 44 %, which is relatively low compared to

Web.

The main reason for this result could be that students have less skills to

define their queries in terms of their search needs compared to general

web users. They have difficulties to express their intent in clear manner,
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which results in different query texts even though they have the same

intent.

7. Same query text analysis is done this time for search sessions, namely Newfind-

ing Query Sessions, where a document that the searching user never visited

before gets clicked. As suggested in the paper [11], the results are lower than

the Refinding Query Sessions, that is, among queries having the same text,

38% of them result in newly clicked documents.

⇒ Naturally considering the previous analysis results, this percentage is

much higher than Web. While learning, new documents mean more

source to cover for a subject, which results in more query sessions where

Newfinding behavior happens. However, it must be noted that this

Newfinding behavior occurs even in sessions having the same query texts,

meaning the students prefer new learning objects in a consistent manner.

Among all queries having the same text, 74% of them result in newly

clicked documents.

8. In addition to the previous two analysis, the results for intersection behavior

of these two are also calculated. In Web, among query sessions having the

same query text, probability of a search session to have both Refinding and

Newfinding behavior is 25%.

⇒ The results for this analysis show similarities to those in Web. Yet, the

ratio is slightly lower than Web, which is 18%. This difference can be

explained by the lack of ability of students expressing their intents clearly.

In other words, the ratio clearly shows that even though students type

the same query text, those sessions might intend to find both Refinding

and Newfinding documents, which is what makes it difficult for the search

engine to predict actual user intent to improve search results.

9. Another analysis made on the paper [11]is whether Refinding behavior depends

on the number of clicks user made on that particular refinding session. Among

all user issues made, 29% of the search sessions which result in single click on

a document have Refinding behavior.
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⇒ The results for this analysis on our query log data are slightly different

than the results with the Web. Students are more likely to click on

Refinding document where they prefer to click a single document on a

search session, which accounts for 42% of all searches including single

click. The difference arises from the search habits students have compared

to general Web users.

In web, generally search sessions having single click are considered as

failed searches. Yet, this is different for students. Having a failed search

session including single click generally leads the user to reformulate his

query to perform better search to find the page he is looking for in Web.

However, students lack the ability of reformulating queries that they think

are unsuccessful. In other words, ratio of single click sessions to all search

sessions is less than the ratio we have in general Web case. Therefore,

in our query log, we believe that, contrary to the behavior users have in

Web, sessions having single clicked document means successful Refinding

search rather than an unsuccessful one.

10. The last analysis we performed for comparison is the opposite of the previous

analysis, which is to find Refinding behavior in search sessions where multiple

clicks occur. In web, among all search sessions including multiple clicks on

documents, only 5.3% of them include Refinding behavior, which is expected

regarding the previous analysis.

⇒ This is one of the analysis that behave significantly different for our query

log data compared to general Web. 57% of search sessions including

multiple clicks lead students to click on a document they once visited.

The reasons for this behavior we believe are twofold. The first reason

is the less number of documents our data have. Hence students tend to

click more documents compared to Web, which eventually includes one

of the documents they already visited before. The other reason would

be that students are less likely to remember the documents they visited

before in a successful search, therefore for a Refinding intent, they have

to click more documents than general Web users.
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Chapter 4

LETOR - Learning to Rank

In information retrieval (IR) and natural language processing (NLP), ranking

is the central problem for many tasks. These tasks include document retrieval,

question answering, personalized search, collaborative filtering, document sum-

marization, and so on.

Ranking problem generally consists of two different types; which are ranking

creation [18] and ranking aggregation. Ranking aggregation is to create a list of

objects using multiple lists of objects by aggregating them into a single list, while

ranking creation is to make a list of objects using feature sets of the objects given

another type of the object (query in web search case). Our work in this thesis

falls into the latter group.

Document retrieval is one of the main problems in information retrieval for

which the ranking problem is the main issue to be solved. In web, although there

are limitations for search, to access information available on Web it is by far the

most common and practical solution to search for a page. For instance, according

to a report by IProspect, 56% of the internet users use web search every day and

88% of the internet users use web search every week [9].

In this scope of document retrieval task, learning to rank refers using machine

learning algorithms to rank documents using a trained model given query and
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document pairs. The idea of ranking creation is to create a list of documents

using extracted features of documents given query so that good and preferable

documents will be ranked at top compared to other documents. Learning to rank

is therefore concerned with the automatic creation of ranked list of documents

using machine learning algorithms.

Learning to rank plays a significant role in document retrieval to rank docu-

ments using machine learning techniques to come up with a better list of docu-

ments to satisfy user needs and therefore to improve search engine performance.

However, this technique can be considered as a new trend following the literature

in information retrieval. Before LETOR, traditionally search engines were trying

to find a function f(q, d) to score a document d given query q without learning

any model using machine learning algorithms.

In [15], BM25 technique is used to derive a conditional probability to construct

ranking function f(q, d) where conditional probability is represented as P (l|q, d)

in which l denotes the label of the document given query to get either 1 or 0

being relevant or irrelevant respectively to the query.

Another technique used for document retrieval task in literature prior to

LETOR is using Language Model for IR (LMIR) [16]. Using LMIR, the rank-

ing model is again defined as conditional probability distribution P (q|d) where q

represents the query and d denotes a document. In both techniques, ranking is

made using probability distributions that is probability of each document given

query is calculated and then documents are sorted according to their probability

scores to assess final ranking of documents. Since these two techniques use only

probability distributions, no model is learned in either of the methods.

Learning to rank method is a new trend arising in information retrieval to be

used in document retrieval such as general web search. In learning to rank, the

ranking model f(q, d) is learned through past data, which is basically the search

issues by users, called query log data. Using query log data, user behaviors for

particular queries such as impressions and clicks are recorded to be exploited in

the model to train better ranking function. In learning to rank environment,
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Figure 4.1: Learning to Rank for Document Retrieval

sets of queries Q and documents D are constructed. Then for each query q in

Q, associated documents are chosen. Learning to rank uses supervised machine

learning algorithms, that is, each document d in associated set of q is labeled to

denote its relevance to query q. Then using these query-document pairs along with

their correspondence labels, ranking function f(q, d) is learned to predict scores.

Overall structure of working mechanism of general learning to rank environment

can be seen in Figure 4.1. The figure is inspired from the work in [18];

4.1 Training and Testing

Since learning to rank is a supervised learning process, creation of training and

test sets is a must for the setup. In this section, we will be presenting the idea

of learning to rank environment setup briefly. As explained in [18], each notation

that will be used in the explanation is given with their explanations in Table 4.1.

Using query log data, we first find the unique query issues and unique docu-

ments to create query set Q and document set D respectively. In learning to rank

environment, feature vectors are derived from query-document pairs. Hence, after
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Table 4.1: Summary of Notations

Notations Explanations

Q query set
D document set
Y = {1, 2, ..., l} label set with order �
qi ∈ Q i-th query in query set
Di = {di,1, di,2, ..., di,ni

} set of documents related to qi in training data
di,j j-th document in Di

Yi = {yi,1, yi,2, ..., yi,ni
} set of labels of documents in Di with respect to qi

yi,j label of the j-th document in Di with respect to qi
xi,j = ϕ(qi, di,j) feature vector derived from (qi, di,j) pair
Xi = ϑ(qi, Di) feature vector derived from (qi, Di) pairs
τi ranking list of the i-th query
τi(j) rank of the j-th document in Di with respect to qi
R = {(qi, Di), Yi}mi=1 original training set
R′ = {Xi, Yi}mi=1 transformed training set
S = {(qm+1, Dm+1), Ym+1} original test set
S ′ = {Xm+1} transformed test set

finding overall sets, each query is associated with a number of documents. Along

with the association, relevance of documents with respect to associated queries

is also given. The relevance information may vary depending on the method to

annotate the query-document pairs. In this section, the most common scenario is

taken into consideration, that is, relevance labels given as integers starting from

1 to g. The labels are at several grades. Specifically, a higher grade a document

has with respect to a query, the more relevant the document is associated with

the query.

In this section, we follow the work in [18] by Li to explain basic principles

of learning to rank environments. Suppose that Y = {1, 2, ...g} is the label

set, where the labels represent grades each document can get with respect to

a particular query. There exists a relation between the grades in Y such that,

g � g − 1 � ... � 1, where � states the order of the relation between grades.

Further assume that we have training data consisting of query set {q1, q2, ..., qm}
where m denotes the number of queries that are used in learning. In the set of

queries used in learning, i-th query is called as qi. Then Di = {di,1, di,2, ..., di,ni
}
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Figure 4.2: Learning to Rank Training Phase

is the set of documents associated with qi. Along with documents themselves,

Yi = {yi,1, yi,2, ..., yi,ni
} is the set of labels of documents in Di with respect to

qi. Therefore, yi,j represents the label of the j-th document in Di with respect

to i-th query qi. Overall, training set before feature extraction becomes R =

{(qi, Di), Yi}mi=1, where m denotes again the number of queries used in training

set to learn the model.

