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ABSTRACT

ON SOME OF THE SIMPLE COMPOSITION FACTORS OF
THE BISET FUNCTOR OF P-PERMUTATION MODULES

(isil Karagiizel
M.S. in Mathematics
Advisor: Laurence J. Barker
July 2016

Let k be an algebraically closed field of characteristic p, which is a prime, and C
denote the field of complex numbers. Given a finite group G, letting ppi(G) denote
the Grothendieck group of p-permutation kG-modules, we consider the biset functor of
p-permutation modules, Cppy, by tensoring with C. By a theorem of Serge Bouc, it is
known that the simple biset functors Sy are parametrized by pairs (H, V') where H
is a finite group, and V' is a simple COut(H )-module. At present, the full classification
of the simple biset functors apparent in Cppy, is not known. In this thesis, we find new
simple functors Sy apparent in Cppy, where H is a specific type of p-hypo-elementary
B-group. The technique for this result makes use of Maxime Ducellier’s notion of
a p-permutation functor and his use of D-pairs to classify the simple factors of the

p-permutation functor of p-permutation modules Cpp *"™.

Keywords: biset functors, p-permutation modules, simple composition factors.
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OZET

P-PERMUTASYON IKILI I[ZLEGCLERININ BAZI BASIT
KOMPOSIZYON FAKTORLERI

(isil Karagiizel
Matematik, Yiiksek Lisans
Tez Danigmani: Laurence J. Barker
Temmuz 2016

k karakteristigi asal say1 p olan, cebirsel olarak kapali bir cisim ve C karmagik
sayilarin cismi olsun. Verilen sonlu bir grup G icin, ppi(G), p-permiitasyon kG-
modiillerinin Grothendieck grubunu simgeler ve C ile tensor ¢arpimin alarak ikili kiime
izleci olan Cppy’'y1 tanimlariz. Serge Bouc’un bir teoremi tarafindan bilindigi iizere,
basit ikili kiime izlegleri olan Sy y’ler, (H, V) ciftleriyle tanimlanir, éyle ki, burada H
sonlu bir grup ve V' basit bir COut(H )-modiilidiir. Su an igin, Cppy’da goriilen basit
ikili izlegler olan Sy v ’lerin tiim smmiflandirilmas: bilinmemektedir. Bu tezde, Cpp;’da
goriilen yeni basit izlegler olan Sy v ’leri buluyoruz, dyle ki burada H belirli bir p-hipo-
elementer B-grup’tur. Bu sonug i¢in kullanilan teknik Maxime Ducellier’in tanimi
olan p-permiitasyon izlecine ve p-permiitasyon modiillerinden olugsan p-permiitasyon
izleci olan Cpp} "™ ’un basit faktorlerini simflandirmak igin kullandigi D-ikililerine
dayanmaktadir.

Anahtar sozcikler: ikili kiime izlecleri, p-permiitasyon modiilleri, basit komposizyon
faktorleri.
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Chapter 1

Introduction

Let C be the field of complex numbers. The biset category CC is defined as follows:

(i) The objects are finite groups,

(ii) Homee(G, H) = C®zB(H,G) where B(H,G) is the Grothendieck group of iso-

morphism classes of finite (H x G)-sets.

(iii) The composition is defined to be C-linear extension of the composition [V]o[U] =
[V xgU] given [U] € B(K, H) and [V] € B(H,G), where Vx gU denotes the set
of H-orbits of V' x U.

Then, a biset functor defined on CC is a C-linear functor from CC to C-Mod, which

is the category of finite dimensional vector spaces over C.

By the work of Serge Bouc [1] , we know that the simple biset functors Sy are
associated to pairs (H, V') where H is a finite group and V is a simple COut(H )-module
up to some equivalence. A simple biset functor Spy is said to be a composition
factor of a biset functor F' if there exists subfunctors F; C Fy C F with Fy/F; &
Su,v. Classifying the simple composition factor structure of a biset functor is the main

concern, and some of such classifications can be found in the literature [1].



Let k& be an algebraically closed field of characteristic p, where p is a prime. We
define a p-permutation module to be a direct summand of a permutation module.
Then, Cppy, is a biset functor assigning a finite group G to Cppy(G), the Grothendieck
group of isomorphism classes of finite p-permutation kG-modules. The classification
of simple composition factors of the biset functor of p-permutation modules Cppy, is
not known at the time of writing. However, Mélanie Baumann has found some of the

simple composition factors of Cppy in [2], [3] and [4].

Recall that a finite group H is called p-hypo-elementary if H has a normal p-
subgroup P such that H/P = C; where C] is a cyclic group of order [ and (p,[) = 1.
By the Schur-Zassenhaus theorem, this extension splits so we have a semidirect prod-
uct H = P x C;. On the other hand, we call a group H a B-group if for any
non-trivial N < H, the deflation number introduced by Bouc is zero, i.e., myn =
= > |X|u(X, H) = 0 where p is the Mébius function of the poset of subgroups of

1
|H| £~

XN=H
H.

Baumann has found that for any p-hypo-elementary B-group H = P x(j, the simple
biset functor Sp ¢ is necessarily a composition factor of Cppy. In [3], it was conjectured
that for such type of a group H, the simple biset functor Sp y is apparent in Cppy, if
and only if V' is the trivial COut(H )-module C with multiplicity ®(I). In this thesis, we

refute that conjecture and discuss the appearance of other simple COut(H )-modules.

The method we use is due to Maxime Ducellier who, in [5], introduced the p-

permutation category CCPP+ as follows:

(i) The objects are finite groups,

(ii) Homeerr (G, H) = CQgzppr(H,G) where ppp(H,G) = pp(H x G) is the
Grothendieck group of p-permutation (H x G)-modules,

(iii) The composition is defined to be C-linear extension of the composition [X]o[Y] =
[(X®knY], given [X] € ppr(G, H) and [Y] € ppr(H, K), where ®jp is the tensor
product over the group algebra kH.

Then, a p-permutation functor is a C-linear functor defined from CCPP+ to C-Mod.



In [5], Ducellier examined the p-permutation functor of p-permutation modules de-
noted by Cppy *™, and found that the simple p-permutation composition factors of

Cpp} "™ are indexed by p-hypo-elementary B-groups.

At this point, we mention that the structure of the biset functor Cpp, and
the p-permutation functor Cpp} 7™ are different. We can interpret Cppy as

a module @ Cppr(G) of the quiver algebra . CB(H, K); whereas,
Geobj(Ce) H,K€O0b;j(CC)

Cpp} "™ can be thought as a module b Cppi(G) of the quiver algebra
GeObj(Ccrrr)
b Cppr(H, K). The latter interpretation produces some extra maps that
H,K €0bj(CCPPk)
are generally called as diagonal maps

6 : Cppr(H,G) x Cppi(G,1) — Cppi(H, 1).

These maps are the basic reasons of the fact that the simple composition factor struc-

D—PpETM.

ture of Cpp, is far coarser than that of Cppy.

perm. to

The method we use is to restrict the simple p-permutation factors of Cpp}~
obtain new classification of simple composition biset factors of Cpp, which are indexed

by a specific genre of p-hypo-elementary B-groups.

In detail, given a p-hypo-elementary B-group H = P x C; with C; = (s), in Chapter

4, we shall see that a simple p-permutation functor S7 i7" is a composition factor

of Cpp, """ . We consider the restriction of S¥, """ to biset functors and obtain the
sVV P s

following theorem:

Theorem 5.1.1. Suppose that H = P x C; be a p-hypo-elementary B-group such
that every non-trivial F,C;-module is apparent in P. Then, for every ¢ € Out(C)),
the simple biset functor Sy, is apparent as a composition factor of the biset functor

Cppy, where C,, is the inflation of the vector space C on which the group Out(C;) acts
by ¢.

We shall also provide a much detailed outline of the thesis:

In Chapter 2, we recall some background information on biset functors as well as

crucial examples of biset functors such as the Burnside functor CB, the biset functors



CRy., CRc¢, the biset functor of p-permutation modules Cppy, and the monomial Burn-
side functor CByx. We study primitive idempotent basis of Cppy(G), and induction,
restriction, isogation, inflation and deflation formulas which can be found in [5] and [6].
In this chapter, we shall also provide an alternative way to compute deflation formula
for the primitive idempotents of Cppy(G) by using the linearization map between CBx
and Cppy.

In Chapter 3, we review some of the known simple composition factors of Cppy
found by Baumann in [2], and [3], [4]. We are particularly interested in the special
type of groups named p-hypo-elementary B-groups. This chapter involves the proof of
the classification of p-hypo-elementary B-groups by Baumann. The final part of this
chapter is devoted to provide a counter-example to Conjecture 3.4.1 which claims that
for a p-hypo-elementary B-group H, the simple biset functor Sy y is apparent in Cppy,
if and only if V' is the trivial COut(H )-module C. To do so, we show that for the
alternating group A4 which is a 2-hypo-elementary B-group, the simple biset functors
Sa,,c and S4, c_, are composition factors of Cpp;, with each multiplicity 1 where % has
characteristic 2. Along the way, by using the method of Baumann in [3], we compute

the composition factors associated to small ordered groups Cy, Cs, Cs, Vy when p is 2.

In Chapter 4, we study the p-permutation functors which are introduced by Ducel-
lier in [5]. We review the notion of D-pairs as well as the simple composition factor
structure of p-permutation functor of p-permutation modules Cpp? ™. We shall
provide a proof for the classification theorem of D-pairs by Ducellier which will show

us that they are in a bijective correspondence with p-hypo-elementary B-groups.

In Chapter 5, we obtain a relaxation of Baumann’s sufficient condition for the ap-
pearence of simple biset functors indexed by a special genre of p-hypo-elementary B-
groups in Cppy. More precisely, we show that for a p-hypo-elementary B-group H such
that every non-trivial F,Cj-module is apparent in P, for every ¢ € Out(C}), the simple
biset functor Sy c, is apparent as a composition factor of the biset functor Cppy where
C, is the inflation of C on which the group Out(C;) acts by ¢. In the final part, we

p—perm.

shall see that this result implies that the simple p-permutation factor Sy y,, ™ partially

decomposes into simple biset factors Sp, for every ¢ € Out(C;), where C; = (s).



Chapter 2

Biset functors

2.1 Biset functors

In this section, we want to define biset functors and examine the simple composition
structure of some crucial biset functors. We shall start with some review on background
material which can be found in Bouc [1]. Recall that a left G-set X is a set with a left

G-action satisfying:

(i) f ghe Gand x € X | then g- (h-x) = (gh) - z.

(ii) If z € X, and 1¢ is the identity element of G, then 14 -z = x.

A finite G-set X is called transitive if X has a single G-orbit. Any transitive G-set has
form G/H for some subgroup H of G. Note that G/H is isomorphic to G/K if and
only if H and K are G-conjugate. Moreover, any G-set X can be expressed as a direct
sum of transitive G-sets, i.e., where [G/X] is a set of representatives of the G-orbits in
X,

x= || G/G,

z€[G/X]

We denote the isomorphism class of finite G-set X by [X].



Definition 2.1.1 (Burnside Group). Let G' be a finite group. The Burnside group
B(G) of G is the Grothendieck group of the category of G-sets. In other words, it is
the quotient of free abelian group on the set of isomorphism classes of finite G-sets, by
the subgroup generated by the elements of the form [X UY] — [X]| — [Y] where X and
Y are finite G-sets.

The Burnside group B(G) has also a natural ring structure which is given by Carte-
sian product of given G-sets, i.e., [X1] - [Y1] = [X1 X Y1] where the identity element of
B(G) corresponds one point set with trivial action and the zero element is the empty
set. One can note that {[G/H] : H < G} forms a basis for B(G) called the transitive
basis. The following formula provides an explanation to multiplication structure of this

basis elements.

Lemma 2.1.2 (Mackey Product Formula for Burnside Groups). Let G be a finite
group, H and K be subgroups of G. Then,

(G/H]-[G/K]= Y [G/HN!K)= > [G/(H'NK)].

HgK<aG HgK<gG
Definition 2.1.3. For finite groups G and H, an (H x G)-set U s called (H,G)-
biset. U can be thought as a both left H-set and a G-set in which actions of H and G

commute, that 1s,

Vhe H, YueU, Vge G, (h-u)-g=h-(u-g).

Let H\U/G denote the double coset of U. We call a (H,G)-biset U transitive if
H\U/G has a cardinality 1.

Lemma 2.1.4 ([1], p19). Let G and H be groups.

(1) If L is a subgroup of H X G, then the set (H x G)/L is a transitive (H,G)-biset
for the actions defined by

Vh e H, Y(b,a)L € (H xG)/L, Yg€ G, h-(b,a)L-g= (hb,g 'a)L.

(2) If U is an (H, G)-biset, choose a set [H\U/G)| of representatives of (H,G)-orbits
on U. Then, there is an isomorphism of (H,G)-bisets
v || HxG)/L,
ue[H\U/G]

6



where L, = (H,G), ={(h,9) e HXG | h-u=u-g}.

Definition 2.1.5. Let G, H and K be finite groups. For (H,G)-biset U and (K, H)-
biset V', we define the composition of V. and U, namely V X g U as the set of H-orbits
of the cartesian product V x U, where the H-action is defined as follows: for (v,u) €
V x U and for each h € H,

(v,u) -h=(v-h,h~ ' u).

We denote the H-orbit of an element (v,u) € V x U by (v,gu). Moreover, the set
V xy U is an (K, G)-biset for the action defined by:

k-(vgu)-g=(k-v,gu-g)

foreach k € K |, (v,gu) €V xyU, g€ G.
Now we will define five elementary bisets: Let G be a finite set.

(1) G can be thought as (G, G)-biset where the G-action is the usual group multipli-
cation. We denote this biset by Idg.

(2) Let H < G. Then G can be thought as (H, G)-biset, denoted by Res$;.
(3) Let H < G. Then G can be thought as (G, H)-biset, denoted by Ind$.

(4) Let N <G and H = G/N. Then H can be thought as an (G, H)-biset, denoted
by Inf% for the right action of H by multiplication, and the left action of G' by
projection to H, then left multiplication in H.

(5) Let NG and H = G/N. H can be thought as an (H, G)-biset, denoted by Def&
for the left action of H by multiplication, and the right action of G by projection
to H, and then right multiplication in H.

(6) Let f: G — H be a group isomorphism, then H can be thought as (H, G)-biset,
denoted by Iso%(f) for the left action of H by multiplication and right action of
G is taken by image of f.

Recall that for a finite group G, a section (T',S) of G is defined by subgroups of
G,T and S such that S <T.



Lemma 2.1.6. ([1], Goursat’s Lemma) Let G and H be groups.

(1) If (D, C) is a section of H and (B, A) is a section of G such that there ezists a
group isomorphism f : B/A — D/C, then

Lip,c),t.(8,4) ={(h,g9) € Hx G|h € D,g € B,hC = f(gA)}
1s a subgroup of H x G.

(2) Conversely, if L is a subgroup of H X G, then there erxists a unique section
(D,C) of H, a unique section (B,A) of G, and a unique group isomorphism
f:BJ/A— D/C, such that L = L(p ), 1,B,4)-

Lemma 2.1.7. ([1], Butterfly Factorization) Let G and H be groups. If L is a subgroup
of Hx G, let (D,C) and (B, A) be the sections of H and G respectively, and f be the
group isomorphism BJ/A — D/C such that L = Lpc) (4. Then there is an
isomorphism of (H,G)-bisets

(H x G)/L =~ gIndpInfp,clso(f)pjaDefg Resa

Definition 2.1.8. Let G and H be finite groups. The biset Burnside group B(H,G)
is the Burnside group B(H x G°P), i.e., the Grothendieck group of the isomorphism
classes of finite (H, G)-bisets for the disjoint union.

Remark 2.1.9. Let G, H and K be finite groups. There is a unique bilinear map
Xg: B(K,H)x B(H,G) — B(K,G) such that V]| xg [U] = [V xg U], whenever U is
a finite (H, G)-biset and V' is a finite (K, H)-biset.

