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ABSTRACT

NONLINEAR AND FAR-FROM-EQUILIBRIUM
DYNAMICS OF OPTICAL PULSES IN FIBER

OSCILLATORS

Tesfay Gebremedhin Teamir

Ph.D. in Physics

Advisor: Fatih Ömer Ilday

August 2017

Fundamentals of mode locking of lasers have been extensively studied and well

established for the last three decades. However, it continues to be an intensely

studied field. The continued interest is, in part, due to the scientific and techno-

logical applications enabled by the generation of ultrashort pulses of light using

mode-locking. There is also a deeper reason for the interest. Despite decades of

effort, there is still no encompassing theory of mode-locking that applies to the

broad range of dynamics displayed by modern mode-locked lasers, in particular,

fiber lasers. Mode-locking is a collective phenomenon that arises from the nonlin-

ear interactions between thousands of optical modes supported by a laser cavity,

which is typically initiated from laser noise in the cavity. In addition to many

unanswered questions from a nonlinear dynamics perspective, there has been lim-

ited progress from the point of the thermodynamics, even though mode-locking

corresponds to a far-from-equilibrium steady state of a laser.

The central premise of this thesis is that mode-locked lasers are invaluable as

experimental platforms not only for nonlinear phenomena, but also for far-from-

equilibrium dynamics of nonlinear systems, where there is a particular shortage

of convenient platforms for experimentation, in addition to the practical interest

in development of technically superior lasers. After introductory discussions,

we report the direct generation of sub-hundred femtosecond pulses through the

interaction of third order dispersion (TOD) and self-phase modulation (SPM) by

using two dispersion delay lines (DDLs) inside a laser cavity. Moreover, we report

dynamics that are consistent with an effective negative nonlinearity, which is

explained through an interplay between self-phase modulation (SPM) and second

order dispersion (GVD) for a chirped pulse.

Despite numerous studies on their nonlinear dynamics, relatively little is known

about the thermodynamics and fluctuations-induced dynamics of mode-locking.
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We investigate transitions from CW to single pulsing, and then to multipuls-

ing states in the presence of nonlinearity, feedback mechanisms, laser noise (as

a source of fluctuations) and the laser’s response to externally injected mod-

ulations or fluctuations. Near critical points (instability attractors), dissipative

soliton (DS) states are observed to interact between themselves and with their en-

vironment which is often followed by random transitions among different pulsing

states. This critical behavior appears to be caused by soliton-soliton or soliton-

generated dispersive wave interactions in addition to periodic breathing, due to

the periodic boundary conditions of the cavity, leading to bifurcations and the

onset of chaos. Irrespective of specifics parameters of states, measured noise level

(i.e., the strength of fluctuations) of the laser usually starts at a low value, and

then slightly reduced as the DSs energy is increased. Further increases in power

(nonlinearity) drive it towards a noisy critical state, where random creation or

annihilation of pulses occur just before a new steady state is formed. These noise-

induced transitions between steady states far from equilibrium could conceivably

shed light on the thermodynamics of other far-from-equilibrium systems.

Finally, we demonstrate direct electronic control over mode-locking states using

spectral amplitude and phase modulation by incorporating a spatial light modu-

lator (SLM) at a Fourier plane inside the cavity. The modulation enables us to

halt and restart mode locking, suppress instabilities, induce controlled reversible

and irreversible transitions between mode-locking states, and perform advanced

pulse shaping inside a cavity. We also introduce a simple method to manipulate

femtosecond optical pulses by directly applying dynamic periodic phase modula-

tion mask on the optical spectrum inside oscillator. With the application of such

dynamic periodic linear spectral phase mask we can control the pulse dynamics,

demonstrating the capability to tune the pulse-to-pulse separation time, pulse

tweezing, blue- and red-shifting of spectral components and pulse splitting. This

technique, which is introduced for the first time to our knowledge, may be used in

a range of applications such as coherent quantum control, nonlinear spectroscopy,

microscopy, in data storage, in the switching of optical and magnetic properties

of materials, as well as studies on the fundamentals of oscillator dynamics and

other self-organized phenomena in spatiotemporally extended systems.

Keywords: Mode-locking, fiber lasers, effective negative nonlinearity, soliton dy-

namics, non-equilibrium thermodynamics, complex systems, dissipative adapta-

tion.



ÖZET

FIBER SALINGAÇLARDA OPTİK DARBELERİN
DOĞRUSAL OLMAYAN VE DENGEDEN UZAK

DİNAMİKLERİ

Tesfay Gebremedhin Teamir

Fizik, Doktora

Tez Danışmanı: Fatih Ömer İlday

Ağustos 2017

Son otuz yıldır lazerinde kip kilitlemesinin temelleri kapsamlı olarak incelenmiş

ve iyi kurulmuştur. Bununla birlikte, yoğun olarak incelenen bir alan olmaya de-

vam etmektedir. Bu devam eden ilgi, kısmen, mod kilitleme kullanarak ultra-kısa

ışık atımlarının üretilmesiyle sağlanan bilimsel ve teknolojik uygulamalardan kay-

naklanmaktadır. Ayrıca ilgi için daha derin bir sebep de vardır. Onlarca yıldır

çaba gösterilmesine rağmen, modern mod kilitli lazerler, özellikle fiber lazerler

tarafından görüntülenen zengin dinamiklerin tamamı için geçerli olan bir mod kil-

itleme teorisi hala ortaya konulmamıştır. Mod kilitleme, genellikle lazer kovuğu

içinde mevcut gürültüden (salınımlardan) kendiliğinden başlayan, binlerce op-

tik mod arasında mevcut doğrusal olmayan etkileşimlerin ortaya çıkardığı ortak

(kollektif) bir fenomendir. Doğrusal olmayan dinamikler perspektifinden gelen

birçok cevapsız soruya ek olarak, mod kilitlemenin lazerin termodinamik denge-

den uzakta süregelen bir kararlı durumuna karşılık gelmesine rağmen, termodi-

namik perspektif açısından anlaşılması yönünde çok sınırlı ilerlemeler olmuştur.

Bu tezin temel iddiası, mod kilitleme fenomeni ve mod kilitli lazerlerin,

sadece doğrusal olmayan fenomenlerin daha iyi anlaşılması için değil, aynı za-

manda doğrusal olmayan sistemlerin dengeden uzaktan dinamiklerinin daha iyi

anlaşılması için deney platformları olarak paha biçilmez olduğunu ortaya koy-

maktadır. Teknik açıdan üstün mod kilitli lazerlerin geliştirilmesine pratik yeni

yöntemler önerilmesi ise ikinci bir amaçtır. Temel lazer ve mod kilitleme fiziğini

tanıtıcı bir girişten sonra, bu tezin ilk orijinal kısmı, iki kırınım-ağı tabanlı

gecikme hattı (dispersive delay line, DDL) kullanarak üçüncü derece dağılımın

(third-order dispersion, TOD) ve kendi kendini faz modülasyonunun (self-phase

modulation, SPM) etkileşimi yoluyla orta düzeyde enerjiyle doğrudan yüz altmış

femtosaniye darbe üretimini bildirir. Bu sonuçlar etkin olarak negatif (kendinden

dağıtıcı, self-defocusing) doğrusal olmayan etkinin üretilmesine denk gelmesidir.
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Doğrusal olmayan dinamikleri üzerine çok sayıda çalışmaya rağmen, osilatörler

içerisinde optik darbelerin termodinamiği hakkında nispeten az ilerleme vardır.

Doğrusal olmayan etkiler, geridöngü (feedback) mekanizmaları, lazer gürültüsü

(salınımların kaynağı olarak) ve harici olarak enjekte edilen modülasyonlara veya

salınımlara lazerin verdiği tepki konusunda, CW’den tekli darbeli ve daha sonra

çoklu darbeli duruma geçiş durumlarını araştırıyoruz. Kritik noktaların (is-

tikrarsız çekicilerin) yakınında, sönümlü solitonların (dissipative soliton, DS)

kendi aralarında ve çevreleriyle etkileşimde bulunduğu gözlemlenir ve genel-

likle farklı atım halleri arasında rasgele geçişler izlenir. Bu kritik davranış,

lazer kovuğunun periyodik sınır koşullarından dolayı, bifurkasyonlara ve kaosun

başlamasına neden olan, periyodik solunumun yanı sıra soliton-soliton veya soli-

tonun ürettiği dağınık dalga etkileşimlerinin neden olduğu görülebilir. Durum-

ların özellik parametrelerinden bağımsız olarak, lazerin ölçülen gürültü seviyesi

(örneğin, salınınların gücü) düşük bir değerde başlar ve daha sonra DS’nin enerjisi

arttıkça hafifçe azalır. Daha fazla güç artışı (doğrusal olmayanlık), onu yeni bir

kararlı durum oluşmadan hemen önce ortaya çıkan gürültülü kritik bir duruma

iter. Denge dışındaki kararlı durumlar arasındaki bu gürültüye bağlı geçişler,

diğer termal dengeden uzak sistemlerinin termodinamiğine ışık tutabilir.

Son olarak, bir Yb katkılı fiber lazerin kovuğunun içinde bir Fourier düzlemine

uzaysal ışık modülatörü (spatial light modulator, SLM) dahil ederek atım

şekillendirmesi için spektral genlik ve faz modülasyonu kullanan mod kilitleme

durumları üzerinden doğrudan elektronik kontrolünü gösteriyoruz. Modülasyon,

mod kilidini durdurup yeniden başlatmamızı, istikrarsızlıkları bastırmanızı, mod

kilitleme durumları arasında kontrollü geri döndürülebilir ve geri döndürülemez

geçişler başlatmamızı ve bir boşluk içinde gelişmiş darbe şekillendirme yap-

mamızı sağlıyor. Aynı şekilde, osilatörün içindeki optik spektrumda doğrudan

dinamik periyodik faz modülasyonu maskesi uygulayarak femtosaniyelik op-

tik darbelerin manipüle edilmesini sağlayan daha basit bir yöntem sunuyoruz.

Doğrusal ve sinüzoidal spektral maskenin sırasıyla boşluğun gecikmesi ve atım

bölünmesi için kullanıldığı etkileri periyodik doğrusal veya testere dişi benzeri faz

ile birleştirilebilir. Bu gibi dinamik periyodik doğrusal spektral faz maskesinin

uygulanmasıyla, atım dinamiklerini kontrol edebilir, atım-atım ayırma zamanını

ayarlama yeteneği, atım cımbızması, spektral bileşenlerin maviye- ve kırmızı-

kaydırma, atım bölme ve üretimi yeteneğini gösterebildik. Bildiğimiz kadarıyla ilk

kez tanıtılan bu teknik, evreuyumlu kuantum kontrolü, doğrusal olmayan spek-

troskopi, mikroskopi, veri saklama, malzemelerin optik ve manyetik özelliklerinin
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değiştirilmesi gibi bir dizi uygulamada kullanılabilir. Ayrıca, osilatör dinamiğinin

temelleri ve zaman uzayda genişletilmiş sistemlerde diğer kendi kendini organize

edilen fenomenler üzerinde yapılan çalışmalarda yararlı olabilir.

Anahtar sözcükler : Kip kilitleme, fiber lazer, etkin olarak negatif dogrusal-

olmayan etki, soliton dinamikleri, dengede olmayan termodinamik, karmaşİk sis-

temler, sönümlemeli adaptasyon.
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113F319) and European Research Council Consolidator Grant (ERC 617521).

viii



Dedicated to my family

ix



Contents

1 Introduction 1

2 Theoretical basis of fiber oscillator dynamics 11

2.1 Basic theories and principles of ultrafast optics . . . . . . . . . . . 11

2.1.1 Pulse propagation . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Mechanism of passive mode locking . . . . . . . . . . . . . 18

2.1.3 Soliton pulse interaction . . . . . . . . . . . . . . . . . . . 21

2.1.4 Dissipative adaptation and entropy production for laser

systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.5 Characteristics of intensity noise . . . . . . . . . . . . . . . 28

2.1.6 Pulse shaping with spatial light modulator (SLM) . . . . . 29

3 Generation of 1.2 nJ 61 fs pulses directly from Yb-doped fiber

oscillators 33

3.1 Numerical model of the oscillator . . . . . . . . . . . . . . . . . . 34

3.2 Experimental setup and results . . . . . . . . . . . . . . . . . . . 36

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Nonlinearity management in a fiber oscillator with two gain seg-

ments 40

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Theory and numerical simulation . . . . . . . . . . . . . . . . . . 42

4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

x



CONTENTS xi

5 Linear and nonlinear response of mode-locking to injected inten-

sity modulation and noise 58

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Modulation transfer: simulation and experimental results . . . . . 60

5.3 Relative intensity noise (RIN) measurement . . . . . . . . . . . . 66

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Noise-induced creation and annihilation of solitons in dispersion

managed fiber oscillators 79

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Experimental and simulation results . . . . . . . . . . . . . . . . . 81

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 Direct control of mode-locking states of a fiber laser 90

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2 Experimental result . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.2.1 Adaptive filtering through amplitude modulation of spec-

tral combs . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.2.2 Pulse manipulation by dynamic periodic linear spectral

phase mask in fiber oscillator . . . . . . . . . . . . . . . . 99

7.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8 Conclusion and future perspectives 106

A Supplementary information for chapter 6 132

A.1 Additional processes that can occur at a critical point . . . . . . . 132

A.1.1 Vibrating pulse . . . . . . . . . . . . . . . . . . . . . . . . 132

A.1.2 Dynamic variation of pulse-to-pulse separation and energy

exchange between bound pulses . . . . . . . . . . . . . . . 134

A.2 Bound soliton states . . . . . . . . . . . . . . . . . . . . . . . . . 137



List of Figures

2.1 Pulse formation: (a) Longitudinal cavity modes generated inside

a cavity. (b) Schematics of pulse profile. (c) Schematics of the

working principles of nonlinear polarization evolution (NPE). . . . 19

2.2 Pulse dynamics per round trip: Simulation result showing stochas-

tic pulse build up dynamics inside oscillator . . . . . . . . . . . . 20

2.3 Free energy: Effective free energy diagram for different values of

pump power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Soliton - soliton interaction: Interaction that cause oscillatory(ψ0 =

25, ψ0 = 45, and ψ0 = 90), effective attractive (ψ0 = 70), and re-

pulsive forces (ψ0 = 0 and ψ0 = 95) that depends on initial relative

phase difference when the initial separation q0 = 5. . . . . . . . . 22

2.5 Summery of cavity stability operating in multi soliton regime: (a)

stable pulsing in the presence of modulated lose and constant gain.

Pumping increase cavity gain and the state stabilizes either by

erasing (b) or creating (c) solitons with in the state. (d) the same

stability behaviour can be observed with decreasing the pump power. 24

2.6 Laser oscillator as thermodynamic nonequilibrium system (a) in-

teraction of a laser system with two heat bath at different temper-

atures (b) Path dependent irreversibility and entropy production

in driven evolution of soliton states. Each Point represents a num-

ber of soliton macrostates which have the same power output at a

fixed pump power. . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Zero dispersion 4-f configuration: It consists of a pair of grating,

two lenses, and spatial light modulator placed a focul length away

from each other. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

xii



LIST OF FIGURES xiii

3.1 Simulation result: (a) Schematic of the simulation setup. M (mir-

ror), SMF (single mode fiber), SA (saturable absorber), DDL1 and

DDL2 (diffraction grating with 600 lines/mm and 300 lines/mm re-

spectively). (b) Evolution of pulse duration and spectral width in

the cavity. (c) Autocorrelation signal and optical spectrum of a

pulse at the output between the DDLs. . . . . . . . . . . . . . . . 35

3.2 Schematic of the experimental setup: DDL-1 and DDL-2 (diffrac-

tion grating with 600 lines/mm and 300 lines/mm, respectively),

M (mirror), PBS (polarizing beam splitter), QWP (quarter wave-

plate), HWP (half waveplate), CP (output coupler), ISO (isolator),

BS (beam splitter), and PL (diod pump). . . . . . . . . . . . . . . 37

3.3 Experimental results: (a) Optical spectrum measured from

theindicated ports. (b) Autocorrelation signal of the pulse mea-

sured from an output between the two DDLs, where optical spec-

trum indicated by the black line. (c) Relative DDL separations

corresponding to the shortest pulse. . . . . . . . . . . . . . . . . . 38

4.1 (a) Block diagram showing a pulse traversing a stretcher (Lnl >>

LD) and then through a nonlinear medium (LD >> Lnl).

(b) Schematic diagram of the experimental setup: PL, pump

diode; CO, output coupler; WDM, wavelength-division multi-

plexer; YbDF, ytterbium-doped fiber; QWP, quarterwave plate;

HWP, halfwave plate; ISO, isolator; M, mirror; DG, diffraction

grating; PBS, polarizing beam splitter. . . . . . . . . . . . . . . . 42

4.2 (a) Graph showing the interaction of phase contribution from GVD

and SPM which results in a linear pulse chirp for corresponding

values of the indicated B-integral. The optical spectra of the pulse

at the end of the 130 cm-long stretching fiber (black dashed) and

at the end of the 20 cm-long second nonlinear segment (red solid)

for (b) 5 fs2/mm), (c) 10 fs2/mm, and (d) 40 fs2/mm. (e) The

evolution of the total spectral width in the two segments for the

all simulation parameters provided in Table 4.1. . . . . . . . . . . 45



LIST OF FIGURES xiv

4.3 (a)-(c) The effect of chirp on spectral evolution when the pulse is

stretched by normal GVD on the first segment. (d - f) The ef-

fect of chirp on spectral evolution when the pulse is stretched by

anomalous GVD on the first segment. The corresponding simula-

tion parameters are indicated in Table 4.2. . . . . . . . . . . . . . 46

4.4 (a)-(c) The effect of nonlinear distribution on pulse evolution. . . 48

4.5 Simulation results of pulse evolution inside a cavity with approx-

imately the same parameters as the oscillator in our experiments

described in the next section: (a) Spectral and temporal evolution

of a pulse that can be considered as a stretched dissipative soliton.

(b) Spectral and temporal pulse evolution that can be considered

as passive similariton pulse dynamics with parameters indicated in

Table 4.4 and Table 4.5, respectively. . . . . . . . . . . . . . . . . 49

4.6 (a)-(c) Optical spectra for different regimes taken from the 5% out-

put coupler before gain section 1 (blue dotted), 5% output coupler

after gain section 1 (red dashed), and the PBS output (black solid)

when the net dispersion of the oscillator is ∼ -4000 fs2, ∼+600 fs2

and ∼+3800 fs2, respectively. (d) Pulse duration before and after

compression at the optimized interaction point in the normal regime. 53

4.7 The experimental result showing a relationship between (a) vari-

ation of the two pump powers and the total pump; (b) nonlinear

phase shift with pulse duration (each pulse duration can be com-

pressed to the region between the red lines); (c) nonlinear phase

shift with spectral width; (d) nonlinearity with total pump power;

(e) pulse duration with spectral width and (f) spectral width with

pump power of gain section 2, when pump 1 is increasing and pump

2 is decreasing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



LIST OF FIGURES xv

4.8 The experimental result showing a relationship between (a) vari-

ation of the two pump powers and the total pump; (b) nonlinear

phase shift with pulse duration (each pulse duration can be com-

pressed to the region between the red lines); (c) nonlinear phase

shift with spectral width; (d) nonlinearity with total pump power;

(e) pulse duration with spectral width and (f) spectral width with

pump power of gain section 2, when pump 1 is decreasing and

pump 2 is increasing. . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Experimental setup: Schematic diagram of experimental set up.

WDM, wavelength division multiplexer; QWP (HWP) quarter

(half) wave plate; ISO, isolator. . . . . . . . . . . . . . . . . . . . 61

5.2 Experimental results of MTF: (colored online) (a) Experimental

measurement of modulation transfer function (MTF) versus modu-

lation depth. Experimental measurements (doted) and simulation

results (solid-line) of MTF versus modulation frequency at indi-

cated pump power for (b) all-normal dispersion, (c) nearly zero

dispersion, and (d) soliton-like regimes with 10% Modulation depth. 64

5.3 Experimental results for Measured integrated RIN: for all normal

regime (a) and nearly-zero dispersion (b) when the pump power

is scanned forward (red triangles) and backwards (blue triangles).

Fig. 5.3 (c and d) shows autocorrelation signal and optical spec-

trum of CW, onset of mode locking, stable mode locking, initiation

of multi-pulsing and none self-starting pulsing regimes respectively. 69

5.4 Experimental result in soliton regime: (a) and (b) measured inte-

grated RIN for highly-negative dispersion regime in one cycle for

two different set of wave plates when the pump power is scanned

forward (red triangles) and backward (blue triangles). (c) and (d)

shows autocorrelation signal and corresponding optical spectrum

of certain states in (a) at the indicated pump powers. . . . . . . . 71



LIST OF FIGURES xvi

5.5 Density of states around mode locking: (a) Different mode locking

states mapped on a phase space formed by scanning waveplate an-

gles around a mode locking point. Coloured points indicate mode

locking states that are grouped under the same state on the phase

space. (b) Reversibility of each the central mode locking point be-

fore and after transiting is performed for every point on the phase

space. (c) Integrated RIN map on the phase space (d) Average

integrated RIN of states on the phase space. (e) Distribution of

mode locking states on the first state of the phase space. (f) Cor-

responding integrated RIN map of the state indicated on (e). . . . 73

5.6 Measured relative intensity noise spectrum of modulated pump

and signal intensities for ANDi (a), nearly-zero-dispersion (b), and

highly negative dispersion or DM soliton (c) regimes. The corre-

sponding pump powers and modulation frequencies are indicated

on the legends. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.7 Nonlinear MTF as a function of order of harmonics, (a) at mod-

ulation frequency of 20.4 Hz and pump power of 375 mW in the

near-zero-dispersion regime with η = 1.8, and α = 0.24. (b) At

modulation frequency of 67. 4 Hz and pump power of 400 mW in

the DM-soliton regime with η = 4 and α = 0.37. . . . . . . . . . . 76

5.8 Nonlinear response: (a) RIN spectrum showing intrinsic interac-

tion induced modulation (black) and increased noise as a result of

the appearance of CW and/or period doubling (red). (b), (c) and

(d) RIN spectrum showing the nonlinear response of the cavity

when an external modulation is applied at a frequency of 50 Hz,

100 Hz and 500 Hz respectively to the soliton state whose noise

spectrum is shown by black on (a). . . . . . . . . . . . . . . . . . 77

6.1 Experimental result showing pulse and dispersive wave interac-

tion: (a) autocorrelation function (b) corresponding spectrum (c)

and (d) integrated RIN dependence on pump power indicating the

effect of dispersive wave Interaction on a pulse dynamics. . . . . . 82



LIST OF FIGURES xvii

6.2 Effect of nonlinearity on a pulse and dispersive wave interaction:

(a) and (b) show the optical spectrum and (c) and (d) show the

RIN spectrum of two pulses that coexist in the oscillator at the

same pump power with slightly different pulse durations and energies. 84

6.3 Pulse and dispersive wave interaction: Shows relationship between

energy/pulse (a), Integrated RIN (b) and a fraction of energy going

to dispersive waves (c) as the pump power is scanned. . . . . . . . 85

6.4 Temporal dynamics of soliton state transition: Autocorrelation sig-

nal intensity distribution of states that are generated as the pump

power is scanned from 180 mW to 380 mW. It is taken in intervals

of 15 mW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.5 Energy exchange: Autocorrelation, optical spectrum and corre-

sponding RIN spectrum of a soliton state with energy exchanging

solitons inside a cluster. . . . . . . . . . . . . . . . . . . . . . . . 87

6.6 Simulation results: (a) and (b) Evolution of the optical pulse spec-

trum at the end of 350 cavity round trips for the indicated level

of pumping powers. (c) Pulse energy evolution in the cavity at

different pumping powers. Evolution dynamics of the optical spec-

tra over hundreds of cavity roundtrips are shown in (d)(g) for the

power levels indicated in (c). . . . . . . . . . . . . . . . . . . . . 88

6.7 Summary: Mechanisms of soliton state transformation as pump

power or nonlinearity in the cavity is scanned. . . . . . . . . . . . 89

7.1 Experimental setup: Schematics of the experimental setup com-

prising of Yb-doped fiber, wavelength division multiplier (WDM),

pump diode (PD), 10%-coupler, collimators A and B, 30% non-

polarizing beamsplitter (BS), λ/2- and λ/4-waveplates, polariz-

ing isolator for unidirectional operation, and dispersive delay line

with diffraction gratings (G), mirrors (M), D-shaped mirror (DM),

cylindrical beam expander (CBE) and spatial light modulator

(SLM). The SLM is controlled by a computer algorithm, which

takes into account measured optical spectrum or autocorrelation

data. Main elements of the quasi-realtime control algorithm are

also shown. Adapted from [1] with permission. . . . . . . . . . . . 91



LIST OF FIGURES xviii

7.2 Experimental results for amplitude modulation: Control of mode-

locking states using the SLM: (a) Optical spectra corresponding

to reversible transitions from CW to mode-locking with CW peak

to pure mode-locking. The corresponding spectral filters applied

by the SLM are shown at the top of each panel. (b) Autocorre-

lations and (c) optical spectra corresponding to repeatable irre-

versible transitions. (d) Autocorrelation trace of 40 fs-long pulses.

Inset shows corresponding optical spectrum. (e) Autocorrelation

traces showing SLM-based pedestal removal; inset shows corre-

sponding optical spectra. Black (red) lines before (after) filtering.

(f) Elimination of undesired, characteristic spectral structure for a

wave-breaking-free laser operating near its stability limit in terms

of pulse energy. Autocorrelation trace is shown. Inset shows spec-

tra before filtering (black line) and after filtering (red line) along

with the filter transmission pattern. Adapted from [1] with per-

mission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.3 Experimental setup for phase modulation: Schematics of disper-

sion managed fiber oscillator with zero dispersion 4-f pulse shaping

configuration used for spectral phase modulation. . . . . . . . . . 100

7.4 Temporal tweezing of soliton: (a) Optical spectra and (b) cor-

responding autocorrelation measurements of the soliton state as

the blazed grating pattern (c) on the SLM is scanned in discrete

steps horizontally or perpendicular to the propagation direction.

