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ABSTRACT

ON SOME OF THE SIMPLE COMPOSITION FACTORS OF
THE BISET FUNCTOR OF P -PERMUTATION MODULES

Çisil Karagüzel

M.S. in Mathematics

Advisor: Laurence J. Barker

July 2016

Let k be an algebraically closed field of characteristic p, which is a prime, and C
denote the field of complex numbers. Given a finite group G, letting ppk(G) denote

the Grothendieck group of p-permutation kG-modules, we consider the biset functor of

p-permutation modules, Cppk, by tensoring with C. By a theorem of Serge Bouc, it is

known that the simple biset functors SH,V are parametrized by pairs (H,V ) where H

is a finite group, and V is a simple COut(H)-module. At present, the full classification

of the simple biset functors apparent in Cppk is not known. In this thesis, we find new

simple functors SH,V apparent in Cppk where H is a specific type of p-hypo-elementary

B-group. The technique for this result makes use of Maxime Ducellier’s notion of

a p-permutation functor and his use of D-pairs to classify the simple factors of the

p-permutation functor of p-permutation modules Cppp−perm.k .

Keywords: biset functors, p-permutation modules, simple composition factors.
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ÖZET

P -PERMÜTASYON İKİLİ İZLEÇLERİNİN BAZI BASİT
KOMPOSİZYON FAKTÖRLERİ

Çisil Karagüzel

Matematik, Yüksek Lisans

Tez Danışmanı: Laurence J. Barker

Temmuz 2016

k karakteristiği asal sayı p olan, cebirsel olarak kapalı bir cisim ve C karmaşık

sayıların cismi olsun. Verilen sonlu bir grup G için, ppk(G), p-permütasyon kG-

modüllerinin Grothendieck grubunu simgeler ve C ile tensor çarpımını alarak ikili küme

izleci olan Cppk’yı tanımlarız. Serge Bouc’un bir teoremi tarafından bilindiği üzere,

basit ikili küme izleçleri olan SH,V ’ler, (H, V ) çiftleriyle tanımlanır, öyle ki, burada H

sonlu bir grup ve V basit bir COut(H)-modülüdür. Şu an için, Cppk’da görülen basit

ikili izleçler olan SH,V ’lerin tüm sınıflandırılması bilinmemektedir. Bu tezde, Cppk’da

görülen yeni basit izleçler olan SH,V ’leri buluyoruz, öyle ki burada H belirli bir p-hipo-

elementer B-grup’tur. Bu sonuç için kullanılan teknik Maxime Ducellier’in tanımı

olan p-permütasyon izlecine ve p-permütasyon modüllerinden oluşan p-permütasyon

izleci olan Cppp−perm.k ’un basit faktörlerini sınıflandırmak için kullandığı D-ikililerine

dayanmaktadır.

Anahtar sözcükler : ikili küme izleçleri, p-permütasyon modülleri, basit komposizyon

faktörleri.
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Chapter 1

Introduction

Let C be the field of complex numbers. The biset category CC is defined as follows:

(i) The objects are finite groups,

(ii) HomCC(G,H) = C⊗ZB(H,G) where B(H,G) is the Grothendieck group of iso-

morphism classes of finite (H ×G)-sets.

(iii) The composition is defined to be C-linear extension of the composition [V ]◦[U ] =

[V×HU ] given [U ] ∈ B(K,H) and [V ] ∈ B(H,G), where V×HU denotes the set

of H-orbits of V × U .

Then, a biset functor defined on CC is a C-linear functor from CC to C-Mod, which

is the category of finite dimensional vector spaces over C.

By the work of Serge Bouc [1] , we know that the simple biset functors SH,V are

associated to pairs (H, V ) where H is a finite group and V is a simple COut(H)-module

up to some equivalence. A simple biset functor SH,V is said to be a composition

factor of a biset functor F if there exists subfunctors F1 ⊆ F2 ⊆ F with F2/F1
∼=

SH,V . Classifying the simple composition factor structure of a biset functor is the main

concern, and some of such classifications can be found in the literature [1].
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Let k be an algebraically closed field of characteristic p, where p is a prime. We

define a p-permutation module to be a direct summand of a permutation module.

Then, Cppk is a biset functor assigning a finite group G to Cppk(G), the Grothendieck

group of isomorphism classes of finite p-permutation kG-modules. The classification

of simple composition factors of the biset functor of p-permutation modules Cppk is

not known at the time of writing. However, Mélanie Baumann has found some of the

simple composition factors of Cppk in [2], [3] and [4].

Recall that a finite group H is called p-hypo-elementary if H has a normal p-

subgroup P such that H/P ∼= Cl where Cl is a cyclic group of order l and (p, l) = 1.

By the Schur-Zassenhaus theorem, this extension splits so we have a semidirect prod-

uct H = P o Cl. On the other hand, we call a group H a B-group if for any

non-trivial N E H, the deflation number introduced by Bouc is zero, i.e., mH,N =
1
|H|

∑
XN=H

|X|µ(X,H) = 0 where µ is the Möbius function of the poset of subgroups of

H.

Baumann has found that for any p-hypo-elementary B-group H = PoCl, the simple

biset functor SH,C is necessarily a composition factor of Cppk. In [3], it was conjectured

that for such type of a group H, the simple biset functor SH,V is apparent in Cppk if

and only if V is the trivial COut(H)-module C with multiplicity Φ(l). In this thesis, we

refute that conjecture and discuss the appearance of other simple COut(H)-modules.

The method we use is due to Maxime Ducellier who, in [5], introduced the p-

permutation category CCppk as follows:

(i) The objects are finite groups,

(ii) HomCCppk (G,H) = C⊗Zppk(H,G) where ppk(H,G) = ppk(H × G) is the

Grothendieck group of p-permutation (H ×G)-modules,

(iii) The composition is defined to be C-linear extension of the composition [X]◦[Y ] =

[X⊗kHY ], given [X] ∈ ppk(G,H) and [Y ] ∈ ppk(H,K), where ⊗kH is the tensor

product over the group algebra kH.

Then, a p-permutation functor is a C-linear functor defined from CCppk to C-Mod.
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In [5], Ducellier examined the p-permutation functor of p-permutation modules de-

noted by Cppp−perm.k , and found that the simple p-permutation composition factors of

Cppp−perm.k are indexed by p-hypo-elementary B-groups.

At this point, we mention that the structure of the biset functor Cppk and

the p-permutation functor Cppp−perm.k are different. We can interpret Cppk as

a module
⊕

G∈Obj(CC)
Cppk(G) of the quiver algebra

⊕
H,K∈Obj(CC)

CB(H,K); whereas,

Cppp−perm.k can be thought as a module
⊕

G∈Obj(CCppk )

Cppk(G) of the quiver algebra⊕
H,K∈Obj(CCppk )

Cppk(H,K). The latter interpretation produces some extra maps that

are generally called as diagonal maps

δ : Cppk(H,G)× Cppk(G, 1)→ Cppk(H, 1).

These maps are the basic reasons of the fact that the simple composition factor struc-

ture of Cppp−perm.k is far coarser than that of Cppk.

The method we use is to restrict the simple p-permutation factors of Cppp−perm.k to

obtain new classification of simple composition biset factors of Cppk which are indexed

by a specific genre of p-hypo-elementary B-groups.

In detail, given a p-hypo-elementary B-group H = P oCl with Cl = 〈s〉, in Chapter

4, we shall see that a simple p-permutation functor Sp−perm.H,WP,s
is a composition factor

of Cppp−perm.k . We consider the restriction of Sp−perm.H,WP,s
to biset functors and obtain the

following theorem:

Theorem 5.1.1. Suppose that H = P o Cl be a p-hypo-elementary B-group such

that every non-trivial FpCl-module is apparent in P . Then, for every ϕ ∈ Out(Cl),

the simple biset functor SH,Cϕ is apparent as a composition factor of the biset functor

Cppk where Cϕ is the inflation of the vector space C on which the group Out(Cl) acts

by ϕ.

We shall also provide a much detailed outline of the thesis:

In Chapter 2, we recall some background information on biset functors as well as

crucial examples of biset functors such as the Burnside functor CB, the biset functors
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CRk, CRC, the biset functor of p-permutation modules Cppk, and the monomial Burn-

side functor CBk× . We study primitive idempotent basis of Cppk(G), and induction,

restriction, isogation, inflation and deflation formulas which can be found in [5] and [6].

In this chapter, we shall also provide an alternative way to compute deflation formula

for the primitive idempotents of Cppk(G) by using the linearization map between CBk×

and Cppk.

In Chapter 3, we review some of the known simple composition factors of Cppk
found by Baumann in [2], and [3], [4]. We are particularly interested in the special

type of groups named p-hypo-elementary B-groups. This chapter involves the proof of

the classification of p-hypo-elementary B-groups by Baumann. The final part of this

chapter is devoted to provide a counter-example to Conjecture 3.4.1 which claims that

for a p-hypo-elementary B-group H, the simple biset functor SH,V is apparent in Cppk
if and only if V is the trivial COut(H)-module C. To do so, we show that for the

alternating group A4 which is a 2-hypo-elementary B-group, the simple biset functors

SA4,C and SA4,C−1 are composition factors of Cppk with each multiplicity 1 where k has

characteristic 2. Along the way, by using the method of Baumann in [3], we compute

the composition factors associated to small ordered groups C1, C2, C3, V4 when p is 2.

In Chapter 4, we study the p-permutation functors which are introduced by Ducel-

lier in [5]. We review the notion of D-pairs as well as the simple composition factor

structure of p-permutation functor of p-permutation modules Cppp−perm.k . We shall

provide a proof for the classification theorem of D-pairs by Ducellier which will show

us that they are in a bijective correspondence with p-hypo-elementary B-groups.

In Chapter 5, we obtain a relaxation of Baumann’s sufficient condition for the ap-

pearence of simple biset functors indexed by a special genre of p-hypo-elementary B-

groups in Cppk. More precisely, we show that for a p-hypo-elementary B-group H such

that every non-trivial FpCl-module is apparent in P , for every ϕ ∈ Out(Cl), the simple

biset functor SH,Cϕ is apparent as a composition factor of the biset functor Cppk where

Cϕ is the inflation of C on which the group Out(Cl) acts by ϕ. In the final part, we

shall see that this result implies that the simple p-permutation factor Sp−perm.H,WP,s
partially

decomposes into simple biset factors SH,ϕ for every ϕ ∈ Out(Cl), where Cl = 〈s〉.
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Chapter 2

Biset functors

2.1 Biset functors

In this section, we want to define biset functors and examine the simple composition

structure of some crucial biset functors. We shall start with some review on background

material which can be found in Bouc [1]. Recall that a left G-set X is a set with a left

G-action satisfying:

(i) If g, h ∈ G and x ∈ X , then g · (h · x) = (gh) · x.

(ii) If x ∈ X, and 1G is the identity element of G, then 1G · x = x.

A finite G-set X is called transitive if X has a single G-orbit. Any transitive G-set has

form G/H for some subgroup H of G. Note that G/H is isomorphic to G/K if and

only if H and K are G-conjugate. Moreover, any G-set X can be expressed as a direct

sum of transitive G-sets, i.e., where [G/X] is a set of representatives of the G-orbits in

X,

X ∼=
⊔

x∈[G/X]

G/Gx

We denote the isomorphism class of finite G-set X by [X].
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Definition 2.1.1 (Burnside Group). Let G be a finite group. The Burnside group

B(G) of G is the Grothendieck group of the category of G-sets. In other words, it is

the quotient of free abelian group on the set of isomorphism classes of finite G-sets, by

the subgroup generated by the elements of the form [X t Y ] − [X] − [Y ] where X and

Y are finite G-sets.

The Burnside group B(G) has also a natural ring structure which is given by Carte-

sian product of given G-sets, i.e., [X1] · [Y1] = [X1 × Y1] where the identity element of

B(G) corresponds one point set with trivial action and the zero element is the empty

set. One can note that {[G/H] : H 6G G} forms a basis for B(G) called the transitive

basis. The following formula provides an explanation to multiplication structure of this

basis elements.

Lemma 2.1.2 (Mackey Product Formula for Burnside Groups). Let G be a finite

group, H and K be subgroups of G. Then,

[G/H] · [G/K] =
∑

HgK6GG

[G/(H ∩ gK)] =
∑

HgK6GG

[G/(Hg ∩K)].

Definition 2.1.3. For finite groups G and H, an (H × Gop)-set U is called (H,G)-

biset. U can be thought as a both left H-set and a G-set in which actions of H and G

commute, that is,

∀h ∈ H, ∀u ∈ U, ∀g ∈ G, (h · u) · g = h · (u · g).

Let H\U/G denote the double coset of U . We call a (H,G)-biset U transitive if

H\U/G has a cardinality 1.

Lemma 2.1.4 ([1], p19). Let G and H be groups.

(1) If L is a subgroup of H ×G, then the set (H ×G)/L is a transitive (H,G)-biset

for the actions defined by

∀h ∈ H, ∀(b, a)L ∈ (H ×G)/L, ∀g ∈ G, h · (b, a)L · g = (hb, g−1a)L.

(2) If U is an (H,G)-biset, choose a set [H\U/G] of representatives of (H,G)-orbits

on U . Then, there is an isomorphism of (H,G)-bisets

U ∼=
⊔

u∈[H\U/G]

(H ×G)/Lu
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where Lu = (H,G)u = {(h, g) ∈ H ×G | h · u = u · g}.

Definition 2.1.5. Let G, H and K be finite groups. For (H,G)-biset U and (K,H)-

biset V , we define the composition of V and U , namely V ×H U as the set of H-orbits

of the cartesian product V × U , where the H-action is defined as follows: for (v, u) ∈
V × U and for each h ∈ H,

(v, u) · h = (v · h, h−1 · u).

We denote the H-orbit of an element (v, u) ∈ V × U by (v,H u). Moreover, the set

V ×H U is an (K,G)-biset for the action defined by:

k · (v,H u) · g = (k · v,H u · g)

for each k ∈ K , (v,H u) ∈ V ×H U , g ∈ G.

Now we will define five elementary bisets: Let G be a finite set.

(1) G can be thought as (G,G)-biset where the G-action is the usual group multipli-

cation. We denote this biset by IdG.

(2) Let H 6 G. Then G can be thought as (H,G)-biset, denoted by ResGH .

(3) Let H 6 G. Then G can be thought as (G,H)-biset, denoted by IndGH .

(4) Let N EG and H = G/N . Then H can be thought as an (G,H)-biset, denoted

by InfGH for the right action of H by multiplication, and the left action of G by

projection to H, then left multiplication in H.

(5) Let NEG and H = G/N . H can be thought as an (H,G)-biset, denoted by DefGH

for the left action of H by multiplication, and the right action of G by projection

to H, and then right multiplication in H.

(6) Let f : G→ H be a group isomorphism, then H can be thought as (H,G)-biset,

denoted by IsoGH(f) for the left action of H by multiplication and right action of

G is taken by image of f .

Recall that for a finite group G, a section (T, S) of G is defined by subgroups of

G, T and S such that S E T .
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Lemma 2.1.6. ([1], Goursat’s Lemma) Let G and H be groups.

(1) If (D,C) is a section of H and (B,A) is a section of G such that there exists a

group isomorphism f : B/A −→ D/C, then

L(D,C),f,(B,A) = {(h, g) ∈ H ×G|h ∈ D, g ∈ B, hC = f(gA)}

is a subgroup of H ×G.

(2) Conversely, if L is a subgroup of H × G, then there exists a unique section

(D,C) of H, a unique section (B,A) of G, and a unique group isomorphism

f : B/A −→ D/C, such that L = L(D,C),f,(B,A).

Lemma 2.1.7. ([1], Butterfly Factorization) Let G and H be groups. If L is a subgroup

of H ×G, let (D,C) and (B,A) be the sections of H and G respectively, and f be the

group isomorphism B/A −→ D/C such that L = L(D,C),f,(B,A). Then there is an

isomorphism of (H,G)-bisets

(H ×G)/L ' HIndDInfD/CIso(f)B/ADefBResG

Definition 2.1.8. Let G and H be finite groups. The biset Burnside group B(H,G)

is the Burnside group B(H × Gop), i.e., the Grothendieck group of the isomorphism

classes of finite (H,G)-bisets for the disjoint union.

Remark 2.1.9. Let G,H and K be finite groups. There is a unique bilinear map

×H : B(K,H)×B(H,G)→ B(K,G) such that [V ]×H [U ] = [V ×H U ], whenever U is

a finite (H,G)-biset and V is a finite (K,H)-biset.

Remark 2.1.10. Any element [X] ∈ B(H,G) can be written as a linear combination

of isomorphism classes of transitive (H,G)-bisets, namely,

[X] =
∑

L≤H×GH×G

λL(X)[(H ×G)/L].

By Butterfly Factorization, we can say that elements of B(H,G) are generated by

induction, inflation, isogation, deflation and restriction maps.

Definition 2.1.11. ([1], p41) The biset category C is defined as follows:

(i) The objects of C are finite groups,

8



(ii) For G,H ∈ Obj(C), then HomC(H,G) = B(H,G),

(iii) The composition is given by [V ] ◦ [U ] = [V ×H U ] for [V ] ∈ HomC(H,K), [U ] ∈
HomC(G,H),

(iv) For any finite group G, the identity morphism of G in C is [IdG].

Definition 2.1.12. Let C be the field of complex numbers. Then we define the biset

category CC as follows:

(i) The objects of CC are finite groups,

(ii) For G,H ∈ Obj(C), then HomCC(H,G) = C⊗Z B(H,G),

(iii) The composition of morphisms in CC is the C-linear extension of the composition

in CC,

(iv) For any finite group G, the identity morphism of G in CC is C⊗Z [IdG].

Remark 2.1.13. The biset category CC is C- linear category which means that the set

of its morphisms are C-modules, and the composition is C-bilinear.

Definition 2.1.14. Let D be a C-linear subcategory of CC. A biset functor on D is a C-

linear functor from D to C−Mod. Moreover, biset functors on the subcategory D form

a category denoted by FD,C where the homomorphism sets are natural transformations

of functors and compositions are composition of natural transformations.