Further, the feature vector for each query-document pair is extracted from

training set R. For i = 1, 2, ...,m and j = 1, 2, ..., ni, the feature vector xi,j =

ϕ(qi, di,j) is constructed using query qi and document di,j where ϕ represents the

functions used to derive the features. In other words, ϕ is the function which

gets two inputs from query qi and document di,j and outputs the feature vector

xi,j. Feature extraction process is done for each query-document pair in each

list of documents associated to a particular query, that is, the feature vector

Xi = ϑ(qi, Di) for a particular query qi is calculated using Di. Next, transformed

training data R′ = {Xi, Yi}mi=1 is constructed using each Xi along with their

correspondence label set Yi for associated documents.

Suppose that we define the ranking of the result list of documents associated

with query qi as τi. Ranking documents is simply nothing but assigning scores

to each document to further use them in sorting to finalize their ranking position
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Figure 4.3: Learning to Rank Test Phase

in the result list. Hence as a result, learning to rank algorithms try to find the

ranking model F (qi, Di), which can give the possible best ranking list τi for each

query qi using the transformed training set R′ = {Xi, Yi}ni=1. The construction

of the training data set is illustrated in Figure 4.2.

Similar to the training phase, the test data is prepared using the same feature

function ϕ used in the learning phase. Suppose a new query qm+1 comes into

the system as a test query. We are also given the set of documents Dm+1 =

{dm+1,1, dm+1,2, ..., dm+1,nm+1} associated with the query qm+1. In test phase, we

are not interested in the set of labels of the documents in Dm+1, since the learned

model is there to predict those grades. Afterwards, the feature vector Xm+1 that

is calculated using ϕ learned in the learning phase is given as the test data to the

learned model f(x). The model f(x) assigns scores to each document in Dm+1.

Next, the grade (or score) set Ym+1 = {ym+1,1, ym+1,2, ..., ym+1,nm+1} of test data

is sorted to construct τm+1. The test phase of the learning to rank environment

is illustrated in Figure 4.3.

The training and testing data splits are similar to, but slightly different from,

the traditional data splits in supervised learning environments to be used in ma-

chine learning algorithms such as classification and regression. In learning to

rank setup, although each instance is represented as query-document pair, doc-

uments associated with the same query form the groups. The groups within the

whole training data is independent and identically distributed from each other,

whereas the instances within each group are not independant and identically dis-

tributed data, which results in the difference between LETOR environment and
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conventional machine learning algorithms.

4.2 Annotation

Learning for ranking is a supervised learning process that needs a high quality

training data set to perform better. Creation of the training data is not an easy

task due to several reasons, one of which is to have grade (or label) for each

query-document pair put as an instance to the model. In the literature, there

are two ways to annotate the documents associated to a particular query. Both

have advantages and drawbacks depending on the environment. In this section,

we mention the ways to grade labels to the documents.

The first and the most common way to annotate the documents is human

labeling. In this approach, a set of queries from the query log is chosen randomly.

Next, exploring the query log data, the set of documents related with the queries

chosen is determined. As a result, we end up with having a query set along with

their correspondence document list to annotate. Then human judges are asked

to grade the documents with respect to the given query. Generally, relevance

judgments are conducted using multiple levels. Normally, each query-document

pair is given to a single judge to label the documents with respect to the query.

However, the labeling on query-document pairs can be conducted by multiple

judges, and then majority voting can be carried out to have a final score. The

advantage of the human labeling approach with multiple judges is its robustness

due to the voting technique. Yet, having multiple judges to label documents is

an expensive process, which leads researches to come up with different techniques

to annotate the documents.

The other approach is deriving labels implicitly from click-through data. Click-

through data at a web search engine include implicit feedbacks of users as im-

pression and click, which further can be used to assign relevance labels to the

documents. For this approach, there are mainly two techniques introduced in the

literature that are used to predict relevance information of the documents, which
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are Position Model and Cascade Model. There are various click models built on

top of these models, which can be seen in [23, 24, 25].

The two models differ from each other by the assumptions they take while

finding the relevant documents. A position model [22, 21, 36] assumes that in

order for a click to be considered as relevant, the document clicked must be

examined and found out to be relevant by the user. In the position model, each

rank in the result list has certain probability of being examined and it decreases as

ranks go higher. The model has a drawback in the sense that it treats documents

clicked individually, therefore it fails to capture the relation between documents

in terms of relevance.

The cascade model [22] assumes that user sequentially examines the documents

in the result list and the document user clicked last is the relevant document in

the given search session. In other words, the probability of a document being

relevant depends on the relevance of the previous documents having lower ranks.

However, it is straightforward that cascade model fails in search session where

there exist zero or multiple clicks.

The annotation of the query log data using click-through information has pros

and cons. Derivation of relevance information from click-through data is of low

cost compared to human labeling and it also reflects the real user choices which

make them more reliable. Nevertheless, generally click-through data is noisy and

it cannot be useful for singleton queries (low frequency queries).

4.3 Feature Extraction

The ranking model f(q, d) is learned through query-document pairs by using the

calculated features. In other words, there is a feature vector f(x) based on q

and d. Therefore, the performance of the ranking model highly depends on the

feature vector. Thus, it is crucial to first find out which features will be used. In

web search, there are numerous features provided in the context of learning to
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rank algorithms. In this section, we will give information about two of the most

popular ones, namely BM25 and PageRank. Most common features used in the

learning to rank setups can be found in [13, 37].

4.3.1 BM25

BM25 is a probabilistic model representing the relevance of document d to query

q in terms of textual perspective [15]. It tries to capture how many terms appear

both in the document and in the query. Specifically BM25 of a query-document

pair is calculated as follows

BM25(q, d) =
∑
w∈q∩d

idf(w)
(k + 1)tf(w)

tf(w) + k((1− b) + b dl
avgdl

)
(4.1)

where w denotes a word appearing both in the document d and in the query

q, tf(w) denotes the frequency of w in d, idf(w) denotes the inverse document

frequency of w, dl denotes the document length of d, avgdll denotes the average

document length and k and b are parameters to be tuned [18].

4.3.2 Page Rank

PageRank demonstrates the importance of a web page in terms of ingoing and

outgoing links it has [17]. In order to calculate PageRank score for a particular

web page, first a directed graph is constructed to represent the web where vertices

represent pages and edges represent hyperlinks in between pages. Page rank of a

web page d is defined as P (d)

P (d) = α
∑

di∈M(d)

P (di)

L(di)
+ (1− α)

1

N
(4.2)

where P(d) is the probability of visiting page d, P (di) is the probability of visiting

page di, M(d) is the set of pages linked to d, L(di) is the number of outlinks from

di, N is the total number of nodes on the graph, and α is a weight [18].
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Table 4.2: Categorization of Algorithms Used in LETOR

SVM Boosting Neural Net Others

Pointwise OC SVM [38] McRank [39]

Prank [40]
Subset Ranking [41]

Pairwise

Ranking SVM [42]
IR SVM [43]

RankBoost [44]
GBRank [45]

LambdaMART [46]

RankNet [47]
Frank [48]

LambdaRank [49]

Listwise

SVM [50]
PermuRank [51] AdaRank [52]

ListNet [53]
ListMLE [54]

SoftRank [55]
AppRank [56]

4.4 Learning Approaches

As we described earlier, learning to rank creation is a supervised learning process,

in which machine learning algorithms are used. However, the difference in the

machine learning algorithms used for learning to rank creation is that instances

are sorted after assigning scores to each of them. As other topics, algorithms that

can be used in learning to rank environments are intensively studied recently.

There are three approaches commonly used in learning to rank environments,

which are pointwise, pairwise and listwise approaches. In [18], Li summarizes the

most used algorithms in learning to rank creation setups regarding the category

they fall into, which can be seen in Table 4.2. The approaches differ from each

other in terms of creation of the instances to be used in learning.

4.4.1 Pointwise Approach

In pointwise algorithms, the group structure of the instances that belong to some

particular query is ignored. In other words, the feature vectors created for each

query-document pair are then combined into a single set in which there is no

further information about the group information a particular instance belongs

to.
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Machine learning algorithms for classification, regression and ordinal classifi-

cation can be used to predict the grade of the instance in the test set of pointwise

algorithms. Then instances are sorted according to scores assigned to them by the

model to find out final result lists. The loss function in the learning is pointwise

in the sense that it only utilizes single instances without taking group information

into the consideration.