(d) Optical spectra and (e) corresponding autocorrelation signal

of controllably changed into oscillatory soliton pulse state from a

stable state by discreetly applying periodic phase mask patterns

(f) for respective states indicated by the same color. . . . . . . . . 102

7.5 Frequency shifting: (a) Optical spectra and (b) corresponding au-

tocorrelation signal of soliton state as the blazed grating pattern

indicated by (c) on the SLM is scanned in discrete steps horizon-

tally or perpendicular to the propagation direction. The direction

of motion of the patterns determines the sign of phase gradient. . 103



LIST OF FIGURES xix

7.6 pulse splitting: Traces in (a) and (b) are the autocorrelations and

corresponding optical spectra of the soliton states as the period

of holographic blazed gritting on the SLM is varied. (c) and (d)

show the autocorrelation and corresponding optical spectra with

(blue, blazed gritting of period 1) and without the (red) linear

phase modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.1 Driven dissipative adaptation: Autocorrelation function of optical

soliton states undergoing dissipative adaptation inside fiber oscil-

lator with an external driving signal with 0.1 percent modulation

depth at a frequency of 100 Hz. . . . . . . . . . . . . . . . . . . . 109

A.1 Vibrating pulse: pulse vibration like harmonic oscillator can hap-

pen at critical points. . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.2 Spatiotemporal dynamics of the two states indicated in Fig. B.1

(red and blue), which indicates that the role of stronger dispersive

wave on the long and short range stability of the pulses in the cavity.133

A.3 Autocorrelation, optical spectrum and corresponding RIN spec-

trum of a soliton state with dynamically varying temporal separa-

tion which is the transition mechanism between state (2) and state

(3) on Fig 6.3(a). . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.4 Autocorrelation, optical spectrum and corresponding RIN spec-

trum of a soliton state with energy exchange between very close

solitons and with oscillating temporal separations inside a cluster. 136

A.5 Characteristics of pulse energy evolution per cavity round trip as

nonlinearity of a gain cavity segment is scanned (a and b). Corre-

sponding optical spectrum evolution (c-f for (a) and (g) for (b red)

and (h) for (b blue)) of a single soliton. . . . . . . . . . . . . . . . 136

A.6 Effect of relative phase: Real time temporal profile, autocorrelation

and optical spectrum of two soliton pulses with separation of and

relative phase difference indicated on the legends. . . . . . . . . . 138



LIST OF FIGURES xx

A.7 Effect of relative intensity on the shape of AC signal: Real time

temporal profile, autocorrelation and optical spectrum of three soli-

ton pulses with separation of 0.750 ps and 2.25 ps and relative

phase difference indicated on the legends. . . . . . . . . . . . . . . 139

A.8 Real time temporal profile, autocorrelation and optical spectrum

of three soliton pulses with separation of 0.750 ps and 2.25 ps and

relative phase difference indicated on the legends. . . . . . . . . . 140



List of Tables

3.1 Parameters of segments used for oscillator simulation results in Fig.

3.2 (b). Segment number (S.N), Length (L) [cm], GVD [fs2/mm],

TOD [fs2/mm], Kerr coefficient with n2 [10−16-1 cm2/W], Effective

mode area (EMA) [µm2], GBW gain band width and FBW filter

band width[nm]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Parameters of segments used for simulation results in Fig. 4.2(b)-

4.2(e). Segment number (S.N), Length (L) [cm], GVD [fs2/mm],

TOD [fs2/mm], Kerr coefficient with n2 [10−16-1 cm2/W], Effective

mode area (EMA) [µm2], GBW gain band width and UG Unsatu-

rated gain [dB]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Parameters of segments used for simulation results on Fig. 4.3.

Segment number (S.N.); length (L) [cm]; GVD [fs2/mm]; TOD

[fs3/mm]; Kerr coefficient with n2 [10−16 cm2/W]; effective mode

area (EMA) [µm2]; GBW, gain bandwidth; NLP, accumulated non-

linear phase; UG, Unsaturated gain (dB). . . . . . . . . . . . . . . 47

4.3 Parameters of segments used for simulation results on Fig. 4.4.

Segment number (S.N), Length (L) [cm], GVD [fs2/mm], TOD

[fs3/mm], Kerr coefficient with n2 [10−16 cm2/W], Effective mode

area (EMA) [µm2], GBW gain band width, NLP accumulated non-

linear phase and UG Unsaturated gain (dB). . . . . . . . . . . . . 48

xxi



LIST OF TABLES xxii

4.4 Parameters of segments used in simulation for the first oscillators

(Fig. 4.5(a)). Segment number (S.N.); length (L) [cm]; GVD

[fs2/mm]; TOD [fs3/mm]; Kerr coefficient with n2 [10−16 cm2/W];

effective mode area (EMA) [µm2]; GBW, gain bandwidth; unsat-

urated gain (dB); EG, effective gain saturation energy [nJ]; SA,

saturable absorber. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Parameters of the segments used in the simulations for the first

oscillator (Fig. 4.5(b). Segment number (S.N.); length (L) [cm];

GVD [fs2/mm]; TOD [fs3/mm]; Kerr coefficient with n2 [10−16

cm2/W]; effective mode area (EMA); [µm2]; GBW, gain band-

width; unsaturated gain (dB); EG, effective gain saturation energy

[nJ]; SA, saturable absorber. . . . . . . . . . . . . . . . . . . . . . 50

8.1 Averaged parameters of the mode locking macrostates indicated

on Figure 8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



Chapter 1

Introduction

Ultrafast lasers are passively mode-locked lasers that can generate so-called ultra-

fast or ultrashort optical pulses. Here, the terms ultrafast and ultrashort refer to

a few picoseconds and shorter regarding the pulse duration in the more inclusive

usage of the terms and the less restrictive usage implies to a few hundred fem-

toseconds. Pulse durations in the sub-picosecond range can only be generated

by optical means only because their rise/fall times and associated bandwidths

surpass the capabilities of state of the art in electronics by a large margin. In ad-

dition to the fantastic temporal resolutions afforded by ultrashort pulses that can

be used for viewing, analyzing and even manipulating various natural phenomena,

such as chemical reactions, also known as femtochemistry [2], the ultra-broadband

frequencies generated by ultrafast lasers have countless applications, most notably

in the field of optical frequency metrology [3]. Furthermore, by localizing all the

energy of an optical pulse within such a short temporal window, extremely high

intensities can momentarily be achieved at the peak point of pulse, which has

numerous applications, ranging from ultrafast laser-material interactions [4,5] to

extreme nonlinear optics [6], to generation of coherent extreme ultraviolet and

soft x-ray radiation through a process known as high-harmonic generation [7].

Lasers have been at the heart of much major scientific progress since their
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invention. Pulsed lasers were first demonstrated only six years after the first re-

alization of a continuous-wave (CW) laser in the Hughes Research Laboratories

in 1960 [8,9]. Pulse generation is made possible by ensuring a fixed phase differ-

ence between multiple cavity modes created in a laser resonator. The number of

such locked modes can easily exceed ten thousand in a modern mode-locked laser,

where the term mode-locking refers to the locking of the phases of the modes.

Here, we are focussed on so-called passive mode-locking, where no external elec-

tronic modulation is used and mode-locking arises solely from the dynamics of the

laser. There are various methods for passive mode-locking, but this is commonly

accomplished by a nonlinear amplitude modulating element, which is often called

saturable absorber (SA). It can be a material that actually absorbs light, such

as a semiconductor saturable absorber mirror (SESAM) [10], layers of graphene,

carbon nanotubes [11], even topological insulating materials [12]. Alternatively,

it can be a nonlinear optical process that alters the beam propagation or the gain

experienced by the pulses in a manner that depends on the (nearly) instanta-

neous intensity of the beam, known as an effective saturable absorber, such as

Kerr lens mode-locking [13], gain switching [14], nonlinear polarization evolution

(NPE) [15], a nonlinear amplifying loop mirror [16], dissipative Faraday instabil-

ity (modulation instability) [17], or pump-frequency detuning with respect to the

cavity resonance in micro resonators [18].

The onset of mode-locking that leads to the formation of ultrashort pulses is

typically initiated from intra-cavity noise, or fluctuations in light intensity. A

range of physical processes are effective in this mechanism, such as gain and

loss, spectral or gain filtering, chromatic dispersion, four wave mixing processes,

including self-phase and cross-phase modulation, intra-pulse Raman scattering,

self-amplitude modulation, including saturable absorption and in the case of sub-

100 fs pulses, self-steepening. However, during the onset typically saturable ab-

sorption and linear gain/loss are the dominant mechanisms, creating a positive

feedback through which the fluctuations in the cavity are amplified: The presence

of a saturable absorber ensures that a fluctuation with higher-than-average inten-

sity experiences reduced loss, whereas all parts of the waveform amplified equally

by the gain. As this process is repeated hundreds and thousands of times within
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the cavity, nearly all of the energy of the waveform becomes concentrated within

one or several localized peaks, which form pulses. As the pulses grow reduce in

duration and grow in intensity, other effects mentioned above, such as self-phase

modulation and dispersion become stronger. In a well-design cavity, the combined

dynamics of these processes support stable, nonlinear waveforms, such as solitons

or similaritons. Consequently, the pulses are gradually shaped into the partic-

ular nonlinear waveform supported by the cavity, slowing the changes per each

roundtrip as the pulse evolves into this shape like a negative feedback mechanism.

The final state of mode-locking corresponds to a steady state, which balances ex-

actly all the effects with each other such that at the end of one roundtrip through

the laser cavity, all changes experienced by the pulse are exchanged cancelled

out. This steady state can differ a lot in its characteristics according to the

mode-locking type or regime. For instance, in the case of a soliton laser, the

changes are almost completely balancing at each step through the cavity with

only minute changes within a roundtrip, whereas a modern similariton laser can

experience order-of-magnitude variations in its amplitude, spectral and temporal

widths within one roundtrip. Of course, a stable steady state is not the only

possible outcome, and a laser cavity can exhibit a wide range of less stable or

completely unstable operations as well, including generation of multiple pulses,

which may or may not be stable, operation known as period-doubling, where the

pulse repeats the same shape after two or more roundtrips, as well as chaotic

behavior. However, for much of the discussion in this thesis, our focus will be

stably mode-locked lasers unless noted otherwise.

As a result of the rich dynamics and numerous technological applications,

mode-locked fiber oscillators have been developed and built as a result of a diverse

set of motivations, including basic scientific understanding of their nonlinear dy-

namics, for applications benefiting from their practical features, such as better ro-

bustness in adverse environmental conditions compared to solid state lasers, capa-

bility to reach higher average powers or to generate beams with diffraction-limited

quality, insensitivity to misalignment by guiding the beam inside a fiber in much

of the cavity, lower overall system complexity, low intensity noise, etc. [10,19,20].

In particular, there has been tremendous interest in the generation of as short
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pulses as possible, but generation of few-cycle pulses has been largely elusive in

case of fiber lasers, despite a large number of reports of even nearly single-cycle

pulses from solid state lasers, such as Ti:sapphire [21]. In case of fiber lasers, the

realization of 20-30 fs-long pulses was possible with dispersion management inside

the cavity [22–24], limited by their relatively narrow gain bandwidths. Recently,

20-fs pulses were obtained through nonlinear spectral broadening and strong spec-

tral filtering [25]. In this case and many related work, nonlinearity of the form

of SPM plays a positive role by broadening the spectrum, and the researchers

used a complex de-chirping technique to shorten the pulses afterwards. Though

this was quite an achievement, one is faced with the difficult technical problem of

compressing the pulses to their transform limit. Recently, we showed spatial light

modulator-based (SLM) intracavity pulse shaping, which may allow a higher de-

gree of control through phase and amplitude modulation towards realization of a

few-cycle pulsed oscillator [1]. Despite encouraging initial results, this possibility

remains an open question, where any success would be revolutionary.

Pulse energy is another pulse parameter, which attracts intense attention in

the design mode-locked fiber lasers. This is so, because higher energies are ex-

tremely desirable for most applications, but also the pulse energy is extremely

influential on the mode-locking dynamics. Together with the pulse duration, the

pulse energy sets the peak intensity of the pulse, hence the strength of the non-

linear effects. While nonlinearity is an essential and indispensable component of

mode-locking, too much nonlinearity can destabilize the mode-locking process.

Thus, nonlinearity sets a limit for the achievable pulse energy. There are var-

ious ways for increasing this limit, such as using large mode area fibers, which

reduces the peak intensity for given peak power, as well as chirped and divided

pulse amplification, which reduce the peak power by spreading the pulse in the

time domain. Complimentary to the efforts to reduce the nonlinear effects, there

are various approaches based on managing the strong nonlinear effects with ap-

propriate, nonlinearity-resistant pulse forms, such as similaritons and dissipative

soliton resonance. Balancing of self-phase modulation (SPM) with group-velocity

dispersion (GVD), third-order dispersion (TOD) and spectral filtering are also

commonly used to significantly push the limits of pulse energy up in fiber lasers.
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These techniques together with dispersion management have helped to scale up

the pulse energies of fiber lasers from the few-picojoule regime in the 90’s to the

microjoule-level, which is high enough for even industrial material processing [26].

Alternatively, the oscillator energy can be kept at a modest level and fiber am-

plification outside of the laser cavity can be used to reach multi-microjoule and

higher levels. The largest pulse energies reported from a rod-type fiber amplifier

is 2.2 mJ [27]. However, the above techniques have intrinsic limitations. For ex-

ample using large-mode areas is associated with generation of higher-order modes

or mode instabilities and the largest mode-area fibers are really totally rigid glass

rods, which represent a significant step backwards in terms of the practical ad-

vantages of fiber lasers. Therefore, there continues to be a lot of motivation for

further advances in dealing with strong nonlinearities, in particular, in combina-

tion with effects such as gain filtering and higher-order dispersion.

As mentioned earlier, the idea of dispersion management enabled to push the

limits of generation of shorter and more energetic pulses from fiber oscillators

during the soliton era [25, 26, 28]. Researchers were doing numerical and exper-

imental efforts to extend this idea of dispersion management to nonlinear man-

agement [29]. The fact that effective negative nonlinearity can be generated from

phase mismatch of cascade of quadratic and cubic nonlinear elements, where the

cubic (Kerr) is dominated by the quadratic nonlinearity [29, 30], four wave mix-

ing, inverse four wave mixing and cascade of gain and passive fibers are expected

to lead oscillator dynamics in a new and exciting research direction. Chapters 3

and 4 of this dissertation are efforts in this research direction.

The oscillator dynamics can be qualitatively understood as a dynamic balance

between phase and amplitude evolution. This naturally leads to the prospect of

opening up new pulsing regimes and new pulse properties through the inclusion of

a electronically controllable amplitude and phase shapers inside the laser cavity.

So far we tried to shortly summarize the generation and technological advances

of some important optical pulse parameters. Apart from being excellent, robust,

reliable, cost efficient and environmentally friendly sources for application, fiber

lasers systems always are research platforms for basic scientific understanding of
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self-assembled complex spatiotemporal structures far from their thermodynamic

equilibrium in optics [20, 31] and related fields such as hydrodynamics, plasma

[32], Bose-Einstein condensation [33], nonlinear phenomena, thermodynamics and

biophysics or biochemistry as well [34–36]. So far there are more than three Nobel

Prize winning entities related to far-from-equilibrium thermodynamics, but an

entirely satisfactory understanding of such dynamics is far from having been

achieved [2, 37].

Currently, thermodynamics of optical pulse propagation and the onset of las-

ing are drawing increasing interest from the scientific community and are being

investigated both experimentally and theoretically. Understanding the thermo-

dynamics of oscillator dynamics especially the phase transition from CW to pulse

formation has been extensively studied [20]. Thermodynamic terms like free en-

ergy and order parameter were introduced. Even-though the effective partition

function derived does not help on farther derivation and understanding of pulse

parameters, it lies a basic foundation and strengthens the idea of treating op-

tical pulses as a particle, Supramolecular systems, or other thermodynamic en-

tities [38]. Phenomena like the noise dynamics starting from pulse formation,

stable pulsing, initiation of multi pulsing, stochastic emergence of pulsing states,

interaction of pulses and their environment reveals that such systems are full of

intrinsic interaction and can provide a vast research environment both in nonlin-

ear and nonequilibrium systems.

Mode-locked lasers are inherently nonequilibrium systems that have lasing

states that can be classified as near and far from equilibrium thermodynamic

systems. Near equilibrium of a laser system can be characterized by interac-

tion free single or multi pulsing (usually with smaller number of pulses) [39, 40].

These states are stationary states characterized by a constant entropy produc-

tion as well as a constant entropy flow. Here, effective thermodynamic flows and

their conjugated forces are linearly related to each other. Hence they formulated

near equilibrium systems. When perturbation is applied here, it will displace the

equilibrium position of the system. When this perturbation is removed the laser

will come to its unperturbed state, The probability of the laser system to occupy

possible macrostates of the system follows a Boltzmann like distribution for such
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systems are locally at equilibrium [40]. Such type of states were important from

application point of view. Here, cyclic processes in phase space can be selectively

chosen to build an oscillator for intended applications with a proper choice of

physical or fiber components.

Nonlinearity, feedback mechanism and its effects together with optomechanical

efficacy can perturb and drive the system from its thermodynamic equilibrium by

initiating multi pulsing, intrinsic modulation, phase hopping and energy exchange

between pulses, bifurcation, and chaos that can result from cavity boundary con-

dition. The introduction of a perturbation at this points transforms into a new

emergent spatiotemporal structures. Up on removal of the perturbation, states

never go back to their original unperturbed states, which is a finger print of

far from equilibrium systems. The fact that such systems exist in a controlled

environment and its formation similarity (driven by modulation instability of uni-

form stable states) of large number of emergent natural coherent spatiotemporal

physical (such as Karman vortex street), biological (such as morphogenesis), and

chemical structures (such as Belousov-Zhabotinsky reaction) made such system

to be considered as a research hub for understanding far from-equilibrium ther-

modynamics in other adaptive complex systems as well [1,17,41–43]. This should

start by adopting established principles and theories of far-from equilibrium ther-

modynamics of self-organized complex chemical and biological systems into the

laser system [38,44–46].

This dissertation is organized as follows. Chapter 1 provides an introduction to

ultrafast lasers, mode-locking, its brief history and recent developments along the

general direction of concern to this thesis. Chapter 2 reviews the basic theoretical

background and principles of ultrafast pulse propagation and generation, through

passive mode-locking of laser cavities, while introducing the non-equilibrium ther-

modynamic perspective in a manner that is relevant to this dissertation.

The two following chapters, Chapter 3 and Chapter 4, report advances made

possibly through improved understanding and exploitation of the nonlinear dy-

namics of mode-locking lasers. In these studies, fluctuations and noise, therefore,

the thermodynamical perspective do not play a prominent role. The subsequent
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three chapters, Chapter 5, Chapter 6 and Chapter 7, in contrast, are immediately

concerned with the thermodynamical perspective, analyzing the impact of noise

and externally induced power modulations, followed by noise-induced transitions

of the laser’s mode-locking state and finally, presenting a new technique to control

the mode-locking state of a laser electronically.

Chapter 3 reports direct generation of chirp-free pulses from a passively mode-

locked fiber oscillator through optimization of the interaction of third-order dis-

persion and Kerr nonlinearity (self- and cross-phase modulation). The introduc-

tion of a second DDL is shown to enable tuning of the total TOD level, while

keeping the net GVD inside the cavity unchanged.

In Chapter 4, the generation of an effective negative nonlinearity through the

cascaded interplay of passive and active fiber segments is shown theoretically and

experimentally. Collective behavior of sequentially arranged passive (dispersive)

and active (nonlinear) fibers generate an effective negative nonlinearity such that

pulse compression can take place while the opposite is to be expected. This can

be understood as a result of interaction between pulse chirp, dispersion, SPM

and their spatial distribution across the cavity. This approach can also provide a

fresh perspective for the transformation of a soliton pulse into a similariton pulse

for the only laser oscillator with double attractors, namely, the soliton-similariton

laser [47]. A general message of the results in these chapters is that fine-tuning

of the pulse evolution inside the cavity is important not only for optimized laser

performance, but also for revealing entirely new and often unexpected, initially

counter-intuitive oscillator dynamics.

In Chapter 5, the linear and nonlinear cavity response to an external driving

force is explored by electronically controlling the power of the pump laser. This

way, we characterized both the changes in the background noise and response to

modulation at specific frequencies using a transfer-function formalism that con-

nects the pump power modulation to the output signal power of different mode

locking regimes. Our results show that the cavity response to modulation can

reveal information about interaction, stability, and complexity of mode locking
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regimes, including, a clear delineation with the largely linear and strongly nonlin-

ear regimes of the laser’s response. Moreover, the presence of a modulation can

be used to nudge unstable mode-locking states to their nearest relatively stable

state points within the energy landscape. Analysis of such dynamics using con-

cepts of stochastic resonance or dissipative adaptation are shown to be exciting

possibilities for future studies.

In Chapter 6, we report rich, nonlinear dynamics that are characteristically

far from thermodynamic equilibrium, using dissipative soliton systems or bound

soliton states, also known as soliton molecules. The nature of the interactions of

multiple pulses within these states are explored. We also show, through numerical

simulations and experiments, that their mutual interactions can alter the stability

and cause either creation or annihilation of certain pulses (solitons). Specifically,

we find that phase transitions to new mode-locking states take place after a

previously stable mode-locking state exhibits intrinsically driven giant fluctua-

tions at critical parameter values (typically controlled by the pump power, which

effectively alters the effective nonlinearity). Consequently, random creation or

annihilation of dissipative solitons are observed near these critical points. Every

mode-locking regime is observed to exhibit a qualitatively similar dependence

(on nonlinearity, as controlled by the pump power) whereby the fluctuations are

characterized on the integrated relative intensity noise (RIN) of the output power

of the mode-locked laser. This quantity usually starts at a moderate value, then

it reduces, corresponding to the most stable point of the mode-locking state with

increasing nonlinearity and power, before undergoing a giant fluctuation, imme-

diately after which the laser jumps abruptly to an entirely different mode-locking

state.

In Chapter 7, we demonstrate, for the first time, the use of intracavity adap-

tive pulse spectral phase and amplitude shaping mechanisms for direct control of

the mode-locking states of a laser. We report a range of practically motivated

demonstrations, such as generation of shorter pulses, cleaning up the shape of

pulse (to remove its “pedestal”), removal of undesired spectral structures. In

addition, and much more importantly for the purposes of this thesis, we demon-

strate well-controlled reversible and irreversible transitions between mode-locking
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states, including, “tweezing”, thereby, control of pulse separation for multiple,

bound pulses, suppression of instabilities, initiation and halting of mode-locking,

access to nominally inaccessible mode-locking states. This new capability of con-

trol renders mode-locked lasers as a potentially very well controlled experimental

platform for highly quantitative studies of phenomena far from equilibrium, in-

cluding testing of emerging theories.

Finally, a summary of our results and perspectives on future work building on

the findings of this thesis are provided in Chapter 8.
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Chapter 2

Theoretical basis of fiber

oscillator dynamics

2.1 Basic theories and principles of ultrafast op-

tics

Much of the current theoretical understanding of optical pulse propagation is

based on modeling pulse propagation with the generalized nonlinear Schrödinger

equation (NLSE), which includes, in addition to the usual terms of dispersion,

Kerr nonlinearity, loss, gain, and (in some Raman effects of the propagation

medium. In some formulations, saturable absorption or nonlinear loss is included

instead of Raman effects, in which case the equation is often called complex

Ginzburg-Landau equation. This section reviews basic theoretical background of

pulse propagation, generation, and intracavity pulse interaction that are related

to our experimental results based on approaches of ref. [48] and compares it with

theory of other physical systems in related fields.
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2.1.1 Pulse propagation

When a pulse propagates through a medium it experiences physical effects as a

result of material response. Chromatic dispersion and non-linearity are the most

common effects.

2.1.1.1 Chromatic dispersion

Chromatic dispersion is resulted from frequency dependent refractive index of a

material or phase velocity of light passing through a medium. Mathematically it

is defined from Taylor expansion of wave number as

k(ω) = β0 +
1

2

∂k

∂ω
(ω − ω0) +

1

2

∂2k

∂ω2
(ω − ω0)2 +

1

6

∂3k

∂ω3
(ω − ω0)3 + ..., (2.1)

where the zero order term is a constant phase or common phase shift, the first

order dispersion ∂k
∂ω

= 1
υg

is related to the phase velocity and adds delay, ∂2k
∂ω2 = β2,

and ∂3k
∂ω3 = β3 are the second and third order group velocity dispersion, respec-

tively. The first two terms does not affect shape of the pulse while the second

and third order are the most common effects considered in analysing pulse prop-

agation in fiber.

2.1.1.2 Nonlinearity response

The most common nonlinear instantaneous response in optical fiber is Kerr non-

linearity which is due to optical intensity dependent change in refractive index.

∆n = n2I (2.2)

Self-phase modulation (SPM) is one of these Kerr effects which is phase shift of

propagating pulses as a result of its own optical intensity in time domain. The

maxima phase shift experienced by the center of a pulse can be given as

φmax =
Leff
LNL

= γp0Leff (2.3)
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Leff is effective fiber length and p0 peak power.

Cross phase modulation and self-focusing effects are other common effects

together with a delayed nonlinear response called Raman effect. These effects are

important when one is dealing supercontinuum generation and their details can

be found ref. [48].

2.1.1.3 Maxwell equations and wave theory

Optical pulse propagation or electromagnetic waves in general is governed by the

well-known Maxwell equations.