In [1], Bouc provided a classification for simple objects of this category, namely,

FD,C. We shall review some basic definitions and results for this purpose.

If F is an object of FD,C, then we define a minimal group for F to be an object H

of D such that F (H) 6= {0} and for every object K of D with |K| < |H|. The set of

minimal objects for F is denoted by Min(F ).

Definition 2.1.15. A full-subcategory D of CC is called replete if its object set is closed

under taking subquotients that is any group is isomorphic to a subquotient of an element

of D is in D.

9



Definition 2.1.16. A simple biset functor on D is a simple object of FD,C which is a

non-zero functor F whose only subfunctors are itself and the zero functor.

Proposition 2.1.17. Suppose that D is a replete subcategory of CC and let E be a

full-subcategory of D. If F is simple object of FD,C and ResDE F 6= 0, then ResDE F is a

simple object of FE,C.

The following results are due to Bouc and can be found in [1].

Definition 2.1.18. Let G be an object of D and V be an EndD(G) − module. We

define the biset functor LG,V as follows:

(i) For every object H of D, we set

LG,V (H) = HomD(G,H)⊗EndD(G) V = CB(H,G)⊗CB(G,G) V.

(ii) For every φ : H → K in D, LG,V (φ) : LG,V (H)→ LG,V (K) is defined by ϑ⊗ v 7→
(φ ◦ ϑ)⊗ v.

It is clear from the definition that LG,V (G) ∼= V .

Proposition 2.1.19 ([1], Corollary 4.2.4, p58). Let G be an object of D and V be a

simple EndD(G)-module. Then the biset functor LG,V has a unique proper maximal

subfunctor denoted by JG,V and the quotient SG,V = LG,V /JG,V is a simple object of

FD,C such that SG,V (G) ∼= V .

Now, we let D be a subcategory of the biset category CC which contains group

isomorphisms.

Definition 2.1.20. A pair (G, V ), where G is an object of D and V is a simple

COut(G)-module, is called a seed of D. We call two pairs of D (G,V) and (G
′
, V

′
)

as isomorphic if there exists a group isomorphism φ : G → G
′

and an C-module

isomorphism ψ : V → V
′

such that

∀v ∈ V, ∀a ∈ Out(G), ψ(a · v) = (φaφ−1) · ψ(v).

10



Lemma 2.1.21 ([1], Lemma 4.3.9, p61). Let G be a finite group and V be a simple

COut(G)-module. If H is a finite group such that SG,V (H) 6= {0}, then G is isomorphic

to a subquotient of H.

Theorem 2.1.22 ([1], p62). Let D be an admissible subcategory of CC. There is a

one to one correspondence between the set of isomorphism classes of simple objects of

FD,C and the set of isomorphism classes of seeds of D, sending the class of the simple

functor S to the isomorphism class of a pair (G,S(G)), where G is any minimal group

for S. The inverse correspondence maps the class of the seed (G, V ) to the class of the

functor SG,V .

Definition 2.1.23. Let F be a biset functor on D. We call a simple functor S as a

composition factor of the biset functor F if there exists subfunctors F
′ ⊆ F

′′ ⊆ F such

that F
′′
/F

′ ∼= S.

We now take a full-subcategory E of D and a biset functor F on D. We can also

consider F to be a biset functor on the subcategory E which we denote by ResDE F. The

following result is called finite reduction principle for biset functors and we will make

use of this result for our main theorem by considering a specific full-subcategory.

Proposition 2.1.24 (Finite Reduction Principle For Biset Functors). Let G be an

object of D and V be a simple COut(G) −module. If SG,V is a composition factor of

ResDE on E, then SG,V is also a composition factor of F on D.

Definition 2.1.25. We define Fn to be a full-subcategory of the biset category D such

that the objects are all finite groups whose orders are less than or equal to n, where n

is a positive integer.

2.2 Examples of biset functors

2.2.1 The Burnside functor CB

For this part, we always assume that D is a replete subcategory of the biset category

CC where C is the field of complex numbers.

11



Let G be a finite group then we have defined B(G) as the Burnside ring of G.

Moreover, for any finite (H,G)-biset U , we can define the following map:

B([U ]) : B(G)→ B(H) by [V ] 7→ [U ×G V ],

for every finite G-set V .

We can extend this map C-linearly to the map CB([U ]) : CB(G)→ CB(H) where

CB(G) = C⊗Z B(G). This defines a biset functor, the Burnside functor.

The Burnside ring B(G) has another basis called the primitive basis: {eGH : H ≤G G}
with a nicer multiplication compared to transitive basis:

eGK · eGH =

{
eGK if K =G H

0 otherwise

These two different bases of B(G) are related by the following inversion formula

proven by Gluck and Yoshida separately:

eGH =
1

|NG(H)|
∑
K6H

|K|µ(K,H)[G/K]

where µ is the Möbius function of the poset of subgroups of G.

Since every biset functor on D can be thought as a module of the quiver algebra⊕
∀H,G∈Obj(D)

B(H,G), and since we know that by the Butterfly factorization lemma,

every element of biset Burnside ring B(H,G) is generated by finite elementary maps,

induction, inflation, isogation, deflation and restriction, it is meaningful to study the

effects of these maps on the primitive basis of the Burnside ring which has just shown

to possess a biset functor structure.

Theorem 2.2.1 ([1], Theorem 5.2.4., p77). Let G be a finite group.

1. Let H and K be subgroups of G. Then,

ResGK(eGH) =
∑

x∈[NG(H)\TG(H,K)/K]

eKHx

where x runs through a set of representatives of (NG(H), K)- orbits on the set

TG(H,K) = {g ∈ G|Hg ⊆ K}.
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2. Let K ≤ H be subgroups of G. Then,

IndGHe
H
K =

|NG(K)|
|NH(K)|

eGK .

3. Let N EG. Then, for any subgroup H of G containing N ,

InfGG/Ne
G/N
H/N =

∑
KN=GH,K=GG

eGK .

4. Let N EG . Then,

DefGG/Ne
G
G = mG,Ne

G/N
G/N ,

where mG,N =
1

|G|
∑

XN=G

|X|µ(X,G).

5. If φ : G→ G
′

is a group isomorphism, and H ≤ G, then

Iso(φ)(eGH) = eG
′

φ(H).

In this part, we shall review Bouc’s result on the classification of the simple compo-

sition factors for particularly our case that is when the ground field is C the complex

field. More general cases can be found in [1].

For this purpose, let us define a specific subfunctor of CB on a replete subcategory D
of the biset category CC. Suppose we are given an objectG of the categoryD, we denote

eG to be the subfunctor of CB generated by the primitive idempotent eGG ∈ CB(G).

To be more precise, for any object H ∈ Obj(D), eG(H) = HomD(G,H)(eGG).

Moreover, a finite group G in D is called B-group if for every non-trivial normal

subgroup N of G, we have mG,N = 0. We denote the class of B-groups in D by

B − gr(D) and we denote the set of representatives of isomorphism classes of these

B-groups by [B − gr(D)].

Bouc showed that for every finite group G in D, we can define a group denoted by

β(G) to be a quotient G/N for some normal subgroup N of G such that mG,N 6= 0

and G/N is a B-group. He showed that β(G) is well-defined up to group isomorphism;

however, the normal subgroup N is not unique in general.
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Proposition 2.2.2 ([1], p89). 1. Let G be a B-group over C. Then the subfunctor

eG of CB has a unique maximal subfunctor, equal to

jG =
∑

H∈[B−grC(D)],H�G,H�G

eH ,

and the quotient functor eG/jG is isomorphic to the simple functor SG,C.

2. If F ⊆ F
′

are subfunctors of CB such that F
′
/F is simple, then there exists

a unique G ∈ [B − grC(D)] such that eG ⊆ F
′

and eG * F. In particular,

eG + F = F
′
, eG ∩ F = jG, and F

′
/F ∼= SG,C.

This proposition shows us that the composition factors of CB on D are exactly the

simple functors SG,C.

Remark 2.2.3. Let p be a prime number. In characteristic 0, it is known due to Bouc

that a p-group G is a B-group if and only if G is trivial or isomorphic to Cp × Cp.

Therefore, if we consider a full-subcategory Cp of the biset category CC whose objects

are p−groups, then the simple composition factors of CB on Cp are SC1,C and SCp×Cp,C

with multiplicity 1.

2.2.2 The biset functors CRC and CRk

Let C be the field of complex numbers.

Definition 2.2.4. ([1], Chapter7) Let G be a finite group, RC(G) is defined to be the

Grothendieck group of the category of finite dimensional CG-modules. For any finite

(H,G)− biset U , we define RC([U ]) : RC(G)→ RC(H) by

RC([U ])([E]) = [CU ⊗CG E],

where [E] ∈ RC(G) denotes the isomorphism class of a finite dimensional CG-module

E, and CU is the (CH,CG)-permutation bimodule associated to U . We can extend

this map C-linearly. This construction provides CRC with biset functor structure.

Definition 2.2.5. ([1], Definition 7.3.1.) A character ξ : (Z/mZ)× → C× is called

primitive if it cannot be factored through any quotient (Z/nZ)× of (Z/mZ)×, where n

is a proper divisor of m.
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The simple composition factors of the biset functor CRC are classified by Bouc as

follows:

Proposition 2.2.6. ([1], Corollary 7.3.5, p133) CRC is semisimple, and

CRC ∼=
⊕
(m,ξ)

SZ/mZ,Cξ ,

where (m, ξ) runs through the set of pairs consisting of a positive integer m and a

primitive character ξ : (Z/mZ)× → C×.

Definition 2.2.7. Let k be an algebraically closed field of characteristic p, prime. Let

Cp′ denote the full-subcategory of the biset category CC whose objects are formed by

finite p
′
-groups. For a finite p

′
-group G, we can define Rk(G) to be the Grothendieck

group of the category of finite dimensional kG-modules. In the same way, for every

(H,G)-biset U , we can define Rk([U ]) : Rk(G)→ Rk(H) by

Rk([U ])([E]) = [kU ⊗kG E],

for every kG-module E. Then, we can extend it C-linearly. This tells us that the biset

functor CRk has a biset functor structure on the category Cp′ .

Remark 2.2.8. We have, for every finite group G whose order is coprime to p,

CRk(G) ∼= CRC(G). Therefore, on the category Cp′ , CRk is isomorphic to CRC. For

this reason, we can say that

CRk
∼=
⊕
(m,ξ)

SZ/mZ,Cξ ,

where (m, ξ) runs through the set of pairs consisting of a positive integer m coprime to

p and a primitive character ξ : (Z/mZ)× → C×.

2.2.3 The biset functor of p-permutation modules Cppk

Let C be the field of complex numbers and k be an algebraically closed field of char-

acteristic p where p is prime.

We shall start with some basic definitions which can be found in [7] and [8].
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Definition 2.2.9. Let M be an indecomposable kG-module. A minimal subgroup Q

of G for which M is a direct summand of IndGQResGQ(M) is called a vertex of M and

is defined up to G-conjugacy. It is known that for such a field k, the vertex of every

indecomposable kG-module is a p-group.

Definition 2.2.10. A source of M is an indecomposable kQ-module M0, where Q is

a vertex of M , such that M is a direct summand of IndGQ(M0).

Definition 2.2.11. We call a kG-module M by a trivial source module if each inde-

composable summand of M has the trivial module k as its source.

Definition 2.2.12. An kG-module N is called a permutation module if there exists a

G-set X with N = kX, that is to say, N has a G-stable k-basis.

Note that we may decompose X as a disjoint union of G-orbits which gives us a

direct sum decomposition of kX as an kG-module. If we let X to be a transitive G-set,

then we have kX ∼= IndGH(k) where H is a stabilizer of some element x of X, and k is

the trivial kH-module.

Hence, we can think any arbitrary permutation kG-module as a direct sum of mod-

ules of the form IndGH(k) for some subgroups H ≤ G. Note that IndGH(k) is a permuta-

tion kG-module with G-basis {g⊗ 1k | g ∈ [G/H]}. Moreover, if kX is a permutation

kH-module on X, then IndGH(kX) is a permutation kG-module with G-basis given

{g ⊗ x | g ∈ [G/H], x ∈ X}. Therefore, induction preserves permutation modules,

and it is clear that restriction and conjugation, too.

Definition 2.2.13. An kG-module M is called a p-permutation kG-module if

ResGQ(M) is a permutation kQ-module for every p-subgroup Q of G.

Suppose that P is a Sylow p-subgroup of G. Since we have ResGgP (M) = g(ResGP (M))

and restriction and conjugation preserves permutation modules, we only need to have

ResGP (M) to be a permutation module to conclude that M is a p-permutation mod-

ule. It means that an kG-module M is a p-permutation kG-module if ResGP (M) is a

permutation kP -module where P is a Sylow p-subgroup of G.

Clearly, p-permutation modules are preserved by direct sums, tensor products, re-

striction and conjugation. We shall use another definition of p-permutation modules

to show that induction also preserves p-permutation modules as well.
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Remark 2.2.14. The following conditions are equivalent:

(i) M is a p-permutation kG-module,

(ii) M is a trivial source kG-module.

Proof. (⇒) : Suppose that M is an indecomposable p-permutation kG-module. Let P

be a p-subgroup of G which is a vertex of M . Then, we know that M is a direct sum-

mand of IndGPResGP (M). By definition, we have ResGP (M) a permutation kP -module.

Thus, ResGP (M) is a direct sum of modules of the form IndPQ(k) where Q ≤ P .

Thus, there exists Q ≤ P such that M is a summand of IndGQ(k). But since P is a

vertex of M , we have Q ∼= P . Thus, M is a direct summand of IndGP (k), that is to say,

M has a trivial source.

(⇐) : For this part, we shall show that any summand of IndGH(k) is a p-permutation

module. Then, it would imply that any module with trivial source is a p-permutation

module.

Let M
′

be an indecomposable trivial source kG-module with vertex Q, which is

known to be a p-group, then M
′

is isomorphic to a direct summand of IndGQ(k), which

is a permutation kG-module.

Now, we wish to show that M
′

is a p-permutation kG-module. Let us denote

M = IndGQ(k). Clearly, M is a p-permutation kG-module. Now, let P be a p-subgroup

of G. Then, ResGP (M
′
) is a summand of ResGP (M). By using the definition of being

p-permutation module, we know that ResGP (M) is a permutation kP -module. Thus,

ResGP (M) ∼=
⊕
i

IndPQi(k) for some subgroups Qi ≤ P .

Claim: IndPQi(k) is indecomposable.

Proof: Since we have the isomorphism HomkP (IndPQi(k), k) ∼= HomkQi(k,ResPQi(k)) ∼=
HomkQi(k, k) ∼= k, and the fact that only simple kP -module up to isomorphism is k,

if we suppose IndPQi(k) = M1 ⊕M2, we have non-zero and linearly independent maps,

fi : Mi → k , for i = 1, 2, which extends fi : IndPQi(k)→ k, contradicting the fact that

HomkP (IndPQi(k), k) ∼= k.
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Then, we have ResGP (M
′
) ∼= IndPQi(k) which is a permutation module, i.e., M

′
is a

p-permutation kG-module.

Definition 2.2.15 ([6], Definition 2.6). Let G be a finite group. The p-permutation

ring denoted by ppk(G) is the Grothendieck group of the isomorphism classes of p-

permutation kG-modules, with the relation [M ]+[N ] = [M⊕N ], and the ring structure

is induced by the tensor product of modules over k. The identity element of ppk(G) is

the class of the trivial kG-module k.

Definition 2.2.16 (The biset functor of p-permutation modules Cppk). For every

(H,G)-biset U , we define

ppk([U ]) : ppk(G)→ ppk(H) by

[M ] 7→ [kU ⊗kGM ]

for every p-permutation kG-module M . Similarly to previous examples, we extend this

map C-linearly, Cppk([U ]) : Cppk(G) → Cppk(H) where Cppk(G) = C ⊗Z ppk(G).

Moreover, we define Cppk(u) for every u ∈ C ⊗Z B(H,G) where u =
n∑
i=1

λi[Ui] by

Cppk(u) =
n∑
i=1

λiCppk([Ui]) which defines the biset functor structure of Cppk.

Now, we shall provide some further remarks on two bases of Cppk which can be

found in [6].

We can think ppk(G) as the free abelian group of the set of isomorphism classes of

indecomposable p-permutation kG-modules.

Recall that for a given kG-module M , and a p-subgroup P of G, the relative trace

map is the map trPQ : MQ →MP given by trPQ(m) =
∑

x∈[P/Q]

x ·m with Q ≤ P .

Furthermore, we define the Brauer quotient of M at P to be the k-vector space

M [P ] = MP/
∑
Q<P

trPQM
Q which has a natural kNG(P )/P -module structure and for

any finite group H which is not a p-group, M [H] is zero by using the fact that the map

trHP is onto where P is a Sylow p-subgroup of H.

Now, we shall refer the following theorem which can be found in [6] and [9]:
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Theorem 2.2.17 ([9], Theorem 3.2).

1. The vertices of an indecomposable p-permutation kG-module M are the maximal

p-subgroups P of G such that M [P ] 6= 0.

2. An indecomposable p-permutation kG-module has vertex P if and only if M [P ]

is a non-zero projective kNG(P )/P -module.

3. The correspondence M 7→ M [P ] induces a bijection between the isomorphism

classes of indecomposable p-permutation kG-modules with vertex P and the iso-

morphism classes of indecomposable projective kNG(P )/P -modules.

Now, we let PG,p be the set of pairs (P,E) such that P is a p-subgroup of G, and E

is an indecomposable projective kNG(P )/P -module. We have a G-action on PG,p by

conjugation and the set of G-orbits are denoted by [PG,p]. Given (P,E), and by using

Theorem 2.2.17, we let MP,E denote the indecomposable p-permutation kG-module

such that MP,E[P ] ∼= E. Then, we have the following result:

Corollary 2.2.18 ([6], Corollary 2.9). The isomorphism classes of MP,E form a Z-basis

of ppk(G) where (P,E) ∈ [PG,p].

