OPTIMIZATION OF AN EDUCATIONAL
SEARCH ENGINE USING LEARNING TO
RANK ALGORITHMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF
MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

By
Arif Usta
September, 2015

Optimization of an Educational Search Engine Using Learning to
Rank Algorithms

By Arif Usta

September, 2015

We certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Ozgiir Ulusoy(Advisor)

Prof. Dr. Ugur Giidiikbay

Assist. Prof. Dr. Ismail Sengér Altigovde

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

i

ABSTRACT

OPTIMIZATION OF AN EDUCATIONAL SEARCH
ENGINE USING LEARNING TO RANK ALGORITHMS

Arif Usta
M.S. in Computer Engineering
Advisor: Prof. Dr. C)zgiir Ulusoy
September, 2015

Web search is one of the most popular internet activities among users. Due
to high usage of search engines, there are huge data available about history of
user search issues. Using query logs as a source of implicit feedback, researchers
can learn useful patterns about general search behaviors. We employ a detailed
query log analysis provided by a commercial educational vertical search engine.
We compare the results of our query log analysis with the general web search char-
acteristics. Due to difference in terms of search behavior between web users and
students, we propose an educational ranking model using learning to rank algo-
rithms to better reflect the search habits of the students in the educational domain
to further enhance the search engine performance. We introduce novel features
best suited to the educational domain. We show that our model including edu-
cational features outperforms two baseline models which are the original ranking
of the commercial educational vertical search engine and the model constructed
using the state of the art ranking functions, up to 14% and 11%, respectively.
We also employ different learning to rank models for different clusters of queries
and the results indicate that having models for each cluster of queries further
enhances the performance of our proposed model. Specifically, the course of the
query and the grade of the user issuing the query are good sources of feedback
to have a better model in the educational domain. We propose a novel Propaga-
tion Algorithm to be used for queries having lower frequencies where information
derived from query logs is not enough to exploit. We report that our model con-
structed using the features generated by our proposed algorithm performs better
for singleton queries compared to both the educational learning to rank model we

introduce and models learned with common features introduced in the literature.

Keywords: Information Retrieval, Web Search, Vertical Search Engine, Learning

to Rank Algorithms, Educational Domain.

il

OZET

SIRALAMA AMACLI OGRENME ALGORITMALARI

KULLANARAK ECITIM TABANLI ARAMA MOTORU
OPTIMIZASYONU

Arif Usta
Bilgisayar Miihendisligi, Yiiksek Lisans
Tez Damsmant: Prof. Dr. Ozgiir Ulusoy
Eylil, 2015

Internet fiizerinden arama vapmak, Internet kullamicilarmin tercih ettigi en
popiiler aktivitelerden birisidir. Arama motorlarinin oldukca fazla kullanilmasi
sayesinde, kullanicilarin yapmig olduklari aramalarin yer aldigi bilgilerin kul-
lanilabilmesi oldukca kolaylagmigtir. Aragtirmacilar bu bilgileri kullanarak kul-
lanicilarin sahip olduklar1 arama davramglar ile ilgili faydali sonuclar elde
etmislerdir. Caligmamizda, ticari olarak kullanilan egitim amagl arama mo-
toruna ait sorgu bilgilerini detayli bir sekilde analiz ettik. Analiz sonrasi
aldigimiz sonuglari, Internet kullamcilarmim sahip oldugu arama davramslariyla
kargilagtirarak aralarindaki farklar1 belirledik. Bu farklar1 da gbz o¢niinde bu-
lundurarak egitim alanina daha iyi uyum saglayacak, siralama amach ogrenme
algoritmalarin1 kullanarak bir model ortaya g¢ikardik. Sahip oldugumuz sorgu
kiimesi ogrencilere ait oldugu igin, modeli olugtururken egitim alanina has
ozgin ozellikler kullandik. Modelin performansini karsilagtirmak adina, sahip
oldugumuz sorgu kiitiiklerindeki orjinal siralamay1 ve bu alanda siklikla kullanilan
modern yontemlerle olugturulan modeli referans olarak aldik. Sonuclarimiza gore
her iki referans modeline kiyasla sirasiyla %14 ve %11’lik bir gelisme sagladik.
Bunun yaninda, yapilan sorgunun tiirlerine gore ayrilmak kaydi ile, her bir sorgu
grubu ic¢in farkli 6grenme modelleri tanmimladik. FElde ettigimiz verilere gore,
sorgunun ders bilgisinin ve sorguyu soran 6grencinin sinif bilgisinin farkli model
olustururken oldukca fayda sagladigini 6grendik. Sorgu kiitiik kiimesinde yer alan
baz1 sorgular (yalnizca bir defaya mahsus sorulan sorgular) igin elimizde yeteri
kadar bilgi olmadigindan, modelin genel performansini artirmak adina bu sorgular
i¢in O0zgiin bir algoritma geligtirdik. Yaptigimiz deneylere gore, bu 6zel sorgular
icin gelistirdigimiz algoritma, olusturdugumuz genel modelin performansini da

artirmaktadir.

v

Anahtar sozcikler: Bilgi Erigimi, Dikey Arama Motorlari, Siralama Amach
Ogrenme Algoritmalar1, Egitim Alani.

Acknowledgement

First and foremost, I would like to thank my supervisor, Prof. Dr. Ozgiir Ulusoy,
for his invaluable guidance during my work. His support and dedication helped

me to be motivated throughout my academic research.

I am deeply thankful to Prof. Dr. Ugur Gidiikbay and Assist. Prof. Dr.

Ismail Sengor Altingdvde for kindly accepting to read and review this thesis.

I would also express my gratitude to Assist. Prof. Dr. Rifat Ozcan for his

insightful comments during my work.

I would like to acknowledge the scholarship provided by The Scientific and
Technological Research Council of Turkey (TUBITAK) throughout my gradu-
ate education under BIDEB program. I would also acknowledge TUBITAK for
supporting me financially for this work with grant number 113E065.

I would like to use this opportunity to thank SEBIT for providing us the data

we used throughout this thesis.

Finally, I would like to dedicate this thesis to my family. Thank you for your

endless love, understanding and belief in me.

vi

Contents

1 Introduction 1
1.1 Motivation and Scope 1
1.2 Contributions 2
1.3 Thesis Organization 3

2 Related Work 5
2.1 Query Log Analysis 5
2.2 Refinding Analysis 7
2.3 Learning to Rank - LETOR 8

3 Query Log Analysis 13
3.1 Search Characteristics 14

3.1.1 Query Characteristics 15
3.1.2 Session Characteristics 19
3.1.3 User Characteristics 20

vil

CONTENTS viii

3.1.4 Out Click Characteristics. 21

3.1.5 Findingso 24

3.2 Refinding Analysis Lo 24

4 LETOR - Learning to Rank 31
4.1 Training and Testing 33
4.2 Annotation 37
4.3 Feature Extraction 0L 38
4.3.1 BM25 . .. 39

432 PageRank 39

4.4 Learning Approaches 40
4.4.1 Pointwise Approach 40

4.4.2 Pairwise Approach 41

4.4.3 Listwise Approach L. 41

4.5 Evaluation 42
4.5.1 Normalized Discounted Cumulative Gain - NDCG 42

4.5.2 Expected Reciprocal Rank - ERR 44

5 Proposed Educational LETOR Model 47
5.1 Feature Set 48

CONTENTS ix

5.1.1 Query-Document Text Similarity Features 49
5.1.2 Query Specific Features 49
5.1.3 Document Specific Features 50
5.1.4 Session Based Features 51
5.1.5 Query-Document Click Based Features 53

5.2 Cluster Models 54
5.3 Propagation Algorithm 55
6 Experiments 59
6.1 Dataset and Annotation 59
6.2 Data Preparation and Pre-Processing 63
6.2.1 Training and Test Sets 63
6.2.2 Pre-Processing Data 64

6.3 Baseline and LETOR Model 66
6.3.1 Baseline Performance 66
6.3.2 General LETOR Model 68

6.4 Feature Group Analysis, 68
6.5 Cluster Based Analysis, 70
6.5.1 Course Cluster Results 70

6.5.2 Grade Cluster Results 72

CONTENTS

6.5.3 Frequency Cluster Results

7 Conclusion

78

List of Figures

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Vitamin search GUI for the query carbon diozide (with annotations
in English)

Distribution of query frequencies. The x-axis represents the rank

according to the query frequency in the plot.
Distribution of content type filters used in queries.
Distribution of grade filters used in queries..
Distribution of course filters used in queries.

Distribution of session lengths. The x-axis represents the rank

according to the session length in query count in the plot.

Distribution of number of queries (left plot) and sessions (right
plot) over users. The x-axis represents the rank according to the
number of queries (sessions) per user in the left (right) plot, re-

spectively.

Distribution of query submissions over time. Left: Number of
query submissions per day in December 2013. Center: Distribution
of queries over weekdays. Right: Percentage of queries submitted

per hour of the weekdays and weekend days.

X1

19

21

LIST OF FIGURES xii

3.9

3.10

3.11

4.1

4.2

4.3

6.1

6.2

6.3

6.4

6.5

Distribution of click counts per query (left plot) and per session

(right). 22
Distribution of result clicks by content type. 23
Distribution of clicks by rank. 23
Learning to Rank for Document Retrieval 33
Learning to Rank Training Phase 35
Learning to Rank Test Phase 36
Relevance Distribution for Clicked Documents 61
Relevance Distribution for Non-Clicked Documents 62
Relevance Distribution of Documents for Each Position 62

Relevance Distribution of Documents for Each Position for Clicked

Documents 63

Relevance Distribution of Documents for Each Position for Non-
Clicked Documents, 64

List of Tables

3.1

3.2

3.3

3.4

3.5

4.1

4.2

6.1

6.2

6.3

6.4

6.5

Query characteristics

Top-10 popular queries in terms of the query frequencies and

UNIQUE USETS. .+ v v v v v v e e e e e e e e e e e
Session characteristicso
User characteristics

Out click characteristics,

Summary of Notations

Categorization of Algorithms Used in LETOR

NDCG@K Values for each Baseline

Evaluation of General LETOR Model With Respect to SEBIT and

Baseline
The Performances of Each Feature Group
Training and Test Instance Counts for Each Cluster Model

Search Engine Performance for Course Cluster in NDCG Metric .

xiil

LIST OF TABLES xiv

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

Search Engine Performance for Course Cluster in ERR Metric . . 72
Search Engine Performance for Grade Cluster in NDCG Metric . 73
Search Engine Performance for Grade Cluster in ERR Metric . . . 73
Search Engine Peformance for Frequency Cluster in NDCG Metric 74
Search Engine Peformance for Frequency Cluster in ERR Metric . 74
The Results of Models Learned Using Only Singleton Queries . . 76
The Results of Models Learned All Queries With Generated Features 77

The General Results of Models Learned All Queries with Gener-
ated Features oo 7

Chapter 1

Introduction

1.1 Motivation and Scope

Document retrieval has been one of the hottest research topics in Information Re-
trieval. The problem of document retrieval gets more interesting when web search
is the activity to retrieve the documents due to characteristics of web users. Web
users tend to leave the search engine by only considering documents appearing in
the first page while avoiding all documents displayed at latter pages, which makes
document retrieval problem more challenging. State of the art document retrieval
methods do not take the order of the documents into consideration. Therefore, a
new approach is introduced, called learning to rank, which is basically a machine

learning approach with the purpose of ranking.

Recently, various works have been performed on the subject of learning to rank
algorithms, including different types of machine learning algorithms involving
different approaches in terms of preparing the training and test datasets and
the annotation methodology to be used. The learning to rank methodology is
a supervised machine learning process, therefore it requires an annotation of
the instances to be used in the learning phase. Depending on the approach

used, generally the learning to rank algorithms are modified versions of either

classification or regression problems. However, the only and the most important
difference with the learning to rank algorithms is that they are not interested
in the final classified or regressed class value but rather deal with the order of

instances classified or regressed.

Since the learning to rank algorithms are basically machine learning algo-
rithms, what determines their performance is the choice of features to be used in
the learning. In the literature of web search, numerous features are introduced.
Yet, the choice of the features highly depends on the environment of the search
including the domain of the search, the context of the documents available, the
characteristics of the users making searches, etc. Therefore, generating the fea-
tures to be used in the learning is the core of learning to rank algorithms and
mostly query logs are good sources of implicit feedback about user behavior while

figuring out the possible features to be extracted.

In this thesis, we try to exploit a query log provided from a commercial educa-
tional vertical search engine. We carry out detailed analysis on the query log to
find out user behaviors to further use them as features in the model we propose

using the learning to rank algorithms.

1.2 Contributions

Our contributions in the thesis are three fold, which are explained as follows:

e We perform a detailed analysis on a query log provided by an educational
vertical search engine. We compare our findings with the general search
behaviors web users have. We show that students in the scope of educational
domain have different search habits and therefore the problems defined in
the information retrieval area should be addressed accordingly. Specifically,
we also try to find the Refinding behavior in our query log, that is, we
analyze how often students tend to find the documents they once visited

while searching for an education material with the goal of learning.

2

e Using the learning to rank algorithms, we employ learning models to rank
the educational materials provided in our query log. Analyzing the query
log, we use our findings to further improve the learning model to better cap-
ture the search behaviors of students. We introduce novel learning to rank
features specifically better suited for the educational domain. We employ a
learning model designed for educational domain and show that our model
outperforms both the original ranking of the documents and baselines cre-
ated using the state of the art ranking functions in the literature in terms of
search engine performance. We also employ different models for query types
by clustering queries regarding their different properties, which are namely
the course of the query, the grade of the user issuing query and the query
frequency. We show that using different models considering query types
improves the search engine performance compared to the general model we

introduce.

e We propose a feature generation algorithm to be used specifically for queries
having low frequencies, where query log fails to give useful and adequate
feedback to exploit in the learning phase. We also implement a similar idea
of generating feature values introduced in [1] to make a comparison. We
report that our proposed algorithm outperforms both the referenced model

and the general model for queries having a single issue (singleton queries).

1.3 Thesis Organization

The rest of the thesis is organized as follows:

In Chapter 2, we review the early work done on both query log analysis and
the web search problems using learning to rank algorithms. For each category,
we first consider the general works in the literature and then give examples of
more specific works. We put more emphasis on works that are closely related to

our work.

We present the results of our detailed query log analysis in Chapter 3. We

3

categorize our findings into two categories which are Search Characteristics and
Refinding Behavior. In the first section, we analyze the search habits of the users
and compare our findings with the users in general web search. In the latter
section, we try to analyze the Refinding behavior students have and explain our

results with their reasoning regarding the educational domain.

In Chapter 4, we explain the learning to rank algorithms. We give their struc-
ture to use the algorithms and explain how to obtain the learning setup to employ
a better model. We briefly discuss the approaches used in the learning to rank
environments. Then, we provide the evaluation metrics that are used in the

literature to evaluate proposed models.

In Chapter 5, we provide our proposed educational learning to rank model.
We give our constructed features along with their correspondence category and
explain how each feature is calculated. We discuss the cluster models generated
regarding the different query types we have in our query log. We also provide
our Propagation Algorithm to be used for singleton queries to further improve

the model we learned.

We report the results of our experiments in Chapter 6. We compare our find-
ings with state of the art baselines and show that our proposed models improve

search engine performance significantly. We conclude the thesis in Chapter 7.

Chapter 2

Related Work

2.1 Query Log Analysis

Due to immense online information available on the Web, online search is one of
the most popular internet activities users prefer. According to statistics available
on [2], the web sites providing search engine service are among the top visited
sites. Google is at the top of the list while Yahoo and Baidu (the leading search
engine provider in China) are among the top five. As a result, there are huge
data available to exploit to learn some patterns. Therefore, in recent years there
has been a growing interest in analyzing query logs of search engines to find out
possible search characteristics that may lead to different research aspects. The
idea behind the query log analysis is to figure out how web users deploy a search
engine. In other words, it is a tool to find answers for the rel ated research
questions such as: What do users search in Web? What are the characteristics
of the user using search engines? How do they search? Answering such questions
may lead researchers to new research aspects in web search area, where they can

use the results from the query log analysis to further exploit potential solutions.

One of the very first large scale query log analysis papers explores search

characteristics of the search engine users using query logs gathered from AltaVista

[3]. They did their calculations on a query log consisting of 1 billion queries over
a period of six week time. Their findings include that queries mostly consist of
1-3 query terms, the most popular query terms in the query log are generally
sexual related terms and most sessions include single query, which means users
are unlikely to reformulate their queries as a result of a possible unsatisfied query
issue. They also state that users tend look at only the first page, therefore they
indicate that traditional information retrieval techniques may fail in the scope of

the web search.