∇.D = ρ (2.4)

∇.B = 0 (2.5)

∇XE = −∂B

∂t
(2.6)

∇XH = j +
∂D

∂t
(2.7)

Where D, B, ρ, j, E and H are electric flux, magnetic flux, free charge density,

current density, electric and magnetic fields respectively. Mathematical simplifi-

cation by using vector identity calculus and assuming no free charge carriers in

fiber wave guides, one can drive the wave equation (eqn. 2.9), with D and E

related as

D = ε0E + P (2.8)

∇2.E− 1

c2

∂2E

∂t2
=

1

ε0c2

∂2P

∂t2
(2.9)
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2.1.1.4 Nonlinear Schrödinger equation (NLSE)

NLSE was driven from wave equation by considering the following two main

assumptions. Local and instantaneous material response and a small nonlinear

component of polarization that can be assumed as perturbation term for its effect

is weak in fibers. With the above assumptions, the wave equation can be written

as

∇2.E− 1

c2

∂2E

∂t2
= µ0

∂2(PL + PNL)

∂t2
(2.10)

Where the polarization components are related to the electric field as

PL(r, t) = ε0

∫ ∞
−∞

χ(1)(t− t′)E(r, t
′
)dt

′
(2.11)

PNL(r, t) = ε0

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2

∫ ∞
−∞

dt3[χ(3)(t− t1, t− t2, t− t3)

E(r, t1)E(r, t2)E(r, t3)] (2.12)

Assuming the electric field has slowly varying envelop such that

E(r, t) =
1

2
x̂[Eexp(−iω0 + c.c.)] (2.13)

Wave equation for the slowly varying envelop can be reduced to Helmholtz equa-

tion in frequency domain as

∇2E(ω) + ε(ω)k2
0E(ω) = 0 (2.14)

Where k0 = ω/c, ε(ω) = 1 + χ(1)
xx + 3

4
χ(3)
xxx|E(r, t)|2 and 3

4
χ(3)
xxx|E(r, t)|2 = εNL

are wave number, dielectric constant and its nonlinear component, respectively.

By using separation of variables method, The above Helmholtz equation can be

solved

E(r, ω − ω0) = F(x, y)A(z, ω − ω0)exp(izβ) (2.15)

∂2F

∂x2
+
∂2F

∂y2
+ [ε(ω)k2

0 − β2(ω)]F = 0 (2.16)

2iβ0
∂A(ω)

∂
+ (β2(ω)− β2

0)A(ω) = 0 (2.17)
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The first equation gives modal distribution in fibers and Fourier transformation of

the second equation with some approximations leads to the NLSE in time domain

(Note: The details of the derivation is found in Ref. [48]).

∂A

∂z
+ β1

∂A

∂t
+ iβ2

∂2A

∂t2
− α

2
A = iγ|A|2A (2.18)

β1, β2, α and γ are group velocity, group velocity dispersion, loss coefficient,

and the nonlinear parameter respectively. Pulse formation is initiated from noise

in the presence of SA in a laser cavity. Its propagation is dictated by the interplay

of physical processes (such as dispersion and nonlinearity) that play engineered

major roles. Now a days researchers design different forms of cavities with varying

complexity level and use different forms of NLSE to govern the dynamics depend-

ing on the application or optical phenomena they want to focus on (as an example

we use the one with details described in ref. [47] to guide our experiments).

2.1.1.5 NLSE for Soliton pulse dynamics

Soliton has been studied in fiber optics very intensively since 1973 [49]. Such type

of solution is a fixed point or solitary solutions representing nonlinear integrable

evolution of a system [50]. It maintains its shape as a result of balanced effects

of negative GVD and nonlinearity during its propagation in fiber. Such types of

pulses are governed by NLSE with negligible loss. Using coordinate transforma-

tion T = t− β1z, U =
√
γLD, ξ = z

LD
, τ = T

T0
, and N2 = LD

LNL
, Eqn. 2.16 can be

written in a normalized form as.

i
∂u

∂ξ
− 1

2
β2
∂2u

∂τ 2
+N |u|2u = 0 (2.19)

Where N= LD
LNL

is called the soliton order number.

Using inverse scattering method such equation has a solution which is integral

multiple of the form

U = Nsech(ητ)exp(i
η2ξ

2
) (2.20)
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Soliton area theorem (soliton energy is constant which is product of peak power

and pulse width is limited by nonlinearity and GVD) limits the pulse energy in

this regime. Inclusion of dispersion management provided the stretched pulse in

which the pulse breathes during its propagation on a dispersion map. In doing so

the pulse experiences less nonlinearity hence pushed the energy limit of solitons

to sub ten nanojoule level. This energy limit is further pushed by discovery of

similariton and all normal dispersion regimes.

2.1.1.6 NLSE for similariton pulse dynamics

Similariton solution arise in fiber optics when the interaction between gain, dis-

persion and nonlinearity converge any input pulse in to asymptotic solution that

evolves self similarly (similariton atractor) with the pulse duration and amplitude

increase exponentially. Pulse propagation in the presence of gain can be described

by Eqn. 2.19 with the loss coefficient replaced by gain parameter [51,52].

i
∂A

∂z
− β2

∂2A

∂t2
+ i

gA

2
− γ|A|2A = 0 (2.21)

Similariton pulses are asymptotic solution of the above equation and it accumu-

lates a parabolic phase during propagation [53,54].

A(z, T ) = ϕ(z, T )exp(iΦ(z,T)) (2.22)

ϕ(z, T ) = ϕ0exp(
g

3
z)

√√√√1− T 2

T 2
p

(z) (2.23)

Φ(z, T ) = c+
3γϕ0

2g
exp(

2

3
gz)− g

6β2

T 2 (2.24)

ϕ0 = 0.5(
gEin√

γ
β2
2

)
1
3 (2.25)
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Tp =
6
√

γβ2
2

g
ϕ0exp(

gz

3
) (2.26)

Where Φ, Ein, ϕ0, and Tp are phase, energy, pulse width and amplitude re-

spectively [54]. For such solutions to exist in a fiber cavities there has to be

a mechanism which returns self similarly evolution of the parabolic pulse back

to its starting point. It can be a filter, gain narrowing, spectral compression or

presence of another nonlinear attractor [47,52].

2.1.1.7 NLSE for dissipative soliton pulse dynamics

The Hause master equation or NLSE has similar mathematical form, hence can

be taken as one form of generalized complex Ginsburg-Landau equation (CGLE).

Ginsburg received a Nobel prize for this equation in 2003 and it has been used to

describe dissipative stable structures in space and time in various fields of non-

linear systems in science such as oscillatory chemical reaction, hydrodynamics,

mode locked lasers, super conductivity, in collective behaviour of micro-organisms

and plant ecology, self-assembly of molecular motors and systems that can be

described by far-from equilibrium in general [55–58]. Dissipative solitons struc-

tures persist for longer period of time even-though their parts are experiencing

loss/gain. Such dissipative systems can be described by solutions of Complex

quintic Ginsburg-Landau (CQGLE) equation that describe a vast number of pulse

dynamics that range from ANDi to dispersion managed and soliton laser systems

with proper parameter management [59,60].

iUz +
DUtt

2
+ | U |2 U + ν | U |4 U = iδU + iξ | U |2 U +

iβUtt + iµ | U |4 U (2.27)

Where U , ν, δ, ξ, β, and µ are field envelop, coefficients for quintic Kerr, linear

loss/gain, nonlinear gain, spectral filtering or gain dispersion and nonlinear gain
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saturation respectively. Equation parameters of CQGLE determine the CW or

a range of stable and unstable Pulsing solutions [61, 62]. The fact that large set

of variables can give different solutions to this equation gives a laser oscillator

science vast degree of freedom in exploring new forms of pulsing regimes as well

as in representing different but similarly behaving nonlinear dynamical systems

which are far-from-thermodynamic equilibrium in and outside optics.

2.1.2 Mechanism of passive mode locking

2.1.2.1 Classical Electromagnetic theory of pulse formation

According to electromagnetic modeling a pulse is formed when a number (usually

in the order of 105) of longitudinal modes in a cavity have the same phase or

maintain their phase difference through the effects of saturable absorber. Gain

amplification band width induces additional selection rule on the selection of

frequencies of longitudinal modes that can be part of the pulse spectrum as

shown in Fig 2.1 (a). The wider the spectral width, the shorter the generated

pulse is. Such a pulse is described by a product of slowly varying envelop and

fast oscillatory component called carrier wave. Frequency difference between

consecutive frequency modes gives repetition rate of the cavity. While Carrier

envelop offset frequency is defined as the phase difference between the phase of

the carrier wave and the envelope position which is determined by dispersion and

nonlinearity.

Nonlinear polarization rotation or evolution is the one we used as SA in our

experiments. It is an artificial amplitude modulator mathematically represented

by a transmittance curve of the form [63]

T = sin2(θ)sin2(φ) + cos2(θ)cos2(φ) +
1

2
sin(2θ)sin(2φ)cos(φl + φnl) (2.28)

θ, ϕ, φl = 2πL δn
λ

and φnl = 2
3
γLPcos(2θ1), δn, L, P are the angle between

polarizer and the vertical polarization axis of the fiber, analyser and the vertical

polarization axis of the fiber, linear, nonlinear phase shifts, birefringent, cavity
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length, and optical power in the cavity, respectively. Its operational principle can

be simply demonstrated by polarizer, nonlinear medium and analyzer as in Fig

2.1 (c).

Figure 2.1: Pulse formation: (a) Longitudinal cavity modes generated inside a
cavity. (b) Schematics of pulse profile. (c) Schematics of the working principles
of nonlinear polarization evolution (NPE).

2.1.2.2 Mode locking as a stochastic phase transition process

In the previous section we have seen electromagnetic formalization of how prop-

agation of different pulses is theoretically governed and how pulse is formed in a

cavity. According to statistical physics modelling, Passive mode locking is gener-

ated or spontaneously emerge from quasi CW through unique and non-repetitive

(as indicated in Fig. 2.2 where both the pulse evolution happened on a cavity

with the same parameters) stochastic process in nanosecond time scale [64]. It is

described as a first order phase transition using an effective thermodynamic mod-

elling of Such laser system where the CW and pulsing states being disordered and

ordered phases respectively [65]. In this model effective partition function is de-

rived from effective Hamiltonian which leads to free energy and order parameter
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given by

Figure 2.2: Pulse dynamics per round trip: Simulation result showing stochastic
pulse build up dynamics inside oscillator

f(γ, y) = (
γy2

2
+ log(1− y)) (2.29)

y = M2 and γ =
γsp

2

T
(2.30)

Where M is order parameter, γs saturable absorption parameter, p is pump power

and T is a value related to noise of the system. Depending on the value of γ the

free energy has zero, local and global minimum values representing disordered

(CW), meta stable and stable states. Fig. 2.3 shows behaviour of effective free

energy as a function of order parameter for different pump powers. It has one

minimum at y = 0 for γ < 4 and double minimum at γ ∼= 5 where phase transition

takes place and it has a single minimum at y 6= 0 for γ > 5. This order parameter

is contineous function but its derivative shows discontinuity at the critical point

where the phase transition takes place. This is a behaviour of systems undergoing

first order phase transition.
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Figure 2.3: Free energy: Effective free energy diagram for different values of pump
power.

2.1.3 Soliton pulse interaction

Nonlinearity and other intracavity interactions can drive a stable pulse in to

periodic bifurcation and chaos. The interaction become more complicated When

there are higher order soliton solutions or when there are more than one pulses

per cavity round trip. The most common types of such interaction are soliton-

soliton interaction, soliton-dispersive wave interaction, soliton-acoustic wave and

interaction through modulation instability. By tuning some parameters which

affect the nonlinearity additional phase transition between multipulsing mode

locking states can take place. Such types of transition are important in studding

complexity of far from equilibrium laser systems.

2.1.3.1 Soliton-soliton interaction

Mutual interaction between solitons depend on the relative amplitude and relative

phase difference. Lets consider two closely separated solitons u1, u2 that have a

total field u = u1 + u2. Inserting this field to NLSE, we will have

i
∂u1

∂ξ
+

1

2

∂2u1

∂τ 2
+ | u1 |2= −2 | u1 |2 u2 + u2

1u
∗
2 (2.31)

21



The above equation is solved in Ref. [48] with the perturbation theory by consid-

ering the right side of the equation as a small perturbation. The solution provides

a coupled phase and separation differential equations as.

∂2q

∂ξ2
= −4e−2qcos(2ψ),

∂2ψ

∂ξ2
= −4e−2qsin(2ψ) (2.32)

The pulse separation as a function of ξ can be solved from the above equations

as

q(ξ) = q0 +
1

2
in[cosh2(2ξe−2q0sin(ψ0)) + cos2(e−2q0sin(ψ0)] (2.33)

Where q0 and ψ0 are the initial pulse separation and relative phase. As seen

in Fig. 2.4 the separation can be stable, increase (effective repulsive force) or

decrease (effective attractive force) depending on the initial relative phase and

temporal separation of the interacting soliton pulses. The nonlinear phase shift

due to self and cross phase modulation also have additional effects.

Figure 2.4: Soliton - soliton interaction: Interaction that cause oscillatory(ψ0 =
25, ψ0 = 45, and ψ0 = 90), effective attractive (ψ0 = 70), and repulsive forces
(ψ0 = 0 and ψ0 = 95) that depends on initial relative phase difference when the
initial separation q0 = 5.
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2.1.3.2 Soliton-dispersive wave interaction

Solitons shed extra energy to dispersive waves when its phase is matched [66].

This phase matching can happen in the presence of higher order dispersion [67,68],

nonlinearity loss and gain inhomogeneity. For example considering a periodic

gain, A frequency shift between the centre of soliton spectrum and side band can

be written as [69,70].

δυn =
1

2πtp

√
(1 +

8nLs
La

) (2.34)

Where tp, Ls = π
2
LD, LD, and La are pulse width, soliton period, dispersive length

and amplification period receptively. The interaction of this side band (Kelly side

band) plays significant role in the stability of the pulses circulating the cavity.

The phase matching between soliton and dispersive waves can also happen in

the presence of TOD. This is theoretically shown in ref. [67, 68]. The central

carrier frequency difference and the peak power of the dispersive wave is given

by respectively as.

(υd − υs)tp =
1

4πδ3

[1− 4δ3(2N − 1)2)] (2.35)

pd =
5πN

4δ3

[1− 2π

5
((2N − 1)δ3)2]exp(− π

2(2N− 1)
δ3) (2.36)

where N, tp are soliton order number and initial pulse duration and δ3 = β3
6|β2|tp

2.1.3.3 Soliton-acoustic wave interaction

When a pulse pass through a fiber (dielectric), it generates transversely propagat-

ing acoustic waves through a well-known phenomenon called electrostriction [66].

These generated acoustic waves interact with solitons coming after the first one.

This type of interaction also plays significant role both in the harmonics of repe-

tition rate and the stability of pulses in the cavity [69,71].
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The above interaction rules together with other complex interactions generally

can be summarized in terms of oscillating lose and constant gain as shown on Fig.

2.5. Interaction shifts the position of stability point of the pulsing state and then

a pulse or pulses will be detached from a bunch, created or annihilated before

the state come back to its stability point. Such process set individual rules that

dictate the complexity of self-assembly in such systems.

Stable point Stable point

Perturbed 
soliton

Cavity 
lose

Cavity 
gain
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Figure 2.5: Summery of cavity stability operating in multi soliton regime: (a)
stable pulsing in the presence of modulated lose and constant gain. Pumping
increase cavity gain and the state stabilizes either by erasing (b) or creating (c)
solitons with in the state. (d) the same stability behaviour can be observed with
decreasing the pump power.

2.1.4 Dissipative adaptation and entropy production for

laser systems

Humankind had been formulating social and cultural patterns throughout our

experience with simple rules following nature. Music, Dance, the Mexican wave,

ancient middle east architecture, Egyptian design heritages, African cultural cloth

designs ...etc following a simple individual rules. So far, there are few theories

which try to unlock the mystery how nature has done natural patterns that

our eye loves to see and our ear starves to hear. The Darwinian theory states

that structures on living things come as a result of natural selection and fitness
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towards environmental experience [72]. Whereas according to dissipative adapta-

tion, which is emerging inclusive theory states that patterns or structures develop

as a result of driven stochastic process and it favours structures formed by dissi-

pating more of the driving energy [73]. Mode locked laser is one of the promising

candidate that can be used to test such theory among other multi-disciplinary

fields. Here we are going to try to adopt a theory of near and far from equi-

librium states (dissipative adaptation) to a laser system following approaches of

ref. [40, 73,74].

Mode locked laser systems are inherently nonequilibrium thermodynamic sys-

tems. Pulses exhibit particle like property that can be described by both near

and far from equilibrium systems. Power is already described as inverse temper-

ature like thermodynamic variable [65]. In order to describe the near equilibrium

property we need to make the following two assumptions. Pump power and the

coupling out power can be modelled as hot and cold reservoirs at a temperature

Th and Tc, respectively as shown on Fig. 2.6(a). The power in the oscilla-

tor (system) is assumed to be linearly distributed along its length. These two

assumptions helped as to adopted the near equilibrium thermodynamics of a sys-

tem in contact with two heat reservoirs developed in Ref. [40]. An oscillator will

evolve to its steady state, which is characterized by constant entropy flow and

constant entropy production. The entropy produced per unit length will have the

form

σ(x) = Jqx.
∂

∂x

1

T (x)
= Jqx.

1

T (x)2

∂T (x)

∂x
(2.37)

The total entropy production will be

dpS

dt
=

∫ L

0
σ(x)dx =

∫ L

0
Jq.

1

T (x)2

∂T (x)

∂x
dx (2.38)

Stationary power implies that the power flow is uniform. This implies that

the temperature (inverse power) a linear function of x. Hence, at steady state

Jqx=constant (detail justification can be found on [40]). Then the entropy pro-

duced will be

dpS

dt
=
Jq
T
|L0 =

Jq
Tc
− Jq

h

> 0 (2.39)
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The total entropy is also constant for a steady state. Jq should be positive

Since the positivity of entropy production is required. The entropy flowing to the

outside is Jq
Th
− Jq

c
< 0. This implies the nonequilibrium steady state is maintained

through net entropy flow to the external environment.

When the relationship between thermodynamic flows and conjugate forces are

not longer linear, then the system becomes far-from equilibrium system. Now, lets

consider the laser system (oscillator and hot reservoir (pump power) on Fig.2.6(a)

for simplicity) in contact with large heat bath (it includes the cold reservoir on

Fig. 2.6(a)) at temperature (noise) T. Thus, total Hamiltonian of the whole

system will be

HTot = Hsys(x, ξ(t)) +Hbath(y) + hint(x, y) (2.40)

Hsys(x, ξ(t)), Hbath(y) and hint(x, y), ξ(t), x, and y are the Hamiltonian of the laser

system, bath and interaction force Hamiltonian, time dependent driving field,

generalized coordinates of the system and the bath, respectively. The heat bath

interacts in the form of perturbation through thermal and mechanical fluctuation

of the environment and through controlled injected modulation or noise. The

laser interacts with the bath in the form of dissipation of energy, gain and through

output coupling. At thermal equilibrium the system will occupy microstates with

a Boltzmann probability distribution given by.

p(i)

p(k)
= exp(−Ei − Ek

kBT
) (2.41)

Where kB, Ei, and Ek is a Boltzmann constant and the free energy of i and

k microstates. If such system is left open for interaction or driven externally,

it will not be in equilibrium state and things become completely different. The

probability will depend not only the energies, but also on the evolutionary path

and their time reversed trajectories.

Lets have a phase space that contains mode lock states that are coexisting

at a given specific condition and in the neighbourhood of this state that can
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Figure 2.6: Laser oscillator as thermodynamic nonequilibrium system (a) inter-
action of a laser system with two heat bath at different temperatures (b) Path
dependent irreversibility and entropy production in driven evolution of soliton
states. Each Point represents a number of soliton macrostates which have the
same power output at a fixed pump power.

be considered as accessible macrostates of the system. Here, we are considering

the coordinates of pulse in a mode locking state formulates the microstates of

the system. Hence, the macrostates are collection of such microstates with the

common observable. Perturbation through the driving force can let the system

to switch its occurrence between macrostates (different mode locking states) and

on doing so, it will follow certain path. The probability of such a evolutionary

path P (x(t), ξ(t)) which starts at macrostate x(0) at time t=0 depends on the the

probability of time reversal video of the path followed and the energy of driving

force ξ(t) dissipated by the system as.

P (x∗(τ − t), x∗(τ − t); ξ(t))
P (x(t), x(0), ξ(t))

= exp(−β∆Q) = exp(−∆S) (2.42)

Where ∆Q and ∆S are the heat dissipated to and entropy change (increase)

of heat bath, respectively. This equation tells us the relationship between irre-

versibility and entropy production which is the basic principle in far from equi-

librium phenomena. that is, when a forward trajectory is more likely than its

time reversal, entropy of the surrounding (universe) increases due to dissipation

of heat to the surrounding.

The probability of the system to go from property A (can be output power

or noise level of states) of the system common to certain macrostates to another
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macrostate property B can be given by

P (B∗ → A∗); ξ(τ − t))
P (A→ B; ξ(t))

=< exp(−∆Stot) > A→ B (2.43)

and this can be expanded to a system shown in Fig 2.6b (b) where pulsing

macrostates are represented by dotes in the phase space.

ln[
P (A→ B); ξ(t))

P (A→ C; ξ(t))
]− ln[

P (B∗ → A∗); ξ(t))

P (C∗ → A∗; ξ(t))
] =

ln[
< exp(−∆Stot) > A→ B

< exp(−∆Stot) > A→ C
] (2.44)

Such a system creates conducive experimental platform to shed light on under-

standing the behaviour of far-from equilibrium systems in general. Never the less

statistical understanding of laser dynamics is yet to be developed hence, setting

a proper modelling is a challenge needed to be overcome in this direction.

2.1.5 Characteristics of intensity noise

The presence of noise limits devise performance on the other hand its presence

plays crucial role like the picosecond fluctuation that initiates or builds up optical

pulses from continuous wave in cavities [64], and a performance improvement

through stochastic resonance in the presence of nonlinearity. Thus understanding

noise dynamics is always important. In this subsection a review of theoretical

studies that are important for qualitative explanation of our experimental results

will be revised. Classical mathematical definition for noise spectral density is

squared modulus of the Fourier transform of autocorrelation of optical power.

s(ω) =
1

2
π
∫ ∞
−∞

G(τ)exp(iωτ)dτ (2.45)

G(τ) =< p(t)p(t− τ) > (2.46)
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Relative intensity noise (RIN) gives a figure of merit for quantifying noise in

optical sources.

RIN

∆f
=
〈δp2

0〉
p0,rms

[Hz−1] =
2〈|∆s(ω)|2〉
〈s〉2

(2.47)

where δp0, p0,avg, 〈s〉, and ∆s(ω) are spectral density root mean square fluc-

tuation, rms optical power, average optical power, and spectral density of noise

in ∆f respectively [75]. Recently quantum mechanical modelling of noise revel

characteristics of RIN spectrum in response to loss/gain properties, output or

vacuum coupling, pump noise, spontaneous emission of laser systems and dipole

fluctuation [76]. Accordingly the low frequency (below relaxation oscillation)

spectrum is dominated by noise from pump sources and mechanical instabilities

from environment, noise from dipole fluctuations dominate higher frequencies and

the highest frequencies are dominated by vacuum or cavity loss fluctuations. The

last one determines cut-off frequency in modulation transfer function (details are

given in chapter 5).

2.1.6 Pulse shaping with spatial light modulator (SLM)

Pulse shaping in time domain of optical short pulses is difficult if not impossible

because it requires ultrafast real time modulators with femtosecond resolution.

But pulse shaping of the spectral phase and amplitude in frequency domain has

been a common practice since 1980s and currently arbitrary pulse shapers such as

spatial light modulator (SLM) can do the specified job. In case of linear filtering,

input electric field to a pulse shaper is modified by its response function and a

different wave form is found as an output. Mathematically it is given by

Eout(t) = H(t)
⊗

Ein(t) (2.48)

Eout(ω) = H(ω)Ein(ω) (2.49)
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Where H(t) and H(ω) are the response function in time and frequency domain

respectively.

Figure 2.7 shows a standardized zero dispersion 4-f configuration for pulse

shaping. A blazed grating first introduces angular dispersion of spectral com-

ponents then a lens preforms a Fourier transform of the beam and focus each

spectral components on to the SLM surface (placed a focal length away from the

lens) where pulse shaping takes place. Then the next lens does the inverse Fourier

transformation, and then a grating compensates the dispersion introduced by the

first grating. Hence the configuration is called zero dispersion 4-f pulse shaping

configuration [77].

SLM 
lens lens 

Grating Grating 

f f f f 

Figure 2.7: Zero dispersion 4-f configuration: It consists of a pair of grating, two
lenses, and spatial light modulator placed a focul length away from each other.

Considering optical field of the form

Ein(x, t) = E(x)A(t)exp(i(ω0t+ ϕ(t))) (2.50)

And taking the response function of the first grating and the Fourier transforma-

tion by the lens, the electric field incident on the SLM surface will be modified

by the mask function m(x)

E(x,Ω) =

√
2π

βλ0f
E
′

in(
2πx

βλ0f
+

γ

Ωβ
)A(Ω)exp(iΩ)m(x) (2.51)

With β = cosθi
cosθd

, γ = 2π
pω0cosθd

, Ω = ω − ω0 where θi, θd and p are the incident,

refraction angles and spacing between grating lines respectively. This will be
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modified by the response functions of the other lens and grating and finally the

output will be

Eout(x, t) =

√
2π

βλf
exp(iω0t)

∫
Ein(−(x+

tβ

γ
), t+ τ)M(

2πτ

γλf
)dτ (2.52)

Coupling of the spatial and spectral components on the mask results in the

spatial and time coupling of the output wave form. The final temporal shape of

the wave form is manipulated by the shape of the phase and amplitude mask on

the SLM. Note that: the details of this derivation can be found in Ref. [77–79].