Now, we move to explanation of the primitive basis of Cppk which is found by Bouc

and Thévenaz in [6].

Firstly, let QG,p denote the set of pairs (P, s) where P is a p-group of G, and s is a

p
′
-element of NG(P )/P , and G acts on QG,p by conjugation and we denote the set of

G-orbits by [QG,p].

Now, we are ready to define the species for ppk(G):

Given (P, s) ∈ QG,p, we define τGP,s to be the additive map from ppk(G) to C given

by assigning the class of a p-permutation kG-module M to the value at s of the Brauer

character of the NG(P )/P -module M [P ].

Proposition 2.2.19 ([6], Proposition 2.18).

1. The map τGP,s is a ring homomorphism ppk(G) → C and extends a C − algebra
homomorphism τGP,s : C⊗Zppk(G)→ C,
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2. The set {τGP,s|(P, s) ∈ [QG,p]} is the set of all distinct species from C⊗Zppk(G) to

C. Then, we have the following C-algebra isomorphism∏
(P,s)∈[QG,p]

τGP,s : C⊗Zppk(G)→
∏

(P,s)∈[QG,p]

C.

Corollary 2.2.20 ([6], Corollary 2.19). The C-algebra C⊗Zppk(G) is a semisimple

commutative C-algebra and its primitive idempotents are FG
P,s indexed by (P, s) ∈ [QG,p]

such that

∀ (R, u) ∈ QG,p , τGR,u(FG
P,s) =

{
1 if (R, u) =G (P, s),

0 otherwise.

Remark 2.2.21. Letting p to be a prime which is a characteristic of the field k, we

have dimCCppk(G) =
∑
P

lp(NG(P )/P ) where P runs through G-conjugacy classes of

all p-subgroups, and lp(NG(P )/P ) denotes the number of p
′
-elements of NG(P )/P .

We have the following formulas:

Proposition 2.2.22 ([6], 3.1 Proposition). Suppose that H is a subgroup of G, and

let FG
P,s be a primitive idempotent of Cppk(G). Then,

ResGHF
G
P,s =

∑
(Q,t)

FH
Q,t,

where (Q, t) runs through a set of representatives of H-conjugacy classes of G-

conjugates of the pair (P, s) contained in H.

Proposition 2.2.23 ([6], 3.2 Proposition). Suppose H is a subgroup of G and and let

FH
Q,t be a primitive idempotent of Cppk(G). Then,

IndGHF
H
Q,t = |NG(Q, t) : NH(Q, t)|FG

P,s,

where NG(Q, t) is the set of elements g in NG(P ) such that gsg−1 = s.

Proposition 2.2.24. Let (P, s) ∈ QG,p and let φ : G → G′ be a group isomorphism.

Then,

Iso(φ)FG
P,s = FG′

φ(P ),φ(s).

The inflation and deflation formulas for primitive idempotents of Cppk are found by

Ducellier.
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Proposition 2.2.25 ([5], p44). Let N be a normal subgroup of G. Then, we have

InfGG/NF
G/N
P,s =

∑
(Q,t)∈I

FG
Q,t

with I := {(Q, t) ∈ [QG,p]|∃ḡ = G/N,QN/N = ḡP , t̄ = gs}. where t̄ is the projection

of t onto N̄G/N(QN/N).

Proposition 2.2.26 ([5], Lemma 3.1.4, p45). Let G be a finite group and (P, s) ∈
[QG,p], and N be a normal subgroup of G. Then,

DefGG/NF
G
P,s = mP,s,NF

G/N
Q,t ,

where Q is a p-subgroup of G/N and t is a p
′
-element of N̄G/N(Q).

For a specific case, Ducellier computed the deflation numbers mP,s,N more precisely,

as follows:

Corollary 2.2.27 ([5], Corollary 3.1.9, p52). Let G be a semidirect product of p-group

P and p
′
-element s acting on P that is to say G = P o 〈s〉. and let N be a normal

subgroup of G, then we have

mP,s,N =
|s|

|N ∩ 〈s〉||CG(s)|
∑
Q6P
Qs=Q
〈Rs〉N=G

|CQ(s)|µ((Q,P )s),

where µ((Q,P )s) is the Möbius function defined on the poset of subgroups of G nor-

malized by s.

At this point, we shall provide further reminders about the Möbius function of posets

which can be found [10] and [11].

Remark 2.2.28. Let (X,≤) be a poset, and denote the set of chains x0 < x1 < ... < xn

of cardinality n+ 1 of elements of X by Sdn(X). Now, the chain complex C∗(X,Z) is

formed by the module Cn(X,Z) which is the free Z-module with basis Sdn(X) and the

differentials dn : Cn(X,Z)→ Cn−1(X,Z) given by

dn(x0, x1, ..., xn) =
n∑
i=0

(−1)n(xo, x1, ..., x̂i, ..., xn),
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where (x0, x1, ..., x̂i, ..., xn) denotes the chain (x0, ..., xn)−{xi}. Moreover, one can also

consider the augmented chain complex of C∗(X,Z), C̃∗(X,Z) which is defined by setting

C̃−1(X,Z) = Z and C̃n(X,Z) = Cn(X,Z) and dn = d̃n for n ≥ 0, and the augmentation

map ε : C̃0(X,Z)→ C̃−1(X,Z) sending x0 7→ 1. Recall that the homology group of these

chain complexes Hn(X,Z) = Kerdn
Imdn+1

and H̃n(X,Z) = Kerd̃n
Imd̃n+1

.

If we are given two posets X and Y , then a map of posets f : X → Y is defined to

be a map such that whenever x ≤ x
′

in X, we have f(x) ≤ f(x
′
). Given such a poset

map, there is an induced map of chain complexes C∗(f,Z): C∗(X,Z)→ C∗(Y,Z) such

that

Cn(f,Z)(x0, x1, ..., xn) =

{
(f(x0), f(x1), ..., f(xn)) if f(x0) < f(x1) < ... < f(xn),

0 otherwise

Similarly, we can define the induced map of reduced chain complexes C̃∗(f,Z) :

C̃∗(X,Z)→ C̃∗(Y,Z) by C̃n(f,Z) = Cn(f,Z) for n ≥ 0 and C̃−1(f,Z) = IdZ.

Now, we define the Euler-Poincaré characteristic χ(X) of a finite poset X to be

χ(X) =
∑
n≥0

(−1)nrankZCn(X,Z).

Similarly,the reduced Euler-Poincaré characteristic χ̃(X) of a finite poset X is de-

fined by

χ̃(X) =
∑
n≥−1

(−1)nrankZC̃n(X,Z).

Recall that the Möbius function µ is the unique function from X×X to Z satisfying

µ(x, y) = 0 unless x ≤ y and the recursion formula

∑
y∈X
x≤y≤z

µ(y, z) = δ(x, z) =

{
1 if x = z,

0 otherwise

We have a correspondence between the reduced Euler-Poincaré characteristic and

the Möbius function ([11], Proposition 3.8.5., p121) as follows: if µX is the Möbius

function on the poset X, and x, y ∈ X, then we have µX(x, y) = χ̃((x, y)X) where

(x, y)X := {z ∈ X | x < z < y}.
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2.2.4 The monomial Burnside functor CBk×

Now, we are going to provide an alternative formula for deflation of these primitive

idempotents. For this part, we need to briefly review Monomial Burnside ring which

has a structure of a biset functor. The following definitions and formulas can be found

in [12] and [13], Section 1.4 and 2.7.

Definition 2.2.29 (Monomial Burnside Ring Bk×(G)). Let C be the algebraically

closed field of characteristic 0, and k be an algebraically closed field of characteris-

tic p, and k× denote the unit group of the field k, and suppose that G is a finite group.

Let us denote the set of k×-subcharacters of G by

C(G) := {(U, µ) : U ≤ G; µ : U → k×},

which is a G-poset and a G-set under conjugation. Then, we define Bk×(G) to be the

free abelian group on the G-conjugacy classes of (U, µ)G of elements in C(G). By taking

the tensor product over C, we define CBk×(G).

Moreover, there is also a primitive basis of this ring. For this, let us denote the set

of k×-subelements by

el(k×, G) := {(H, hO(H)) : H ≤ G, hO(H) ∈ H/O(H)},

where O(H) corresponds to the minimal normal subgroup of H such that H/O(H) is

an abelian p
′
-group. The element of this set, (H, hO(H)) will be denoted as (H, h).

Then, we have

CBk×(G) ∼=
⊕

(H,h)∈Gel(k×,G)

CeGH,h.

The Monomial Burnside ring has also a biset functor structure.

Remark 2.2.30 ([12], Lemma 7.4). For H ≤ G , the primitive idempotent eGH ∈
CB(G) decomposes as a sum of primitive idempotents of CBk×(G) as follows:

eGH =
∑

(I,i)∈GI

eGI,i

where I is the set of k×-subelements of G such that I =G H.

The following inflation and deflation formulas for Monomial Burnside Ring can be

found in [14]:
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Proposition 2.2.31. Let G be a finite group and N be a normal subgroup of G. Then,

InfGG/N(e
G/N
K/N,kN) =

∑
(I,i)∈Gel(k×,G):(IN/N,iN)=G/N (K/N,kN)

eGI,i.

Proposition 2.2.32. Let G and N be as above. Then,

DefGG/N(eGI,i) = βG(I/(I ∩N), I, i)e
G/N
IN/N,iN

where

βG(I/(I ∩N), I, i) =
|NG/N(IN/N, iN) : IN/N |

|NG(I, i) : I|
βk
×

(I/(I ∩N), I, i)

and

βk
×

(I/(I ∩N), I, i) =
1

|O(I)(I ∩N)|
∑

U≤I:U(I∩N)=I

|U ∩ iO(I)|µ(U, I)

with O(I) is defined as earlier.

There is a surjective map which can be found in [13], Section 4.3 and 4.7, and [15]

Section 1.5, from Bk×(G) to ppk(G). It provides us with an alternative formula for

deflation of primitive idempotents of Cppk(G).

Remark 2.2.33. There is a surjective biset functor morphism called linearization map

from the Monomial Burnside functor CBk× to the biset functor of p-permutation mod-

ules Cppk defined as follows: for a finite group G,

linG : CBk×(G)→ Cppk(G)

sending

eGH,h 7→

{
FG
P,h if H = 〈P, h〉,

0 otherwise.

We have the following commutative diagram for deflations:

eG〈P,h〉,h βG(〈P, h〉/(〈P, h〉 ∩N), 〈P, h〉, h)e
G/N
〈P,h〉N/N,hN

FG
P,h βG(〈P, h〉/(〈P, h〉 ∩N), 〈P, h〉, h)F

G/N
PN/N,hN

linG

DefGG/N

DefGG/N

linG/N
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Chapter 3

Work of Baumann on the simple

composition factors of Cppk

Throughout this chapter, we suppose that C is the algebraically closed field of charac-

teristic 0 and k is an algebraically closed field of prime characteristic p.

We have already mentioned that the simple objects of the category formed by biset

functors are parametrized by pairs (G, V ) and denoted by SG,V where G is a finite group

and V is a simple COut(G)−module. In the previous chapter, we saw the full classifica-

tion for which pairs (G, V ), the associated simple biset functor SG,V appears as a simple

composition factor for the biset functors CB and CRC and CRk on some restriction

full subcategory of biset category. However, for the biset functor of p−permutation

modules, Cppk, the classification of these pairs (G, V ) is not completely known. By the

work of Baumann [3], we have some partial information about for which pairs (G, V ),

the simple composition factors SG,V ’s are apparent in Cppk.

In this chapter, we shall review the results on some of the simple composition fac-

tors of Cppk obtained by Baumann, defining a special type of group called p-hypo-

elementary B-group whose classification are provided by Baumann. Secondly, we re-

view the method that she introduced to find simple composition factors associated to

groups with small order and find the full list of simple composition factors indexed by

C1, C2, C3, V4 when p = 2.
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Then, we will use these results to obtain the following theorem:

Theorem 3.0.34 (The alternating group A4 = V4oC3). If k is an algebraically closed

field of characteristic p = 2, then both SA4,C and SA4,C−1 are the only simple composition

factors of Cppk associated to A4 and their multiplicity is 1.

Since A4 is a p-hypo-elementary B-group for p = 2, this theorem will help us to

disprove the following conjecture due to Baumann:

Conjecture 3.0.35. ([3], Conjecture 4.24, p59) Let k be an algebraically closed field

of characteristic p and C be the algebraically closed field of characteristic 0. Suppose

H = P o Cl is a p-hypo-elementary B-group. Then, SH,V is a simple composition

factor of Cppk if and only if V is the trivial COut(H)−module, i.e. SH,C. Moreover,

the multiplicity of SH,C as a simple composition factor of Cppk is Φ(l).

3.1 Some of the simple composition factors of Cppk

We start this chapter with the review of the following findings by Baumann:

Theorem 3.1.1. The simple functors SCm,Cξ where m is a positive integer coprime to

p, and ξ is a primitive character (Z/mZ)× → C× are composition factors of Cppk.

Proof. We first let Cp′ to be a full-subcategory of the biset category CC whose objects

are finite groups of order coprime to p.

Claim: For any finite group G in Obj(Cp′ ), we have ppk(G) ∼= Rk(G).

Let M be an indecomposable kG−module. Moreover, we know that the vertices

of M , which are all conjugate, must be a p−subgroup of G. However, G has order

coprime to p, so the vertex of M must be trivial.

Now, the only indecomposable k1−module is k implies that M must be an inde-

composable direct summand of IndG1 k = kG. In particular, being an indecompos-

able direct summand of permutation module, M is a p−permutation module. That
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is to say, every kG−module is a p−permutation kG−module. Thus, it implies that

Cppk(G) = CRk(G) for each G ∈ Obj(Cp′ ). Moreover, by definition, we already know

that Cppk(u) = CRk(u) for each u ∈ CB(H,G) with H,G ∈ Obj(Cp′ ). Consequently,

we have Cpp
C
p
′

k = CR
C
p
′

k .

Moreover, recall by Remark 2.2.8 in Chapter 2, that the simple composition factors

of CRk on Cp′ are precisely SCm,Cξ where m is a positive integer coprime to p and ξ is a

primitive character ξ : (Z/mZ)× → C×. Now, by the equality above, we conclude that

these simple functors are also composition factors of Cpp
C
p
′

k . Now, by finite reduction

principle for biset functors, we find that these simple functors are composition factors

of Cppk on CC as required.

Theorem 3.1.2. The simple functors SCp×Cp,C and S1,C are composition factors of

Cppk where k is an algebraically closed field of characteristic p, prime.

Proof. For this part, we work on full-subcategory defined on family of groups closed

under taking quotients, namely, F = {C1, Cp, Cp × Cp}. Firstly, recalling the corre-

spondence between primitive idempotent bases of CB(G) and CBk×(G) for any finite

group G, we have eC1
C1

= eC1
C1,1

, e
Cp
C1

= e
Cp
Cp,1

, and e
Cp×Cp
C1

= e
Cp×Cp
C1,1

, e
Cp×Cp
Cp

= e
Cp×Cp
Cp,1

,

e
Cp×Cp
Cp×Cp = e

Cp×Cp
Cp×Cp,1, that is to say CBFk× ∼= CBF . Now, it is clear by use of linearization

map between CBk× and Cppk that CBFk× ∼= CppFk . Thus, we showed that CB and

Cppk are isomorphic on F . Moreover, we know that simple composition factors of CB
are indexed by B-groups. However, the only B-groups which are also p-groups are C1

and Cp × Cp. Hence, on F , the simple composition factors of CB are precisely SC1,C

and SCp×Cp,C. Due to isomorphism, we obtain that these are also simple composition

factors of CppFk . Now, by finite reduction principle for biset functors, we conclude the

desired result.

The next result is again due to Baumann which was found by restricting the biset

category CC to full-subcategory Cp×p′ whose objects are all abelian groups. On this

subcategory, she found the composition factors of Cppk to be precisely the simple

functors SCm,Cξ and SCp×Cp×Cm,Cξ where (m, ξ) runs through the set of positive integers

m coprime to p, and primitive character ξ : (Z/mZ)× → C× with multiplicity 1. Now,

by the finite reduction principle for biset functors, we obtain the following theorem:
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Theorem 3.1.3 ([4], Corollary 44). The simple functors SCm,Cξ and SCp×Cp×Cm,Cξ

where (m,ξ) runs through the set of positive integers m coprime to p, and primitive

character ξ : (Z/mZ)× → C× with multiplicity 1.

3.2 p-Hypo-elementary B-groups and some simple

composition factors of Cppk indexed by them

Now, we are going to study some of the simple composition factors of the biset functor

of p−permutation modules which are indexed by a special type of groups, named p-

hypo-elementary B-group H. To do so, we firstly start with the definition of this

special group, as follows:

Definition 3.2.1 (p-hypo-elementary group). Let p be a prime number. A group H is

said to be p-hypo-elementary if the quotient H/Op(H) is cyclic where Op(H) denotes

the largest normal p-subgroup of H. This means that H has a normal p-subgroup such

that the quotient is a cyclic p
′
-group.

In this thesis, we are particularly interested in finite groups which are both p-hypo-

elementary and B-group which we defined in Chapter 2. Note that one of the examples

of p-hypo-elementary B-group is the alternating group A4 when p = 2, since Op(A4) =

V4 and A4/V4
∼= C3 and mA4,V4 = mA4,A4 = 0.

Baumann has found a partial result about the appearance of simple composition

factors SH,V of Cppk where H is a finite p-hypo-elementary B-group as follows:

Theorem 3.2.2 ([2], Theorem 30). The simple functors SH,C with H is a finite p-

hypo-elementary B-group are composition factors of Cppk. However, the multiplicity

of SH,C as a composition factor of Cppk is not known.

She also found the following result:

Theorem 3.2.3 ([3], Theorem 4.15., p48). Let k be an algebraically closed field of

characteristic p, prime. Let G = Cp o Cl where l > 1 and (l, p) = 1, and the action of
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Cl on Cp is faithful. Then, the simple functor SCpoCl,V is a simple composition factor

of Cppk if and only if V is the trivial COut(CpoCl)-module C i.e. SCpoCl,C. Moreover,

the multiplicity of SCpoCl,C as a composition factor of Cppk is equal to Φ(l).

