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November 2017

We certify that we have read this dissertation and that in our opinion it is fully

adequate, in scope and in quality, as a dissertation for the degree of Doctor of

Philosophy.
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M. Kemal Leblebicioğlu
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ABSTRACT

STABILITY AND CONTROL OF A COMPASS GAIT
MODEL WALKING WITH SERIES-ELASTIC ANKLE

ACTUATION

Deniz Kerimoğlu

Ph.D. in Electrical and Electronics Engineering

Advisor: Ömer Morgül

Co-Advisor: Uluç Saranlı

November 2017

Passive dynamic walking models are capable of capturing basic properties of walk-

ing behaviors and can generate stable human-like walking without any actuation

on downhill surfaces. The passive compass gait model is among the simplest of

such models, consisting of a planar point mass and two stick legs. A number of

different actuation methods have been proposed both for this model and its more

complex extensions to eliminate the need for a downhill sloped ground, balancing

collision losses using gravitational potential energy. In this thesis, we introduce

and investigate an extended compass gait model with series-elastic actuation at

the ankle towards a similar goal, realizing stable walking on various terrains such

as level ground, inclined surfaces and rough terrains. Our model seeks to capture

the basic structure of how humans utilize toe push-off prior to leg liftoff, and

is intended to eventually be used for controlling the ankle joint in a lower-body

robotic orthosis.

We derive hybrid equations of motion for this model and obtain limit cycle

walking on level and inclined grounds. We then numerically identify fixed points

of this system and and show numerically through Poincaré analysis that it can

achieve asymptotically stable walking on level and inclined ground for certain

choices of system parameters. The dependence of limit cycles and their stability

on system parameters such as spring precompression and stiffness for level ground

walking is identified by studying the bifurcation regimes of period doubling of this

model, leading to chaotic walking patterns. We show that feedback control on

the initial extension of the series ankle spring can be used to improve and extend

system stability on level ground walking. Then, we investigate and identify the

period doubling bifurcation regions of our model for spring precompression and

ground slope parameter leading to various maps that we utilize for rough terrain
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walking. Furthermore, we evaluate the performance of our model on rough ter-

rains by applying ground slope feedback controllers on the spring precompression.

Thereafter, we demonstrate that slope feedback along with stance leg apex veloc-

ity feedback control on the extension of the series ankle spring improves walking

performance on rough terrains.

The implementation of series elastic actuation on the ankle joint is realized

with an experimental instantiations of active ankle foot orthosis system for the

patients walking unnaturally and inefficiently with impaired ankles. Finally, we

integrate the active ankle foot orthosis platform with an active knee orthosis

platform where the experimentation results indicate that the integrated platform

can generate efficient walking patterns.

Keywords: dynamic walking, passive compass gait, series-elastic actuation, an-

kle actuation, bifurcation analysis, feedback control, rough terrain, ankle foot

orthosis.



ÖZET

PERGEL YÜRÜME MODELİNİN BİLEKTE SERİ
YAYLİ EYLEYİCİ İLE DENETİMİ VE KONTROLÜ

Deniz Kerimoğlu

Elektrik ve Elektronik Mühendisliği, Doktora

Tez Danışmanı: Ömer Morgül

İkinci Tez Danışmanı: Uluç Saranlı

Kasım 2017

Pasif dinamik yürüme modelleri, eğimli yüzeylerde herhangi bir eyleyici ol-

maksızın insan benzeri bir yürüyüş sergileyebilen ve yürüme davranışının temel

özelliklerini ifade edebilen modellerdir. Bunlar arasında en yaygın olanı, nok-

tasal bir gövde ve iki bacaktan oluşan pasif pergel yürüyüş modelidir. Lit-

eratürde bu modele ve bu modelin gelişkin örneklerine eklenen çeşitli eyleyiciler

ile eğimli yüzey gereksinimini ortadan kaldırarak yerçekim potensiyel enerjisi ile

çarpışma kayıplarını dengeleyen çalışmalar mevcuttur. Bu tez çalışmasında, ben-

zer bir amaca yönelik olarak, düz, eğimli ve engebeli yüzeylerde kararlı yürüyüş

gerçekleştiren, ayak bileğinde seri-elastik eyleyici kullanılarak geliştirilmiş bir

pergel yürüme modeli öne sürüp incelemekteyiz. Modelimiz insan yürüyüşünün

topuk kalkışı fazında gerçekleşen itme eyleminin temel prensiplerini yakalamayı

amaçlanmaktadır ve bir alt-vücut robotik ortezin ayak bileği kontrolünde kullan-

ması hedeflenmektedir.

Modelin karma dinamik denklemlerini türeterek düz ve eğimli yüzeylerde limit

çevrimi yürüme profilleri elde ettik. Ardından, sistemin sabit noktalarını nümerik

yöntemlerle belirledik ve Poincaré analiziyle, çeşitli sistem parametreleri için

modelin düz ve eğimli yüzeyde asimptotik kararlı bir şekilde yürüyebildiğini

gösterdik. Modelin, kaotik yürüyüş profillerine kadar varan, periyot katlanarak

çatallanma rejimlerini bularak düz zeminde yürüyüş için limit çevrimlerinin ve

kararlılıklarının yay sıkışması ve yay sabiti gibi sistem parametrelerine bağlılığını

belirledik. Bilekteki yay uzunluğu üzerine geribesleme denetleyicisi kulla-

narak düz zemin yürüyüşlerinde sistem kararlılığını geliştirebileceğimizi gösterdik.

Ardından, modelimizi engebeli yüzeyde yürütmek amacıyla kullandığımız çeşitli

fonksiyonları elde etmek için modelimizin yay sıkışması ve zemin eğimi parame-

trelerine bağlı periyot katlanarak çatallanma bölgelerini belirleyip inceledik.
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Ayrıca, yay sıkışması üzerinde yüzey eğimi geribesleme denetleyicileri uygula-

yarak modelimizin engebeli yüzeylerdeki yürüyüş performansını değerlendirdik.

Sonrasında, yay sıkışması üzerinde yüzey eğimi geribeslemesi ile birlikte temas

bacağının tepe noktası hızının geribesleme denetleyicisi uygulayarak engebeli

yüzeylerde yürüyüş performansının artırılabildiğini gösterdik.

Bilek rahatsızlığı dolayısıyla doğal ve verimli yürüyemeyen hastalar için bilek

ekleminde seri elastik eyleyici bulunan deneysel aktif bilek ayak ortez platformu

geliştirilmiştir. Son olarak, aktif bilek ayak orteziyle aktif diz ortezini entegre

ettik ve gerçekleştirdiğimiz deney sonuçlarından görüleceği üzere entegre platform

verimli yürüyüş profilleri oluşturabilmektedir.

Anahtar sözcükler : dinamik yürüme, pasif pergel yürüyüş, seri-elastik eyleyici,

ayak bileği eyleyicisi, çatallanma analizi, geri-beslemeli kontrol, bilek ayak ortezi.
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Chapter 1

Introduction

1.1 Bipedal Walking Models and Platforms

Animals generate locomotion through the neuro-muscular coordination of their

joints. Complete models of such systems would be excessively complex since they

would need to take into account multiple layers of chemical, electrical, neural,

muscular and mechanical processes, most of which are not fully understood with

all of their details. Moreover, the complexity of such models would not be suit-

able for mathematical analysis and subsequent design of controllers for similarly

structured robotic systems. In contrast, capturing locomotory behaviors using

as simple models as possible, while keeping their basic characteristics could be

sufficiently expressive, while also yielding a feasible basis for theoretical analysis.

In the context of bipedal locomotion, passive dynamic walking has been proposed

as a simple model of human walking [1, 2, 3]. In this context, mechanical prin-

ciples underlying human walking were captured as the interaction of momentum

and gravity in a simple and general fashion, with walking behaviors exhibited as

asymptotically stable limit cycles of a very low degree of freedom model lacking

any active components. In this work, we study the walking behaviour of the Pas-

sive Compass Gait (PCG) model and its possible extensions on different terrain

model such as level, slope and rough terrains.

1



Even though passive dynamic walking models can be asymptotically stable

even in the absence of any actuation or active control, the corresponding basins

of attraction tend to be rather small and a downhill sloped ground is needed to

replenish energy loss from toe collisions. In this respect, PCG models cannot walk

over level, uphill and rough terrains. To improve stability and to eliminate the

need for a sloped ground, a variety of active control methods have been proposed

for this model in the literature based on different mechanisms for providing energy

input to the system. Some of these methods are listed below.

• Impulsive energy injection following foot collision [4],

• Torque actuation on the hip or ankle joints [5, 6],

• Utilization of compliant legs with tunable properties [7].

For example, [5, 6] used passivity mimicking control with hip and ankle torque

actuation to obtain slope invariant walking even on positive slopes. In [4], the

authors used impulsive input along the support leg immediately before heel strike

together with torque on the support leg to achieve energetically efficient walking.

To achieve slope invariance and to increase the basin of attraction, [8] considered

passivity-based control, using total energy shaping, increasing the robustness of

the system to external disturbances and variations in ground slope.