Lets try to use the above concept to a specific case used in our experiment. It

is known that any periodic function can be expanded in Fourier series in terms

of sum of cos and sin functions. For example a linear periodic function or saw

tooth function (a case for chapter 7) can be written as a sum of a constant and

sum of sine function (Fourier series) as.

s(ω) =
1

2
−
∞∑
n=1

1

nπ
sin(

nπ(ω − ωr)
L

) (2.53)

Where T=2L is period and ωr is the reference frequency in which the phase mask

starts. When such a phase mask is applied to a pulse in frequency domain

Eout(ω) = Eine
is(ω) (2.54)

Using eqn. 2.49

Eout(ω) = CEin(ω)e−i
∑r

n=1
1
nπ

sin(
nπ(ω−ωr)

L
) (2.55)

C is a complex constant and by using Jacobi-Anger relation of trigonometric and

Bessel function of the first type

eiAsin(ν) =
∞∑
−∞

J(A)einν (2.56)

Eout(ω) = C(−1)nEin(ω)
∞∏
n=1

∞∑
k=−∞

Jk(
1

nπ
)eiknπ(ω−ωr) (2.57)
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Using product of sum as sum of products, the above equation will be

Eout(ω) = C ′Ein(ω)
∞∑

n1,...nr=−∞
[
r∏

k=1

Jnk(
1

nπ
)]ei

π
L

(ω−ωr)
∑r

k=1
nkk (2.58)

Fourier transform of the above equation (eqn. 2.58) gives

E(t) = C ′eiω0t
∞∑

n1...nr=−∞
(
r∏

k=1

J(
1

nπ
))(e−i∆ω

π
L

∑
k
kn)Ein(t+

π

L

∑
nkk) (2.59)

This equation gives temporal split structures or waveform. This shows that a

periodic linear spectral phase applied on a spectral domain can create pulse split-

ting the same as effects of sine or cosine spectral phases shown in ref [80, 81]. A

dynamic phase mask introduces varying temporal phase proportional to ∆ω. If

this is varying linearly with time then it will create additional delay between the

fragmented pulses.
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Chapter 3

Generation of 1.2 nJ 61 fs pulses

directly from Yb-doped fiber

oscillators

There is an impressively large number of publications reporting on the develop-

ment of or relying on the use of compact ultrashort pulse laser sources. Most

applications require close to 1 nJ of pulses energy. In many cases that require

higher energies, external amplification is used. When the laser is to used directly,

external-cavity pulse de-chirping or more complex forms of pulse shaping is al-

most a regular procedure in certain application fields [82]. External pulse com-

pression close to the transform limit of the pulse is, then, required. Possibility

to approach the transform limit is mainly determined by higher-order dispersion,

nonlinear phase accumulation, gain filtering, the saturable absorber, and their

placement within the cavity as well as their mutual interactions. Second- and

third-order dispersion need to be compensated for the generation of transform-

limited pulses outside oscillators. Different techniques ranging from the use of

diffraction grating [83, 84], prism [84], prism and grating pairs [85], chirped mir-

rors [86], optical fiber grating compressors [87], photonic crystal fibers [88] are

used. Approaches that compensate TOD with SPM [23] have also been used.

Also, spatial light modulators [89, 90] have been used to compensate dispersion
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outside cavity. However, there is a general shortage of using such techniques in-

side a laser cavity for directly generating linear chirp free pulses in case of fiber

lasers, even though generation of transform-limited pulses is routine for solid state

oscillators. The reason for the difference is that the typical average dispersion

and nonlinearity of a fiber laser is about 3-4 orders of magnitude larger than

that of a solid state laser producing the same pulse duration and pulse energy.

However, there is substantial demand for a fiber oscillator producing nJ-level and

transform-limited pulses for use in optical communications, coherent control of

atomic systems, nonlinear spectroscopy, molecular reaction dynamics, and mi-

croscopy. It can also help eliminate the amplification stage that often precedes

supercontinuum generation, at least for lasers systems at 1 µ.

Here, we propose and demonstrate a laser cavity with two sections of DDL and

from this cavity, we report the generation of 1.2-nJ, 61-fs pulses directly. Besides,

from the point of view mode-locking physics, using more than one diffraction

grating compressor (DDL) gives a new degree of freedom allows, which one can use

to study the interaction of higher-order dispersion with nonlinearity. For example,

one can fix the GVD, while tuning TOD or more importantly, one can adjust the

dispersion map and consequently nonlinearity map in a cavity to a much greater

extend. We managed to optimize the level of second- and third-order dispersion

(GVD and TOD) and its interaction with SPM to a significant degree just by

incorporation of the second DDL. To the best of our knowledge, these are the

shortest pulses directly generated from Yb-based fiber laser oscillator, improving

previous reports of generation of 74-fs pulses from a micro resonator [91].

3.1 Numerical model of the oscillator

Our numerical simulations are based on solving the extended nonlinear

Schrödinger equation with a split-step algorithm method used by [47]. The hy-

pothetical oscillator set up is indicated in Fig. 3.1(a). Fig. 3.1(b) shows the

spectral and temporal evolution of the pulse with parameters of each component

indicated in Table 3.1. A 53-fs pulse with 47-nm spectral bandwidth evolves to
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3.25 ps in DDL1 and then the negative chirp or accumulated temporal linear

phase is compensated in the next 410 cm of SMF with negligible spectral com-

pression before it enters the gain fiber with a slightly negative chirp that can be

compensated by the next 16 cm (ignoring the accumulated nonlinear phase shift)

to avoid gain narrowing or filtering effect. The spectral width goes down to 14

nm in the gain fiber and then increases to 47 nm at the end of 10 cm passive

fiber after the gain fiber through self-similar evolution. In these dynamics, NPE

has a negligible effect on the pulse evolution. Finally, the pulse is de-chirped by

DDL2 to reach its original width to maintain the periodic boundary conditions,

resulting in an output pulse duration of 53 fs.
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Figure 3.1: Simulation result: (a) Schematic of the simulation setup. M (mirror),
SMF (single mode fiber), SA (saturable absorber), DDL1 and DDL2 (diffraction
grating with 600 lines/mm and 300 lines/mm respectively). (b) Evolution of
pulse duration and spectral width in the cavity. (c) Autocorrelation signal and
optical spectrum of a pulse at the output between the DDLs.
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Table 3.1: Parameters of segments used for oscillator simulation results in Fig.
3.2 (b). Segment number (S.N), Length (L) [cm], GVD [fs2/mm], TOD [fs2/mm],
Kerr coefficient with n2 [10−16-1 cm2/W], Effective mode area (EMA) [µm2],
GBW gain band width and FBW filter band width[nm].

S.N L GVD TOD n2 EMA GBW FBW
1 6.9 -1422 2500 0 3- - -
2 417 23 28 2.73 30 - -
3 32 23 28 2.73 30 4λ:40 nm -
4 10 23 28 2.73 30 - -
5 10 - - - - -
1 0.56 -710 1250 - 30 - -

3.2 Experimental setup and results

We designed our oscillator following the simulations-guided design. The experi-

mental setup is schematically shown in Fig. 3.2. It has a 32 cm Yb-gain fiber,

395 cm of standard single-mode fiber (SMF), two diffraction gratings pairs (DDL)

built using gratings with 300 and 600 grooves/mm, a 50/50 beam splitter, a po-

larizing beam splitter, two quarter-wave and one half-wave plate for polarization

control, a 95/5 output fiber coupler, an optical fiber isolator followed by WDM.

The oscillator has a repetition rate of 32 MHz and is pumped with two 980 nm

pump diodes that can produce a total pump power up to 800 mw. It is mode-

locked by nonlinear polarization evolution, which is implemented with the two

quarter wave plates, the half wave plate, and the polarizing beam splitter.

The cavity dispersion is varied from net negative (up to ∼ −5000 fs2) to net

positive (up to ∼ 3000 fs2). The stable and self-starting oscillator exhibits a

range of pulsation dynamics from dispersion-managed solitons (stretched pulses)

to effectively solitons and can be fully mode-locked or can generate noise-like

pulses (NLP). Our goal was to arrange for the pulse evolution within the cavity

to be such that the output from the beam splitter between the two DDLs is

the shortest possible. As the first step, output is taken before the second DDL

(DDL-2) just after PBS and compressed outside the cavity. The net GVD of the

oscillator is adjusted to get a pulse that can be compressed fully. As the next

step, DDL-2 is adjusted to impart dispersion the same as the external compressor

36



32 cm

W
D

M

ISO
CP %

PBSQWP HWP

QWP

DDL2

M

M

M

PL 980 nm

CP 5%

71 cm

36 cm258 cm

80%
120 cm

13 cm

DDL1

~38.4 mW
~25 mw

300 lines/mm

600 lines/mm

Edge filter

Figure 3.2: Schematic of the experimental setup: DDL-1 and DDL-2 (diffraction
grating with 600 lines/mm and 300 lines/mm, respectively), M (mirror), PBS
(polarizing beam splitter), QWP (quarter waveplate), HWP (half waveplate),
CP (output coupler), ISO (isolator), BS (beam splitter), and PL (diod pump).

used to compress the pulses in the first step. Then, DDL-1 is adjusted so that

the net value of the cavity dispersion remains the same. With such a procedure,

we get 1.2 nJ, 62 fs and spectral width of 47 nm as shown in Fig. 3 (a and

b). Nonlinear phase accumulation together with spatial chirp introduced with

the DDL’s and the TOD level of the cavity limited further compressibility of the

pulse. The RF measurement shows 74-dB signal-to-noise ratio as shown on the

inset of Fig. 3.3 (b). Different combinations of grating separation that can give

the same net GVD have different values of the net TOD. This helps us tune the

TOD level so that its interaction with SPM will be optimized as well as to achieve

the shortest pulse duration as indicated in Fig. 3.3(c).

3.3 Conclusion

We were able to generate 1.2-nJ, 62-fs, linear-chirp-free pulse from a custom-

designed fiber oscillator without requiring external compression. With the help

of two diffraction grating we were able to tune the TOD level in the oscillator and
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Figure 3.3: Experimental results: (a) Optical spectrum measured from theindi-
cated ports. (b) Autocorrelation signal of the pulse measured from an output
between the two DDLs, where optical spectrum indicated by the black line. (c)
Relative DDL separations corresponding to the shortest pulse.
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manipulate the dynamics such that position of the shortest pulse in the cavity

is projected into the free space, in addition to demonstrating manipulation of

the TOD-SPM interaction to some extend. The cavity was designed numerically

according to a clear algorithm, the details of which will be reported elsewhere,

and the methodology for finding the matching condition experimentally has been

outlined. These results constitute a step forward in the design of advanced, cus-

tom oscillators that can exhibit almost any desired dynamics. Further efforts can

incorporate other dynamics including extreme nonlinear broadening for ultra-

short pulses, intra-cavity Cherenkov radiation generation for broadband spectral

tunability and even intra-cavity higher harmonic wave generation, among others.
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Chapter 4

Nonlinearity management in a

fiber oscillator with two gain

segments

4.1 Introduction

The earliest mention of compensating nonlinear effects in pulse propagation using

negative Kerr nonlinearity dates back to 1996 [92]. The term of Nonlinearity

Management (NLM) appears to have been coined simultaneously by Ilday, et

al. [28] and Gabito, et al. [93], who proposed NLM for mode-locked oscillators

and for optical transmission lines, respectively. NLM has then been considered

in the context of layered media to prevent beam collapse [94, 95]. Fundamental

interest into NLM has continued in parallel, in the context of preventing wave

collapse [96].

Direct use of NLM in mode-locked lasers has been delayed owing to the dif-

ficulty of finding materials with negative (self-defocusing) nonlinear Kerr re-

sponse and reasonably small loss. It has been demonstrated very recently using

phase-mismatched cascaded quadratic processes [60], modifying the nonlinear
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refractive index with external pressure for a cubic nonlinear medium [95], and

through four-wave mixing [97], inverse wave mixing and self-parametric ampli-

fication [98]. Meanwhile, indirect forms of NLM have been successfully applied

to mode-locked oscillators, including exploitation of nonlinearity-resistant pulse

evolution mechanisms of self-similar (similariton) propagation [52,99,100], dissi-

pative solitons solutions [101–103], using dissipative mechanism such as deliberate

or non-intentional filtering like gain or edge filtering, control of nonlinear effects

through spectral sculpturing [89]. However, there continues to be a strong desire

for a versatile implementation of NLM, which requires materials with negative

Kerr nonlinearity.

In this report, we designed and developed an oscillator with two gain segments

for the purpose of managing nonlinearity accumulation and distribution inside

fiber oscillators both in experiments and through numerical simulations, with

our approaching being mainly based on the interaction of SPM with GVD in case

of a chirped pulse. We found managing of nonlinearity strength, distribution,

and the observation of effects of pulse chirp on its interaction with group velocity

dispersion (GVD) to be relatively easier in this oscillator configuration than the

usual fiber cavities that use a single active fiber. Intra-cavity spectral compression

of the pulse after it passes through a second active fiber and ∼ 30% reduction in

the chirp (as judged by the corresponding decrease of required dispersion for de-

chirping in an external compressor) are observed following this interaction. This

property is associated with the generation of an effective negative nonlinearity.

The pulse continuously modifies itself when nonlinearity level and distribution is

varied to keep the boundary condition as is the case with intra-cavity dispersion

variation. In order to provide a deeper insight into the nature of pulse evolution

interaction, we resort to simulations on a passive propagation system, which ba-

sically can be explained by the interaction of GVD and SPM without requiring

complex gain dynamics. To the best of our knowledge, these results are com-

pletely original. The likely application of our design to passive propagation in

amplifiers also suggests that a master oscillator and a pre-amplifier system can

be constructed as a single, high-power, high-energy, compact laser source with

reduced complexity than traditional designs.
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4.2 Theory and numerical simulation
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Figure 4.1: (a) Block diagram showing a pulse traversing a stretcher (Lnl >> LD)
and then through a nonlinear medium (LD >> Lnl). (b) Schematic diagram of the
experimental setup: PL, pump diode; CO, output coupler; WDM, wavelength-
division multiplexer; YbDF, ytterbium-doped fiber; QWP, quarterwave plate;
HWP, halfwave plate; ISO, isolator; M, mirror; DG, diffraction grating; PBS,
polarizing beam splitter.

In addition to the well-known effects such as negatively chirped pulse propaga-

tion in a medium with normal dispersion, gain filtering [99, 100], self-parametric

amplification [98], and phase mismatched second harmonic generation [60], SPM

can cause spectral compression for a negatively chirped pulse in a medium with

normal GVD. This theoretical model explains most of our experimental and sim-

ulation results based on the interaction of GVD and SPM on a chirped pulse

similar to the results of [104,105].

Consider a pulse passing through a stretching medium (Lnl >> LD) before

it passes a nonlinear segment (LD >> Lnl), as shown in Fig. 4.1(a), in order

42



to qualitatively depict the effects of initial chirp on pulse propagation through

nonlinear medium. In the first segment, pulse propagation is governed by the

nonlinear Schrödinger equation of the form

i
∂U1

∂Z
=
β2

2

∂2U1

∂T 2
, (4.1)

for which a chirped pulse solution is given by [48]

U1(Z, T ) =
T0

(T 2
0 − iβ2Z)

1
2

exp(
−T 2

2(T 2
0 − iβ2Z)

), (4.2)

where T0 and β2 are the input pulse widths and the GVD of the propagating

segment. At the end of the first segment, the pulse and its intensity will be

U1(T ) =

√
1

1− iη
exp(

−T 2

2T 2
0 (1− iη)

), (4.3)

|U1(T )|2 = I0exp(
−T 2

T 2
0 (1 + η2)

) ∼= I0(1− T 2

T 2
0 (1 + η2)

), (4.4)

where η = β2L1

T 2
0

and I0 =
√

1
1+η2

are stretching factors related to GVD and

maximum intensity of the pulse at the end of the first segment, respectively. On

the second segment, the pulse will experience a phase shift proportional to its

intensity (SPM).

U2(T ) = U1(T )exp(i
Leff

Lnl
|U1(T )|2), (4.5)

U2(T ) =

√
1

1− iη
exp(

−T 2

2T 2
0 (1 + η2)

(1 + i(2B + η)), (4.6)

where Leff, LD, and B = I0
Leff
Lnl

are the nonlinearity coefficient, effective propaga-

tion length, the dispersion length and the B-integral, respectively, defined in the

same way as in [48]. In equation (4.4), the higher-order terms are neglected for

simplicity because they do not contribute to the linear chirp. Contribution from

a constant phase is also neglected in equation (4.6) by the same reasoning. The

Fourier transform of equation (4.6) is given by

U2(ω) =

√
2T 2

0

1 + iη

1 + i(2B + η)
exp(
−2ω2T 2

0 (1 + η2)

(1 + i(2B + η)
). (4.7)
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Table 4.1: Parameters of segments used for simulation results in Fig. 4.2(b)-
4.2(e). Segment number (S.N), Length (L) [cm], GVD [fs2/mm], TOD [fs2/mm],
Kerr coefficient with n2 [10−16-1 cm2/W], Effective mode area (EMA) [µm2],
GBW gain band width and UG Unsaturated gain [dB].

S.N L GVD TOD n2 EMA GBW UG
1 130 5 - 80 0 - 30 - -
2 20 4 0 2.73 20 4λ:40 nm 4

The imaginary part of the exponential function of equation (4.7) gives the total

spectral phase,

Φtotal =
(2B + η)(1 + η2)T 2

0

(1 + (2B + η)2)
. (4.8)

Here, Φtotal is the total spectral phase accumulated at the end of the second

segment. As shown in Fig. 4.2(a), it can be less than the stretching phase (Φtotal

at B = 0) for a larger value of the normal GVD in the presence of nonlinearity.

Effects of an increase in nonlinearity or B-integral in the second segment are more

pronounced for stronger stretching of the pulse in the first segment for a medium

with normal GVD. The stretching phase indicated by the black line (B = 0)

decreases with increasing nonlinearity or B-integral up to a certain level. Its effect

is the same as that of a compressor, which has opposite GVD to the stretcher,

which is not physically present there. For a medium with negative GVD, the

compensation of phase from the stretcher by phase coming from nonlinearity on

the second segment is evident for a smaller value of stretching phase. Generally,

the linear stretching effect of SPM is strong for highly chirped pulses for normal

dispersion medium while the effect is strong for a slightly chirped pulse in an

anomalous dispersion medium.

Figure 4.2(b)-4.2(e) shows the results of a numerical simulation based on solv-

ing generalized nonlinear Schrödinger equation with details mention in [47]. The

parameters for these simulations are indicated in Table 4.1 and the simulations are

intended for clarifying the qualitative description provided above. In Fig. 4.2(b),

a 100 fs-long Gaussian-shaped pulse with 15 nm of spectral width is stretched in

130 cm-long SMF with normal GVD (5 fs2/mm) and then it passes through a

nonlinear segment, ending up with a spectral width of 44 nm. When the stretch-

ing element gets stronger and stronger (GVD of 10 fs2/mm in Fig. 4.2(c), and 40
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Figure 4.2: (a) Graph showing the interaction of phase contribution from GVD
and SPM which results in a linear pulse chirp for corresponding values of the in-
dicated B-integral. The optical spectra of the pulse at the end of the 130 cm-long
stretching fiber (black dashed) and at the end of the 20 cm-long second nonlinear
segment (red solid) for (b) 5 fs2/mm), (c) 10 fs2/mm, and (d) 40 fs2/mm. (e) The
evolution of the total spectral width in the two segments for the all simulation
parameters provided in Table 4.1.

fs2/mm in Fig. 4.2(d) spectrum width after the nonlinear element shrinks from 44

nm to 14 nm, as shown in Fig. 4.2(e). When the GVD of the first segment is large

enough, the spectral width of pulse behaves as if it passes through a medium with

negative GVD while the GVD of the second segment is still positive (4 fs2/mm).

Hence, one is justified to introduce an effective negative nonlinearity to explain

the pulse compression in a such medium. We note that the nature of the nonlin-

earity is not such that it can directly compensate for positive nonlinearity, which

is why it is referred to as an effective negative nonlinearity.

The above simulation ignores many of the effects that act on a pulse in real

fiber systems. Next, we use two segments (passive fiber followed by gain fiber)

with parameters similar to commercially available fibers, as indicated in Table

4.2. Fig. 4.3(a)-4.3(c) shows pulse propagation information for a 100-fs parabolic

pulse when the first segment has normal GVD. Similar to the above result, as

the chirp acquired by the pulse in the first segment increases (by scanning the

GVD of passive fiber from 10 fs2/mm to 120 fs2/mm), spectral compression is

induced or initiated in the gain or the nonlinear segment. Fig. 4.3(d)-4.3(f)

also shows pulse propagation statistics for 100 fs parabolic pulse when the first

45



0 50 100
0

2000

4000

6000

Position (cm)

Pu
ls

e 
du

ra
tio

n 
(fs

)

 

 

0 50 100

20

30

40

50

60

Position (cm)

Sp
ec

tra
l w

id
th

 (n
m

)

 

 

0 1 2 3 4
-0.2

-0.1

0

0.1

0.2

(LD/LNL)1/2

B
ro

ad
en

in
g 

fa
ct

or
   

   
   

   
  

 

 
10 fs2/mm
20 fs2/mm
30 fs2/mm
60 fs2/mm
80 fs2/mm
100 fs2/mm
120 fs2/mm

0 50 100
100

150

200

Position (cm)

Pu
ls

e 
du

ra
tio

n 
(fs

)

 

 

0 50 100
10

15

20

25

30

35

Position (cm)

Sp
ec

tra
l w

id
th

 (n
m

)
0 0.2 0.4 0.6 0.8

-0.5

0

0.5

(LD/LNL)1/2

B
ro

ad
en

in
g 

fa
ct

or
   

   
   

  

100 105 110
10

15

20 -2 fs2/mm
-3 fs2/mm
-4 fs2/mm
-5 fs2/mm
-6 fs2/mm
-8 fs2/mm
-10 fs2/mm

(a) (c)

(d)

(b)

(f)(e)

Figure 4.3: (a)-(c) The effect of chirp on spectral evolution when the pulse is
stretched by normal GVD on the first segment. (d - f) The effect of chirp on
spectral evolution when the pulse is stretched by anomalous GVD on the first
segment. The corresponding simulation parameters are indicated in Table 4.2.

segment has anomalous GVD. Smaller negative GVD on the first segment shows

stronger spectral broadening on the second nonlinear segment with normal GVD.

This result is in agreement with a qualitative analytical result in Fig. 4.2(a).

By varying the GVD of passive fiber from -2 fs2/mm to -10 fs2/mm spectral

broadening is induced or initiated in the gain or nonlinear segment. When the

GVD is −2 fs2, one would expect that the spectral expansion is due to SPM

since all the negative chirp acquired by the pulse in the first segment can be

compensated within the second segment, which has normal GVD. Starting from

−3 fs2 the pulse remains negatively chirped in the second segment. Pulses with

smaller net negative chirp experience increased spectral expansion.

This spectral compression in the first case (Fig. 4.3(a)-4.3(b)) or broaden-

ing in the second case (Fig. 4.3(d)-4.3(f)) cannot be explained unless one defines

effective negative nonlinearity or it will contradict with well-known effects of non-

linearity on a chirped pulse which are expected to give contrary effects [48]. Two

different parameters with different length and GVD but with the same dispersion

(product of length and GVD) have the same impact. Nonlinearity can be also

managed with the level of pumping on each segment.

It is well known that the distribution and not only the amplitude of nonlin-

ear phase accumulation significantly alters the pulse evolution in a mode-locked
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Table 4.2: Parameters of segments used for simulation results on Fig. 4.3. Seg-
ment number (S.N.); length (L) [cm]; GVD [fs2/mm]; TOD [fs3/mm]; Kerr co-
efficient with n2 [10−16 cm2/W]; effective mode area (EMA) [µm2]; GBW, gain
bandwidth; NLP, accumulated nonlinear phase; UG, Unsaturated gain (dB).

S.N L GVD TOD n2 EMA GBW UG
1 100 10 - 120 28 2.73 40 - -
2 10 23 28 2.73 5 4λ:40 nm 20
1 100 -2 - -10 28 2.73 40 - -
2 10 23 28 2.73 5 4λ:40 nm 20

oscillator [99,102,106,107]. Manipulation of pulse dynamics by accumulated non-

linearity phase and its distribution in fiber can cause pulse dynamics that can also

be described with the generation of controllable effective negative nonlinearity.

When a pulse goes from a medium where it acquires relatively larger nonlinear

phase (a medium with larger nonlinear refractive index) to a medium where it ac-

quires smaller nonlinear phase (medium with smaller nonlinear refractive index)

the pulse experiences an effective negative nonlinearity. Thus, it undergoes spec-

tral compression for a positively chirped pulse on a normal dispersion segment.

With the same approach, one can generate spectral expansion on anomalous dis-

persion segment. Generally speaking, one can manipulate pulse dynamics just by

managing nonlinear distribution on individual segments of cascaded or connected

fiber components.

Figs. 4(a)-4(c) shows simulation results for a pulse propagating through 7

connected passive and active fiber segments with parameters given in Table 4.3.

The nonlinear phases accumulated in each segment are 0.71π, 0.18π, 1.11π, 0.03π,

4.42π, 0.42π, and 3.56π, respectively. The pulse undergoes spectral compression

in regions where the accumulated nonlinear phase (SPM) is relatively smaller than

that of immediate neighbors. This clearly indicates that the pulse propagation

is not only sensitive to the level of accumulated nonlinear phase but also to

the way it is distributed in each of the propagating media. This observation

can be explained with the above argument where the phase by positive GVD is

counterbalanced by the phase from SPM for chirped pulse. Gain filtering and

other recently mentioned nonlinear effects such as self-parametric amplification

[98] and phase mismatched second harmonic generation [60] can result similar
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Table 4.3: Parameters of segments used for simulation results on Fig. 4.4. Seg-
ment number (S.N), Length (L) [cm], GVD [fs2/mm], TOD [fs3/mm], Kerr co-
efficient with n2 [10−16 cm2/W], Effective mode area (EMA) [µm2], GBW gain
band width, NLP accumulated nonlinear phase and UG Unsaturated gain (dB).