It should be noted at this point that any p-hypo-elementary group has form H =

Op(H)o Cl with (l, p) = 1 which follows from Schur-Zassenhaus Theorem.

3.3 The classification of p-hypo-elementary B-

groups

Now, we shall state the classification of p-hypo-elementary B-groups which are com-

pleted by Baumann:

Theorem 3.3.1 ([2], Theorem 43). G ∼= P o Cn is a p-hypo-elementary B-group if

and only if

(i) P is elementary abelian,

(ii) The action of Cn on P is faithful,

(iii) In a decomposition of P as a direct sum of simple FpCn-modules, every sim-

ple FpCn-module appears at most one time, except the trivial module which may

appear 0 or 2 times.

Proof. Let us suppose that G = P o Cn is a B-group.

STEP 1: P is elementary abelian group.

Proof. We start with the following claim:

Claim: Φ(P ) ⊆ Φ(G).

Proof: Let M be a maximal subgroup of G. It is enough to show that Φ(P ) ⊆M .

Since P is the unique Sylow p-subgroup of G, we have R = M ∩ P is a normal Sylow

p-subgroup of M. Now, if R = P , then it would clearly imply that Φ(P ) ⊆ P ⊆M .
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If R 6= P , then we consider the subgroups Φ(P )R and Φ(P )M , which are well-

defined because of the fact that Φ(P )EG by noting Φ(P ) is a characteristic group of

P and P EG. Now, since M is a maximal subgroup of G, we have either Φ(P )M = M

or Φ(P )M = G. But (Φ(P )M)∩ P = Φ(P )R 6= P , because of our assumption R 6= P .

Therefore, it implies that we must have Φ(P )M = M . Then, Φ(P ) ⊆ M , that is to

say, Φ(P ) ⊆ Φ(G).

Now, suppose that Φ(P ) 6= 1. Then, since G is a B-group and 1 6= Φ(P ) E G, we

must have

mG,Φ(P ) =
1

|G|
∑

XΦ(P )=G

|X|µ(X,G) = 0.

But note that since XΦ(P ) = G and Φ(P ) ⊆ Φ(G), we have XΦ(G) = G. But then

by the property of Frattini subgroup, we have X = G. Then,

mG,Φ(P ) =
1

|G|
|G|µ(G,G) = 1 6= 0,

which is a contradiction. Thus, Φ(P ) = 1. Since P is a p-group, it is possible if and

only if P is elementary abelian, as required.

STEP 2: Cn acts trivially on P .

Proof. For this part, we shall start with the result on calculation of deflation numbers:

Proposition 3.3.2 ([1], Proposition 5.6.4.). If N is a minimal normal abelian subgroup

of G, then

mG,N = 1− |KG(N)|
|N |

,

where KG(N) is the set of complements of N in G.

Moreover, if G is solvable, then G is a B-group if and only if |KG(N)| = |N | for all

minimal normal subgroups N of G.

Claim: Any p-hypo-elementary B-group G ∼= P o Cn is solvable.
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Proof: Recall that if B E A, and both B and A/B are solvable groups then A

is solvable (cf. [16], Proposition 3.25, p188). Now, since P is a finite p-group, it is

necessarily solvable by using the fact above, and the fact that 1 6= Z(P ) E P and

induction. Then, again by the same fact, since P EG, and both P and Cn ∼= G/P are

solvable, we have G is solvable, as claimed.

Therefore, we can make use of the latter part of Proposition 3.3.2, i.e., G = P oCn
is a B-group if and only if |KG(N)| = |N |, for all minimal normal subgroups N of G.

Now, n = 1 case is trivial so we suppose n ≥ 2. Let us denote the action of Cn on

P by ϕ : H → Aut(P ) with Kerϕ = Cd.

Assume for a contradiction that the action is not faithful, i.e., Cd 6= 1. Then, we

have Cd E G = P o Cn. Now, there exists a minimal normal subgroup 1 6= N in Cd.

We shall observe that there can be at most one complement of N in G. Suppose that

C is a complement of N in G, then since C contains the normal Sylow p-subgroup P

of G, it has a form C = P oK where K ≤ Cn. Note that since C is a complement of

N in Cn, we have at most one possibility for K. Therefore, |KG(N)| ≤ 1. However,

since G is a B-group which is solvable, we must have |N | = |KG(N)|, a contradiction

since N 6= 1. Therefore, the kernel of the action is trivial as required.

STEP 3: Condition(iii) is satisfied.

Proof. We shall start with an observation:

Claim: Any minimal normal subgroup N of G is always contained in P .

Proof: Let 1 6= N be a minimal normal subgroup of G. We may suppose that

N ∩ P = 1, because otherwise, by the minimality of N , we would have N 6 P . Then,

note that since N,P EG and N ∩P = 1, we must have [N,P ] = 1. Thus, N ≤ CG(P ),

i.e., P ≤ CG(P ) ≤ PCn. But then, CG(P ) = P (CG(P ) ∩ Cn) = PCCn(P ) = P since

CCn(P ) = 1 by the last part of Step 2. Hence, we obtain CG(P ) = P . However, we

also found that N ≤ CG(P ) = P . Therefore, N = 1, a contradiction. Therefore, we

must have N ⊆ P .
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Now, we need to describe complements of N :

Claim: Let N EG such that N ≤ P . Then, every complement of N is of the form

C o Q where C E G which is a complement of N in P and Q is a subgroup of G

conjugate to Cn.

Proof: Let X be a complement of N in G. Then, we define C = X ∩ P , which is

a normal Sylow p-subgroup of X. Moreover, since P is abelian, we also have C E P ,

therefore, C EG.

Now, by Schur-Zassenhaus Theorem, since the order of C and X/C is coprime, there

exists a subgroup Q ∼= X/C of X such that X = C oQ. Since N ≤ P , we must have

|Q| = n. But since N is solvable, by second part of Schur-Zassenhaus theorem, every

subgroup of order n is conjugate in G. Thus, we have Q =G Cn.

On the other hand, suppose that X = CoQ such that CEG which is a complement

of N in P , and Q ≤ G such that |Q| = n. Then, we have N ∩ X = N ∩ C = 1 and

NX = N(C o Q) = NC o Q = P o Q = G, i.e., X is a complement of N in G,

completing the proof of the claim.

Now, by Step 1, P is elementary abelian group, so it can be thought as an Fp-vector

space, and since Cn acts on P , P has an FpCn-module structure. We shall note that

since (p, n) = 1, every FpCn-module is semisimple, so is P.

Then, let P =
t⊕
i=1

Pi be the homogeneous componentwise decomposition of FpCn-

module P , where each Pi corresponds to Pi ∼=
mi⊕
j=1

Si with a simple FpCn-module Si.

At this point, we suppose S1 to be the trivial FpCn-module and if it does not appear

in the decomposition of P , we add it.

Moreover, note that FpCn ∼= Fp[x]/(xn−1) =
∏
i

Fp[x]/mi(x), each Si corresponding

to Fp[x]/mi(x) where mi(x) is irreducible polynomial over Fp, so we have Si is a field

over Fp i.e. for some si ∈ N, Si ∼= Fpsi .

Now, letN be a minimal normal subgroup ofG. Then, we know that |KG(N)| = |N |.
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Moreover, we found that N ≤ P and since N is a normal subgroup of G, we can think

N as a FpCn-submodule of P . Note that by minimality of N , we must have N ∼= Sl

for some 1 ≤ l ≤ t.

By our claim above, we know the description of complements of such a normal

subgroup N . In fact, they are all in the form CoQ where CEG, which is a complement

of N in P , and Q is a cyclic subgroup of G of order n.

Determination of the number of possibilities for C:

Note that C can be thought as an FpCn-submodule of P . Thus, by using the

uniqueness of the homogeneous components, a complement C of N in P is of the form

Hl ⊕
t⊕
i=1
i 6=l

Pi,

where Hl is a complement of N in Pl.

Now, recall that we obtained N ∼= Sl = Fpsl , therefore, having Pl ∼=
ml⊕
j=1

Sl, we

can think Pl as a vector space over Fpsl . Therefore, in order to find the number of

complements, it is sufficient to count the number of complements as Fpsl -vector spaces.

Note that the number of complements of N = Fpsl of Pl ∼=
ml⊕
j=1

Sl is equal to the

difference between the number of hyperplanes of Pl and the number of hyperplanes of

Pl that contain N . Note that the latter one is equal to the number of hyperplanes of

Pl/N .

Thus, the number of complements of N in Pl is[
ml

1

]
psl

−

[
ml − 1

1

]
psl

=
(1− (psl)ml)

(1− psl)
− (1− (psl)ml−1)

(1− psl)
= psl(ml−1).

Therefore, we obtain psl(ml−1) many complements of N in P .

Determination of the number of possibilities for Q:

Since we have NC = P , we must find the number of complements of P in P o Cn

divided by the number of complements of C in C oQ.
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Claim: The number of complements of P in G = P o Cn is equal to pm−m1 .

Proof: For this, we have to find the number of subgroups which are conjugate to

Cn in G. At this point, we again refer to Schur-Zassenhaus theorem, which states that

P acts transitively on the set of conjugates of Cn in G. Therefore, the number of such

groups is equal to |P |
|CP (Cn)| . We claim that CP (Cn) = P1, which is the homogeneous

component of P associated to the trivial FpCn-module S1, i.e., P1
∼=

m1⊕
j=1

S1. It is clear

that P1 ≤ CP (Cn). Conversely, suppose that p ∈ CP (Cn), then we have for every

h ∈ Cn, (php−1, h) ∈ Cn, so hp−1 = p−1, i.e., p ∈ P1, as required.

But then, we have the number of complements of P in G = P o Cn is equal to
|P |
|P1| = pm

pm1
= pm−m1 .

The calculation of the complements of C in C oQ:

Suppose N ∼= S1, then C ∼= H1 ⊕
t⊕
i 6=1

Pi where H1 is the complement of N in P1.

Now, we have |CC(Q)| = H1. Then, the number of complements of C in CoQ is equal

to |C|
|H1| = pm−s1

pm1−1 = pm−m1 noting that s1 = 1 because S1
∼= Fp.

Suppose N ∼= Sl where Sl is non-trivial module. Then, we have |CC(Q)| = P1, and

so the number of complements of C in C oQ is equal to pm−sl

pm1
= pm−sl−m1 .

Now, we have the number of possibilities for Q is equal to

=

{
pm−m1

pm−m1
= 1 if l = 1

pm−m1

pm−sl−m1
= psl if l 6= 1

Then, we obtain

|KG(N)| =

{
psl(m1−1) = p(m1−1) if l = 1
psl(ml−1)

psl
= pslml if l 6= 1

But since G is a B-group, we must have |KG(N)| = |N | = psl . Hence, if l = 1, then

pm1−1 = p implies m1 = 2 noting that S0 may not be apparent in P at all, i.e., m1 = 0.

If l 6= 1, then pslml = psl which is true if and only if ml = 1 noting that ml = 0 as well,

if Sl is not apparent in P .
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Therefore, we have shown that the condition(iii) is satisfied.

Converse of this theorem follows easily by following the calculation for |KG(N)|, and

using the fact that each Sl apparent in P can be taken as a minimal normal subgroup

of G.

Remark 3.3.3. Note that for our example A4 = V4 o C3 when p = 2, we have V4

is elementary abelian, CC3(V4) = 1 that is to say the action of C3 on V4 is faithful,

and as an F2C3-module, V4
∼= S2 where S2 is the 2−dimensional simple F2C3-module

appearing once and the trivial F2C3−module S1 appears zero times.

3.4 The conjecture of Baumann on the appearence

of simple composition factors of Cppk indexed

by p-hypo-elementary B-groups

We have reviewed notion ofB-groups and the fact that the simple composition factors of

CB are precisely SG,C where G is a finite B-group. Moreover, we studied that Baumann

found out that for a p-hypo-elementary B-group H, SH,C is a simple composition factor

of Cppk. Combining these observations, and Theorem 3.2.3, it is reasonable to expect

that for a p-hypo-elementary B-group H, the only composition factors of Cppk are in

the form of SH,C. Baumann has a conjecture on this as follows:

Conjecture 3.4.1 ([3], Conjecture 4.24, p59). Let k be an algebraically closed field

of characteristic p and C be the algebraically closed field of characteristic 0. Suppose

H = P o Cl is a p-hypo-elementary B-group. Then, SH,V is a simple composition

factor of Cppk if and only if V is the trivial COut(H)−module, i.e. SH,C. Moreover,

the multiplicity of SH,C as a simple composition factor of Cppk is Φ(l).

In this last part of this chapter, we want to disprove this conjecture by considering

the alternating group A4 which is a p-hypo-elementary B-group for p = 2. However,
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firstly, we need the following remarks and methods which can be found in [3], Chapter

4, Section 4.3. We are going to apply her method to find all simple composition factors

of Cppk indexed by finite groups C1, C2, C3, V4 and associated simple modules when

p = 2. However, as we will see, this method will not provide us with finding the

explicit simple composition factors indexed by A4 when p = 2. Therefore, we will

provide an alternative method to find some simple composition factors indexed by A4

when p = 2. This method will be generalized to some p-hypo-elementary B-groups

when characteristic of k is p to find new simple composition factors of Cppk.

Remark 3.4.2. We have the following equalities, for any finite group G:

dimCCppk(G) =
∑

(H,V )∈CF (G)

mH,V dimCSH,V (G),

where CF (G) is the set of pairs (H,V ) where H is a subquotient of G and V is a

simple COut(H)−module, and mH,V is the multiplicity of SH,V as a composition factor

in Cppk. (by Bouc, we know that if dimCSH,V (G) 6= 0 then H has to be a subquotient

of G.) On the other hand, we have

dimCCppk(G) =
∑
P

lp(NG(P )/P ),

where P runs throught the set of p−subgroups of G up to conjugacy, and lp(NG(P )/P )

denotes the number of conjugacy classes of p
′−elements in NG(P )/P .

The following remarks will help us to compute the dimensions of simple functors

SG,V evaluated at some H over C.

Remark 3.4.3 ([1], Theorem 5.5.4, p91). Let G be a B− group, then dimCSG,C(H) is

equal to the number of conjugacy classes of subgroups K of H such that β(K) ∼= G. In

particular, dimCSC1,C(H) is equal to the number of conjugacy classes of cyclic subgroups

of G.

Remark 3.4.4 ([1], Corollary 7.4.3, p134). Let H be a finite group, then

dimCSZ/mZ,Cξ(H) is equal to the number of conjugacy classes of cyclic groups K of

H, of order multiple of m, for which the natural image of NH(K) in (Z/mZ)× is

contained in kernel of ξ.
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Let us use Baumann’s method to find simple composition factors SG,V of Cppk where

G is a group with small order and V is a simple COut(G)−module to compute those

that are indexed by groups G = C1, C2, C3, V4 in characteristic p = 2. The results that

we obtain will be used when we will try to find composition factors associated to the

alternating group A4 for p = 2 due to the fact that if dimCSG,V (A4) 6= 0 then G has to

be a subquotient of A4, namely the candidates for G are C1, C2, C3, V4 and A4 itself.

Let us recall the result due to Bouc in this chapter once again, dimCSG,V (H) 6= {0},
then G must be a subquotient of H.

Proposition 3.4.5. Suppose that k is an algebraically closed field of characteristic 2.

The simple biset functor SC1,V is a composition factor of Cppk if and only if V = C
and the multiplicity of SC1,C as a composition factor of Cppk is 1.

Proof. We have

1 = dimCCppk(C1) =
∑

(H,V )∈CF (C1)

mH,V dimCSH,V (C1),

where CF (C1) is the set of pairs (H,V ) where H is a subquotient of C1 and V is a

simple COut(C1)−module. Now, clearly, H = C1 and V = C the trivial module. That

is to say, we have

1 = dimCCppk(C1) = mC1,CdimCSC1,C(C1),

where mC1,C is the multiplicity of SC1,C as a composition factor of Cppk. Due to Remark

3.4.3, we know that dimCSC1,C(C1) = 1, which implies that the multiplicity of SC1,C

is 1. Now, by finite reduction principle for biset functors, we conclude that SC1,C is a

composition factor of Cppk on CC with multiplicity 1.

Proposition 3.4.6. Suppose that k is an algebraically closed field of characteristic 2.

The simple biset functor SC2,V never appears as a composition factor of Cppk for any

simple COut(C2)-module V .

Proof. We have

2 = dimCCppk(C2) =
∑

(H,V )∈CF (C2)

mH,V dimCSH,V (C2),
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where CF (C2) is the set of pairs (H, V ) whereH is a subquotient of C2 and V is a simple

COut(H)−module. Hence, candidates for H are C1 and C2. We already found that

SC1,C is apparent with multiplicity 1 in Cppk. Moreover, we have dimCSC1,C(C2) = 2

due to Remark 3.4.3.

We have the following picture:

p 2

dimCSC1,C(C2) 2

..... .....

dimCCppk(C2) 2

Note that if there was another pair (C2, V ) in CF (C2) such that SC2,V is apparent

as a composition factor of Cppk, then since dimCSC2,V (C2) = dimCV 6= 0, we would

have

2 = dimCCppk(C2) <
∑

(H,V )∈CF (C2)

mH,V dimCSH,V (C2),

which is a contradiction. Hence, there is no simple composition factor associated with

C2 of Cppk when p = 2.

Proposition 3.4.7. Suppose that k is an algebraically closed field of characteristic 2.

The simple biset functor SC3,V is a simple composition factor of Cppk if and only if

V = Cξ2 where ξ2 denotes the primitive character ξ2 : (Z/3Z)× → C×. Moreover, the

multiplicity of SC3,Cξ2 is 1.

Proof. When p=2, we have

3 = dimCCppk(C3) =
∑

(H,V )∈CF (C3)

mH,V dimCSH,V (C3),

and the candidates for H is C1 and C3.