Several studies on the compass gait also proposed methods of actuation

through ankle mechanisms. For example, [9, 10] considered including an explicit

model of the foot acting as a lever arm to provide thrust to the body through

the leg. Impulsive input applied at toe-off immediately before heel strike was

also studied separately by [11, 4]. In [7], the authors extended the PCG model

with radial spring actuation on the stance leg, activated during mid-stance by

instantaneously changing its stiffness. The authors in [12] considered paramet-

ric excitation using telescopic leg actuation with spring and damper to obtain

walking on level ground. A simple dynamic walking model with feet and series

elasticity at the ankle joint is developed in [13]. The authors in [13] show that the

trailing leg push-off which starts before the collision of the leading leg, reduces

2



collision losses. In [14], the authors introduced a spring mechanism on the ankle

joint of a PCG with foot in order to store part of the energy during the collision

and to release it during the double stance phase passively. A three degree of

freedom (DOF) spatial PCG model with under-actuated ankles and with only

one actuator in the hip joint is considered in [15]. The authors in [15] obtained

an open loop limit cycle and stabilized this limit cycle utilizing a discrete-time

linear quadratic regulator (DLQR) method which was shown to have larger basin

of attraction. In [16], the authors introduced a compass gait model with foot by

including a constraint mechanism in the hip joint and rotary springs in the ankles

which can walk with a minimal cost of transport. Symmetric and steady stable

gaits of the PCG model, which gradually evolves through a regime of bifurcations

and eventually exhibits an apparently chaotic gait is studied in [17]. In [18], the

authors analyzed walker designs with and without knees, as well as with different

foot structures to study bifurcation regimes of a passive walker model with knees.

In this respect, various passive and active dynamic walker prototypes have been

described in the literature. The authors in [19] presented a three-dimensional dy-

namic walker platform, actuated by adding two active joints on the ankle to

generate pitch and roll motions. The effects of ankle actuation on energy ex-

penditure, disturbance rejection and the versatility of passive walking with the

use of two mathematical models and one physical walker prototype is studied

in [20]. An autonomous, three dimensional bipedal walking robot with efficient

and human-like motions, consisting only of ankle actuation through a spring is

presented in [21]. In [22], the authors developed energy-effective humanoid robots

which utilize series elasticity at knee and ankle joints. In [23], the authors built

a three-dimensional passive-dynamic walking robot with two legs and knees.

There are only a few bipedal robots that are capable of walking outside of

highly controlled lab environments. This is due to the challenges arising from

the stability, controllability and energy efficiency of walking on rough terrains.

In this respect, the capabilities of an actuated PCG model on rough terrains

using a control strategy combining a toe-off torque just prior to ground collision

with a PD control loop on the desired inter-leg angle were investigated in [24].

The authors in [25] considered simulating a PCG model walking downhill on a
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rough terrain in order to investigate the relation between stability of walking

of the model with the increasing terrain roughness. It was shown in [25] that

the passive walker model can tolerate only small amounts of roughness on the

surface. The kinematics of compass walking are driven by the passive dynamics

of the model to a large extent, however adaptation to rough terrain conditions

and compensating for the perturbations require some form of active control. In

[26], the authors presented a downhill walking, hip actuated compass gait walker

by applying trajectory-based policy gradient algorithm where walking on rough

surface slopes up to 0.15 radians was achieved. In [27], the authors study the

robustness of a bipedal model on unknown terrains. For a desired walking pattern,

the authors define an error signal for the model, quantify the robustness by the L2

gain of the closed-loop system and optimize that L2 gain via a robust controller.

It was shown in [27] that their controller can increase the capability of the model

for traversing unknown terrains.

Several studies in the literature proposed methods of actuation through an

ankle mechanism on uneven terrains. For example, [24] extended the PCG model

with a torque input at the hip joint and an impulsive toe push-off applied prior

to ground collision. The authors in [24] conclude that their model, relying on

passive dynamic principles, is capable of walking on significantly rough terrains.

In [28], an open loop controller for an ankle and hip actuated compass gait biped

is designed for walking over rough terrain. The results in [28] state that the biped

robot can achieve walking on rough terrains. In [29], the authors introduced a

compass gait model with feet actuated via hip and ankle torques. The authors

conclude that the bio-inspired controller implemented on the model can generate

stable walking patterns on various range of downhill and uphill slopes. The

authors in [30] studied compass biped model with underactuated ankle walking

on slight uphill and downhill slopes where the model incorporates a constraint

mechanism at hip in order to lock the hip angle as the swing leg retracts to a

desired angle. The studies focusing on ankle actuation of compass gait model

over sloped and rough terrain mostly utilize hip joint along with ankle joint.

In our study, however, we only introduce series-elastic ankle actuation which is

related with our long term goal of developing active ankle foot orthosis systems
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where we consider ankle spring precompression and ground slope as the primary

parameters of interest.

1.2 Orthosis and Prosthesis Platforms

In this thesis, we propose to use a series-elastic actuation structure on the com-

pass gait model to provide thrust during the push-off phase of walking. Our

motivation for studying the effects of an actuated ankle comes from our longer

term goal of implementing actuated ankles for powered lower-extremity robotic

orthoses. Such orthoses seek to eliminate ambulatory limitations of individuals

who have lost function in their lower extremities, providing increased mobility.

Existing research in this direction, however, almost exclusively focuses on restor-

ing knee and hip joint functionality. The actuated ankle joint, despite its key role

for the energetics and stability of human walking, is only considered for exoskele-

tons designed for power augmentation. Consequently, the lack of actuated ankle

joints in robotic orthoses limits their energetic efficiency and results in unnatural

walking patterns, possibly impairing their utility and adoption. In light of these

observations, our study seeks to understand the impact of series-elastic actuation

(SEA) for an Ankle Foot Orthosis (AFO) on walking dynamics, towards eventual

integration with a powered robotic lower-body orthosis. In this respect, an active

AFO prototype is developed with the objective of utilizing passive energy storage

components in conjunction with actuators in the ankle joint, employing natural

dynamics of walking.

Series elastic actuation, wherein a position controlled actuator is used in series

with a passive spring, has been used by the robotics community to achieve efficient

and high bandwidth force control [31]. Such mechanisms received particular

attention in the legged locomotion community, motivated by similarly compliant

mechanisms adopted by muscles and tendons as well as the success of compliant

models as accurate representations of locomotory tasks. SEA controls orthotic

joint stiffness and damping for plantar and dorsiflexion ankle rotations and they

are primarily used for portable, complementary assistive AFO actuation. The
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study explained in [32, 33] introduces a portable wearable device for the ankle-

impaired individuals that can be used in specific gait tasks such as walking in

unstructured environments, modulating speed, climbing stairs, etc. And rather

than using just active elements, the peak power required by the motor during

push off can be decreased by using both active and passive elements. In [34], the

authors used a force controllable SEA to control the impedance of the orthotic

ankle joint throughout the walking cycle to treat the drop-foot gait disorder. In

[35], the authors developed an active ankle foot prosthesis (AAFP) which utilizes

SEA to prevent the need for a large and heavy impedance-controlled motor.

Using both series and parallel elasticity, [36] developed an AAFP that fulfills the

demanding human-like ankle specifications and decreases the metabolic cost of

amputee locomotion compared to a conventional passive-elastic prostheses.

1.3 Contributions of the Thesis

The novel contributions of this thesis can be summarized as follows. Firstly, we

model the action of a series-elastic actuation mechanism on the PCG model by

adding a radial spring at the ankle, obtaining stable walking on level ground

for large ranges of model parameters. Seeking to model the function of human

ankle, the proposed model is simpler than alternatives in the literature, with only

a linear spring and point foot to provide thrust during a non-instantaneous toe

push-off phase. The spring is assumed to be compressed slowly during the stance

phase and released immediately after heel strike. Then, we thoroughly explore

and investigate the effects of ankle spring parameters on walking by deriving

the hybrid dynamics of the model, finding and characterizing the stability of

fixed points and performing parameter dependent stability analysis via Poincaré

methods for level ground walking. In a real platform, since the SEA would

be used to adjust the precompression of the spring, we focus our analysis on

the dependence of stability on this spring precompression parameter. As we

increase the amount of precompression, we inject more energy into the model

and observe stable, period doubling bifurcations, chaotic and eventually unstable

gaits. This study on energy injection into the model assumes the precompression
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to be chosen in an open-loop manner, and hence does not yield stable gaits for all

velocities. To address this issue, we propose an active feedback controller on the

spring precompression which can stabilize gaits that were previously period 2n

(n = 1, 2, 4, 8, ...,), chaotic and unstable gaits, reducing them to regular, period-

one walking gaits. The proposed controller uses forward velocity feedback to

perform once-per-step adjustments on the spring precompression. Computing

the eigenvalues of the return map Jacobian, we show that the controller not only

improves the stability of the walking model across a large range of precompression

values, but also provides a control policy to achieve, robust walking for desired

speed and step length values from a large range.