S.N L GVD TOD n2 EMA GBW NLP UG
1 150 23 28 2.73 5 - 0.71π -
2 50 23 28 2.73 5 4λ:40 nm 0.18π 20
3 200 23 28 2.73 9 - 1.11π -
4 3 23 28 3.73 5 4λ:40 nm 0.03π 30
5 200 23 28 2.73 20 - 4.42π -
6 23 23 28 1 100, 4λ:40 nm 0.42π 20
7 90 23 28 2.73 35 - 3.56π

effects. It is obvious that understanding the whole dynamics is difficult because of

complexity of interaction of all physical processes. But no matter the individual

interactions there, the resulting dynamics can be equivalently explained with

interaction of generated effective negative nonlinearity.
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Figure 4.4: (a)-(c) The effect of nonlinear distribution on pulse evolution.

Our third set of simulation results expand the above idea to oscillator dy-

namics. Namely, we show that two qualitatively distinct oscillator dynamics can

be supported by the same dispersion managed oscillator with double gain seg-

ments. These results are used to guide our experiments, which will be presented

in the next section. Fig. 4.5(a) shows a dynamics which generally can be consid-

ered as stretched pulse dynamics [102] except in the gain segments. Simulation

parameters are indicated in Table 4.4. The pulse undergoes negligible spectral

compression in the passive fiber just after the DDL until all of its negative chirp is

compensated. Next, it acquires a little positive chirp, followed by rapid spectral

expansion in the gain fiber with normal dispersion and the SMF fiber, also with

normal dispersion, after it. Saturable absorber reduces the pulse duration and
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the spectral width. Finally, the spectral width remains the same while the chirp

increases in opposite sign on the DDL to return to its original form at the end of

one roundtrip, thereby satisfying the periodic boundary condition.

The second set of dynamics are shown in Fig. 4.5(b). This evolution can be

supported by the same physical oscillator (with parameters indicated in Table

4.5) as the one explained above. Their only difference is the gain segments, the

nonlinearity of which may controlled with pump level in experimentally. In this

case, the pulse acquires a positive chirp with evolution that can be considered

as a passive similariton evolution in the passive fiber part of the oscillator [102].

This chirp will be partially or fully compensated in the DDL (compressor) of the

cavity. We also observe that one can switch from one evolution regime to the

other by only varying the nonlinearity and its distribution on the gain segments

of the oscillator the same way one can achieve by varying GVD of the system and

its distribution [106,108,109].
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Figure 4.5: Simulation results of pulse evolution inside a cavity with approxi-
mately the same parameters as the oscillator in our experiments described in the
next section: (a) Spectral and temporal evolution of a pulse that can be consid-
ered as a stretched dissipative soliton. (b) Spectral and temporal pulse evolution
that can be considered as passive similariton pulse dynamics with parameters
indicated in Table 4.4 and Table 4.5, respectively.

The above explanation is a general approach to the whole dynamics. An

explicit investigation is important based on the concepts mentioned for linear

systems above specifically on the active part of the cavities. Spectral compres-

sion takes place in the gain fibers while the opposite is expected on gain section

2 of Fig. 4.5(b). The pulse evolves in the first gain segment as if the chirp from
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Table 4.4: Parameters of segments used in simulation for the first oscillators (Fig.
4.5(a)). Segment number (S.N.); length (L) [cm]; GVD [fs2/mm]; TOD [fs3/mm];
Kerr coefficient with n2 [10−16 cm2/W]; effective mode area (EMA) [µm2]; GBW,
gain bandwidth; unsaturated gain (dB); EG, effective gain saturation energy [nJ];
SA, saturable absorber.

S.N L GVD TOD n2 EMA GBW UG EG SA
1 190 23 28 2.73 30 - - - -
2 30 23 28 2.73 30 4λ:40 nm 20 4000 -
3 300 23 28 2.73 30 - - - -
4 37.0 23 28 2.73 15 4λ:40 nm 10 4 -
5 9 23 28 2.73 30 - - - -
6 10 - - - 30 - - - NPE
7 8.9 -1420 250.6 - 30 - - - -

Table 4.5: Parameters of the segments used in the simulations for the first oscilla-
tor (Fig. 4.5(b). Segment number (S.N.); length (L) [cm]; GVD [fs2/mm]; TOD
[fs3/mm]; Kerr coefficient with n2 [10−16 cm2/W]; effective mode area (EMA);
[µm2]; GBW, gain bandwidth; unsaturated gain (dB); EG, effective gain satura-
tion energy [nJ]; SA, saturable absorber.

S.N L GVD TOD n2 EMA GBW UG EG SA
1 190 23 28 2.73 30 - - - -
2 32 23 28 2.73 15 4λ:40 nm 20 4000 -
3 300 23 28 2.73 30 - - - -
4 37.0 23 28 2.73 15 4λ:40 nm 10 4 -
5 8 23 28 2.73 30 - - - -
6 10 - - - 30 - - - NPE
7 8.9 -1420 250.6 - 30 - - - -
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GVD of this fiber is compensated by the chirp from SPM. The chirp even starts

to decrease on the second gain fiber since the effects of SPM are more prominent

for largely chirped pulse in normal regime. Moreover, slight spectral expansion

occurred while the chirp was negative in the first gain fiber of Fig. 4.4(a). Tem-

poral evolution shows that the pulse propagated in the gain medium with chirp

by GVD from it is almost completely compensated by the chirp from SPM. Mean-

while, the pulse enters to the second gain with very small positive chirp, hence

spectral expansion takes place as expected. These results are in total agreement

with results of interaction of physical processes explained in the theoretical and

numerical simulations results above. Thus it can be explained with the genera-

tion of an effective negative nonlinearity. Effective negative nonlinearity creates

spectral broadening in the first gain segment of Fig. 4.5(a) while chirp is negative

and it creates spectral compression in the two gain segments of Fig. 4.5(b), while

the chirp is positive.

4.3 Experimental results

Schematic diagram of the experimental setup of the oscillator is provided in Fig.

4.1(b). It is a dispersion-managed fiber oscillator with two gain segments. Mode-

locking is initiated and stabilized by nonlinear polarization evolution (NPE). It

has a repetition rate of ∼26 MHz with approximately 675 cm of total length

of fiber. The two gain segments are comprised of Yb-doped gain fibers with a

length of 33 cm and 32 cm each. The gain bandwidth of the Yb-1200/125/6

µm core diameter, singlemode fiber is approximately 45 nm for the typical pump

powers used in these experiments and the gain is centered at a wavelength of 1025

nm. They are forward pumped by 980 nm laser diodes. Diffraction gratings are

used for dispersion management inside the cavity. Three mode-locked regimes

with a net total dispersion of ∼-4000 fs2, 600 fs2, and 3800 fs2 are examined to

characterize the cavity pulse evolution. Each support two distinct, stable and

self-starting pulse evolutions. Based on the pulse evolution characteristics, they

can be considered as passive similariton and stretched pulse evolutions [106,107].
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In our experiments, the pump levels of the two segments of the gain fiber

were varied such that the total pump power remained almost constant whereas

nonlinearity varied both in level and distribution across the oscillator. This ex-

periment has three major outcomes: (i) The oscillator exhibits stable self-starting

mode-locking in all regimes with reasonable signal-to-noise ratio (sideband sup-

pression of ∼ 65dB, measured by an RF spectrum analyzer over 1 kHz scanning

range with a resolution bandwidth of 10 Hz). Thus, it can be used as a sta-

ble, low-noise source of femtosecond pulses, but this is not our intention in this

experiment. (ii) Output pulse was compressed to almost the same pulse width

with different external DDLs as the pump powers on the two gain segments were

varied, keeping the total pump power almost constant while nonlinearity was al-

terted both in magnitude and distribution inside the cavity. (iii) Spectral width

after gain segment 2 was observed to be smaller than the spectral width of its

input in all the three regimes even if input band width is below the band width of

the gain fiber as shown in Figs. 6(a)-6(c). This observation forces one to raise a

question on whether gain narrowing is the only process responsible for narrowing

the spectrum after the second gain fiber (gain section 2). In fact, recent results

show that spectral narrowing in normal regime can take place due to a nonlinear

process called self-action such as inverse four mixing and self-parametric ampli-

fication [98]. report on the realization of de-focusing structures by using phase

mismatched second harmonic generation inside a solid state laser further supports

our idea of defining effective negative nonlinearity which is also qualitatively ex-

plained in the theory and numerical simulation parts as well. Note that: The

spectral intensity is taken from spectrum analyser and divided by the power of

corresponding ports then, the spectral intensity from PBS and 5 % coupler before

gain 1 are added and the full width at half maxima of this spectrum is compared

with the full width at half maxima of spectrum from the 5 % coupler after gain

segment 1 for the comparison, according to all of our measurements.

Subject to normal dispersion, the spectral evolution is relatively less sensitive

to the dispersion map as shown in Fig. 4.6(c). Spectral width evolution experi-

ences relatively smaller spectral compression and broadening in this regime [101].

The pulse width of ∼5.8 ps from the PBS port was compressed to ∼110 fs, which
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is very close to its transform limited duration. The pulse acquires a chirp larger

than the net GVD of the cavity. It can be pumped to the full capacity of the

two diodes without multi pulsing. The spectrum starts to become steeper on the

edges as a result of SPM when the cavity is more pumped in the gain section

2 [101, 105]. It is less sensitive to pumping of gain segment 1. We have done

our experiment of nonlinearity management in this passive similariton evolution

regime not only for its tolerance to larger nonlinearity, but also because the spec-

tral phase of such a pulse can optimally compensate the stretching phase coming

from the positive GVD [102,105].
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Figure 4.6: (a)-(c) Optical spectra for different regimes taken from the 5% output
coupler before gain section 1 (blue dotted), 5% output coupler after gain section
1 (red dashed), and the PBS output (black solid) when the net dispersion of
the oscillator is ∼ -4000 fs2, ∼+600 fs2 and ∼+3800 fs2, respectively. (d) Pulse
duration before and after compression at the optimized interaction point in the
normal regime.

The pump for gain segment 2 was decreased from 328 mW to 5 mW, as shown

in Fig. 4.7 (increased from 98 mW to 400 mW, as shown in Fig. 4.8), while pump

for gain segment 1 was increased from 378 mW to 746 mW, as shown in Fig. 4.7

(decreasing from 950 mW to 660 mW, as shown in Fig. 4.8) via small intervals.

We ensured that the total pump power remained almost the same, while allowing

the nonlinearity to change both in amplitude and in terms of its distribution, as

shown in Fig. 4.7(a) and 4.7(d) (Fig. 4.8(a) and 8(d)). The experiment was
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conducted first with conditions indicated in Fig. 4.7 until mode-locking was gone

and then the mode locking was obtained by increasing pump 2 and decreasing

pump 1 until the minimal conditions for mode-locking was reached. For these

experiments, the nonlinearity is estimated as the sum of 2π
λ0Aeff

n2

∫ L
0 P pdz for the

passive SMF part and 2π
λ0Aeff

n2

∫ L
0 P avgdz for the active fiber sections, where P p

and P avg= 1
2
(P pi+P pf) are the peak power and average peak power respectively.

Spectral width after gain segment 2 was observed to change from 16.5 nm to 21

nm (14 nm to 21 nm). Pulse duration from the PBS output, passing through a

fixed DDL also varied from ∼140 fs to ∼215 fs (from ∼132 fs to ∼305 fs) mainly

as a result of the effects of accumulated nonlinear phase shift from SPM, its

distribution, its interaction with normal GVD for a chirped pulse and the resulting

effects of polarization evolution due to repositioning of the pulse to maintain the

boundary conditions [106, 110–112]. From Fig. 4.7(e) (Fig. 4.8(e)), one can

conclude that the spectral width is larger for shorter pulse duration but this

can be recompressed to ∼140 fs (∼130 fs) with ∼ 20%(∼ 30%) smaller external

DDL. This shows that uncompensated SPM in the process results in spectral

broadening. Spectral width is smaller for most pulses with larger nonlinear phase

as shown in Fig. 4.7(c) or it remains almost the same for some conditions as in the

case of Fig. 4.8(c). This is apparently in contradiction with spectral broadening

by SPM. This shows part of the accumulated nonlinear phase is compensated in

the interaction process with phase due to normal GVD. The fact that the pulse

often has broader bandwidth when pumping in gain segment 2 is larger as seen

in Fig. 4.7(f) and 4.8(f) is also an indication that the interaction is sensitive to

the nonlinear phase distribution and the spectral width narrowing is not related

to gain filtering as well. SPM accumulated in gain segment 2 ends up broadening

the optical spectra.

Most of the nonlinear phase is expected to be accumulated in the passive fiber

between the two gain fibers. Nonlinearity is high when pumping of gain segment

1 is relatively larger. This is an indication of that the spectral broadening in gain

segment 2 is not solely related to the level of accumulated nonlinear phase (SPM).

As indicated in Fig. 4.7(f) (Fig. 4.8(f)), these can be equivalently explained with

the following: (i) When pump of gain section 1 increases, the nonlinear phase
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Figure 4.7: The experimental result showing a relationship between (a) variation
of the two pump powers and the total pump; (b) nonlinear phase shift with
pulse duration (each pulse duration can be compressed to the region between the
red lines); (c) nonlinear phase shift with spectral width; (d) nonlinearity with
total pump power; (e) pulse duration with spectral width and (f) spectral width
with pump power of gain section 2, when pump 1 is increasing and pump 2 is
decreasing.
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Figure 4.8: The experimental result showing a relationship between (a) variation
of the two pump powers and the total pump; (b) nonlinear phase shift with
pulse duration (each pulse duration can be compressed to the region between the
red lines); (c) nonlinear phase shift with spectral width; (d) nonlinearity with
total pump power; (e) pulse duration with spectral width and (f) spectral width
with pump power of gain section 2, when pump 1 is decreasing and pump 2 is
increasing.
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interacts with the dispersive phase shift due to longer fiber (interaction) length.

Hence, it is possible for the effects of the nonlinear phase accumulation to be

offset by the effects of GVD. While pumping gain 2 harder, it is more difficult

to compensate the nonlinearity due to relatively shorter fiber length or more ac-

curately, shorter interaction length. This can be seen from the relatively larger

spectral width changes in Fig. 4.8(f) relative to Fig. 4.7(f) even though the total

pump power is larger in the first case. Note that nonlinear phase and stretching

phase due to GVD interact in an optimized way. Excess of nonlinearity causes

spectral broadening. (ii) It can also be explained in terms of nonlinearity distri-

bution on the two active fibers and passive fiber in between them. The collective

effect of pulse propagation as it experiences high and low nonlinearity interfaces

generates an effective negative nonlinear index. Hence spectral compression takes

place for a positively chirped pulse on a medium of positive GVD similar to our

simulation results. As we increase pumping on gain section 2 we are increasing

the nonlinearity or the difference in nonlinearity in comparison to the adjacent

segments decreases, thus effective negative nonlinearity decreases and spectral

compression decreases or relative spectral broadening takes place as result.

4.4 Conclusion

We showed in simulation and experiment that pulse propagation can be managed

through manipulation of nonlinearity level, distribution and its interaction with

GVD on chirped pulses. Experimentally, we managed to reduce up to ∼ 30% of

the dispersion required for external compression of the pulses just by varying non-

linearity level and distribution inside the novel cavity. The dynamics is explained

qualitatively by defining an effective negative nonlinearity. Collective behavior

of sequentially arranged passive (dispersive) and active (nonlinear) fibers gen-

erated an effective negative nonlinearity such that pulse compression can take

place while the opposite is expected and vice versa. This was explained as a

result of interaction between pulse chirp, dispersion, SPM and its distribution.

The experimental observations are consistent with these explanations. Although

the complexity of oscillator dynamics make it very difficult to exactly follow the
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interaction process, the experimental results support the merit of regarding the

observed effects as an effective negative nonlinearity. Such a perspective is useful

not only because it qualitatively explains the observed dynamics, but also be-

cause it provides new perspectives, such as the evolution of the pulse towards the

similariton attractor from the soliton attractor and vice versa at the interfaces of

the soliton-similariton laser [47]. These results are reminiscent of the well known

generation of effective negative (and positive) Kerr nonlinearities from cascaded

phase-mismatched quadratic nonlinear processes.
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Chapter 5

Linear and nonlinear response of

mode-locking to injected

intensity modulation and noise

5.1 Introduction

Spontaneous emergence of structure and pattern formation is ubiquitous in dissi-

pative and nonequilibrium systems and numerous such systems have been iden-

tified and analyzed [113–116]. However, despite significant advances over the

recent decades, an overarching theory that can predict the outcome of such sys-

tem, short of actually running the systems either experimentally or numerically,

remains a distant goal. Mode-locking of lasers [117] falls within this broad cat-

egory (also lacking a general theory that would allow one to calculate a priori a

specific combination of optical segments that would give rise to the mode-locked

operation of desired properties). At the same time, mode-locking also stands

out in the sense that it is not a natural phenomenon, but has broad scientific,

industrial and medical applications. In addition, unlike most natural systems, we

have very well-developed capabilities at our disposal for controlling the dynamics

and its characterization. Studying of mode-locking dynamics is interesting from
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a fundamental point of view and a new understanding typically leads to broad

technical impact. This is particularly true for fiber lasers, where the guided prop-

agation of pulses leads not only to exceptionally strong nonlinear effects, but also

underlies the desirable practical features, such as robustness and compact size of

these lasers [118,119].

Despite its evident importance when one regards a mode-locked laser as a dis-

sipative system far from equilibrium, the evolution of fluctuations (i.e., noise) in

mode-locked lasers [120,121] has received much less attention than the stationary

characteristics of mode-locking, such as pulse duration, energy, and power. In the

existing studies, the focus was often on its consequences for a specific application

such as frequency combs [120]. Here, we report the influence of externally injected

intensity noise or modulation on the dynamics of mode-locking, including transi-

tions between meta stable mode locking states. We analyse and distinguish two

cases: (i) the near-equilibrium case, where the response of the laser to injected

noise is essentially linear and (ii) the far-from-equilibrium case, where the laser

responds nonlinearly, with noise initiating multi-pulsing, energy competition be-

tween pulses forming bound states, bound states with hopping phase difference

or dynamic variation of pulse separation.

Our method of injection of noise is through the pump laser due to its experi-

mental convenience. However, a strong filtering effect of the relatively long gain

relaxation lifetime, this approach limits our study to the low-frequency range

(below 200 kHz). From an applications point of view, noise transfer from a pump

laser to a mode-locked laser has well-appreciated negative consequences. Inten-

sity noise below resonant relaxation oscillation frequency of lasers is dominated

by pump noise, arising from a various physical effects [122–125]. Various theo-

retical and experimental approaches have been followed to predict the influence

of pump noise on laser noise, and a noise or modulation transfer function (MTF)

is commonly used to characterize this phenomenon [126–128]. J. McFerran, et

al. modeled linear or one-to-one coupling of pump intensity noise to signal inten-

sity noise [129], whereas K. Wu, et al. reported linear and nonlinear coupling of

pump modulation to signal for an Er-doped fiber laser, which was mode-locked

with carbon nanotubes but the origin of the nonlinear response, intra-cavity noise
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dependence and its extension to all different mode-locking regimes were not ex-

plored.

Much more importantly, while useful and highly intuitive, an MTF-based ap-

proach intrinsically assumes (nearly) linear response. Therefore, it is applica-

ble only to stochastic dynamics near the steady state of the laser, which we

refer to as near-equilibrium dynamics following the terminology of statistical

physics [40, 130]. Using this approach, we first have analyzed the linear dynami-

cal response of all-normal-dispersion, near-zero-dispersion (stretched pulse), and

dispersion-managed soliton mode-locking regimes to pump modulation, where the

modulations are weak enough and the laser is in a stable enough state that it

does not deviate from this linear regime and the MTF approach suffices. Next,

we have investigated the case where the externally induced modulation is strong

enough to drive the laser system further away from its steady state, or some

cases, into a different state. In this regime, the pulse propagation dynamics

change qualitatively and the response is no longer linear. This constitutes far-

from-equilibrium dynamics [40, 130] and a description based purely on the MTF

becomes inadequate.

5.2 Modulation transfer: simulation and exper-

imental results

We have constructed a generic and easily reconfigurable Yb-doped fiber laser os-

cillator for this study. Schematic of the laser oscillator and the measurement

setup are shown in Fig. 5.1. The oscillator operates at a repetition rate of 44

MHz and comprises 350 cm-long passive fiber and 23-cm long gain fiber. It is

pumped by a temperature and wavelength stabilized single-mode diode operating

at 976 nm through a wavelength division multiplexer (WDM). A standard disper-

sive delay line (DDL) incorporating a pair of gratings with 600 l/mm is included

to control the total dispersion of the cavity and to switch between mode-locking

regimes. In the case of all-normal dispersion operation, the DDL is replaced by a
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bandpass filter centered at 1030 nm and with a bandwidth of 10 nm (not shown

in the figure for clarity). A signal generator (33220A, Agilent, Inc.) is employed

to modulate the current of the pump power over the frequency range of 3 Hz

- 250 kHz. In this frequency range, the modulation is directly transferred to

the optical power from the diode, thus into pump power for the laser oscillator.

Optical output from the cavity is converted to an electrical signal with an am-

plified silicon photodetector (PDA-10A-EC, Thorlabs, Inc.), and analyzed with

an audio (baseband) analyzer (UPV, Rodhe and Schwarz, Inc.). In addition,

an optical spectrum analyzer (MS9740A, Anritsu Corporation) and a long-range

autocorrelation (FR-103HS, Femtochrome Research, Inc.) are used as standard

characterization techniques.

Diode	laser

Collimator

Yb-6/125Coupler
95/5 WDM

HWP

Signal
Generator

Diode
driver

PC

Baseband
Analyzer				

Photodiode

Mirror

QWPQWP

IsoGrating

Coupler
95/5

Mirror

Figure 5.1: Experimental setup: Schematic diagram of experimental set up.
WDM, wavelength division multiplexer; QWP (HWP) quarter (half) wave plate;
ISO, isolator.

A simple theoretical model is used to predict the transfer random fluctuations

or coherent modulations of the pump to the laser power. In this model, we con-

sider gain, linear loss and nonlinear loss occurring at the saturable absorber. Pulse

shaping physical effects such as Kerr nonlinearity or dispersion are not considered
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explicitly although the saturable absorber indirectly does since the particular im-

plementation that we use, nonlinear polarization rotation, depends on nonlinear

phase accumulated in the fiber. In the near-equilibrium limit, where the MTF

description is adequate, there is the negligible effect of one frequency component

on another. As a result, both random fluctuations over a broad frequency range

and narrow, coherent modulations at specific frequencies are well described by

this approach. In this model, we consider the dynamical response of a cavity to

be linear (the modulation frequency of the signal is the same as the pump), even

though the nonlinear response of the cavity to any given modulation is taken into

account. To this end, the oscillator is modeled as comprising an amplifier, linear

loss and nonlinear loss (saturable absorber), whereby a portion of the output is

fed back to the system after passing through the nonlinear segment described by

a nonlinear transmission function describing the saturable absorber. Then, the

modulation on pump and population density for a given angular frequency, ω,

at a position, z, along the gain medium, and during the mth round trip, can be

written as,

ip,(m)(z, t) = Ip(z)(1 + qp,(m)(z, ω)eiωt) + c.c., (5.1)

is,(m)(z, t) = Is(z)(1 + qs,(m)(z, ω)eiωt) + c.c., (5.2)

n1,(m)(z, t) = N1(z)(1 + q1,(m)(z, ω)eiωt) + c.c., (5.3)

n2,(m)(z, t) = N2(z)(1 + q2,(m)(z, ω)eiωt) + c.c.. (5.4)

Here, ip,(m)(z, t) and is,(m)(z, t) are the time-dependent and Ip(z, t) and Is(z, t) are

the average (or modulation-free) values of pump and signal intensities, respec-

tively. Likewise, n1(z, t) and n2(z, t) are the time-dependent and N1(z, t) and

N2(z, t) are the average (or modulation-free) values of the fractional population

densities of the upper and lower states. qp,(m)(z, ω) and qs,(m)(z, ω) present the am-

plitude of the intensity modulation for pump and signal respectively. q1,(m)(z, ω)

and q2,(m)(z, ω) denote the amplitude of the fractional population density for

pump and signal respectively and c.c. denotes complex conjugate. Eqn. (5.1) to

(5.4), along with the coupled equations for the laser rate equations and popula-

tion densities [48] yield the signal amplitude modulation at the end of the gain
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segment as follows:

q
′

s,(m)(L, ω) =
δi
′

s,(m)

i
′
s,(m)

= ξs,(m)(ω)qs,(m)(0, ω) + ξp,(m)(ω)qp(0, ω). (5.5)

Here, the individual MTF of the amplifier for pump and signal are defined as

follows, respectively.