By Theorem 3.1.3, we know that SC3,Cξ2 is a simple composition factor of Cppk
with multiplicity 1 and we already saw that SC1,C is apparent with multiplicity 1 as

well. Moreover, by Remark 3.4.3 and Remark 3.4.4, we have dimCSC1,C(C3) = 2 and

dimCSC3,Cξ2 (C3) = 1. Then, we have the following picture:
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p 2

dimCSC1,C(C3) 2

dimCSC3,Cξ2 (C3) 1

.... ....

dimCCppk(C3) 3

Thus, by similar argument above, we find that there cannot be any other composition

factor of Cppk indexed by C3 except SC3,Cξ2 which has a multiplicity 1.

Proposition 3.4.8. Suppose that k is an algebraically closed field of characteristic 2.

The simple biset functor SV4,V is a simple composition factor of Cppk if and only if V

is the trivial COut(V4)−module. Moreover, the multiplicity of SV4,C is 1.

Proof. Firstly, let us start with determination of dimCCppk(V4), noting that we are

taking the p− subgroups of V4 up to V4-conjugacy, we have:

char(k) P NV4(P ) NV4(P )/P l2(NV4(P )/P )

p = 2

C1 V4 V4 1

C1
2 V4 C2 1

C2
2 V4 C2 1

C3
2 V4 C2 1

V4 V4 C1 1

Thus, we have dimCCppk(V4) = 5 when p = 2.

So, we have

5 = dimCCppk(V4) =
∑

(H,V )∈CF (V4)

mH,V dimCSH,V (V4),

where CF (V4) is the set of pairs (H, V ) where H is a subquotient of V4 and V is a

simple COut(V4)−module. Hence, the candidates of H are C1, C2, V4.

We already found that SC1,C is a composition factor of Cppk with multiplicity 1, and

SC2,V never appears for any simple COut(C2)-module V .
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Moreover, we already know that since V4 = C2 × C2, V4 is a B-group. Therefore,

by Theorem 3.2.2, SV4,C is a composition factor of Cppk, yet we do not know the

multiplicity.

Now, we have dimCSC1,C(V4) = 4 by Remark 3.4.3 and dimCSV4,C(V4) = dimC(C) =

1. The picture is as follows:

p 2

dimCSC1,C(V4) 4

dimCSV4,C(V4) 1

.... ....

dimCCppk(V4) 5

By similar argument as above, we found that SV4,V is a composition factor of Cppk
if and only if V is the trivial COut(V4)-module. Moreover, the multiplicity of SV4,C is

1 as a composition factor of Cppk.

Now, we are ready to construct our example to disprove Baumann’s conjecture:

Theorem 3.4.9 (The alternating group A4 = V4 oC3). If k is an algebraically closed

field of characteristic p = 2, then both SA4,C and SA4,C−1 are the only simple composition

factors associated to A4 and their multiplicity is 1.

Proof. Firstly, note that we have A4−conjugacy classes: [1]A4 = {1},
[(123)]A4 = {(123), (142), (134), (243)} and [(132)]A4 = {(132), (124), (143), (234)} and

[(12)(34)]A4 = {(12)(34), (13)(24), (14)(23)}.

We have the following results for H = A4,

char(k) P NA4(P ) NA4(P )/P l2(NA4(P )/P )

p = 2

C1 A4 A4 3

C2 V4 C2 1

V4 A4 C3 3
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Thus, dimCCppk(A4) = 7 when p = 2. Hence, we have

7 = dimCCppk(A4) =
∑

(H,V )∈CF (A4)

mH,V dimCSH,V (A4),

where CF (A4) is the set of pairs (H, V ) where H is a subquotient of A4 and V is a

simple COut(H)−module. The candidates for H are C1, C2, C3, V4, A4.

By remarks above, for H = C1, C2, C3, V4, we know that we only have the simple

composition factors : SC1,C with the multiplicity 1, SC3,Cξ2 with the multiplicity 1, and

SV4,C with the multiplicity 1.

We need to compute dimensions of these simple biset functors evaluated at A4.

Let us recall the subgroup lattice of A4:

A4

V4C1
3C2

3C3
3C4

3

C1
2C2

2 C3
2

C1

By remark 3.4.3, we have dimCSC1,C(A4) = 3 which is the number of conju-

gacy classes of cyclic subgroups of A4, namely, C1, C2, C3 since all C2 groups are

A4-conjugates and so are C3 groups of A4. Moreover, dimCSC3,Cξ2 (A4) = 1, and

dimCSV4,C(A4) = 1 because β(C1) = C1, β(C2) = C1, β(C3) = C1, β(A4) = A4, there

are only one subgroup K of A4 such that β(K) ∼= V4, and this is only K = V4 itself.

Moreover, since A4 is a p-hypo-elementary B-group, by Theorem 3.2.2, we know that

SA4,C is apparent as a composition factor of Cppk yet we do not know the multiplicity.

Thus, we have the following result:
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p 2

dimCSC1,C(A4) 3

dimCSC3,Cξ2 (A4) 1

dimCSV4,C(A4) 1

dimCSA4,C(A4) 1

.... ....

dimCCppk(A4) 7

This implies that we must have simple composition factors indexed by A4 and a

simple COut(A4)-module V . We have Out(A4) ∼= C2. This V can be either C in which

case we would say mA4,C = 2, or V = C−1 in which case we would conclude that SA4,C

and SA4,C−1 are both the only composition factors of Cppk with each of multiplicity 1.

For this part, Let F|A4| be a full-subcategory of the biset category CC whose objects

are finite groups of order less than or equal to the order of alternating group, |A4|.

Moreover, we know that

[QA4,p=2] = {(C1, 1), (C1, (123)), (C1, (132)), (C2, 1), (V4, 1), (V4, (123)), (V4, (132))}.

Claim: M1 = spanC < FA4

V4,(123)+F
A4

V4,(132) > and M2 = spanC < FA4

V4,(123)−F
A4

V4,(132) >

are both simple biset functors on the subcategory F|A4|.

Proof. Since every biset functor can be thought as a module of the quiver algebra⊕
∀H,G∈F|A4|

B(H,G), and due to the fact that elements of biset Burnside rings are gen-

erated by five elementary maps, namely, induction, inflation, isogation, deflation and

restriction, we only need to check that M1 and M2 are closed under the action of those

maps. Since both M1 and M2 are formed by the primitive idempotents FA4

V4,(123) and

FA4

V4,(132), it suffices to consider the effects of these maps on the primitive idempotents

FA4

V4,(123) and FA4

V4,(132):

(i) There is no induction nor inflation of the primitive idempotents FA4

V4,(123) and

FA4

V4,(132) on the category F|A4| because there is no group in this category where

A4 is its subgroup or its subquotient.
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(ii) Due to restriction formula, for any proper subgroup K of A4, ResA4
K FA4

V4,(123) = 0

and ResA4
K FA4

V4,(132) = 0.

(iii) For deflations, we have non-trivial normal subgroups of A4 are V4 and A4. In

this chapter, we shall compute deflation via the linearization map. Note that

in Chapter 4, we will show that these deflations are zero by using Ducellier’s

deflation formula.

Claim: DefA4

A4/A4
FA4

V4,(123) = 0 and DefA4

A4/A4
FA4

V4,(132) = 0.

Proof. Firstly, we note that linA4(eA4

A4,(123)) = FA4

V4,(123), and we have, recalling the

deflation formula for the primitive idempotent basis of CBk×(A4),

DefA4

A4/A4
FA4

V4,(123) = λeC1
C1,1

,

where λ =
|NA4/A4

(A4A4/A4,(123)A4):A4A4/A4|
|NA4

(A4,(123)):A4| βk
×

(A4/(A4 ∩ A4), A4, (123)), and,

βk
×

(A4/(A4∩A4), A4, (123)) =
1

|O(A4)(A4 ∩ A4)|
∑
U6A4:

U(A4∩A4)=A4

|U∩(123)O(A4)|µ(U,A4).

We can see that U runs through all subgroups of A4, that is,

U = {C1, C
1
2 , C

2
2 , C

3
2 , C

1
3 , C

2
3 , C

3
3 , C

4
3 , V4, A4},

and we have O(A4) = V4, and the coset (123)V4 = {(123), (134), (243), (142)},
then we have |C1 ∩ (123)V4| = 0, |C2 ∩ (123)V4| = 0 and |V4 ∩ (123)V4| = 0,

|C3 ∩ (123)V4| = 1 and |A4 ∩ (123)V4| = 4. Thus, we have

βk
×

(A4/(A4 ∩ A4), A4, (123)) =
1

|O(A4)(A4 ∩ A4)|
(4 · µ(C3, A4) + 4 · µ(A4, A4)).

Now, due to properties of Möbius function, we know that
∑

H6F6K
µ(H,K) = 0

for H < K and µ(G,G) = 1 for any finite group G. Thus, letting H = C3

and K = A4, we know that µ(C3, C3) + µ(C3, A4) = 0. Hence, µ(C3, A4) = −1.

Moreover, also µ(A4, A4) = 1. It shows that βk
×

(A4/(A4 ∩ A4), A4, (123)) = 0.

Now, by the linearization map, we obtain the required result.

Visually, we have the following result:
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eA4

A4,(123) 0

FA4

V4,(123) 0

linA4

DefA4

A4/A4

DefA4

A4/A4

linA4/A4

Similar argument shows that DefA4

A4/A4
FA4

V4,(132) = 0 as well.

Claim: DefA4

A4/V4
FA4

V4,(123) = 0 and DefA4

A4/V4
FA4

V4,(132) = 0.

Proof. As above, we have linA4(eA4

A4,(123)) = FA4

V4,(123), and we have

DefA4

A4/V4
FA4

V4,(123) = λeC2
C2,1

,

where

λ =
|NA4/V4(A4V4/V4, (123)V4) : A4V4/V4|

|NA4(A4, (123)) : A4|
βk
×

(A4/(A4 ∩ V4), A4, (123)),

and,

βk
×

(A4/(A4∩V4), A4, (123)) =
1

|O(A4)(A4 ∩ V4)|
∑
U6A4:

U(A4∩V4)=A4

|U∩(123)O(A4)|µ(U,A4).

Thus, U runs through the subgroups {C1
3 , C

2
3 , C

3
3 , C

4
3 , A4}. Similarly to above

calculations, we have

βk
×

(A4/(A4∩V4), A4, (123)) =
1

|O(A4)(A4 ∩ V4)|
(4 ·µ(C3, A4)+4 ·µ(A4, A4)) = 0.

Now, the linearization map, we get the required result.

Similarly, we can conclude that DefA4

A4/V4
FA4

V4,(132) = 0.

(iv) Finally, we have to show that for any Ψ ∈ Aut(A4), we have Iso(Ψ)M1 ⊆M1 and

Iso(Ψ)M2 ⊆M2.

However, we have Aut(A4) ∼= S4 that is to say each automorphism comes from

a conjugation by an element of S4, and clearly Inn(A4) ∼= A4. Thus, Out(A4) ∼=
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C2, i.e. the non-identity automorphism comes from a conjugation by an odd

permutation in S4.

Since the pairs (V4, (123)) and (V4, (132)) are taken up to G−conjugacy, instead

of all automorphisms in Aut(A4), we can just take Ψ to be in Out(A4). We may

take Ψ = c(12), conjugation by the element (12). Moreover, note that V4 is a

characteristic group of A4.

Then, we have

Iso(c(12))F
A4

V4,(123) = FA4

V4,(132) and Iso(c(12))F
A4

V4,(132) = FA4

V4,(123).

Therefore, we have Iso(Ψ)M1 = M1 and Iso(Ψ)M2 = M2.

Thus, we know that both M1 and M2 are biset functors on F|A4|. It is clear that

both of them are simple.

Note that, for any K < A4, M1(K) = 0 and M2(K) = 0, thus A4 is the minimal

group for both M1, M2, and M1(A4) ∼= C and M2(A4) ∼= C−1. That is to say, M1 =

SA4,C and M2 = SA4,C−1 on F|A4|.

Now, since SA4,C and SA4,C−1 are simple composition factors of Cppk on F|A4|, it

follows from the finite reduction principle for biset functors that they are composition

factors for Cppk on the biset category CC.

Remark 3.4.10. Noting that A4 is a p-hypo-elementary B-group for p = 2, and by

Theorem 3.4.9, we know that the simple biset functors SA4,C and SA4,C−1 are compo-

sition factors of Cppk, so Conjecture 3.4.1 does not hold. We shall see in the last

chapter that we can generalize the idea in the construction of A4 example to some

p-hypo-elementary B-groups so that we aim to find new composition factors of Cppk
indexed by those p-hypo-elementary B-groups.
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Chapter 4

p-Permutation functors and D-pairs

Throughout this chapter, we let C be the algebraically closed field of characteristic 0

and k be an algebraically closed field of characteristic p, prime.

In chapter 2 and 3, we studied the biset functor of p-permutation modules denoted

by Cppk which is defined to be a C-linear functor from the biset category CC to the

category of finitely generated C-vector spaces C-Mod. In this chapter, we shall study

the notion of p-permutation functors introduced by Maxime Ducellier. He studied the

p-permutation functor of p-permutation modules which we shall denote by Cppkp−perm.,
and the simple p-permutation factors of Cppkp−perm.. Along the way, we shall review

the notion of D-pairs introduced and classified by Ducellier. We shall see that the

classification of D-pairs are precisely the same as the classification of p-hypo-elementary

B-groups.

4.1 The p-permutation category CCppk

We begin with the following definitions which can be found in [5].

Definition 4.1.1. Any (kG, kH)-bimodule M can be seen as a k(G×H)-module with

the action defined as

g ·m · h = (g, h−1) ·m.
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M is called a p-permutation (kG, kH)-bimodule if it is a p-permutation k(G×H)-

module. We denote the Grothendieck group of p-permutation (kG, kH)-bimodules by

ppk(G,H) which is isomorphic to ppk(G×H). Moreover, we can extend the coefficients

to C in the usual sense: Cppk(G,H) := C
⊗
Z
ppk(G,H).

Definition 4.1.2 (Composition of two p-permutation bimodules). Let G,H and K be

finite groups, and X be a (kG, kH)-bimodule and Y be a (kH, kK)-bimodule. Then,

we define the tensor product

X ◦ Y := X ⊗kH Y := X ⊗ Y/ ∼,

where ∼ is defined by

xh⊗ y ∼ x⊗ hy,∀x ∈ X, y ∈ Y, h ∈ H.

X ⊗kH Y has a (kG, kK)-bimodule structure with the action defined by

g · (x⊗ y) · k := (g · x⊗ y · k),

for every g ∈ G , k ∈ K, and x⊗ y ∈ X ⊗kH Y .

Letting X to be a (kG, kH)-bimodule and Y to be a (kH, kK)-bimodule, we natu-

rally have the following bilinear map from ppk(G,H)× ppk(H,K)→ ppk(G,K) given

by linearly extending the following map

([X], [Y ]) 7→ [X] ◦ [Y ] = [X ⊗kH Y ].

Now, we shall define the p-permutation category and p-permutation functors introduced

by Ducellier:

Definition 4.1.3 (Ducellier2015). [the p-permutation category] The category CCppk is

defined as follows:

(i) The objects are finite groups,

(ii) For G,H ∈ Obj(CCppk), HomCCppk (G,H) = Cppk(H,G),

(iii) For [X] ∈ HomCCppk (G,H) and [Y ] ∈ HomCCppk (H,K), [X] ◦ [Y ] = [X ⊗kH Y ]

where X ⊗kH Y is defined as above.

Note that this bilinear map gives ppk(G,G) a ring structure. Thus, we conclude

that Cppk(G,G) is a C-algebra.
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4.2 Remarks on p-permutation functors

Definition 4.2.1 (p-permutation functor). A C-linear functor defined from

CCppk to C-Mod, the category of finite dimensional C-vector spaces, is called

a p-permutation functor.

Definition 4.2.2 (the p-permutation functor of p-permutation modules). The p-

permutation functor Cppkp−perm. is defined as follows:

(i) for any G ∈ Obj(CCppk), Cppkp−perm.(G) := Cppk(G, 1) = Cppk(G),

(ii) for [U ] ∈ HomCCppk (G,H), we define

Cppkp−perm.([U ]) : Cppkp−perm.(G)→ Cppkp−perm.(H),

given by [V ] 7→ Cppkp−perm.([U ])([V ]) := [U ] ◦ [V ] = [U ⊗kG V ].

We shall review the definition of simple p-permutation functors by Ducellier.

Definition 4.2.3. (Minimal group) Let F be a p-permutation functor. A group H is

said to be minimal for F if F (H) 6= 0 and for each group K such that |K| < |H|,
F (K) = 0. The class of minimal groups for F is denoted by Min(F ).

Definition 4.2.4. Let G be a finite group, we define the essential algebra as follows:

Cppp−perm.k (G,G) := Cppk(G,G)/I,

where I is two sided ideal of Cppk(G,G) such that

I =
∑
|H|<|G|

Cppk(G,H) ◦ Cppk(H,G).

Definition 4.2.5. (Simple p-permutation functors Sp−perm.G,V ) Let G be a finite group,

and V be a simple Cppp−perm.k (G,G)-module which can be seen as a Cppp−perm.k (G,G)-

module by inflation, then we define the functor

Sp−perm.G,V := (HomCCppk (G,H)
⊗

Cppk(G,G)

V )/R,

where R := {
∑
ϕi ⊗ υi|∀ψ ∈ Cppk(G,H),

∑
(ψϕi) · υi = 0}.
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Theorem 4.2.6 ([5], Theorem 2.16). Let G be a group, and V be a simple module

for Cppp−perm.k (G,G) then Sp−perm.G,V is simple. On the other hand, let S be a simple

p-permutation functor, then there exists a group G, and a simple Cppp−perm.k (G,G)-

module V such that S ' Sp−perm.G,V .

4.3 Definitions of a pair (P, s) and D-pair

Ducellier has provided classification of simple composition factors of the p-permutation

functor Cppkp−perm.; however, we need to define some further notions:

Definition 4.3.1 (Pair). A pair (P, s) is defined by a p-group P and a generator s

of a cyclic p
′
-group acting on P . We denote the semidirect product P o 〈s〉 by 〈Ps〉.