4.4.2 Pairwise Approach

In the pairwise approach, the ranking problem is transformed into pairwise clas-

sification or pairwise regression [18]. In this approach, group structure of the

instances is ignored as well, yet the pairwise approach captures the relation be-

tween documents because of its nature of considering preferences between in-

stances rather than single instances.

For i = {1, 2, ...,m}, the algorithms used in the pairwise approach try to find

the preference between each pair of documents. In this approach, instances are

indeed pair of documents. For instance, if xi,j has a higher grade than xi,k (yi,j �
yi,k), then xi,j over xi,k becomes a preference pair. The pairwise classification or

regression algorithms in the pairwise approach then try to predict the preference

of each pair of documents.

4.4.3 Listwise Approach

The listwise approach addresses the ranking problem in a more natural way, trying

to capture the group information of the instances as well. The advantage of the

keeping group information is to use gain functions particularly used in evaluation

metrics to further have better learned models. In this approach each instance

that belongs to a particular query qi creates a unique group identifying the query

qi. Then algorithms try to learn a model that utilizes the order for each group to

have better performance.
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According to previous studies on evaluation of the algorithms that belong to

each group, the listwise and the pointwise approaches generally perform better

than the pointwise approach. However, there are certain learning to rank en-

vironments in which pointwise approach can perform better compared to the

others, which is the nature of the machine learning algorithms. Specifically,

LambdaMART algorithm achieved best performance in the Yahoo Learning to

Rank Challenge [57].

4.5 Evaluation

In order to evaluate the performance of models learned by learning to rank algo-

rithms, one has to compare the results obtained from the model with the result

lists given as ground truth. In information retrieval there are multiple evaluation

methods that can be used for performance evaluation. In this section, we will

mention two of the most common techniques used in the literature, which are

namely NDCG and ERR. Note that, evaluation metrics depend on the type of

annotation done for relevance grade of the documents per query. The methods

that will be further explained in this section are generally used for multi scale

grade levels.

4.5.1 Normalized Discounted Cumulative Gain - NDCG

Discounted Cumulative Gain (DCG) is the first evaluation method that can be

used to evaluate the result lists retrieved by the learned model having multi scale

annotation scheme. Given query qi and associated document set Di, suppose that

πi is the ranking list (permutation) on Di and yi is the set of labels associated

with each document in Di. DCG measures the goodness of the ranking list with

the labels [58]. DCG at position k for qi is defined as follows:

DCG(k) =
∑

j:πi(j)≤k

G(j)D(πi(j)) (4.3)
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In the equation 4.3, there are two parts, G(.) and D(.),in the calculation, which

are gain function and position discount function respectively. Recall that, πi(j)

denotes the position of the j-th document di,j in πi. DCG(k) score is calculated by

the summation of each score for each document whose position is not bigger than

k. Therefore, DCG represents the cumulative gain from position one to position k

with discounts on the positions. DCG alone cannot be used to compare the results

with some particular baseline, since for DCG, the performance of the baseline is

disregarded. Therefore, generally NDCG metric is used, which is nothing but

the normalized version of DCG metric. Calculation of NDCG metric for query

qi is given as follows:

NDCG(k) = DCG−1max(k)
∑

j:πi(j)≤k

G(j)D(πi(j)) (4.4)

Looking at Equation 4.4, we can easily say that NDCG is the normalized version

of DCG by the maximum DCG value that can be achieved for a particular query

qi. In other words, NDCG gives 1 for a perfect ranking of πi for a query qi at

position k.

The gain function G(.) is generally defined as the logarithmic function on grade

levels. The motivation behind the idea is to give more score to the ranking lists

who achieve to predict documents having higher grade levels. Since it is more

significant to predict well the relevance of the documents of highest grades for a

model. Gain function for a document di,j given query qi is defined as,

G(i, j) = 2yi,j − 1 (4.5)

where yi,j denotes the grade of the document di,j.

The position discount function D(.) is defined similar to gain function G(.)

in the sense that it also uses logarithmic function on position rather than grade.

With discount function, we simply try to give less importance to the documents

having lower ranks in the result list. Given the result list πi of the query qi, the

position discount function D(π(i), j) for document di,j is defined as,

D(π(i), j) =
1

log2(1 + πi(j))
(4.6)
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where πi(j) represents the position of the document di,j in the ranking list πi.

Hence, using Equations 4.5 and 4.6 DCG at position k becomes

DCG(k) =
∑

j:πi(j)≤k

2yi,j − 1

log2(1 + πi(j))
(4.7)

If we add normalization factor into Equation 4.7, we get NDCG score at position

k, which is defined as follows:

NDCG(k) = DCG−1max(k)
∑

j:πi(j)≤k

2yi,j − 1

log2(1 + πi(j))
(4.8)

NDCG scores for each query qi with i = {1, 2, ...,m} are then further averaged to

calculate final NDCG score to represent the performance of the learned model.

4.5.2 Expected Reciprocal Rank - ERR

The other metric that can be used in evaluation of the learning models by learning

to rank algorithms with multi graded levels is Expected Reciprocal Rank ERR

[59]. This technique uses cascade model rather than position model compared

to NDCG metric, which is the most commonly used metric in learning to rank

environments having multi level grades. ERR tries to give a better representative

score for each result list compared to NDCG by taking the relevance information

of all the examined documents unlike NDCG, where the discount function only

depends on relevance and position of the current document.

ERR metric uses the strong assumption made by the cascade model, which

is that the probability of an examined document being relevant depends on the

relevance information of the previously examined documents in the result list [60].

The key point in calculating the ERR metric is that probability of an examined

document being relevant depends not only the relevance of the document but also

relevance of all the previously examined documents. Similar to NDCG metric,

the probability function for a document to be relevant depends on the editorial

grade made on the document.

Suppose that yi,j represents the editorial grade of the j-th document di,j in

πi. ERR tries to find a mapping function between the editorial grade and the
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probability of the relevance given the document. Given the query qi and the

document di,j along with its corresponding grade yi,j, the mapping scheme is as

follows:

R(y) :≡ R(yi,j) (4.9)

where R denotes the mapping function between the editorial grade and the prob-

ability of the grade of the document. R(y) is defined similar to gain function in

NDCG, where logarithmic function is used on the grades. Though, it has minor

addition to the gain function used in NDCG, which is given below:

R(y) :≡ 2yi,j − 1

2ymax
, y ∈ {1, 2, ..., ymax} (4.10)

ERR defines the discount function slightly different than the one in NDCG

metric. Simply, the discount function consists of two parts, which are called utility

function and probability of previously examined documents being not relevant.

Let ϕ(j) be the utility function varying on the position of the document being

examined. ERR metric defines the utility function as,

ϕ(j) =
1

j
(4.11)

where j represents the position of the document examined. The second part of the

discount function is to calculate the probability that the user finds the examined

document relevant. Let the probability of the document di,j being relevant be

P (j). Then, P (j) can be defined as,

P (j) =

j−1∏
r=1

(1−Rr)Rj (4.12)

where Rr denotes the probability of the examined document di,r in πi being

not relevant. R uses the mapping function defined above in Equation 4.10. Rj

represents that j-th document di,j in πi is found relevant and calculated using

mapping function R. Then, ERR score at position k becomes,

ERR(k) =
k∑
r=1

1

r
P (r) (4.13)

where P (r) denotes the probability that the user stops at position r. Hence,

combining Equations 4.12 and 4.13, ERR at position k is calculated as follows:

ERR(k) =
k∑
r=1

1

r

r−1∏
i=1

(1−Ri)Rr (4.14)
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Then, ERR score of each query qi with i = {1, 2, ...,m} is then further averaged

to calculate the final ERR score to represent the performance of the learned

model. The important difference in ERR can be seen in Equation 4.13, which

shows the discount function to be used to decrease the importance of documents

having lower ranks. According to the ERR metric, the more relevant the previous

documents are, the more discounted the other documents having lower rank are.
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Chapter 5

Proposed Educational LETOR

Model

In this chapter, we explain the model we use in our experiments with the query

log data provided by SEBIT, company which has a search engine product named

Vitamin. Our query log contains search issues made by the students who use Vi-

tamin product, which is a commercial platform where thousands of educational

materials exist. Therefore, our scope is the educational domain. While construct-

ing the model, we try to exploit educational information included in the query log

data. Our feature set includes attributes that represent educational information

available in the data. Besides these features, we also include the most common

features used in the learning to rank environments [13, 14, 15]. Apart from the

feature set, we construct multiple models for each cluster which we derived from

the query log. Specifically, we have three clusters that are frequency, course of

query and grade of user based. We try to further improve search engine perfor-

mance by introducing different models for each cluster to have a better average

performance than the general model we construct. Finally, we propose a novel

algorithm that tries to generate values for features having zero values specifically

for queries having low frequencies (singleton queries, which are defined as the

queries issued into the search engine exactly once).
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5.1 Feature Set

To setup LETOR environment we first create the annotated data in which each

query is associated with a list of documents having relevance scores labeled by us.