ξp,(m)(ω) =
qs,(m)(L, ω)

qp(0, ω)
, (5.6)

ξs,(m)(ω) =
qs,(m)(L, ω)

qs,(m)(0, ω)
. (5.7)

Where L is length of gain fiber. Let pm be the intra-cavity laser signal power at

a point right before the saturable absorber for the mth roundtrip. The nonlinear

transmittance of the saturable absorber is introduced, T (pm). The output power,

p
′′
m, after the saturable absorber is given by,

p
′′

m = T (pm)pm. (5.8)

Next, we make a power series expansion of T in terms of pi and keep the linear

and quadratic terms to obtain the amplitude of modulation after passing through

the saturable absorber as follows,

Qs,(m) = [ξs,(m)(ω)qs,(m) + ξp,(m)(ω)qp]− β[ξs,(m)(ω)qs,(m) + ξp,(m)(ω)qp]2, (5.9)

Where β is a constant related to the power series. The output signal, which is

re-launched into the amplifier for the next round trip, is subject to the following

boundary condition in order for stable pulsation that repeats itself after each

roundtrip,

Qs,(m)(L, ω) = qs,(m+1)(0, ω). (5.10)

By considering ξs,(m) = |ξs,(m)|eiφs,(m) and ξp,(m) = |ξp,(m)|eiφp,(m) the amplitude of

intensity modulation can be expressed as the following recurrence relation,

qs,(m+1) = aq2
s,(m) + bqs,(m) + c. (5.11)
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Here, a = −β|ξs,(m)|2e2iφs,(m) , b = ξs,(m) = |ξs,(m)|eiφs,(m)(1 − 2βqp|ξp,(m)|eiφp,(m)),

and c = qp|ξp,(m)|eiφp(1− βqp|ξp,(m)|eiφp,(m)). Therefore, the steady-state MTF of

the laser oscillator has to be evaluated as the limit of infinitely many roundtrips,

ξs(ω) = lim
m→∞

|
qs,(m)(L, ω)

qp

|. (5.12)

Figure 5.2: Experimental results of MTF: (colored online) (a) Experimental mea-
surement of modulation transfer function (MTF) versus modulation depth. Ex-
perimental measurements (doted) and simulation results (solid-line) of MTF ver-
sus modulation frequency at indicated pump power for (b) all-normal dispersion,
(c) nearly zero dispersion, and (d) soliton-like regimes with 10% Modulation
depth.

In general, the expression derived above has to be evaluated numerically. The

following parameters are used, in the laser rate equations and population densi-

ties, to obtain MTF for amplifier: core diameter, 6 µm; cladding diameter, 125

µm; L=30cm; Ntot = 10 × 1025m−3; σap=2.7 × 10−24cm2; σep=2.7 × 10−24cm2;

σas=6 × 10−26cm2; σes=7.5 × 10−25cm2; and τ =800µs. Parameter β is used to

fit experiment with the simulation result.

Although we have kept only the first nonlinear term in the power series ex-

pansion, the MTF indeed turns out to be independent of the modulation depth,
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which is an intrinsic condition for such an MTF-based approach to be internally

consistent. This situation is confirmed by experiments, as long as the laser is in

a stable mode-locking state corresponding to the generation of a single, isolated

pulse. Fig. 5.2(a) shows that the modulation depth is virtually constant when

the laser is mode-locked in the all-normal-dispersion regime. While this graph

corresponds to the specific pump power of ∼460 mW, the results are similarly

independent of modulation depth at different pump powers. The value of the

MTF, however, reduces with increasing the pump power, which is illustrated in

Fig. 5.2(b). This is expected as stronger pump results in increased saturation of

the gain medium, consistent with the results in [122]. In this regime measured

and calculated MTF decreases with increasing pump power as illustrated in Fig.

5.2(b), which shows good agreement between theory and experiment. It remains

relatively large and almost constant at frequencies up to ∼ 10 kHz and then de-

creases. The 3-dB cutoff frequency decreases from ∼180 kHz at a pump power of

357 mW to ∼30 kHz at a pump power of 485 mW.

The situation is quite different in other mode-locking regimes, where the non-

linear effects are stronger at comparable levels of pump power or pulse energy.

When the laser is operating in nearly zero net GVD, the MTF develops a more

complex profile, as shown in Fig. 5.2(c). First, the measured MTF is substantially

higher than that of the all-normal-dispersion oscillator at low frequencies (up to

∼1 kHz) at the same pump power. The 3-dB cut off frequency increases from

around 5 kHz to ∼ 10 kHz as the pump power increases from 225 mW to 475 mW.

In contrast, at higher frequencies, the MTF is smaller than for the all-normal-

dispersion laser and has reduced dependence on the pump power. However, the

most striking difference is that the MTF becomes nonlinear at pump powers be-

yond 375 mW. Furthermore, the amplitude of the MTF for 375 mW pump power

is even smaller than MTF value at 450 mW over nearly the entire frequency

range. We attribute these observations to: (i) Strongly nonlinear response of the

cavity to the modulation, (ii) nonlinear coupling between the intrinsic noise of

the system and the coherent modulation during the MTF experiment.

In the dispersion-managed soliton regime, where the cavity experiences high

net negative GVD, such that the laser operation is essentially soliton-like, the
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dependence of the relative intensity noise (RIN) and MTF on pump power is

not as regular as the other regimes as shown in Fig. 5.2(d). This more complex

behavior is due to several factors, including the increased level of background

RIN as a result of soliton-soliton and soliton-dispersive wave interactions and

the resulting transitions between the soliton states that are supported since the

laser becomes multiple pulsing at high pump powers. In our experiment, MTF

decreases when the pump power is increased from 275 mW to 350 mW, then

increases at 400 mW before the frequency dependence is partially disrupted at

450 mW. This is attributed to fragile nature of bound soliton which is resulted

from clamping of peak power, self-assembly of solitons determined by relative

pulse parameters of generated multi solitons, strong coupling between solitons

and dispersive wave or interaction of solitons with itself and its environment in

general [103,117,131,132] .

In the linear response mode, a 3-dB cutoff frequency is larger and decreases

with increasing pump power in all-normal-dispersion regime than near zero and

soliton regimes at a given pump power. For example it is ∼ 190 kHz, ∼ 13

kHz and ∼18 kHz at ∼350 mW, respectively. This is mostly due to the blue

shifting of relaxation oscillation frequency as a result of dissipative nature of

all-normal-dispersion regime induced by spectrum filtering [133]. The slight dif-

ference between the other two regimes is also a manifestation of difference in

pulse stability and the difference in the physical processes experienced by a pulse

in these regimes to keep periodic boundary conditions determined by a balance

between phase and amplitude in general. Interaction of injected modulation and

the background noise level of the oscillator are also important in determining

MTF characteristics.

5.3 Relative intensity noise (RIN) measurement

The transition from a stable coherent state to a disordered state which is far

from equilibrium is presented in [64,134]. Stochastic intensity fluctuations of lon-

gitudinal modes occur before a pulse is generated in the laser cavity. Optimized
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competition of nonlinearity and dispersion increases relative coherence between

these modes. Thus, a stable pulse emerges. Increasing pump power creates dis-

persive waves, initiates optoacoustic effects [135], bifurcation, chaos, competing

for multi-pulses and establish a semi-disorder state which is far from equilib-

rium that exhibits interesting life like far from equilibrium nonlinear dynamics.

Studying noise spectrum helps us to explore and understand the mechanism of

transition and its effect on MTF. Input pump power is scanned to characterize

and change states in the system. Standardized RIN measurement method in

Ref. [122] is used to calculate experimental results.

Figure 5.3(a) presents measured integrated noise in ANDi cavity with net

dispersion of ∼ 0.8 ps2. It was at CW operation regime below pump power of

∼345 mW. Mode-locking started at ∼ 350 mW and then remains stable self-

starting single pulsing till available maximum pump power while the integrated

RIN decreases before it levels off at high pump power (> 450 mW). The mode-

locking remains stable when the pump power is decreased on intervals of 5 mW up

to 340 mW. The RIN increases as the nonlinearity required for pulse stabilization

gets smaller and smaller between 350 and 340 mW. A hysteresis observed on the

RIN between pump power of 340 mW and 350 mW, where the mode-locking is

not self-starting. The RIN in this state is higher than the RIN for stable pulsing

(for a pump power > 420 mW) by more than tenfold.

Unlike ANDi cavity, in nearly-zero dispersion with a net dispersion of ∼ 300

fs2, the laser experiences relatively complicated noise dynamics as shown in Fig.

5.3(b). Fig. 5.3 (c and d) shows autocorrelation signal and optical spectrum of

CW, an onset of mode locking, stable mode locking, initiation of multi-pulsing

and none self-starting pulsing regimes respectively. Close to the threshold of

pulse formation the noise level is higher which is in the order of 10−2 (1%). As

pump power is increased, the fluctuation is intensified by almost four fold than

when it was very close to the mode locking threshold. For stable pulsing, the

level of integrated RIN dropped by more than 100 times. The RIN level remains

almost at the same level for a larger range of pump power until initiation of multi-

pulsing occurred. An onset of multi-pulsing occurs when the cavity is pumped

such that its spectral width exceeds the gain band width [136, 137]. Here the
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pulse tolerates a certain pump power by shading energy to its tails before it

breaks up into two or more pulses. This point is characterized by oscillatory

dynamics [64], hence increased level of RIN is measured. In our case to the level

of 10−3 (0.1%). By increasing pump power, the integrated RIN level can reach

up to 1% due to interaction of the generated multi-pulses which depends on their

relative phase, temporal separation, and energy competition that appears due to

optoacoustic effect or due to the formation of CW peak on the spectrum [64,136].

This interaction can be described as a net effect of effective repulsive or attractive

force between pulses. Due to this interaction switching of polarization from one

state to another occurs to over drive the NPE [131, 137, 138]. The RIN is also

calculated for the reverse direction by decreasing pump power. At lower pump

power before mode-locking was interrupted, the balance between nonlinearity and

dispersion struggle to support mode-locking dynamics and level of intensity noise

increases [123,131,139]. In this regime, we have seen hysteresis on the integrated

RIN of the cavity on the onset of multi-pulsing and in the regime where single-

pulsing mode-locking is not self-starting.

In soliton regime, with a net cavity dispersion of ∼ −90000 fs2, the oscillator

exhibits more complicated pulse dynamics that range from single pulsing to multi

pulsing, bound states with a different number of solitons, harmonic mode locking,

rational harmonic mode locking, period doubling, etc. All of these states are

achievable either by setting the wave plates to different angles or by changing the

pump power. Figures 4(a) and 4(b) show the behavior of measured integrated

RIN as the pump power is scanned forward up to maximum pump power and

backward close to the threshold of mode locking in one cycle for two different

arrangements of wave plates.

Wave plates are arranged in such a way that the laser remains mode locked

up to maximum pump power with characteristics of RIN dynamics as shown in

Fig. 5.4(a). A number of coexisting bound soliton states are observed together

with their random transition from single to multi-coupled soliton regimes with

the same or different repetition rate as the pump power is scanned. Integrated

RIN value for different states varies significantly even after a stable self-starting

mode-locking is achieved. Fig. 5.4(c and d) shows autocorrelation signal and
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Figure 5.3: Experimental results for Measured integrated RIN: for all normal
regime (a) and nearly-zero dispersion (b) when the pump power is scanned for-
ward (red triangles) and backwards (blue triangles). Fig. 5.3 (c and d) shows
autocorrelation signal and optical spectrum of CW, onset of mode locking, stable
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corresponding optical spectrum of certain states at the indicated pump powers.

A single pulsing occurs at a pump power of slightly less than 200 mW. Further

pumping created a pulse whose optical spectrum has a CW peak. Here, Integrated

RIN increased by more than 20X. By increasing pump power single state soliton

is changed into a two soliton state at a pump power of ∼330 mW. As the soliton

energy increases with increasing pump power a repulsive force increases the pulse

separation and the integrated RIN increased as well. A further increment of the

pump power created three stable soliton state at a pump power of ∼365 mW.

Integrated RIN decreases by a factor of 8X. The pulses then attract each other

before forming a more compact cluster at ∼375 mW. The relative position of

central wavelength of the soliton and the central wavelength of side-band also

changes as the pump is scanned usually decreases with increasing pump power

and jumps to a larger separation just at the point where the laser undergoes

soliton state change.

So far we have seen that pulse interaction increases the background noise. It

can increase by about 10X on soliton state transition points or at critical points.

Soliton interaction can lead to much higher integrated RIN value such as the

case observed when the pump power increases from 495 mW to 510 mw in Fig.

5.4(a). Autocorrelation signal of the pulse changes from 15 peaks to 17 peaks,

then to 19 peaks and to 21 peaks at 510 mW the corresponding optical spectrum

shows asymmetrically distributed peaks with amplitude peak values constantly

switching from right to left. This is an indication of a change in separation, energy

computation, possible hopping of relative phase difference of the solitons pulses in

a bound state and a combination of all processes within the soliton cluster [140].

The autocorrelation peaks remain at 21 when we further increase pump power

(the soliton gets enough energy to stabilize itself) the value of Integrated RIN

comes back to the level that we found for the other stable soliton states which

can be considered as near equilibrium thermodynamic states.

In general integrated RIN of these bound soliton states behaves similarly with

in a state. It always starts with moderate value at the formation point or just after

a transition takes place. It becomes the highest when it is about to jump (critical

point) into a new bound soliton state and the most stable point of this state is
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between these two points. Unlike the results of ref [141, 142], In our experiment

we observed a coexistence of different forms of soliton bunches with a range of

repetition rate undergoing short and long range interactions [135] at a given pump

power and random transition which does not follow soliton energy theorem as

the pump power is scanned. At these critical points occurrence of soliton period

bifurcation or energy computation between solitons themselves or soliton with

generated dispersive waves followed by the occurrence of acoustic waves which

create modulation on the optical power that rises the RIN level by ∼ 10X on

average [122,131,143,144]. This noise results in random soliton state transitions

by creating or annihilating a soliton at the critical points when pump power

was increased almost adiabatically but it did not exhibit too much transition

when the pump power is scanned from a higher to lower pump power values

(the number of auto-correlation peaks their temporal difference and the shape of

their spectrum remains almost the same for longer range). Thus integrated RIN

exhibits a hysteresis on the transition points which are characterized by RIN value

more than one order of magnitude on average than of integrated RIN for stable

soliton states. The appearance of CW peak on pulse spectrum also increases the

RIN by a factor of more than 10 at any point in the cavity dynamics.

The behavior of integrated RIN may vary depending on the specific parameters

in this regime. With a different set of wave plates the laser state changes from

mode-locked to CW due to the periodic boundary condition set by the interaction

of physical processes in the cavity. Corresponding integrated RIN is shown in Fig.

5.4(b). In general, we observe that the integrated RIN shows increment on CW

regime or when the interaction of pulses in random transition points between

soliton states takes place as the pump power is scanned and goes back to normal

level when it is mode-locked from CW operation and when the interaction is

stabilized for reasons mention earlier. The RIN is almost independent of the phase

difference or temporal separation as long as they remain fixed (stable state), which

is evident in the symmetry of modulation on the pulse spectrum [140]. Additional

information of simulation result is provided in the appendix.

Similar results can be obtained by rotating wave plates of the oscillator. Fig.

5.5 shows the behaviour of mode locking states characterized by Cross correlation
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Figure 5.5: Density of states around mode locking: (a) Different mode locking
states mapped on a phase space formed by scanning waveplate angles around
a mode locking point. Coloured points indicate mode locking states that are
grouped under the same state on the phase space. (b) Reversibility of each
the central mode locking point before and after transiting is performed for every
point on the phase space. (c) Integrated RIN map on the phase space (d) Average
integrated RIN of states on the phase space. (e) Distribution of mode locking
states on the first state of the phase space. (f) Corresponding integrated RIN
map of the state indicated on (e).

of optical spectrum and autocorrelation signal projected on a phase space formu-

lated by scanning 300 on half and quarter wave plate with a resolution of 0.30

around a certain mode locking state. A threshold value on the cross-correlation

of optical spectrum and autocorrelation signal is used to sort states on the phase

space as shown by colored region in Fig. 5.5(a). The white portion is region oc-

cupied by CW. Reversibility of initial point (indicated at the center of the phase

space) of the laser system after each random transition to scan points (macro

states on the phase space) is called reversibility which is indicated in Fig. 5.5(b).

Mode locking states close to the central point show a higher degree of reversibility

while the system showed lower value on the CW regime. In general, reversibility

is highly affected by the coexistence of mode locking states and the self-starting
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and self-healing nature of the system at particular parameters. The intensity

distribution of Integrated RIN of each point is mapped as shown in Fig. 5.5(c).

The value is high on the CW regime but it shows a pattern of distribution of the

mode locked region. Its average value per fractional are of each state on the phase

space is shown in Fig 5(d). Larger states on the phase space have smaller average

value than smaller sized states. This is due to increase of integrated ring around

transition points. For example, Fig 5(e) and 5(f) show the distribution of mode

locking states with in the first state on the phase space and its corresponding

Integrated RIN distribution values respectively. One can easily see that points

on the boundary (transition points) of the state are characterized by higher value

than the central points which is the same conclusion with the fact we had on the

pump power dependence noise dynamics earlier.

At the critical points, nonlinear response of the cavity to pump modulation is

enhanced. Fig. 5.6 shows the RIN spectrum of pump and signal powers resulted

from the diode and corresponding cavity response to injected electrical modula-

tion in different regimes. In ANDi regime the response was a linear as can be

seen in Fig 5(a) for the available pump power range. In a linear response, a mod-

ulation on the pump is transferred to the signal in the same frequency. There is a

prominent nonlinear behavior of the RIN spectrum on the signal at a pump power

of 375 mW as shown in Fig. 5.5(b) compared to the RIN spectrum below 370

mW and above 410 mW pump powers in near zero net GVD regime. Pump RIN

spectrum is taken from 5% output port before WDM shows no higher harmonic

peaks which clearly indicates that the nonlinear response is coming from the intra-

cavity dynamics. At this pump power, we observe initiation of multi-pulsing. So

the nonlinear response is mostly due to the interaction of modulation induced in-

tensity noise and the higher noise level of the unmodulated system (background

noise). Polarization scrambling on the gain fiber initiated by nonlinearity in the

presence of modulation and background intensity noise or polarization noise that

resulted from anti-correlation of noise by the two linearly polarized intensities in

the cavity [123,131,139] over drive NPE. Since the response of artificial saturable

absorber (NPE) is determined by polarization evolution inside the cavity modifi-

cation on the time response is reshaping the sinusoidal waveform which generates
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higher harmonics of the modulation frequency [128, 139]. Coupling phase and

energy competition of the generated two or more pulses also determines the reso-

nance relaxation frequency of the system which intern affects RIN level [123,138].

We have seen the similar nonlinear response (Fig. 5.5(c)) of the cavity in soliton

regime where the background noise can be increased due to the interaction of

solitons in addition to the above-mentioned dynamics [144].

Figure 5.6: Measured relative intensity noise spectrum of modulated pump and
signal intensities for ANDi (a), nearly-zero-dispersion (b), and highly negative
dispersion or DM soliton (c) regimes. The corresponding pump powers and mod-
ulation frequencies are indicated on the legends.

According to the model in [128], the total coupling ratio of the pump RIN to

the signal RIN can be described as sum of linear and nonlinear coupling functions
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Figure 5.7: Nonlinear MTF as a function of order of harmonics, (a) at modulation
frequency of 20.4 Hz and pump power of 375 mW in the near-zero-dispersion
regime with η = 1.8, and α = 0.24. (b) At modulation frequency of 67. 4 Hz and
pump power of 400 mW in the DM-soliton regime with η = 4 and α = 0.37.

which depend on the modulation frequency and its harmonics.

RINl(k, fmod) = MTFlinRINp(fmod) +MTFnonlin(k)RINp(fmod), (5.13)

MTFnonlin(k) = ηexp(−αk), (5.14)

Where MTFlin, MTFnonlin, fmod, and k are linear coupling coefficients or MTF,

nonlinear coupling coefficient or nonlinear MTF, modulation frequency and its

order of harmonics, respectively, whereas η and α are constants. The nonlinear

MTF fits very well with the experimental data, when using an exponential func-

tion depending on the order of the harmonics of the modulation frequency (Fig.

5.6).

Figure 5.8 shows noise spectrum of certain mode locking states showing in-

creased intrinsic instability due to appearance of a CW on spectrum, strong soli-

ton pulsation or period doubling (Fig. A.1(a) red) [145], and other intracavity

pulse interaction (due to acoustic waves) that can cause intrinsic modulation (Fig.

5.8(a) black). Such intrinsic background modulation/noise can cause a nonlinear

response of the cavity to external modulation independent of the driving or mod-

ulating frequency as shown in Fig. 5.8(c-d). The modulation signal is applied

76



to a diode current with a 1 % modulation depth at three different frequencies.

The superposition of the intrinsic modulation with the ejected signal modifies the

sinusoidal shape. Hence, harmonics of the modulation frequency appear on the

noise spectrum. Similar to previous results the nonlinear MTF also show power

law distribution

Figure 5.8: Nonlinear response: (a) RIN spectrum showing intrinsic interaction
induced modulation (black) and increased noise as a result of the appearance
of CW and/or period doubling (red). (b), (c) and (d) RIN spectrum showing
the nonlinear response of the cavity when an external modulation is applied at
a frequency of 50 Hz, 100 Hz and 500 Hz respectively to the soliton state whose
noise spectrum is shown by black on (a).
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5.4 Conclusion

We characterized the modulation transfer function and integrated RIN of pas-

sively modelocked fiber oscillators in different mode-locked regimes. Based on

our measurements, we have explored the different operational regimes where

MTF behaves linearly and nonlinearly, which can be considered as near and far-

from-equilibrium dynamics of a mode-locked laser depending on the reversibility

to its original pulsing state up on the removal of the modulation. Initiation

of multi-pulsing, energy competition between soliton pulses, the interaction of

pulses with dispersive and acoustic waves raised the integrated RIN then the

nonlinear response of the cavity to amplitude modulation is intensified. The

nonlinear response of this system is correlated strongly with the pulse energy

(which affects the effective nonlinearity experienced by the pulses) rather than

the pump power, especially in soliton regime. Our findings have implications for

further understanding, control, and suppression of intensity noise of fiber oscilla-

tors in different pulsing regimes and giving important insight into the behavior

of mode-locking dynamics in response to pump power or cavity loss modulations.

Observation of clearly delineated regimes of essentially linear (near-equilibrium)

and nonlinear (far-from-equilibrium) cavity responses shows that the mode-locked

fiber lasers is a rich and accessible and experimentally convenient platform for

studying phenomena that are common to a broad class of interacting physical

systems [146].
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Chapter 6

Noise-induced creation and

annihilation of solitons in

dispersion managed fiber

oscillators

6.1 Introduction

Optical solitons and their interaction with other solitons or with dispersive wave

shed by solitons under perturbation constitute a versatile experimental and the-

oretical platform for studying the nature of complex dynamics occurring in laser

cavities [131,135,147] in addition to common physical principles in terms with a

range of other nonlinear, non-equilibrium, coupled systems outside of optics.

Apart from the fact that dissipative solitons are generated by completely dif-

ferent mechanisms in different systems such as microresonator (based on tuning

of pump frequency over cavity resonance frequency), microresonators (based on

Kerr effects) and fiber oscillators (based on the presence of saturable absorber),

their propagation can be governed by the complex Ginzburg-Landau equation or
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one of its variants. Stable pulse propagation mainly relies on balancing the inter-

action of negative group velocity dispersion (GVD), nonlinearity, gain, and loss.

Short and long range soliton interaction mediated by physical processes in micro

and microresonators has been recently reported and becoming a growing field of

research interest in nonlinear phenomena [135, 148–151]. These interactions to-

gether with nonlinear phenomena, such as bifurcations, periodic breathers, and

chaotic dynamics [152] that result from the boundary condition imposed by a

nonlinear cavity. Hence, studying the complex dynamics that arise from fiber

oscillators is interesting both for further fundamental understanding of the na-

ture of pulse-to-pulse interactions, its effects on propagation dynamics and its

association with other nonlinear phenomena occurring in nature especially these

which can be explained by far from equilibrium thermodynamic systems.

We examined the effect of interaction of dissipative solitons with generated

dispersive waves and between solitons themselves in a cluster or bound state on

the fluctuations of the laser’s output (integrated relative intensity noise) and its

effect on the creation and annihilation of solitons that cause irreversible soliton

state transitions. These have been observed for first time in passively mode locked

fiber oscillators to the best of our knowledge. Such emergent transitions are in-

duced by intrinsic noise characterized by phenomena such as variation of a relative

phase between solitons, variation of the temporal separation between solitons and

energy exchange between solitons and with generated dispersive waves. These in-

teractions are crucial to the formation and stability of dispersion-managed multi-

soliton states as theoretically predicted in [153, 154]. Unlike the results of [155],

the number of generated DM solitons can be smaller or larger than the original

state at larger pump power. This is the behavior of systems far from equilib-

rium and is not necessarily subject to the formation and annihilation mechanism

predicted by the results of ref. [155,156]. This further supports self-organization

phenomena in dissipative fiber oscillators which recently was reported by [149].
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6.2 Experimental and simulation results

The experimental system is schematically described in Fig. 5.1. It is a fiber

laser, which is mode-locked by NPE. The key physical parameters are as follows:

A total length of 350 cm for passive fiber, 27 cm of a Yb-doped gain fiber and a

net dispersion of ∼-80000 fs2 for a repetition rate of 44.2 MHz.

Then, by varying the pump power, the oscillator can be induced to exhibit a

range of dynamics that vary from a single stable DM soliton state to a multi soli-

ton bound states with fixed and varying phase as well as temporal separation. We

observe soliton bunches that repeatedly exchange energy and solitons with varying

or vibrating temporal separations which often is followed by thetransformation

from one to another random solitonic state are observed. This critical behavior or

instability attractor is caused by long and short soliton-soliton, soliton-generated

dispersive wave or optomechanical interaction. The RIN of these states is found

to be higher than stable soliton states and is often times characterized by an

acoustic peak on the RIN spectrum.