If we let G to be a finite group, and P to be a p-subgroup of G with s ∈ (NG(P ))p′ ,

then the pair (P, s) is identified with an action of s on P induced by conjugation by s.

Moroever, a pair (P, s) is contained in G if 〈Ps〉 ≤ G.

Definition 4.3.2 (Isomorphic pairs). Let (P, s) and (Q, t) be two pairs. A pair (P, s)

is isomorphic to the pair (Q, t) if there exists q ∈ Q, a group isomorphism ϕ : P → Q

and Ψ : 〈s〉 → 〈qt〉 such that

Ψ(s) = qt and ϕ(s · u) = Ψ(s) · ϕ(u),∀u ∈ P.

We denote isomorphic pairs by (P, s) ' (Q, t).

Proposition 4.3.3 ([5], Proposition 2.3.3., p15). The followings are equivalent:

1. (P, s) ' (Q, t),

2. There exists a group isomorphism f : 〈Ps〉 → 〈Qt〉 such that f(s) is conjugate to

t.

Definition 4.3.4 (Quotient of a pair). Let (P, s) and (Q, t) be two pairs. We say a

pair (Q, t) is a quotient of a pair (P, s) if there exists K E 〈Ps〉 such that (Q, t) =

(PK/K, sK), and we denote it by (P, s) >> (Q, t).

Definition 4.3.5 (D-pair). A pair (P, s) is said to be D-pair if for every non-trivial

normal subgroup N of G, we have Def
〈Ps〉
〈Ps〉/NF

〈Ps〉
P,s = 0 that is to say mP,s,N = 0.
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4.4 The simple composition factors of the p-

permutation functor of p-permutation modules

Cppkp−perm.

Although we have no full classification of simple composition factors of the biset functor

of p-permutation modules Cppk, thanks to Ducellier, we have information about all of

the simple composition factors of p-permutation functor of p-permutation modules

Cppkp−perm.. Similar argument to Bouc’s classification of simple composition factors

of the biset Burnside functor who showed that they are precisely SH,C where H is a

B-group, Ducellier has shown that the simple composition factors of the p-permutation

functor Cppkp−perm. are indexed by D-pairs as follows:

Here, we denote ep−perm.P,s as the subfunctor of Cppkp−perm. generated by the primitive

idempotent F
〈Ps〉
P,s . We denote the representatives of isomorphism classes of D-pairs by

[D-pairs].

Theorem 4.4.1 ([5], Proposition 5.2.1).

1. Let (P, s) be a D-pair. Then, the subfunctor ep−perm.P,s has a unique maximal

subfunctor

jp−perm.P,s =
∑

(Q,t)∈[D-pair]
(Q,t)>>(P,s)
(Q,t) 6'(P,s)

ep−perm.Q,t .

The quotient functor ep−perm.P,s /jp−perm.P,s is isomorphic to Sp−perm.〈Ps〉,WP,s
where

WP,s =
⊕

(Q,t)'(P,s)
〈Qt〉=〈Ps〉

CF 〈Ps〉Q,t .

2. If F ≤ F
′

are subfunctors of Cppkp−perm. such that F
′
/F is simple, then there

exists a unique D-pair (P, s) ∈ [D-pair] such that ep−perm.P,s ≤ F
′
, and ep−perm.P,s �

F . In particular, ep−perm.P,s +F = F
′
, ep−perm.P,s ∩F = jp−perm.P,s and F

′
/F ' Sp−perm.〈Ps〉,WP,s

.

Theorem 4.4.1 tells us that the simple composition factors of the p-permutation
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functor of p-permutation modules Cppkp−perm. are precisely the simple p-permutation

functors Sp−perm.〈Ps〉,WP,s
where (P, s) is a D-pair.

Ducellier has also found the dimensions of these simple p-permutation functors eval-

uated at some finite groups:

Theorem 4.4.2 ([5], Theorem 5.2.4, p105). Let (P, s) be a D-pair. Then,

dimCS
p−perm.
〈Ps〉,WP,s

(H) is equal to the number of conjugacy classes of pairs (Q, t) contained

in H such that (Q̃, t̃) ' (P, s) where (Q̃, t̃) denotes some quotient of the pair (Q, t).

Corollary 4.4.3 ([5], Corollary 5.2.5, p106). Let H be a group. Then,

dimCS
p−perm.
C1,C (H) is equal to the number of H-conjugacy classes of pairs (Q, t) con-

tained in H such that Q is cyclic and t ∈ CH(Q).

4.5 The classification theorem of D-pairs

Now, we shall review the classification theorem of D-pairs thanks to Ducellier:

Theorem 4.5.1 ([5]). A pair (P, s) is a D-pair if and only if

(i) P is elementary abelian,

(ii) C〈s〉(P ) = 1,

(iii) Each isotypic component of Fp(〈s〉)- module P is of multiplicity at most 1 if it

corresponds to a non-trivial simple module, of multiplicity 0 or 2 if it corresponds

to the trivial module.

Proof. Firstly, we suppose that we are given a D-pair (P, s). Then, by definition, we

know that for every non-trivial N EG = 〈Ps〉,

mP,s,N =
|s|

|N ∩ 〈s〉||CG(s)|
∑
Q≤P
Qs=Q

〈Qs〉N=〈Ps〉

|CQ(s)|µ((Q,P )s) = 0. (5.1)

STEP 1: P is elementary abelian. Assume for a contradiction that P is not

elementary abelian group. Recall that the Frattini subgroup Φ(P ) of a p-group P is
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trivial if and only if P is elementary abelian. Now, we shall start with the following

result:

Proposition 4.5.2. Let Q ≤ P ≤ G and s ∈ NG(P ) such that Qs = Q, then if

Φ(P ) � Q, then we have µ((Q,P )s) = 0.

Proof. By definition, we have µ((Q,P )s) = χ̃((Q,P )s) where (Q,P )s := {K|Q < K <

P s.t. Ks = K}.

We define the map ϕ : (Q,P )s → (Q,P )s by sending H 7→ HΦ(P ).

ϕ is well-defined: We have Q < H < P and Hs = H. Then, since Φ(P )s= Φ(P ),

we have (HΦ(P ))s = HΦ(P ). Moreover, since Φ(P ) � Q, we have Q < HΦ(P ).

Claim: HΦ(P ) < P .

Proof of the claim: Suppose that HΦ(P ) = P . Then, we have P = 〈hi,Φ(P )|hi ∈
H〉. Now, we know that H < P , since every proper subgroup of a finite group is

contained in a maximal subgroup, we have that there exists a maximal subgroup M of

P such that H ≤M . Moreover, we obtain Φ(P ) ≤M because the Frattini subgroup is

defined to be the intersection of all maximal subgroups. However, then it would imply

that P = 〈H,Φ(P )〉 ≤M which is a contradiction since M is maximal. Thus, we have

HΦ(P ) < P , as claimed. Thus, the map ϕ is well-defined.

Now, we consider the poset Y = Imϕ and we let X = (Q,P )s.

For this part, we shall firstly recall the following two well-known results which can

be found in [10]:

Lemma 4.5.3. Let f and g be two poset maps from X to Y such that f and g are

comparable. Then, the induced maps of chain complexes of C∗(f,Z) and C∗(g,Z) are

homotopic as well as the maps C̃∗(f,Z) and C̃∗(g,Z).

Proof. We may assume that f(x) ≤ g(x) for every x ∈ X. We define the following
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map,

sn : Cn(X,Z)→ Cn+1(Y,Z)

(x0, x1, ..., xn) 7→
n∑
i=0

(−1)i(f(x0), ..., f(xi), g(xi), ..., g(xn)),

and we replace the term (f(x0), ..., f(xi), g(xi), ..., g(xn)) by zero if it is not strictly

increasing.

Then, one can see that we have dYn+1 ◦ sn + sn−1 ◦ dXn = Cn(g,Z)−Cn(f,Z), that is

to say, C∗(f,Z) ' C∗(g,Z). The second part is the same, where we take s−1 = 0.

Claim: C∗(X,Z) and C∗(Y,Z) are homotopic.

Proof: To show that these two induced chain complexes are homotopic, we shall

only find two chain maps

α∗ : C∗(X,Z)→ C∗(Y,Z) and β∗ : C∗(Y,Z)→ C∗(X,Z)

such that α∗ ◦ β∗ ' idC∗(Y,Z) and β∗ ◦ α∗ ' idC∗(X,Z), where ' refers to homotopy

equivalence.

Recall that we have two poset maps ϕ : X → Y and the inclusion incY : Y → X as

stated above. Now, since we have for every element y ∈ Y = Imϕ, there exists H ∈ X
such that y = HΦ(P ), we obtain ϕ ◦ incY (y) = ϕ(y) = yΦ(P ) = HΦ(P )Φ(P ) =

HΦ(P ) = y. Thus, the map ϕ ◦ incY = idY . It is clear that C∗(ϕ,Z) ◦ C∗(incY ,Z) =

C∗(ϕ ◦ incY ,Z). Now, by Lemma 4.5.3, it is straightforward that the induced chain

maps C∗(ϕ ◦ incY ,Z) ' idC∗(Y,Z).

Conversely, note that for any H ∈ X = (Q,P )s, we have idX(H) = H ≤ incY ◦
ϕ(H) = HΦ(P ) because of Φ(P ) � Q and by the choice of H i.e. idX ≤ incY ◦ ϕ
are comparable poset maps. It follows once again from Lemma 4.5.3 that the induced

chain maps C∗(incY ,Z) ◦ C∗(ϕ,Z) = C∗(incY ◦ ϕ,Z) ' idC∗(X,Z). Thus, we conclude

that C∗(X,Z) ' C∗(Y,Z).

The next claim is an application of the fact that whenever a poset owns smallest or

maximal element, then it is contractible that is to say it is homotopy equivalent to a

poset formed by a singleton.
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Claim: C∗(Y,Z) and C∗({QΦ(P )},Z) are homotopic.

Proof:

Recall that Y=Imϕ where ϕ : (Q,P )s → (Q,P )s by H 7→ HΦ(P ).

Note that since Φ(P ) � Q, we have QΦ(P ) ∈ (Q,P )s so ϕ(QΦ(P )) = QΦ(P ) ∈Y,

noting that QΦ(P ) is the smallest element of Y.

Define poset maps α : Y → {QΦ(P )} given by HΦ(P ) 7→ QΦ(P ) and β :

{QΦ(P )} → Y given by QΦ(P ) 7→ QΦ(P ).

Now, it is clear that α ◦ β = idQΦ(P ). Thus, by Lemma 4.5.3, we obtain that

C∗(α,Z) ◦ C∗(β,Z) = C∗(α ◦ β,Z) ' idC∗({QΦ(P )},Z).

On the other hand, for every element HΦ(P ) ∈ Y , we have β ◦ α(HΦ(P )) =

β(QΦ(P )) = QΦ(P ) ≤ idY (HΦ(P )) since QΦ(P ) is the smallest element of Y . Thus,

by Lemma 4.5.3, we have C∗(β,Z) ◦ C∗(α,Z) = C∗(β ◦ α,Z) ' idC∗({QΦ(P )},Z).

Thus, we obtain that C∗(Y,Z) ' C∗({QΦ(P )},Z). Then, we have Hn(Y,Z) ∼=
Hn({QΦ(P )},Z).

But, we have Hn({QΦ(P )},Z) = 0 for every n 6= 0, and H0({QΦ(P )},Z) = Z.

Thus, χ̃(Y ) = 0 implying χ̃(X) = µ(X) = µ((Q,P )s) = 0, as claimed.

Now, we turn back to our deflation numbers:

Since for every Q ≤ P,Qs = Q, whenever Φ(P ) � Q, µ((Q,P )s)=0, we have

mP,s,N = 0 +
||s|

|N ∩ 〈s〉||CG(s)|
∑

Φ(P )≤Q≤P
Qs=Q

〈Qs〉N=〈Ps〉

|CQ(s)|µ((Q,P )s).

Now, we make a small alteration:

Claim: Given N E 〈Ps〉, Qs = Q, then 〈Qs〉N = 〈Ps〉 if and only if QN = PN if

and only if Q(N ∩ P ) = P .
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Proof: The second assertion is clear by using the fact that Q ≤ P ≤ QN = PN .

Thus, we shall only provide the proof of the first if and only if.

(⇒): Suppose that 〈Qs〉N = 〈Ps〉. Then, for any (p, 1) ∈ 〈Ps〉, there exists n ∈ N
and (q, si) ∈ 〈Qs〉 such that (q, si) ·n = (p, 1). We also have n = (n

′
, sj) since NE〈Ps〉,

for some n
′ ∈ P and sj ∈ 〈s〉. Then, we have (qsin

′
s−i, si+j) = (p, 1) that is to say

qsin
′
s−i = p ∈ P , note that n

′′
= sin

′
s−i ∈ P since P E 〈Ps〉. Moreover, since N is also

normal subgroup of 〈Ps〉, we have (1, sj) · (n′ , sj) · (1, s−j) = (sjn
′
s−j, 1) ∈ N . Thus,

we have for any p ∈ P , p = qn
′′

where n
′′ ∈ N ∩ P i.e. P ⊆ Q(N ∩ P ). The converse

inclusion is clear. Thus, we obtain P = Q(N ∩ P ).

(⇐): Suppose that Q(N ∩ P ) = P . Clearly, 〈Qs〉N ≤ 〈Ps〉. Let (p, si) ∈ P o 〈s〉.
Since Q(N ∩ P ) = P , there exists q ∈ Q, and n

′′ ∈ N ∩ P such that p = qn
′′
.

Moreover, since N ∩ P E 〈Ps〉, there exist n
′ ∈ N ∩ P such that n

′′
= sin

′
s−i. Thus,

(p, si) = (qn
′′
, si) = (q, si) · (n′ , 1) ∈ 〈Qs〉N . Then, 〈Ps〉 ≤ 〈Qs〉N , as claimed.

Claim: Let Φ(P ) ≤ Q ≤ P with Qs = Q and Q(N ∩ P ) = P , then we have

µ((Q,P )s) = µ((Q/Φ(P ), P/Φ(P ))sΦ(P )).

Proof : For this part, we must only show that (Q,P )s ' (Q/Φ(P ), P/Φ(P ))sΦ(P ).

Let H ∈ (Q,P )s. Now, since Q < H < P and Φ(P ) ≤ Q, we have Φ(P ) ≤ H.

Moreover, clearly, since H is stabilized by s, (H/Φ(P ))sΦ(P ) = (H/Φ(P )). Thus,

H/Φ(P ) ∈ (Q/Φ(P ), P/Φ(P ))sΦ(P ).

Conversely, given X ∈ (Q/Φ(P ), P/Φ(P ))sΦ(P ), we claim that XΦ(P ) ∈ (Q,P )s.

It is clear that we have Q < XΦ(P ). Moreover, if XΦ(P ) = P , then X = P by the

definition of Frattini subgroup, which is a contradiction by the choice of X. Thus,

we have XΦ(P ) < P . Now, clearly, we have (XΦ(P ))s ⊆ XΦ(P ). For the converse

inclusion, we have XsΦ(P ) = X. Thus, XsΦ(P )Φ(P ) = XΦ(P ) and by using the fact

that Φ(P )E 〈Ps〉,

sΦ(P )Xs−1Φ(P )Φ(P ) = sΦ(P )XΦ(P )s−1 = sXΦ(P )s−1 = XΦ(P ).

Thus, we reduced the deflation number into
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mP,s,N =
||s|

|N ∩ 〈s〉||CG(s)|
∑

Q/Φ(P )≤P/Φ(P )

(Q/Φ(P ))sΦ(P )=Q/Φ(P )
QN/Φ(P )=PN/Φ(P )

|CQ(s)|µ((Q/Φ(P ), P/Φ(P ))sΦ(P )).

Now, we will refer to the following theorem:

Theorem 4.5.4 ([17], Theorem 5.3.15, page 188). Let A be a p
′
-group of automorphism

of a p-group Q, and let N be an normal subgroup of Q which remains invariant under

A. Then, CQ/N(A) is the image of CQ(A) in Q/N .

Now, letting A = 〈s〉, and since N = Φ(P ) E Q, we have a surjective map by the

theorem above, π : CQ(s) � CQ/Φ(P )(s) given by x 7→ xΦ(P ). Moreover, we have the

inclusion i : CQ(s)∩Φ(P ) = CΦ(P )(s) ↪→ CQ(s), and note that we have π ◦ i = 1. Thus,

we obtained the following short exact sequence:

1 −→ CΦ(P )(s)
i
↪→ CQ(s)

π
� CQ/Φ(P )(s) −→ 1.

Then, we have |CQ(s)| = |CΦ(P )(s)||CQ/Φ(P )(s)|. Therefore,

mP,s,N =
|s||CΦ(P )(s)|
|N ∩ 〈s〉||CG(s)|

∑
Q/Φ(P )≤P/Φ(P )

(Q/Φ(P ))sΦ(P )=Q/Φ(P )
QN/Φ(P )=PN/Φ(P )

|CQ/Φ(P )(s)|µ((Q/Φ(P ), P/Φ(P ))sΦ(P )).

We denote

σP,s,N =
∑

Q/Φ(P )≤P/Φ(P )

(Q/Φ(P ))sΦ(P )=Q/Φ(P )
QN/Φ(P )=PN/Φ(P )

|CQ/Φ(P )(s)|µ((Q/Φ(P ), P/Φ(P ))sΦ(P )).

Now, we assumed that P is not an elementary abelian group, i.e., Φ(P ) 6= 1. Since

(P, s) is a D-pair, we have for every 1 6= N E 〈Ps〉, mP,s,N = 0, which implies that

σP,s,N = 0. Now, letting N = Φ(P ), we have σP,s,Φ(P ) = 0. But note that since

σP/Φ(P ),sΦ(P ),1 = σP,s,Φ(P ), we would have σP/Φ(P ),sΦ(P ),1 = 0 which cannot be true
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because mP/Φ(P ),sΦ(P ),1 = 1. Therefore, we must have Φ(P ) = 1 i.e. P must be

elementary abelian, as required. Thus, we have

σP,s,N =
∑
Q≤P
Qs=Q
QN=PN

|CQ(s)|µ((Q,P )s).