Queries are what users use for defining their search intents through search en-
gines, therefore they are the answers for what users search in Web. One of the
research aspects in search is to determine user intents. Hence, it is important
to classify the user intents if possible prior to retrieving the search results to be
shown to the user. One of the early works on this problem [4] tries to classify the
queries according to their intents, which are mainly informational, navigational
and transactional. Informational queries are described as queries that cover broad
range of topic for which there may thousands of relevant documents, while nav-
igational and transactional queries are defined as queries carrying an intent of
finding a particular web site and completing a transaction such as downloading a
video, respectively. An exploration of query log data reveals that most queries in
a search engine are of informational (40 — 50%), followed by transactional ones
(30 — 36%).

Session is another important aspect of the search. The decision of how to
choose session highly affects the certain behaviors of the search engine. According
to Spink et al. [5], a search session is described as the time interval between
the first query issued by the user and the time the user leaves the search engine.
Time based search session detection techniques are among the most popular ones.
Generally, a cut of value (threshold value) is used to determine whether two
consecutive search issues by a particular user belongs to the same session or not.
Jansen et al. [6] use 30 minutes as cut off value to determine search sessions
in and they state that the cut off value they introduced is better to explore the

different query types a user issues in a single search session.

In recent years, there is a growing interest in analyzing the vertical search
engines which are used to search for particular type of information. These vertical
engines are important to gather results to use them in general ones. One of the
early works on vertical search engines is done by Lawrence at al. [7], in which
they try to retrieve scientific documents only. Weerkamp at al. [8] try to find
search characteristics of a commercial vertical search engine in which users search
for people only. We followed the practices they made to compare our findings

with theirs and general Web as well.

2.2 Refinding Analysis

One of the problems in web search is the behavior of the users having intent to
find out the documents that they once visited, which is called Refinding. There
have not been many works on this subject, until it is noted in [9] that, 17% of
the web users surveyed reported that “Not being able to find out a page once I

visited” is one of the biggest problems to be solved in web search.

Cockburn at al. distill several years of knowledge on the Refinding behavior
to improve how people return to their previously visited pages in [10]. Being one
of the early extensive studies on Refinding, they state that their results indicate
revisitation in Web is one of the most dominant activities, with an average of 4
out of 5 page visits being to previously seen pages. They also introduce three
different interfaces to help users to find out their previously visited pages when
desired using back and forward buttons. They also strongly suggest that using
temporally ordered lists of previously visited pages can significantly improve the

revisitation in Web.

People often repeat Web searches whether to find new information for a topic
they have already explored or to find what they once found about a particular
topic. Queries associated with a repeat behavior may have different texts, yet
they lead users into same clicks. Teevan et al. [11] demonstrate that as many as

40 % of all queries lead users into repeat behavior. They describe the intent of

user issuing the search with categorization of different types to be derived using

query string and click-through sets.

Sanderson et al. [12] confirmed refinding behavior observed by Teevan et al.[11]
and extended their work to include temporal properties of repeat searches and
clicks. They indicate that users show seven day and 24 hour periodicities in their
search, which is also consistent throughout entire period of time of the query log.
Queries issued repeatedly from different users tend to show the information need

of users for a particular temporary event or news.

2.3 Learning to Rank - LETOR

In recent years, there has been significant works on learning to rank for infor-
mation retrieval. Many powerful algorithms have been developed for learning
to rank information retrieval and some of them have been applied to the some
particular problems such as web search. One of the indepth papers on this area
is published by Qin et al. [13]. They constructed a benchmark dataset called
LETOR to be used by the researchers interested in learning to rank in the scope
of information retrieval. They introduced the features to be used in learning al-
gorithms and they categorized their features into four groups, which are low-level
content features (e.g., tf*idf [14]), high-level content features (e.g., BM25 [15]
and LMIR [16]), hyperlink features (e.g., PageRank [17]), and hybrid features. In
total, they extracted 44 features, which are still mainly used by the researches in
the learning to rank setups. Besides, they discussed data partitioning methods
to split the data set to be used as training and test separately and they pro-
vided with the performance results of the benchmark dataset using precision and
NDCG metrics.

There is a book published by Li [18] devoted to the learning to rank for in-
formation retrieval area. The algorithms and their corresponding approaches,
which are pointwise, pairwise and listwise, are explained in an exhaustive man-

ner. Learning to rank can be applied to many problems arising in the area of

information retrieval, specifically web search. Giannopoulos et al. [19] try to find
out the user intent using learning to rank algorithms. They state that user intents
in web search are subject to change and hard to capture. In order to capture the
user intent, they exploit the click-through feedback of users using the learning to
rank approaches. They cluster the user intents considering the query log data
to learn different ranking models for each cluster. They assert that their cluster

models significantly outperform the baseline which is a single model.

Query auto-completion (QAC) is one of most prominent features in modern
search engines, which makes it an important research topic in information re-
trieval area. In [20], Shokouhi introduces a supervised framework for personalizing
auto-completion ranking. He compares existing features including user-specific
and demographic features to find out their effectiveness in the scope of person-
alization of auto-completion. He concludes that user’s long search history and
location information perform best among the features used. Besides, he asserts
that his ranking models supported by personalization features outperforms the
existing popularity based baselines, in terms of mean reciprocal rank (MRR) by
up to 9%.

One of the hot topics in information retrieval related to the learning to rank
methodologies are click models. In a learning to rank environment for a model to
be learned, an annotation must be done since it is a supervised learning process.
Making relevance annotation by judges is of high cost, which leads the researchers
to come up with models that try to predict the relevance of the documents auto-

matically with high effectiveness.

In one of the early works on click models, Dupret et. al. [21] propose a
set of assumptions made on user browsing behavior that allows predicting the
relevance of the documents using estimation of the probability that a document
is seen. They try to estimate the probability of a result document being clicked as
the ratio of the number of times a user clicked on the document to the expected
number of times the document is examined, instead of pure click through rate
(CTR) values. Apart from the position and the cascade model [22], they give a

baseline model, which only depends on the attractiveness of the document (URL,

snippet etc.) They also state that, the cascade model outperforms significantly
the other models in explaining the clicks at higher ranks. On the other hand
at lower ranks, it is slightly worse than the other models, including the baseline

model they proposed.

Click through can provide an important source of user feedback and therefore
can be used to determine the relevance labels of the documents using clicks of
users rather than editorial judgment. However, due to the position bias, doc-
uments appearing at lower ranks are less likely to be clicked, which makes it

difficult to capture the relevance information for such documents.

Chapelle at al. [23] propose a Dynamic Bayesian Network to give an unbiased
estimation of the relevance from click logs. Their model tries to combine the
advantages of both the position model and the cascade model. They claim that
their model is similar to the position model in the sense that a click occurs if
and only if the user examines the URL and finds it relevant. Similar to the
cascade model, their model assumes that user sequentially looks at all the results
and clicks based on the perceived relevance. The user keeps examining the next
URLs if he is not satisfied with the current URL (based on actual relevance).
The difference between their proposed model and the cascade model is that click
does not necessarily mean that document is relevant. Also, there is no limit in
terms of click numbers in their model. They assert that their experiments show
that their proposed model outperforms existing click models in predicting both

click-through data and relevance.

Clicks on search results are helpful source determining the user satisfaction in
a search session. Yet, click information can be noisy due to position and caption
bias and some other factors. A common approach to remove the noisy clicks may
have is to use 30 seconds threshold [24] to categorize clicks as satisfied (SAT) or
dissatisfied (DSAT) clicks. However, Kim et al. [25] claim that using a single
threshold value (e.g., 30 seconds) to determine whether the user is satisfied by
the click is not rational due to different page characteristics. They state that
topic of the page, its readability level and its length are crucial in determining

the amount of dwell time needed to figure out whether any click can be labeled

10

as satisfied.

To understand whether a user is satisfied with the current search results, im-
plicit behavior is a useful data source, with clicks being the best-known implicit
signal. Yet, it is possible that a non-clicking user to be satisfied and a clicking
user to be dissatisfied. In [26], Hassan et al. used the user behavior among
search sessions as the implicit signal to determine whether a click is satisfied or
not. Specifically, they focused on reformulation behavior, which is defined as
consecutive queries having similarities in textual content and interior time less
than a certain threshold. They claim that their query based model with addi-
tional query specific features is better to figure out user satisfaction than the click

based models.

The click through data has been used in various subjects in web search using
the learning to rank algorithms. However, there is a limit to the usage of click
logs when there is not enough information about some particular queries in the
query log. This problem generally occurs for the queries having low frequencies,
called tail queries. In recent years, researchers have started to focus on this is-
sues trying to generalize learned models to perform well enough for tail queries
as well. Aktolga et al [27] try to boost rarely clicked queries in a system where
limited click-through data are available. They proposed a probabilistic approach
to re-rank the result list of documents for sparse queries. They utilized the in-
formation of co-click queries, which share clicks on the same documents. They
try to generate click-through features using the set of queries similar to the given
query which has no to little click data available. They categorized similar queries
into three groups, which are similar queries that share at least one co-click, syn-
onym queries that are lexically related to each other and subset queries where one
is included in the other as a subset. They assert that their models using three
sets of similar query sets are significantly better than the Lucene based baseline

model.

Incorporating click-through features using query logs to the learning to rank
algorithms is useful to have better performing model, yet there may be some occa-

sions where click-through features cannot be calculated. Gao et al. [1] introduce

11

clickthrough stream as the set of queries having co-click for a particular document
in the query log given a certain document. Their calculation of click-through fea-
tures differs from the ones in the literature in the sense that they also consider
whether a click is the last click in the search session to give more importance for

the documents that are clicked last.

They further try to improve the performance of features by using two smooth-
ing techniques, which are Discount method and Random Walk. There are certain
queries in the query log whose result lists include documents that have insufficient
clickthrough stream that is not big enough to calculate the features effectively.
For those queries, they use random walk approach to generate artificial con-
nections between the query having a sparse click through stream for associated
documents in the result list and other random queries. However, this method
is not applicable for queries that have zero click in the query log and therefore
zero queries in their click-through streams. For those queries, they simply try to
estimate the values of the click through features, initially calculated as zero prior
to Discount method, by using the values of the features of the queries having a
single query in their clickthrough stream. The motivation behind this idea is to
reduce the penalization of the ranker training instances which have zero valued
features. They report that using Discount method and Random Walk along with
their combination they further improve the model learned by the state of the art

ranking functions by up to 4%

12

Chapter 3

Query Log Analysis

Search is a key web activity among all kinds of users towards a large variety of
goals. While the lion’s share of previous works on query analysis focus on general
web search, the need for analyzing the search behavior of certain user groups
and/or users searching for a certain type of information has emerged as an im-
portant research direction. Recent studies show that children and teenagers, who
constitute a large and dynamic subset of web users, deserve special attention as
their search behavior differ from the adults in several ways while using search
engines [29, 30, 31]. Other studies address alternative search tasks that are usu-
ally carried out via verticals, and analyze query logs obtained from the systems
specialized for digital libraries, audio-visual archives and searching people on the

web [8].

In this chapter!, we analyze the query logs of a commercial educational content
developer and service provider for Turkish students at K-12 level. Turkey has the
youngest population in Western Europe (by median age) and 42.9% of its total
population, which is estimated to be around 77 millions as of December 2013,

is young, i.e., under 24 years old. According to national statistics, the number

IThis chapter is based on the work [28] published in Proceedings of the 37th International ACM
SIGIR Conference. SIGIR’14, July 6-11, 2014, Gold Coast, Queensland, Australia.
http://dx.doi.org/10.1145/2600428.2609532.

13

of students at primary and secondary schools adds up to 16,156,519 (excluding
pre-school and open-education students) [32]. Not surprisingly, there are several
governmental and industrial efforts to develop education services and products

M is a commercial web-

targeting this young and dynamic population. Vitamin®
based educational framework that provides interactive content and performance
assessment mechanisms for a large variety of courses covered in K-12 curriculum
in Turkey. As of December 2013, Vitamin has more than 1.2 million registered
users and about 4.3 million site visits per month. These users can utilize the
navigational interface to reach to the content they need, or they can perform

search over the entire set of educational materials.

3.1 Search Characteristics

Following the practice in [8], we provide the characteristics of search in Vita-
min with respect to four major dimensions; namely, queries, sessions, users, and
clicked results. We also compare and contrast our findings to those on general web
search engines and/or earlier results on children’s search behaviors. Our analysis
helps understanding how students search with the purpose of learning in an ed-
ucational vertical, and reveals new directions to improve the search performance

in the education domain.

Vitamin search engine allows users to issue a keyword query along with a num-
ber of category filters, namely, content type, grade, and course filters. Figure 3.1
shows the GUI of the Vitamin’s search system for the query “carbon dioxide”.
Then, users can click and display a particular query result, which is called a
learning object and presented in text and/or audio-visual formats; or navigate to
certain point in a topic hierarchy where this learning object belongs to. The sys-
tem stores the queries and clicked results in the search log, while the navigational
type of interaction is recorded separately as a different kind of event. Therefore,
our preliminary analysis here involves a query log that includes a sample from the
queries submitted to Vitamin’s search system in December 2013 by the logged-in

users (i.e., with paying or trial accounts), and followed by at least one click on

14

karbondioksit

VITAMIN

Arama Sonuclar

Tar: <=l CONTENT TYPE

Canlandirma (Animation)
Interaktif Etkinlik (Interactive Activity)
Alstrma (Exercise)
Ozet (Summary)
Metin (Text)

Harita Map)
oyun (Game)

Sinif: <:| GRADE FILTER

"karbondioksit"

7 sonug¢ bulungu

R R®

¥ 8. Simif

W 0

n Rifat Ozcan n

ANA SAYFA BiLGILERIM KONULAR SINAVLAR SATIN ALDIKLARIM

ncek 1 Sonraki

Fotosentezi Etkileyen Faktorler: Isik Siddeti ve
Karbondioksit Miktar

nterakeif Etkinlik
Fotosentez hizini etkileyen faktorlerden Isik siddeti ve karbondioksit miktarimin
fotosentez hizini nasil etkiledigi anlatiimaktadir.

Fen Bilimleri / 8. sinif 7 Canlilar ve Enerji iliskileri / Besin Zincirinde Enerji Akigi

Link to the location of the result learning object in course content

PerS <:| COURSE FILTER

¥ Matematik (Math)

¥ Fen Bilimleri (Science)

@ Tarkee (Turkish)

¥ Sosyal Bilgiler (Social Sciences)

¥ T.C.inkilap Tarihi ve Ataturkcaluk
(History)

Bitkilerin Fotosentez icin ihtiyaclari
teraktif Etkinlik
Bitkilerin fotosentez yapabilmeleri i¢in hangi maddelere ihtiyag duyduklar

anlatilmaktadir. Fotosentez icin oksijen, karbondioksit, su ve Glines
hangilerine ihtiyag duyuldugu arastiriimaktadir.

Fen Bilimleri / 8. sinif / Canlilar ve Enerji lliskileri / Besin Zincirinde Enerji Akisi

Figure 3.1: Vitamin search GUI for the query carbon dioxide (with annotations
in English)

the displayed results.

3.1.1 Query Characteristics

According to Table 3.1, 27.8% of the query volume are unique queries and 69.3%
of the latter are singletons, i.e., asked only once. These values differ from the
web search trends, where 50% of the queries in a typical search log are unique
and 88% of them are singletons [33]; and more similar to the trends obtained
for a vertical for searching people [8]. This means that the queries are more
likely to be repeated in this educational search engine, which is a good news for
the mechanisms that exploit temporal locality, such as caching. On the other
hand, distribution of query frequencies shown in Figure 3.2 confirms the power

law distribution characteristics as in the case of web search [33].

On the average, a query includes 2.16 terms, which is slightly shorter than
typical web queries (around 2.5 terms as reported in [33]) as well as the queries

submitted to a major web search engine by the users between 10 and 18 years old

15

Table 3.1: Query characteristics

Number of queries 66,908
Number of unique queries 18,638 (27.8%)
Number of singleton queries 12,926 (19.3%)
Average number of queries per day 2,230
Busiest day in number of queries 3,855
Average number of terms per query 2.16
Average number of users per query 3.58
Average number of results per query 114
o
8 7 X
n X
o] ><><><><
3 %

Frequency
50

o
— T
1 10 100 1000 10000

Rank

Figure 3.2: Distribution of query frequencies. The x-axis represents the rank
according to the query frequency in the plot.

(around 2.6 terms [29]). This difference might be attributed to the fact that the
educational search setup is a more restricted domain than web and even a couple

of terms can yield the relevant resources from the available content.

Table 3.2 lists top-10 most frequent queries, which yields interesting findings.
First, top-2 queries are “games” and “game”, which means that the students
enjoy the educational games provided by this system. Among the remaining 8
queries, 3 of them are simply the course names and too general to be useful (i.e.,
“science”, “math”, “Turkish”). This implies that the students who want to find
a certain course still use the search box, rather than browsing through the list of
courses. The other popular queries are related to Turkish and Math courses, and
might be related to the topics that are being discussed in these courses at this

time of the year.