Remark 2.1.10. Any element [X]| € B(H,G) can be written as a linear combination

of isomorphism classes of transitive (H,G)-bisets, namely,

X = S MX)IH < G)/L)

L<pgxcHXG

By Butterfly Factorization, we can say that elements of B(H,G) are generated by

induction, inflation, isogation, deflation and restriction maps.

Definition 2.1.11. (/1], p41) The biset category C is defined as follows:

(i) The objects of C are finite groups,



(i1) For G,H € Obj(C), then Hom¢(H,G) = B(H,G),

(i1i) The composition is given by [V] o [U] = [V xg U] for [V] € Home(H, K), [U] €
Home (G, H),

(iv) For any finite group G, the identity morphism of G in C is [Idg].

Definition 2.1.12. Let C be the field of complex numbers. Then we define the biset
category CC as follows:

(i) The objects of CC are finite groups,
(i) For G,H € Obj(C), then Homce(H,G) = C®z B(H,G),

(11i) The composition of morphisms in CC is the C-linear extension of the composition

i CC,
(iv) For any finite group G, the identity morphism of G in CC is C ®g [Idg].

Remark 2.1.13. The biset category CC is C- linear category which means that the set

of its morphisms are C-modules, and the composition is C-bilinear.

Definition 2.1.14. Let D be a C-linear subcategory of CC. A biset functor on D is a C-
linear functor from D to C— Mod. Moreover, biset functors on the subcategory D form
a category denoted by Fpc where the homomorphism sets are natural transformations

of functors and compositions are composition of natural transformations.

In [1], Bouc provided a classification for simple objects of this category, namely,

Fp.c. We shall review some basic definitions and results for this purpose.

If F'is an object of Fp ¢, then we define a minimal group for F' to be an object H
of D such that F(H) # {0} and for every object K of D with |K| < |H|. The set of
minimal objects for F' is denoted by Min(F').

Definition 2.1.15. A full-subcategory D of CC is called replete if its object set is closed

under taking subquotients that is any group is isomorphic to a subquotient of an element
of D is in D.



Definition 2.1.16. A simple biset functor on D is a simple object of Fpc which is a

non-zero functor F whose only subfunctors are itself and the zero functor.

Proposition 2.1.17. Suppose that D is a replete subcategory of CC and let £ be a
full-subcategory of D. If F' is simple object of Fpc and Res?F #+ 0, then Res?F 5 a
simple object of Fec.

The following results are due to Bouc and can be found in [1].

Definition 2.1.18. Let G be an object of D and V be an Endp(G) — module. We

define the biset functor Lgy as follows:

(i) For every object H of D, we set

LG,V(H) = Homp(G, H) REndp(a) V = CB(H,G) ®c@,a) V-

(i1) For every ¢ : H — K in D, Lgy(¢) : Lav(H) — Layv(K) is defined by 0 @ v —
(pod) @wv.

It is clear from the definition that Lg v (G) = V.

Proposition 2.1.19 ([1], Corollary 4.2.4, p58). Let G be an object of D and V be a
simple Endp(G)-module. Then the biset functor Lgy has a unique proper mazimal
subfunctor denoted by Jay and the quotient Sqgyv = Layv/Jav is a simple object of
Fpc such that Sqyv(G) = V.

Now, we let D be a subcategory of the biset category CC which contains group

isomorphisms.

Definition 2.1.20. A pair (G,V), where G is an object of D and V is a simple
COut(G)-module, is called a seed of D. We call two pairs of D (G,V) and (G, V")
as isomorphic if there exists a group isomorphism ¢ : G — G and an C-module

isomorphism ¥ : V. — V' such that

Yo €V, Ya € Out(@), ¥(a-v) = (gpag™") - ¥(v).

10



Lemma 2.1.21 ([1], Lemma 4.3.9, p61). Let G be a finite group and V be a simple
COut(G)-module. If H is a finite group such that Sgv(H) # {0}, then G is isomorphic
to a subquotient of H.

Theorem 2.1.22 ([1], p62). Let D be an admissible subcategory of CC. There is a
one to one correspondence between the set of isomorphism classes of simple objects of
Fpc and the set of isomorphism classes of seeds of D, sending the class of the simple
functor S to the isomorphism class of a pair (G,S(G)), where G is any minimal group
for S. The inverse correspondence maps the class of the seed (G, V') to the class of the

functor Sg.v.

Definition 2.1.23. Let F' be a biset functor on D. We call a simple functor S as a
composition factor of the biset functor F if there exists subfunctors ' C F" C F such
that F" JF' = S.

We now take a full-subcategory £ of D and a biset functor F' on D. We can also
consider F' to be a biset functor on the subcategory £ which we denote by ReS?F. The
following result is called finite reduction principle for biset functors and we will make

use of this result for our main theorem by considering a specific full-subcategory.

Proposition 2.1.24 (Finite Reduction Principle For Biset Functors). Let G be an
object of D and V' be a simple COut(G) — module. If Sgy is a composition factor of

Res? on &, then Sq v is also a composition factor of F' on D.

Definition 2.1.25. We define F,, to be a full-subcategory of the biset category D such
that the objects are all finite groups whose orders are less than or equal to n, where n

15 a positive integer.

2.2 Examples of biset functors

2.2.1 The Burnside functor CB

For this part, we always assume that D is a replete subcategory of the biset category

CC where C is the field of complex numbers.

11



Let G be a finite group then we have defined B(G) as the Burnside ring of G.
Moreover, for any finite (H, G)-biset U, we can define the following map:

B([U]) : B(G) = B(H) by [V]=[UxaV],

for every finite G-set V.

We can extend this map C-linearly to the map CB([U]) : CB(G) — CB(H) where
CB(G) = C®z B(G). This defines a biset functor, the Burnside functor.

The Burnside ring B(G) has another basis called the primitive basis: {¢% : H <g G}
with a nicer multiplication compared to transitive basis:
¢ if K=¢H
G .G ¢g if G

er ey =
K " €H .
0 otherwise

These two different bases of B(G) are related by the following inversion formula
proven by Gluck and Yoshida separately:
1

e = NG ()] > IK|u(K, H)[G/K]

where p is the Mobius function of the poset of subgroups of G.

Since every biset functor on D can be thought as a module of the quiver algebra

D B(H,G), and since we know that by the Butterfly factorization lemma,
VH,GEOb;(D)
every element of biset Burnside ring B(H, G) is generated by finite elementary maps,

induction, inflation, isogation, deflation and restriction, it is meaningful to study the
effects of these maps on the primitive basis of the Burnside ring which has just shown

to possess a biset functor structure.

Theorem 2.2.1 ([1], Theorem 5.2.4., p77). Let G be a finite group.

1. Let H and K be subgroups of G. Then,
ResS(e5) = Z en
2€[Ne(H)\Tg(H,K)/K]

where x rTuns through a set of representatives of (Ng(H), K)- orbits on the set
Te(H, K) = {g € GIHs € K},
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2. Let K < H be subgroups of G. Then,

No(K)|
Indell = [N %
T N (B

3. Let N < G. Then, for any subgroup H of G containing N,

G/N _ G
[nfg/NeH/N = § €K
KN=gHK=¢G

4. Let N G . Then,

G _ G/N
Defg/Ne(; = Mg,NCq/N>

In this part, we shall review Bouc’s result on the classification of the simple compo-
sition factors for particularly our case that is when the ground field is C the complex

field. More general cases can be found in [1].

For this purpose, let us define a specific subfunctor of CB on a replete subcategory D
of the biset category CC. Suppose we are given an object G of the category D, we denote
ec to be the subfunctor of CB generated by the primitive idempotent & € CB(G).
To be more precise, for any object H € Obj(D), eq(H) = Homp(G, H)(eS).

Moreover, a finite group G in D is called B-group if for every non-trivial normal
subgroup N of G, we have mgy = 0. We denote the class of B-groups in D by
B — gr(D) and we denote the set of representatives of isomorphism classes of these
B-groups by [B — gr(D)].

Bouc showed that for every finite group G in D, we can define a group denoted by
B(G) to be a quotient G/N for some normal subgroup N of G such that mgy # 0
and G/N is a B-group. He showed that (&) is well-defined up to group isomorphism;

however, the normal subgroup N is not unique in general.
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Proposition 2.2.2 ([1], p89). 1. Let G be a B-group over C. Then the subfunctor

eq of CB has a unique maximal subfunctor, equal to
Je = Z €,
HE[B—gre (D)), H>G,HEG

and the quotient functor eq/ja is isomorphic to the simple functor Sgc.

2. If F C F' are subfunctors of CB such that F'/F is simple, then there exists
a unique G € [B — gre(D)] such that e C F' and eq ¢ F. In particular,
eca+F=F,egNF=jg and F'/F = Sgc.

This proposition shows us that the composition factors of CB on D are exactly the

simple functors Sg c.

Remark 2.2.3. Let p be a prime number. In characteristic 0, it is known due to Bouc
that a p-group G is a B-group if and only if G is trivial or isomorphic to C, x C,.
Therefore, if we consider a full-subcategory C, of the biset category CC whose objects
are p— groups, then the simple composition factors of CB on C, are Sc, c and Sc,xc,,c

with multiplicity 1.

2.2.2 The biset functors CR¢: and CR;

Let C be the field of complex numbers.

Definition 2.2.4. (/1], Chapter?) Let G be a finite group, Rc(G) is defined to be the
Grothendieck group of the category of finite dimensional CG-modules. For any finite
(H,G) — biset U, we define Rc([U]) : Re(G) — Re(H) by

Re([UN(E]) = [CU &ce E],

where [E] € Re(G) denotes the isomorphism class of a finite dimensional CG-module
E, and CU is the (CH,CG)-permutation bimodule associated to U. We can extend

this map C-linearly. This construction provides CR¢c with biset functor structure.

Definition 2.2.5. ([1], Definition 7.5.1.) A character & : (Z/mZ)* — C* is called
primitive if it cannot be factored through any quotient (Z/nZ)* of (Z/mZ)*, where n

s a proper divisor of m.
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The simple composition factors of the biset functor CR¢ are classified by Bouc as

follows:

Proposition 2.2.6. ([1], Corollary 7.8.5, p133) CRc is semisimple, and

CRe = @ Szymec.
(m.8)
where (m, &) runs through the set of pairs consisting of a positive integer m and a

primitive character & : (Z/mZ)* — C*.

Definition 2.2.7. Let k be an algebraically closed field of characteristic p, prime. Let
C, denote the full-subcategory of the biset category CC whose objects are formed by
finite p' -groups. For a finite p -group G, we can define R(G) to be the Grothendieck
group of the category of finite dimensional kG-modules. In the same way, for every

(H,G)-biset U, we can define Ri([U]) : Re(G) — Rx(H) by
Ri([UN)([E]) = [kU &xe El,

for every kG-module E. Then, we can extend it C-linearly. This tells us that the biset

Junctor CRy, has a biset functor structure on the category C.

Remark 2.2.8. We have, for every finite group G whose order is coprime to p,
CRy(G) = CRc(G). Therefore, on the category Cy, CRy is isomorphic to CRc. For
this reason, we can say that

CRy = P Szjmzce
(m,€)

where (m, &) runs through the set of pairs consisting of a positive integer m coprime to

p and a primitive character € : (Z/mZ)* — C*.

2.2.3 The biset functor of p-permutation modules Cpp;

Let C be the field of complex numbers and k£ be an algebraically closed field of char-

acteristic p where p is prime.

We shall start with some basic definitions which can be found in [7] and [8].
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Definition 2.2.9. Let M be an indecomposable kG-module. A minimal subgroup @
of G for which M s a direct summand of ]nngesg(M) 15 called a vertex of M and
1s defined up to G-conjugacy. It is known that for such a field k, the vertex of every

indecomposable kG-module is a p-group.

Definition 2.2.10. A source of M s an indecomposable kQ-module My, where @ is
a vertex of M, such that M is a direct summand of ]ndg(Mo).

Definition 2.2.11. We call a kG-module M by a trivial source module if each inde-

composable summand of M has the trivial module k as its source.

Definition 2.2.12. An kG-module N is called a permutation module if there exists a
G-set X with N = kX, that is to say, N has a G-stable k-basis.

Note that we may decompose X as a disjoint union of G-orbits which gives us a
direct sum decomposition of kX as an kG-module. If we let X to be a transitive G-set,
then we have kX 2 Ind% (k) where H is a stabilizer of some element z of X, and k is

the trivial kH-module.

Hence, we can think any arbitrary permutation kG-module as a direct sum of mod-
ules of the form Ind% (k) for some subgroups H < G. Note that Ind% (k) is a permuta-
tion kG-module with G-basis {g® 15, | ¢ € [G/H]}. Moreover, if kX is a permutation
kH-module on X, then Ind%(kX) is a permutation kG-module with G-basis given
{g@x | g € |[G/H], © € X}. Therefore, induction preserves permutation modules,

and it is clear that restriction and conjugation, too.

Definition 2.2.13. An kG-module M is called a p-permutation kG-module if
Resg(M) s a permutation kQ-module for every p-subgroup Q) of G.

Suppose that P is a Sylow p-subgroup of G. Since we have Resip(M) = 9(Res%(M))
and restriction and conjugation preserves permutation modules, we only need to have
ResS (M) to be a permutation module to conclude that M is a p-permutation mod-
ule. It means that an kG-module M is a p-permutation kG-module if ResG(M) is a

permutation kP-module where P is a Sylow p-subgroup of G.

Clearly, p-permutation modules are preserved by direct sums, tensor products, re-
striction and conjugation. We shall use another definition of p-permutation modules

to show that induction also preserves p-permutation modules as well.
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Remark 2.2.14. The following conditions are equivalent:

(i) M is a p-permutation kG-module,

(i1) M is a trivial source kG-module.

Proof. (=) : Suppose that M is an indecomposable p-permutation kG-module. Let P
be a p-subgroup of G which is a vertex of M. Then, we know that M is a direct sum-
mand of Ind%Res%(M). By definition, we have Res& (M) a permutation kP-module.

Thus, Resf(M) is a direct sum of modules of the form Indf(k) where Q < P.

Thus, there exists Q < P such that M is a summand of Indg(k). But since P is a
vertex of M, we have () = P. Thus, M is a direct summand of Indg(k:), that is to say,

M has a trivial source.

(<) : For this part, we shall show that any summand of Ind% (k) is a p-permutation
module. Then, it would imply that any module with trivial source is a p-permutation

module.

Let M be an indecomposable trivial source kG-module with vertex @, which is
known to be a p-group, then M’ is isomorphic to a direct summand of Indg(k:), which

is a permutation kG-module.

Now, we wish to show that M is a p-permutation kG-module. Let us denote
M = Indg(k). Clearly, M is a p-permutation kG-module. Now, let P be a p-subgroup
of G. Then, ResG(M') is a summand of Res%(M). By using the definition of being
p-permutation module, we know that Res%(M) is a permutation kP-module. Thus,
ResG (M) = @Indgi(k‘) for some subgroups @; < P.

Claim: Indgi(k) is indecomposable.

~

Proof: Since we have the isomorphism Homkp(Indgi (k), k) = Homyg, (k, Resg, (k)
Homyg, (k, k) = k, and the fact that only simple kP-module up to isomorphism is k,
if we suppose Indgi(k) = M, & M,, we have non-zero and linearly independent maps,
fi: M; — k , for i = 1,2, which extends f; : Indgi(k) — k, contradicting the fact that
Homy,p(Indg, (k), k) = k.
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Then, we have ResG(M') = Indgi(k) which is a permutation module, i.e., M is a

p-permutation kG-module. O]

Definition 2.2.15 ([6], Definition 2.6). Let G be a finite group. The p-permutation
ring denoted by ppr(G) is the Grothendieck group of the isomorphism classes of p-
permutation kG-modules, with the relation [M]+[N]| = [M @ N|, and the ring structure
is induced by the tensor product of modules over k. The identity element of ppp(G) is
the class of the trivial kG-module k.

Definition 2.2.16 (The biset functor of p-permutation modules Cppy). For every
(H,G)-biset U, we define

ppx([U]) = ppi(G) — ppi(H) by
[M] — [kU Q@i M|

for every p-permutation kG-module M. Similarly to previous examples, we extend this

map C-linearly, Cppy([U]) : Cppr(G) — Cppi(H) where Cppp(G) = C @z ppi(G).