Dispersive waves are generated by the perturbation that a soliton experiences

due to loss and gain as it propagates in the oscillator, as well as dispersion and

nonlinearity if the pulse shape has deviated from the soliton condition. Its inten-

sity can be controlled by scanning the pump power inside the cavity. We explore

and examine the effects of pump power on the interaction of dispersive wave and

single and double pulsing regimes whose autocorrelation trace, optical spectrum

and RIN information are shown in Fig 6.1. Mode-locking is initiated at 160 mW

with relatively high integrated RIN level (0.032 at 173 mW). At 176 mW, the

integrated RIN is reduced to 0.0025. As the pump power increases integrated

RIN decreases to 0.0002 at 210 mW and it increases afterwards until the pulse

breaks up into two solitons at 228 mW as seen in Fig. 6.1(c). In our case, spec-

tral sidebands are related to the instability of the mode-locking and the soliton

states. As to be expected, bound soliton states are more stable when the intensity

of the spectral side bands are relatively smaller. The relative intensity of spectral

sidebands increases and their relative position from the central frequency of the
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Figure 6.1: Experimental result showing pulse and dispersive wave interaction:
(a) autocorrelation function (b) corresponding spectrum (c) and (d) integrated
RIN dependence on pump power indicating the effect of dispersive wave Interac-
tion on a pulse dynamics.
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soliton decreases. Effective attractive and repulsive forces are associated with this

phenomena. As we have seen in chapter 5, the integrated RIN is higher around

the mode-locking threshold or any transition into a different mode-locking state.

The relatively larger value of the RIN at lower pump powers is related with the

promixity to the threshold pump power of mode locking.

Figure 6.2 indicates the effect of pulse interaction with dispersive wave. The

pump power is the same but the pulses have slightly different duration (255

fs and 212 fs) with an estimated energy difference of 5 pJ, with the shortest

pulse being higher in energy. When the relative intensity of Kelly side bands is

stronger (fig. 6.2 (b)), which is a manifestation of strong coupling between soliton

and dispersive wave, the soliton becomes unstable as also theoretically predicted

in [142, 150]. Hence, the integrated RIN increases by fivefold. Asymmetry of

the sidebands is an indication of relative cavity losses on the longer and shorter

wavelength part of the pulse, given that the third-order dispersion is the same for

both cases. This change in the asymmetry, together with the energy difference

between these coexisting soliton states is a manifestation of different nonlinear

polarization evolution in the cavity for the two cases.

Next, we characterize the dynamics as the pump power is varied. Fig. 6.3

shows pulse characteristics of five soliton states that exist within a certain range

of pump power. Energy per pulse is calculated as the total available energy

divided by the number of pulses; in other words, this quantity refers to the

average pulse energy. The fraction of a dispersive wave is also estimated as the

energy distributed over the cw-like spikes from the pulse spectrum, divided by the

total pulse energy distributed over the optical spectrum. Every state begins with

a relatively moderate noise level. When the available pulse energy increases due

to slightly increasing pump power, each soliton get enough energy and this bound

mode-locking state becomes stable (the minimum values of the integrated RIN

are shown in Fig 6.3(b)). Additional increases in pump power further increase

the total energy of the bound-pulse cluster and the fraction of energy going to

dispersive wave also increases, as one can see in Fig. 6.3(c). Hence, the interaction

of solitons with themselves and with the generated dispersive waves in the cluster

increases and the noise level of the oscillator increases in consequence. Here,
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Figure 6.2: Effect of nonlinearity on a pulse and dispersive wave interaction: (a)
and (b) show the optical spectrum and (c) and (d) show the RIN spectrum of
two pulses that coexist in the oscillator at the same pump power with slightly
different pulse durations and energies.

annihilation (such as a transition from state (1) to state (2)) or creation (such as

a transition from state (2) to state (3)) of solitons resulted in the transition of

the old soliton state in to a new soliton state with moderate noise level until the

power is increased high enough to provide the needed energy for every soliton to

stabilize.

Irrespective of the level of pump power it is formed, the integrated RIN noise

level of every solitonic state shows similar dependence on pump power as shown

in Fig. 6.3 (b). Every soliton state begins with moderate noise level before it

goes to a most stable solution and then becomes most unstable at the critical

points. The number of solitons in the new solitons state cannot be justified

only with quantization of soliton energy. In our experiment, this process repeats

itself up to maximum pump available power. Fig. 6.3(c) shows two types of

stabilizing soliton states. States indicated by (1) and (2) lose their stability with

increasing intensity of the dispersive waves after the most stable point. And the

ones indicated by (3) and (4) which move towards the stable point when a fraction
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of the pulse energy goes to dispersive wave increases, then it starts to decrease up

to the most stable point. As the pump power increases further, the intensity of

DW increases till transition to a new state is happened as usual. This shows that

interaction of soliton pulses is determined by the energy they have in addition to

its relative phase and separation.

Figure 6.3: Pulse and dispersive wave interaction: Shows relationship between
energy/pulse (a), Integrated RIN (b) and a fraction of energy going to dispersive
waves (c) as the pump power is scanned.

Interaction of these pulses can be considered as effective attractive or repulsive

forces created by some kind of potential which traps the temporal position of

the pulse as shown by the intensity distribution of the autocorrelation signal on

Fig. 6.4. As the pump power varied between 180 mW to 380 mW the state

transformed from single to double at 190 mW and then to four at 210 mW. A

significant change of temporal position on the 1st and 3rd AC signal peaks was

observed between 210 - 255 mW. And then a different bunch with four solitons

emerge. Similarly effective attractive and repulsive forces interplay before a three

soliton state emerge at a pump power of 380 mW.

The transition mechanism involves a strong interaction of solitons. One case is
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Figure 6.4: Temporal dynamics of soliton state transition: Autocorrelation signal
intensity distribution of states that are generated as the pump power is scanned
from 180 mW to 380 mW. It is taken in intervals of 15 mW.

through energy exchange between pulses (breather solution), a case for the state

transition from state (1) to state (2) in Fig. 6.3. Fig. 6.5 shows autocorrela-

tion, optical and RIN spectrum of a soliton state whose solitons are undergoing

energy exchange or competition repeatedly (the same case happens at the last

stage of Fig. 6.4). The state contains 6 solitons with stable and clearly resolved

autocorrelation peaks at a pump power of 400 mW. When this pump power was

increased to 405 mW the solitons start to attract each other and recombination of

autocorrelation peaks happen. The state starts switching back and forth between

Fig. 6.5 (a) and Fig. 6.5 (b). Such a process modulates the signal power with

a modulation frequency shown as a peak on the RIN spectrum. This increases

the intensity noise of the oscillator by a factor of five. Further increase 407.5

mW intensifies the interaction and annihilation of optical solitons take place and

the soliton changes to a new relatively stable state with three solitons at a pump

power of 410 mW. Three solitons are annihilated in the process due to noise in-

duced soliton interaction [131,135,151]. Note that: further transition mechanisms

are discussed in Appendix A.
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Figure 6.5: Energy exchange: Autocorrelation, optical spectrum and correspond-
ing RIN spectrum of a soliton state with energy exchanging solitons inside a
cluster.

In order to support and better understand our results, we have done numerical

simulations based on solving the generalized Schrödinger equation with the details

of numerical methods given on [47]. Our result shows the intensity noise or pulse

energy fluctuating in the cavity is affected by the relative strength of spectral

sidebands and the main soliton which can be controlled by the level of pump

power or nonlinearity similar to our experimental results. As shown in Fig 6.6,

the intensity of the sidebands increase with increasing pump power and at some

critical point the pulse structure starts to switch between two single pulse lasing

states periodically per round trip. Increasing the pump power further creates

periodically breathing solutions, as shown on Fig. B.5, before the dynamics

become chaotic. The pulse energy fluctuates before it jumps to another state.

Similar results can be obtained by scanning the nonlinearity of components as is

provided on Fig. A.5.
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Figure 6.6: Simulation results: (a) and (b) Evolution of the optical pulse spectrum
at the end of 350 cavity round trips for the indicated level of pumping powers.
(c) Pulse energy evolution in the cavity at different pumping powers. Evolution
dynamics of the optical spectra over hundreds of cavity roundtrips are shown in
(d)(g) for the power levels indicated in (c).
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Figure 6.7: Summary: Mechanisms of soliton state transformation as pump power
or nonlinearity in the cavity is scanned.

6.3 Conclusion

We have discussed the experimental formation and disappearance mechanism of

DM solitons inside a fiber oscillator as depicted in Fig 6.7. The measured noise

level (integrated RIN) of almost all soliton-like states showed similar a dependence

on the pump power. Energy per pulse and the relative intensity of generated

dispersive wave increase before a transformation takes place. Every transition

point is characterized by (and its arrival can be predicted by) relatively higher

noise level, which is likely due to the long-range soliton-soliton and the short-

range soliton-dispersive wave interactions, in addition to inherent bifurcations

arising a result of the boundary conditions imposed by the laser cavity. This

elevated intrinsic noise induces an irreversible formation or annihilation of DM

solitons in the oscillator. Considering the laser system as a heat bath and pump

power as a temperature [142], this critical phenomenon is similar to the first-order

phase transitions in statistical mechanics.
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Chapter 7

Direct control of mode-locking

states of a fiber laser

Parts of this chapter, primarily, Section 7.1 and Section 7.2.1, have been published

in [1] and reproduced here with permission from the publisher.

7.1 Introduction

The technological importance of passively mode-locked fiber lasers is well recog-

nized [34, 157]. In addition, mode-locking is of fundamental importance, since

it is inherently nonlinear [158–160] and constitutes a non-equilibrium steady

state [161]. The same nonlinearity that makes mode-locking possible ultimately

limits laser performance. In response, researchers have devised numerous ways

to manage nonlinearity. Prior to the seminal paper of Ippen, et al., in 1993 [162],

which introduced dispersion management to laser cavities, mode-locked fiber

lasers could hardly generate several-hundred femtosecond pulses with energies

of tens of picojoules. Dispersion management weakens nonlinearity by increas-

ing the average pulse duration. An alternative is to increase the mode area of

the fibers [163, 164]. Use of microstructured rod-type fibers has allowed much
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higher powers to be accessed [164]. However, reduction of nonlinearities is lim-

ited both in theory, because the instabilities are never eliminated, merely pushed

to higher powers, and often at the cost of generation of longer pulses and in

practice, because, e.g., there are practical limits to mode size. A complemen-

tary approach involves management of nonlinear effects directly [28], ranging

from use of negative (self-defocussing) nonlinearities [28, 165] to identification of

nonlinearity-resilient pulse propagation schemes. Milestones include demonstra-

tion of the wave-breaking-free laser [106] in 2003, the similariton laser in 2004 [52],

the all-normal dispersion laser [166] in 2008, supporting dissipative solitons [103],

and the soliton-similariton laser [47] in 2010, which is the only laser to date that

has two types of nonlinear waves propagating in the cavity [?]. While these devel-

opments have led to superior laser performance and unravelled new laser physics,

there is currently no possibility of detailed control over the mode-locking states

that the lasers support.

computer 
interface

DM

M

collimator A

collimator B

Port 2: 
30% BS isolatorλ/2

CBE SLM

G   

G
Yb-fiber

WDM

λ/2

λ/4

PD

optical characterization: 
spectrum and/or autocorrelation

Yes No

For patterns 
from 1 to N

End

Begin

Start with uniform 
initial SLM pattern 

Analyze spectrum and/
or autocorrelation

Modify SLM 
pattern

Proceed with 
new pattern

Proceed with 
old pattern

Save pattern

optical characterization: 
spectrum and/or autocorrelation

Improved?

Port 1: 
10%

λ/4

polarizer

Figure 7.1: Experimental setup: Schematics of the experimental setup compris-
ing of Yb-doped fiber, wavelength division multiplier (WDM), pump diode (PD),
10%-coupler, collimators A and B, 30% non-polarizing beamsplitter (BS), λ/2-
and λ/4-waveplates, polarizing isolator for unidirectional operation, and disper-
sive delay line with diffraction gratings (G), mirrors (M), D-shaped mirror (DM),
cylindrical beam expander (CBE) and spatial light modulator (SLM). The SLM
is controlled by a computer algorithm, which takes into account measured optical
spectrum or autocorrelation data. Main elements of the quasi-realtime control
algorithm are also shown. Adapted from [1] with permission.

Here, we report on direct control of the mode-locking states, nonlinear re-

structuring of each state, reversible and irreversible transitions between them,

Generation of arbitrary wave forms from a given soliton states or dissipative so-

lution, manipulation of pulse positions in a train of pulses and blue or red shifting
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of pulse spectral components based on algorithmic modulation or reshaping of the

pulse in the spectral domain directly inside the cavity. To this end, we use a spa-

tial light modulator (SLM) positioned in the Fourier plane of a zero dispersive

delay line in a fiber laser cavity. Use of fixed spectral filters to influence mode-

locking goes back to 1980s [167]. There are recent demonstrations of SLM-based

spectral filtering using amplitude modulation in picosecond fiber lasers [168,169].

Here we explore pulse dynamic and fully adjustable control on mode locking

states through amplitude and phase modulation on Fourier domain. We now

show that we can initiate or halt mode-locking, steer the mode-locking state to

more favourable, but difficult-to-reach states, prevent cw breakthrough instabil-

ity, automatically improve pulse shape, generate pulses as short as 40 fs, steer

between different cavity solutions, generation of different wave forms, tweezing

and manipulation of temporal position of pulses with in a bunch or bound multi-

pulse states and blue and red shifting of spectral components with in the optical

spectrum. Such applications enable the laser cavity to be a source of arbitrary

optical wave forms for coherent quantum control of biological, chemical, mag-

netic or physical nano scale processes, fundamental studies of dissipative cavity

solutions and its relation to other nonlinear far-from-thermodynamic equilibrium

processes in nature [31,170–173].

7.2 Experimental result

7.2.1 Adaptive filtering through amplitude modulation of

spectral combs

In order to demonstrate our approach, we have replicated the first wave-breaking-

free laser [106] and then modified it to include the SLM. We have chosen this laser,

since it offered an additional challenge. Even though mode-locked operation,

once adjusted, was robust, finding that state required laborious adjustment of

the waveplates and pump power to limit a persistent CW peak, which could not

be completely eliminated. Could we suppress this peak using the SLM only?
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Schematics of the experimental setup is shown in Fig. 7.1. The repetition

rate is approximately 40 MHz. The cavity comprises of ∼2.3 m-long passive fiber

corresponding to the lead fibers of two collimators, a 10%-coupler for monitoring

and a wavelength division multiplexer (WDM) for pump delivery. The gain fiber

is 30 cm-long Yb-doped fiber (Yb1200-4/125, nLIGHT, Inc.). The 980-nm pump

diode provides maximum 600-mW power, ∼500 mW of which can be delivered to

the gain fiber following losses at pump protection filters and the WDM. The lead

fiber of the collimator after the gain fiber is ∼10 cm. After the fiber section, the

beam traverses a 30%-beam-splitter, followed by a quarter and a half waveplate,

a polarizing beam-splitter, which converts polarization rotation into amplitude

modulation, a dispersive delay line and a final quarter waveplate that converts

the beam into elliptical polarization before coupling back into the fiber section.

Total cavity dispersion was set to +4000 fs2.

The SLM (Pluto, Holoeye, Inc.) was incorporated by replacing the end mirror

of the dispersive delay line. The beam incident on the SLM matrix is spectrally

spread along the horizontal direction with a resolution 25 pixels/nm. Each column

of pixels of the SLM matrix imparts a relative phase delay that can electronically

be adjusted over the 0− 2π range. The beam is optionally expanded by a cylin-

drical beam expander (expansion ratio of 1:3.2) to better fill the SLM aperture.

The grating pair partially acts as a linear polarizer and it is followed by another

polarizer. By including a half-wave plate between the SLM and the grating pair,

we convert the spectral phase modulation imparted by the SLM to amplitude

modulation. The modulation depth is adjustable through the half-wave plate.

The lowest and highest transmission are set to ∼ 20% and 64%, respectively.

The lower value is set conservatively by the losses that the laser can comfortably

tolerate. The upper limit is determined by the losses of the SLM matrix. Trans-

mittance of each spectral element can be independently adjusted to 180 equal

levels. Despite the losses of the SLM, typical power after gain fiber is 180 mW

and power coupled back into the fiber section is 13 mW at pump power of 400

mW. This is close to the typical efficiency for similar lasers, implying that the

presence of the SLM does not contract the accessible phase space of the laser’s

operation too much.

93



−1 0 1 2 3

0

0.5

1

Time Delay (ps)

A
C

 S
ig

na
l (

a.
u.

)

1010 1020 1030 1040 1050 1060
10−4

10−3

0.01

0.1

1

10

Wavelength (nm)

P
ow

er
 (

a.
u.

)

1020 1040 1060 1080 1100

10−3

0.01

0.1

1

Wavelength (nm)

P
ow

er
 (

a.
u.

)

(a)

(d)

1000 1020 1040 1060 1080
10−4

10−3

0.01

0.1

1

Wavelength (nm)

P
ow

er
 (

a.
u.

)

1000 1020 1040 1060

0.5

1

Wavelength (nm)

P
ow

er
 (

a.
u.

)

(b) (c)

0.8
1T

1
2

3

4

5

reve
rsi

ble tra
nsit

ions

T 1

2

3

4

5

T

T

T

T

−10 0 10 20 30 40

0

1

2

Time Delay (ps)

A
C

 S
ig

na
l (

a.
u.

)

1000 1020 1040 1060 1080

0

1

2

Wavelength (nm)

P
ow

er
 (

a.
u.

)

(e) (f)

original state

after forward transition

after reverse transition

original state

after forward transition

after reverse transition

0 2 4

0

0.5

1

Time Delay (ps)

A
C

 S
ig

na
l (

a.
u.

)

0 2 4

0

0.5

1

Time Delay (ps)

A
C

 S
ig

na
l (

a.
u.

)

1.414 × 40 fs 1.414 × 100 fs 1.414 × 55 fs

Figure 7.2: Experimental results for amplitude modulation: Control of mode-
locking states using the SLM: (a) Optical spectra corresponding to reversible
transitions from CW to mode-locking with CW peak to pure mode-locking. The
corresponding spectral filters applied by the SLM are shown at the top of each
panel. (b) Autocorrelations and (c) optical spectra corresponding to repeatable
irreversible transitions. (d) Autocorrelation trace of 40 fs-long pulses. Inset
shows corresponding optical spectrum. (e) Autocorrelation traces showing SLM-
based pedestal removal; inset shows corresponding optical spectra. Black (red)
lines before (after) filtering. (f) Elimination of undesired, characteristic spectral
structure for a wave-breaking-free laser operating near its stability limit in terms
of pulse energy. Autocorrelation trace is shown. Inset shows spectra before
filtering (black line) and after filtering (red line) along with the filter transmission
pattern. Adapted from [1] with permission.
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The fundamental capability of the SLM to transform a pulse is the same as

in its well-known usage outside the cavity [174, 175]. However, because of being

placed inside the cavity, its role is completely different. The SLM becomes an-

other cavity element that transforms the pulse nonlinearly and dispersively with

the major advantage of this transformation being dynamically reconfigurable.

Nevertheless, it is also constrained and cannot be made to impart an arbitrary

transformation, because it must comply with the stringent requirement that all

changes must balance each other at the end of each round-trip [28,176].

For simple tasks, such as disruption of mode-locking or preliminary and crude

shaping of prominent features in the spectrum, one can guess the required spectral

transmission profile after having acquired some experience. For a more complex

operation, the necessary spectral transformation profile is not easy to determine.

We have developed an iterative computer algorithm (Fig. 7.1), to which we can

specify various goals, such as reduction of autocorrelation width, maximization

of the autocorrelation’s peak or maximization of FWHM (or root-mean-square,

e.g.) of the spectrum. This iterative procedure is capable of testing a large

number (order of thousands) of transmission profiles in order to maximize a merit

function, which is supposed to characterize the desired outcome. For experimental

measurement and confirmation, either the optical spectrum or autocorrelation

can be used. Overall, this configuration constitutes a quasi-realtime feedback

loop between the laser, the SLM and the controlling computer.

For the sake of simplicity, we now describe a specific implementation of the

optimization algorithm that maximizes the FWHM of the spectral bandwidth.

Other variants, such as disruption of mode-locking (requiring minimization of the

spectral FWHM), elimination of a specific feature (by calculating the merit over

a limited portion of the spectrum) or maximization of another merit (such as the

autocorrelation width) are implemented similarly. Using a single numerical value

as merit has obvious limitations, but it allows us to vastly simplify the algorithm

and increase the iteration speed. The iterative process itself is primitive, but

robust and effective (albeit with some restrictions, discussed below): It scans the

spectrum from one edge to the other, experimenting with different phase values

for each spectral element. The transmission values are varied by scanning the
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phase value within from −π/16 to +π/16 with steps of π/96 around its previous

value. If any change results in an increase of the spectral bandwidth, the value

of that spectral element is updated. In other to minimize erroneous updates due

to naturally occurring fluctuations, the FWHM values are first averaged over 5

measurements, and total measurement takes 50-70 ms. The SLM matrix itself

can be updated within 20 ms. Thus, a full readout and reconfiguration cycle

lasts about 100 ms. While this is relatively fast, typically thousands of iterations

are made. Each optimization ranged from mere seconds or several minutes (for

simple tasks) to as much as 3 hours for an exhaustive search. We note that both

the algorithm and the data acquisition setup described here constitute a first

demonstration and can certainly be vastly improved by sophisticated algorithms,

such as those used in [177].

We first demonstrate the ability to initiate or halt mode-locking, followed by

suppression of an instability and finally detailed shaping of the spectrum (Fig.

7.2). We have found that a transmission profile with a local dip at the central

wavelength of the laser, surrounded by two neighboring, deeper minima (state

1 of Fig. 7.2a), is highly effective in disrupting mode-locking with only ∼ 10%

of reduction in transmittance at those wavelengths, even though the waveplates

were adjusted for self-starting mode-locking. In order to put this value into

perspective, we note that the same cavity could tolerate much higher losses (up to

90% was observed) in certain waveplate settings [106], when losses were spectrally

uniform. We repeatedly confirmed that mode-locking immediately restarted after

the SLM was set to uniform transmission (or some other profile, such as state 5

of Fig. 7.2a). Halting, restarting of mode-locking could be repeated indefinitely

at other mode-locking states that the laser exhibited at different pump power

and waveplate settings. Similarly, when the laser is in a non-self-starting mode-

locking state, mode-locking can be initiated by applying a narrow filter, which is

gradually broadened and then removed.

We show that one can suppress a commonly encountered instability, namely,

formation of a CW peak accompanying a mode-locked spectrum (state 2 in Fig.

7.2a) when the intra-cavity energy exceeds the level a single pulse can hold.

Further increases in nonlinearity lead to a bifurcation; most commonly the pulse
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breaks up into multiple pulses, less commonly, transitions into a noise-like state or

into a multi-wavelength state [160]. Even before such a bifurcation, the presence

of a CW peak leads to order-of-magnitude increase in intensity fluctuations of

the laser [122]. To illustrate this, we adjust the pump power and waveplate

settings for a self-starting mode-locked state with an accompanying CW state to

be formed when the SLM is set to a flat transmittance profile. We show that by

selectively reducing transmission of its central wavelength, the CW peak can be

reduced (state 3 of Fig. 7.2a), highly suppressed (state 4) and even completely

eliminated (state 5) by selectively inducing attenuation on intended spectral comb

or component.

The transitions shown in Figure 2(a) are completely reversible and indefinitely

repeatable. By switching the profile of the SLM, we can transition among all

5 states reliably and in either direction. From the physics point of view [130],

irreversible transitions are most interesting. We can indeed induce irreversible

transitions using the SLM controllably and repeatedly: By turning the pump off

and on, the laser always is placed in the same original state, so the experiment can

be repeated indefinitely many times. Upon execution of an SLM pattern sequence,

the laser transitions to a different state. However, upon application of the time-

reversed sequence, unlike the reversible transitions in Fig. 7.2(a), the laser ends

up at different mode-locking states at each realization due to fluctuations (noise)

present in the system (Fig. 7.2(b) and 7.2(c)). This setup is ideally suited to test

emerging theories about non-equilibrium systems [178].

A legitimate concern is whether the SLM introduces spurious optical phase,

deteriorating the pulse quality or excess intensity noise, both of which may not be

discernible from the optical spectrum. To check against the former, we dechirped

spectra outside of the cavity using a grating compressor for various cases. We were

able to obtain pulses as short as 40 fs, assuming a Gaussian deconvolution factor

when we optimized for minimum autocorrelation width (Fig. 7.2(d)). Given the

spectral width of 50 nm, the time-bandwidth product is 0.56, which is within 25%

of the transform limit. The pedestal is likely due to residual third-order dispersion

(TOD) and excess nonlinear phase shift. The second possibility is addressed by

close-up RF spectrum around the fundamental repetition frequency, which shows
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at least 90-dB (limited by measurement) suppression of sidebands. Thus, there

is no evidence of adverse effects on pulse shape or excess noise due to the SLM.

Finally, we demonstrate use of the SLM for advanced pulse shaping. Our

purpose here is to demonstrate the potential, rather than optimize this specific

laser’s output. Thus, we only provide generic examples. We first focus on clean-

ing up the pedestal for an intentionally chosen, highly structured spectrum (Fig.

7.2(e)). In our experience, such a spectrum corresponds to the edge of stability

of mode-locking. The SLM profile we converge to is a simple narrow (6 nm-wide)

band-stop filter (centred around 1030 nm), which transforms the laser to another,

less modulated spectrum. This example succinctly demonstrates that the nonlin-

earity and periodicity of the cavity means that even a small spectral modulation

with a profile that no human would likely guess can have large consequences.

As discussed above, our self-imposed target was to duplicate the hard-to-find

mode-locking state that is characteristic of the original wave-breaking-free laser

laser. We duplicate this state as recorded from Port 2 (Fig. 7.2(f); note the

similarity to Fig. 7.2 of [106]). We focus on suppression of the pesky structure

at the center, which contains about ∼ 20% of the total energy. The structure on

the blue edge is a characteristic feature of this mode-locking state, akin to similar

structures on all-normal-dispersion lasers [166]. As such, one should not attempt

to eliminate it; otherwise the mode-locking state changes completely. This time,

our algorithm converges to a more complex profile (top panel of the inset of Fig.