16

Table 3.2: Top-10 popular queries in terms of the query frequencies and unique
users.

Query Frequency Users
oyunlar (games) 3898 2290
oyun (game) 3197 1576
fen (science) 708 320
zarflar (adverbs) 683 466
trke (Turkish) 605 344
matematik (math) 571 368
fiilde at1 (verb forms) 461 321
ses bilgisi (phonetics) 417 248
standart sapma (standard deviation) 384 309
olasilik (probability) 335 249

As mentioned before, Vitamin’s search interface allows setting various filters
along with a query, which we analyze next. Figure 3.3 shows the distribution of
content type filters selected while submitting queries. It is seen that all content
types are selected in the majority of the queries, which is the default setting in
the GUI. This means that users leave this filter as-is most of the time, probably
because they want to see all available content relevant to their query. We observe

similar trends for the use of course filter, as shown in Figure 3.5.

8 7 1 2 3 4 5 6
Selected Filter Count

100 -
~ T
o _
Seo- 3
(] ~
£60- §’
Eeo s
o
2 40+ S
s .
: Se
&0 &
(]
>
o) IR 5o)
g 5 S g Fa B~ g 2
§ 8 2 ¢ £ % = E
E O & E g
g ‘? u 5 w O,7I:|I:|I:||:I|:|I:II:I
< = =
B s
< ©
n

Figure 3.3: Distribution of content type filters used in queries.

17

o _
[Te) 8 -
—~
= o\°
A ~ o
> O ©
o £
Q o =)
€& 2
= > Q-
S >
QA)
al S
g 52
Oo
i
o - | —
o 1 5 4 2 3
7 6 5 8 4 Selected Filter Count
Figure 3.4: Distribution of grade filters used in queries.
25
< 8 1
R20-
v S
S <o
Eis o g -
o
210+ 2
> >S9
S . >
© 2
0- OR-
< 9] (] [%] >
@ kS Q Qo 5
< g 3 S B
= E ((j-)) m T o - [— N —
T 8 5 1 2 4 3
= o
n

Selected Filter Count

Figure 3.5: Distribution of course filters used in queries.

In contrast, the grade filter, at a first look, seems to be used more effectively
as the majority (more than 70%) of the searches are restricted to a certain grade
level (Figure 3.4); grades 5, 6 and 7 being the most popular ones. However,
this difference in the behavior may not necessarily be caused by the students’
awareness of this filter, as the search GUI for the trial accounts, by default,
shows only the user’s own grade level as selected. Therefore, for most of the
searches, we can still claim that students are reluctant to change the default filter
settings. This is an interesting finding that deserves further analysis, as it can

provide useful insight for designing a better search interface.

18

Table 3.3: Session characteristics

Number of sessions 35,225
Number of sessions having single query 20,914 59%
Avg. num. of queries in all sessions 1.74
Avg. num. of queries in sessions with >1 query 1.86
Longest session duration 133 min
Avg. duration in all sessions 4.7 min
Avg. duration in sessions with >1 query 7.1 min

3.1.2 Session Characteristics

As in the previous studies [29], we detect sessions by grouping together a partic-
ular user’s successive searches that has a time gap less than a time-out value (30
minutes). Table 3.3 presents several statistics about query sessions. Among the

total of 35K sessions, about 59% include only one query.

07X X o
N X»&M
£9- .
o -
C _—
(]
—I P ¢
CLO* —_—
ie) —
()]
U) P ¢
(D]
(DN’ b4
— - T—
1 10 100 1000 10000
Rank

Figure 3.6: Distribution of session lengths. The x-axis represents the rank ac-
cording to the session length in query count in the plot.

This skewed distribution of session length in number of queries can be seen in
Figure 3.6. Users submit around two queries in a session on average (computed
by macro-averaging over users). The average number of queries submitted to a
commercial search engine is 2.4 [34]. The average session duration in our log is 4.7
minutes and this is slightly longer than the session duration for children (between

ages 6-18) reported in [29]. However when it is compared to a general user’s query

19

session in a web search engine (around 7 minutes in [34]), it is shorter. This again
indicates that the students can effectively find what they look for in this context

of educational search.

3.1.3 User Characteristics

We present the characteristics of users in Table 3.4. Among 18K total users, 40%
of them issue only one query during the one month period of our log. This skewed
distribution can also be seen in Figure 3.7 (left plot), where a large portion of
users asks very few queries but a few users submit large number of queries. The
distribution of the number of sessions over users shown in Figure 3.7 (right plot)
is even more skewed since 60% of users interact in only one session. On the

average, users ask 3.61 queries in 1.92 sessions.

o
O + x
- X x = X o
g1 "
o 0%
-
< ~
3 @ o | -
= o 9 -
% — | = %) -
= O —
o, . 8 il
~ 4 - N H 4
— _— — T—
1 10 100 1000 10000 1 10 100 1000 10000
Rank Rank

Figure 3.7: Distribution of number of queries (left plot) and sessions (right plot)
over users. The x-axis represents the rank according to the number of queries
(sessions) per user in the left (right) plot, respectively.

Figure 3.8 shows the distribution of query submissions over time. Monthly
analysis (left plot) shows weekly patterns clearly. Students submit the largest
number of queries on Sunday and least number of queries on Friday, according to
the daily analysis in Figure 3.8 (center). This provides some interesting clues in

students’ studying habits: the students heavily search for information on Sunday,

20

Table 3.4: User characteristics

Number of users 18,534
Number of users with >1 query 11,402 62%
Number of users with >1 session 7,590 40%
Avg. num. of queries per user 3.61
Avg. num. of queries per user with >1 query 5.24
Avg. num. of sessions per user 1.92
Avg. num. of sessions per user with >1 query 3.31

during when they might be doing homeworks for the upcoming week. Then,
their activity in the search engine decreases gradually in the weekdays and reach
the minimum on Friday, when most of the students seem to enjoy the weekend.
Hourly analysis in Figure 3.8 (right) shows the percentage of queries submitted
to the system in different hours of a day separately for weekdays and weekends.
It is seen that students prefer to use the system mostly between 18:00-21:00 on
weekdays (after school) and between 12:00-21:00 on weekends.

20

6
|

5
!
1
15

=
o
L

4
|
10
|

2
Query Volume (%)
=
o

Query Volume (%)
3

1
|

o (9]
Query Volume %
0 5

ML

1 4 7 10 13 16 19 22 25 28
Day

T T . . .
0 5 10 15 20
Hour

Sun
Mon
Tue
Wed
Thur ‘
Fri
Sat

Figure 3.8: Distribution of query submissions over time. Left: Number of query
submissions per day in December 2013. Center: Distribution of queries over
weekdays. Right: Percentage of queries submitted per hour of the weekdays and
weekend days.

3.1.4 Out Click Characteristics

In this part, we analyze the clicks on the query results. Table 3.5 presents basic
statistics about clicks. On the average, users click 2.56 results per query and 2.29
clicks are unique. In terms of a session scope, there are 5.33 clicks on the average

and 4.80 clicks are unique. The log-log scale plots in Figure 3.9 shows that the

21

Table 3.5: Out click characteristics

Total number of clicks 155,537
Average number of clicks per query 2.56
Average number of clicks per session 5.33
8 1" X % L(C)) B X XX xx
o "..hﬁg‘.‘l“ 8 i
)] S -- 2 = -
ﬁ — = %_J — xxx
6 Lo - O n x'
o~ - o~ =
— — o =
1 100 10000 1 10 100 1000 10000
Query Rank Session Rank

Figure 3.9: Distribution of click counts per query (left plot) and per session
(right).

distribution of number of clicks again follows a power law distribution.

Figure 3.10 shows the percentage of clicks for each type of learning objects.
It is seen that users mostly prefer “animation” and “interactive exercise” type
of contents. Furthermore, “interactive activity” and “lecture” type of contents
are also clicked frequently, while textual resources (“Text”) are less likely to be
clicked. These findings reflect the students preference of interactive content over
purely textual material, which actually leads most educational content to be

presented in the former format in Vitamin.

22

o .
S5+
gzo—
=15
(@]
>10,
4
5 °] EE
OO,__ e —
S53202325%82
— =g — (] o
To2g2gogr=E
E LI Q0 ¢ € g
< o > n
= o
=5 o
D ® =2
g g S
Qe
g E

Figure 3.10: Distribution of result clicks by content type.

25

Query Volume (%)
[B N
o (6] o
|

(93]
|

o HidE HDDDDDDDDDDDD

ANNTOONMNOOOANMTIOHONOOD
Al A A A A A

Result Object Rank

20+ |

Figure 3.11: Distribution of clicks by rank.

Finally, we focus on ranks of clicked results in Figure 3.11. We see that while
top-2 results, non-surprisingly, take the largest share of the clicks, there is a non-

negligible fraction of clicks for the results placed at much lower ranks, even after

23

rank 20. According to a general web search engine log [35], clicks for top-2 results
account for 58% of all clicks and only 9% of clicks are below rank 10. However,
in our log, top-2 clicks and clicks after rank 10 constitute 36% and 20% of all
clicks, respectively. This might either indicate the students’ dissatisfaction of the

results, or their preference to see several relevant results while learning a topic.

3.1.5 Findings

In this section, we presented an in-depth analysis of a query log from a popular
K-12 educational search system with real user queries. Our analysis revealed
that the trends in this context differ from general web search in various aspects,
which might be exploited for building educational search engines that are better
tailored for students’ needs and behaviors. In particular, the high fraction of
repeated queries indicates that system components that rely on the query history
(such as caching and query suggestion) can be made more effective. The students’
preferences in using the query filters call for reconsidering the design of the search
interface. Finally, our out-click analysis shows that students prefer active content
formats (like animations and interactive lectures) over the static content (like
text) and can click further lower ranks in the results list other than the first few
results. Such findings can help designing better features for the machine-learned

ranking algorithms and lead higher user satisfaction.

3.2 Refinding Analysis

In literature, query log analysis has been done on various query logs provided
by some commercial search engines or by some vertical search engines. There
exist few query log data which are distributed as public data to help researchers
to exploit possible works to be done in search problems. One of the issues that
arise from search problems is refinding problem. Refinding is the behavior of a
user that searches particular document and as a result clicks the same document

multiple times from different search sessions. In the work [9], it is noted that 17%

24

of those surveyed people complained about finding the page once they visited and

stated that this is one of the biggest problems in using Web.

Using the query log data provided by SEBIT, we tried to explore refinding be-
havior of students who issue searches. The data is comparable to other statistical
datasets used in query log analysis, which is already explained in the previous
section in detail. Query log data gives helpful feedback about user actions, yet it
is not enough to explain the underlying motivation behind user search. Refinding

can be considered as one of the motivations users may have during search.

We tried to capture Refinding behavior by first grouping user issues according
to their unique userids derived from query log. Then for each user, search issues
are sorted considering their timestamp provided in data. We assumed that if a
user clicks for a document and later on in a different search session clicks again
that particular document, this behavior is labeled as refinding. Note that, to have
Refinding behavior, one has to click for a particular document from two different
search sessions having different timestamps. Also note that, even if those two
search sessions do not have the same query text as an input to the search engine,
we considered this as Refinding behavior as well. What is important for us is
to find out whether the same document is clicked multiple times for a particular

user in order to label as Refinding.

For instance, a user searches for the query “Math functions” and clicks a
learning object (page in Web) shown in the result list for that query. Later the
same user searches “functions” at a different time and clicks the same document
again, which we assumed has underlying motivation to find the same document

clicked once before. Therefore we consider it Refinding.

In this section, we show the results of Refinding behavior we observed in our
query log data. While doing that, we choose the particular observations stated
in [11]. For each analysis we make, we first state the case for general web and

provide our results to compare with theirs.

We categorized queries as either Refinding or Newfinding queries as stated in

25

[11]. Refinding query is the query session in which user clicked a document that is
clicked before on another search session by again that particular user. Newfinding
query is the opposite, having no documents clicked before on any other search
session user has. The results along with their comparison to their corresponding

results in Web are as follows:

1. In Web, in 40% of all search sessions users have in general web search engines,
there is at least a document retrieved in the result list and clicked by the user
who clicked that particular document at least one time in any of the past
searches. In other words, 40% of users have tendency and motivation to find

and therefore click the document they once visited.

= In our findings, the results are significantly different. In our query log
data, we have 66908 query issues in total. Of those, we found Refinding
behavior in 17218 queries, which is approximately 25%.

The reason could be that in educational search environment, students
periodically study different materials related to the subjects listed in cur-
riculum. Therefore, they are likely to search for another subject different
than what they already searched. Another reason could be that students
advertently try to avoid those documents once they already discovered.
In terms of learning aspect, it might be rational and wise to choose a doc-
ument they have never visited to explore what that particular material

can offer for them to learn the subject better.

2. If we are to repeat the previous analysis in terms of document perspective, the
results again show differences. In other words, among all documents clicked by
all users, 28% of them are clicked multiple times by the same user at different

search sessions having different timestamps.

= In our query log data, we have 165,587 learning objects (documents)
clicked at least one time by a user in any search session. Of those, only
20,594 documents are clicked multiple times by the same user at a differ-

ent time, which roughly corresponds to only 12% of all documents.

The reasoning behind this behavior is the same as the previous one, that

26

is, students are less likely to search the same subject due to having multi-
ple subjects listed in their course curriculum and students tend to look for
new learning objects to enhance their knowledge about subjects covering

different parts mentioned in different documents.

3. Another difference is observed in the number of documents clicked by multiple
users in any search sessions. Among all clicked documents, in web only 7%
of documents are clicked by multiple users. However, this behavior must be

handled regarding the immense number of documents across web.

= The results for our query log indicate completely different story. Among
all documents clicked, 99% of them are also clicked by another user in
a different search session. This is the reflection of our learning object
set, which includes only 3500 different objects to be retrieved in result
lists. Hence, students are shown similar document lists even if queries
written might be different. However, considering the amount of query
sessions (66K) we have in our query log, it is not reasonable to explain
this behavior only considering the amount of documents we have. Since
students share same documents in terms of click information, which can
indicate students are likely to find similar documents relevant compared

to general web users.

4. Another statistic is to find out the tendency users have to prefer documents
that they have never visited before, specifically in search sessions they explore
documents that they visited once. In other words, among all Refinding queries
in Web, 14% of them include user clicks on new documents that are not clicked

before by that particular user.

= The above analysis given in [11] is one of the behaviors where results show
significant difference compared to our results. In our query log, students
are more likely to click new documents in search sessions in which they
already clicked on a document they once visited. In Refinding query
sessions, it is observed that 43% students also click new documents that

they never visited before.

We believe that there are two specific reasons behind this behavior from

27

students according to our observations. The first one is willing of the stu-
dents to explore new learning objects while trying to cover more aspects
of a particular subject. Another reason is more general, that is, as men-
tioned in previous section, students are more likely to click documents
on average compared to general web searches, which essentially results in

newly clicked documents.

5. Another aspect of the analysis is to find out the correlation between query
texts that resulted in Refinding behavior. In web, within the user issues, users
generally prefer the same query text while trying to visit a document that they
visited once. Among all query sessions including Refinding behavior, 71% of
them come from the same query texts. The calculation is made by simply
taking the ratio of unique query texts over all query issues having Refinding

click.

= The behavior for this particular statistic is similar for the students as
well. In our query log, students generally prefer the same query texts
that result in Refinding click, which accounts for 64% of all query issues

having Refinding behavior.

6. Similar to the previous analysis, users tend to click documents that they once
visited in search sessions where they prefer the same query texts, which account

for 87% of all query issues that have the same query text by the same user.

= Unlike the previous analysis, there is a difference between Web and our
query log in terms of this particular behavior of users. The probability
of a search session in which Refinding happens to have the same query
text as the ones where the users clicked the same document before, is
considerably high. However, the probability of a student to click on a
document that he visited once before in search sessions where he prefers
the same query text is only 44 %, which is relatively low compared to
Web.

The main reason for this result could be that students have less skills to
define their queries in terms of their search needs compared to general

web users. They have difficulties to express their intent in clear manner,

28

which results in different query texts even though they have the same

Intent.

7. Same query text analysis is done this time for search sessions, namely Newfind-
mg Query Sessions, where a document that the searching user never visited
before gets clicked. As suggested in the paper [11], the results are lower than
the Refinding Query Sessions, that is, among queries having the same text,

38% of them result in newly clicked documents.

= Naturally considering the previous analysis results, this percentage is
much higher than Web. While learning, new documents mean more
source to cover for a subject, which results in more query sessions where
Newfinding behavior happens. However, it must be noted that this
Newfinding behavior occurs even in sessions having the same query texts,
meaning the students prefer new learning objects in a consistent manner.
Among all queries having the same text, 74% of them result in newly

clicked documents.