Second, we extend the capabilities of the ankle compass biped model to walk

on a large range of downhill and uphill ground slopes and eventually on rough

terrain. The model can walk in a stable manner on downhill and uphill slopes

up to −3.9o to +4.45o, respectively. We, then obtain a map of stable walking

regions with different periodicities as a function of spring precompression and

ground slope. Moreover, we also find eigenvalues as well as gait velocities for all

period-1 stable regions. These maps are utilized in order to implement a ground

slope feedback controller on the ankle spring that can achieve stable walking

on rough terrain. We, then characterize locomotion performance over terrains

with gradually increasing roughness profiles. We observe that the ground slope

feedback controller performs better over the less rough terrains. Furthermore,

the locomotion performance is enhanced by applying stance leg velocity feedback

along with the ground slope feedback.

Finally, our results provide a step in understanding parametric design and

stability trade-offs in achieving dynamic walking with series-elastic actuation on

the ankle. Towards an implementation of the principles developed in this thesis,

an experimental instantiation of an active AFO system was also developed. We

have also been able to integrate this active AFO with an active knee orthosis

system. Our initial observations on able bodied individuals have shown that the

assistive torque generated by the SEA propels the body forward while decreasing

energy loss due to ground collision.
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This thesis is organized as follows. In Chapter 2, we introduce the serially-

actuated compass gait model, describing its underlying assumptions and the re-

sulting equations of motion. In Chapter 3, we use Poincaré methods to identify

limit cycles of the model for a specific choice of model parameters, and subse-

quently perform parameter dependent stability analysis leading to our investiga-

tion of bifurcation regimes of the model. Then, we propose the stance leg apex

velocity feedback control on the spring precompression to stabilize otherwise un-

stable limit cycles. Chapter 4 continues with spring precompression and ground

slope dependent stability analysis leading to useful versions of spring precompres-

sion versus ground slope map. Chapter 5 introduces walking on rough terrains via

the ground slope based feedback control on the spring precompression. Then, the

performance enhancement of rough terrain walking via the ground slope feed-

back along with stance leg velocity feedback on ankle spring in presented. In,

Chapter 6 we introduce active AFO platform and present the experimental re-

sults. Then, we demonstrate the integration of the active AFO and active knee

orthosis systems and consequently present experimental results showing that the

integrated system can generate efficient walking patterns. We conclude the thesis

in Chapter 7.
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Chapter 2

The Ankle Actuated Compass

Gait Model (AACG)

In this chapter, we first review the equations of motion and modeling assumptions

for the Passive Compass-Gait (PCG) model. We then propose a series elastic

ankle actuation method for the PCG model, resulting in the definition of our

Ankle-Actuated Compass Gait (AACG) Model. This is followed by the derivation

of the hybrid dynamical equations of motion for the new model. Subsequently, we

illustrate representative locomotion trajectories for this system over level ground.

2.1 The Passive Compass Gait Model

The passive compass gait model is one of the simplest models of bipedal locomo-

tion, consisting of two rigid legs without knee or foot components, connected by

a frictionless hinge at the hip joint as illustrated in Fig. 2.1.

The motion of the PCG model is restricted to two dimensional sagittal plane.

A point mass M is situated at the body, which coincides with the hip joint

connecting two identical rigid legs of length l. Each leg also has a point mass m
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Figure 2.1: The passive compass gait model.

centered on the leg. The system has no actuation, and hence must walk down a

ground with slope φ. The motion of the PCG model is constrained in the sagittal

plane and consists of the following stages:

• Swing: During this stage, the hip joint pivots around the point of support

on the ground of its support leg. The other leg, called the nonsupport leg

or the swing leg swings forward.

• Collision Event: This occurs instantaneously when the swing leg touches

the ground and the previous support leg leaves the ground.

During walking, the impact of the swing leg with the ground is assumed to be

slipless plastic. This implies that during the instantaneous transition stage:

• The model configuration remains unchanged,

• The angular momentum of the model about the impacting foot as well as

the angular momentum of the pre-impact support leg about the hip are

conserved. These conservation laws lead to a discontinuous change in the

mass velocities.

Similar to other planar biped models lacking knee joints, the swing leg is
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assumed to be sufficiently retracted to clear the ground, returning to its original

length prior to the ground collision.

During the swing phase, the model configuration can be described by θ :=

[θn, θs]
T , where θn and θs are the angles of non-stance and stance leg with the

vertical (counterclockwise positive), respectively (see Fig. 2.1). The state vector

q associated with the PCG model is then defined as

q := [θ, θ̇]T = [θn, θs, θ̇n, θ̇s]
T . (2.1)

The governing equations for the PCG model consist of nonlinear differential

equations for the swing stage, together with algebraic equations for the collision.

Since the model is well studied in the literature, we only give the equations of

motion of PCG model as follows. For exact derivations, the reader is referred to

[6]. During the swing phase, system trajectories satisfy

M(θ)θ̈ +B(θ, θ̇)θ̇ +G(θ) = 0, (2.2)

where M(θ) is the 2× 2 inertia matrix given derived as

M(θ) :=

[
(l2m)/4 −(1/2)l2m cos (θs − θn)

−(1/2)l2m cos (θs − θn) (1/4)l2(5m+ 4M)

]
, (2.3)

B(θ, θ̇) is the 2× 2 centrifugal coefficient matrix derived as

B(θ, θ̇) :=

[
0 (1/2)l2mθ̇s sin (θs − θn)

−(1/2)l2mθ̇ns sin (θs − θn) 0

]
, (2.4)

and G(θ) is the 2× 1 vector of gravitational torque components derived as

G(θ) :=

[
(1/2)lmg sin (θn)

−(M1 + (3/2)lm)g sin (θs)

]
. (2.5)

During the instantaneous collision, the swing leg touches the ground and the

support leg leaves the ground. For an inelastic, non-sliding collision of the foot

with the ground, the angular momentum of the model is conserved during the
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collision. This allows us to linearly relate the post-impact and the pre-impact

angular velocities of the model with

θ̇(T )
+

= H(θ(T ))θ̇(T )
−
, (2.6)

where θ̇(T )
−

and θ̇(T )
+

are the angular velocities just before and after the

transition that takes place at time t = T and H(θ(T )) is given as

H(θ(T )) :=

[
m−4(m+M) cos(2(θs−θn))
2 cos(2(θs−θn)m−3m−4M

2m cos(θs−θn)
2 cos(2(θs−θns))m−3m−4M

− 2(m+2M) cos(θs−θn)
2 cos(2(θs−θn))m−3m−4M

m
2 cos(2(θs−θn))m−3m−4M

]
. (2.7)

Once the transition event occurs, stance and swing legs are renamed and the

system proceeds with the same swing dynamics as the previous stride.

2.2 Modelling Assumptions for the AACG

Model

During normal human walking, the ankle torque is transmitted to the leg through

the lever arm of the foot and the resulting force on the body depends on the

internal dynamics of the leg. Nevertheless, a sufficiently accurate model can

still be obtained if the masses of both the leg and the toe, together with ankle

kinematics are assumed to be negligible, allowing a direct model of the ankle

torque as a radial force on the leg as shown in Fig. 2.2. Based on this observation,

our model will represent the foot as a point contact, and the action of ankle joint

as a linear force component acting along the leg. The resulting serially-actuated

active prismatic joint will then be used to compensate for energy losses due to

ground collisions during toe push-off.

This assumption leads to our simplified model, which we call the Ankle-

Actuated Compass Gait (AACG) model, shown in Fig. 2.3. It consists of a point

mass M modeling the torso, to which two legs of length l with small mid-length

masses m are attached. For the stance leg, we assume that a linear ankle spring

with stiffness k and rest length ro is available and can be engaged before the leg
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τ

Figure 2.2: Modeling of the action of ankle torque τ as a radial force F on the
body.

lifts off. The length of the spring, r is constrained with r > 0, capturing the uni-

directional nature of heel contact with the ground. The remaining configuration

variables θs and θn represent the angles of the supporting and non-supporting leg

angles relative to the vertical, respectively and ptoe denotes the position of the

non-stance toe. The AACG model is constrained to planar walking with sloped

ground and the angle for ground slope is denoted by φ whose negative and posi-

tive values respectively correspond to downhill and uphill slopes as shown in see

Fig. 2.3.

M

m m

l/2
l/2

l/2

l/2

r0, k

-θs
θn

r
ptoe

x

y

φ

Figure 2.3: The Ankle-Actuated Compass Gait Model.

For normal, steady-state walking, the AACG model is assumed to go through

two phases, single support and double support, separated by an infinitesimal
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“collision event” to capture the effects of weight transfer from one foot to the

other as shown in Fig. 2.4. During the single support phase, the AACG model

exhibits the dynamics of a double pendulum similar to the standard PCG model.

The supporting leg is in contact with the ground and the other leg is free to swing,

with the stance leg spring assumed to be locked with r = 0, capturing the effect

of human heel contact with the ground. Similar to the standard PCG model, we

ignore foot scuffing collisions occurring at the instance when swing leg passes the

stance leg. The single support phase ends when the swing leg comes into contact

with the ground ahead of the stance leg.