Moreover, we define Cppy(u) for every uw € C ®z B(H,G) where u = > N[U;| by
i=1

Cppr(u) = > NCppr([Ui]) which defines the biset functor structure of Cppy,.
i=1

Now, we shall provide some further remarks on two bases of Cpp, which can be
found in [6].

We can think ppi(G) as the free abelian group of the set of isomorphism classes of

indecomposable p-permutation kG-modules.

Recall that for a given kG-module M, and a p-subgroup P of G, the relative trace
map is the map trg : M9 — MP given by trg(m) = > x-mwith@ < P.
z€[P/Q]

Furthermore, we define the Brauer quotient of M at P to be the k-vector space

M[P) = M"/ > tr§ M@ which has a natural kNg(P)/P-module structure and for
Q<P
any finite group H which is not a p-group, M [H] is zero by using the fact that the map

tri is onto where P is a Sylow p-subgroup of H.

Now, we shall refer the following theorem which can be found in [6] and [9]:

18



Theorem 2.2.17 ([9], Theorem 3.2).

1. The vertices of an indecomposable p-permutation kG-module M are the maximal
p-subgroups P of G such that M[P] # 0.

2. An indecomposable p-permutation kG-module has vertex P if and only if M|P)]

is a non-zero projective kNg(P)/P-module.

3. The correspondence M +— M][P] induces a bijection between the isomorphism
classes of indecomposable p-permutation kG-modules with vertex P and the iso-

morphism classes of indecomposable projective kNg(P)/P-modules.

Now, we let Pg,, be the set of pairs (P, E) such that P is a p-subgroup of G, and £
is an indecomposable projective kNg(P)/P-module. We have a G-action on Pg,, by
conjugation and the set of G-orbits are denoted by [Pg,]. Given (P, E), and by using
Theorem 2.2.17, we let Mpp denote the indecomposable p-permutation kG-module
such that Mpg[P] = E. Then, we have the following result:

Corollary 2.2.18 ([6], Corollary 2.9). The isomorphism classes of Mp g form a Z-basis
of ppr(G) where (P, E) € [Pe.p.

Now, we move to explanation of the primitive basis of Cpp, which is found by Bouc

and Thévenaz in [6].

Firstly, let Qg ,, denote the set of pairs (P, s) where P is a p-group of G, and s is a
p -element of Ng(P)/P, and G acts on Qg by conjugation and we denote the set of
G-orbits by [Qg ).

Now, we are ready to define the species for ppy(G):

Given (P, s) € Qgp, we define Tgs to be the additive map from pp(G) to C given
by assigning the class of a p-permutation kG-module M to the value at s of the Brauer
character of the Ng(P)/P-module M[P].

Proposition 2.2.19 ([6], Proposition 2.18).

1. The map Tgs is a ring homomorphism ppi(G) — C and extends a C — algebra

homomorphism 75, : CRzppi(G) — C,
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2. The set {T5,|(P,s) € [Qa,pl} is the set of all distinct species from CRzppi(G) to

C. Then, we have the following C-algebra isomorphism
H Tgs : CRzppr(G) — H C.
(Ps)€[Qa p] (Ps)€Qa,pl
Corollary 2.2.20 ([6], Corollary 2.19). The C-algebra C®zppr(G) is a semisimple

commutative C-algebra and its primitive idempotents are ng indezed by (P, s) € [Qa.p)

such that
1 Zf (R7 U) =G (P7 S)7

0 otherwise.

V (R,u) € Qayp TR (Fpy) = {
Remark 2.2.21. Letting p to be a prime which is a characteristic of the field k, we

have dimcCppr(G) = > 1,(Na(P)/P) where P runs through G-conjugacy classes of
P
all p-subgroups, and l,(Na(P)/P) denotes the number of p -elements of Na(P)/P.

We have the following formulas:

Proposition 2.2.22 ([6], 3.1 Proposition). Suppose that H is a subgroup of G, and
let ng be a primitive idempotent of Cppg(G). Then,

> Fg

Rengg s =
(@1)

where (Q,t) runs through a set of representatives of H-conjugacy classes of G-

conjugates of the pair (P, s) contained in H.

Proposition 2.2.23 ([6], 3.2 Proposition). Suppose H is a subgroup of G and and let
th be a primitive idempotent of Cppy(G). Then,

Ind§iFy, = |Na(Q,1) : Nu(Q, )| FE,,
where Ng(Q,t) is the set of elements g in Ng(P) such that gsg~' = s.

Proposition 2.2.24. Let (P,s) € Qg, and let ¢ : G — G’ be a group isomorphism.
Then,

Tso(@) Fpy = Fi{p) o)

The inflation and deflation formulas for primitive idempotents of Cpp, are found by

Ducellier.
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Proposition 2.2.25 ([5], p44). Let N be a normal subgroup of G. Then, we have
[”fg/NFI%N = Z FgG,
(Q,t)el
with I .= {(Q,t) € [Qgp||3g = G/N,QN/N = IP,t = 9s}. where t is the projection
of t onto Ng/n(QN/N).

Proposition 2.2.26 ([5], Lemma 3.1.4, p45). Let G be a finite group and (P,s) €
[Qcp), and N be a normal subgroup of G. Then,

G G/N
Defg/NFP,s = mP,s,NFQ,é )

where Q is a p-subgroup of G/N and t is a p -element of Ne/n(Q).

For a specific case, Ducellier computed the deflation numbers mp; y more precisely,

as follows:

Corollary 2.2.27 ([5], Corollary 3.1.9, p52). Let G be a semidirect product of p-group
P and p -element s acting on P that is to say G = P x (s). and let N be a normal
subgroup of G, then we have

_ 5] :
mpsN = \Nﬂ <S>HCG(S>| C;J |OQ(8)‘M((Q>P) )7
(Rs;;:G

where u((Q, P)?) is the Mobius function defined on the poset of subgroups of G nor-

malized by s.

At this point, we shall provide further reminders about the Mobius function of posets
which can be found [10] and [11].

Remark 2.2.28. Let (X, <) be a poset, and denote the set of chains rog < 1 < ... < T,
of cardinality n + 1 of elements of X by Sd,,(X). Now, the chain complex C\.(X,7Z) is
formed by the module C,,(X,Z) which is the free Z-module with basis Sd,(X) and the
differentials d,, : Cp(X,Z) — C,_1(X,Z) given by

n

Ay (2o, X1, ey Tp) = Z(—l)”(xo, X1y eeny Liy ey Tn),

=0
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where (g, T1, ..., Tj, ..., T,) denotes the chain (xq, ..., x,) —{x;}. Moreover, one can also
consider the augmented chain complex of C\(X,Z), a(X, Z) which is defined by setting
C_1(X,Z) =7 and Co(X,Z) = Co(X,Z) and d, = d, forn > 0, and the augmentation
map € : 60()(, Z) — 5,1()(, Z) sending xo — 1. Recall that the homology group of these

chain complezes H,(X,7) = E<d gnd H,(X,7) = Kerdy,

- Imd"_H Imdn+1 ’

If we are given two posets X and Y, then a map of posets f: X — Y is defined to
be a map such that whenever x < 2’ in X, we have f(x) < f(z'). Given such a poset
map, there is an induced map of chain complezes C.(f,Z): Co(X,Z) — C.(Y,Z) such
that

(f(z0), f(w1), ooy fwn)) if  flwo) < fla1) <o < flan),

0 otherwise

Cn<f7 Z)($o, Ty eeny xn) = {

Similarly, we can define the induced map of reduced chain complexes a(f, 7)

C.(X,Z) = C.(Y,Z) by Co(f.Z) = Cu(f,Z) for n >0 and C_,(f,Z) = Idg.

Now, we define the Euler-Poincaré characteristic x(X) of a finite poset X to be

X(X) = Z (—1)"rankzC,(X,Z).

n>0

Similarly,the reduced Euler-Poincaré characteristic X(X) of a finite poset X is de-
fined by

1) =Y (~1)"rankzCo(X, Z).

n>—1

Recall that the Mobius function p is the unique function from X x X to Z satisfying

w(x,y) =0 unless © < y and the recursion formula

Z “(972)25(x,z):{ 1 if x=z,

vex 0 otherwise
w<y<z

We have a correspondence between the reduced Fuler-Poincaré characteristic and
the Mébius function ([11], Proposition 3.8.5., p121) as follows: if ux is the Méobius
function on the poset X, and x,y € X, then we have pux(z,y) = X((x,y)y) where
(z,y)y ={z€eX | z<z<y}
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2.2.4 The monomial Burnside functor CB).x

Now, we are going to provide an alternative formula for deflation of these primitive
idempotents. For this part, we need to briefly review Monomial Burnside ring which
has a structure of a biset functor. The following definitions and formulas can be found
in [12] and [13], Section 1.4 and 2.7.

Definition 2.2.29 (Monomial Burnside Ring Byx(G)). Let C be the algebraically
closed field of characteristic 0, and k be an algebraically closed field of characteris-
tic p, and k> denote the unit group of the field k, and suppose that G is a finite group.
Let us denote the set of k™ -subcharacters of G by

CG)={(U,p):UL<G;, p:U—Ek*},

which is a G-poset and a G-set under conjugation. Then, we define Byx(G) to be the
free abelian group on the G-conjugacy classes of (U, i) of elements in C(G). By taking
the tensor product over C, we define CByx (G).

Moreover, there is also a primitive basis of this ring. For this, let us denote the set

of k*-subelements by
el(k*,G) :={(H,hO(H)) : H < G,hO(H) € H/O(H)},

where O(H) corresponds to the minimal normal subgroup of H such that H/O(H) is
an abelian p -group. The element of this set, (H,hO(H)) will be denoted as (H,h).

Then, we have

CBi<(G)= @  Cef,.

(H,h)Egel(k*,G)

The Monomial Burnside ring has also a biset functor structure.

Remark 2.2.30 ([12], Lemma 7.4). For H < G , the primitive idempotent e$, €
CB(G) decomposes as a sum of primitive idempotents of CByx(G) as follows:

G _ G
€g = E €
(I’i)EGI

where T is the set of k™ -subelements of G such that I =g H.

The following inflation and deflation formulas for Monomial Burnside Ring can be
found in [14]:

23



Proposition 2.2.31. Let G be a finite group and N be a normal subgroup of G. Then,

G/N — G
[nfG/N CKINKN) = Z Cri
(Ii)€el(kX,G):(IN/N,iN)=gn (K/N,kN)

Proposition 2.2.32. Let G and N be as above. Then,

G /N
Defén(eSs) = Ba(I/(I NN, Li)eTtn i

where
N |Ng/N(IN/N,iN) :IN/N| X ;
BG([/([QN%[?Z)_ ‘NG([’Z»):H B ([/(IQN),I, )
and 1
gk (]/(]mN),I,i):m Y [Unio)|wU,I)

U<L:U(INN)=I
with O(1) is defined as earlier.

There is a surjective map which can be found in [13], Section 4.3 and 4.7, and [15]
Section 1.5, from Byx(G) to ppx(G). It provides us with an alternative formula for

deflation of primitive idempotents of Cppy(G).

Remark 2.2.33. There is a surjective biset functor morphism called linearization map
from the Monomial Burnside functor CByx to the biset functor of p-permutation mod-

ules Cppy, defined as follows: for a finite group G,
ling : CBx (G) — Cppir(G)
sending

6H,h —

G th Zf H:<P7h>7
0 otherwise.

We have the following commutative diagram for deflations:

De]‘G N N
oy s Ba((P, B}/ ((P, ) (1N, (P, ), D)E

lingh klinG/N

Ff, ————— Ba((P,h)/({(P,h) N N), (P, h>7h>FI§]<7]7N,hN
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Chapter 3

Work of Baumann on the simple

composition factors of Cpp;.

Throughout this chapter, we suppose that C is the algebraically closed field of charac-

teristic 0 and k is an algebraically closed field of prime characteristic p.

We have already mentioned that the simple objects of the category formed by biset
functors are parametrized by pairs (G, V') and denoted by S where G is a finite group
and V is a simple COut(G)—module. In the previous chapter, we saw the full classifica-
tion for which pairs (G, V'), the associated simple biset functor Sg 1, appears as a simple
composition factor for the biset functors CB and CR¢ and CR) on some restriction
full subcategory of biset category. However, for the biset functor of p—permutation
modules, Cppy, the classification of these pairs (G, V') is not completely known. By the
work of Baumann [3], we have some partial information about for which pairs (G, V),

the simple composition factors Sg y’s are apparent in Cppy,.

In this chapter, we shall review the results on some of the simple composition fac-
tors of Cppy obtained by Baumann, defining a special type of group called p-hypo-
elementary B-group whose classification are provided by Baumann. Secondly, we re-
view the method that she introduced to find simple composition factors associated to

groups with small order and find the full list of simple composition factors indexed by
Cl, CQ, 03, ‘/21 when p = 2.

25



Then, we will use these results to obtain the following theorem:

Theorem 3.0.34 (The alternating group Ay = V3 x C3). If k is an algebraically closed
field of characteristic p = 2, then both Sa, c and Sa,c_, are the only simple composition

factors of Cppy associated to Ay and their multiplicity is 1.

Since Ay is a p-hypo-elementary B-group for p = 2, this theorem will help us to

disprove the following conjecture due to Baumann:

Conjecture 3.0.35. ([3], Conjecture 4.24, p59) Let k be an algebraically closed field
of characteristic p and C be the algebraically closed field of characteristic 0. Suppose
H = P x Cj is a p-hypo-elementary B-group. Then, Sy is a simple composition
factor of Cppy. if and only if V' is the trivial COut(H)—module, i.e. Syc. Moreover,
the multiplicity of Spc as a simple composition factor of Cppy is ®(1).

3.1 Some of the simple composition factors of Cpp;

We start this chapter with the review of the following findings by Baumann:

Theorem 3.1.1. The simple functors Sc,, c, where m is a positive integer coprime to

p, and & is a primitive character (Z/mZ)* — C* are composition factors of Cppy,.

Proof. We first let C; to be a full-subcategory of the biset category CC whose objects

are finite groups of order coprime to p.
Claim: For any finite group G in Obj(C, ), we have ppy(G) = Ri(G).

Let M be an indecomposable kG—module. Moreover, we know that the vertices
of M, which are all conjugate, must be a p—subgroup of G. However, G has order

coprime to p, so the vertex of M must be trivial.

Now, the only indecomposable k1—module is k& implies that M must be an inde-
composable direct summand of Ind{k = kG. In particular, being an indecompos-

able direct summand of permutation module, M is a p—permutation module. That
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is to say, every kG—module is a p—permutation kG—module. Thus, it implies that
Cppi(G) = CRy(G) for each G € Obj(C,). Moreover, by definition, we already know
that Cppi(u) = CRy(u) for each u € CB(H, G) with H,G € Obj(C,). Consequently,

c, c,
we have Cpp,” = CR,” .

Moreover, recall by Remark 2.2.8 in Chapter 2, that the simple composition factors

of CRy on C are precisely S, c, where m is a positive integer coprime to p and £ is a

primitive character £ : (Z/mZ)* — C*. Now, by the equality above, we conclude that
c.,

these simple functors are also composition factors of Cpp,” . Now, by finite reduction

principle for biset functors, we find that these simple functors are composition factors

of Cppy. on CC as required. O

Theorem 3.1.2. The simple functors Sc,xc,c and Sic are composition factors of

Cppy where k is an algebraically closed field of characteristic p, prime.