8. In addition to the previous two analysis, the results for intersection behavior
of these two are also calculated. In Web, among query sessions having the
same query text, probability of a search session to have both Refinding and
Newfinding behavior is 25%.

= The results for this analysis show similarities to those in Web. Yet, the
ratio is slightly lower than Web, which is 18%. This difference can be
explained by the lack of ability of students expressing their intents clearly.
In other words, the ratio clearly shows that even though students type
the same query text, those sessions might intend to find both Refinding
and Newfinding documents, which is what makes it difficult for the search

engine to predict actual user intent to improve search results.

9. Another analysis made on the paper [11]is whether Refinding behavior depends
on the number of clicks user made on that particular refinding session. Among
all user issues made, 29% of the search sessions which result in single click on

a document have Refinding behavior.

29

= The results for this analysis on our query log data are slightly different
than the results with the Web. Students are more likely to click on
Refinding document where they prefer to click a single document on a
search session, which accounts for 42% of all searches including single
click. The difference arises from the search habits students have compared

to general Web users.

In web, generally search sessions having single click are considered as
failed searches. Yet, this is different for students. Having a failed search
session including single click generally leads the user to reformulate his
query to perform better search to find the page he is looking for in Web.
However, students lack the ability of reformulating queries that they think
are unsuccessful. In other words, ratio of single click sessions to all search
sessions is less than the ratio we have in general Web case. Therefore,
in our query log, we believe that, contrary to the behavior users have in
Web, sessions having single clicked document means successful Refinding

search rather than an unsuccessful one.

10. The last analysis we performed for comparison is the opposite of the previous
analysis, which is to find Refinding behavior in search sessions where multiple
clicks occur. In web, among all search sessions including multiple clicks on
documents, only 5.3% of them include Refinding behavior, which is expected

regarding the previous analysis.

= This is one of the analysis that behave significantly different for our query
log data compared to general Web. 57% of search sessions including

multiple clicks lead students to click on a document they once visited.

The reasons for this behavior we believe are twofold. The first reason
is the less number of documents our data have. Hence students tend to
click more documents compared to Web, which eventually includes one
of the documents they already visited before. The other reason would
be that students are less likely to remember the documents they visited
before in a successful search, therefore for a Refinding intent, they have

to click more documents than general Web users.

30

Chapter 4

LETOR - Learning to Rank

In information retrieval (IR) and natural language processing (NLP), ranking
is the central problem for many tasks. These tasks include document retrieval,
question answering, personalized search, collaborative filtering, document sum-

marization, and so on.

Ranking problem generally consists of two different types; which are ranking
creation [18] and ranking aggregation. Ranking aggregation is to create a list of
objects using multiple lists of objects by aggregating them into a single list, while
ranking creation is to make a list of objects using feature sets of the objects given
another type of the object (query in web search case). Our work in this thesis

falls into the latter group.

Document retrieval is one of the main problems in information retrieval for
which the ranking problem is the main issue to be solved. In web, although there
are limitations for search, to access information available on Web it is by far the
most common and practical solution to search for a page. For instance, according
to a report by IProspect, 56% of the internet users use web search every day and

88% of the internet users use web search every week [9)].

In this scope of document retrieval task, learning to rank refers using machine

learning algorithms to rank documents using a trained model given query and

31

document pairs. The idea of ranking creation is to create a list of documents
using extracted features of documents given query so that good and preferable
documents will be ranked at top compared to other documents. Learning to rank
is therefore concerned with the automatic creation of ranked list of documents

using machine learning algorithms.

Learning to rank plays a significant role in document retrieval to rank docu-
ments using machine learning techniques to come up with a better list of docu-
ments to satisfy user needs and therefore to improve search engine performance.
However, this technique can be considered as a new trend following the literature
in information retrieval. Before LETOR, traditionally search engines were trying
to find a function f(q,d) to score a document d given query ¢ without learning

any model using machine learning algorithms.

In [15], BM25 technique is used to derive a conditional probability to construct
ranking function f(q,d) where conditional probability is represented as P(l|q, d)
in which [denotes the label of the document given query to get either 1 or 0

being relevant or irrelevant respectively to the query.

Another technique used for document retrieval task in literature prior to
LETOR is using Language Model for IR (LMIR) [16]. Using LMIR, the rank-
ing model is again defined as conditional probability distribution P(gq|d) where ¢
represents the query and d denotes a document. In both techniques, ranking is
made using probability distributions that is probability of each document given
query is calculated and then documents are sorted according to their probability
scores to assess final ranking of documents. Since these two techniques use only

probability distributions, no model is learned in either of the methods.

Learning to rank method is a new trend arising in information retrieval to be
used in document retrieval such as general web search. In learning to rank, the
ranking model f(q,d) is learned through past data, which is basically the search
issues by users, called query log data. Using query log data, user behaviors for
particular queries such as impressions and clicks are recorded to be exploited in

the model to train better ranking function. In learning to rank environment,

32

Am+1

g1 Om
dT,T ﬂ‘.'r i
_ fiq.0) |
d:[lg dm,.‘_l — LEarnlng S‘,rstem > Fianklng Syslem
d:[ny dm. fm
v v

tm1,1 {Gme1:0ma1,1)

tme1,2 f{Gme1:0ma1,2)
Y

tme1, [fme1,Omees, [J

Figure 4.1: Learning to Rank for Document Retrieval

sets of queries @ and documents D are constructed. Then for each query ¢ in
Q, associated documents are chosen. Learning to rank uses supervised machine
learning algorithms, that is, each document d in associated set of ¢ is labeled to
denote its relevance to query ¢. Then using these query-document pairs along with
their correspondence labels, ranking function f(q,d) is learned to predict scores.
Overall structure of working mechanism of general learning to rank environment

can be seen in Figure 4.1. The figure is inspired from the work in [18];

4.1 Training and Testing

Since learning to rank is a supervised learning process, creation of training and
test sets is a must for the setup. In this section, we will be presenting the idea
of learning to rank environment setup briefly. As explained in [18], each notation

that will be used in the explanation is given with their explanations in Table 4.1.

Using query log data, we first find the unique query issues and unique docu-
ments to create query set () and document set D respectively. In learning to rank

environment, feature vectors are derived from query-document pairs. Hence, after

33

Table 4.1: Summary of Notations

Notations Explanations

) query set

D document set

y={12..,1} label set with order >

q € Q i-th query in query set

D; ={di1,di2,....din; } set of documents related to ¢; in training data

d; j j-th document in D;

Yi ={vi1,Yi2, s Yin; } set of labels of documents in D; with respect to g;
Yi j label of the j-th document in D; with respect to ¢;
zij; = (¢, d;) feature vector derived from (g¢;, d; ;) pair

X; = ¥q;, Dy) feature vector derived from (g;, D;) pairs

T; ranking list of the i-th query

7:(7) rank of the j-th document in D; with respect to g;
R ={(q, D), Yi}™, original training set

R ={X., Y}, transformed training set

S = {(¢ms1, Dm+1), Yms1} original test set

S ={Xni1} transformed test set

finding overall sets, each query is associated with a number of documents. Along
with the association, relevance of documents with respect to associated queries
is also given. The relevance information may vary depending on the method to
annotate the query-document pairs. In this section, the most common scenario is
taken into consideration, that is, relevance labels given as integers starting from
1 to g. The labels are at several grades. Specifically, a higher grade a document
has with respect to a query, the more relevant the document is associated with

the query.

In this section, we follow the work in [18] by Li to explain basic principles
of learning to rank environments. Suppose that J = {1,2,...g} is the label
set, where the labels represent grades each document can get with respect to
a particular query. There exists a relation between the grades in) such that,
g g—1> ..> 1, where > states the order of the relation between grades.
Further assume that we have training data consisting of query set {q1, g2, ..., ¢ }
where m denotes the number of queries that are used in learning. In the set of

queries used in learning, i-th query is called as ¢;. Then D; = {d;1,d;2,...,d; n, }

34

d11 g1 Vi X1, Y1

dyz diz Viz Xiz2 ¥,z
] a1 qi
dy,n, din, Yin, X3, n, ¥1,ny
Data Labeling 5 Feature Extraction 5 Learning
e) _— . B — fix)
O, 1 A, 1 Ym,1 Xm,1 Ym.1
d, d, Xm,2 Ymz
m 'm,2 m 'm,2 ¥m,2 m
dm.n,, I, ¥m, 0, Xem, iy Ym,

Figure 4.2: Learning to Rank Training Phase

is the set of documents associated with ¢;. Along with documents themselves,
Yi = {¥i1,Yi2, - Yin, } is the set of labels of documents in D; with respect to
gi- Therefore, y; ; represents the label of the j-th document in D; with respect
to i-th query ¢;. Overall, training set before feature extraction becomes R =
{(gi, D;),Y;}",, where m denotes again the number of queries used in training

set to learn the model.

Further, the feature vector for each query-document pair is extracted from
training set R. For i = 1,2,...,m and j = 1,2, ...,n;, the feature vector z; ; =
©(q;, d; ;) is constructed using query ¢; and document d; ; where ¢ represents the
functions used to derive the features. In other words, ¢ is the function which
gets two inputs from query ¢; and document d; ; and outputs the feature vector
x; ;. Feature extraction process is done for each query-document pair in each
list of documents associated to a particular query, that is, the feature vector
X; = ¥(q;, D;) for a particular query g; is calculated using D;. Next, transformed
training data R’ = {X,,Y;}, is constructed using each X; along with their

correspondence label set Y; for associated documents.

Suppose that we define the ranking of the result list of documents associated
with query ¢; as 7;. Ranking documents is simply nothing but assigning scores

to each document to further use them in sorting to finalize their ranking position

35

dms1,1 Omer 1 Ymetd Xmet,g Ymed,d

dmsr,2 mirz ¥Ymer2 a Xmetz Ymel 2
Om+1 Om+1 m+1
D1, e 1, g ¥ma, np,y Xmat, sy VM1, Ay
)) Ranking with
Data Labeling Feature Extraction fix)
_— _— E—

Figure 4.3: Learning to Rank Test Phase

in the result list. Hence as a result, learning to rank algorithms try to find the
ranking model F'(g;, D;), which can give the possible best ranking list ; for each
query ¢; using the transformed training set R’ = {X;,Y;}? ;. The construction

of the training data set is illustrated in Figure 4.2.

Similar to the training phase, the test data is prepared using the same feature
function ¢ used in the learning phase. Suppose a new query ¢,,+1 comes into
the system as a test query. We are also given the set of documents D,,;; =
{dmi11, dmy1,2, s dmg1mn,,, b @ssociated with the query ¢,41. In test phase, we
are not interested in the set of labels of the documents in D,, 1, since the learned
model is there to predict those grades. Afterwards, the feature vector X,,,; that
is calculated using ¢ learned in the learning phase is given as the test data to the
learned model f(z). The model f(x) assigns scores to each document in D, .
Next, the grade (or score) set Y11 = {Um+41,1 Um+1,25 s Um+1,nms, b Of test data
is sorted to construct 7,,.1. The test phase of the learning to rank environment

is illustrated in Figure 4.3.

The training and testing data splits are similar to, but slightly different from,
the traditional data splits in supervised learning environments to be used in ma-
chine learning algorithms such as classification and regression. In learning to
rank setup, although each instance is represented as query-document pair, doc-
uments associated with the same query form the groups. The groups within the
whole training data is independent and identically distributed from each other,
whereas the instances within each group are not independant and identically dis-

tributed data, which results in the difference between LETOR environment and

36

conventional machine learning algorithms.

4.2 Annotation

Learning for ranking is a supervised learning process that needs a high quality
training data set to perform better. Creation of the training data is not an easy
task due to several reasons, one of which is to have grade (or label) for each
query-document pair put as an instance to the model. In the literature, there
are two ways to annotate the documents associated to a particular query. Both
have advantages and drawbacks depending on the environment. In this section,

we mention the ways to grade labels to the documents.

The first and the most common way to annotate the documents is human
labeling. In this approach, a set of queries from the query log is chosen randomly.
Next, exploring the query log data, the set of documents related with the queries
chosen is determined. As a result, we end up with having a query set along with
their correspondence document list to annotate. Then human judges are asked
to grade the documents with respect to the given query. Generally, relevance
judgments are conducted using multiple levels. Normally, each query-document
pair is given to a single judge to label the documents with respect to the query.
However, the labeling on query-document pairs can be conducted by multiple
judges, and then majority voting can be carried out to have a final score. The
advantage of the human labeling approach with multiple judges is its robustness
due to the voting technique. Yet, having multiple judges to label documents is
an expensive process, which leads researches to come up with different techniques

to annotate the documents.

The other approach is deriving labels implicitly from click-through data. Click-
through data at a web search engine include implicit feedbacks of users as im-
pression and click, which further can be used to assign relevance labels to the
documents. For this approach, there are mainly two techniques introduced in the

literature that are used to predict relevance information of the documents, which

37

are Position Model and Cascade Model. There are various click models built on

top of these models, which can be seen in [23, 24, 25].

The two models differ from each other by the assumptions they take while
finding the relevant documents. A position model [22, 21, 36] assumes that in
order for a click to be considered as relevant, the document clicked must be
examined and found out to be relevant by the user. In the position model, each
rank in the result list has certain probability of being examined and it decreases as
ranks go higher. The model has a drawback in the sense that it treats documents
clicked individually, therefore it fails to capture the relation between documents

in terms of relevance.

The cascade model [22] assumes that user sequentially examines the documents
in the result list and the document user clicked last is the relevant document in
the given search session. In other words, the probability of a document being
relevant depends on the relevance of the previous documents having lower ranks.
However, it is straightforward that cascade model fails in search session where

there exist zero or multiple clicks.

The annotation of the query log data using click-through information has pros
and cons. Derivation of relevance information from click-through data is of low
cost compared to human labeling and it also reflects the real user choices which
make them more reliable. Nevertheless, generally click-through data is noisy and

it cannot be useful for singleton queries (low frequency queries).

4.3 Feature Extraction

The ranking model f(q,d) is learned through query-document pairs by using the
calculated features. In other words, there is a feature vector f(x) based on ¢
and d. Therefore, the performance of the ranking model highly depends on the
feature vector. Thus, it is crucial to first find out which features will be used. In

web search, there are numerous features provided in the context of learning to

38

rank algorithms. In this section, we will give information about two of the most
popular ones, namely BM25 and PageRank. Most common features used in the

learning to rank setups can be found in [13, 37].

4.3.1 BM25

BM25 is a probabilistic model representing the relevance of document d to query
q in terms of textual perspective [15]. Tt tries to capture how many terms appear
both in the document and in the query. Specifically BM25 of a query-document

pair is calculated as follows

(k + 1tf(w)
tf(w) + k(1 —0) +b-L)

avgdl

BM25(q,d) =) idf (w)

wegNd

(4.1)

where w denotes a word appearing both in the document d and in the query
q, tf(w) denotes the frequency of w in d, ¢df(w) denotes the inverse document
frequency of w, dl denotes the document length of d, avgdll denotes the average

document length and & and b are parameters to be tuned [18].

4.3.2 Page Rank

PageRank demonstrates the importance of a web page in terms of ingoing and
outgoing links it has [17]. In order to calculate PageRank score for a particular
web page, first a directed graph is constructed to represent the web where vertices

represent pages and edges represent hyperlinks in between pages. Page rank of a
web page d is defined as P(d)

P(d;) 1
P(d) = —a)—)
(d)=a > S+ (l-a)g (4.2)
d;eM(d)
where P(d) is the probability of visiting page d, P(d;) is the probability of visiting
page d;, M(d) is the set of pages linked to d, L(d;) is the number of outlinks from
d;, N is the total number of nodes on the graph, and « is a weight [18].

Table 4.2: Categorization of Algorithms Used in LETOR

SVM Boosting Neural Net Others
Prank [40]
Pointwise ~ OC SVM [38] McRank [39] Subset Ranking [41]
RankBoost [44] RankNet [47]
Ranking SVM [42] GBRank [45] Frank [48]

Pairwise IR SVM [43] LambdaMART [46] LambdaRank [49]

SVM [50] ListNet [53] SoftRank [55]
Listwise PermuRank [51] AdaRank [52] ListMLE [54] AppRank [56]

4.4 Learning Approaches

As we described earlier, learning to rank creation is a supervised learning process,
in which machine learning algorithms are used. However, the difference in the
machine learning algorithms used for learning to rank creation is that instances
are sorted after assigning scores to each of them. As other topics, algorithms that
can be used in learning to rank environments are intensively studied recently.
There are three approaches commonly used in learning to rank environments,
which are pointwise, pairwise and listwise approaches. In [18], Li summarizes the
most used algorithms in learning to rank creation setups regarding the category
they fall into, which can be seen in Table 4.2. The approaches differ from each

other in terms of creation of the instances to be used in learning.