Since the collision with the ground is slip-free and inelastic, it preserves con-

figurations, but results in a discrete change in velocities due to impulsive collision

forces. Following the collision, the standard PCG model performs an immedi-

ate weight transfer and resumes with the subsequent single support phase. The

AACG model, however, follows the collision with a non-instantaneous double

support phase, wherein both legs remain on the ground and a “precompressed”

ankle spring in series with the trailing stance leg is released. This results in a for-

ward thrust supported by the fixed trailing toe, with the front leg pivoting freely

around its newly acquired toe contact. The ankle spring continues to extend until

it reaches its rest length (which we also refer to as the spring precompression),

at which point the trailing stance leg lifts off and the spring is brought back to

r = 0 in preparation for the next toe push-off. The system then continues on to

the next single support phase. Fig. 2.4 depicts the two phases of the model as

well as the collision event. The following sections present models associated with

each phase.

2.3 Dynamics of The Single Support Phase

The single support phase for the AACG model has the same structure as the PCG

model, with identical equations of motion. We parameterize the two dimensional

configuration space in this phase with the angles of the support and non-support

14



Single Support Phase Collision Event Double Support Phase

t−c

fixed
moving

Fx

Fy

φ

t+c

d

Figure 2.4: Hybrid phases of walking with the Ankle-Actuated Compass Gait
Model. The collision event is instantaneous and is modeled with a discontinuous
change in system velocities.

legs to yield the definition

qss := [θs, θn]T , (2.8)

where qss is the configuration vector for single support phase. Detailed derivations

for the dynamics during the single support phase have been extensively covered

in the literature and have been presented in Section 2.1.

2.4 The Collision Map

When the swing leg collides with the ground, the AACG model experiences im-

pulsive forces, resulting in an instantaneous change in system velocities, while

the model configuration remains unchanged. However, unlike the standard PCG

model, both legs remain fixed on the ground for the AACG model and the angular

momentum of the system is no longer conserved around either toe. Consequently,

we fall back to Lagrangian methods with impulsive forces, similar to the methods

used in [37], to derive the post-collision velocities. This method uses the uncon-

strained, three degree of freedom (DOF) AACG model with a released spring

shown in Fig. 2.3 and identifies impulsive constraint forces on the swing toe that

would bring its velocity to zero.
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The three dimensional configuration space of the system during this instanta-

neous collision phase can be defined as

qc := [θs, θn, r]
T . (2.9)

Impulsive forces experienced by the swing leg during the collision event are illus-

trated in the middle diagram in Fig. 2.4. Writing the system kinetic and potential

energy expressions as a function of qc, we first obtain the Lagrangian, which is

then used to derive the equations of motion

Mc(qc)q̈c + Bc(qc, q̇c)q̇c + Gc(qc) = JTc (qc)FIδ(t− tc) , (2.10)

that remain valid only instantaneously with t ∈ [t−c , t
+
c ]. Here, the Dirac delta

function δ(t − tc) is used to represent the impulsive forces acting on the swing

toe at t = tc, where tc is the instance of collision. The left side of the equation

captures the continuous dynamics of the three DOF model, detailed derivations

are given in Appendix A.

Mc(qc) is the 3×3 mass matrix, Bc(qc, q̇c) is the 3×3 matrix which represents

Coriolis forces and Gc(qc) is the 3× 1 vector which captures gravitational forces.

The transposed Jacobian JTc (qc) is a 3 × 2 matrix which maps velocities from

swing toe coordinates to generalized coordinates and FI := [Fx, Fy]
T is a 2 × 1

vector which represents external impulsive forces along x and y axes acting on

the system during collision.

Solving for system accelerations, we have

q̈c = Mc(qc)
−1
(
JTc (qc)FIδ(t− tc)−Bc(qc, q̇c)q̇c −Gc(qc)

)
, (2.11)

where Mc(qc) is assumed to be invertible.

Model velocities before and after the collision are related through the integral

of these dynamics, yielding∫ t+c

t−c

q̈cdt =

∫ t+c

t−c

Mc(qc)
−1
(
JTc (qc)FIδ(t− tc)−Bc(qc, q̇c)q̇c−Gc(qc)

)
dt , (2.12)

where t−c and t+c represent time instants just before and after collision, respec-

tively. Since qc is differentiable and q̇c is continuous, the non-impulsive terms
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Bc(qc, q̇c)q̇c and Gc(qc) vanish in the infinitesimal integration which takes place

from time t−c to t+c . Since configurations remain continuous, the integral on the

left hand side also reduces to the difference in configuration velocities. Hence,

the result of the integration is equal to the post collision velocities and the effects

of the non-instantaneous variables are cancelled yielding the following simplified

collision map

q̇c
(
t+c
)
− q̇c

(
t−c
)

= Mc(qc(tc))
−1JTc (qc(tc))FI , (2.13)

where q̇c(t
−
c ) and q̇c(t

+
c ) denote system velocities just before and after the colli-

sion, respectively. For simplicity, we define q̇c(t
−
c ) as q̇−

c and q̇c(t
+
c ) as q̇+

c from

now on. In order to find this unknown collision force, we impose the constraint

that the swing toe must come to rest following the plastic collision. Forward kine-

matics yields the swing toe velocities as a function of the generalized coordinates

as

[
ẋtoe

ẏtoe

]
=

[
r cos θs −l cos θn sin θs

−r sin θs l sin θn cos θs

]
θ̇s

θ̇n

ṙ

 = Jc(qc)q̇c . (2.14)

The plastic collision requires that post-collision toe velocities become zero, which

can be expressed with the constraint

Jc(qc)q̇
+
c = 0 . (2.15)

Combining (2.13) and (2.15), we have

Jc(qc)
(
q̇−
c + Mc(qc)

−1JTc (qc)FI

)
= 0 , (2.16)

which can be solved for FI , which yields the final solution for post-collision con-

figuration velocities as

q̇+
c =

(
I−Mc(qc)

−1JTc (qc)
(
Jc(qc)Mc(qc)

−1JTc (qc)
)−1

Jc(qc)
)
q̇−
c = Hc(q

−
c )q̇−

c .

(2.17)

Here, we assume that Jc(qc)Mc(qc)
−1JTc (qc) is invertible. We note that Mc(qc) is

a symmetric positive definite matrix which is assumed to be invertible. Hence, we

have rank(Jc(qc)Mc(qc)
−1JTc (qc)) = rank(Jc(qc)). From (2.14), it easily follows
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that when θs − θn 6= π/2 or r 6= 0, we have rank(Jc(qc)) = 2, which implies

that Jc(qc)Mc(qc)
−1JTc (qc) is invertible. Since these conditions always hold in

our system, it follows that Jc(qc)Mc(qc)
−1JTc (qc) is also always invertible.

Detailed expressions for general form of Hc, which is a 3× 3 matrix capturing

a general collision map with arbitrary initial states for the ankle spring, are given

in Appendix A. In this paper, we focus on the AACG model with the ankle spring

activated right before the collision, meaning that we have r− = 0 and ṙ− = 0.

This simplifies the collision map to

ṙ+ =
2ml sin(θ−s − θ−n )θ̇−n − (3m+ 4M) sin(2(θ−s − θ−n ))θ̇−s

7m+ 8M + 3 cos(2(θ−s − θ−n ))
, (2.18)

which is the form we use for all our simulations. Note that we only need to

compute ṙ+ since the system has only a single degree of freedom, the spring

length, during double stance.

2.5 Dynamics of the Double Support Phase

During the double support phase, both legs maintain contact with the ground

and the ankle spring for the trailing leg spring is activated, resulting in a model

with only the single, prismatic ankle DOF, r. The remaining joint variables are

constrained by the closed kinematic chain of the legs as shown in Fig. 2.3. The

single dimensional configuration space associated with the double support phase

is hence defined as

qds := r .

The leg angles, θs and θn, are kinematically related to the ankle extension with

θs = −π/2 + arccos(
d2 − l2 + (l + r)2

2d(l + r)
) + φ,

θn = π/2− arccos(
d2 + l2 − (l + r)2

2dl
) + φ,

where φ is the ground slope and d is the distance between the toes that is fixed

at the moment of collision and is given as,

d = 2lcos(π/2− θn + φ). (2.19)
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The dynamics of this phase is given in appendix in detail. This phase contin-

ues until the ankle spring becomes fully extended, having transferred all of its

potential energy into the system. At that point, the double support phase ends

and the spring length is brought back to its precompressed state with r = 0 in

preparation for the next collision. The prismatic joint is then locked, and the

trailing stance leg ceases contact with the ground. The model then transitions

into the next single stance phase as shown in Fig. 2.4. Prior to this transition,

stance and swing legs are renamed, using the same single stance dynamics as the

previous stride. All of our results in subsequent sections are based on numerical

integration of these dynamics through one or more strides.

2.6 System Trajectories

Having derived all of the components necessary to obtain the trajectories of the

hybrid dynamics for the AACG system, we used Matlab to numerically integrate

its equations of motion. The main reasons for demonstrating these simulation

results are the following. First, we want to show the possibility of obtaining a

stable periodic walking gait on level ground, which is not possible in PCG model.