Proof. For this part, we work on full-subcategory defined on family of groups closed
under taking quotients, namely, F = {C4,C,, C, x C,}. Firstly, recalling the corre-
spondence between primitive idempotent bases of CB(G) and CByx (G) for any finite

1 Cp Gy Cp Cr _ CpxCp  CpxCp _ CpxCy
group G, we have ec = €c, 15 €y = ec 1, and eg =ec s ec =ecq

egpigp g ig 1, that is to say CBy, = CB”. Now it is clear by use of linearization
map between CByx and Cppy, that CB;, = Cppj . Thus, we showed that CB and
Cppy, are isomorphic on F. Moreover, we know that simple composition factors of CB
are indexed by B-groups. However, the only B-groups which are also p-groups are Cy
and C), x C,. Hence, on F, the simple composition factors of CB are precisely S¢, ¢
and Sc,xc,,c. Due to isomorphism, we obtain that these are also simple composition
factors of Cppj. Now, by finite reduction principle for biset functors, we conclude the

desired result. O

The next result is again due to Baumann which was found by restricting the biset
category CC to full-subcategory C,. » whose objects are all abelian groups. On this
subcategory, she found the composition factors of Cpps to be precisely the simple
functors Sc,, ¢, and S, xc,xc,,,cc Where (m, &) runs through the set of positive integers
m coprime to p, and primitive character £ : (Z/mZ)* — C* with multiplicity 1. Now,

by the finite reduction principle for biset functors, we obtain the following theorem:
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Theorem 3.1.3 ([4], Corollary 44). The simple functors Sc,, c, and Sc,xc,xCpm,Ce
where (m,£) runs through the set of positive integers m coprime to p, and primitive

character & : (Z/mZ)* — C* with multiplicity 1.

3.2 p-Hypo-elementary B-groups and some simple

composition factors of Cpp;, indexed by them

Now, we are going to study some of the simple composition factors of the biset functor
of p—permutation modules which are indexed by a special type of groups, named p-
hypo-elementary B-group H. To do so, we firstly start with the definition of this

special group, as follows:

Definition 3.2.1 (p-hypo-elementary group). Let p be a prime number. A group H is
said to be p-hypo-elementary if the quotient H/O,(H) is cyclic where O,(H) denotes
the largest normal p-subgroup of H. This means that H has a normal p-subgroup such

that the quotient is a cyclic p -group.

In this thesis, we are particularly interested in finite groups which are both p-hypo-
elementary and B-group which we defined in Chapter 2. Note that one of the examples
of p-hypo-elementary B-group is the alternating group A, when p = 2, since O,(A44) =

Vyand Ay/Vy = Cs and ma, v, = ma, a, = 0.

Baumann has found a partial result about the appearance of simple composition

factors Sy of Cppy, where H is a finite p-hypo-elementary B-group as follows:

Theorem 3.2.2 ([2], Theorem 30). The simple functors Syc with H is a finite p-
hypo-elementary B-group are composition factors of Cpp,. However, the multiplicity

of Suc as a composition factor of Cppy, is not known.

She also found the following result:

Theorem 3.2.3 ([3], Theorem 4.15., p48). Let k be an algebraically closed field of
characteristic p, prime. Let G = C, x C; where | > 1 and (I,p) = 1, and the action of
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Ci on Cy is faithful. Then, the simple functor Sc,.c,v 1s a simple composition factor
of Cppy, if and only if V' is the trivial COut(C, x Cy)-module C i.e. Sc,uc,c. Moreover,
the multiplicity of Sc,«c,,c as a composition factor of Cppy. is equal to ®(1).

It should be noted at this point that any p-hypo-elementary group has form H =
O,(H) x C; with (I,p) = 1 which follows from Schur-Zassenhaus Theorem.

3.3 The classification of p-hypo-elementary B-

groups

Now, we shall state the classification of p-hypo-elementary B-groups which are com-

pleted by Baumann:

Theorem 3.3.1 ([2|, Theorem 43). G = P x C,, is a p-hypo-elementary B-group if
and only if

(i) P is elementary abelian,
(i) The action of C,, on P is faithful,

(111) In a decomposition of P as a direct sum of simple F,C,-modules, every sim-
ple F,C,,-module appears at most one time, except the trivial module which may

appear 0 or 2 times.

Proof. Let us suppose that G = P x C,, is a B-group.

STEP 1: P is elementary abelian group.

Proof. We start with the following claim:
Claim: ¢(P) C &(G).

Proof: Let M be a maximal subgroup of G. It is enough to show that ®(P) C M.
Since P is the unique Sylow p-subgroup of GG, we have R = M N P is a normal Sylow
p-subgroup of M. Now, if R = P, then it would clearly imply that ®(P) C P C M.
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If R # P, then we consider the subgroups ®(P)R and ®(P)M, which are well-
defined because of the fact that ®(P) < G by noting ®(P) is a characteristic group of
P and P<4G. Now, since M is a maximal subgroup of G, we have either ®(P)M = M
or $(P)M = G. But (®(P)M)NP = &(P)R # P, because of our assumption R # P.
Therefore, it implies that we must have ®(P)M = M. Then, ®(P) C M, that is to
say, ®(P) C ®(G).

Now, suppose that ®(P) # 1. Then, since G is a B-group and 1 # ®(P) I G, we

must have

1
mGap) = o > X[u(X,G) =o.

X®(P)=G

But note that since X®(P) = G and ®(P) C ¢(G), we have XP(G) = G. But then
by the property of Frattini subgroup, we have X = G. Then,

1
me.a(p) = @IGIM(G, G)=1#0,

which is a contradiction. Thus, ®(P) = 1. Since P is a p-group, it is possible if and

only if P is elementary abelian, as required. O]
STEP 2: (), acts trivially on P.

Proof. For this part, we shall start with the result on calculation of deflation numbers:

Proposition 3.3.2 ([1], Proposition 5.6.4.). If N is a minimal normal abelian subgroup
of G, then

_ |Ke(NV)]

mgnN =1 — —=—,
[NV

where Kg(N) is the set of complements of N in G.

Moreover, if G is solvable, then G is a B-group if and only if |Kg(N)| = |N| for all

minimal normal subgroups N of G.

Claim: Any p-hypo-elementary B-group G = P x (C,, is solvable.
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Proof: Recall that if B < A, and both B and A/B are solvable groups then A
is solvable (cf. [16], Proposition 3.25, p188). Now, since P is a finite p-group, it is
necessarily solvable by using the fact above, and the fact that 1 # Z(P) < P and
induction. Then, again by the same fact, since P <G, and both P and C,, = G/P are

solvable, we have G is solvable, as claimed.

Therefore, we can make use of the latter part of Proposition 3.3.2,i.e., G = P x C,

is a B-group if and only if |K¢(N)| = |N|, for all minimal normal subgroups N of G.

Now, n = 1 case is trivial so we suppose n > 2. Let us denote the action of C,, on
P by ¢ : H— Aut(P) with Keryp = Cj.

Assume for a contradiction that the action is not faithful, i.e., Cy # 1. Then, we
have C; I G = P x C,. Now, there exists a minimal normal subgroup 1 # N in Cjy.
We shall observe that there can be at most one complement of N in G. Suppose that
C' is a complement of N in G, then since C' contains the normal Sylow p-subgroup P
of GG, it has a form C' = P x K where K < (). Note that since C' is a complement of
N in C,,, we have at most one possibility for K. Therefore, |Kg(N)| < 1. However,
since G is a B-group which is solvable, we must have |[N| = |Kg(N)|, a contradiction

since N # 1. Therefore, the kernel of the action is trivial as required. O

STEP 3: Condition(iii) is satisfied.

Proof. We shall start with an observation:
Claim: Any minimal normal subgroup N of G is always contained in P.

Proof: Let 1 # N be a minimal normal subgroup of G. We may suppose that
N N P =1, because otherwise, by the minimality of N, we would have N < P. Then,
note that since N, P <G and NN P = 1, we must have [N, P| = 1. Thus, N < Cq(P),
ie., P < Cg(P) < PC,. But then, Cq(P) = P(Ce(P)NC,) = PCq,(P) = P since
Ce, (P) = 1 by the last part of Step 2. Hence, we obtain Cg(P) = P. However, we
also found that N < Cg(P) = P. Therefore, N = 1, a contradiction. Therefore, we
must have N C P.
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Now, we need to describe complements of N:

Claim: Let N <G such that N < P. Then, every complement of N is of the form
C x @ where C < G which is a complement of N in P and () is a subgroup of G

conjugate to C,.

Proof: Let X be a complement of N in G. Then, we define C' = X N P, which is
a normal Sylow p-subgroup of X. Moreover, since P is abelian, we also have C' < P,
therefore, C' < G.

Now, by Schur-Zassenhaus Theorem, since the order of C' and X/C is coprime, there
exists a subgroup @) = X/C of X such that X = C' x Q. Since N < P, we must have
|Q| = n. But since N is solvable, by second part of Schur-Zassenhaus theorem, every

subgroup of order n is conjugate in G. Thus, we have ) =¢ C,.

On the other hand, suppose that X = C' x (@ such that C'<G which is a complement
of N in P, and @ < G such that |@| = n. Then, we have NN X = NNC =1 and
NX = N(CxQ)=NCxQ=PxQ = G, ie, X is a complement of N in G,

completing the proof of the claim.

Now, by Step 1, P is elementary abelian group, so it can be thought as an F,-vector
space, and since (), acts on P, P has an [F,C,-module structure. We shall note that

since (p,n) = 1, every F,C,,-module is semisimple, so is P.

t
Then, let P = @@ P, be the homogeneous componentwise decomposition of F,C,,-
i=1

module P, where each P; corresponds to P; = @ S; with a simple F,C,,-module ;.
j=1

At this point, we suppose S; to be the trivial IF,C,,-module and if it does not appear

in the decomposition of P, we add it.

Moreover, note that F,C,, = F,[z]/(2" — 1) = [[Fp[z]/m;(z), each S; corresponding
to [F,[z]/m;(x) where m;(x) is irreducible polynomial over F,, so we have S; is a field

over [F,, i.e. for some s; € N, S; = s
Now, let N be a minimal normal subgroup of G. Then, we know that |Kg(N)| = |V].
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Moreover, we found that N < P and since N is a normal subgroup of GG, we can think
N as a F,C,-submodule of P. Note that by minimality of NV, we must have N = 5
for some 1 <[ < ¢.

By our claim above, we know the description of complements of such a normal
subgroup N. In fact, they are all in the form C' x () where C'<G, which is a complement
of N in P, and @ is a cyclic subgroup of GG of order n.

Determination of the number of possibilities for C"

Note that C' can be thought as an FF,C,-submodule of P. Thus, by using the

uniqueness of the homogeneous components, a complement C' of N in P is of the form

t
HeoPP,
i
where H; is a complement of N in F,.

mp
Now, recall that we obtained N = S; = F,s, therefore, having P, = @ S5, we
j=1

can think P, as a vector space over Fps,. Therefore, in order to find the number of
complements, it is sufficient to count the number of complements as IF,s -vector spaces.
my

Note that the number of complements of N = F,s of P = S is equal to the

7j=1
difference between the number of hyperplanes of P, and the number of hyperplanes of

P, that contain N. Note that the latter one is equal to the number of hyperplanes of
B/N.

Thus, the number of complements of N in P, is

M _lmz—ll B e ) s By

(1—p) (1 —p=)

1 1 -

Therefore, we obtain p*(™~Y many complements of N in P.

Determination of the number of possibilities for Q:

Since we have NC' = P, we must find the number of complements of P in P x C),

divided by the number of complements of C'in C' x Q.
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Claim: The number of complements of P in G = P x (), is equal to p™ =1,

Proof: For this, we have to find the number of subgroups which are conjugate to
C, in G. At this point, we again refer to Schur-Zassenhaus theorem, which states that
P acts transitively on the set of conjugates of C), in GG. Therefore, the number of such

groups is equal to %. We claim that Cp(C,) = P;, which is the homogeneous

mi

component of P associated to the trivial F,C,,-module Sy, i.e., P, = @ S;. It is clear
j=1

that P, < Cp(C,). Conversely, suppose that p € Cp(C,), then we have for every

h e C,, (p'p~t,h) € Cp,, 50 "p~t =p~L ie., p € P, as required.

But then, we have the number of complements of P in G = P x C,, is equal to

1P| — p™ m—mj

P~ p1 P

The calculation of the complements of C'in C' x Q):

t
Suppose N = Sy, then C' = H; & @ P, where H; is the complement of N in P;.

i1
Now, we have |Co(Q)| = H;. Then, the number of complements of C' in C'x Q) is equal
to % = pp—z:l = p™~™ noting that s; = 1 because 5] = Fp.

Suppose N = S; where S; is non-trivial module. Then, we have |Cc(Q)| = Py, and

so the number of complements of C' in C' x () is equal to p;n,; 15’ =p

m—s;—mi

Now, we have the number of possibilities for () is equal to

_{%:1 if =1

pmfml

2 if A1

p

Then, we obtain

sy(m1—1)

_ i) G =1
Ke(N)| =4 Loy 7 if
PO e if 11

But since G is a B-group, we must have |Kq(N)| = |N| = p*. Hence, if [ = 1, then

p™ =1 = p implies m; = 2 noting that Sy may not be apparent in P at all, i.e., m; = 0.
If | # 1, then p*™ = p* which is true if and only if m; = 1 noting that m; = 0 as well,

if S; is not apparent in P.
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Therefore, we have shown that the condition(iii) is satisfied. ]

Converse of this theorem follows easily by following the calculation for |Kg(N)|, and

using the fact that each S; apparent in P can be taken as a minimal normal subgroup
of G.

]

Remark 3.3.3. Note that for our example Ay = Vi x C3 when p = 2, we have Vj
is elementary abelian, Cc,(Vy) = 1 that is to say the action of C5 on Vy is faithful,
and as an FoC3-module, V; = Sy where Sy is the 2—dimensional simple FoCs-module

appearing once and the trivial FoC3—module Sy appears zero times.

3.4 The conjecture of Baumann on the appearence
of simple composition factors of Cpp, indexed

by p-hypo-elementary B-groups

We have reviewed notion of B-groups and the fact that the simple composition factors of
CB are precisely S¢ ¢ where G is a finite B-group. Moreover, we studied that Baumann
found out that for a p-hypo-elementary B-group H, Sy c is a simple composition factor
of Cppy. Combining these observations, and Theorem 3.2.3, it is reasonable to expect
that for a p-hypo-elementary B-group H, the only composition factors of Cpp;, are in

the form of Sy c. Baumann has a conjecture on this as follows:

Conjecture 3.4.1 ([3], Conjecture 4.24, p59). Let k be an algebraically closed field
of characteristic p and C be the algebraically closed field of characteristic 0. Suppose
H = P x Cy is a p-hypo-elementary B-group. Then, Sy y is a simple composition
factor of Cppy. if and only if V is the trivial COut(H)—module, i.e. Sgc. Moreover,
the multiplicity of Spc as a simple composition factor of Cppy is ®(1).

In this last part of this chapter, we want to disprove this conjecture by considering

the alternating group A4 which is a p-hypo-elementary B-group for p = 2. However,
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firstly, we need the following remarks and methods which can be found in [3], Chapter
4, Section 4.3. We are going to apply her method to find all simple composition factors
of Cppy indexed by finite groups C4, Cs, C3, V, and associated simple modules when
p = 2. However, as we will see, this method will not provide us with finding the
explicit simple composition factors indexed by Ay when p = 2. Therefore, we will
provide an alternative method to find some simple composition factors indexed by Ay
when p = 2. This method will be generalized to some p-hypo-elementary B-groups

when characteristic of &k is p to find new simple composition factors of Cppy.

Remark 3.4.2. We have the following equalities, for any finite group G:

dimeCppy,(G) = Z muvdimcSay(G),
(H\V)eCF(G)
where CF(G) is the set of pairs (H,V') where H is a subquotient of G and V is a
simple COut(H)—module, and myy is the multiplicity of Su v as a composition factor
in Cppy. (by Bouc, we know that if dimcSuyv(G) # 0 then H has to be a subquotient
of G.) On the other hand, we have

dimcCppr(G) = le(NG(P)/P)7

where P runs throught the set of p—subgroups of G up to conjugacy, and l,(Ng(P)/P)

denotes the number of conjugacy classes of p' —elements in Ng(P)/P.

The following remarks will help us to compute the dimensions of simple functors

Sa.v evaluated at some H over C.

Remark 3.4.3 ([1], Theorem 5.5.4, p91). Let G be a B — group, then dimcSqc(H) is
equal to the number of conjugacy classes of subgroups K of H such that B(K) = G. In

particular, dimcSe, c(H) is equal to the number of conjugacy classes of cyclic subgroups

of G.