4.4.1 Pointwise Approach

In pointwise algorithms, the group structure of the instances that belong to some
particular query is ignored. In other words, the feature vectors created for each
query-document pair are then combined into a single set in which there is no
further information about the group information a particular instance belongs

to.

40

Machine learning algorithms for classification, regression and ordinal classifi-
cation can be used to predict the grade of the instance in the test set of pointwise
algorithms. Then instances are sorted according to scores assigned to them by the
model to find out final result lists. The loss function in the learning is pointwise
in the sense that it only utilizes single instances without taking group information

into the consideration.

4.4.2 Pairwise Approach

In the pairwise approach, the ranking problem is transformed into pairwise clas-
sification or pairwise regression [18]. In this approach, group structure of the
instances is ignored as well, yet the pairwise approach captures the relation be-
tween documents because of its nature of considering preferences between in-

stances rather than single instances.

For i = {1,2,...,m}, the algorithms used in the pairwise approach try to find
the preference between each pair of documents. In this approach, instances are
indeed pair of documents. For instance, if x; ; has a higher grade than x;, (y;; >
Yik), then z; ; over x;) becomes a preference pair. The pairwise classification or
regression algorithms in the pairwise approach then try to predict the preference

of each pair of documents.

4.4.3 Listwise Approach

The listwise approach addresses the ranking problem in a more natural way, trying
to capture the group information of the instances as well. The advantage of the
keeping group information is to use gain functions particularly used in evaluation
metrics to further have better learned models. In this approach each instance
that belongs to a particular query g; creates a unique group identifying the query
¢;- Then algorithms try to learn a model that utilizes the order for each group to

have better performance.

41

According to previous studies on evaluation of the algorithms that belong to
each group, the listwise and the pointwise approaches generally perform better
than the pointwise approach. However, there are certain learning to rank en-
vironments in which pointwise approach can perform better compared to the
others, which is the nature of the machine learning algorithms. Specifically,
LambdaMART algorithm achieved best performance in the Yahoo Learning to
Rank Challenge [57].

4.5 Evaluation

In order to evaluate the performance of models learned by learning to rank algo-
rithms, one has to compare the results obtained from the model with the result
lists given as ground truth. In information retrieval there are multiple evaluation
methods that can be used for performance evaluation. In this section, we will
mention two of the most common techniques used in the literature, which are
namely NDCG and ERR. Note that, evaluation metrics depend on the type of
annotation done for relevance grade of the documents per query. The methods
that will be further explained in this section are generally used for multi scale

grade levels.

4.5.1 Normalized Discounted Cumulative Gain - NDCG

Discounted Cumulative Gain (DCG) is the first evaluation method that can be
used to evaluate the result lists retrieved by the learned model having multi scale
annotation scheme. Given query ¢; and associated document set D;, suppose that
m; is the ranking list (permutation) on D; and y; is the set of labels associated
with each document in D;. DCG measures the goodness of the ranking list with

the labels [58]. DCG at position k for ¢; is defined as follows:

DCG(k) =) G()D(m(5) (4.3)

Jimi(9) <k

42

In the equation 4.3, there are two parts, G(.) and D(.),in the calculation, which
are gain function and position discount function respectively. Recall that, 7;(j)
denotes the position of the j-th document d, ; in m;. DCG(k) score is calculated by
the summation of each score for each document whose position is not bigger than
k. Therefore, DCG represents the cumulative gain from position one to position k
with discounts on the positions. DCG alone cannot be used to compare the results
with some particular baseline, since for DC'G, the performance of the baseline is
disregarded. Therefore, generally N DCG metric is used, which is nothing but
the normalized version of DC'G metric. Calculation of NDCG metric for query

¢; is given as follows:

NDCG(k) = DCGg(k) Y, G()D(mi())) (4.4)

Jimi(5)<k
Looking at Equation 4.4, we can easily say that NDCG is the normalized version
of DCG by the maximum DCG value that can be achieved for a particular query
¢;- In other words, NDCG gives 1 for a perfect ranking of m; for a query ¢; at

position k.

The gain function G(.) is generally defined as the logarithmic function on grade
levels. The motivation behind the idea is to give more score to the ranking lists
who achieve to predict documents having higher grade levels. Since it is more
significant to predict well the relevance of the documents of highest grades for a

model. Gain function for a document d; ; given query ¢; is defined as,
G(i,j) = 2% —1 (4.5)
where y; ; denotes the grade of the document d, ;.

The position discount function D(.) is defined similar to gain function G(.)
in the sense that it also uses logarithmic function on position rather than grade.
With discount function, we simply try to give less importance to the documents
having lower ranks in the result list. Given the result list m; of the query ¢;, the

position discount function D(7(7), j) for document d; ; is defined as,

1
- logy(1+mi(5))
43

D(n (i),)

(4.6)

where m;(j) represents the position of the document d, ; in the ranking list ;.
Hence, using Equations 4.5 and 4.6 DCG at position k becomes
Ui — 1

boc(k) = logy (1 - 1:(7))

Jimi(9) <k

(4.7)

If we add normalization factor into Equation 4.7, we get N DCG score at position

k, which is defined as follows:

i — 1
NDCG(k) = DCG,1, (k) > , (4.8)
e Jog2(1+ (7))

NDCG scores for each query ¢; with i = {1,2, ..., m} are then further averaged to

calculate final NDCG score to represent the performance of the learned model.

4.5.2 Expected Reciprocal Rank - ERR

The other metric that can be used in evaluation of the learning models by learning
to rank algorithms with multi graded levels is Fxpected Reciprocal Rank ERR
[59]. This technique uses cascade model rather than position model compared
to NDCG metric, which is the most commonly used metric in learning to rank
environments having multi level grades. KRR tries to give a better representative
score for each result list compared to N DCG by taking the relevance information
of all the examined documents unlike N DCG, where the discount function only

depends on relevance and position of the current document.

ERR metric uses the strong assumption made by the cascade model, which
is that the probability of an examined document being relevant depends on the
relevance information of the previously examined documents in the result list [60].
The key point in calculating the FRR metric is that probability of an examined
document being relevant depends not only the relevance of the document but also
relevance of all the previously examined documents. Similar to N DCG metric,
the probability function for a document to be relevant depends on the editorial

grade made on the document.

Suppose that y; ; represents the editorial grade of the j-th document d,; in
m;. ERR tries to find a mapping function between the editorial grade and the

44

probability of the relevance given the document. Given the query ¢; and the
document d; ; along with its corresponding grade y; ;, the mapping scheme is as
follows:

R(y) := R(yi,;) (4.9)
where R denotes the mapping function between the editorial grade and the prob-
ability of the grade of the document. R(y) is defined similar to gain function in
NDCG, where logarithmic function is used on the grades. Though, it has minor

addition to the gain function used in N DCG, which is given below:
Wii — 1
R(y) = W,y c {1727-'-7yma$} (410)
ERR defines the discount function slightly different than the one in NDCG
metric. Simply, the discount function consists of two parts, which are called utility
function and probability of previously examined documents being not relevant.

Let ¢(7) be the utility function varying on the position of the document being

examined. FRR metric defines the utility function as,

Nt
p(j) = 7 (4.11)

where j represents the position of the document examined. The second part of the
discount function is to calculate the probability that the user finds the examined
document relevant. Let the probability of the document d;; being relevant be
P(7). Then, P(j) can be defined as,

7—1

P(j) =]~ R)R, (4.12)

r=1

where R, denotes the probability of the examined document d,, in m; being
not relevant. R uses the mapping function defined above in Equation 4.10. R;
represents that j-th document d;; in 7; is found relevant and calculated using

mapping function R. Then, FRR score at position k becomes,
k

ERR(k) = -P 4.13
0= 3P (113)
where P(r) denotes the probability that the user stops at position r. Hence,

combining Equations 4.12 and 4.13, FRR at position k is calculated as follows:

E oo or—1
ERR(k) =) _ % [[a-R)R, (4.14)

45

Then, ERR score of each query ¢; with i = {1,2,..., m} is then further averaged
to calculate the final FRR score to represent the performance of the learned
model. The important difference in FRR can be seen in Equation 4.13, which
shows the discount function to be used to decrease the importance of documents
having lower ranks. According to the ERR metric, the more relevant the previous

documents are, the more discounted the other documents having lower rank are.

46

Chapter 5

Proposed Educational LETOR
Model

In this chapter, we explain the model we use in our experiments with the query
log data provided by SEBIT, company which has a search engine product named
Vitamin. Our query log contains search issues made by the students who use Vi-
tamin product, which is a commercial platform where thousands of educational
materials exist. Therefore, our scope is the educational domain. While construct-
ing the model, we try to exploit educational information included in the query log
data. Our feature set includes attributes that represent educational information
available in the data. Besides these features, we also include the most common
features used in the learning to rank environments [13, 14, 15]. Apart from the
feature set, we construct multiple models for each cluster which we derived from
the query log. Specifically, we have three clusters that are frequency, course of
query and grade of user based. We try to further improve search engine perfor-
mance by introducing different models for each cluster to have a better average
performance than the general model we construct. Finally, we propose a novel
algorithm that tries to generate values for features having zero values specifically
for queries having low frequencies (singleton queries, which are defined as the

queries issued into the search engine exactly once).

47

5.1 Feature Set

To setup LETOR environment we first create the annotated data in which each
query is associated with a list of documents having relevance scores labeled by us.
Then, we created a feature vector to be used as instance in LETOR algorithms.
We first analyzed the query log to explore potential features to be calculated for
LETOR algorithms. According to our observations we created a feature vector
for a query-document pair including 50 features consisting of both float numbers

and boolean attributes.

While considering potential features, we added well accepted features in
LETOR environments in literature, which include tf-idf and BM25 similarity fea-
tures, query popularity, document popularity, query-document click count, etc.
In addition to these features, we generated domain-specific features representing
our data, i.e., course of the document, grade of the user issuing the query and
type of document (animation, text, quiz etc.). In total, we represented query-

document pair as a 50-dimensional feature vector.

In this section, we present the details of these features, by referring to their
feature group and calculation issues. We would like to categorize our feature set

in 5 different groups, which are as follows;

Query-document text similarity

e Query specific

Document specific

Session based

Query-document click based.

48

5.1.1 Query-Document Text Similarity Features

In our data, we have documents each of which has its own title and description
part consisting of explanation of the document in text. Therefore, for this group
we created two features representing the text similarity between query and docu-
ment information. In literature, tf-idf and BM25 are the most common similarity
metrics to be used in these tasks including LETOR. Hence, we have four features
to represent the query-document text similarity. Before using these features,
we need to normalize them. For each query session, calculated tf-idf and BM25
scores for each document are normalized into 0-1 range using linear normalization

method. The final list of features for this group can be seen in the following list.

Feature Group Feature Type Value Range
1. Query-Document Text Similarity

1.1. tf-idf Title float 0-1

1.2. tf-idf Description float 0-1

1.3. BM25 Title float 0-1

1.4. BM25 Description float 0-1

5.1.2 Query Specific Features

In the annotated data, we have 900 unique queries. Yet, for each unique query
there might be multiple query issues, which are represented by different unique
query identifier. We added two features namely query frequency and user fre-

quency to calculate and capture the query popularity among our data.

In addition to these features, we added query text features, token length and
character length, which are among the widely used features for LETOR environ-
ments. Then, we have unique related top document count and result count to
reflect the number of documents originally associated with the given query. Result
count is simply the number of documents retrieved by the search, whereas unique
top related document is the union of documents which are retrieved in the first

page result list. We normalized these features by using the linear normalization

49

method considering queries across all data.

The last features for this group are novel features we derived from our query
log data. We observed that students tend to write queries which are appended by
either grade of the user issuing query or the course of the subject that they are
looking for. Therefore, we included these two boolean features into our feature

set to represent that information.

Feature Group Feature Type Value Range
2. Query Specific

2.5. Query Frequency float 0-1

2.6. Unique Top Related float 0-1
Document Count

2.7. Result Count float 0-1

2.8. Unique User Count float 0-1
[ssuing Query

2.9. Token Length float 0-1

2.10. Char Length float 0-1

2.11. Having Course Name boolean Oorl

2.12. Having Grade Name boolean Oor1l

5.1.3 Document Specific Features

Similar to query specific features, we have two features to represent popularity
of the document to reflect the mostly used well known feature in general web
search, page rank. These features are document frequency and user count and
they correspond to the total number of times a document gets clicked and the
number of unique users who clicked that document respectively. The values of
these features are calculated without taking the query into consideration, and

normalized across all data.

In addition to these popularity features, we have category type features to

represent and capture the information our query log introduces originally. In

20

our data, we have information of document types, which in general are of three

categories that are document course, document type and document grade. The

possible values for each category are as follows;

e Document course: We have five courses associated with documents, which

are Math, Turkish, Science, Social Sciences and Revolution History.

e Document grade: We have five grade values to represent the grade of the

document, which starts from the 4th and ends with 8th.

e Document type: We have 15 different document type values in our data.

These types include animation, text, summary, quiz, etc.

To summarize, we have different features to be included in feature vector. Of

these five features, we have three boolean features which have 5, 5 and 15 distinct

possible values, respectively. Thus, in total when we convert these categorical

type features into 0-1 range, we have 27-dimensional feature vector for document

specific features.

Feature Group

3. Document Specific

3.13.
3.14.
3.15.
3.16.
3.17.

Document Frequency float

Unique User Count float

Document Course boolean
Document Grade boolean
Document Type boolean

5.1.4 Session Based Features

Feature Type

Value Range

0-1
0-1
0-1(5 distinct values)
0-1(5 distinct values)
0-1(15 distinct val-

ues)

LETOR algorithms exploit query log data which capture user patterns to predict

relevance of a document given a query with the aim of improving search engine

performance. Using query log, one can have two different feedbacks, which are

51

Long History and Short History. Generally, what user searched, which documents
he clicked for each particular search and how he searched are in the category of
long history feedback. However, sometimes there is no to little information about
long history about user or query user issues. This is where short history feedback

becomes important.

The search behavior of the user in previous query sessions tells a lot in terms
of what user will do next. Besides, in general web search, 44% of all queries sub-
mitted into search engine are singleton queries [33]. The feedback problem arises
when the query issued is not popular, called tail queries. Therefore we added
session based features. The feature group has its own two subgroups, the first
one is the general information of previous query session and the second one is
the user behavior for documents retrieved in both previous and current sessions.
In other words, features in the first subgroup represent general click and dwell
behavior of the user in session, while features in the other subgroup give infor-
mation about documents retrieved in both sessions to capture user preferences
about those documents. The complete feature list for session based group is as
follows. The first four features belong to the first subgroup whereas the last ones
are in the other subgroup, calculated for each document retrieved in the current

session.

52

Feature Group Feature Type Value Range

4. Session Based

4.18. Total Click Count in float 0-1
Previous Session
4.19. Unique Click Count float 0-1
in Previous Session
4.20. Total Dwell Time in float 0-1
Previous Session
4.21. Result Count in Pre- float 0-1
vious Session
4.22. isClicked boolean Oor1l
4.23. isSkipped boolean Oor1
4.24. isMissed boolean Oorl
4.25. DwellTime float 0-1
4.26. ClickCount float 0-1

5.1.5 Query-Document Click Based Features

The last feature group is used to capture click information of documents with
respect to the given query. The information of whether a document is clicked
or not for a particular query is invaluable in terms of gathering and therefore
predicting the relevance of the document given that particular query, which is
what we try to do with LETOR algorithms. In this group, we have two features
which are basically the number of times a document is retrieved in the result list
and clicked for a particular query. This is in fact the second group which tries to
associate documents with queries this time by considering impression and click

feedback.

Feature Group Feature Type Value Range
5. Query-Document Click Based

5.27. Impression Count float 0-1

5.28. Click Count float 0-1

93

In total, we have 28 features calculated for each query-document pair to be used
in LETOR algorithms. We normalized each numeric feature into 0-1 range and
converted categorical features into bit representations to use in LETOR. There-
fore, we ended up having a 50-dimensional feature vector for query-document

representation.

5.2 Cluster Models

Apart from the general LETOR model we have learned using our features, we
tried to explore performance behavior of different models learned by LETOR
algorithms. As in the literature, we tried to group queries considering charac-
teristics of the educational search domain. As a result, we come up with two
different clusters namely, course of the query issued into search engine and the
user grade who issues the query. In addition to those clusters, we also added
head-tail cluster analysis as well to reflect the general web search behavior into

our educational search engine domain.