STEP 2: CALCULATION OF σP,s,N

Note that since every elementary abelian p-group P can be thought as an Fp-vector

space, and since P s = P , we can think P as an Fp〈s〉-module. Moreover, any subgroup

Q ≤ P with Qs = Q can also be thought as an Fp〈s〉-submodule of P . Since p - |s|,
every Fp〈s〉-module is semisimple.

Now, we shall review the following fact:

Lemma 4.5.5. For any H ≤ P with Hs = H, P and s as above, if P = P1 ⊕ ...⊕ Pt
where Pi denotes the homogeneous components of the Fp〈s〉-module P , then H = (H ∩
P1)⊕ ...⊕ (H ∩ Pt) and H ∩ Pi’s are homogeneous components of the submodule H.

Proof of the lemma: Suppose that P =
⊕

Si where Si is simple Fp〈s〉-module.

Clearly, H is an Fp〈s〉-submodule of P . By semisimplicity, H can be written as a

direct sum of homogeneous components, Hi, each corresponding to non-isomorphic

simple modules Si. Clearly, Hi ⊆ Pi and H ∩ Pi is a sum of Si by Jordan-Hölder

Theorem, so H ∩ Pi ⊆ Hi. But then, we have Hi = H ∩ Pi, as claimed.

Now, we shall reduce the calculation of σP,s,N into much smaller pieces, this result

holds for every pair (P, s) where P is elementary abelian.

Claim: Let (P, s) be a pair, with P elementary abelian. Let G = 〈Ps〉, and

N E 〈Ps〉. Then, we have

σP,s,N =
∏
i

σPi,s,Ni ,

where P = P1 ⊕ ... ⊕ Pt, Pi’s are homogeneous components of Fp〈s〉-module P , and

N ∩ P = (N1)⊕ ...⊕ (Nt) with Ni = (N ∩ Pi)’are homogeneous components of Fp〈s〉-
module N ∩ P .
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Proof of the claim: Since both N and P are normal in 〈Ps〉, we have (N ∩P )s =

N ∩ P , so N ∩ P can be thought as an Fp〈s〉-submodule of P . Now, by lemma above,

we obtain the corresponding homogeneous components Ni = (N ∩ Pi). Now, we are

asked to prove the following equality:

∑
Q≤P
Qs=Q

Q(N∩P )=P

|CQ(s)|µ((Q,P )s) =
t∏
i=1

∑
Qi≤Pi
Qsi=Qi

Qi(Ni∩Pi)=Pi

|CQi(s)|µ((Qi, Pi)
s).

It is clear that for a given Q ≤ P , as on the left hand side, we can obtain the cor-

responding Qi’s by letting Qi = Q ∩ Pi. Conversely, given such Qi’s, we can clearly

obtain Q = Q1 × ... × Qt which satisfies Qs = Q and Q(N ∩ P ) = P , and clearly

|CQ(s)| = |CQ1(s)|...|CQt(s)|, by making use of the fact that Pi ∩ Pj = 1 whenever

i 6= j.

Moreover, by the product rule, we have

µ((Q,P )s) = µ((Q1 × ...×Qt, P1 × ...× Pt)s) = µ((Q1, P1)s)...µ((Qt, Pt)
s).

Thus, we have the desired equality.

Now, it requires us to calculate σPi,s,Ni .

Proposition 4.5.6. Let (P, s) be a pair with P elementary abelian and N E 〈Ps〉. We

have σP,s,N =
∏
i

σPi,s,Ni where P = P1 ⊕ ... ⊕ Pt and N ∩ P = N1 ⊕ ... ⊕ Nt with

Pi =
ni⊕
j=1

Si and Ni =
ai⊕
j=1

Si with Si ∼= Fpsi . Then, setting qi = psi, we have,

σPi,s,Ni =


|CPi(s)| if ai=0,

pni(1− pni−2)...(1− pni−ai−1) if ai 6= 0 and Si is trivial,

(1− qni−1
i )...(1− qni−aii ) if ai 6= 0 and Si is non-trivial.

Proof of the proposition: Recall that σPi,s,Ni =
∑

Qi≤Pi
Qsi=Qi
QiNi=Pi

|CQi(s)|µ((Qi, Pi)
s).

Firstly, we define an Fp-homomorphism Ψ : Fp〈s〉 → EndFp〈s〉(Si) by a 7→ ϕa : Si →
Si which sends x 7→ a · x for every x ∈ Si. The well-definedness of Ψ is clear.
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Now, note that since Si is a simple Fp〈s〉-module, by Schur’s lemma, EndFp〈s〉(Si) is

a division ring. Moreover, since Si is finite, EndFp〈s〉(Si) is finite, so EndFp〈s〉(Si) is a

field.

Moreover, since Si is a simple Fp〈s〉-module, it is cyclic i.e. Si = (x) := {bx|b ∈
Fp〈s〉}.

Claim: Im(Ψ) is a field.

Proof: Clearly, Im(Ψ) is a ring with multiplication ϕa ·ϕb = ϕa·b, and by finiteness

of EndFp〈s〉(Si), we know that Im(Ψ) is finite. Thus, it is only required to show that

Im(Ψ) is a division ring. Thus, let ϕ ∈ Im(Ψ), i.e. there exists a∈ Fp〈s〉 such that

ϕ : Si → Si given by x 7→ a · x where x is the generator of Si as defined above. Now,

let a · x = x
′
, by simplicity of Si, there exists b ∈ Fp〈s〉 such that x = b · x′ . But then,

ax = x
′

implies ba · x = bx
′
= x, and by commutativity, ba · x = ab · x = x.

Let Υ : Si → Si be such that x 7→ bx. Then, we have (ϕ · Υ)(x) = ab · x = x and

conversely, (Υ · ϕ)(x) = ba · x = x. Thus, Υ · ϕ = ϕ ·Υ = idSi . Since, every element is

invertible, and by finiteness, we obtain that Im(Ψ) is a field.

Note that the simple Fp〈s〉-module Si can be thought as an Im(Ψ)-vector space by

the action ϕa · x = ϕa(x) = a · x.

Claim: dimIm(Ψ)Si = 1.

Proof: We have Si = (x) := {bx|b ∈ Fp〈s〉}. Then, we shall see that {x} forms an

Im(Ψ)-basis of Si. Let y be any element in Si, then by simplicity of Si, there exists

b ∈ Fp〈s〉 such that y = bx = ϕb · x = ϕb(x), as required. Thus, dimIm(Ψ)Si = 1, and

Im(Ψ) ∼= Si.

Now, denoting ord(s) = l, since Fp〈s〉 ∼= Fp[x]/(xl − 1) =
∏
i

Fp[x]/mi(x), each Si

corresponding to Fp[x]/mi(x) where mi(x) is irreducible polynomial over Fp, so we have

Si is a field over Fp i.e. for some si ∈ N, Si ∼= Fpsi .

The next claim will help us to express Möbius function of poset of subgroups that

are stabilized by s in terms of poset of subspaces of a particular field.
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Claim: Let Qi ≤ Pi such that Qs
i = Qi. Then, Qi is an Im(Ψ)-vector subspace of

Pi. Conversely, given Im(Ψ)-vector subspace of Pi, then Qi ≤ Pi and Qs
i = Qi.

Proof: Recall that we have Pi =
ni⊕
j=1

Si as an Fp〈s〉-module.

(⇒) : By Lemma 4.5.5, we know that Qi =
mi⊕
j=1

Si, mi ≤ ni. We showed that Si is

an Im(Ψ)-vector space, so it follows that Qi, too.

(⇐) : Since Pi is a direct sum of Si’s, Pi is Im(Ψ)-vector subspace. Now, let Qi be an

Im(Ψ)-vector subspace of Pi. Thus, Qi ≤ Pi. Then, by the same argument as above,

by Lemma 4.5.5, we have Qi =
mi⊕
j=1

Si, mi ≤ ni. But since each Si is an Fp〈s〉-module,

we have Qs
i = Qi as required.

Now, we will calculate σPi,s,Ni =
∑

Qi≤Pi
Qsi=Qi
QiNi=Pi

|CQi(s)|µ((Qi, Pi)
s) by induction on

dimIm(Ψ)(Ni) = ai, where Ni =
ai⊕
j=1

Si.

Firstly, suppose that ai = 0. Then, we have Ni = 1. Thus, σPi,s,1 = |CPi(s)| ·
µ((Pi, Pi)

s) = |CPi(s)|.

Now, suppose that ai 6= 0. Let N0 be a 1-dimensional Im(Ψ)-vector subspace of Ni.

Thus, we have

σPi,s,Ni =
∑
Qi≤Pi
Qsi=Qi
QiNi=Pi
Qi>N0

|CQi(s)|µ((Q,P )s) +
∑
Qi≤Pi
Qsi=Qi
QiNi=Pi
Qi�N0

|CQi(s)|µ((Qi, Pi)
s).

Recalling our claim above that, Qi’s above are Im(Ψ)-vector subspace of Pi.

Case(i): Suppose that s acts non-trivially on Pi.

Claim: In such a case, CPi(s) = 1.

Proof: We have CPi(s) ≤ Pi and by definition (CPi(s))
s = CPi(s). Thus, by
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Lemma[4.0.72], we have CPi(s) =
ki⊕
j=1

Si with ki ≤ ni where Pi =
ni⊕
j=1

Si. Suppose that

CPi(s) 6= 1, say 1 6= pi ∈ CPi(s). Then, we have (pi, 1) · (1, s) · (p−1
i , 1) = (1, s), i.e.

sp−1
i s−1 = p−1

i . But all Si’s are simple Fp〈s〉-modules, so having a fixed vector 1 6= p−1
i

implies that Si corresponds to the trivial Fp〈s〉-module. But, by our assumption, s

acts non-trivially on Pi, a contradiction. Thus, we have CPi(s) = 1.

Thus, for every Qi ≤ Pi with Qs
i = Qi, we have CQi(s) ⊆ CPi(s) = 1.

We have,

σPi,s,Ni =
∑
Qi≤Pi
Qsi=Qi
QiNi=Pi
Qi≥N0

µ((Qi, Pi)
s) +

∑
Qi≤Pi
Qsi=Qi
QiNi=Pi
Qi�N0

µ((Qi, Pi)
s),

The first component is equal to σPi/N0,sN0,N/N0 and we name the second component by

A.

Note that we can rewrite A =
∑

Qi≤Pi
Qsi=Qi
QiNi=Pi
Qi�N0

µ((Qi, Pi)
s) =

∑
Ri≤Pi
Rsi=Ri
RiNi=Pi
Ri≥N0

∑
Qi≤Ri
Qsi=Qi
QiN0=Ri
Qi�N0

µ((Qi, Pi)
s),

because given Qi ≤ Ri, Q
s
i = Qi, QiN0 = Ri, Qi � N0, we have QiN0Ni = RiNi = Pi

so QiNi = Pi, conversely, given Qi ≤ Pi, Q
s
i = Qi, QiNi = Pi, Qi � N0, we can define

Ri = QiN0 ≤ Pi, then clearly, Rs
i = Ri and RiNi = QiN0Ni = QiNiPi.

Now, given Ri as above, and by our observation above, we know that Ri is an

Im(Ψ)-vector subspace of Pi, and given Qi ≤ Ri, Q
s
i = Qi, QiN0 = Ri, Qi � N0, Qi is

an Im(Ψ)-vector subspace of Ri that does not contain N0, but since QiN0 = Ri, we

have that Qi is a hyperplane of Ri.

Now, letting dimIm(Ψ)Ri = r, with |Im(Ψ)| = |Fpsi | = |Si|, and letting qi = psi

we have the number of hyperplanes of Ri which does not contain N0 is equal to the

difference between the number of hyperplanes of Ri and the number of hyperplanes of

Ri/N0, that is to say,

[
r

1

]
qi

–

[
r − 1

1

]
qi

=
(1−qri )

(1−qi) −
(1−q(r−1)

i )

(1−qi) = qr−1
i .
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Thus, noting that dimIm(Ψ)Qi = r − 1, we have

A =
∑
Ri≤Pi
Rsi=Ri
RiNi=Pi
Ri≥N0

qr−1
i µ((Qi, Pi)

s).

Now, note that µ((Qi, Pi)
s) is precisely the Möbius function associated to Im(Ψ)-

vector spaces between Qi and Pi by our observation above.

We need the following well-known results before continuing our calculation:

Lemma 4.5.7. Let Fq be a finite field with q elements and W be an Fq-vector space

with dimension n. Then, we have the following equality for the Möbius function of

poset of Fq-vector subspaces:

µ({0},W ) = (−1)nqn/2.

Proof: We prove the result by induction on the dimension of W.

If n=0, then the result is trivial. Suppose now that the equality holds for any vector

spaces of dimension less than or equal to n-1.

Let V0 be 1-dimensional subspace of W. Now, the Crapo’s complementation theorem

says that,

µ({0},W ) =
∑
W0∈I

µ(0,W0)µ(W0,W ),

where I is the set of hyperplanes of W that do not contain V0. We know that the

cardinality of I is equal to the difference of the number of hyperplanes of W and the

number of hyperplanes of W/V0. Thus, we have |I| =

[
n

1

]
q

–

[
n− 1

1

]
q

= (1−qn)
(1−q) −

(1−qn−1)
(1−q) = qn−1.

Thus, we have,

µ({0},W ) =
∑
W0∈I

µ({0},W0)µ(W0,W ) = qn−1(−1)n−1q(
n−1

2 )(−1)1 = (−1)nq(
n
2),
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proving the lemma.

Now, we have by Lemma 4.5.7, and our observation, and noting that

dimIm(Ψ)Pi/Qi = ni − (r − 1) = ni − r + 1,

µ((Qi, Pi)
s) = µ((0, Pi/Qi)

s) = (−1)ni−r+1q
(ni−r+1

2 )
i .

Thus,

A =
∑
Ri≤Pi
Rsi=Ri
RiNi=Ri
Ri≥N0

qr−1
i µ((Qi, Pi)

s) =
∑
Ri≤Pi
Rsi=Ri
RiNi=Pi
Ri≥N0

qr−1
i (−1)ni−r+1q

(ni−r+1
2 )

i .

Noting that

r − 1 +

(
ni − r + 1

2

)
= r − 1 +

(
ni − r

2

)
+

(
ni − r

1

)
= ni − 1 +

(
ni − r

2

)
,

we have,

A =
∑
Ri≤Pi
Rsi=Ri
RiNi=Pi
Ri≥N0

(−qi)ni−1(−1)ni−rq
(ni−r2 )
i = −qni−1

i

∑
Ri≤Pi
Rsi=Ri
RiNi=Pi
Ri≥N0

(−1)ni−rq
(ni−r2 )
i

and now by applying of Lemma 4.5.7 for µ((0, Pi/Ri)
s) = µ((Ri, Pi)

s),

A = −qni−1
i

∑
Ri≤Pi
Rsi=Ri
RiNi=Pi
Ri≥N0

µ((Ri, Pi)
s) = −qni−1

i σPi/N0,sN0,Ni/N0 .

Then, σPi,s,Ni = σPi/N0,sN0,Ni/N0 + A = (1− qni−1
i )σPi/N0,sN0,Ni/N0 .

Now, we have dimIm(Ψ)Pi/N0 = ni − 1 and dimIm(Ψ)Ni/N0 = ai − 1 where Im(Ψ) ∼=
Fqi ∼= Fpsi ∼= Si. Thus, by induction hypothesis, we have

σPi/N0,sN0,Ni/N0 = (1− qi(ni−1)−1)...(1− qi(ni−1)−(ai−1)).

But then, we obtain,

σPi,s,Ni = (1− qni−1
i )(1− qni−2

i )...(1− qni−aii ),
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as claimed.

Case(ii): Suppose that s acts trivially on Pi
∼=

ni⊕
j=1

Si i.e. Si ∼= Fp is the trivial

Fp〈s〉-module.

Clearly, for every Qi ≤ Pi with Qs
i = Qi, we have CQi(s) = Qi and µ((Q,P )s) =

µ(Q,P ).

Now, we have, letting N0 be 1-dimensional Im(Ψ) ∼= Fp-vector subspace of Ni,

σPi,s,Ni =
∑
Qi≤Pi
Qsi=Qi
QiNi=Pi
Qi≥N0

|Qi|µ(Qi, Pi) +
∑
Qi≤Pi
Qsi=Qi
QiNi=Pi
Qi�N0

|Qi|µ(Qi, Pi)

= |N0|σPi/N0,sN0,Ni/N0 + B

= pσPi/N0,sN0,Ni/N0 + B

since dimIm(Ψ)N0 = 1.

We shall calculate B=
∑

Qi≤Pi
Qsi=Qi
QiNi=Pi
Qi�N0

|Qi|µ(Qi, Pi).

By similar argument as above, we rewrite B again,

B =
∑
Ri≤Pi
Ri≥N0
RiNi=Pi

∑
Qi≤Ri
QiN0=Ri
Qi�N0

|Qi|µ(Qi, Pi).

Letting dimIm(Ψ)Ri = dimFpRi = r so |Ri| = pr , and then |Qi| = pr−1 , we obtain,

B =
∑
Ri≤Pi
Ri≥N0
RiNi=Pi

∑
Qi≤Ri
QiN0=Ri
Qi�N0

pr−1µ(Qi, Pi)

=
∑
Ri≤Pi
Ri≥N0
RiNi=Pi

pr−1
∑
Qi≤Ri
QiN0=Ri
Qi�N0

µ(Qi, Pi)

Now, the second sum above, namely,
∑

Qi≤Ri
QiN0=Ri
Qi�N0

µ(Qi, Pi) = pr−1µ(Qi, Pi) where pr−1 =
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[
r

1

]
p

–

[
r − 1

1

]
p

is the number of hyperplanes of Ri not containing N0.

Moreover, by Lemma4.5.5, since dimFpPi/Qi = ni− (r−1) = ni− r+ 1, µ(Qi, Pi) =

µ(0, Pi/Qi) = (−1)ni−r+1p(
ni−r+1

2 ).