Remark 3.4.4 ([1], Corollary 7.4.3, pl34). Let H be a finite group, then
dime Sz mzc.(H) is equal to the number of conjugacy classes of cyclic groups K of
H, of order multiple of m, for which the natural image of Ny(K) in (Z/mZ)* is

contained in kernel of &.
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Let us use Baumann’s method to find simple composition factors S¢ - of Cppy, where
G is a group with small order and V is a simple COut(G)—module to compute those
that are indexed by groups G = (1, Cy, C3, V4 in characteristic p = 2. The results that
we obtain will be used when we will try to find composition factors associated to the
alternating group A, for p = 2 due to the fact that if dimcSg, v (As) # 0 then G has to
be a subquotient of A4, namely the candidates for G are C4, (s, Cs, Vy and Ay itself.

Let us recall the result due to Bouc in this chapter once again, dim¢Sq v (H) # {0},
then G must be a subquotient of H.

Proposition 3.4.5. Suppose that k is an algebraically closed field of characteristic 2.
The simple biset functor Sc, v is a composition factor of Cppy, if and only if V. = C

and the multiplicity of Sc,c as a composition factor of Cppy, is 1.

Proof. We have

1 = dimcCppi(C1) = Z mpvdimeSpy(Ch),
(H,V)eCF(C1)
where C'F(C}) is the set of pairs (H,V) where H is a subquotient of C; and V is a
simple COut(Cy)—module. Now, clearly, H = C; and V' = C the trivial module. That

is to say, we have
1 = dimcCppi(C1) = me, cdimeSc, c(Ch),

where m¢, ¢ is the multiplicity of S¢, ¢ as a composition factor of Cppy. Due to Remark
3.4.3, we know that dimcSe, ¢(C1) = 1, which implies that the multiplicity of Se, ¢
is 1. Now, by finite reduction principle for biset functors, we conclude that S¢, ¢ is a

composition factor of Cpp, on CC with multiplicity 1. [

Proposition 3.4.6. Suppose that k is an algebraically closed field of characteristic 2.

The simple biset functor Sc, v never appears as a composition factor of Cppy, for any

simple COut(Cy)-module V.

Proof. We have

2 = dimcCppy(Cy) = Z muydimeSay(Cs),
(H,V)ECF(Cy)
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where C'F'(Cy) is the set of pairs (H, V') where H is a subquotient of Cy and V' is a simple
COut(H)—module. Hence, candidates for H are C and Cy. We already found that

Scy.c is apparent with multiplicity 1 in Cppy. Moreover, we have dimcSe, ¢(Cs) = 2
due to Remark 3.4.3.

We have the following picture:

Note that if there was another pair (Co, V) in CF(Cy) such that Sc, v is apparent
as a composition factor of Cppy, then since dimcSe, v (C2) = dimcV # 0, we would

have

2 = dimcCppy(Cs) < Z my,ydimeSp,y (Ca),
(H,V)ECF(Cy)

which is a contradiction. Hence, there is no simple composition factor associated with

Cs of Cppy, when p = 2. O

Proposition 3.4.7. Suppose that k is an algebraically closed field of characteristic 2.
The simple biset functor Sc, v is a simple composition factor of Cppy if and only if
V' = Cg¢, where & denotes the primitive character & : (Z/3Z2)* — C*. Moreover, the
multiplicity of Scy ., 18 1.

Proof. When p=2, we have
3 =dimcCppi(Cs) = Y muydimeSuv(Cs),
(H,V)eCF(Cs)

and the candidates for H is C; and Cj.

By Theorem 3.1.3, we know that Sc,c,, Is a simple composition factor of Cppy
with multiplicity 1 and we already saw that S¢, ¢ is apparent with multiplicity 1 as
well. Moreover, by Remark 3.4.3 and Remark 3.4.4, we have dimcSe, ¢(C3) = 2 and

dimcSe, ., (C3) = 1. Then, we have the following picture:
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p 2
dimcscl’((j(C;g) 2
dim(CSCg,(CQ (Cg) 1

dimcCppr(Cs) | 3

Thus, by similar argument above, we find that there cannot be any other composition

factor of Cppy indexed by (3 except Sc, ¢, which has a multiplicity 1. n

Proposition 3.4.8. Suppose that k is an algebraically closed field of characteristic 2.
The simple biset functor Sy, v is a simple composition factor of Cppy, if and only if V
is the trivial COut(Vy)—module. Moreover, the multiplicity of Sy, c is 1.

Proof. Firstly, let us start with determination of dimcCppy(Vy), noting that we are
taking the p — subgroups of V4 up to Vs-conjugacy, we have:

char(k) | P | Nu(P) | Nu(P)/P | b(Nui(P)/P)
Cy Vi Vi 1
p=2 Cs Vi Cy 1
C? Vi Cs 1
Cs Vi Cs 1
Vy Vi C 1

Thus, we have dimcCppy(Vy) =5 when p = 2.
So, we have

5 = dimcCppy(Vy) = Z mpyvdimeSgy(Va),

(H,V)eCF(Vy)

where C'F(V}) is the set of pairs (H, V') where H is a subquotient of V, and V is a
simple COut(Vy)—module. Hence, the candidates of H are Cy, Cy, Vj.

We already found that S¢, ¢ is a composition factor of Cpp,, with multiplicity 1, and

Sc,.v never appears for any simple COut(Cy)-module V.
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Moreover, we already know that since V; = Cy x Cy, V, is a B-group. Therefore,
by Theorem 3.2.2, Sy, ¢ is a composition factor of Cppy, yet we do not know the
multiplicity.

Now, we have dim¢Se, ¢(Va) = 4 by Remark 3.4.3 and dim¢Sy, ¢(Va) = dimc(C) =

1. The picture is as follows:

p
dim@SChC(V4) 4
dz’m@Sw,@(VL;)

dimcCppy,(Va) | 5

By similar argument as above, we found that Sy, y is a composition factor of Cppy,
if and only if V' is the trivial COut(Vy)-module. Moreover, the multiplicity of Sy, ¢ is

1 as a composition factor of Cppy,. [

Now, we are ready to construct our example to disprove Baumann’s conjecture:

Theorem 3.4.9 (The alternating group Ay = Vy x Cs). If k is an algebraically closed
field of characteristic p = 2, then both Sa, c and Sa, c_, are the only simple composition

factors associated to Ay and their multiplicity is 1.

Proof. Firstly, mnote that we have Aj—conjugacy classes: [1]4, = {1},
[(123)]4, = {(123),(142),(134),(243)} and [(132)]4, = {(132),(124), (143),(234)} and
[(12)(34)]a, = {(12)(34), (13)(24), (14)(23) }.

We have the following results for H = Ay,

char(k) | P | Na,(P) | Na,(P)/P | l2(Na,(P)/P)
Cy Ay Ay 3
p=2 Cy Vi Cy 1
Vi Ay Cs 3
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Thus, dimcCppy(Ays) =7 when p = 2. Hence, we have

7 = dimcCppr(Ay) = Z mpyvdimeSa,y(Ag),

(H,V)eCF(As)

where C'F(Ay) is the set of pairs (H,V) where H is a subquotient of A, and V is a
simple COut(H)—module. The candidates for H are Cy, Cy, C3, Vy, Ay.

By remarks above, for H = (', Cy, C3,Vy, we know that we only have the simple
composition factors : S¢, ¢ with the multiplicity 1, 5037(% with the multiplicity 1, and
Sy, c with the multiplicity 1.

We need to compute dimensions of these simple biset functors evaluated at Ay.

Let us recall the subgroup lattice of Ay:

A4
SN / AN
\\ 7 Cvl 7 03
By remark 3.4.3, we have dimcSe, c(A4) = 3 which is the number of conju-

gacy classes of cyclic subgroups of Ay, namely, C,Cs, C5 since all Cy groups are
Ay-conjugates and so are Cj groups of Ay. Moreover, dimcSc,c,, (A4) = 1, and
dimc Sy, c(As) = 1 because 5(C1) = C1, B(C2) = C1, B(Cs) = C1, B(As) = Ay, there
are only one subgroup K of A4 such that 5(K) = V,, and this is only K = V} itself.
Moreover, since Ay is a p-hypo-elementary B-group, by Theorem 3.2.2, we know that
Sa,,c is apparent as a composition factor of Cppy, yet we do not know the multiplicity.

Thus, we have the following result:
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p
dimeSc, c(As)
dimcScy c,, (As)
dime Sy, c(As)
dimcSa, c(As)

— = = W N

dimcCppr(Ag) | 7

This implies that we must have simple composition factors indexed by A, and a
simple COut(A4)-module V. We have Out(A,) = Cy. This V' can be either C in which
case we would say ma, c = 2, or V = C_; in which case we would conclude that Sa, ¢

and Sy, c_, are both the only composition factors of Cpp;, with each of multiplicity 1.

For this part, Let F|4,| be a full-subcategory of the biset category CC whose objects

are finite groups of order less than or equal to the order of alternating group, |Ay|.

Moreover, we know that

[QA4,I?:2] - {<Cl7 1)7 (Clv (123))7 (Cb (132>)7 (027 1)? (VZlv 1)’ (‘/47 (123))7 (V;lv (132)>}

Claim: M, = spanc < F}' 95+ Fi 159 > and My = spanc < F{* 10q —F 150 >

are both simple biset functors on the subcategory F4,).

Proof. Since every biset functor can be thought as a module of the quiver algebra

@ B(H,G), and due to the fact that elements of biset Burnside rings are gen-
VH,GE]'-‘AM

erated by five elementary maps, namely, induction, inflation, isogation, deflation and
restriction, we only need to check that M; and M, are closed under the action of those

maps. Since both M; and M, are formed by the primitive idempotents Fx24(123

F“/A'ﬁ(l32)7 it suffices to consider the effects of these maps on the primitive idempotents

A A .
F vﬁ(ms) and F, v4‘f(132)-

) and

(i) There is no induction nor inflation of the primitive idempotents F{éf(us) and
F\Z%(132) on the category F|a, because there is no group in this category where

Ay is its subgroup or its subquotient.
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(i)

(iii)

Due to restriction formula, for any proper subgroup K of Ay, ResA“F‘f“(l%) 0

and ReSIA}4FA4(132) = 0.

For deflations, we have non-trivial normal subgroups of A4 are V; and Ay. In
this chapter, we shall compute deflation via the linearization map. Note that
in Chapter 4, we will show that these deflations are zero by using Ducellier’s

deflation formula.

Ay A
Claim: DefA4/A4F =0 and DefA 4 v s = 0-

L(123)

Proof. Firstly, we note that lin A4(€£i (123)) FA and we have, recalling the

Vi, (123)
deflation formula for the primitive idempotent basis of CByx (Ay),

FA

Ay C1
Def Vi,(123) = Aeci

As/As

INay/a,(AsAs/A4,(123)Ay):AgAg/As|
[Nay(Aq,(123)):Aq]

where A = 5k>< (A4/(A4 N A4), A4, (123)), and,

\O(A4)(il4m,44)’ Z [UN(123)O(A4)| (U, Ag).

U<Ay:
U(A4NAs)=Ay

BE(Ay)(AsNAy), Ay, (123)) =

We can see that U runs through all subgroups of A4, that is,
U={C,,Cy,C3,C3 C3,C3 C3,C3,Vy, Ay},

and we have O(Ay) = Vj, and the coset (123)V, = {(123), (134), (243), (142)},
then we have |Cy N (123)Vy| = 0, |Cy N (123)Vy] = 0 and |V N (123)Vy| = 0,
|C3 N (123)V,] = 1 and |A4 N (123)Vy| = 4. Thus, we have

1
|O(A4)(As N Ay)|

B (Au/(ArN Ag), Ay, (123)) = (4- p(C3, Ag) + 4 - p(Ag, Ay)).

Now, due to properties of Mdbius function, we know that > u(H,K) =0
H<F<K

for H < K and u(G,G) = 1 for any finite group G. Thus, letting H = Cj
and K = Ay, we know that u(Cs, Cs) + u(Cs, Ay) = 0. Hence, u(Cs, Ay) = —1.
Moreover, also p(Ay, Ay) = 1. It shows that 8* (A4/ (A4 N Ay), Ay, (123)) = 0.

Now, by the linearization map, we obtain the required result.

Visually, we have the following result:
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Ay
N Def A/

€44,123)

linA4 linA4/A4

A
FV: (

123) Defﬁi/Azl

Similar argument shows that Defﬁ;1 / A4F‘2“(132) =0 as well.

Claim: Def? , F4 =0 and Def*, FA4

Ag/Vat Vg, (123) Ag/Va' Vi, (132) T 0.

A
= F V44 and we have

Proof. As above, we have lz'nA4(e£i( (123)

123))

Deflt, a4

_ Ca
Ayvatvy(a23) = A€ 1y

where

_ INayvi(AdVa/ Vi, (123)Vy) - AgVa/ Vi
|Na,(Ay, (123)) : Ay

A B¥ (Ag)(Ay N V), Ayg, (123)),

and,

|O(A4)(1144m1/;1)| Z |UN(123)O(A4)| (U, Ay).

U(A4ﬁV4):A4

B (A4/(AaNVa), Ay, (123)) =

Thus, U runs through the subgroups {C3,C2 C3, C4, As}. Similarly to above
calculations, we have

B (Aa/ (A1) A, (128) = 15 A4)(}44 (A +4ep(A1 A1) =0

Now, the linearization map, we get the required result.

Similarly, we can conclude that Def4* F\24(132) = 0.

Ayg/Va

]

Finally, we have to show that for any U € Aut(A4), we have Iso(¥)M; C M; and
ISO(\IJ)MQ g MQ.

However, we have Aut(A,) = S, that is to say each automorphism comes from

a conjugation by an element of Sy, and clearly Inn(A,) = A4. Thus, Out(A,) =
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(s, i.e. the non-identity automorphism comes from a conjugation by an odd

permutation in Sy.

Since the pairs (Vy, (123)) and (V4, (132)) are taken up to G—conjugacy, instead
of all automorphisms in Aut(A,), we can just take ¥ to be in Out(A,). We may
take U = c(12), conjugation by the element (12). Moreover, note that V, is a

characteristic group of Ay.

Then, we have
A A A A
130(0(12))}7‘/:(123) = v4f(132) and 130(0(12))Fu%(132) = FV4%(123)~

Therefore, we have Iso(¥)M; = M; and Iso(V)My = M.

Thus, we know that both M; and M, are biset functors on Fj4,. It is clear that

both of them are simple.

Note that, for any K < Ay, M;(K) = 0 and M,(K) = 0, thus A, is the minimal
group for both M, My, and M;(A;) = C and Msy(Ay) = C_;. That is to say, M; =

SA4,(C and M2 = SA4,(C,1 on .F‘A4|.

Now, since S4,c and Sy, c_, are simple composition factors of Cpp, on Fa,, it
follows from the finite reduction principle for biset functors that they are composition

factors for Cppy on the biset category CC.

]

Remark 3.4.10. Noting that Ay is a p-hypo-elementary B-group for p = 2, and by
Theorem 3.4.9, we know that the simple biset functors Sa,c and Sa,c_, are compo-
sition factors of Cppy, so Conjecture 3.4.1 does not hold. We shall see in the last
chapter that we can generalize the idea in the construction of Ay example to some
p-hypo-elementary B-groups so that we aim to find new composition factors of Cppy

indezed by those p-hypo-elementary B-groups.
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Chapter 4

p-Permutation functors and D-pairs

Throughout this chapter, we let C be the algebraically closed field of characteristic 0

and k£ be an algebraically closed field of characteristic p, prime.

In chapter 2 and 3, we studied the biset functor of p-permutation modules denoted
by Cpps. which is defined to be a C-linear functor from the biset category CC to the
category of finitely generated C-vector spaces C-Mod. In this chapter, we shall study
the notion of p-permutation functors introduced by Maxime Ducellier. He studied the
p-permutation functor of p-permutation modules which we shall denote by Cpp PP,
and the simple p-permutation factors of Cpp,P~P¢™. Along the way, we shall review
the notion of D-pairs introduced and classified by Ducellier. We shall see that the
classification of D-pairs are precisely the same as the classification of p-hypo-elementary

B-groups.