In our query log, we have five different courses, which are Math (Matematik),
Turkish (Tiirkge), Science (Fen Bilgisi), Social Sciences (Sosyal Bilgiler) and Rev-
olution History (Inkilap Tarihi). We also include another course type into this
set, that we call General for the queries we cannot differentiate for a specific group
defined above. In total we have six different courses and for each we learned a

different model.

Similar to course, we have five different user grade types, starting from 4th
grade to 8th grade. These grade types reflect the user who issues the query into
the search engine. Another cluster group is query frequency analysis which is
highly popular in general web search engine literature. Therefore, we have three
different cluster groups, in which there are 13 different models we learned using
LETOR algorithms.

o4

5.3 Propagation Algorithm

After having cluster analysis, we thought that we need to do better for singleton
queries in terms of NDCG metric (the results can be seen in Chapter 6). The
reason why singleton model performs poorly is that for singleton queries there are
zero valued features, which makes it difficult for algorithms to learn the model.
Specifically, click and impression are the features whose values have zero values
for the singleton queries. In other words, click and impression represent the
number of clicks and the number of impressions a document gets given a particular
query. Since singleton queries have a frequency of 1, values of these features for
the singleton queries are zero, which does not help the model to learn through
these features. Therefore, we tried to improve singleton queries’ performance by
trying to simulate (propagate) click-through features for singleton queries only.
In order to come up with an effective solution, we looked through characteristics

of our dataset.

In our query log data, we have approximately 3500 unique documents, which
is a considerably small number considering the amount of documents in web.
Therefore, we tried to exploit that behavior regarding the intersection of the lists
of two different queries, in order to find similar queries to that particular singleton
query. We tried to predict values of click features by looking other queries having

click for that document included in a singleton query session.

Our algorithm has two preparation phases in order to generate values of the
features for singleton queries. First, we need to find out the query set of a
document which is retrieved no later than the 5th position. Second, we find
the similar query set for each singleton query that shares a common document
retrieved in their result lists with all the queries included in the set. The details

of the mentioned algorithms can be seen in Algorithms 1 and 2, respectively.

After the construction of the data structures to be used, we have a main
algorithm that generates a value for the features, namely click and impression.

We propagate click and impression features of similar queries to the singleton

95

Algorithm 1 Inverted Document Structure Algorithm

Input: 2D Matrix, Pairs, Containing Query-Document Pairs Found Using Re-
sult Lists of Queries
Output: 2D Matrix, InvertedPairs, Containing Document-Query Pairs

1: procedure INVERTEDDOCUMENT (Pairs)

2 InvertedPairs < {}

3 for each query ¢ in Pairs do:

4 for each document d in Pairs|q| do:

5: if position of d is later than 5 then:

6: continue

7 else

8 if InvertedPairs contains document d then:
9 add query ¢ into InvertedPairs[d|
10: else

11: list < {}

12: add query ¢ into [ist

13: put (d,list) into InvertedPairs
14: end if

15: end if

16: end for

17: end for

18: return InvertedPairs

19: end procedure

query so that we can reduce the penalization of having zero valued features in

learning phase of the model.

In our Propagation algorithm, we employ three different ideas which are then
combined to have a final score. First, we compare the grade values of the users
who issue the similar queries. If the grades are equal to each other, we assign 1

as its score and 0 otherwise, which is defined as

G(gi, q5) =
0, otherwise

where g; and g; represent the grade values of the users who issue the queries g;

and ¢, respectively for which the similarity score is calculated.

Second, we calculate the textual similarity of the similar queries using Cosine

o6

Algorithm 2 Similar Query Set Algorithm

Input: 2D Matrix, InvertedPairs, Containing Document-Query Pairs and 2D
Matrix, Pairs, Containing Query-Document Pairs
Output: 2D Matrix, SimilarPairs, Containing Similar Query Set for each Sin-
gleton Query
1: procedure SIMILARSET (InvertedPairs, Pairs)
2 Similar Pairs < {}
3 for each singleton query ¢ in Pairs do:
4 for each document d in the result list of Pairs|q] do:
5: for each query ¢’ in InvertedPairs|d] do:
6.
7
8
9

if ¢’ is not singleton then:
add query ¢ into Similar Pairs[q|

end if
: end for
10: end for
11: end for
12: return SimilarPairs

13: end procedure

Stmilarity metric, which is defined as

4 - 4j
cos(qi, qj) = T——— , (5.1)
7o la g

where ¢; and ¢; represent the similar queries for which cosine similarity score is
calculated. The Equation 5.1 gives general definition of C'osine Similarity. We use
Vector Space Model to create vectors of words in queries to calculate similarity

score. The corresponding cosine similarity using Vector Space model is defined
Z qi; X 4j,
=1
COS(QZ" QJ) = T . T)
S S
t=1

t=1

as

(5.2)

where n represents the number of unique terms appearing either in ¢; or ¢;. The
denominator part in Equation 5.2 simply shows how to calculate the length of

vectors of terms in each query.

The last part of our algorithm calculates the similarity of queries in terms of

their result lists. Therefore, we employ Jaccard Similarity between similar queries

o7

to assign a score for the corresponding part. Suppose that we have result lists
7; and 7; for queries ¢; and g; respectively. Then the jaccard similarity score

between the result lists is defined as follows:

_nnm|

J(qi,qj) = ——— (5.3)

[ReSkaA

Afterall, given a singleton query ¢; with the set of similar queries, the similarity

score of g; with respect to each query ¢; in the set is calculated as

S(¢i,q;) = a x G(g;, q;) + B x cos(qi, ;) +v % (a4, ¢5) (5.4)

where «, [and v represent the constants to be used in the calculation. Note
that, since each part gives a score in between 0 and 1, the final score is also in the
same interval. The optimum value for each constant is finalized using parameter

tuning method.

Given the singleton query ¢;, we calculate the similarity score of each query in
the similar set created before using the Equation 5.4. Then the queries are sorted
according to their similarity scores. We take first 10 queries into consideration
when generating the feature values of ¢; to avoid noise. Then click and impression

values of ¢; are generated as

n
> e, x S(ai,qs)
s=1

s — , 5.5
i, ; - (5.5)

where g5, denotes the click and impression values of the query ¢, in the similar set
of ¢; for which click and impression values are generated. n denotes the number

of queries taken into consideration while calculating the values.

o8

Chapter 6

Experiments

6.1 Dataset and Annotation

For our research, we used a commercial query log data provided by SEBIT com-
pany which mainly produces educational material that can be viewed on a web
portal called Vitamin. Our query log data includes queries submitted to Vitamin
in December 2013. Search engine on Vitamin Portal is used by students to get
educational material provided by SEBIT. For the one month long data, we have
66.908 queries issued by students. Of all, we have 18.638 unique queries, which is
0.27 of all query volume. The behavior for unique queries differs from web where
0.50 of the queries in a typical web search log are unique. We have 18K unique
users who issued the queries in that particular span of time. On the average,

users ask 3.61 queries in 1.92 sessions.

To have LETOR environment, we needed an annotated data where each query-
document pair is scored in terms of their relevance to each other. To do that, we
first sampled 900 queries from our query log without any consideration, which is
basically random. For each unique query sampled for annotation, we first found
the documents retrieved given that query in order to create document lists to be
annotated. Then we asked judges to annotate these documents given query text,

document title and document description with 3-scale scoring method. The list of

29

judges consists of graduate students and professors, all of whose native language
is Turkish.

For the annotation part, we carried out two different annotations. The first one
is the categorical annotation of query text in terms of course to which that query
may belong. We had five different courses initially, which is derived from the query
log and we also added another course category named “General Course”, which we
can use for queries that cannot be categorized among possible course candidates,
i.e., queries like “Oyunlar (Games)”. In total, we have six different courses that
could be matched for a given query, which are Math, Turkish, Science, Social

Sciences, Revolution History and General Course.

The second part is usual annotation scheme for LETOR algorithms which is
to give relevance score for each document associated to a particular query. We
used 3-scale method regarding data behavior we observed from our query log. In

detail, 3-scale scores are

o (0 - Irrelevant document

e 1 - Mostly relevant (course and subject of the document matches with query,

yet document does not satisfy the user needs according to the query text)

e 2 - Exact match (exactly what query asks for).

In total, we annotated 900 unique queries submitted to Vitamin in December
2013. Therefore, we have 3169 queries annotated which are different issues of
900 unique queries to be used for LETOR algorithms. We also had some ex-
periments on annotated data to explore validity of our annotation and potential

improvement that we could achieve using LETOR algorithms on original data.

The first experiment is to figure out whether there is a correlation between
user clicks and relevant documents regarding our annotation. The Figures 6.1
and 6.2 show the percentage of documents for each relevance score according to
clicks and non-clicks. We tried to analyze the relevance scores for each clicked

and non-clicked document independent from document ranks.

60

O-lrrelevant 1Mostly Relevant 2Exact Match

Figure 6.1: Relevance Distribution for Clicked Documents

Looking at Figures 6.1 and 6.2, we can clearly state that there is correla-
tion between relevance and clicked information of documents, which is important
to move on LETOR algorithms in order to exploit click feedback from users to
improve general performance. The figures also prove the validity of our anno-
tation, since average relevance score for clicked documents is much higher than
the score for non-clicked ones. Another aspect of the figures would be poten-
tial improvement we could achieve looking at the non-relevant document volume
for clicked documents and relevant document volume for non-clicked documents.

Using LETOR, we try to minimize percentage of before mentioned volumes.

Another experiment we performed on annotation data is to find out correlation
between relevance scores and ranks of documents. The first analysis was done
independent of the information that whether the document is clicked or not.
Latter figures are to show the correlation for each case; clicked documents and

non-clicked documents.

The main outcome of Figure 6.3 is that there is a decreasing trend from position
1 to 25 in terms of relevant documents. Similar but increasing trend for irrelevant
documents goes for as well, that is, volume of irrelevant documents are increasing

from position 1 to 25. This is consistent with the previous figure. Yet, Figure 6.3

61

O-lrrelevant 1Mostly Relevant 2Exact Match

Figure 6.2: Relevance Distribution for Non-Clicked Documents

shows the potential improvement that can be achieved to enhance general search

performance.
07
o
0\‘ 06
0 - O-Irelevant
-
% 08|~] 1-Mostly Match
£ -2-Exacl Match
3
O 04l B
o]
0O
W 03 B
o
g n2- 3
3
Qo1 _
>
a
1 2 3 4 5 & 7 [[10 020 2095

Position of Documents

Figure 6.3: Relevance Distribution of Documents for Each Position

The results are as expected in Figure 6.4, that is the volume of relevant docu-
ments is much higher than the volume of irrelevant documents for each position.
Again, we can easily say that documents clicked at later positions are less likely

to be relevant than the documents clicked at first five positions.

The results shown in Figure 6.5, which is the correlation between relevance and

62

o
=

Il o-relevant
[-Mostly Relevant
I 2-Exact Match

2 3 4 5 8 [
P

=
-
T

= o o
[= o
T T T
| | |

=)
ra
T

Volume of Documents %

o
o =
T
| —

[7 10 1020 2025

osition of Documents

Figure 6.4: Relevance Distribution of Documents for Each Position for Clicked
Documents

position for non-clicked documents, are consistent with the previous annotation
analysis we have made. This time, volume for irrelevant documents are much
higher than the relevant ones and this difference is more dramatic when positions
get bigger. Yet, the figure gives simple motivation that especially for the first
five positions, there are some relevant documents that are not clicked. This is
the general problem SEBT search engine has that we are planning to address to

improve.

6.2 Data Preparation and Pre-Processing

6.2.1 Training and Test Sets

After annotation we have 900 unique queries labeled along with their related
documents retrieved in their result list. For some unique queries, we have multiple
user issues in our query log data. For each issue, we determine unique identifier
representing the feature vector. In total, we have 3169 query issues each of which
has a unique query identifier. In order to use LETOR algorithms we needed to
determine our training and test sets independently not to create any bias. We

sorted query issues according to their time stamp values. Recall that, our query

63

o
=

=
-
T

Wl o-relevant
[11-Mostly Match
I 2-Exact Match

10

1020 2025

= o o
[= o
T T T

|

=)
ra
T

Volume of Documents %

o
o =

T
1

g

[7 9

osition of Documents

2 3 4 5
P

Figure 6.5: Relevance Distribution of Documents for Each Position for Non-
Clicked Documents

log data is one month log, specifically from December 2013. In order to have
adequate instances for both training and test sets, considering the ratio between
training and test sets in terms of instances, we divided our entire query issues into
two. While dividing data into two, we set number of instances for training set to
be four times as much as the number of instances for test set. Consequently, we
have 2536 and 633 instances for training and test respectively. While determining
633 instances for test set, we chose the instances according to their time stamp
as mentioned, that is, we chose the queries issued last in the given period of time

to constitute test set.

Another issue while preparing the data to be used in LETOR is the calculation
of the features, specifically related to long history information. While calculat-
ing features like query-document click based features, document click frequency,
and user frequency, we only consider instances from training set excluding test

instances not to introduce any bias into our data.

6.2.2 Pre-Processing Data

In our data, we have text information available specifically for query text, docu-

ment title and description. In order to calculate query-document text similarity

64

features effectively (tf-idf and BM25), we pre-process these texts to have more
meaningful and valid scores. In order to calculate these textual features, we im-
plemented inverted file structure to first store the terms occurring in documents,
which is to create corpus. The creation of corpus is critical in the sense that, each
unique term appearing in corpus will be related to documents according to their
occurrences in that particular documents. While relating each unique term to
documents, it is important to have healthy list of unique terms. In other words,
terms who have the same root must be considered as a single unique one. This is
where stemming becomes important. Another issue is as in general web, queries
might include some meaningless characters or punctuation marks, which makes
it harder to detect query term to match documents. In addition to those, it is
important to remove some terms appearing too much, called stop-words to have

more valid text similarity scores.

To sum up, for pre-processing data we have 3 steps done following one another.

The pre-process steps are explained in detail as follows:

I. Stop Word Removal:

There is a public list of words containing common stop words and
conjunctions used in Turkish, published by Zemberek [61], which is an
open-source natural language processing library developed for Turkish
researchers. We did not take into consideration words appearing in this

list while generating our corpus.
IT. Text Cleaning:

We cleaned query texts, document title and description by removing
meaningless characters not coded in Unicode and punctuations to bet-

ter capture term split by space.
II1. Stemming:

Turkish is a free constituent order language, i.e., according to text
flow and discourse context at certain phrase levels, its constituents can

change order and still be intelligible [62]. For example, the sentence

65

“Istanbul Ankara’dan daha giizel.” (“Istanbul is more beautiful than
Ankara.”) and the sentence “Ankara’dan Istanbul daha giizel.”, which
is an inverted sentence (“devrik ciimle” in Turkish), have the same

meaning with a slight difference in emphasis [62].

Turkish is an agglutinative language, meaning suffixes are appended
to the root to generate new words, which naturally makes it a com-
plex language in terms of word structures. Another important issue
is that current stemming algorithms are developed generally for En-
glish. However, as stated in [63] to stem root of the words in Turkish
texts, getting the first k& characters of the term as the root is practical
and effective solution, performing similar to stemming algorithms de-
veloped for Turkish language. After experimenting multiple k values
as the first characters to select to be root, we decided to use the first
five characters as the root of the term appearing in both query and

documents.

6.3 Baseline and LETOR Model

6.3.1 Baseline Performance

In order to evaluate the performance of our LETOR method, we need to have
a baseline approach to compare with. In general, primitive search engines try
to rank documents regarding the query-document text similarity scores, mainly
tf-idf like scores. When a query is entered, the search engine first calculates tf-
idf or BM25 score for each document, then sorts the documents accordingly to
show the retrieved list to the user. We have two different query-document text
similarity features, which are tf-idf and BM25. We have also two texts (title and
description) related with documents, meaning that we have four possible different

textual scores, which can be used to sort the documents accordingly as baseline.

In addition to those individual cases, we also introduced linear combination
of scores for each textual score for both tf-idf and BM25. While doing linear

66

Table 6.1: NDCGQK Values for each Baseline

Training Test
@5 @10 @5 @10
tf-idf Title 0.6422 0.6626 0.6561 0.6710
tf-idf Description 0.6010 0.6306 0.6259 0.6530
BM25 Title 0.6463 0.6670 0.6578 0.6735

BM25 Description 0.6106 0.6351 0.6455 0.6655
tf-idf Linear (0.7) 0.6401 0.6618 0.6608 0.6722
BM25 Linear (0.7) 0.6375 0.6610 0.6692 0.6804
SEBIT 0.6210 0.6532 0.6370 0.6710

combination, we normalized each score for document title and description among
scores of documents within the query session. For the constant in linear combi-
nation, we used parameter tuning method. In our case, 0.7 gives the best result
as the constant, therefore we used it as the multiplier for document title score.
Lastly, we also put the results produced by the search engine by using LETOR

algorithms with these four textual features only.