Hence, we obtain,

B =
∑
Ri≤Pi
Ri≥N0
RiNi=Pi

pr−1pr−1µ(Qi, Pi)

=
∑
Ri≤Pi
Ri≥N0
RiNi=Pi

p2r−2(−1)ni−r+1p(
ni−r+1

2 )

Noting that(
ni − r + 1

2

)
=

(
ni − r

2

)
+

(
ni − r

1

)
=

(
ni − 1

2

)
+ ni − r,

we have,

B = (−1)pni−1
∑
Ri≤Pi
Ri≥N0
RiNi=Pi

(−1)ni−rp(
ni−r

2 )pr−1

= (−pni−1)
∑
Ri≤Pi
Ri≥N0
RiNi=Pi

µ(Ri, Pi)p
r−1

= (−pni−1)σPi/N0,sN0,Ni/N0 .

Now, we have

σPi,s,Ni = (p− pni−1)σPi/N0,sN0,Ni/N0 = p(1− pni−2)σPi/N0,sN0,Ni/N0 .

Thus, by induction, we have

σPi/N0,sN0,Ni/N0 = (pni−1)(1− pni−3)...(1− pni−ai−1).

Then, we obtain

σPi,s,Ni = p(1− pni−2)(pni−1)(1− pni−3)...(1− pni−ai−1)

= pni(1− pni−2)...(1− pni−ai−1),
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as required.

STEP 3: Conditions (ii) and (iii)

Claim: For a D-pair (P,s), we have C〈s〉(P ) = 1.

Proof: Note that N = C〈s〉(P )E 〈Ps〉, and N ∩P = 1 which implies that for every

i, Ni = N ∩ Pi = 1 i.e. ai = 0. But then, for every i, σPi,s,Ni = |CPi(s)| 6= 0 which

means that mP,s,C〈s〉(P ) 6= 0 which is a contradiction unless C〈s〉(P ) = 1.

Claim: In the homogeneous componentwise decomposition of Fp〈s〉-module P,

namely, P= P1 ⊕ ... ⊕ Pt, Pi =
ni⊕
j=1

Si where Si is a simple Fp〈s〉-module, we have

ni ∈ {0, 2} if Si corresponds to the trivial Fp〈s〉-module, and ni = {0, 1} if Si corre-

sponds to a non-trivial Fp〈s〉-module.

Proof: Suppose that Pi is apparent in the homogeneous componentwise decompo-

sition of Fp〈s〉- module P, with Pi =
ni⊕
j=1

Si where Si is a simple Fp〈s〉-module. Thus,

Si is an Fp-vector subspace of Pi which is stable under the action of s, i.e. Si ≤ Pi ≤ P

and Ssi = Si. Then, we can take N = Si E 〈Ps〉, which implies that ak = 0 unless

k = i, and ai = dimIm(Ψ)Si = 1 i.e. Ni = Si and Nk = 1.

Thus, we have σPk,s,Nk = |CPk(s)| whenever k 6= i, which means that since σP,s,N = 0,

we have necessarily σPi,s,Ni = 0. By using Proposition 4.5.6, we obtained that

0 = σPi,s,Si =

{
pni(1− pni−2) if Si corresponds to the trivial Fp〈s〉-module,

(1− qni−1
i ) if Si corresponds to non-trivial Fp〈s〉-module.

Therefore, ni = 2 if Si is trivial, and ni = 1 if Si is non-trivial. Noting that they may

not appear at all as well.

For the converse part, that is, letting P to be elementary abelian, C〈s〉(P ) = 1 and

ni ∈ {0, 2} if Si is trivial, and ni ∈ {0, 1} if Si is non-trivial, the result directly follows

from Proposition 4.5.6.
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Chapter 5

On some of the new simple

composition factors of Cppk

5.1 The decomposition of simple p-permutation

factors of Cppkp−perm. to biset functors in a spe-

cial case

Throughout this chapter, we suppose k is an algebraically closed field of characteristic

p, where p is prime, and C denotes the algebraically closed field of characteristic 0.

In this chapter, for a restricted type of p-hypo-elementary B-group H = P o 〈s〉,
we extract information from the simple p-permutation factor Sp−perm.〈Ps〉,WP,s

of the p-

permutation functor Cppp−perm.k to obtain new simple composition factors of the biset

functor Cppk.

The main result of this extraction, which we prove in this chapter, is the following

theorem:

Suppose that H = P o 〈s〉 be a p-hypo-elementary B-group such that every non-

trivial Fp〈s〉-module is apparent in the P . Then, for every ϕ ∈ Out(〈s〉), the simple
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biset functor SH,Cϕ is apparent as a composition factor of the biset functor Cppk where

Cϕ is the inflation of the vector space C on which the group Out(〈s〉) acts by ϕ.

Along the way, we will observe that for such a group H = P o 〈s〉, we have

dimCS
p−perm.
〈Ps〉,WP,s

(H) = φ(|s|). This observation supports the conjecture that for such

a group H, SH,V is apparent as a simple composition factor of Cppk if and only if V is

the inflated module Cϕ for some ϕ ∈ Out(〈s〉).

We start with the following set up:

Let H = Po〈s〉 be a p-hypo-elementary B-group such that in the homogeneous com-

ponentwise decomposition of Fp〈s〉-module P , every non-trivial simple Fp〈s〉-module

Si is apparent. Thus, we suppose the multiplicity n0 of the trivial Fp〈s〉-module S0 in

P to be 0 or 2 and the multiplicity ni of every non-trivial Fp〈s〉-module Si in P to be

necessarily 1.

We shall first show that, with this set up, there exists a surjective group homomor-

phism f : Aut(H)� Aut(〈s〉). Let us denote ord(s) = l.

Let us define f : Aut(H)� Aut(〈s〉) by sending Ψ 7→ δ where Ψ(s) =H δ(s).

f is well-defined:

Since H = P o 〈s〉 be a p-hypo-elementary B-group, by the classification of Bau-

mann, we have C〈s〉(P ) = 1. Thus, for every 1 ≤ j ≤ l − 1, C〈sj〉(P ) = 1.

Moreover, we have CH(sj) = 〈s〉 because if we suppose otherwise, then, there exists

(p, sk) ∈ H with p 6= 1 such that (p, sk) · (1, sj) · (s−kp−1sk, s−k) = (1, sj), and so

(psjp−1s−j, sj) = (1, sj) implying that sjp−1s−j = p−1, which is possible if and only if

p = 1 since C〈sj〉(P ) = 1, a contradiction.

Therefore, we obtain that |[sj]H | = |H|/|〈s〉| = |P |. Clearly, (1, si)6=H(1, sj) when-

ever i 6= j. Thus, [sj]H := {(p, sj) | ∀p ∈ P}.

Then, if we say Ψ(s) = (p, sj) ∈ H, then Ψ(s) =H (1, sj). Furthermore, since

ord(Ψ(s)) = ord(s), we have ord(sj) = ord(s) = l. Thus, there exists δ ∈ Aut(〈s〉)
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such that δ(s) = sj.

f is a group homomorphism:

Let Ψ,Ψ
′ ∈ Aut(H). Suppose that Ψ(s) = (p, sk) and Ψ

′
(s) = (p

′
, sk

′
).

Claim: f(Ψ ◦Ψ
′
) = f(Ψ) ◦ f(Ψ

′
) and f(idAut(H)) = idAut(〈s〉).

Proof: The second part is obvious. For the first part, suppose that f(Ψ) = δk and

f(Ψ
′
) = δk′ where δk, δk′ ∈ Aut(〈s〉) such that δk(s) = sk and δk′ (s) = sk

′
. We need to

obtain that Ψ ◦Ψ
′
(s) =H skk

′
.

Now, we have Ψ ◦ Ψ
′
(s) = Ψ(p

′
, sk

′
) = Ψ((p

′
, 1) · (1, sk

′
)) = Ψ(p

′
, 1) · Ψ(1, sk

′
) =

(p
′′
, 1) · Ψ(1, sk

′
) since P is a characteristic group of H which implies that we have

Ψ(p
′
, 1) = (p

′′
, 1) for some p

′′ ∈ P . Then, (p
′′
, 1) · (1, skk

′
) = (p

′′
, skk

′
) =H (1, skk

′
),

that is to say, Ψ ◦Ψ
′
(s) =H (1, skk

′
). Therefore, f(Ψ ◦Ψ

′
) = δkk′ . On the other hand,

f(Ψ) ◦ f(Ψ
′
) = δk ◦ δk′ = δkk′ , proving the claim.

f is onto:

Firstly, note that since (p, l) = 1, the polynomial xl−1 has no repeating roots. Now,

considering the ring isomorphism Fp〈s〉 ∼= Fp[x]/(xl − 1) ∼=
∏
j

Fp[x]/mj(x) where each

mj(x) is distinct irreducible polynomial over Fp, corresponding simple Fp〈s〉-module

Sj, we obtain that Fp〈s〉 ∼=
⊕
j

Sj.

Secondly, since H = P o 〈s〉 is a p-hypo-elementary B-group where all non-trivial

Fp〈s〉-modules are apparent, by the classification of Baumann, we have two cases.

Namely, as an Fp〈s〉-module, P ∼= S0 ⊕ Fp〈s〉 or P ⊕ S0
∼= Fp〈s〉, where S0 denotes the

trivial Fp〈s〉-module.

Now, suppose that δ ∈ Aut(〈s〉) is given, i.e., δ(s) = si for some i ∈ (Z/lZ)×. We

need to construct Ψ ∈ Aut(〈s〉) such that f(Ψ) = δ.

We extend δ by defining δ̃ : Fp〈s〉 → Fp〈s〉 by
l−1∑
j=1

ajs
j 7→

l−1∑
j=1

ajδ(s
j). Clearly, δ̃ is an

Fp-algebra automorphism of Fp〈s〉.
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Case (i): If as an Fp〈s〉-module, P ∼= S0 ⊕ Fp〈s〉.

We extend the Fp-automorphism of Fp〈s〉 δ̃ to an Fp-homomorphism

˜̃δ : S0 ⊕ Fp〈s〉 → S0 ⊕ Fp〈s〉 by letting ˜̃δ|S0 = idS0 and ˜̃δ|Fp〈s〉 = δ̃.

Then, for every x ∈ 〈s〉, y ∈ P , we have yo ∈ S0 and y1 ∈ Fp〈s〉 such that

˜̃
δ(x) ˜̃δ(y) =

˜̃
δ(x) ˜̃δ(y0 + y1)

=
˜̃
δ(x) y0 +

˜̃
δ(x) ˜̃δ(y1)

= y0 + ˜̃δ(x)˜̃δ(y1)˜̃δ(x−1)

= y0 + ˜̃δ(xy1),

since δ̃ is an Fp-algebra homomorphism of Fp〈s〉. But then, we have

= y0 + ˜̃δ(xy1)

= ˜̃δ(y0) + ˜̃δ(xy1)

= ˜̃δ(y0 +x y1)

= ˜̃δ(x(y0 + y1)) = ˜̃δ(xy).

Now, we define Ψ : H → H by (y, x) 7→ (˜̃δ(y), ˜̃δ(x)).

Ψ is a group homomorphism:

Let x1, x2 ∈ 〈s〉, and y1, y2 ∈ P . Then,

Ψ(y1, x1)Ψ(y2, x2) = (˜̃δ(y1), ˜̃δ(x1))(˜̃δ(y2), ˜̃δ(x2))

= (˜̃δ(y1)
˜̃
δ(x1) ˜̃δ(y2), ˜̃δ(x1)˜̃δ(x2))

= (˜̃δ(y1
x1y2), ˜̃δ(x1x2))

= Ψ(y1
x1y2, x1x2)

= Ψ((y1, x1) · (y2, x2)).

Moreover, it is clear that Ψ is one to one and onto. Therefore, we have Ψ ∈ Aut(H).

70



Case (ii): If as an Fp〈s〉-module, P ⊕ S0
∼= Fp〈s〉.

Similarly to the argument above, we consider the Fp-algebra automorphism δ̃ :

Fp〈s〉 → Fp〈s〉 by sending the element
∑
j

ajs
j 7→

∑
j

ajδ(s
j). Clearly, this maps sends

S0 to itself. Therefore, given u ∈ P , we have δ̃(u) ∈ P . Now, for every x ∈ 〈s〉,

δ̃(x)δ̃(u) = δ̃(x)δ̃(u)δ̃(x−1) = δ̃(xux−1) = δ̃(xu).

Then, again, we define Ψ : H → H by (u, x) 7→ (δ̃(u), δ̃(x)). Same as above, it is a

group isomorphism.

Thus, we showed that f : Aut(H)� Aut(〈s〉) is a surjective group homomorphism

sending Ψ 7→ δ with Ψ(s) =H δ(s). Now, Kerf := {Ψ ∈ Aut(H) : Ψ(s) =H s}. Now,

it is clear that Inn(H)EKerf . Note that denoting S := {γ ∈ Out(H) : γ(s) = s}, we

obtain

Out(H)/S ∼= Aut(H)/Kerf ∼= Aut(〈s〉) = Out(〈s〉).

Recall given N E G, and an CG/N -module V , we define the inflated module from

CG/N to CG of V as CG/N ⊗CG/N V . It is clear that V is a simple CG/N -module if

and only if the inflated module is a simple CG-module.

Now, for any ϕ ∈ Out(〈s〉) = (Z/lZ)×, we consider the vector space C on which the

group Out(〈s〉) acts via ϕ. With the setting above, we denote the associated inflated

simple COut(H)-module by Cϕ.

Now, we move to the our main observation:

Theorem 5.1.1. Suppose that H = P o 〈s〉 be a p-hypo-elementary B-group such that

every non-trivial Fp〈s〉-module is apparent in P . Then, for every ϕ ∈ Out(〈s〉), the

simple biset functor SH,Cϕ is apparent as a composition factor of the biset functor Cppk
where Cϕ is the inflation of the vector space C on which the group Out(〈s〉) acts by ϕ.

Proof. Let F|H| be the full-subcategory of CC whose objects are all finite groups, up

to isomorphism, of order less than or equal to |H|.
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Now, let ϕ ∈ Out(〈s〉) and suppose Cϕ be the associated inflated COut(H)-module

as shown above.

Moreover, we have [sj]H := {(p, sj)|∀p ∈ P} for every 1 ≤ j ≤ l − 1 as it is shown

above for such a group H. Hence, sjP 6= skP whenever j 6= k. Since P EH, for every

1 ≤ j ≤ l−1, sj ∈ (NH(P ))p′ . For this reason, we obtain that (P, sj) ∈ [QH,p] for every

1 ≤ j ≤ l − 1.

We define Mϕ := spanC〈
∑

∀i∈(Z/lZ)×
ϕ(i)FH

P,si〉.

Mϕ is a biset functor:

Since every biset functor on F|H| can be thought as a module of the quiver algebra⊕
F,G∈Obj(F|H|)

B(F,G), it is adequate to show that Mϕ is closed under the action of five

elementary maps, induction, inflation, isogation, deflation and restriction.

By the definition of object set of F|H|, there is no induction or inflation of FH
P,si for

any i ∈ (Z/lZ)×.

By the formula of restriction, whenever K � H, and i ∈ (Z/lZ)×, ResHK(FH
P,si) = 0.

Note that since we obtained that the classification of p-hypo-elementary B-groups

and D-pairs imply one another, and for any i ∈ (Z/lZ)×, H = P o 〈si〉 is a p-hypo-

elementary B-group, every such (P, si) is a D-pair. Therefore, for any 1 6= N E H,

DefHH/N(Mϕ) = spanC〈
∑

∀i∈(Z/lZ)×
ϕ(i)DefHH/NF

H
P,si〉 = 0.

For isogations, let Ψ ∈ Aut(H). We already observed that for given i ∈ (Z/lZ)×,

Ψ(si) =H (1, sj) for some j ∈ (Z/lZ)×. Since we tag the primitive idempotents up to

H-conjugacy, we can suppose that Ψ(si) = (1, sj) for some j ∈ (Z/lZ)×. Suppose that

it corresponds to Ψ(s) = sk for some k ∈ (Z/lZ)×.

72



Now, we have

Iso(Ψ)Mϕ = spanC〈
∑

∀i∈(Z/lZ)×

ϕ(i)FH
P,sik〉

= spanC〈
∑

∀j∈(Z/lZ)×

ϕ(k−1j)FH
P,sj〉

= spanC〈
∑

∀j∈(Z/lZ)×

ϕ(k−1)ϕ(j)FH
P,sj〉

= spanC〈
∑

∀j∈(Z/lZ)×

ϕ(j)FH
P,sj〉

= Mϕ.

Thus, Mϕ has a biset functor structure.

Furthermore, the simplicity of Mϕ, as a biset functor, follows from the surjectivity

of the map f : Aut(H)� Aut(〈s〉) defined above.

Note that Mϕ = SH,Cϕ on F|H| since Mϕ(H) ∼= Cϕ and H is the minimal group such

that Mϕ(H) 6= 0. Thus, we find on the full-subcategory F|H|, for every ϕ ∈ Out(〈s〉),
SH,Cϕ is a simple composition factor of Cppk.

Now, by finite reduction principle for biset functors, it follows that they are also

simple composition factors of Cppk on CC, as required.

Now, note that with this setting, by Proposition 4.3.3, and surjectivity of the map

f above, we have for every i ∈ (Z/lZ)×, (P, s) ' (P, si). Therefore,

dimCS
p−perm.
H,WP,s

(H) = dimCWP,s =
∑

(Q,t)'(P,s)
〈Qt〉=〈Ps〉

1 = φ(l).

On the other hand,∑
∀ϕ∈Out(〈s〉)

dimCSH,Cϕ(H) =
∑

∀ϕ∈Out(〈s〉)

dimCCϕ = φ(l).

This observation tells us that restricting the simple p-permutation factor Sp−perm.H,WP,s
,

it partially decomposes into precisely the simple biset functors SH,Cϕ for every ϕ ∈
Out(〈s〉) for this specific type of p-hypo-elementary B-group H.
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