Then, we created a feature vector to be used as instance in LETOR algorithms.

We first analyzed the query log to explore potential features to be calculated for

LETOR algorithms. According to our observations we created a feature vector

for a query-document pair including 50 features consisting of both float numbers

and boolean attributes.

While considering potential features, we added well accepted features in

LETOR environments in literature, which include tf-idf and BM25 similarity fea-

tures, query popularity, document popularity, query-document click count, etc.

In addition to these features, we generated domain-specific features representing

our data, i.e., course of the document, grade of the user issuing the query and

type of document (animation, text, quiz etc.). In total, we represented query-

document pair as a 50-dimensional feature vector.

In this section, we present the details of these features, by referring to their

feature group and calculation issues. We would like to categorize our feature set

in 5 different groups, which are as follows;

• Query-document text similarity

• Query specific

• Document specific

• Session based

• Query-document click based.
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5.1.1 Query-Document Text Similarity Features

In our data, we have documents each of which has its own title and description

part consisting of explanation of the document in text. Therefore, for this group

we created two features representing the text similarity between query and docu-

ment information. In literature, tf-idf and BM25 are the most common similarity

metrics to be used in these tasks including LETOR. Hence, we have four features

to represent the query-document text similarity. Before using these features,

we need to normalize them. For each query session, calculated tf-idf and BM25

scores for each document are normalized into 0-1 range using linear normalization

method. The final list of features for this group can be seen in the following list.

Feature Group Feature Type Value Range

1. Query-Document Text Similarity

1.1. tf-idf Title float 0-1

1.2. tf-idf Description float 0-1

1.3. BM25 Title float 0-1

1.4. BM25 Description float 0-1

5.1.2 Query Specific Features

In the annotated data, we have 900 unique queries. Yet, for each unique query

there might be multiple query issues, which are represented by different unique

query identifier. We added two features namely query frequency and user fre-

quency to calculate and capture the query popularity among our data.

In addition to these features, we added query text features, token length and

character length, which are among the widely used features for LETOR environ-

ments. Then, we have unique related top document count and result count to

reflect the number of documents originally associated with the given query. Result

count is simply the number of documents retrieved by the search, whereas unique

top related document is the union of documents which are retrieved in the first

page result list. We normalized these features by using the linear normalization
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method considering queries across all data.

The last features for this group are novel features we derived from our query

log data. We observed that students tend to write queries which are appended by

either grade of the user issuing query or the course of the subject that they are

looking for. Therefore, we included these two boolean features into our feature

set to represent that information.

Feature Group Feature Type Value Range

2. Query Specific

2.5. Query Frequency float 0-1

2.6. Unique Top Related

Document Count

float 0-1

2.7. Result Count float 0-1

2.8. Unique User Count

Issuing Query

float 0-1

2.9. Token Length float 0-1

2.10. Char Length float 0-1

2.11. Having Course Name boolean 0 or 1

2.12. Having Grade Name boolean 0 or 1

5.1.3 Document Specific Features

Similar to query specific features, we have two features to represent popularity

of the document to reflect the mostly used well known feature in general web

search, page rank. These features are document frequency and user count and

they correspond to the total number of times a document gets clicked and the

number of unique users who clicked that document respectively. The values of

these features are calculated without taking the query into consideration, and

normalized across all data.

In addition to these popularity features, we have category type features to

represent and capture the information our query log introduces originally. In
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our data, we have information of document types, which in general are of three

categories that are document course, document type and document grade. The

possible values for each category are as follows;

• Document course: We have five courses associated with documents, which

are Math, Turkish, Science, Social Sciences and Revolution History.

• Document grade: We have five grade values to represent the grade of the

document, which starts from the 4th and ends with 8th.

• Document type: We have 15 different document type values in our data.

These types include animation, text, summary, quiz, etc.

To summarize, we have different features to be included in feature vector. Of

these five features, we have three boolean features which have 5, 5 and 15 distinct

possible values, respectively. Thus, in total when we convert these categorical

type features into 0-1 range, we have 27-dimensional feature vector for document

specific features.

Feature Group Feature Type Value Range

3. Document Specific

3.13. Document Frequency float 0-1

3.14. Unique User Count float 0-1

3.15. Document Course boolean 0-1(5 distinct values)

3.16. Document Grade boolean 0-1(5 distinct values)

3.17. Document Type boolean 0-1(15 distinct val-

ues)

5.1.4 Session Based Features

LETOR algorithms exploit query log data which capture user patterns to predict

relevance of a document given a query with the aim of improving search engine

performance. Using query log, one can have two different feedbacks, which are
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Long History and Short History. Generally, what user searched, which documents

he clicked for each particular search and how he searched are in the category of

long history feedback. However, sometimes there is no to little information about

long history about user or query user issues. This is where short history feedback

becomes important.

The search behavior of the user in previous query sessions tells a lot in terms

of what user will do next. Besides, in general web search, 44% of all queries sub-

mitted into search engine are singleton queries [33]. The feedback problem arises

when the query issued is not popular, called tail queries. Therefore we added

session based features. The feature group has its own two subgroups, the first

one is the general information of previous query session and the second one is

the user behavior for documents retrieved in both previous and current sessions.

In other words, features in the first subgroup represent general click and dwell

behavior of the user in session, while features in the other subgroup give infor-

mation about documents retrieved in both sessions to capture user preferences

about those documents. The complete feature list for session based group is as

follows. The first four features belong to the first subgroup whereas the last ones

are in the other subgroup, calculated for each document retrieved in the current

session.
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Feature Group Feature Type Value Range

4. Session Based

4.18. Total Click Count in

Previous Session

float 0-1

4.19. Unique Click Count

in Previous Session

float 0-1

4.20. Total Dwell Time in

Previous Session

float 0-1

4.21. Result Count in Pre-

vious Session

float 0-1

4.22. isClicked boolean 0 or 1

4.23. isSkipped boolean 0 or 1

4.24. isMissed boolean 0 or 1

4.25. DwellTime float 0-1

4.26. ClickCount float 0-1

5.1.5 Query-Document Click Based Features

The last feature group is used to capture click information of documents with

respect to the given query. The information of whether a document is clicked

or not for a particular query is invaluable in terms of gathering and therefore

predicting the relevance of the document given that particular query, which is

what we try to do with LETOR algorithms. In this group, we have two features

which are basically the number of times a document is retrieved in the result list

and clicked for a particular query. This is in fact the second group which tries to

associate documents with queries this time by considering impression and click

feedback.

Feature Group Feature Type Value Range

5. Query-Document Click Based

5.27. Impression Count float 0-1

5.28. Click Count float 0-1
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In total, we have 28 features calculated for each query-document pair to be used

in LETOR algorithms. We normalized each numeric feature into 0-1 range and

converted categorical features into bit representations to use in LETOR. There-

fore, we ended up having a 50-dimensional feature vector for query-document

representation.

5.2 Cluster Models

Apart from the general LETOR model we have learned using our features, we

tried to explore performance behavior of different models learned by LETOR

algorithms. As in the literature, we tried to group queries considering charac-

teristics of the educational search domain. As a result, we come up with two

different clusters namely, course of the query issued into search engine and the

user grade who issues the query. In addition to those clusters, we also added

head-tail cluster analysis as well to reflect the general web search behavior into

our educational search engine domain.

In our query log, we have five different courses, which are Math (Matematik),

Turkish (Türkçe), Science (Fen Bilgisi), Social Sciences (Sosyal Bilgiler) and Rev-

olution History (İnkilap Tarihi). We also include another course type into this

set, that we call General for the queries we cannot differentiate for a specific group

defined above. In total we have six different courses and for each we learned a

different model.

Similar to course, we have five different user grade types, starting from 4th

grade to 8th grade. These grade types reflect the user who issues the query into

the search engine. Another cluster group is query frequency analysis which is

highly popular in general web search engine literature. Therefore, we have three

different cluster groups, in which there are 13 different models we learned using

LETOR algorithms.
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5.3 Propagation Algorithm

After having cluster analysis, we thought that we need to do better for singleton

queries in terms of NDCG metric (the results can be seen in Chapter 6). The

reason why singleton model performs poorly is that for singleton queries there are

zero valued features, which makes it difficult for algorithms to learn the model.

Specifically, click and impression are the features whose values have zero values

for the singleton queries. In other words, click and impression represent the

number of clicks and the number of impressions a document gets given a particular

query. Since singleton queries have a frequency of 1, values of these features for

the singleton queries are zero, which does not help the model to learn through

these features. Therefore, we tried to improve singleton queries’ performance by

trying to simulate (propagate) click-through features for singleton queries only.