Table 6.1 shows NDCG scores for each baseline explained above for both train-
ing and test sets having K values set to 5 and 10, respectively. The last row
presents the search performance of the original SEBIT ranking according to our
annotations. Between document title and description, title gives better results for
each case, tf-idf and BM25. Besides, individually tf-idf description score calcu-
lated using tf-idf metric cannot outperform SEBIT’s original ranking for each K
value. On the other hand, document ranks according to textual feature of title for
both tf-idf and BM25 outperform original ranking of SEBIT. Using both textual
features by linear combination gives the best result among all possible baselines.
Between tf-idf and BM25, BM25 gives better results so we chose BM25 score
with linear combination case to be our baseline to be compared with our general

LETOR model learned with our 50-dimensional feature space.

Regarding the results presented in Table 6.1, in general baseline results are
similar to the original ranking SEBIT has. Recall that, we did pre-processing
for texts of document title and description along with stemming suitable for

Turkish language. Although SEBIT’s original ranks come from Lucene Based

67

algorithm, we have better baseline performance thanks to pre-processing of the
data. Relative to SEBI'T’s original ranking, baseline performs slightly better with
3% improvement in NDCG @5 score.

6.3.2 General LETOR Model

Table 6.2 shows the improvement we achieved using LETOR algorithms over
the original ranking SEBIT has. From Table 6.2, it is clearly seen that our
model learned using LETOR algorithms with our derived feature set outperforms
SEBIT’s original ranking significantly, by a margin bigger than 14%. Apart
from SEBIT’s original ranking, we enhanced the baseline performance by almost
11%. Therefore, we can safely state that our suggested model learned by LETOR
algorithms using our derived features considerably outperforms SEBIT’s original

ranking.

Table 6.2: Evaluation of General LETOR Model With Respect to SEBIT and
Baseline

NDCG ERR
@b @10 @b @10
Baseline 0.6692 0.6894 0.5762 0.5614
General LETOR 0.7742 0.7888 0.6205 0.6266
SEBIT 0.6370 0.6711 0.5521 0.5583

6.4 Feature Group Analysis

Our 50-dimensional feature set has five distinct feature groups related all together
constituting the feature vector. We tried to analyze feature groups, that is, which
one performs better with respect to others and General Model. Again, we used
LETOR algorithms with features only belonging to some particular feature group

to see individual performance of each group.

Table 6.3 shows performance results for individual feature groups using

68

Table 6.3: The Performances of Each Feature Group

NDCG ERR
@5 @10 @5 @10
Baseline BM25 0.6692 0.6804 0.5762 0.5614
(Baseline LETOR) 1 0.6868 0.7095 0.5793 0.6030
(Query Specific) 2 0.6370 0.6711 0.5522 0.5584
(Document Specific) 3 0.6747 0.7101 0.5648 0.5646
(Session Based) 4 0.6349 0.6686 0.5481 0.5549
(Document Click) 5 0.7382 0.7583 0.6055 0.6123
All LETOR 0.7742 0.7888 0.6205 0.6266

SEBIT (Baseline) 0.6370 0.6711 0.5521 0.5583

LETOR models learned by only features belonging to that group. In addition, we
added performance scores for the General Model and the baseline model to make
the comparison more meaningful. Results clearly indicate that the best feature
group for performance is the 5th group, which is query-document click features,
basically consisting of number of clicks and impression of documents given query.
We used these two features as separate, while in some works these are combined
as a single feature called CTR (Click Through Rate). For LETOR models, the
best feedback to be used in algorithms as features seems to be click related ones

for each query-document pair.

From Table 6.3, we can assert that textual features, composed of tf-idf and
BM25, perform better with the model learned by LETOR algorithm than the
one in which they are simply sorted. Query Specific and Session Based Features
alone can outperform neither Baseline nor SEBIT’s original ranking. Yet, it is
clear regarding the margin between General model and best feature group in
terms of performance that these feature groups add some information learned by
LETOR to further improve the search engine performance. Another outcome is
that learning object types including course, grade and type carry helpful informa-
tion to enhance search engine performance using LETOR regarding the positive
difference between Document Specific Feature Group and other baselines, which
are the baseline with textual features and SEBIT.

69

6.5 Cluster Based Analysis

The training and test instance counts vary for each group, which can be seen in

Table 6.4 in detail relative to the cluster group they belong to.

Table 6.4: Training and Test Instance Counts for Each Cluster Model

Cluster - Value Instance Count
Training Test
Grade - 4 875 201
Grade - 5 300 90
Grade - 6 374 82
Grade - 7 874 205
Grade - 8 113 55
Course - Math 432 92
Course - Turkish 424 107
Course - Science 344 121
Course - Social Sciences 137 38
Course - Revolution History 116 33
Course - General Course 1038 242
Head 2024 510
Tail 512 123
TOTAL 2536 633

We tried to figure out whether we can improve search engine performance by
having different models for each cluster group. We again used NDCG and ERR
metrics for 5 and 10 as k values. These two values are chosen to reflect our
query log having 5 relevant documents per query, and the literature respectively.
Results show that, having different models for each cluster type improves the
general LETOR model’s performance besides improving the performance for most

types separately.

6.5.1 Course Cluster Results

We have 3169 instances in total. Of 3169, we use 2536 instances for training data

and 633 instances for test data. Of those training and test sets, we separated

70

Table 6.5: Search Engine Performance for Course Cluster in NDCG Metric

NDCG SEBIT General Model Course Model
@b @10 @b @10 @5 @10
Math 0.7429 0.7534 0.7459 0.7547 0.7854 0.7839
Turkish 0.6659 0.7114 0.8034 0.8122 0.7564 0.7886
Science 0.5632 0.6086 0.6889 0.7155 0.6890 0.7193
Social Sciences 0.6798 0.6954 0.6075 0.6492 0.6568 0.6953
Revolution History 0.7560 0.7711 0.8404 0.8448 0.8377 0.8232
General Course 0.5984 0.6361 0.8283 0.8261 0.8389 0.8447
AVG 0.6370 0.6711 0.7742 0.7888 0.7775 0.7923

different training and test data for each course type. Therefore, we have 6 different

models learned separately for each course type.

As we can see from Table 6.5, average performance of course models is slightly
better than the general model performance in which all instances are used with-
out any grouping. Apart from general performance improvement, there is also
improvement for individual courses that are of Math, Science and General Course
types. Although the best performance for social sciences group seems to be ob-
tained with SEBIT’s original rank, we also improved this course type’s perfor-

mance from 0.60 to 0.65, which is relatively significant.

Another observation is that the general model outperforms cluster models for
the course types which are Turkish and Revolution History. This result is due to
the fact that these courses are text oriented courses, therefore documents related
to those courses have much more meaningful texts, which automatically improves
the textual features we have, which are tf-idf and BM25. Therefore, since we have
more instances with the general model, it behaves better than the cluster models.
However, we believe that if we had enough number of instances for each query

course type, then we might have expected this behavior to change.

Similar to the values obtained with the NDCG metric, the results for the ERR
metric for Math and Science courses show that course models outperform the
general model. Yet, in terms of ERR, the average performance of course models

is in general slightly worse than that of the general model.

71

Table 6.6: Search Engine Performance for Course Cluster in ERR Metric

ERR SEBIT General Model Course Model
@b @10 (@) @10 @b @10
Math 0.6407 0.6452 0.6386 0.6438 0.6570 0.6700
Turkish 0.5604 0.5697 0.6486 0.6527 0.6123 0.6199
Science 0.4068 0.4162 0.4519 0.4599 0.4370 0.4324
Social Sciences 0.5438 0.5496 0.4906 0.5024 0.5109 0.5320
Revolution History 0.6011 0.6065 0.6537 0.6592 0.6069 0.6409
General Course 0.5820 0.5861 0.7051 0.7071 0.7082 0.7106
AVG 0.5521 0.5583 0.6205 0.6266 0.6156 0.6218

6.5.2 Grade Cluster Results

We have five different values for grade cluster indicating grades of users who
issue the query into the search engine. Therefore, we have learned five different
models for this cluster analysis, and the results show that clustering user issues
according to the user grade values enhances the search engine performance. The
results also indicate that this cluster group gives the best result in terms of the
average general search engine performance compared to other clusters and the

general model.

Looking at Table 6.7, we can clearly see that the cluster for user grade en-
hances the search engine performance by almost 1% relative to the general model
performance. Besides, we can state that for almost each grade model, there is
further improvement except for the 4th grade. This cluster model outperforms
the course cluster model and the general model in terms of NDCG metric. Look-
ing at these numbers, we can conclude that, students who use search engine for
educational purposes can be grouped according to their grades, since students in
each grade type have different search characteristics which makes the difference
for grade models among other cluster groups. Hence, considering the improve-
ment relative to SEBIT’s performance, we can safely say that grouping LETOR
instances for each user grade seems a good choice to further improve the search

engine performance.

Evaluation scores with the ERR metric show similar results to those with the

72

Table 6.7: Search Engine Performance for Grade Cluster in NDCG Metric
NDCG SEBIT General Model Grade Model

@b @10 @b @10 @b @10
4th Grade 0.6473 0.6851 0.7996 0.8054 0.7857 0.8030
5th Grade 0.6452 0.6640 0.6194 0.6540 0.6504 0.6759
6th Grade 0.4722 0.5257 0.7419 0.7464 0.7672 0.7619
7th Grade 0.6732 0.7005 0.8463 0.8476 0.8512 0.8599
8th Grade 0.6968 0.7410 0.7453 0.7594 0.7633 0.7629
AVG 0.6370 0.6711 0.7742 0.7888 0.7833 0.7945

Table 6.8: Search Engine Performance for Grade Cluster in ERR Metric
ERR SEBIT General Model Grade Model

@5 @10 @b @10 @b @10

4th Grade 0.6107 0.6162 0.6650 0.6696 0.6514 0.6531
5th Grade 0.5596 0.5661 0.5294 0.5367 0.5486 0.5375
6th Grade 0.2949 0.3041 0.4274 0.4327 0.4475 0.4480
7th Grade 0.5948 0.6004 0.7122 0.7154 0.7129 0.7192
8th Grade 0.5506 0.5562 0.6010 0.6060 0.6095 0.6181
AVG 0.5521 0.5583 0.6205 0.6266 0.6266 0.6284

NDCG scores. Results can be seen from Table 6.8. Although, we could not
improve the general search engine performance by using course clusters in terms
of the ERR metric, with the models learned for each different grade, we have
approximately 0.6% improvement relative to the general model performance. To
conclude, for both NDCG and ERR metrics, grade cluster performs the best and

gives the best results for average overall search engine performance.

6.5.3 Frequency Cluster Results

For LETOR setups, the best feature group which adds most to LETOR model is
click through features which are basically document impression and click count
per query. It directly gives feedback about whether that document is related to
the given query. Having click information for a specific document given query
tells a lot about relevance of that document. Therefore, as in the literature, we

also added these features, also known as CTR (Click-Through Rate), into our

73

Table 6.9: Search Engine Peformance for Frequency Cluster in NDCG Metric

NDCG SEBIT General Model Frequency Model
@5 @10 @5 @10 @5 @10
Non-singleton 0.6446 0.6757 0.8180 0.8186 0.8249 0.8280
Singleton 0.6054 0.6521 0.5923 0.6386 0.5795 0.6301
AVG 0.6370 0.6711 0.7742 0.7888 0.7772 0.7895

Table 6.10: Search Engine Peformance for Frequency Cluster in ERR Metric
ERR SEBIT General Model Frequency Model

@b @10 @5 @10 @b @10
Non-singleton 0.5688 0.5740 0.6586 0.6614 0.6571 0.6645
Singleton 0.4814 0.4932 04743 0.4869 0.4864 0.4906
AVG 0.5521 0.5583 0.6205 0.6266 0.6239 0.6307

feature set. And the results show that the best performing feature group for our
data set consists of these features (Section 6.4). However, the problem is, there
are instances or query issues which we have no click feedback about prior to user

issue. These queries are called singleton queries.

Generally, queries issued few number of times are also considered as tail ones
in Web. Yet, considering our data environment and behaviors, we called queries
issued exactly once (singleton) tail queries. The problem arises with these queries,
since in the feature set click-through features of tail queries are zero. Therefore,
we cannot use our best performing features for that special group of queries.
Thus, we tried to cluster queries according to their frequencies, mainly non-
singleton or singleton, to explore potential improvements we could gain having
different LETOR models. Another problem with our singleton dataset is that,
our training and test instance count is relatively small compared to other cluster
groups. Hence, as expected, there is huge difference between non-singleton and

singleton models in terms of search engine performance.

For this cluster, NDCG and ERR results show slightly different scores, which
can be seen from Tables 6.9 and 6.10, respectively. For singleton queries, in

terms of the NDCG metric neither the general model nor the singleton model

74

outperforms SEBIT’s original ranking. Yet, for the ERR metric the singleton
model outperforms both the general model and SEBIT’s original ranking. Results
for non-singleton queries are satisfying for both metrics with the non-singleton
model performing better for the NDCG metric while the general model behaves
better for the ERR metric. However, in terms of overall average performance we

have still slight improvement relative to the general model for both metrics.

6.5.3.1 Singleton Queries Improvement

For singleton queries (queries issued into search engine exactly once), the values
of the certain features are zero, which are specifically the number of times a
document is seen as a result of a query issue and a document is clicked as a
result of search. The values of the above features are zero, since the system sees
the query issue for the first time. Having a zero value for the features causes the
model to perform poorly for singleton queries. Therefore, we propose an algorithm
to generate synthetic values for the features to enhance the performance of the

model.

We also implemented a methodology similar to the one used in [1] to compare
our algorithm with theirs as well as our baselines. To compare the results, we
set up two different environments. After generating the features for a particular
method, we employ a model using all the instances including the non-singleton
ones that we call the general model with generated features. The second model

is the one learned using the singleton queries only.

Gao et al. [1] introduce a set of features called clickstream features that could
be useful for queries having little information in query log. For each query doc-
ument pair, they calculate a set of features independent from both contextual
and click information. They basically find a set of queries for which a certain
document is clicked. Given a singleton query, using the queries in the afore-
mentioned set, they calculate the values of the features. Apart from clickstream
features, they also introduce a technique called Discount Method to further help

generating the values when clickstream features are zero as well. We implement

75

Table 6.11: The Results of Models Learned Using Only Singleton Queries

NDCG ERR
@5 @10 @5 @10
Singleton Queries Model 0.5795 0.6301 0.4864 0.4906
ClickStream Features 0.5828 0.6335 0.4885 0.4911
ClickStream Features + Discount 0.5782 0.6245 0.4826 0.4904
Propagation Algorithm 0.6061 0.6367 0.4829 0.5028
SEBIT 0.6054 0.6521 0.4814 0.4932

both methods and compare the results of them with our algorithm in each ap-
proach defined above. We choose these methods due to usage of similar queries

to generate values for zero valued features, which is related to what we propose.

The results of the first approach that is the learned models using only singleton
queries are shown in Table 6.11. The results clearly present that our proposed
algorithm performs the best among all methods along with the original ranking
SEBIT has. While clickstream features slightly improves the model, the discount
method used on top of it does not seem to be helpful in terms of performance.
The reason would be that discount method gives the same value for each instance
and since the number of instances are small compared to all model, this might
introduce noise to the model. Our proposed algorithm improves the singleton

query model by approximately 3%.

Table 6.12 shows the results of the second approach. In this approach, Dis-
count Method performs better compared to the previous approach, improving the
performance of the model learned using clickstream features. However, our Prop-
agation Algorithm gives the best result again in terms of the metrics calculated
@5, which better reflects the characteristics of our query log. The performance
improvement however is lower compared to the previous approach. The reason is
that in this model head instances dominate the model due to higher number of

instances.

We also demonstrate the results of the general model learned using generated
synthetic features, which can be seen in Table 6.13. Although, the difference in

performance compared to the general LETOR model is lower, the improvement

76

Table 6.12: The Results of Models Learned All Queries With Generated Features

NDCG ERR
@b @10 @5 @10
Singleton Queries Model 0.5923 0.6386 0.4743 0.4869
ClickStream Features 0.5800 0.6289 0.4630 0.4754
ClickStream Features + Discount 0.5861 0.6204 0.4530 0.4618
Propagation Algorithm 0.6073 0.6425 0.4898 0.4995
SEBIT 0.6054 0.6521 0.4814 0.4932

Table 6.13: The General Results of Models Learned All Queries with Generated

Features
NDCG ERR
@b @10 @b @10
General LETOR Model 0.7742 0.7888 0.6205 0.6266
ClickStream Features 0.7713 0.7848 0.6185 0.6191
ClickStream Features + Discount 0.7748 0.7931 0.6238 0.6305
Propagation Algorithm 0.7772 0.7942 0.6253 0.6343
SEBIT 0.6370 0.6711 0.5521 0.5583

is positive. Recall that, we only generate the values of the features for singleton

queries. In other words, in the general model case, we only change the values of

the features for instances representing singleton queries without touching the in-

stances for non-singleton queries which dominate the model in terms of instances.