4.1 The p-permutation category CCPPk

We begin with the following definitions which can be found in [5].

Definition 4.1.1. Any (kG, kH)-bimodule M can be seen as a k(G x H)-module with
the action defined as

g-m-h=(g,h7")-m.
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M s called a p-permutation (kG,kH)-bimodule if it is a p-permutation k(G x H)-
module. We denote the Grothendieck group of p-permutation (kG,kH)-bimodules by
por(G, H) which is isomorphic to ppp(G x H). Moreover, we can extend the coefficients

to C in the usual sense: Cppy(G, H) := CQ) ppr(G, H).
Z

Definition 4.1.2 (Composition of two p-permutation bimodules). Let G, H and K be
finite groups, and X be a (kG,kH)-bimodule and Y be a (kH,kK)-bimodule. Then,

we define the tensor product
XoV =X@pY =XQY/~,
where ~ s defined by
thy~zxz@hyVee X,yeY,he H.
X Qg Y has a (kG, kK)-bimodule structure with the action defined by
g-(x@y)-k:=(g-z@y- k),

foreveryge G, ke K, andx®y € X Qrp Y.

Letting X to be a (kG, kH)-bimodule and Y to be a (kH, kK )-bimodule, we natu-
rally have the following bilinear map from pp (G, H) x ppr(H, K) — ppr(G, K) given
by linearly extending the following map

(X IY]) = [X] o [Y] = [X @ Y],

Now, we shall define the p-permutation category and p-permutation functors introduced

by Ducellier:

Definition 4.1.3 (Ducellier2015). [the p-permutation category] The category CCPPx is
defined as follows:

(i) The objects are finite groups,
(ii) For G,H € Obj(CCPP*), Homcerrw (G, H) = Cppr(H, G),

(ZZZ) For [X] € HOWCPPk(G, H) and [Y] S HOTXL(CCPpk(H, K), [X] o [Y] = [X RrH Y]
where X @iy Y is defined as above.

Note that this bilinear map gives ppi(G, G) a ring structure. Thus, we conclude
that Cppi(G, G) is a C-algebra.
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4.2 Remarks on p-permutation functors

Definition 4.2.1 (p-permutation functor). A C-linear functor defined from
Ccrrr to C-Mod, the category of finite dimensional C-vector spaces, 1is called

a p-permutation functor.

Definition 4.2.2 (the p-permutation functor of p-permutation modules). The p-

permutation functor CpppP~P"™ is defined as follows:

(i) for any G € Obj(CCPP*), CppiP~P"™ (G) := Cppi(G, 1) = Cppi(G),
(i1) for [U] € Homeerew (G, H), we define
Cppi P ([U]) : Cppil® P (G) — Cppp? "™ (H),

given by [V] = Cppp? P ([U])([V]) := [U] e [V] = [U & V].

We shall review the definition of simple p-permutation functors by Ducellier.

Definition 4.2.3. (Minimal group) Let F' be a p-permutation functor. A group H is
said to be minimal for F if F(H) # 0 and for each group K such that |K| < |H|,
F(K)=0. The class of minimal groups for F is denoted by Min(F').

Definition 4.2.4. Let G be a finite group, we define the essential algebra as follows:
Cppy, "™ (G, G) = Cppi(G, G) /1,
where I is two sided ideal of Cppy(G,G) such that

I= > Cpp(G,H)oCppe(H,G).

|H|<|G]

Definition 4.2.5. (Simple p-permutation functors S¢, """ ) Let G be a finite group,
and V' be a simple Cppy, "™ (G, G)-module which can be seen as a Cpp} "™ (G, G)-

module by inflation, then we define the functor

S (Honcem G, ) ® VIR
Cppr(G,G)

where R := {3 ;i @ v;|Vp € Cpp(G, H), > (i) - vi = 0}
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Theorem 4.2.6 ([5], Theorem 2.16). Let G be a group, and V be a simple module
for Cppp ""™ (G, G) then Sg ™™ is simple. On the other hand, let S be a simple

p-permutation functor, then there exists a group G, and a simple Cpp? """ (G, G)-
module V' such that S ~ Sg, 7.

4.3 Definitions of a pair (P, s) and D-pair

Ducellier has provided classification of simple composition factors of the p-permutation

functor CpppP~P¢™; however, we need to define some further notions:

Definition 4.3.1 (Pair). A pair (P,s) is defined by a p-group P and a generator s
of a cyclic p -group acting on P. We denote the semidirect product P x (s) by (Ps).
If we let G to be a finite group, and P to be a p-subgroup of G with s € (Ng(P)),,
then the pair (P, s) is identified with an action of s on P induced by conjugation by s.
Moroever, a pair (P, s) is contained in G if (Ps) < G.

Definition 4.3.2 (Isomorphic pairs). Let (P,s) and (Q,t) be two pairs. A pair (P, s)
is isomorphic to the pair (Q,t) if there exists ¢ € Q, a group isomorphism ¢ : P — Q
and U : (s) — (i) such that

U(s) =9 and ¢(s-u)=V(s)-p(u),Vu e P.
We denote isomorphic pairs by (P,s) ~ (Q,1t).

Proposition 4.3.3 ([5], Proposition 2.3.3., p15). The followings are equivalent:

1. (P,s) ~ (Q,1),

2. There exists a group isomorphism f : (Ps) — (Qt) such that f(s) is conjugate to
t.

Definition 4.3.4 (Quotient of a pair). Let (P,s) and (Q,t) be two pairs. We say a
pair (Q,t) is a quotient of a pair (P,s) if there exists K < (Ps) such that (Q,t) =
(PK/K,sK), and we denote it by (P,s) >> (Q,1).

Definition 4.3.5 (D-pair). A pair (P, s) is said to be D-pair if for every non-trivial

normal subgroup N of G, we have De <§zi/NFI<JiS> = 0 that is to say mpsn = 0.
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4.4 The simple composition factors of the p-

permutation functor of p-permutation modules

(Cppkp—perm.

Although we have no full classification of simple composition factors of the biset functor
of p-permutation modules Cppy, thanks to Ducellier, we have information about all of
the simple composition factors of p-permutation functor of p-permutation modules
CpppP~P™™- . Similar argument to Bouc’s classification of simple composition factors
of the biset Burnside functor who showed that they are precisely Sy ¢ where H is a
B-group, Ducellier has shown that the simple composition factors of the p-permutation

p—perm

functor Cppy, - are indexed by D-pairs as follows:

p— perm

Here, we denote e}, as the subfunctor of Cpp,P~P¢"™ generated by the primitive

idempotent F ;’S ), We denote the representatives of isomorphism classes of D-pairs by

[D-pairs].

Theorem 4.4.1 ([5], Proposition 5.2.1).

1. Let (P,s) be a D-pair. Then, the subfunctor e "™ has a unique mazimal

subfunctor
jgsperm _ Z eQ tperm )
(Q;t)€[D-pair]
(Q,1)>>(Ps)
(Qt)A(P,s)
The quotient functor ep '™ [ jp P"™ is isomorphic to Sp pe'r‘Wm - where

Wr.= @ CESY.

(Q.1)~(P,s)
(Q1)=(Ps)

2. If F < F' are subfunctors of Cppp?~P*"™ such that F'/F is simple, then there
exists a unique D-pair (P, s) € [D-pair] such that ¢, "™ < F', and e}, '™ &

F'. In particular, e /"™ +F = F epd T NF = g and F' | F ~ Sppfeglzg

Theorem 4.4.1 tells us that the simple composition factors of the p-permutation
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functor of p-permutation modules Cpp?~P"™ are precisely the simple p-permutation

—perm.

functors Sf psywwp, Where (P, s) is a D-pair.

Ducellier has also found the dimensions of these simple p-permutation functors eval-
uated at some finite groups:

Theorem 4.4.2 ([5], Theorem 5.2.4, pl05). Let (P,s) be a D-pair.  Then,
dimCnggeg,zs(H) is equal to the number of conjugacy classes of pairs (Q,t) contained
in H such that (Q,t) ~ (P, s) where (Q,t) denotes some quotient of the pair (Q,t).

Corollary 4.4.3 ([5], Corollary 5.2.5, pl06). Let H be a group. Then,
dimeSg, ¢ " (H) is equal to the number of H-conjugacy classes of pairs (Q,t) con-
tained in H such that Q is cyclic and t € Cy(Q).

4.5 The classification theorem of D-pairs

Now, we shall review the classification theorem of D-pairs thanks to Ducellier:
Theorem 4.5.1 ([5]). A pair (P, s) is a D-pair if and only if

(i) P is elementary abelian,

(it) Coo(P) = 1,

111) Fach isotypic component of F,((s))- module P is of multiplicity at most 1 if it
p
corresponds to a non-trivial simple module, of multiplicity 0 or 2 if it corresponds

to the trivial module.

Proof. Firstly, we suppose that we are given a D-pair (P, s). Then, by definition, we
know that for every non-trivial N < G = (Ps),

mrex = AT o Cem@PY) =0 )

Q<P
Q*=Q
(Qs)N=(Ps)

STEP 1: P is elementary abelian. Assume for a contradiction that P is not

elementary abelian group. Recall that the Frattini subgroup ®(P) of a p-group P is
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trivial if and only if P is elementary abelian. Now, we shall start with the following

result:

Proposition 4.5.2. Let Q < P < G and s € Ng(P) such that Q° = Q, then if
®(P) £ Q, then we have u((Q, P)*) = 0.

Proof. By definition, we have u((Q, P)®) = X((Q, P)®) where (Q, P)” := {K|Q < K <
Pst. K* = K}

We define the map ¢ : (Q, P)° — (Q, P)° by sending H — H®(P).

¢ is well-defined: We have Q < H < P and H* = H. Then, since ®(P)°= ®(P),
we have (H®(P))® = H®(P). Moreover, since ®(P) £ Q, we have Q < HP(P).

Claim: H®(P) < P.

Proof of the claim: Suppose that H®(P) = P. Then, we have P = (h;, ®(P)|h; €
H). Now, we know that H < P, since every proper subgroup of a finite group is
contained in a maximal subgroup, we have that there exists a maximal subgroup M of
P such that H < M. Moreover, we obtain ®(P) < M because the Frattini subgroup is
defined to be the intersection of all maximal subgroups. However, then it would imply
that P = (H,®(P)) < M which is a contradiction since M is maximal. Thus, we have
H®(P) < P, as claimed. Thus, the map ¢ is well-defined.

Now, we consider the poset Y = I'mp and we let X = (Q, P)*.

For this part, we shall firstly recall the following two well-known results which can
be found in [10]:

Lemma 4.5.3. Let f and g be two poset maps from X toY such that f and g are
comparable. Then, the induced maps of chain complezes of C.(f,Z) and Ci(g,Z) are
homotopic as well as the maps Cs(f,Z) and C.(g,7Z).

Proof. We may assume that f(z) < g(z) for every x € X. We define the following
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map,

$n: Co(X,Z) = Crir (Y, Z)
(20, X1, ...) Ty) Z (=) (f(@0), oy f(23), 9(20), .y gla),

and we replace the term (f(xg),..., f(x;), 9(x;), ..., g(x,)) by zero if it is not strictly

increasing.

Then, one can see that we have d’, | o s, + s,_10d; = Cy(g,Z) — C,(f,Z), that is
to say, Ci(f,Z) ~ Ci(g,Z). The second part is the same, where we take s_; =0. O

Claim: C.(X,Z) and C,(Y,Z) are homotopic.

Proof: To show that these two induced chain complexes are homotopic, we shall

only find two chain maps
a,: Cu(X,Z) = C(Y,Z) and B.:C.(Y,Z)— C.(X,Z)

such that o, o 8, ~ idc,(vz) and B, o a, =~ idg,(x,z), Where ~ refers to homotopy

equivalence.

Recall that we have two poset maps ¢ : X — Y and the inclusion incy : Y — X as
stated above. Now, since we have for every element y € Y = I'mp, there exists H € X
such that y = H®(P), we obtain ¢ o incy(y) = ¢(y) = y®(P) = HO(P)P(P) =
H®(P) = y. Thus, the map p oincy = idy. It is clear that Ci(p,Z) o Cy(incy,Z) =
Ci(p oincy,Z). Now, by Lemma 4.5.3, it is straightforward that the induced chain

maps C,(y o incy,Z) ~ idc, (v,z)-

Conversely, note that for any H € X = (Q, P)*, we have idx(H) = H < incy o
©(H) = H®(P) because of ®(P) £ @ and by the choice of H ie. idx < incy o
are comparable poset maps. It follows once again from Lemma 4.5.3 that the induced
chain maps C.,(incy,Z) o C\(¢,Z) = C.(incy o ¢,Z) ~ idc,(x,z)- Thus, we conclude
that Cy.(X,Z) ~ C.(Y,Z).

The next claim is an application of the fact that whenever a poset owns smallest or
maximal element, then it is contractible that is to say it is homotopy equivalent to a

poset formed by a singleton.
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Claim: C.(Y,Z) and C,({Q®(P)},Z) are homotopic.
Proof:
Recall that Y=Im¢ where ¢ : (Q, P)° — (Q, P)’ by H — H®(P).

Note that since ®(P) £ @, we have Q®(P) € (Q, P)’ so ¢(Q®(P)) = QP(P) €Y,
noting that Q®(P) is the smallest element of Y.

Define poset maps a : Y — {Q®(P)} given by HP(P) — Q®(P) and [ :
{QP(P)} — Y given by Q®(P) — Q&(P).

Now, it is clear that o 8 = idgep). Thus, by Lemma 4.5.3, we obtain that
C'*(oz, Z) (¢] C*(ﬁ, Z) = C'*(a o /B, Z) ~ 'L.dC*({QCD(P)},Z)-

On the other hand, for every element H®(P) € Y, we have o a(HO(P)) =
B(QP(P)) = QP(P) < idy(HP(P)) since QP(P) is the smallest element of Y. Thus,
by Lemma 4.5.3, we have C.(,Z) o Cy(a, Z) = C.(B o o, Z) ~ ide., ({Qa(P)},z)-

Thus, we obtain that C.(Y,Z) ~ C.({Q®(P)},Z). Then, we have H,(Y,Z) =
H,({Qe(P)},Z).

But, we have H,({Q®(P)},Z) = 0 for every n # 0, and Hy({Q®(P)},Z) = Z.
Thus, X(Y) = 0 implying X(X) = u(X) = u((Q, P)?) = 0, as claimed. O

Now, we turn back to our deflation numbers:

Since for every Q < P,Q® = @, whenever ®(P) £ Q, u((Q, P)*)=0, we have

IEl
= P)?).
mpsn =0+ N O () [Ca (5] @(P)E<Q<P |Co(s)|n((Q, P)*%)
<Qs)N::(Ps)

Now, we make a small alteration:

Claim: Given N < (Ps), Q° = @, then (Qs)N = (Ps) if and only if QN = PN if
and only if Q(N N P) = P.
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Proof: The second assertion is clear by using the fact that Q < P < QN = PN.
Thus, we shall only provide the proof of the first if and only if.

(=): Suppose that (Qs)N = (Ps). Then, for any (p,1) € (Ps), there exists n € N
and (g, s%) € (Qs) such that (¢, s')-n = (p,1). We also have n = (n’, s7) since N <(Ps),
for some n' € P and s’ € (s). Then, we have (gs'n's™",s"77) = (p,1) that is to say
qs'n's™ = p € P, note that n” = s'n's™" € P since P <1(Ps). Moreover, since N is also
normal subgroup of (Ps), we have (1,s7) - (n',s7) - (1,s77) = (s'n's™7,1) € N. Thus,
we have for any p € P, p = qn” wheren” € NN P ie. P C Q(N N P). The converse
inclusion is clear. Thus, we obtain P = Q(N N P).

(«<): Suppose that Q(N N P) = P. Clearly, (Qs)N < (Ps). Let (p,s') € P x (s).
Since Q(N N P) = P, there exists ¢ € @, and n” € N N P such that p = ¢n’.
Moreover, since N N P < (Ps), there exist n’” € N N P such that n” = s'n’s~*. Thus,
(p,s') = (qn”,s") = (¢q,8) - (n',1) € (Qs)N. Then, (Ps) < (Qs)N, as claimed.