In order to come up with an effective solution, we looked through characteristics

of our dataset.

In our query log data, we have approximately 3500 unique documents, which

is a considerably small number considering the amount of documents in web.

Therefore, we tried to exploit that behavior regarding the intersection of the lists

of two different queries, in order to find similar queries to that particular singleton

query. We tried to predict values of click features by looking other queries having

click for that document included in a singleton query session.

Our algorithm has two preparation phases in order to generate values of the

features for singleton queries. First, we need to find out the query set of a

document which is retrieved no later than the 5th position. Second, we find

the similar query set for each singleton query that shares a common document

retrieved in their result lists with all the queries included in the set. The details

of the mentioned algorithms can be seen in Algorithms 1 and 2, respectively.

After the construction of the data structures to be used, we have a main

algorithm that generates a value for the features, namely click and impression.

We propagate click and impression features of similar queries to the singleton
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Algorithm 1 Inverted Document Structure Algorithm

Input: 2D Matrix, Pairs, Containing Query-Document Pairs Found Using Re-
sult Lists of Queries

Output: 2D Matrix, InvertedPairs, Containing Document-Query Pairs
1: procedure INVERTEDDOCUMENT(Pairs)
2: InvertedPairs← {}
3: for each query q in Pairs do:
4: for each document d in Pairs[q] do:
5: if position of d is later than 5 then:
6: continue
7: else
8: if InvertedPairs contains document d then:
9: add query q into InvertedPairs[d]

10: else
11: list← {}
12: add query q into list
13: put (d, list) into InvertedPairs
14: end if
15: end if
16: end for
17: end for
18: return InvertedPairs
19: end procedure

query so that we can reduce the penalization of having zero valued features in

learning phase of the model.

In our Propagation algorithm, we employ three different ideas which are then

combined to have a final score. First, we compare the grade values of the users

who issue the similar queries. If the grades are equal to each other, we assign 1

as its score and 0 otherwise, which is defined as

G(qi, qj) =

1, if gi = gj

0, otherwise

where gi and gj represent the grade values of the users who issue the queries qi

and qj respectively for which the similarity score is calculated.

Second, we calculate the textual similarity of the similar queries using Cosine
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Algorithm 2 Similar Query Set Algorithm

Input: 2D Matrix, InvertedPairs, Containing Document-Query Pairs and 2D
Matrix, Pairs, Containing Query-Document Pairs

Output: 2D Matrix, SimilarPairs, Containing Similar Query Set for each Sin-
gleton Query

1: procedure SIMILARSET(InvertedPairs, Pairs)
2: SimilarPairs← {}
3: for each singleton query q in Pairs do:
4: for each document d in the result list of Pairs[q] do:
5: for each query q′ in InvertedPairs[d] do:
6: if q′ is not singleton then:
7: add query q′ into SimilarPairs[q]
8: end if
9: end for

10: end for
11: end for
12: return SimilarPairs
13: end procedure

Similarity metric, which is defined as

cos(qi, qj) =
qi · qj

‖ qi ‖‖ qj ‖
, (5.1)

where qi and qj represent the similar queries for which cosine similarity score is

calculated. The Equation 5.1 gives general definition of Cosine Similarity. We use

Vector Space Model to create vectors of words in queries to calculate similarity

score. The corresponding cosine similarity using Vector Space model is defined

as

cos(qi, qj) =

n∑
t=1

qit × qjt√
n∑
t=1

(qit)
2 ×

√
n∑
t=1

(qjt)
2

, (5.2)

where n represents the number of unique terms appearing either in qi or qj. The

denominator part in Equation 5.2 simply shows how to calculate the length of

vectors of terms in each query.

The last part of our algorithm calculates the similarity of queries in terms of

their result lists. Therefore, we employ Jaccard Similarity between similar queries
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to assign a score for the corresponding part. Suppose that we have result lists

τi and τj for queries qi and qj respectively. Then the jaccard similarity score

between the result lists is defined as follows:

J(qi, qj) =
‖ τi ∩ τj ‖
‖ τi ∪ τj ‖

. (5.3)

Afterall, given a singleton query qi with the set of similar queries, the similarity

score of qi with respect to each query qj in the set is calculated as

S(qi, qj) = α×G(qi, qj) + β × cos(qi, qj) + γ × J(qi, qj) , (5.4)

where α, β and γ represent the constants to be used in the calculation. Note

that, since each part gives a score in between 0 and 1, the final score is also in the

same interval. The optimum value for each constant is finalized using parameter

tuning method.

Given the singleton query qi, we calculate the similarity score of each query in

the similar set created before using the Equation 5.4. Then the queries are sorted

according to their similarity scores. We take first 10 queries into consideration

when generating the feature values of qi to avoid noise. Then click and impression

values of qi are generated as

qic,i =

n∑
s=1

qsc,i × S(qi, qs)

n
, (5.5)

where qsc,i denotes the click and impression values of the query qs in the similar set

of qi for which click and impression values are generated. n denotes the number

of queries taken into consideration while calculating the values.
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Chapter 6

Experiments

6.1 Dataset and Annotation

For our research, we used a commercial query log data provided by SEBIT com-

pany which mainly produces educational material that can be viewed on a web

portal called Vitamin. Our query log data includes queries submitted to Vitamin

in December 2013. Search engine on Vitamin Portal is used by students to get

educational material provided by SEBIT. For the one month long data, we have

66.908 queries issued by students. Of all, we have 18.638 unique queries, which is

0.27 of all query volume. The behavior for unique queries differs from web where

0.50 of the queries in a typical web search log are unique. We have 18K unique

users who issued the queries in that particular span of time. On the average,

users ask 3.61 queries in 1.92 sessions.

To have LETOR environment, we needed an annotated data where each query-

document pair is scored in terms of their relevance to each other. To do that, we

first sampled 900 queries from our query log without any consideration, which is

basically random. For each unique query sampled for annotation, we first found

the documents retrieved given that query in order to create document lists to be

annotated. Then we asked judges to annotate these documents given query text,

document title and document description with 3-scale scoring method. The list of
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judges consists of graduate students and professors, all of whose native language

is Turkish.

For the annotation part, we carried out two different annotations. The first one

is the categorical annotation of query text in terms of course to which that query

may belong. We had five different courses initially, which is derived from the query

log and we also added another course category named “General Course”, which we

can use for queries that cannot be categorized among possible course candidates,

i.e., queries like “Oyunlar (Games)”. In total, we have six different courses that

could be matched for a given query, which are Math, Turkish, Science, Social

Sciences, Revolution History and General Course.

The second part is usual annotation scheme for LETOR algorithms which is

to give relevance score for each document associated to a particular query. We

used 3-scale method regarding data behavior we observed from our query log. In

detail, 3-scale scores are

• 0 - Irrelevant document

• 1 - Mostly relevant (course and subject of the document matches with query,

yet document does not satisfy the user needs according to the query text)

• 2 - Exact match (exactly what query asks for).

In total, we annotated 900 unique queries submitted to Vitamin in December

2013. Therefore, we have 3169 queries annotated which are different issues of

900 unique queries to be used for LETOR algorithms. We also had some ex-

periments on annotated data to explore validity of our annotation and potential

improvement that we could achieve using LETOR algorithms on original data.

The first experiment is to figure out whether there is a correlation between

user clicks and relevant documents regarding our annotation. The Figures 6.1

and 6.2 show the percentage of documents for each relevance score according to

clicks and non-clicks. We tried to analyze the relevance scores for each clicked

and non-clicked document independent from document ranks.
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Figure 6.1: Relevance Distribution for Clicked Documents

Looking at Figures 6.1 and 6.2, we can clearly state that there is correla-

tion between relevance and clicked information of documents, which is important

to move on LETOR algorithms in order to exploit click feedback from users to

improve general performance. The figures also prove the validity of our anno-

tation, since average relevance score for clicked documents is much higher than

the score for non-clicked ones. Another aspect of the figures would be poten-

tial improvement we could achieve looking at the non-relevant document volume

for clicked documents and relevant document volume for non-clicked documents.

Using LETOR, we try to minimize percentage of before mentioned volumes.

Another experiment we performed on annotation data is to find out correlation

between relevance scores and ranks of documents. The first analysis was done

independent of the information that whether the document is clicked or not.

Latter figures are to show the correlation for each case; clicked documents and

non-clicked documents.

The main outcome of Figure 6.3 is that there is a decreasing trend from position

1 to 25 in terms of relevant documents. Similar but increasing trend for irrelevant

documents goes for as well, that is, volume of irrelevant documents are increasing

from position 1 to 25. This is consistent with the previous figure. Yet, Figure 6.3
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Figure 6.2: Relevance Distribution for Non-Clicked Documents

shows the potential improvement that can be achieved to enhance general search

performance.