We also want to show the effect of impact collision where the continuous phase

variables (θs, θn) do not change, but a discontinuity occurs on system velocities

(θ̇s, θ̇n). Our simulations in this thesis use M = 1kg, m = 0.01kg and l = 1m to

illustrate the behavior of the AACG model. Fig. 2.5 shows an example trajectory

for the AACG model with spring stiffness k = 500N/m and spring rest length

r0 = 0.014m, starting from an initial condition within the single stance with

θs = 0, θ̇s = −0.364, θn = −0.011, θ̇n = 1.328 for level ground φ = 0. For this

example, model trajectories converge to a limit cycle, sustaining stable locomotion

across level ground.

Fig. 2.6 shows the length of the ankle spring during the double support phase

for the same simulation. As shown by the top plot, the spring starts extension

after collision, injecting its potential energy into the system until it reaches its

rest length of r0 = 0.014m. The derivations and results given here are presented
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Figure 2.5: Example trajectories for the Ankle Actuated Compass Gait model
with M = 1kg, m = 0.01kg, l = 1m, k = 500N/m and r0 = 0.014m. Trajectories
of both the stance leg (blue) and the swing leg (red) are shown.

in [38].
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Figure 2.6: Ankle spring length (top) and extension speed (bottom) for the AACG
model. The spring is only active during the double support phase.
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Chapter 3

Stability and Control of Walking

with the AACG Model over the

Level Ground

In this chapter, our aim is to perform stability analysis on our proposed model

by applying Poincaré methods. Then, we investigate the stability of the model

with respect to various system parameters. Finally, we extend the stability of the

model by applying a feedback control on the ankle spring.

3.1 Periodic Walking Gaits and Apex Return

Map

We begin our analysis of AACG walking behaviors by identifying periodic walk-

ing gaits, which corresponds to limit cycles of AACG model, when all system

parameters, including the precompressed spring length, are fixed. For simplicity,

let us define the initial swing and support as Leg A and Leg B, respectively. To

demonstrate the existence of a limit cycle corresponding to a periodic walking

gait, indicating different phases of walking behaviour, we illustrate a simulation
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result as given in Fig. 3.1 where trajectories for only one leg (leg A) are shown. At

the point marked with 1, the swing leg (leg B) collides with the ground, resulting

in a discontinuous change in velocities. Subsequently, the ankle spring in leg A

decompresses until point 2, which is when the ankle spring in leg A lifts off after

injecting all of its stored energy into the model and reaches its rest length. Leg

A then becomes the new swing leg. Points marked with 3 and 4 correspond to

the collision of leg A with the ground, and the liftoff event for leg B completing

the limit cycle.
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Figure 3.1: Phase space trajectories for an example periodic gait generated by the
AACG model with M = 1 kg, m = 0.01 kg, l = 1 m, k = 100 N/m, r0 = 0.05 m.
Only the states for one of the legs (leg A) are plotted, going through the stance
phase at the bottom half and the swing phase at the top half. One cycle in the
figure corresponds to two steps of the model. Events marked with 1,2,3 and 4
correspond to the beginning of toe push-off for leg A, leg A liftoff, ground collision
for leg B and the end of the toe push-off for leg B, respectively.

A commonly used method for the identification and characterization of limit

cycles in locomotory systems is Poincaré analysis, which relies on defining a

co-dimension one subset of the state space, called the Poincaré section, which

transversally intersects all system trajectories. Successive intersections of sys-

tem trajectories with this subset generate a discrete sequence, formally defined

through the Poincaré map (also called return map) that takes one intersection

to the next. Fixed points of this map (and their stability) correspond to the

presence (and stability) of limit cycles in the original system.

For the AACG model, we choose the Poincaré section as the vertical, forward

23



moving configurations of the supporting leg with θs = 0 and θ̇n > 0. This

configuration corresponds to the highest point of the torso trajectory during the

single support phase, which we call the apex point. As an example, the limit

cycle illustrated in Fig. 3.1 repeatedly intersects this section at θs = 0 rad,

θ̇s = −0.4069 rad/s, θn = −0.0596 rad, θ̇n = 1.7568 rad/s, corresponding to a

fixed point of the Poincaré map.

In addition to help identify limit cycles, the return map also allows the char-

acterization of their stability properties through its linearization around fixed

points. Eigenvalues of the resulting Jacobian can be used to characterize local

stability properties for the limit cycles, with local asymptotic stability corre-

sponding to all eigenvalues of the Jacobian falling within the unit circle.

Note that for a valid Poincaré analysis, the trajectories should cross the

Poincaré section transversally. The trajectories which do not satisfy this re-

quirement will result in an invalid Poincaré analysis. For this reason, in order to

ensure the validity of the Poincaré map, we check a number of fault conditions

during our simulations. In particular, we discard and disregard trajectories that

• Locomote backwards with θ̇s ≥ 0,

• Do not admit full extension of the ankle spring, with d ≤ r0,

• Require the heel to go underground with ṙ+ < 0,

• Result in fault conditions such as the torso mass M going underground,

angle between the legs becoming unreasonably large or spring thrust being

insufficient to ensure liftoff.

Elimination of such problematic cases ensures that all remaining trajectories

of the AACG model pass transversally through the Poincaré section at the apex

point. More formally, let x := [θ̇s, θn, θ̇n]T denote the state vector within the

Poincaré section. Given Poincaré states xi and xi+1 for the ith and i + 1th apex

points, respectively, the AACG return map, G : R × S1 × R → R × S1 × R, is
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defined as

xi+1 = G(xi) . (3.1)

Note that the map G given by (3.1), in theory, can be found by solving the

dynamic equations of motion for AACG model given by (2.2). However, due to

the highly non-linear nature of these equations, finding an analytical expression of

G is extremely difficult and even may not be possible. Note that even for simpler

systems, e.g. in Spring Loaded Inverted Pendulum model which contains a single

leg and captures the basic running behaviour, the equations of motion are known

to be non-integrable, hence, obtaining an analytical expression for the resulting

apex-to-apex return map is impossible [39]. To the best of our knowledge, an

analytical expression for the map G given in (3.1) is not available in literature.

Hence, as is done in most of the literature, we resort to numerical computation of

this apex return map to identify limit cycles for the AACG model together with

their stability. In particular, limit cycles of the model correspond to fixed points

x∗ of G, defined through

x∗ = G(x∗) . (3.2)

Once we identify limit cycles in this fashion, we can determine their local stability

by linearizing G around the corresponding fixed point. This yields a local, linear

approximation to the return map with

xi+1 − x∗ ≈ DG|x∗(xi − x∗) , (3.3)

where DG denotes the Jacobian of G. The limit cycle is then locally asymptoti-

cally stable if all eigenvalues of Jacobian matrix DG|x∗ are within the unit circle.

Due to the hybrid nature of the AACG model and the complexity of its dynamics,

there are no currently known closed-form expressions for the apex return map.

Consequently, we use a second-order numerical approximation to compute the

Jacobian matrix DG|x∗ for all of our simulations.

For illustration purposes, the limit cycle shown in Fig. 3.1 corresponds to

the fixed point x∗ = [−0.4069,−0.0596, 1.7568] for the apex return map, whose

Jacobian matrix has eigenvalues λ1 = −0.5715, λ2 = −0.1102, λ3 = 0. Since

all eigenvalues are within the unit circle, this limit cycle was found to be locally
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asymptotically stable, which was also confirmed by the convergence of simulations

starting from initial conditions close to the limit cycle.

Before we proceed with a more thorough characterization of limit cycles for the

AACG model, we note that throughout all of our simulations, we observed one of

the eigenvalues for all fixed points of the return map to be zero, meaning that the

system recovers from perturbations along the associated eigenvector in a single

step. For the example in Fig. 3.1, this eigenvector is x0 = [0.0031, 0.4389, 0.8985].

Fig. 3.2 illustrates AACG trajectories (dashed line) recover from a perturbation

in this direction in a single step, right after the swing leg collision. An intuitive

explanation for this phenomenon is offered by the fact that the initial swing leg

position and velocity are coupled, for which there is a continuum of value pairs

that result in the same collision configuration. Consequently, small perturbations

which change these two DOF in a coupled fashion are rejected in a single step.
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Figure 3.2: AACG trajectories resulting from a perturbation of the limit cycle in
the direction of the eigenvector associated with the eigenvalue λ = 0 for the apex
return map. Model completely recovers from this perturbation immediately after
toe collision.

In this respect, applying and random perturbation to the limit cycle will not

recover in single step. Fig. 3.2 illustrates AACG trajectories (dashed line) recov-

ering from a random perturbation in multiple steps.
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Figure 3.3: AACG trajectories resulting from a random perturbation of the limit
cycle. Model recovers from this perturbation after several toe collision.

3.2 Dependence of Gait Stability on Model Pa-

rameters

For a more complete picture of system behavior, we investigate the dependence of

fixed points of the apex return map and their stability as a function of the ankle

spring parameters precompression ro and stiffness k. In this respect, we start

investigating the stability of the model as a function of spring stiffness k where

we vary k by an amount of 0.1N/m. Our simulations indicate that for a fixed ro,

there exists a kcr, which may depend on ro, such that for k < kcr the map G has

only one fixed point which is unstable, whereas for k > kcr the map G has two

fixed points one of which is stable and the other one is unstable. This point is

illustrated in Fig. 3.4 for ro = 0.01m, where kcr is found as kcr = 28.7N/m. The

transition of the stable fixed point to an unstable one is a result of our restriction

to a single stride return map since trajectories associated with these fixed points

were found to exhibit orbits that were period two and above. We leave a more

careful study of these trajectories for future work.