Claim: Let ®(P) < Q < P with Q°* = @ and Q(N N P) = P, then we have
u(Q, P)*) = u((Q/2(P), P/ (P))**™).

Proof: For this part, we must only show that (Q, P)° ~ (Q/®(P), P/®(P))**".
Let H € (Q,P)°. Now, since @ < H < P and ®(P) < @, we have &(P) < H.
Moreover, clearly, since H is stabilized by s, (H/®(P))**") = (H/®(P)). Thus,
H/®(P) € (Q/®(P), P/(P))™".

Conversely, given X € (Q/®(P), P/®(P))**™ we claim that X®(P) € (Q, P)".
It is clear that we have @@ < X®(P). Moreover, if X®(P) = P, then X = P by the
definition of Frattini subgroup, which is a contradiction by the choice of X. Thus,
we have XP(P) < P. Now, clearly, we have (X®(P))* C XP(P). For the converse
inclusion, we have X*®") = X Thus, X**)®(P) = X®(P) and by using the fact
that ®(P) < (Ps),

s®(P)Xs'®(P)®(P) = s®(P)XP(P)s™! = sXP(P)s™! = XO(P).

Thus, we reduced the deflation number into
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o S (Cols)ul(@/R(P), PIa(P) ).

mpsN =
|N N <S>||CG(3)| Q/®(P)<P/®(P)

(Q/®(P))**P)=Q/®(P)
QN/®(P)=PN/®(P)

Now, we will refer to the following theorem:

Theorem 4.5.4 ([17], Theorem 5.3.15, page 188). Let A be a p -group of automorphism
of a p-group @, and let N be an normal subgroup of Q) which remains invariant under
A. Then, Cg/n(A) is the image of Cg(A) in Q/N.

Now, letting A = (s), and since N = ®(P) < (@), we have a surjective map by the
theorem above, 7 : Cg(s) = Cq a(p)(s) given by x — x®(P). Moreover, we have the
inclusion i : Co(s)N®(P) = Co(py(s) — Cg(s), and note that we have moi = 1. Thus,

we obtained the following short exact sequence:

i

1 — Cq>(p)(8) — OQ(S) I» CQ/@(p)(S) — 1.

Then, we have [Cq(s)| = |Cap)(s)||Cqjap)(s)|. Therefore,

oo IsllCar(s)] ) -
PN = TN A S OS] Q/@(ng/w) |Cqrap)(8)|n((Q/P(P), P/®(P))*™).

(Q/®(P))**P)=Q/®(P)
QN/®(P)=PN/®(P)

We denote

OPsN = > |Casar) (5)|u((Q/®(P), P/2(P))**™).
Q/®(P)<P/®B(P)

(Q/2(P))**P=Q/2(P)
QN/®(P)=PN/®(P)

Now, we assumed that P is not an elementary abelian group, i.e., ®(P) # 1. Since
(P,s) is a D-pair, we have for every 1 # N < (Ps), mpsy = 0, which implies that
ops,y = 0. Now, letting N = ®(P), we have op o) = 0. But note that since

Tp/o(P),sd(P),1 = OPsa(P), We would have op/o(p)sap),1 = 0 which cannot be true
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because mpjo(p)sop)1 = 1. Therefore, we must have ®(P) = 1 ie. P must be

elementary abelian, as required. Thus, we have

opsn =Y |Cq(s)|u((Q,P)").

Q<P

S:

QN=PN

STEP 2: CALCULATION OF op; n

Note that since every elementary abelian p-group P can be thought as an F,-vector
space, and since P® = P, we can think P as an [F,(s)-module. Moreover, any subgroup
Q) < P with Q® = @ can also be thought as an [F,(s)-submodule of P. Since p 1 |s|,

every [F,(s)-module is semisimple.

Now, we shall review the following fact:

Lemma 4.5.5. For any H < P with H> = H, P and s as above, if P=P, & ... d P,
where P; denotes the homogeneous components of the IF,(s)-module P, then H = (H N
P)®...®(HNPF,) and HN P,’s are homogeneous components of the submodule H.

Proof of the lemma: Suppose that P = @ S; where S; is simple F,(s)-module.
Clearly, H is an FF,(s)-submodule of P. By semisimplicity, H can be written as a
direct sum of homogeneous components, H;, each corresponding to non-isomorphic
simple modules S;. Clearly, H; C P, and H N P; is a sum of S; by Jordan-Hélder
Theorem, so H N P; C H;. But then, we have H; = H N P;, as claimed.

Now, we shall reduce the calculation of ops n into much smaller pieces, this result

holds for every pair (P, s) where P is elementary abelian.

Claim: Let (P,s) be a pair, with P elementary abelian. Let G = (Ps), and
N < (Ps). Then, we have

Ops N = | | OP;,s,N;»
i

where P = P, & ... @ P,, P;’s are homogeneous components of F,(s)-module P, and
NNP=(N)®...® (N) with N; = (N N P;)’are homogeneous components of [F,,(s)-
module N N P.
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Proof of the claim: Since both NV and P are normal in (Ps), we have (NN P)* =
NN P,so NN P can be thought as an F,(s)-submodule of P. Now, by lemma above,
we obtain the corresponding homogeneous components N; = (N N P;). Now, we are

asked to prove the following equality:

t

Yo Ce6)e(@, Py =TT > 1Ca)u(@i P)).

Q<P =1 Q.,<P,
Q5=Q Q3=Q;
Q(NNP)=P Qi(N;NP;)=P;

It is clear that for a given () < P, as on the left hand side, we can obtain the cor-
responding ();’s by letting @); = @ N P;. Conversely, given such @;’s, we can clearly
obtain @ = @y X ... X @; which satisfies Q°* = @ and Q(N N P) = P, and clearly
|Co(s)| = |Cq,(s)|...|Cq,(s)|, by making use of the fact that P, N P; = 1 whenever

i 7.
Moreover, by the product rule, we have

p((@, P)°) = p((Qu X . X Qp, Py X o X P)°) = p((Q1, P1)%)..pn((Q, B2)°).

Thus, we have the desired equality.

Now, it requires us to calculate op, s v;.

Proposition 4.5.6. Let (P, s) be a pair with P elementary abelian and N <(Ps). We
have opsn = [lop sn, where P = PL&® ... & P, and NN P = Ny & ... & N; with

P, = GZB S; and N; = Gé S; with S; = Fps;. Then, setting ¢; = p*, we have,

J=1 Jj=1
|Cr(s)] if  a;=0,

opsN; = Pl —phiT?) (1 —pmnh) df  a; #0 and S; is trivial,
(1- qzm_l)-- (1—¢g"") if a; #0 and S; is non-trivial.

Proof of the proposition: Recall that op, s n, = > |Co,(s)|u((Q:, B;)®).
Qi<P;
Q7=Q;
QiNi=P;

Firstly, we define an IF)-homomorphism W : F),(s) — Endg,(5)(S;) by a = ¢, : S; —

S; which sends x — a - = for every x € S;. The well-definedness of W is clear.

o8



Now, note that since S; is a simple F,(s)-module, by Schur’s lemma, Endg, ) (S;) is
a division ring. Moreover, since S; is finite, Endg, () (S;) is finite, so Endg, s (S;) is a

field.

Moreover, since S; is a simple F,(s)-module, it is cyclic i.e. §; = (x) := {bz|b €

Fy(s)}-
Claim: Im(V) is a field.

Proof: Clearly, Im(V) is a ring with multiplication ¢, - ¢» = @ap, and by finiteness
of Endg,(S;), we know that Im(¥) is finite. Thus, it is only required to show that
Im(¥) is a division ring. Thus, let ¢ € Im(V), i.e. there exists ac F,(s) such that
p:S; — S; given by x — a - x where z is the generator of S; as defined above. Now,
let a-x = 2, by simplicity of S;, there exists b € F,(s) such that = b- . But then,

ar = & implies ba - z = bz’ = z, and by commutativity, ba - © = ab -z = .

Let T : S; — S; be such that x — bz. Then, we have (¢ - Y)(x) = ab-x = = and
conversely, (T - ¢)(z) =ba -z =x. Thus, T ¢ = ¢ T =1idg,. Since, every element is
invertible, and by finiteness, we obtain that Im(W) is a field.

Note that the simple [F,(s)-module S; can be thought as an Im(W)-vector space by

the action ¢, - = @,(z) = a - z.
Claim: dimy,,w)S; = 1.

Proof: We have S; = (x) := {bz|b € F,(s)}. Then, we shall see that {z} forms an
Im(¥)-basis of S;. Let y be any element in S;, then by simplicity of S;, there exists
b € Fp(s) such that y = bx = ¢, - v = @(x), as required. Thus, dim,w)S; = 1, and
Im(V) = 5;.

Now, denoting ord(s) = [, since F,(s) = F,[z]/(z! — 1) = [[F,[z]/m:(x), each S;
corresponding to F,[z]/m;(z) where m;(x) is irreducible polynomial over F,, so we have

S; is a field over F, i.e. for some s; € N, §; = Fs;.

The next claim will help us to express Mobius function of poset of subgroups that

are stabilized by s in terms of poset of subspaces of a particular field.
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Claim: Let @); < P, such that Qf = @Q;. Then, Q; is an Im(¥)-vector subspace of
P,. Conversely, given Im(W)-vector subspace of P;, then @; < P; and Q) = Q.

Proof: Recall that we have P, = @ S; as an F,(s)-module.

j=1

(=) : By Lemma 4.5.5, we know that @); = Qé S;, m; < n;. We showed that S; is
j=1
an Im(W)-vector space, so it follows that @);, too.

(<) : Since P, is a direct sum of S;’s, P; is Im(W)-vector subspace. Now, let (); be an
Im(W)-vector subspace of P;. Thus, @; < P;. Then, by the same argument as above,
by Lemma 4.5.5, we have ); = @ Si, m; < n,;. But since each S; is an F,(s)-module,

g=l
we have ()7 = (); as required.
Now, we will calculate op sn, = Y. |Co,(s)|u((Qi, P;)®) by induction on
Q<P
Q5=Q;
QiN;=PF,

dll’IlIm(\p)<Nz) = Qy, where ]\7z = é Sl
j=1

Firstly, suppose that a; = 0. Then, we have N; = 1. Thus, op,s1 = |Cp(s)] -
p((Bi, B)*) = |Cr(s)]

Now, suppose that a; # 0. Let Ny be a 1-dimensional Im(W¥)-vector subspace of ;.

Thus, we have

opsn = Y Co(s)n((Q,P))+ Y [Couls)lu((Qi P)°).

S=h 3=k
szvi:ﬁi Qijvi:lpi
Qi=No Qi#No

Recalling our claim above that, @;’s above are Im(¥)-vector subspace of P;.
Case(i): Suppose that s acts non-trivially on P;.
Claim: In such a case, Cp,(s) = 1.

Proof: We have Cp,(s) < P; and by definition (Cp,(s))® = Cp/(s). Thus, by
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k; n;

Lemmal[4.0.72], we have Cp,(s) = @ S; with k; < n; where P, = @ S;. Suppose that

Jj=1 7=1

Cri(s) £ 1, say 1 £ pi € Cp(s). Then, we have (1) - (1) - (57, 1) = (1,5), i
sp; 's~t = p;'. But all S;’s are simple F,(s)-modules, so having a fixed vector 1 # p; !
implies that S; corresponds to the trivial F,(s)-module. But, by our assumption, s

acts non-trivially on P;, a contradiction. Thus, we have Cp,(s) = 1.

Thus, for every Q; < P; with QF = Q;, we have Cg,(s) C Cp,(s) = 1.

We have,
O-Pi,s,Ni - Z M((QZa-P’L)S) + Z M((Q’M-PZ)S)’
Qi<P; Qi<P;
Q;=Qi Q5=Q;
QiN;=F; QiN;=F;
Qi>No Qi#No

The first component is equal to op, /N, sy, /N, and we name the second component by

A.

Note that we can rewrite A=Y u((Qs, B)*) = > > (@i P)?),

Q:<P; Ri<P;  Q;<R;
Q7 =Qi Ri=Ri Q;=Qi
QiN;=PF; RiN;=P; QiNo=R;
QZENO 7'2 0 Qz NO

because given Q; < R;, QF = Q;, Qi No = R;, Q; z Ny, we have Q;NoN; = R;N; = B,
so Q;N; = P, conversely, given Q; < P, Q¢ = Q;,Q;N; = P,,Q; # Ny, we can define

Ri = QzNO S R, then Clearly, RZS = Rz and RzNz = QzNONz = C?ZA]VZ.PZ

Now, given R; as above, and by our observation above, we know that R; is an
Im(0)-vector subspace of P;, and given @Q; < R;, Qf = Q;, QiNo = Ri, Q; #? No, Q; is
an Im(W)-vector subspace of R; that does not contain Ny, but since Q; Ny = R;, we

have that @); is a hyperplane of R;.

Now, letting dimp,w)R; = r, with [Im(¥)| = [Fps

= |5, and letting ¢; = p*
we have the number of hyperplanes of R; which does not contain Ny is equal to the
difference between the number of hyperplanes of R; and the number of hyperplanes of

- r r=l a0
R;/Ny, that is to say, L] — [ ) ] = To T o =4 -
i qi
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Thus, noting that dimy,g)Q; =7 — 1, we have

A= )" ¢ 'ul(Qi P)).
R;<P;
R:=R,
R;N;,=P;
R;>Ng

Now, note that u((Q;, P;)®) is precisely the Mobius function associated to Im(W)-

vector spaces between (); and P; by our observation above.

We need the following well-known results before continuing our calculation:

Lemma 4.5.7. Let F, be a finite field with q elements and W be an F -vector space
with dimension n. Then, we have the following equality for the Mobius function of

poset of I -vector subspaces:

u({0}, W) = (=1)"¢"".

Proof: We prove the result by induction on the dimension of W.

If n=0, then the result is trivial. Suppose now that the equality holds for any vector

spaces of dimension less than or equal to n-1.

Let Vj be 1-dimensional subspace of W. Now, the Crapo’s complementation theorem

says that,

n({0}, W) = Z (0, Wo) u(Wo, W),

Woel
where I is the set of hyperplanes of W that do not contain V. We know that the
cardinality of I is equal to the difference of the number of hyperplanes of W and the

TL n - 1 (1_qn)
number of hyperplanes of W/Vy. Thus, we have || = o ) =T
q q

(=g _ n—
(1q—q) =q" E

Thus, we have,

n({01, W) = 3 u({0}, Wo)u(Wo, W) = ¢ (—1)" gl ) (=) = (—1)"¢(3),

Woel
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proving the lemma.

Now, we have by Lemma 4.5.7, and our observation, and noting

w((Qi, Py)?) = p((0, P/Qy)°) = (_1>m—r+1qi("i’2’"“)'

Thus,

4= Z qzﬁilu((Qw B)S) = Z qg’*l(_1)ni—7"+1qi(ni_;+l).

R, <P; R;<P;
RI=R; R;=R;
RiNi=R; RiN;=P;
R;>No i>No

Noting that

14 n;—r+1\ 14 n; —r iy n; =1\ 14 n; —r
g 2 ab 2 1) 2 )

we have,

A= 3 (gt =gl ) o gt ST ey

R;<P; R;<P;
RS=R; RS=R;
K3 7
RiN;=P; RiN;=P;
> No R;>No

and now by applying of Lemma 4.5.7 for u((0, P;/R;)®) = u((R;, P;)*),

A= _qzm_l Z /”L((Riv P1>S) = _q?i_lapi/NoysNo,Ni/NO'

R;<P;
RE=R,
R;N,=P,
R;>No

. . n;—1
Then, Op;,s,N; = OP;/Ny,sNo,N;/No T A= (1 —q;" )O-Pi/NO,SNmNi/NO'

that

Now, we have dimyw)P;/No = n; — 1 and dimpy,w)N;/No = a; — 1 where Im(¥) =

F, = F,s = .S;. Thus, by induction hypothesis, we have
TP, /No,sNo,Ni/No = (1 — qi(nifl)*l)m(l _ qi(nifl)*(aifl)).
But then, we obtain,

opsn; = (1= g ) (1 =g %) (1= g™,
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as claimed.