Figure 6.3: Relevance Distribution of Documents for Each Position

The results are as expected in Figure 6.4, that is the volume of relevant docu-

ments is much higher than the volume of irrelevant documents for each position.

Again, we can easily say that documents clicked at later positions are less likely

to be relevant than the documents clicked at first five positions.

The results shown in Figure 6.5, which is the correlation between relevance and
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Figure 6.4: Relevance Distribution of Documents for Each Position for Clicked
Documents

position for non-clicked documents, are consistent with the previous annotation

analysis we have made. This time, volume for irrelevant documents are much

higher than the relevant ones and this difference is more dramatic when positions

get bigger. Yet, the figure gives simple motivation that especially for the first

five positions, there are some relevant documents that are not clicked. This is

the general problem SEBT search engine has that we are planning to address to

improve.

6.2 Data Preparation and Pre-Processing

6.2.1 Training and Test Sets

After annotation we have 900 unique queries labeled along with their related

documents retrieved in their result list. For some unique queries, we have multiple

user issues in our query log data. For each issue, we determine unique identifier

representing the feature vector. In total, we have 3169 query issues each of which

has a unique query identifier. In order to use LETOR algorithms we needed to

determine our training and test sets independently not to create any bias. We

sorted query issues according to their time stamp values. Recall that, our query
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Figure 6.5: Relevance Distribution of Documents for Each Position for Non-
Clicked Documents

log data is one month log, specifically from December 2013. In order to have

adequate instances for both training and test sets, considering the ratio between

training and test sets in terms of instances, we divided our entire query issues into

two. While dividing data into two, we set number of instances for training set to

be four times as much as the number of instances for test set. Consequently, we

have 2536 and 633 instances for training and test respectively. While determining

633 instances for test set, we chose the instances according to their time stamp

as mentioned, that is, we chose the queries issued last in the given period of time

to constitute test set.

Another issue while preparing the data to be used in LETOR is the calculation

of the features, specifically related to long history information. While calculat-

ing features like query-document click based features, document click frequency,

and user frequency, we only consider instances from training set excluding test

instances not to introduce any bias into our data.

6.2.2 Pre-Processing Data

In our data, we have text information available specifically for query text, docu-

ment title and description. In order to calculate query-document text similarity
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features effectively (tf-idf and BM25), we pre-process these texts to have more

meaningful and valid scores. In order to calculate these textual features, we im-

plemented inverted file structure to first store the terms occurring in documents,

which is to create corpus. The creation of corpus is critical in the sense that, each

unique term appearing in corpus will be related to documents according to their

occurrences in that particular documents. While relating each unique term to

documents, it is important to have healthy list of unique terms. In other words,

terms who have the same root must be considered as a single unique one. This is

where stemming becomes important. Another issue is as in general web, queries

might include some meaningless characters or punctuation marks, which makes

it harder to detect query term to match documents. In addition to those, it is

important to remove some terms appearing too much, called stop-words to have

more valid text similarity scores.

To sum up, for pre-processing data we have 3 steps done following one another.

The pre-process steps are explained in detail as follows:

I. Stop Word Removal:

There is a public list of words containing common stop words and

conjunctions used in Turkish, published by Zemberek [61], which is an

open-source natural language processing library developed for Turkish

researchers. We did not take into consideration words appearing in this

list while generating our corpus.

II. Text Cleaning:

We cleaned query texts, document title and description by removing

meaningless characters not coded in Unicode and punctuations to bet-

ter capture term split by space.

III. Stemming:

Turkish is a free constituent order language, i.e., according to text

flow and discourse context at certain phrase levels, its constituents can

change order and still be intelligible [62]. For example, the sentence
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“İstanbul Ankara’dan daha güzel.” (“İstanbul is more beautiful than

Ankara.”) and the sentence “Ankara’dan İstanbul daha güzel.”, which

is an inverted sentence (“devrik cümle” in Turkish), have the same

meaning with a slight difference in emphasis [62].

Turkish is an agglutinative language, meaning suffixes are appended

to the root to generate new words, which naturally makes it a com-

plex language in terms of word structures. Another important issue

is that current stemming algorithms are developed generally for En-

glish. However, as stated in [63] to stem root of the words in Turkish

texts, getting the first k characters of the term as the root is practical

and effective solution, performing similar to stemming algorithms de-

veloped for Turkish language. After experimenting multiple k values

as the first characters to select to be root, we decided to use the first

five characters as the root of the term appearing in both query and

documents.

6.3 Baseline and LETOR Model

6.3.1 Baseline Performance

In order to evaluate the performance of our LETOR method, we need to have

a baseline approach to compare with. In general, primitive search engines try

to rank documents regarding the query-document text similarity scores, mainly

tf-idf like scores. When a query is entered, the search engine first calculates tf-

idf or BM25 score for each document, then sorts the documents accordingly to

show the retrieved list to the user. We have two different query-document text

similarity features, which are tf-idf and BM25. We have also two texts (title and

description) related with documents, meaning that we have four possible different

textual scores, which can be used to sort the documents accordingly as baseline.

In addition to those individual cases, we also introduced linear combination

of scores for each textual score for both tf-idf and BM25. While doing linear
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Table 6.1: NDCG@K Values for each Baseline

Training Test

@5 @10 @5 @10
tf-idf Title 0.6422 0.6626 0.6561 0.6710
tf-idf Description 0.6010 0.6306 0.6259 0.6530
BM25 Title 0.6463 0.6670 0.6578 0.6735
BM25 Description 0.6106 0.6351 0.6455 0.6655
tf-idf Linear (0.7) 0.6401 0.6618 0.6608 0.6722
BM25 Linear (0.7) 0.6375 0.6610 0.6692 0.6804
SEBIT 0.6210 0.6532 0.6370 0.6710

combination, we normalized each score for document title and description among

scores of documents within the query session. For the constant in linear combi-

nation, we used parameter tuning method. In our case, 0.7 gives the best result

as the constant, therefore we used it as the multiplier for document title score.

Lastly, we also put the results produced by the search engine by using LETOR

algorithms with these four textual features only.

Table 6.1 shows NDCG scores for each baseline explained above for both train-

ing and test sets having K values set to 5 and 10, respectively. The last row

presents the search performance of the original SEBIT ranking according to our

annotations. Between document title and description, title gives better results for

each case, tf-idf and BM25. Besides, individually tf-idf description score calcu-

lated using tf-idf metric cannot outperform SEBIT’s original ranking for each K

value. On the other hand, document ranks according to textual feature of title for

both tf-idf and BM25 outperform original ranking of SEBIT. Using both textual

features by linear combination gives the best result among all possible baselines.

Between tf-idf and BM25, BM25 gives better results so we chose BM25 score

with linear combination case to be our baseline to be compared with our general

LETOR model learned with our 50-dimensional feature space.

Regarding the results presented in Table 6.1, in general baseline results are

similar to the original ranking SEBIT has. Recall that, we did pre-processing

for texts of document title and description along with stemming suitable for

Turkish language. Although SEBIT’s original ranks come from Lucene Based
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algorithm, we have better baseline performance thanks to pre-processing of the

data. Relative to SEBIT’s original ranking, baseline performs slightly better with

3% improvement in NDCG @5 score.

6.3.2 General LETOR Model

Table 6.2 shows the improvement we achieved using LETOR algorithms over

the original ranking SEBIT has. From Table 6.2, it is clearly seen that our

model learned using LETOR algorithms with our derived feature set outperforms

SEBIT’s original ranking significantly, by a margin bigger than 14%. Apart

from SEBIT’s original ranking, we enhanced the baseline performance by almost

11%. Therefore, we can safely state that our suggested model learned by LETOR

algorithms using our derived features considerably outperforms SEBIT’s original

ranking.

Table 6.2: Evaluation of General LETOR Model With Respect to SEBIT and

Baseline

NDCG ERR

@5 @10 @5 @10

Baseline 0.6692 0.6894 0.5762 0.5614

General LETOR 0.7742 0.7888 0.6205 0.6266

SEBIT 0.6370 0.6711 0.5521 0.5583

6.4 Feature Group Analysis

Our 50-dimensional feature set has five distinct feature groups related all together

constituting the feature vector. We tried to analyze feature groups, that is, which

one performs better with respect to others and General Model. Again, we used

LETOR algorithms with features only belonging to some particular feature group

to see individual performance of each group.