Furthermore, Fig. 3.5 shows all three eigenvalues associated with the stable

fixed points and their unstable continuation for small stiffness values as a function

of the ankle spring stiffness for three different values of the rest length. Let λ1,

27



_ 3 s

-0.4

-0.2

0

3 n

-0.15

-0.1

-0.05

0

k
20 40 60 80 100 120 140 160 180 200

_ 3 n

0.2

0.4

0.6

0.8

Unstable Fixed Points
Stable Fixed Points

Figure 3.4: State components for fixed points of the AACG model with r0 =
0.01m as a function of the ankle spring stiffness. Dashed red plot shows unstable
fixed points whereas solid blue plots show stable fixed points.

λ2, λ3 denote the eigenvalues of DG|x∗ . Note that one of the eigenvalues, say

λ1, is always zero, e.g., λ1 = 0 (see the blue line in Fig. 3.5). Also, for a given

ro there exists a kcr1 (depending on ro), such that for k < kcr1 the fixed point

is unstable, hence at least one eigenvalue has magnitude greated than 1, which

is the red portion of one of the eigenvalues. Likewise, for k > kcr1, we have a

stable fixed point, hence the magnitude of the eigenvalues are less than 1, see

Fig. 3.5. Moreover, for a given ro there exists another critical value kcr2 such that

for k < kcr2 the eigenvalues λ2 and λ3 are complex conjugate of each other. Also,

our simulations suggest that as ro is increased, kcr1 increases and kcr2 decreases.

These results show that the AACG model exhibits stable limit cycles for a

large range of spring stiffness and rest length values. This suggests that the use

of series elastic actuation for the ankle joint of a walking platform is feasible with
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Figure 3.5: Eigenvalues of the linearized apex return map for the stable fixed point
with respect to the ankle spring stiffness k and different values of the spring rest
length r0.

promising stability properties.

Then, we investigate the dependence of limit cycles and their stability on the

amount of precompression r0 in the ankle spring prior to its release. Physically,

this precompression is often achieved with an actuator connected in series with

the ankle spring, changing its rest length before its energy is released through

the ankle joint. The left plot in Fig. 3.6 presents the dependence of all three

coordinates for the fixed points of the apex return map on this precompression

parameter. For a given k, we found the fixed points of G given by (3.1) as a

function of ro. As depicted in Fig. 3.6, for all choices of precompression with

r0 ∈ [0, 0.3]m, we have found two fixed points. One of these fixed points is always

unstable. For the other fixed point, there exists two ro values romin, romax such

that for for ro < romin and ro > romax, the fixed point is stable whereas for

romin < ro < romax the fixed point is unstable.
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Figure 3.6: Fixed points of the AACG model with k = 100 N/m as a function
of ankle spring precompression. Solid and dashed plots show stable and unstable
fixed points, respectively.

We have also shown cross sections of the basins of attraction associated with

stable fixed point associated with r0 ∈ [0, 0.07]m having grid length of 0.0005m

in the plot of Fig. 3.7. These regions were obtained by fixing two coordinates on

the stable limit cycle and applying a grid search on the remaining coordinate in a

broad range of initial conditions. The parameters of the grid search are ro, θ̇s, θn

and θ̇n, respectively. The grid size and interval of the initial conditions are given

as below. θ̇s is varied within the interval -1.1< θ̇s < −0.02 rad with grid size of

0.05 rad, θn is varied within the interval −0.13 < θn <0.14 rad with grid size of

0.05 rad, θ̇n is varied within the interval 0.2 < θ̇n < 2.15 rad with grid size of 0.1

rad.

We also investigated the eigenvalues of DG|x∗ as a function of ro. Let λ1, λ2,

λ3 indicate the eigenvalues of DG|x∗ . The plots of |λ1|, |λ2|, |λ3| as a function
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Figure 3.7: Red regions show cross sections of the basin of attraction for stable
fixed points associated with k = 100 N/m and r0 ∈ [0, 0.07]m.

of ro are shown in Fig. 3.8, where the top plot illustrates all three eigenvalues

associated with the fixed point that is initially stable and becomes unstable for

mid-range choices of r0. As we noted before, one of the eigenvalues is always zero,

corresponding to the dependence of swing leg position and velocity prior to the

collision. As the spring precompression increases, the remaining two eigenvalues

first become a complex pair, then separate with one converging to zero, and the

other crossing the stability threshold. To summarize, our results show that the

uncontrolled AACG model exhibits period-1 stable limit cycles (self-stability)

for a range of spring precompression values. This suggests that the use of series-

elastic actuation for the ankle joint of a walking platform is feasible with promising

passive stability properties.
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Figure 3.8: Eigenvalues of the linearized apex return map for the fixed point
which is stable in a certain parameter range of the spring precompression (top)
and the consistently unstable (bottom) fixed point as a function of the ankle
spring precompression r0 with k = 100 N/m.

In the next section, we will explore period doubling behavior outside regions

where there are stable gaits. Subsequently, we will propose a feedback controller

on the ankle precompression that forces the system to exhibit period-1 stability for

any desired forward velocity. The derivations and results given here are presented

in [40].

3.3 Bifurcation Regimes for Periodic Walking

Gaits

For simplicity, the periodic gait (e.g. limit cycles) corresponding to the fixed

points given in section Section 3.1 and Section 3.2 are called period-1 gaits as
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well. In addition to period-1 limit cycles, we can also define period-i periodic

gaits (e.g. limit cycles) as follows. Let i be a given integer and let us define the

i iterate of the apex return map as follows.

Gi = G ◦G ◦ ... ◦G︸ ︷︷ ︸
i times

. (3.4)

Similar to fixed points of G, we could also define the fixed points of the map

Gi. Let x∗ be a fixed point of Gi. Then the resulting motion is called a period-i

periodic motion (or period-i limit cycle) of the AACG model. For illustrative

purposes, we give the trajectories of a typical period-2 limit cycle of the AACG

model in Fig. 3.12.
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Figure 3.9: Period-2 limit cycle at r0 = 0.084 m and k = 100N/m with initial
conditions [θ̇s = −0.5705, θn = −0.1463, θ̇n = 2.082].

Similar to period-1 periodic gaits, period-i periodic gaits could be stable or

unstable depending on the eigenvalues of DGi. Dynamical systems often ex-

hibit period doubling behavior coincident with parametric or structural changes

in the system behavior, and such phenomena were previously shown to occur

with passive dynamic walking models [17]. To explain this phenomena, note that

for certain values of ro the period of the motion bifurcates and such behaviour

continually occurs as we increase ro. This behaviour is called period doubling

in dynamical systems and is usually an indication of the existence of chaotic
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behaviour beyond a certain ro value.
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Figure 3.10: The dependence of fixed points of the AACG model on the spring

precompression r0. Solid blue plots show stable fixed points for different periodici-

ties, whereas read dashed plots show unstable, period-1 fixed points only. Regions

where period doubling occurs up to period-8 gaits are magnified for clarity.

Stable period-1 AACG walking gaits observed for small values of r0 eventually

become unstable with increasing spring precompression. The parameter value at

which one of the eigenvalues crosses outside the unit circle (r0 = 0.06573m for

the example in Fig. 3.6) marks the first bifurcation point, where period doubling
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occurs and a stable period-2 walking gait is introduced. This gait is increasingly

asymmetric, consisting of a short and a long step. For larger values of spring

precompression, short step becomes shorter and long step becomes longer. Fur-

ther increases in the spring precompression parameter eventually destabilize this

period-2 gait, leading to a stable period-4 gait. Fig. 3.10 illustrates this period

doubling behavior, and Fig. 3.12, Fig. 3.13, Fig. 3.14, Fig. 3.15 shows phase space

projections of limit cycles associated with period-2, period-4, period-8 gaits and

chaotic behavior, respectively. Finally, Fig. 3.11 illustrates the magnitudes of

eigenvalues associated with period-1 to period-4 gaits, showing that period dou-

bling occurs when a particular gait becomes unstable with its largest magnitude

eigenvalue crossing the unit circle.
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Figure 3.11: Magnitude of eigenvalues associated with stable gait periodicities up
to 4. Since the return map covers multiple steps for period-2 and period-4 regions,
associated eigenvalues were plotted as λ1/2 and λ1/4, respectively, for continuity
and better comparison with period-1 eigenvalues. Eigenvalues beyond period-4
were excluded since they are observed in a very narrow region.
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Figure 3.12: Period-2 limit cycle at r0 = 0.084.
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Figure 3.13: Period-4 limit cycle at r0 = 0.089.
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Figure 3.14: Period-8 limit cycle at r0 = 0.09.
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Figure 3.15: Non-periodic, sustained walking at r0 = 0.098.