Therefore, we believe that if we have a more balanced training set, the change

would be more dramatic.

77

Chapter 7

Conclusion

There has been a growing interest in the field of web search engine research due to
immense data available to work with. The idea of using query logs as a source of
implicit feedback about user behaviors leads researches to figure out useful search
patterns about users. Analyzing the query logs, researchers have exploited the

patterns to further improve search engine performance.

We exploited a query log provided by an educational vertical search engine.
First, we analyzed the search characteristics of the students who do search and
compared our findings with the general web search behaviors. Our analysis
demonstrates that there is difference in terms of search characteristics between
the general web search engine and an education search engine. Students tend to
explore more documents compared to general web users. However, our findings
present that students have hard time to express their search intent in query terms.
Students are more likely to repeat the queries they once entered into search engine

than the general web users.

In our query log analysis, we also tried to find the Refinding behavior, which
is a well-known problem in the literature. The results again differ from the ones
in the case of Web search. While 40% of the queries in web result in a click
for a document which is visited before by the user issuing the query, only 25%

of the queries in our query log result in Refinding behavior. Another difference

78

comes in search sessions where students prefer same query texts. In web, 87%
of search sessions started with the same query text result in Refinding behavior.
However, this number in our case is only 44%. Similar to this analysis, the ratio
of the search sessions with the same query text having Newfinding behavior is
38%, while the corresponding result in our query log is 74%. The reason behind
these differences is that students periodically study different subjects, which leads
them to explore new documents that they never visited before. Another reason
is that learning is a continuous process. While learning for a particular subject,
students tend to look for new educational material to capture more aspects of
the subject.

Using the search patterns found in the query log analysis, we proposed an edu-
cational learning model. While creating the model, we introduced novel features
best suited for the educational domain. Using the learning to rank algorithms,
our proposed model outperformed both the original ranking of SEBIT and the
baselines created by the state of the art techniques by up to 14% and 11%, respec-
tively. We also employed the cluster idea of grouping the queries to be used in
a different model for each cluster. Regarding the educational domain as well, we
mainly introduced three different clusters, which are namely course of the query,
grade of the user issuing the query, and the frequency of the query. Our results
indicate that for each cluster the average performance of the models learned out-
performs the general model. Specifically, the grade cluster further improves the

general model by up to 1%.

In order to further enhance the performance of frequency models, we proposed
an algorithm to generate values of the features for singleton queries where the
model performs poorly according to the results due to having zero values for cer-
tain features. We compared the results of our algorithm with a similar approach
introduced in [1]. We showed that our algorithm performs best among all models
in our query log. Using our algorithm, we also managed to improve both the

performance of the singleton model and the general LETOR model.

79

Bibliography

1]

J. Gao, W. Yuan, X. Li, K. Deng, and J.-Y. Nie, “Smoothing clickthrough
data for web search ranking,” in Proceedings of the 32Nd International ACM
SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’09, (New York, NY, USA), pp. 355-362, ACM, 2009.

Alexa, “The top 500 sites on the web.” Available at http://www.alexa.
com/topsites (2015/06/18).

C. Silverstein, H. Marais, M. Henzinger, and M. Moricz, “Analysis of a very
large web search engine query log,” SIGIR Forum, vol. 33, pp. 6-12, Sept.
1999.

A. Broder, “A taxonomy of web search,” SIGIR Forum, vol. 36, pp. 3-10,
Sept. 2002.

A. Spink, B. J. Jansen, I. Taksa, and A. Spink, Handbook of Web Log Analy-
sis. Hershey, PA: Information Science Reference - Imprint of: 1GI Publishing,
2008.

B. J. Jansen, A. Spink, C. Blakely, and S. Koshman, “Defining a session
on web search engines: Research articles,” Journal of the Association for
Information Science and Technology, vol. 58, pp. 862-871, Apr. 2007.

S. Lawrence, K. Bollacker, and C. L. Giles, “Indexing and retrieval of sci-
entific literature,” in Proceedings of the Eighth International Conference on
Information and Knowledge Management, pp. 139-146, ACM, 1999.

W. Weerkamp, R. Berendsen, B. Kovachev, E. Meij, K. Balog, and M. de Ri-

jke, “People searching for people: analysis of a people search engine log,”

80

[10]

[11]

[12]

[13]

[14]

[15]

[16]

in Proceedings of the 34st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR '11, pp. 45-54,
ACM, 2011.

Iprospect, “Search engine user behavior study.” Available at http:
//district4.extension.ifas.ufl.edu/Tech/TechPubs/WhitePaper_
2006_SearchEngineUserBehavior.pdf (2015/05/12).

A. Cockburn, S. Greenberg, S. Jones, B. McKenzie, and M. Moyle, “Improv-

ing web page revisitation: Analysis, design, and evaluation,” 2003.

J. Teevan, E. Adar, R. Jones, and M. Potts, “History repeats itself: Repeat
queries in yahoo’s logs,” in Proceedings of the 29th Annual International
ACM SIGIR Conference on Research and Development in Information Re-
trieval, SIGIR 06, (New York, NY, USA), pp. 703-704, ACM, 2006.

S. Mark and S. Dumais, “Examining repetition in user search behavior,” in
Proceedings of the 29th Annual Furopean ECIR Conference on Information
Retrieval, ECIR ’07, 2007.

T. Qin, T.-Y. Liu, J. Xu, and H. Li, “Letor: A benchmark collection for
research on learning to rank for information retrieval,” Information Retrieval,
vol. 13, pp. 346374, Aug. 2010.

R. A. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1999.

S. E. Robertson and S. Walker, “Some simple effective approximations to the
2-poisson model for probabilistic weighted retrieval,” in Proceedings of the
17th Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR '94, (New York, NY, USA), pp. 232
241, Springer-Verlag New York, Inc., 1994.

J. M. Ponte and W. B. Croft, “A language modeling approach to informa-
tion retrieval,” in Proceedings of the 21st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR

'98, (New York, NY, USA), pp. 275-281, ACM, 1998.

81

[17]

[18]

[19]

[21]

[22]

[23]

[24]

L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.,” Technical Report 1999-66, Stanford
InfoLab, November 1999. Previous number = SIDL-WP-1999-0120.

H. Li, Learning to Rank for Information Retrieval and Natural Language

Processing. Morgan & Claypool Publishers, 2011.

G. Giannopoulos, U. Brefeld, T. Dalamagas, and T. Sellis, “Learning to
rank user intent,” in Proceedings of the 20th ACM International Conference
on Information and Knowledge Management, CIKM 11, (New York, NY,
USA), pp. 195-200, ACM, 2011.

M. Shokouhi, “Learning to personalize query auto-completion,” in Proceed-
ings of the 36th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’13, (New York, NY, USA),
pp. 103-112, ACM, 2013.

G. E. Dupret and B. Piwowarski, “A user browsing model to predict search

Y

engine click data from past observations.,” in Proceedings of the 31st Annual
International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, SIGIR '08, (New York, NY, USA), pp. 331-338, ACM,

2008.

N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey, “An experimental com-
parison of click position-bias models,” in Proceedings of the ACM Interna-
tional Conference on Web Search and Data Mining, WSDM 08, (New York,
NY, USA), pp. 87-94, ACM, 2008.

O. Chapelle and Y. Zhang, “A dynamic bayesian network click model for
web search ranking,” in Proceedings of the 18th International Conference on

World Wide Web, WWW "09, (New York, NY, USA), pp. 1-10, ACM, 2009.

S. Fox, K. Karnawat, M. Mydland, S. Dumais, and T. White, “Evaluating
implicit measures to improve web search,” ACM Transactions on Informa-
tion Systems, vol. 23, pp. 147-168, Apr. 2005.

82

[25]

[26]

[27]

28]

[29]

[31]

[32]

Y. Kim, A. Hassan, R. W. White, and I. Zitouni, “Modeling dwell time to
predict click-level satisfaction,” in Proceedings of the 7th ACM International
Conference on Web Search and Data Mining, WSDM ’14, (New York, NY,
USA), pp. 193-202, ACM, 2014.

A. Hassan, X. Shi, N. Craswell, and B. Ramsey, “Beyond clicks: query
reformulation as a predictor of search satisfaction,” in Proceedings of the 22nd

ACM International Conference on Information and Knowledge Management,
CIKM '13, (New York, NY, USA), pp. 2019-2028, ACM, 2013.

E. Aktolga and J. Allan, “Reranking search results for sparse queries,” in
Proceedings of the 20th ACM International Conference on Information and
Knowledge Management, CIKM ’11, (New York, NY, USA), pp. 173-182,
ACM, 2011.

A. Usta, 1. S. Altingovde, I. B. Vidinli, R. Ozcan, and O. Ulusoy, “How
k-12 students search for learning?: Analysis of an educational search engine
log,” in Proceedings of the 37th International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR *14, (New York,
NY, USA), pp. 1151-1154, ACM, 2014.

S. D. Torres and I. Weber, “What and how children search on the web,” in
Proceedings of the 22nd ACM International Conference on Information and
Knowledge Management, pp. 393402, ACM, 2011.

E. Foss, A. Druin, R. Brewer, P. Lo, L. Sanchez, E. Golub, and H. Hutchin-
son, “Children’s search roles at home: Implications for designers, researchers,

educators, and parents,” Journal of the Association for Information Science
and Technology, vol. 63, no. 3, pp. 558573, 2012.

C. Eickhoff, P. Dekker, and A. P. de Vries, “Supporting children’s web search
in school environments,” in Proceedings of the 4th Information Interaction
in Context Symposium, IT11X’12, pp. 129-137, 2012.

M. E. Bakanhgi, “Meb istatistikleri orgiin egitim 2012-2013.” Available
at http://sgb.meb.gov.tr/istatistik/meb_istatistikleri_orgun_
egitim_2012_2013.pdf (2013/06/21).

83

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

R. A. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras, and
F. Silvestri, “Design trade-offs for search engine caching,” ACM Transactions
on the Web, vol. 2, no. 4, 2008.

I. Weber and A. Jaimes, “Who uses web search for what: and how,” in
Proceedings of the 4th Annual ACM International WSDM Conference on
Web Search and Data Mining, WSDM ’11, pp. 1524, ACM, 2011.

G. Pass, A. Chowdhury, and C. Torgeson, “A picture of search,” in Proceed-
ings of the International Conference on Scalable Information Systems for
Big Data, InfoScale 06, 2006.

M. Richardson, E. Dominowska, and R. Ragno, “Predicting clicks: Estimat-
ing the click-through rate for new ads,” in Proceedings of the 16th Interna-
tional Conference on World Wide Web, WWW '07, (New York, NY, USA),
pp. 521-530, ACM, 2007.

E. Agichtein, E. Brill, and S. Dumais, “Improving web search ranking by
incorporating user behavior information,” in Proceedings of the 29th Annual
International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, SIGIR 06, (New York, NY, USA), pp. 19-26, ACM,
2006.

A. Shashua and A. Levin, “Ranking with large margin principle: Two
approaches,” in Advances in Neural Information Processing Systems 15
(S. Thrun and K. Obermayer, eds.), pp. 937-944, Cambridge, MA: MIT
Press, 2002.

P. Li, C. Burges, and Q. Wu, “Learning to rank using classification and
gradient boosting,” in Advances in Neural Information Processing Systems
20, no. MSR-TR-2007-74, p. 0, MIT Press, Cambridge, MA, January 2008.

K. Crammer and Y. Singer, “Pranking with ranking,” in Advances in Neural
Information Processing Systems 14, pp. 641-647, MIT Press, 2001.

D. Cossock and T. Zhang, “Subset ranking using regression,” in Proceed-
ings of the 19th Annual Conference on Learning Theory, COLT’06, (Berlin,
Heidelberg), pp. 605-619, Springer-Verlag, 2006.

84

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

R. Herbrich, T. Graepel, and K. Obermayer, Large Margin Rank Boundaries
for Ordinal Regression, ch. 7, pp. 115-132. MIT Press, January 2000.

Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W. Hon, “Adapting rank-
ing svm to document retrieval,” in Proceedings of the 29th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR 06, (New York, NY, USA), pp. 186-193, ACM, 2006.

Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, “An efficient boosting al-
gorithm for combining preferences,” Journal of Machine Learning Research,
vol. 4, pp. 933-969, Dec. 2003.

7. Zheng, H. Zha, T. Zhang, O. Chapelle, K. Chen, and G. Sun, “A general
boosting method and its application to learning ranking functions for web
search,” in Advances in Neural Information Processing Systems 20 (J. Platt,
D. Koller, Y. Singer, and S. Roweis, eds.), pp. 1697-1704, Curran Associates,
Inc., 2008.

Q. Wu, C. Burges, K. Svore, and J. Gao, “Adapting boosting for information

retrieval measures,” Information Retrieval, vol. 13, pp. 254-270, June 2010.

C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and
G. Hullender, “Learning to rank using gradient descent,” in Proceedings of
the 22Nd International Conference on Machine Learning, ICML 05, (New
York, NY, USA), pp. 89-96, ACM, 2005.

M. feng Tsai, T.-Y. Liu, T. Qin, H.-H. Chen, and W.-Y. Ma, “Frank: A
ranking method with fidelity loss,” Tech. Rep. MSR-TR-2006-155, Microsoft
Research, November 2006.

C. Burges, R. Ragno, and Q. Le, “Learning to rank with non-smooth cost

)

functions,” in Advances in Neural Information Processing Systems 19, MIT

Press, Cambridge, MA, January 2007.

Y. Yue, T. Finley, F. Radlinski, and T. Joachims, “A support vector method
for optimizing average precision,” in Proceedings of the 30th Annual Interna-

tional ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’07, (New York, NY, USA), pp. 271-278, ACM, 2007.

85

[51]

[52]

[53]

[54]

[55]

J. Xu, T.-Y. Liu, M. Lu, H. Li, and W.-Y. Ma, “Directly optimizing eval-
uation measures in learning to rank,” in Proceedings of the 31st Annual
International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, SIGIR ’08, (New York, NY, USA), pp. 107114, ACM,
2008.

J. Xu and H. Li, “Adarank: A boosting algorithm for information retrieval,”
in Proceedings of the 30th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR '07, pp. 391-398,
ACM, 2007.

7. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li, “Learning to rank: From
pairwise approach to listwise approach,” in Proceedings of the 24th Interna-
tional Conference on Machine Learning, ICML 07, (New York, NY, USA),
pp. 129-136, ACM, 2007.

F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li, “Listwise approach to
learning to rank: Theory and algorithm,” in Proceedings of the 25th In-
ternational Conference on Machine Learning, ICML 08, (New York, NY,
USA), pp. 1192-1199, ACM, 2008.

M. Taylor, J. Guiver, S. Robertson, and T. Minka, “Softrank: Optimizing
non-smooth rank metrics,” in Proceedings of the 2008 International Confer-
ence on Web Search and Data Mining, WSDM ’08, (New York, NY, USA),
pp. 77-86, ACM, 2008.

T. Qin, T.-Y. Liu, and H. Li, “A general approximation framework for direct
optimization of information retrieval measures,” Tech. Rep. MSR-TR-2008-

164, Microsoft Research, November 2008.

O. Chapelle and Y. Chang, “Yahoo! learning to rank challenge overview.,”
in Yahoo! Learning to Rank Challenge, pp. 1-24, 2011.

K. Jarvelin and J. Kekalainen, “IR evaluation methods for retrieving highly
relevant documents,” in Proceedings of the 23rd Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’00, (New York, NY, USA), pp. 41-48, ACM, 2000.

86

[59]

[61]

[62]

[63]

O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan, “Expected reciprocal
rank for graded relevance,” in Proceedings of the 18th ACM Conference on
Information and Knowledge Management, CIKM ’09, (New York, NY, USA),
pp. 621-630, ACM, 2009.

N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey, “An experimental com-
parison of click position-bias models,” in Proceedings of the 2008 Interna-
tional Conference on Web Search and Data Mining, WSDM 08, (New York,
NY, USA), pp. 87-94, ACM, 2008.

A. A. Akin and A. M. Diindar, “Turkish NLP libraries.” Available at https:
//github.com/ahmetaa/zemberek-nlp (2015/04/25).

G. Lewis, Turkish grammar. Oxford New York: Oxford University Press,
2000.

F. Can, S. Kocberber, E. Balcik, C. Kaynak, H. C. Ocalan, and O. M.
Vursavas, “Information retrieval on turkish texts,” Journal of the American

Society for Information Science and Technology, vol. 59, no. 3, pp. 407-421,
2008.

87