Table 6.3 shows performance results for individual feature groups using
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Table 6.3: The Performances of Each Feature Group

NDCG ERR

@5 @10 @5 @10
Baseline BM25 0.6692 0.6804 0.5762 0.5614
(Baseline LETOR) 1 0.6868 0.7095 0.5793 0.6030
(Query Specific) 2 0.6370 0.6711 0.5522 0.5584
(Document Specific) 3 0.6747 0.7101 0.5648 0.5646
(Session Based) 4 0.6349 0.6686 0.5481 0.5549
(Document Click) 5 0.7382 0.7583 0.6055 0.6123
All LETOR 0.7742 0.7888 0.6205 0.6266
SEBIT ( Baseline ) 0.6370 0.6711 0.5521 0.5583

LETOR models learned by only features belonging to that group. In addition, we

added performance scores for the General Model and the baseline model to make

the comparison more meaningful. Results clearly indicate that the best feature

group for performance is the 5th group, which is query-document click features,

basically consisting of number of clicks and impression of documents given query.

We used these two features as separate, while in some works these are combined

as a single feature called CTR (Click Through Rate). For LETOR models, the

best feedback to be used in algorithms as features seems to be click related ones

for each query-document pair.

From Table 6.3, we can assert that textual features, composed of tf-idf and

BM25, perform better with the model learned by LETOR algorithm than the

one in which they are simply sorted. Query Specific and Session Based Features

alone can outperform neither Baseline nor SEBIT’s original ranking. Yet, it is

clear regarding the margin between General model and best feature group in

terms of performance that these feature groups add some information learned by

LETOR to further improve the search engine performance. Another outcome is

that learning object types including course, grade and type carry helpful informa-

tion to enhance search engine performance using LETOR regarding the positive

difference between Document Specific Feature Group and other baselines, which

are the baseline with textual features and SEBIT.
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6.5 Cluster Based Analysis

The training and test instance counts vary for each group, which can be seen in

Table 6.4 in detail relative to the cluster group they belong to.

Table 6.4: Training and Test Instance Counts for Each Cluster Model

Cluster - Value Instance Count
Training Test

Grade - 4 875 201
Grade - 5 300 90
Grade - 6 374 82
Grade - 7 874 205
Grade - 8 113 55
Course - Math 432 92
Course - Turkish 424 107
Course - Science 344 121
Course - Social Sciences 137 38
Course - Revolution History 116 33
Course - General Course 1038 242
Head 2024 510
Tail 512 123
TOTAL 2536 633

We tried to figure out whether we can improve search engine performance by

having different models for each cluster group. We again used NDCG and ERR

metrics for 5 and 10 as k values. These two values are chosen to reflect our

query log having 5 relevant documents per query, and the literature respectively.

Results show that, having different models for each cluster type improves the

general LETOR model’s performance besides improving the performance for most

types separately.

6.5.1 Course Cluster Results

We have 3169 instances in total. Of 3169, we use 2536 instances for training data

and 633 instances for test data. Of those training and test sets, we separated
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Table 6.5: Search Engine Performance for Course Cluster in NDCG Metric

NDCG SEBIT General Model Course Model

@5 @10 @5 @10 @5 @10
Math 0.7429 0.7534 0.7459 0.7547 0.7854 0.7839
Turkish 0.6659 0.7114 0.8034 0.8122 0.7564 0.7886
Science 0.5632 0.6086 0.6889 0.7155 0.6890 0.7193
Social Sciences 0.6798 0.6954 0.6075 0.6492 0.6568 0.6953
Revolution History 0.7560 0.7711 0.8404 0.8448 0.8377 0.8232
General Course 0.5984 0.6361 0.8283 0.8261 0.8389 0.8447
AVG 0.6370 0.6711 0.7742 0.7888 0.7775 0.7923

different training and test data for each course type. Therefore, we have 6 different

models learned separately for each course type.

As we can see from Table 6.5, average performance of course models is slightly

better than the general model performance in which all instances are used with-

out any grouping. Apart from general performance improvement, there is also

improvement for individual courses that are of Math, Science and General Course

types. Although the best performance for social sciences group seems to be ob-

tained with SEBIT’s original rank, we also improved this course type’s perfor-

mance from 0.60 to 0.65, which is relatively significant.

Another observation is that the general model outperforms cluster models for

the course types which are Turkish and Revolution History. This result is due to

the fact that these courses are text oriented courses, therefore documents related

to those courses have much more meaningful texts, which automatically improves

the textual features we have, which are tf-idf and BM25. Therefore, since we have

more instances with the general model, it behaves better than the cluster models.

However, we believe that if we had enough number of instances for each query

course type, then we might have expected this behavior to change.

Similar to the values obtained with the NDCG metric, the results for the ERR

metric for Math and Science courses show that course models outperform the

general model. Yet, in terms of ERR, the average performance of course models

is in general slightly worse than that of the general model.
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Table 6.6: Search Engine Performance for Course Cluster in ERR Metric

ERR SEBIT General Model Course Model

@5 @10 @5 @10 @5 @10
Math 0.6407 0.6452 0.6386 0.6438 0.6570 0.6700
Turkish 0.5604 0.5697 0.6486 0.6527 0.6123 0.6199
Science 0.4068 0.4162 0.4519 0.4599 0.4370 0.4324
Social Sciences 0.5438 0.5496 0.4906 0.5024 0.5109 0.5320
Revolution History 0.6011 0.6065 0.6537 0.6592 0.6069 0.6409
General Course 0.5820 0.5861 0.7051 0.7071 0.7082 0.7106
AVG 0.5521 0.5583 0.6205 0.6266 0.6156 0.6218

6.5.2 Grade Cluster Results

We have five different values for grade cluster indicating grades of users who

issue the query into the search engine. Therefore, we have learned five different

models for this cluster analysis, and the results show that clustering user issues

according to the user grade values enhances the search engine performance. The

results also indicate that this cluster group gives the best result in terms of the

average general search engine performance compared to other clusters and the

general model.

Looking at Table 6.7, we can clearly see that the cluster for user grade en-

hances the search engine performance by almost 1% relative to the general model

performance. Besides, we can state that for almost each grade model, there is

further improvement except for the 4th grade. This cluster model outperforms

the course cluster model and the general model in terms of NDCG metric. Look-

ing at these numbers, we can conclude that, students who use search engine for

educational purposes can be grouped according to their grades, since students in

each grade type have different search characteristics which makes the difference

for grade models among other cluster groups. Hence, considering the improve-

ment relative to SEBIT’s performance, we can safely say that grouping LETOR

instances for each user grade seems a good choice to further improve the search

engine performance.

Evaluation scores with the ERR metric show similar results to those with the
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Table 6.7: Search Engine Performance for Grade Cluster in NDCG Metric

NDCG SEBIT General Model Grade Model

@5 @10 @5 @10 @5 @10
4th Grade 0.6473 0.6851 0.7996 0.8054 0.7857 0.8030
5th Grade 0.6452 0.6640 0.6194 0.6540 0.6504 0.6759
6th Grade 0.4722 0.5257 0.7419 0.7464 0.7672 0.7619
7th Grade 0.6732 0.7005 0.8463 0.8476 0.8512 0.8599
8th Grade 0.6968 0.7410 0.7453 0.7594 0.7633 0.7629

AVG 0.6370 0.6711 0.7742 0.7888 0.7833 0.7945

Table 6.8: Search Engine Performance for Grade Cluster in ERR Metric

ERR SEBIT General Model Grade Model

@5 @10 @5 @10 @5 @10
4th Grade 0.6107 0.6162 0.6650 0.6696 0.6514 0.6531
5th Grade 0.5596 0.5661 0.5294 0.5367 0.5486 0.5375
6th Grade 0.2949 0.3041 0.4274 0.4327 0.4475 0.4480
7th Grade 0.5948 0.6004 0.7122 0.7154 0.7129 0.7192
8th Grade 0.5506 0.5562 0.6010 0.6060 0.6095 0.6181

AVG 0.5521 0.5583 0.6205 0.6266 0.6266 0.6284

NDCG scores. Results can be seen from Table 6.8. Although, we could not

improve the general search engine performance by using course clusters in terms

of the ERR metric, with the models learned for each different grade, we have

approximately 0.6% improvement relative to the general model performance. To

conclude, for both NDCG and ERR metrics, grade cluster performs the best and

gives the best results for average overall search engine performance.