We have also found, by evaluating parameter values at which period doubling

occurs, listed in Table 3.1 for up to period-32 gaits, that the ratio of distances

between successive bifurcations seem to converge to the Feigenbaum constant

4.669 [41]. Feigenbaum constant is a universal constant for functions approaching

chaos via period doubling bifurcations. The Feigenbaum constant characterizes

the geometric approach of the bifurcation parameter to its limiting value.

Beyond r0 > 0.0905 m, we were unable to find any periodic solutions, with
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n New period r0[n]
r0[n− 1]− r0[n− 2]

r0[n]− r0[n− 1]

1 2 0.06573 -
2 4 0.08486 -
3 8 0.08927 4.3379
4 16 0.09023 4.5937
5 32 0.090438 4.6154

Table 3.1: Spring precompression parameter values at which period doubling
occurs, together with ratios between successive parameter ranges for each period.

each successive apex state different than previous ones even though the model

kept walking indefinitely. This suggests a chaotic gait, where the locomotion is

sustained, but no periodicity can be identified. For choices of spring precompres-

sion beyond this value, we evaluated the model for over 1000 steps, then recorded

the last 100 apex states. Individual dots in Fig. 3.10 plot each step from these

runs, showing chaotic behavior. Finally, beyond r0 > 0.1 m the AACG model

could no longer sustain locomotion, with its return map having only unstable

fixed points.

Interestingly, if r0 is increased further, the AACG model eventually restarts

being able to sustain locomotion. In particular, when the rest length reaches

r0 = 0.2255 m, a sustained but chaotic gait is observed, with no periodicity

that we could identify. Further increases recover period-2n gaits, with parameter

values at which the periodicity changes shown in Table 3.2. Period-1 gaits are

observed again beyond r0 = 0.261079 m. Similar to before, the ratio of the

distances between successive bifurcations in this region also seem to converge to

the Feigenbaum constant.

The occurrence of chaotic gaits beyond a certain spring precompression and

the later recovery of symmetric period-1 stable gaits can be partially explained

in terms of the energy input and losses in the AACG model. As the rest length

increases, we inject more energy to the system and in response, the model at-

tempts to walk faster causing previously stable fixed points to destabilize. This

leads to a regime of period doubling bifurcations, chaos and eventually complete

instability, which is consistent with existing literature on the PCG model [17, 18].
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n New period r0[n]
r0[n− 1]− r0[n− 2]

r0[n]− r0[n− 1]

1 2 0.26108 -
2 4 0.24464 -
3 8 0.240624 4.0895
4 16 0.239728 4.47
5 32 0.239534 4.6186

Table 3.2: Spring precompression parameter values at which changes in periodic-
ity occur for large values of r0, together with ratios between successive parameter
ranges for each period doubling (coming backwards from r0 = 0.3m).

Different from those studies, however, the AACG model does not rely on the

conservation of angular momentum to derive the collision map. Even though

we can not use this principle due to the active double stance phase with both

legs remaining on the ground, the recovery of periodic gait for larger values of

the spring precompression can be explained with one of our previously described

assumptions. In particular, beyond a certain value of precompression (and hence

forward speed), the angle between the legs approaches π/2, at which point the

post-collision angular momentum vanishes since the body velocity at the collision

is then aligned with the colliding leg. This brings the model to a full stop after

the collision. Moreover, since we assumed that the ankle acts in a unidirectional

manner with ṙ+ ≥ 0, inter-leg angles larger than π/2 also have zero post-collision

velocities. We believe that this property of the AACG model is what leads to

the recovery of periodic gaits beyond a certain spring precompression, with the

increase in collision losses compensating for the larger spring energy injected into

the system. Fig. 3.16 depicts the inter-leg angle, θs + θn, for the fixed points

of the system over the entire range of the spring precompression, showing the

disappearance and subsequent recovery of periodic gaits. The derivations and

results given here are presented in [42].
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Figure 3.16: Dependence of the inter-leg angle θs + θn for the fixed points of the
AACG model on the spring precompression parameter. Solid blue plots shows
stable fixed points with different periodicities whereas the red dashed plot shows
unstable period-1 fixed points. Bifurcation regions up to period-8 gaits are mag-
nified for a clearer view.

3.4 Period-3 Doubling

In addition to period doubling as indicated in previous section, which leads to

period-2n limit cycles, our model also exhibits period-3 stable limit cycles as well.

In other words, illustrated in Fig. 3.17, for ro = 0.067m the AACG model exhibits

period-3 motion and the motion for ro = 0.068m is period-6. This leads to a new

period doubling sequence leading to period-3 motions. Note that existence of

period-3 motions is usually considered as another indicator of chaotic behaviour

[43].
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Figure 3.17: The dependence of period-3 fixed points of the AACG model on the
spring precompression r0.

3.5 Feedback Control Through the Ankle

Spring

As shown by Fig. 3.6, a fixed choice of the spring precompression r0 does not

always yield a stable limit cycle for walking with the AACG model. It is, however,

encouraging to note that period-1 fixed points exist for the entire range of this

parameter, covering a wide range of forward velocities, which is directly related to

the stance leg velocity θ̇s at apex (i.e. the top plot in Fig. 3.6). If it were possible

to achieve stable walking for this entire range, we would effectively obtain a
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walking model whose walking speed can be effectively controlled.

To this end, we propose to use feedback control on the ankle spring precom-

pression, which can, in practice, be implemented using series-elastic actuation as

evidenced by many successful legged platforms with similar designs [35, 36]. This

can be accomplished through a simple proportional feedback law that preserves

period-1 fixed points of Fig. 3.6, while ensuring that one of the fixed points has

all of its eigenvalues within the unit circle. We begin by representing the stance

leg angular velocity component of the fixed point which is stable in a certain

parameter range of the spring precompression of Fig. 3.6 in functional form as

θ̇fps = f(r0) . (3.5)

This function characterizes the fixed points and for our choice of dynamic pa-

rameters, it is monotonic in r0 and is hence invertible. Note that, the relation

between ro and θ̇s is almost linear hence one can fit a function such as θ̇s = αro.

In order to capture the relation between ro and θ̇s for a desired velocity θ̇∗s , we

find an open-loop spring precompression r∗0 = f−1(θ̇∗s) that would yield a limit

cycle coincident with the desired gait. To address this problem, we propose the

discrete-time feedback law

r0[k] = f−1(θ̇∗s)− kp(θ̇∗s [k]− θ̇s[k]) , (3.6)

where k = 0, 1, 2, ..., n are the discrete time instances at apex points, kp is a

proportional gain constant which is chosen appropriately to stabilize the fixed

point. This law adjusts the spring precompression based on the measured error in

the stance leg velocity at apex through negative feedback. As shown in Fig. 3.20,

increasing the gain kp allows us to adjust the eigenvalues associated with the

period-1 limit cycle to lie within the unit circle, effectively stabilizing otherwise

unstable fixed points for the AACG model. Since the feedback law (3.6) leaves

fixed points of the return map unchanged, it allows exact, stable control of walking

at a desired apex velocity. Fixed points with larger periodicities seem to disappear

under this regime for large enough values of kp.
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Figure 3.18: The dependence of AACG fixed point stability on the feedback gain

kp. The plot shows the eigenvalues of the uncontrolled system, The dashed lines

mark the unit magnitude threshold for the eigenvalues.
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Figure 3.19: The plot shows the eigenvalues with kp = 0.02.
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Figure 3.20: The plot shows the eigenvalues with kp = 0.042.

In order to demonstrate the performance of the feedback controller we per-

turbed the stance leg angular velocity by 0.05 rad/s and evaluated the model

for 20 steps with parameters ro = 0.05m, k = 100N/m. The initial conditions

are [−0.3570, − 0.0096, 1.8068] and the desired apex velocity is θ̇s = −0.4070.

Fig. 3.21 illustrates the error (θ̇∗s [k]− θ̇s[k]) at each apex instant. After 10 steps

the controller achieves the desired apex velocity. The derivations and results

given here are presented in [44, 45].
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Figure 3.21: The plot shows the error (θ̇∗s [k]− θ̇s[k]) at each apex instant.
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Chapter 4

Stability of Uphill and Downhill

Walking with the AACG Model

In this chapter, we aim to investigate the walking behaviour of our model on

uphill and downhill slope and extend the stability analysis of walking on uphill

and downhill terrains.

4.1 Periodic Walking Gaits Apex Return Map

We examine the AACG walking behaviours by identifying periodic limit cycles.