7.2(f)), which leads to excellent suppression of this feature, resulting in a spectral

width of 50 nm. The corresponding dechirped pulse duration is 55 fs, assuming

a Gaussian pulse, where the width and the size of the pedestal is similar to the

results in [106]. However, this state is now obtainable using a simple algorithm

controlling the SLM. Thus, we have met our original challenge of obtaining a

wave-breaking-free laser mode and also eliminating this pesky spectral feature

without active human intervention.
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7.2.2 Pulse manipulation by dynamic periodic linear spec-

tral phase mask in fiber oscillator

Next, we introduce spectral phase modulation to manipulate the optical tempo-

ral structures in a ring cavity, analogous to particle tweezing. Spatial optical

manipulation of particles is common practice in laboratories around the world

since 1970 [179] due to its important applications. Similarly, tweezing optical

solitons in time domain has gained interest due to its applications, such as pulse

shaping [175], in data flow management of optical communication [180], spatial

and spectral coherent control in nonlinear spectroscopy [181], for managing heat

effects in material processing [5], optical switching and manipulation of magne-

tization [182, 183] etc. The pioneering work for practicing of control of pulse

delay with an idea of ”fast and slow” light was enabled through the effects of

”spectral narrow resonance” created by radiation induced transparency. That

method requires a special propagation medium maintained at cryogenic tempera-

tures and a pulse signal with spectrum narrower than the resonance bandwidth of

the atomic transition [180,184]. By that, the researchers were able to induce a de-

lay of tenths of micro seconds between pulses. It should be noticed that nonlinear

pulse broadening imposes a trade-off between the signal spectral bandwidth and

resonance bandwidth in optical fibers, hence the delay induced by such process is

limited [180,185]. Another method is the optical manipulation of pulses by phase

modulation of the pumping source, or a carrier radiation, is recently reported in

passive resonator [131]. However, such method requires synchronization of the

phase modulation applied on the driving field and the cavity repetition rate for

tweezing the pulse. Here, we report a method with less degree of complexity that

enables manipulation of the temporal position of femtosecond optical solitons in-

side oscillator by directly applying dynamic periodic phase modulation mask on

its own spectrum.

In order to have effective control, we introduce the well-known zero dispersion

4-f pulse shaping configuration [175] to apply the spectral phase modulation. The

600 lines/mm grating is kept in the cavity for dispersion management with the
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Figure 7.3: Experimental setup for phase modulation: Schematics of dispersion
managed fiber oscillator with zero dispersion 4-f pulse shaping configuration used
for spectral phase modulation.

position of SLM on Fig. 7.1 replaced by a mirror. A single 1200 lines/mm effi-

cient transmitting grating performs angular dispersion. A cylindrical lens with

100 mm focal length converts the angular dispersion to a spatially separated fre-

quency components on to the surface of the SLM. The whole set up is called zero

dispersion in a 4-f configuration. Spatial holographic patterns or phase mask are

applied on the SLM to manipulate phase on the Fourier spectral components.

This configuration has a resolution of 5.5 nm per 45 pixels and introduces addi-

tional 15 percent insertion loss. The cavity net dispersion is intentionally kept

at about -9000 fs2. The cavity in such conditions generates multi-soliton states

exhibiting active matter like far-from-equilibrium thermodynamics governed by

long and short range interactions.

On the SLM, a blazed grating at fixed period with varying phase between

0 and 2π is applied to manipulate certain arbitrary soliton state. The laser

stays mode-locked while these patterns on the SLM are varied along a direction

perpendicular to the propagation of pulses such that it provides both discretely
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and continuously varying phase with time on the spectral components in Fourier

domain. Physically, the applied pattern imposes a linear phase variation in the

frequency domain, which is equivalent to a temporal shift of the waveform in the

time domain by an amount proportional to the slope of the linear phase variation.

Since the SLM has a finite diffraction efficiency, two collinear beams are produced,

one that has not been altered by the SLM and the other that was altered. The

altered one is temporally shifted with respect to the unmodified one, which is

similar to adding a temporally delayed replicate of a pulse.

It has been recently reported that solitons can be attracted towards local phase

maxima [131]. The pattern is scanned until some of the solitons in the cluster start

responding to phase gradient on the mask. Moving the mask patterns slightly

further from this point we able to decrease pulse separation by 5.2 ps (the case for

Fig. 7.3(a) and 7.3(b)), turn a stable state (the case for Fig. 7.3(c) and 7.3(d))

into an oscillatory state with a temporal separation of 1.65, which is similar to

particle motion under a harmonic-oscillator-like potential. We have been able

to induce creation and removal of additional pulses in addition to changing a

stable state into an unstable gas like soliton states and vice versa. What makes

this more surprising is that the mode locking is intentionally chosen to be not

a self-starting one. The observed dissipative temporal structures maintain their

existence not only by taking energy from the pump source but also supported by

the frequency shifts resulted from induced phase gradient [48,58].

A phase gradient on spectral combs is generated as the patterns on the SLM

move. This creates a blue or red shift on spectral components depending on

the increase or decrease of the phase gradient with time. Fig 7.4 shows a 310

THz frequency shift of relatively stronger spectral component. Such a purely

electronically controlled shift may find applications in selective excitation of cer-

tain energy levels in fluorescence spectroscopy or microscopy, and in nonlinear

harmonic generation [131,186–188].

Similar results were observed when the pattern on the SLM was slowly varied

at a constant speed. As the speed increases spontaneous symmetry breaking and
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Figure 7.4: Temporal tweezing of soliton: (a) Optical spectra and (b) corre-
sponding autocorrelation measurements of the soliton state as the blazed grating
pattern (c) on the SLM is scanned in discrete steps horizontally or perpendicular
to the propagation direction. (d) Optical spectra and (e) corresponding autocor-
relation signal of controllably changed into oscillatory soliton pulse state from a
stable state by discreetly applying periodic phase mask patterns (f) for respective
states indicated by the same color.

102



Figure 7.5: Frequency shifting: (a) Optical spectra and (b) corresponding au-
tocorrelation signal of soliton state as the blazed grating pattern indicated by
(c) on the SLM is scanned in discrete steps horizontally or perpendicular to the
propagation direction. The direction of motion of the patterns determines the
sign of phase gradient.
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self-reorganization of temporal structures happened similar to other natural phe-

nomena such as oscillatory chemical reaction or environment dependent change

in colour of chameleon skin [189]. The oscillator solution varies rapidly and when

the pattern on the SLM stop moving, the laser remains in a single solution. This

controlled temporal structuring of lasing states could have potential applications

in information storage and processing [?]. The fact that a single solution remains

in the steady state when a uniformly distributed constant phase pattern on the

SLM moves with constant speed indicates that the results are not as a result of

Doppler shift.

Figure 7.6: pulse splitting: Traces in (a) and (b) are the autocorrelations and
corresponding optical spectra of the soliton states as the period of holographic
blazed gritting on the SLM is varied. (c) and (d) show the autocorrelation and
corresponding optical spectra with (blue, blazed gritting of period 1) and without
the (red) linear phase modulation.

Pulse splitting is another interesting process that can be done with the same or

similar procedure. Highly varied, even arbitrary wave forms have been generated

outside laser cavities for applications like coherent control of quantum dynamics
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[181], manipulation of chemical reaction, nonlinear spectroscopy [189] and all-

optical magnetization switching [190]. The result in Fig. 7.5 (a and b) is obtained

when period of holographic grating are varied (from 5, 8, 10, 12, 15, 18, 20, 22,

25, 28, 30, 32, 35 discretely). A dwarf pulse is split and controllably pushed

away from the main soliton as the period is increasingly scanned. As this dwarf

pulse is pushed away it is strangled by the periodic boundary condition of the

cavity dynamics. Although the range of the different waveforms that can be

generated here are clearly limitedin our caase, Fig. 7.5(c and d) demonstrates

the possibilities of control.

7.2.3 Conclusion

In conclusion, we have demonstrated adaptive selection, controlled transitions be-

tween and individual restructuring of mode-locking states using an intra-cavity

SLM, generation of pulses as short as 40 fs with ease, manipulation of pulse shape

and positions including tweezing of soliton states and blue as well as red shifting

of stronger spectral components on optical spectrum of a pulse. The demonstra-

tions reported here provide merely a glimpse of what is possible. Clearly, various

practical applications can be imagined, such as improving laser performance, au-

tomated mode-locking [177], generation of an arbitrary optical waveform. We are

deeply motivated to use this capability to experimentally investigate bifurcations,

reversible and irreversible transitions, by selecting, steering, even competing for

various mode-locking states. Such studies can explore collective dynamics of dis-

sipative soliton molecules [103], Casimir-like pulse-to-pulse interactions [191], and

ultimately test emerging theories about far-from-equilibrium physics [130, 178],

where there is an acute lack of experimental systems that are well controlled.

We also note that an intra-cavity SLM may not be desirable for non-scientific

applications due to its cost and complexity. However, one can first determine

spectral amplitude and phase profile that addresses a specific need using SLM,

after which a custom dielectric filter with a corresponding profile can replace the

SLM.
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Chapter 8

Conclusion and future

perspectives

The basic premise of this thesis is to take a fresh look at the rich dynamics of

mode-locked lasers from two perspectives, simultaneously and for the first time,

to our knowledge. Namely, that the nonlinear dynamics of mode-locking of lasers

is rich and particularly so in the case of fiber lasers is well known. Furthermore,

it was shown that exploiting the rich and strong nonlinear dynamics can lead

to better laser performance, in addition to the fundamental interest in the topic,

was probably argued for the first time in the Ph.D. of Dr. F. Ö. Ilday, the advisor

for the present thesis. However, to date, there has been little appreciation and

no detailed study that provides a general perspective including both the far-

from-equilibrium dynamics of mode-locking and the nonlinear dynamics of mode-

locking. Previous efforts, led by the group of Dr. B. Fischer from Technion, Israel,

have mostly focussed on equilibrium and near-equilibrium dynamics. It is beyond

the scope of this thesis, also, to provide a comprehensive nonlinear and far-from-

equilibrium perspective, but it is our hope that the results presented here will,

first highlight the importance of and potential for new understanding of this

perspective and also provide an important starting point for the studies surely to

follow. We believe that such explorations will be interesting not for laser physics

per se, but, possibly even more importantly, mode-locked lasers will come to be
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recognized as versatile tools for highly quantitative studies of far-from-equilibrium

phenomena in general.

Below, we will recapitulate the main results of this thesis before presenting our

perspective for future studies. We first demonstrated an impressive performance

by generating 1.2-nJ and 62-fs linear-chirp-free pulses from a custom-designed

fiber oscillator simply by exploiting the nonlinear interplay between SPM and

TOD, thereby achieving energetic pulses without requiring external compression

(Chapter 3). The inclusion of a second DDL enabled us to tune TOD without

affecting the net GVD. Given that there are DDLs with very low insertion loss

suggests that we can even avoids the tradeoff in laser efficiency. These results

constitute a step forward in the design of custom oscillators, where the designer

can manipulate dynamics to reach a particular, preplanned output. Further ef-

forts can incorporate additional dynamics such as intra-cavity extreme nonlinear

broadening for generation of ultrashort pulses, intra-cavity Cherenkov radiation

generation for broadband spectral tunability and even intra-cavity harmonic wave

generation, among others.

An oscillator with two gain segments was used to manage the nonlinearity

map, i.e., both its strength and its distribution throughout the cavity (Chapter

4). We have shown that the pulse evolution can experience an effective negative

nonlinearity from the complex interplay of gain filtering, dispersion, SPM, four-

wave mixing, inverse four-wave mixing, and frequency chirp on the pulse, even

though all of the optical segments making up the cavity have strictly positive

nonlinearity coefficients. This idea can be exploited to push both the energy and

pulse duration limits of fiber laser systems in the future.

Next, we explored the characteristics of amplitude modulation on the pump

source and how it is transferred to the signal power inside the oscillator. Our

investigations covered all the major regimes of mode-locking, revealing quali-

tatively similar characteristics, despite large quantitative differences. Complex

interactions between optical pulses were observed at certain critical points. In-

creasing the pumping, i.e., effective nonlinearity, beyond these critical points
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resulted in phase transitions to new pulsing states, which were typically multiple-

pulsing states. Amplitude modulation near these critical points cause the laser

system to favor certain pulsing states among other, nominally coexisting, mode-

locked “macrostates”. Understanding the selection criterion of such phenomena

will definitely shade light on understanding the basic thermodynamics of self-

organization not only in the laser system under study, but possibly in a large class

of similar nonlinear systems and in testing emerging theories on non-equilibrium

systems [130,178] and various motif information processing systems [192–195].

In chapter 7, an intra-cavity spatial light modulator was used to further ma-

nipulate the pulse amplitude and phase dynamics. We have demonstrated an

adaptive selection of, controlled transitions between and individual restructur-

ing of mode-locking states. Generation of pulses as short as 40 fs were achieved

with ease, and manipulation of pulse shape and positions including tweezing of

soliton states and blue as well as red shifting of stronger spectral components

on optical spectrum of the pulse. The demonstrations reported here provide

merely a glimpse of what is possible. Clearly, various practical applications can

be imagined, such as improving laser performance, automated mode-locking [177],

generation of an arbitrary optical waveform. We are deeply motivated to use this

capability to experimentally investigate bifurcations, reversible and irreversible

transitions, by selecting, steering, even triggering competition among various

mode-locking states. Such studies can shed light on nonlinear and collective

dynamics of dissipative soliton molecules [103], pulse-to-pulse interactions [191].

A particularly interesting proposition is the so-called dissipative adaptation

theory forwarded by Dr. Jeremy England, et al. from MIT. Based on the idea

that a biological system is a physical system that has a fluctuating structure and

functionality, they proposed this theory, which was supported by thermodynamic

analysis of a chemical system. However, there is no experimental test to date.

We note that those systems are much harder to analyze experimentally, than the

mode-locked lasers discussed in this thesis. As we mentioned earlier, when the

nonlinearity is strong enough, i.e., when there is sufficient pump power, a laser

oscillator can support a number of coexisting mode-locking macrostates that can

be driven with the external source so that the system oscillates or rapidly switches
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between these macrostates. For instance, Fig. 8.1 shows the autocorrelation

signal of certain accessible macrostates at a pump power of 530 mW, driven by

an external sinusoidal modulation with 0.1 percent modulation depth and at a

frequency of 100 Hz. The grouping is done by choosing three states which have

almost the same or similar cavity life time. The average time spent in each group,

the corresponding average measured output power after the gain fiber, calculated

dissipated energy relative to the first group (group (a)), and repetition rate are

provided in Table 8.1. From these data, one can roughly state that the system

spends more of its time in the macrostates that dissipate more energy, which

is consistent with dissipative adaptation. However, we believe a lot has to be

done along this direction to connect quantitatively to this theory, but this is a

promising first result. In particular, it is important to measure how much of

the driving energy is dissipated by each available macrostate. Nevertheless, we

believe that this system is likely a more practical platform than the chemical

systems to test this theory [73,178].

Figure 8.1: Driven dissipative adaptation: Autocorrelation function of optical
soliton states undergoing dissipative adaptation inside fiber oscillator with an
external driving signal with 0.1 percent modulation depth at a frequency of 100
Hz.
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Table 8.1: Averaged parameters of the mode locking macrostates indicated on
Figure 8.1

State Time(s) Average power (mW) ∆E(pJ) Rep. rate (MHz)
(a) − 103.30 − 49
(b) 0.96 103.26 0.7 49
(c) 0.68 103.98 0.5 49
(d) 2.2 102.01 5.8 49
(e) 1.9 103.08 6.4 49
(f) 120.4 102.52 15.8 49

Shortage of reasonably well controlled and sufficiently quantitative experi-

mental platform for studies in far-from-equilibrium physics is broadly appreci-

ated [196], which renders testing of theories developed in the field difficult and

slows down progress. Dissipative soliton dynamics in mode-locked lasers is a rich

and promising phenomenon in this regard, particularly because measurements

of laser parameters, such as power, pulse duration, and especially dynamic phe-

nomena, such as fluctuations, transitions are relatively easy in comparison to

far-from-equilibrium phenomena in the nanoscale or biological systems. Further-

more, various optical techniques exist for control of laser systems, such as the

external pump modulation and the intra-cavity spatial light modulators, used

for the first time in this thesis for controlled transitions between mode-locking

states. The challenges are also numerous and include the necessity to adopt

non-equilibrium principles and terminology developed originally for chemical and

biological systems to laser physics. We believe that the present thesis has taken

a first step in this direction. The author of this thesis is strongly motivated to

continue his studies along this direction.
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Appendix A

Supplementary information for

chapter 6

A.1 Additional processes that can occur at a

critical point

A.1.1 Vibrating pulse

Interaction of solitons can create a harmonic oscillator like potential which form

oscillating temporal separation between pulses in a bunch as shown in Fig. B.1.

The pulses vibrate in a limited temporal position. The RIN of this system in-

creases by a factor of four when the pulses get closer than when they were at a

maximum separation.

Oscilloscope trace of the spatio-temporal dynamics of two soliton states is

shown on Fig B.1. It shows the intensity distribution of pulse power along the

cavity taken in 35 s with 12 Ghz photodiode and a 2.5 GHz oscilloscope. The

laser was operating at its third harmonics with a repetition rate of 148.4 MHz.

There are three bunch of pulses per cavity round trip. In the first dynamics the
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Figure A.1: Vibrating pulse: pulse vibration like harmonic oscillator can happen
at critical points.

three bunches were at a fixed position relative to each other. As the pump power

is increased these bunches could not maintain their relative temporal position due

to interaction. As the intensity of side bands gets stronger the pulses in the cavity

experience alternating effective attractive and repulsive forces between each other

as can be seen from Fig. B.1(b) and corresponding long range interaction is indi-

cated on Fig. B.2. Such jittering of the temporal position can be fundamentally

limiting quality of performance especially in telecommunication and information

processing application. Unlike the results of ref. [197], the RIN is associated with

the intensity of side band rather than the operating harmonics of the repetition

rate.

Figure A.2: Spatiotemporal dynamics of the two states indicated in Fig. B.1 (red
and blue), which indicates that the role of stronger dispersive wave on the long
and short range stability of the pulses in the cavity.
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A.1.2 Dynamic variation of pulse-to-pulse separation and

energy exchange between bound pulses

Formation of solitons with varying temporal separation as shown on Fig. B.3 is

another interaction induced by the force created due to intracavity interactions

[147] that causes particular state transition, which is from state (2) to state (3) on

Fig. 6.3(a). As the pump power increases state (2) was stabilized at around pump

power of 425 mW. At pump power 430 mW interaction characterized by none-

symmetrical autocorrelation peaks happened. The asymmetry in the AC signal

is due to temporal shape difference of the soliton cluster at time t and another

time t + τ . The soliton and dispersive wave interaction causes modulation on

the signal power with modulation frequency shown on the noise spectrum in Fig.

B.3(d). Eventhough this was explained in terms of interfering forward signal

and backward scattered brillouin stocks waves in [153, 198, 199], The presence of

isolator in the oscillator and the fact that every solitonic state showed similar

behaviour further supported the mechanism in chapter 6. Further increase of

the pump power to 432.5 mW intensifies the interaction and increases the noise

level of the oscillator as well. At 435 mW the noisy three soliton state was

transformed in to 7 relatively stable soliton state. Four more solitons are created

in the process.

Figure A.3: Autocorrelation, optical spectrum and corresponding RIN spectrum
of a soliton state with dynamically varying temporal separation which is the
transition mechanism between state (2) and state (3) on Fig 6.3(a).
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Fig. B.4 shows another interaction in DM soliton system. At 370 mW a

resonance peak at a frequency of 110 KHz on the RIN spectrum appears due to

the interaction of very close pulses on the last autocorrelation peak. Points on

this peak (inside the red ellipse on Fig. A.4(a)) were moving very fast over a very

small range. This motion of the indicated autocorrelation points was not due

to averaging of points in measurement of our instrumentation since the motion

was very clearly visible relative to other points on the autocorrelation. This

interaction increases the integrated RIN by factor of 4 from average integrated

RIN of a stable soliton state. When the pump power was increased to 375 mW

the system start to oscillate between Fig. A.4(a) and B.4(b). There appears

oscillation between the separation of second and third peaks indicated on the

onset of Fig. A.4(c). These autocorrelation peaks (2nd and 3rd) start to attract

and repel each other. Another resonance peak at 131 KHz appears when the two

peaks are close to each other and it disappears immediately after this point go

back to the largest separation point. We claim that this resonance peak is due to

soliton-soliton interaction. Soliton and soliton collision can generate dispersive

waves and the back action of a generated dispersive wave on the solitons electric

field creates power oscillation [121] which increases the integrated RIN of the

whole state by more than 6.5 fold. The oscillation of this peaks increases till

pump power reaches 385 mW. Further increments of pump power merges the 2nd

and 3rd autocorrelation peaks and the system stabilized in to a state indicated

by Fig. A.4(d). No resonance appears on the RIN spectrum and the integrated

RIN decreased by factor of 8 (value for non-interacting states).

Figure A.5 shows numerical simulation result of dynamics of a single soliton

cavity solution changed to a breather solution with bifurcation period of two

(red on Fig. A.5(b)) and then the bifurcation period increased to 24 (blue on

Fig. A.5(b)) before the soliton state is transformed in to new one as a result of

increase in nonlinearity on the gain segment. The new soliton state will follow

similar dynamics with increasing nonlinearity or pump power. When the number

of solitons in the state is more than two, Pulse interaction will create additional

complexity to the cavity stability dynamics, which is similar to what was discussed

in chapter 6.
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Figure A.4: Autocorrelation, optical spectrum and corresponding RIN spectrum
of a soliton state with energy exchange between very close solitons and with
oscillating temporal separations inside a cluster.

Figure A.5: Characteristics of pulse energy evolution per cavity round trip as
nonlinearity of a gain cavity segment is scanned (a and b). Corresponding optical
spectrum evolution (c-f for (a) and (g) for (b red) and (h) for (b blue)) of a single
soliton.
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A.2 Bound soliton states

The sum of two soliton pulses with temporal separation of τ and relative phase

difference of θ can be mathematically described in time domain as

f(t) = a(t) + a(t− τ) (A.1)

In frequency domain, it will be

f(ν) = a(ν) + a(ν)exp(i(2πντ))exp(iθ) (A.2)

f(ν) = a(ν)[1 + exp(i(2πντ − θ)] (A.3)

f(ν) = 2a(ν)cos[πντ − θ

2
]exp(πντ − θ

2
) (A.4)

Thus, the spectral intensity will be proportional to

s(ν) ∝ 4 | a(ν) |2 cos2[πντ − θ

2
] (A.5)

The same approach can be extended to three pulses

f(t) = a(t) + a(t− τ1) + a(t− τ2) (A.6)

In frequency domain

f(ν) = a(ν) + a(ν)exp(i(2πντ1))exp(iθ1) + a(ν)exp(i(2πντ2))exp(iθ2) (A.7)

f(ν) = a(ν) + a(ν)exp(i(2πντ1))exp(iθ1) + a(ν)exp(i(2πντ2))exp(iθ2) (A.8)

Considering the same pulse separation one can simplify the above equation to

f(ν) = a(ν)exp(i(2πντ1 −
θ2

2
))[2cos(2πντ1 −

θ2

2
) + exp(i(θ1 −

θ2

2
))] (A.9)

The spectral intensity will be

s(ν) ∝| a(ν) |2 [4cos2(2πντ1 −
θ2

2
) + 4cos(2πντ1 −

θ2

2
) ∗ cos(θ1 −

θ2

2
)] (A.10)
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The cosine forms of eqn. B.5 and B.10 produces modulation on the spectral

amplitude (| a(υ) |) The following figures show autocorrelation signal and opti-

cal spectrum simulation result of multi pulses with different intensity, temporal

separation, relative intensity and relative phase.

The effect of a relative phase difference between two soliton pulses is evident on

the symmetry of peaks (see the central part) on the optical spectrum (compare

Fig. A.6(a) and Fig. A.6(b) or Fig. A.6(c) and Fig. A.6(d)). The relative

intensity difference between the two pulses have effect on the modulation depth

of the spectrum. If a state jumps from a soliton state indicated by Fig. A.6(a)

to Fig. A.6(c) then energy exchange is taking place and a finger print on the

optical spectrum will be evident. This can be seen on central part of the optical

spectrum. There will be further evidence on the intensity of the autocorrelation

peaks if the energy exchange is not a total energy exchange.

Figure A.6: Effect of relative phase: Real time temporal profile, autocorrelation
and optical spectrum of two soliton pulses with separation of and relative phase
difference indicated on the legends.

Relative phase difference is evident on the symmetry of peaks on the spectrum
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((compare Fig. A.7(a) and Fig. A.7(b), compare Fig. A.7(d) and Fig. A.7(d) or

black and red graphs in general). No information about relative phase difference

can be found on the autocorrelation information. Variation in intensity cre-

ates shape and modulation depth defence on optical spectrum. Energy exchange

between peaks will create a shape change both in autocorrelation and optical

spectrum (compare Fig. A.8(a) and Fig. A.8(c) for energy exchange between the

first and third soliton pulses). Hopping of phase is evident on the symmetry of

the spectrum. If the symmetry of optical spectrum is progressively changing, it

implies that the relative phase between pulses is changing. The above simulation

results support the forwarded experimental result explanations in chapter 6.

Figure A.7: Effect of relative intensity on the shape of AC signal: Real time
temporal profile, autocorrelation and optical spectrum of three soliton pulses
with separation of 0.750 ps and 2.25 ps and relative phase difference indicated on
the legends.
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Figure A.8: Real time temporal profile, autocorrelation and optical spectrum of
three soliton pulses with separation of 0.750 ps and 2.25 ps and relative phase
difference indicated on the legends.
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