6.5.3 Frequency Cluster Results

For LETOR setups, the best feature group which adds most to LETOR model is

click through features which are basically document impression and click count

per query. It directly gives feedback about whether that document is related to

the given query. Having click information for a specific document given query

tells a lot about relevance of that document. Therefore, as in the literature, we

also added these features, also known as CTR (Click-Through Rate), into our
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Table 6.9: Search Engine Peformance for Frequency Cluster in NDCG Metric

NDCG SEBIT General Model Frequency Model

@5 @10 @5 @10 @5 @10
Non-singleton 0.6446 0.6757 0.8180 0.8186 0.8249 0.8280
Singleton 0.6054 0.6521 0.5923 0.6386 0.5795 0.6301
AVG 0.6370 0.6711 0.7742 0.7888 0.7772 0.7895

Table 6.10: Search Engine Peformance for Frequency Cluster in ERR Metric

ERR SEBIT General Model Frequency Model

@5 @10 @5 @10 @5 @10
Non-singleton 0.5688 0.5740 0.6586 0.6614 0.6571 0.6645

Singleton 0.4814 0.4932 0.4743 0.4869 0.4864 0.4906
AVG 0.5521 0.5583 0.6205 0.6266 0.6239 0.6307

feature set. And the results show that the best performing feature group for our

data set consists of these features (Section 6.4). However, the problem is, there

are instances or query issues which we have no click feedback about prior to user

issue. These queries are called singleton queries.

Generally, queries issued few number of times are also considered as tail ones

in Web. Yet, considering our data environment and behaviors, we called queries

issued exactly once (singleton) tail queries. The problem arises with these queries,

since in the feature set click-through features of tail queries are zero. Therefore,

we cannot use our best performing features for that special group of queries.

Thus, we tried to cluster queries according to their frequencies, mainly non-

singleton or singleton, to explore potential improvements we could gain having

different LETOR models. Another problem with our singleton dataset is that,

our training and test instance count is relatively small compared to other cluster

groups. Hence, as expected, there is huge difference between non-singleton and

singleton models in terms of search engine performance.

For this cluster, NDCG and ERR results show slightly different scores, which

can be seen from Tables 6.9 and 6.10, respectively. For singleton queries, in

terms of the NDCG metric neither the general model nor the singleton model
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outperforms SEBIT’s original ranking. Yet, for the ERR metric the singleton

model outperforms both the general model and SEBIT’s original ranking. Results

for non-singleton queries are satisfying for both metrics with the non-singleton

model performing better for the NDCG metric while the general model behaves

better for the ERR metric. However, in terms of overall average performance we

have still slight improvement relative to the general model for both metrics.

6.5.3.1 Singleton Queries Improvement

For singleton queries (queries issued into search engine exactly once), the values

of the certain features are zero, which are specifically the number of times a

document is seen as a result of a query issue and a document is clicked as a

result of search. The values of the above features are zero, since the system sees

the query issue for the first time. Having a zero value for the features causes the

model to perform poorly for singleton queries. Therefore, we propose an algorithm

to generate synthetic values for the features to enhance the performance of the

model.

We also implemented a methodology similar to the one used in [1] to compare

our algorithm with theirs as well as our baselines. To compare the results, we

set up two different environments. After generating the features for a particular

method, we employ a model using all the instances including the non-singleton

ones that we call the general model with generated features. The second model

is the one learned using the singleton queries only.

Gao et al. [1] introduce a set of features called clickstream features that could

be useful for queries having little information in query log. For each query doc-

ument pair, they calculate a set of features independent from both contextual

and click information. They basically find a set of queries for which a certain

document is clicked. Given a singleton query, using the queries in the afore-

mentioned set, they calculate the values of the features. Apart from clickstream

features, they also introduce a technique called Discount Method to further help

generating the values when clickstream features are zero as well. We implement
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Table 6.11: The Results of Models Learned Using Only Singleton Queries

NDCG ERR

@5 @10 @5 @10
Singleton Queries Model 0.5795 0.6301 0.4864 0.4906
ClickStream Features 0.5828 0.6335 0.4885 0.4911
ClickStream Features + Discount 0.5782 0.6245 0.4826 0.4904
Propagation Algorithm 0.6061 0.6367 0.4829 0.5028
SEBIT 0.6054 0.6521 0.4814 0.4932

both methods and compare the results of them with our algorithm in each ap-

proach defined above. We choose these methods due to usage of similar queries

to generate values for zero valued features, which is related to what we propose.

The results of the first approach that is the learned models using only singleton

queries are shown in Table 6.11. The results clearly present that our proposed

algorithm performs the best among all methods along with the original ranking

SEBIT has. While clickstream features slightly improves the model, the discount

method used on top of it does not seem to be helpful in terms of performance.

The reason would be that discount method gives the same value for each instance

and since the number of instances are small compared to all model, this might

introduce noise to the model. Our proposed algorithm improves the singleton

query model by approximately 3%.

Table 6.12 shows the results of the second approach. In this approach, Dis-

count Method performs better compared to the previous approach, improving the

performance of the model learned using clickstream features. However, our Prop-

agation Algorithm gives the best result again in terms of the metrics calculated

@5, which better reflects the characteristics of our query log. The performance

improvement however is lower compared to the previous approach. The reason is

that in this model head instances dominate the model due to higher number of

instances.

We also demonstrate the results of the general model learned using generated

synthetic features, which can be seen in Table 6.13. Although, the difference in

performance compared to the general LETOR model is lower, the improvement
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Table 6.12: The Results of Models Learned All Queries With Generated Features

NDCG ERR

@5 @10 @5 @10
Singleton Queries Model 0.5923 0.6386 0.4743 0.4869
ClickStream Features 0.5800 0.6289 0.4630 0.4754
ClickStream Features + Discount 0.5861 0.6204 0.4530 0.4618
Propagation Algorithm 0.6073 0.6425 0.4898 0.4995
SEBIT 0.6054 0.6521 0.4814 0.4932

Table 6.13: The General Results of Models Learned All Queries with Generated
Features

NDCG ERR

@5 @10 @5 @10
General LETOR Model 0.7742 0.7888 0.6205 0.6266
ClickStream Features 0.7713 0.7848 0.6185 0.6191
ClickStream Features + Discount 0.7748 0.7931 0.6238 0.6305
Propagation Algorithm 0.7772 0.7942 0.6253 0.6343
SEBIT 0.6370 0.6711 0.5521 0.5583

is positive. Recall that, we only generate the values of the features for singleton

queries. In other words, in the general model case, we only change the values of

the features for instances representing singleton queries without touching the in-

stances for non-singleton queries which dominate the model in terms of instances.

Therefore, we believe that if we have a more balanced training set, the change

would be more dramatic.

77



Chapter 7

Conclusion

There has been a growing interest in the field of web search engine research due to

immense data available to work with. The idea of using query logs as a source of

implicit feedback about user behaviors leads researches to figure out useful search

patterns about users. Analyzing the query logs, researchers have exploited the

patterns to further improve search engine performance.

We exploited a query log provided by an educational vertical search engine.

First, we analyzed the search characteristics of the students who do search and

compared our findings with the general web search behaviors. Our analysis

demonstrates that there is difference in terms of search characteristics between

the general web search engine and an education search engine. Students tend to

explore more documents compared to general web users. However, our findings

present that students have hard time to express their search intent in query terms.

Students are more likely to repeat the queries they once entered into search engine

than the general web users.

In our query log analysis, we also tried to find the Refinding behavior, which

is a well-known problem in the literature. The results again differ from the ones

in the case of Web search. While 40% of the queries in web result in a click

for a document which is visited before by the user issuing the query, only 25%

of the queries in our query log result in Refinding behavior. Another difference
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comes in search sessions where students prefer same query texts. In web, 87%

of search sessions started with the same query text result in Refinding behavior.

However, this number in our case is only 44%. Similar to this analysis, the ratio

of the search sessions with the same query text having Newfinding behavior is

38%, while the corresponding result in our query log is 74%. The reason behind

these differences is that students periodically study different subjects, which leads

them to explore new documents that they never visited before. Another reason

is that learning is a continuous process. While learning for a particular subject,

students tend to look for new educational material to capture more aspects of

the subject.

Using the search patterns found in the query log analysis, we proposed an edu-

cational learning model. While creating the model, we introduced novel features

best suited for the educational domain. Using the learning to rank algorithms,

our proposed model outperformed both the original ranking of SEBIT and the

baselines created by the state of the art techniques by up to 14% and 11%, respec-

tively. We also employed the cluster idea of grouping the queries to be used in

a different model for each cluster. Regarding the educational domain as well, we

mainly introduced three different clusters, which are namely course of the query,

grade of the user issuing the query, and the frequency of the query. Our results

indicate that for each cluster the average performance of the models learned out-

performs the general model. Specifically, the grade cluster further improves the

general model by up to 1%.

In order to further enhance the performance of frequency models, we proposed

an algorithm to generate values of the features for singleton queries where the

model performs poorly according to the results due to having zero values for cer-

tain features. We compared the results of our algorithm with a similar approach

introduced in [1]. We showed that our algorithm performs best among all models

in our query log. Using our algorithm, we also managed to improve both the

performance of the singleton model and the general LETOR model.
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