Case(ii): Suppose that s acts trivially on P; = GZ} S; ie. S; = F, is the trivial
[, (s)-module.

Jj=1

Clearly, for every Q; < P, with Q7 = @, we have Cg,(s) = @; and pu((Q, P)*) =
w@, P).

Now, we have, letting Ny be 1-dimensional Im(¥) = [F,-vector subspace of N;,

OP;,s,N; = Z |Qilu(Qi, Pi) + Z |Qil(Qi, B)

=l i
Qi>No Qi#No

= |N0|0-Pi/NO,5N07Ni/NO +B

= PO P, /No,sNo,N;/No T+ B

since dimymw)No = 1.

We shall calculate B= > |Q:|u(Qi, P).
Qi<P;
Q5=Q;
QiN;=P;
Qi#No

By similar argument as above, we rewrite B again,

B = Z Z Qi (Qi, ).

R;<P;  Qi<R;
R;>No Q;No=R;
RiN;=P; Q;#No

Letting dimpy, ) R; = dimg, R; =7 so |R;| = p" , and then |Q;] = p"' , we obtain,

B = Z Z P (@i, Pr)

Ri<P;  Qi<R;
Ri>Nyg Q;No=R;
RiNi=P; Q;#No

= Z prt Z (Qi, F;)

R;<P; Qi<R;
R;>Ng QiNo=R;
R;N;=P; Qi#No

Now, the second sum above, namely, > u(Q;, P;) = p"'u(Q;, P;) where p"! =



r r—1
L] - [ . ] is the number of hyperplanes of R; not containing N.
p p

Moreover, by Lemma4.5.5, since dimp, P;/Q; = n; — (r—1) = n; —r +1, u(Q;,
n;—r ni—r+1
u(0, P/Qq) = (=)l ).

Hence, we obtain,

Zprlrl Qzaz)

R, <P;
R; >Ny
RN, =P,

Z p2r72 (_1)ni_r+1p(ni—2r+1>

R;<P;
R;>No
R;N,=P,

Noting that

ng—r+1\ (n;—r P ng—r\ (n;—1 n
2 —\ 2 1 )\ 2 "

we have,

R;<P;

R;>No
R;N;=P;

nl—l Z m R“ -Pz

R SPZ
>No

17,_7,

= (_pni_ )gpi/N0:5N07Ni/NO'

Now, we have

n¢72)

_ n;—1 _
opsN; = (P = P" 7 )0pyNgsNoNi /Ny = P(1 — D" 7) TP Ny sNo Ny /N -

Thus, by induction, we have

O-Pi/No,SNmNi/N() - (pn1_1>(1 _pni_3)"'(1 - pni_ai_l)'

Then, we obtain

op, s,N; = p(l _ pm—2)(pm—1)<1 . p"i_?’)...(l B pni_ai_l)
= pMi(1 —ph2). (1 —pruh,
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as required.
STEP 3: Conditions (ii) and (iii)
Claim: For a D-pair (P,s), we have C,(P) = 1.

Proof: Note that N = C,)(P) < (Ps), and N N P = 1 which implies that for every
i, Ny = NNP =1ie a = 0. But then, for every i, op, s n, = |Cp,(s)| # 0 which

means that MPs,Ca (P) # 0 which is a contradiction unless C(P) = 1.

Claim: In the homogeneous componentwise decomposition of F,(s)-module P,
namely, P= P, ® ... ® P, P, = @ S; where S; is a simple F,(s)-module, we have
=1

]7
n; € {0,2} if S; corresponds to the trivial F,(s)-module, and n; = {0,1} if S; corre-

sponds to a non-trivial F,(s)-module.

Proof: Suppose that P; is apparent in the homogeneous componentwise decompo-

sition of F,(s)- module P, with P, = @ S; where S; is a simple F,(s)-module. Thus,
j=1
S; is an [F-vector subspace of P; which is stable under the action of s,i.e. S; < P, < P

and S = S;. Then, we can take N = S; < (Ps), which implies that a; = 0 unless
k= i, and a; = dzmlm(\y)Sl =1li.e. Nl = S@ and Nk =1.

Thus, we have op, s n, = |Cp,(s)| whenever k # i, which means that since op s v = 0,

we have necessarily op, s v, = 0. By using Proposition 4.5.6, we obtained that

0 { p"i(1—p"=2) if S; corresponds to the trivial F,(s)-module,
- O-Pi,s,Si =

(1—qg"h if S; corresponds to non-trivial I, (s)-module.
Therefore, n; = 2 if \S; is trivial, and n; = 1 if .S; is non-trivial. Noting that they may

not appear at all as well.

For the converse part, that is, letting P to be elementary abelian, C(P) = 1 and
n; € {0,2} if S; is trivial, and n; € {0, 1} if S; is non-trivial, the result directly follows
from Proposition 4.5.6. ]
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Chapter 5

On some of the new simple

composition factors of Cpp;.

5.1 The decomposition of simple p-permutation
factors of Cpp; /7™ to biset functors in a spe-

cial case

Throughout this chapter, we suppose k is an algebraically closed field of characteristic

p, where p is prime, and C denotes the algebraically closed field of characteristic 0.

In this chapter, for a restricted type of p-hypo-elementary B-group H = P x (s),
we extract information from the simple p-permutation factor Sf;;f%  of the p-
permutation functor Cpp; "™ to obtain new simple composition factors of the biset

functor Cppy,.

The main result of this extraction, which we prove in this chapter, is the following

theorem:

Suppose that H = P x (s) be a p-hypo-elementary B-group such that every non-
trivial [F,(s)-module is apparent in the P. Then, for every ¢ € Out((s)), the simple
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biset functor Sy c, is apparent as a composition factor of the biset functor Cpp, where

C,, is the inflation of the vector space C on which the group Out((s)) acts by ¢.

Along the way, we will observe that for such a group H = P x (s), we have
dime S5y (H) = ¢(]s|). This observation supports the conjecture that for such
a group H, Sy v is apparent as a simple composition factor of Cppy, if and only if V' is

the inflated module C,, for some ¢ € Out((s)).
We start with the following set up:

Let H = Px(s) be a p-hypo-elementary B-group such that in the homogeneous com-
ponentwise decomposition of F,(s)-module P, every non-trivial simple F,(s)-module
S; is apparent. Thus, we suppose the multiplicity ng of the trivial F,(s)-module Sy in
P to be 0 or 2 and the multiplicity n; of every non-trivial F,(s)-module S; in P to be

necessarily 1.

We shall first show that, with this set up, there exists a surjective group homomor-
phism f : Aut(H) — Aut((s)). Let us denote ord(s) = I.

Let us define f : Aut(H) — Aut((s)) by sending W — & where U(s) =g d(s).

f is well-defined:

Since H = P x (s) be a p-hypo-elementary B-group, by the classification of Bau-
mann, we have C,)(P) = 1. Thus, for every 1 < j <1 -1, Ci)(P) = L.

Moreover, we have Cy(s’) = (s) because if we suppose otherwise, then, there exists
(p,s¥) € H with p # 1 such that (p,s*) - (1,s7) - (s7*p~1s*,s7%) = (1,57), and so
(psip~ts™, s7) = (1,s’) implying that s’p~1s™ = p~! which is possible if and only if
p = 1 since Cyy(P) = 1, a contradiction.

Therefore, we obtain that |[s/]g| = |H|/|(s)| = |P|. Clearly, (1,s")#5(1,s’) when-
ever i # j. Thus, [/]g = {(p,s’) | Vp € P}.

Then, if we say ¥(s) = (p,s’) € H, then ¥(s) =y (1,s’). Furthermore, since
ord(¥(s)) = ord(s), we have ord(s’) = ord(s) = [. Thus, there exists § € Aut((s))
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such that d(s) = s.

f is a group homomorphism:

Let U, ¥ € Aut(H). Suppose that ¥(s) = (p,s*) and ¥'(s) = (p/, sk,).
Claim: f(Uo ') = f(¥)o f(U') and f(idaw(m)) = idau((s)-

Proof: The second part is obvious. For the first part, suppose that f(¥) = d; and
f(U") = 6,y where &, 6,, € Aut((s)) such that &(s) = s* and 6,/ (s) = s*'. We need to
obtain that W o W' (s) = s |

Now, we have W o U'(s) = \I/(p/,sk/) = ¥U((p,1)- (Lsk/)) = U(p,1) - \I/(l,sk/) =
(p', 1) - \If(l,sk,) since P is a characteristic group of H which implies that we have
U(p',1) = (p",1) for some p” € P. Then, (p’,1) - (1,3’“’“/) = (p”,skk,) =g (1,3’“’“/),
that is to say, ¥ o U'(s) =4 (1,s* ). Therefore, f(¥ o U') = 8,7~ On the other hand,
f(¥) o f(¥') =600, = 6,,, proving the claim.

f is onto:

Firstly, note that since (p,l) = 1, the polynomial 2 — 1 has no repeating roots. Now,

considering the ring isomorphism F,(s) = F,[z]/(z! — 1) = [[F,[z]/m;(x) where each
J

m;(x) is distinct irreducible polynomial over F,, corresponding simple F,(s)-module
S;, we obtain that F,(s) = @ S;.
J

Secondly, since H = P x (s) is a p-hypo-elementary B-group where all non-trivial
F,(s)-modules are apparent, by the classification of Baumann, we have two cases.
Namely, as an F,(s)-module, P = Sy @ F,(s) or P & Sy = F,(s), where Sy denotes the

trivial F,(s)-module.

Now, suppose that § € Aut((s)) is given, i.e., §(s) = s' for some i € (Z/IZ)*. We
need to construct ¥ € Aut((s)) such that f(¥) = 9.

- N ‘ -
We extend § by defining 6 : F,(s) = F,(s) by > a;s’ — > a;6(s?). Clearly, J is an
j=1 j=1

[F,-algebra automorphism of F,(s).
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Case (i): If as an [F,(s)-module, P = S, & F,(s).
We extend the Fj-automorphism of I, (s) § to an [F,-homomorphism

5 So @ F,(s) = So @ F,(s) by letting §|50 = idg, and §|1Fp<s> = 4.

Then, for every = € (s), y € P, we have y, € Sy and y; € F,(s) such that

55 (y) =2 5(yo +u)

= Yo + S(xy1)7

since 0 is an F,-algebra homomorphism of F,(s). But then, we have

+
Oq

( y1)

(v0) + 5(@1)

(yo +" y1)

(o + 1)) = b(*y).

S S Q@

Now, we define ¥ : H — H by (y,z) — (g(y),g(x))

¥ is a group homomorphism:

Let xq1,x9 € (s), and y1,y2 € P. Then,

U(ys, 210) U (g2, w2) = (5(31),6(21)) (5(y2), b(x2))
— (5(y1) 8 (ya), 3 ()0 ()
— (O™ ), O(2122))
= W(y1" Yo, T172)
=V ((y1,21) - (y2,72)).

Moreover, it is clear that W is one to one and onto. Therefore, we have ¥ € Aut(H ).
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Case (ii): If as an [F,(s)-module, P & Sy = [, (s).

Similarly to the argument above, we consider the F,-algebra automorphism o

F,(s) = F,(s) by sending the element > a;s’ — > a;0(s’). Clearly, this maps sends
J J

Sp to itself. Therefore, given u € P, we have 6(u) € P. Now, for every = € (s),

Then, again, we define W : H — H by (u,z) — (6(u),d(x)). Same as above, it is a

group isomorphism.

Thus, we showed that f : Aut(H) — Aut((s)) is a surjective group homomorphism
sending ¥ — § with W(s) =g 0(s). Now, Kerf := {¥ € Aut(H) : ¥(s) =y s}. Now,
it is clear that Inn(H) < Kerf. Note that denoting S := {7 € Out(H) : v(s) = s}, we

obtain

Out(H)/S = Aut(H)/Kerf = Aut((s)) = Out((s)).

Recall given N < G, and an CG/N-module V', we define the inflated module from
CG/N to CG of V as CG/N ®cg/n V. It is clear that V' is a simple CG/N-module if
and only if the inflated module is a simple CG-module.

Now, for any ¢ € Out((s)) = (Z/IZ)*, we consider the vector space C on which the
group Out((s)) acts via ¢. With the setting above, we denote the associated inflated
simple COut(H )-module by C,.

Now, we move to the our main observation:

Theorem 5.1.1. Suppose that H = P x (s) be a p-hypo-elementary B-group such that
every non-trivial F,(s)-module is apparent in P. Then, for every ¢ € Out((s)), the
simple biset functor Sy, 1s apparent as a composition factor of the biset functor Cppy,

where C,, is the inflation of the vector space C on which the group Out((s)) acts by .

Proof. Let Fy be the full-subcategory of CC whose objects are all finite groups, up

to isomorphism, of order less than or equal to |H]|.
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Now, let ¢ € Out((s)) and suppose C,, be the associated inflated COut(H )-module

as shown above.

Moreover, we have [s7], := {(p, s’)|Vp € P} for every 1 < j <1 —1 as it is shown
above for such a group H. Hence, s/ P # s*P whenever j # k. Since P < H, for every
1<j<Ii-1,8 € (Ny(P)),. For this reason, we obtain that (P, s’) € [Qp,] for every
1<j<i—1.

We define M, := spanc( Y. @(i)FE.,).
Vie(Z/17) % ’

M, is a biset functor:

Since every biset functor on Fjy| can be thought as a module of the quiver algebra

&b B(F,G), it is adequate to show that M, is closed under the action of five
F,GEOb)(Fip))
elementary maps, induction, inflation, isogation, deflation and restriction.

By the definition of object set of F|y/, there is no induction or inflation of F’ ﬁsi for
any i € (Z/1Z)*.

By the formula of restriction, whenever K S H, and i € (Z/IZ)*, Resj.(FH ) = 0.

Note that since we obtained that the classification of p-hypo-elementary B-groups
and D-pairs imply one another, and for any i € (Z/IZ)*, H = P x (s%) is a p-hypo-
elementary B-group, every such (P, s) is a D-pair. Therefore, for any 1 # N < H,
Defg/N(Mw) = spanc{ Y. go(i)Defg/Nngi> =0.

Vie(Z/1Z) %

For isogations, let ¥ € Aut(H). We already observed that for given i € (Z/IZ)*,
U(s') =g (1,57) for some j € (Z/IZ)*. Since we tag the primitive idempotents up to
H-conjugacy, we can suppose that ¥(s) = (1, s’) for some j € (Z/IZ)*. Suppose that
it corresponds to ¥(s) = s* for some k € (Z/1Z)*.
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Now, we have

Iso(W) M, = spanc( Z go(i)ngiO

Vie(Z/1Z) %

=spanc( Y @(kTH)FL,)
Vie(Z/IZ)*

=spanc( Y (ki) Fiy)
Vi€ (Z/1Z)*

=spanc( Y @(i)FH)
Vi€ (Z/1Z) %

= M,.

Thus, M, has a biset functor structure.

Furthermore, the simplicity of M, as a biset functor, follows from the surjectivity
of the map f: Aut(H) — Aut((s)) defined above.

Note that M, = Sy, on Fjg| since M,(H) = C, and H is the minimal group such
that M,(H) # 0. Thus, we find on the full-subcategory F|y|, for every ¢ € Out((s)),

Sh,c, is a simple composition factor of Cppy,.

Now, by finite reduction principle for biset functors, it follows that they are also

simple composition factors of Cppy on CC, as required. n

Now, note that with this setting, by Proposition 4.3.3, and surjectivity of the map
[ above, we have for every i € (Z/IZ)*, (P,s) ~ (P, s'). Therefore,

dime Sy i (H) = dimeWp, = Y 1=6(1).

(Qt)~(P,s)
(Qt)=(Ps)

On the other hand,
> dimeSye,(H)= > dimcC, = ¢(1).

VpeOut((s)) VipeOut((s))

This observation tells us that restricting the simple p-permutation factor S7 =",
it partially decomposes into precisely the simple biset functors Spc, for every ¢ €

Out((s)) for this specific type of p-hypo-elementary B-group H.
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