To achieve walking on a limit cycle, we fix all the system parameters and evaluate

the model at two different ground slopes. For explanatory purposes, we define

the swing and support leg as Leg A and Leg B, respectively. Fig. 4.1 and Fig. 4.2

depicts only the phase space trajectories of angle and angular velocity of Leg A

for period-1 walking on downhill and uphill slopes, respectively. Similar to level

ground walking, at the instant marked with 1, leg B collides with the ground,

resulting in a discontinuous change in velocities. Note that, on downhill slope

walking due to the potential energy attained during swing phase, the magnitude

of impact of downhill slope walking occurring during the collision is larger than
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uphill slope walking. Consequently, the ankle spring in leg A injects less en-

ergy during downhill slope walking compared to uphill slope walking in order to

maintain stable walking. At instants mark with 2 ankle spring in leg A lifts off

after and reaches its rest length and Leg A becomes the new swing leg. Instants

marked with 3 and 4 correspond to the ground collision of leg A and the liftoff

event for leg B completing the limit cycle.
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Figure 4.1: Phase space trajectories for an example periodic gait generated by the
AACG model for sloped ground. The figure illustrates walking on the downhill for
r0 = 0.001 m, φ = −0.054 rad with the model parameters chosen as M = 1 kg,
m = 0.01 kg, l = 1 m, k = 100 N/m.

The limit cycle for downhill walking in Fig. 4.1 recurrently intersects Poincaré

section at θs = 0 rad, θ̇s = −0.5546 rad/s, θn = −0.0111 rad, θ̇n = 2.0463 rad/s,

and it corresponds to a fixed point of the discrete Poincaré map. Likewise,

for uphill walking, θs = 0 rad, θ̇s = −0.1524 rad/s, θn = −0.1563 rad,

θ̇n = 1.1919 rad/s, is a fixed point of the discrete Poincaré map for limit cy-

cle which is illustrated in Fig. 4.2.

During inclined ground walking, the Poincaré section is chosen as the vertical

configurations of the supporting leg with θs = 0 and θs > 0. This configuration

corresponds to the apex point. To guarantee that we have a valid Poincaré map we

need to eliminate some faulty solutions in which the cross-section of the resulting

trajectories are not transversal with the Poincaré section. These faulty cases are

listed below.

47



-0.3 -0.2 -0.1 0 0.1 0.2

0

0.5

1

X: -6.332e-17
Y: -0.1524

31
2

4

Figure 4.2: Phase space trajectories for an example periodic gait generated by
the AACG model for sloped ground. The figure illustrates walking on the uphill
for r0 = 0.076 m, φ = 0.076 rad with the model parameters chosen as M = 1 kg,
m = 0.01 kg, l = 1 m, k = 100 N/m.

• Model walking backwards, with θ̇s ≥ 0.

• Insufficient distance between legs, with r0 ≤ d.

• Trailing heel going underground during the DSS phase, with ṙ+ < 0.

• Torso mass M going below the ground, with cos (θs + φ) < 0.

• The inter-leg angle becoming unreasonably large, with θs + θn > π.

• Spring thrust being insufficient to ensure liftoff, with r < r0.

Avoiding these faulty conditions ensure that all state trajectories of the AACG

model move transversally through the Poincaré section at the apex point during

simulations.

To define the return map of the AACG model for walking on inclined slopes,

let x := [θ̇s, θn, θ̇n]T denote the co-dimension one state vector within the Poincaré

section. Given Poincaré states xi and xi+1 for the ith and i + 1th apex points,

respectively, the AACG return map is given as

xi+1 = G(xi) . (4.1)
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The analytical expression for the map G given in (3.1) is not available in

literature. Hence, we numerically compute this apex return map to identify limit

cycles for the AACG model together with their stability. In this context, limit

cycles of the model correspond to fixed points x∗ of G, defined through

x∗ = G(x∗) . (4.2)

After identifying limit cycles, we can determine their local stability by lin-

earizing G around the corresponding fixed point. The linearization yields a local,

linear approximation to the return map with

xi+1 − x∗ ≈ DG|x∗(xi − x∗) , (4.3)

where DG denotes the Jacobian of G. The limit cycle is then locally asymp-

totically stable if all eigenvalues of Jacobian matrix DG|x∗ are within the unit

circle.

The limit cycle in Fig. 4.1 corresponds to the fixed point x∗ =

[−0.5546,−0.0111, 2.0463] for the apex return map with slope = −.054 radi-

ans and the eigenvalues of the Jacobian matrix are λ1 = −0.9904, λ2 = 0,

λ3 = −0.1460. Similarly, the limit cycle in Fig. 4.2 corresponds to the fixed point

x∗ = [−0.1524,−0.1563, 1.1919] for the apex return map with slope = 0.076 and

the eigenvalues of the Jacobian matrix are λ1 = −0.9995, λ2 = 0, λ3 = −0.0614.

All the eigenvalues being inside unit circle indicates that these two limit cycles

are locally asymptotically stable.

Note that for both downhill and uphill walking limit cycles, one of the eigen-

values for the fixed point of the return map is zero, meaning that the system

recovers from perturbations along the associated eigenvector in a single step. We

have also observed the same behaviour for level ground walking hence, this phe-

nomena seems to be a characteristic property of the model. The eigenvectors

associated with the zero eigenvalues are given as xd0 = [0.1585, − 0.4181, 0.8984]

and xu0 = [0.0875, 0.3344, 0.9383] for downhill and uphill walking, respectively.
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Fig. 4.3 and Fig. 4.4 illustrates AACG trajectories (dashed line) recover from a

perturbation in this direction in a single step, right after the swing leg collision

for downhill and uphill walking respectively.
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Figure 4.3: AACG trajectories for downhill walking resulting from a perturbation
of the limit cycle in the direction of the eigenvector associated with the eigenvalue
λ = 0 for the apex return map.

In this respect, applying and random perturbation to the limit cycles will not

recover in single step. Fig. 4.5 and Fig. 4.6 illustrates AACG trajectories (dashed

line) recovering from a random perturbation in multiple steps for downhill and

uphill walking, respectively.
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Figure 4.4: AACG trajectories for uphill walking resulting from a perturbation of
the limit cycle in the direction of the eigenvector associated with the eigenvalue
λ = 0 for the apex return map.
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Figure 4.5: AACG trajectories for downhill walking resulting from a random per-

turbation of the limit cycle. Model recovers from this perturbation after several

toe collision.
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Figure 4.6: AACG trajectories for uphill walking resulting from a random per-

turbation of the limit cycle. Model recovers from this perturbation after several

toe collision.

4.2 Finding Fixed Points

We employ Matlab fminsearch function to find fixed points of the model (i.e. the

solutions of (3.1)) as we vary the model parameters of spring precompression r0

and ground slope φ. Initially, we start from one fixed point given a specific set

of model parameters. Then we change the precompression r0 by a small amount

and we evaluate the model such that it evolves into a new steady state walking

phase. Finally, we utilize fminsearch function to make sure that this steady state

walking states corresponds to a new fixed point as follows

|G(x∗)− x∗| < ε , (4.4)

where fminsearch guarantees ε to be ε < 10−10. We choose to alter precompression

variable instead of ground slope since the change in slope yields a drastic change in

the kinematics hence the model becomes more fragile to the changes in slope. We

iterate this process of fixed point finding and continue increasing precompression

parameter until we reach period-2 stable walking gaits. At this point, we sample

poincaré map at two successive steps to find the fixed point and we continue
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increasing precompression parameter until we come across with stable period-4

walking gaits and we sample Poincaré map at four steps. We continue with this

process until we reach upto stable period-8 walking gaits where we stop searching

for stable fixed points. At this point, we further increase precompression variable

to search for chaotic walking patterns where there is no identifiable fixed points,

yet the model sustains walking behaviour. This is accomplished by evaluating

the model starting from the Poincaré section and labeling this point as chaotic

walking if the model successively reaches to 1000 steps. The search for chaotic

walking patterns continues until the model no longer sustains walking given the

initial conditions.

The above procedure is obtained by varying only precompression variable. We

extend this search of period doubling bifurcation scheme to grid search by intro-

ducing the ground slope variable. The above process is repeated from negative

slope values (downhill slopes) to positive slope values (uphill slopes) where the

grid size is 0.0005 m for precompression and 0.0002 rad for ground slope.

4.3 Period Doubling Bifurcation Regions of Up-

hill and Downhill Walking

We investigate the dependence of limit cycles and their stability on the amount

of downhill, uphill slopes and spring precompression r0 in the ankle spring to

investigate the performance of our model on sloped grounds. First, we define

various terms and introduce various notations which will be utilized in the rest

of the thesis. We start by defining SΓ to be the Poincaré section at apex state

qa. Hence, G : SΓ → SΓ and clearly G depends on ro, φ, qa where qa depends on

(ro, φ). Let p := {ro, φ} denote system parameters of spring precompression and

ground slope. Obviously, the map G depends on p. To denote this dependence,

we will refer to the map G as Gp in the sequel. Then, the fixed point set Γi is

defined as
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Γi =
{
qe = {p, qa} | Gi

p(qa) = qa
}
. (4.5)

Here, Gi
p(qa) denotes ith iteration of Poincaré map and it is given as

Gi
p(qa) = Gp ◦ ◦ ◦Gp︸ ︷︷ ︸

i

, (4.6)

where i = 1, 2, ....

For example, period-2 and period-4 limit cycles are illustrated for downhill and

uphill walking as in the Fig. 4.7, Fig. 4.8, Fig. 4.9, Fig. 4.10, respectively.
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Figure 4.7: AACG trajectories of period-2 motion for downhill walking with
model parameters ro = 0.034N/m, φ = −0.04 rad and initial conditions [-
0.5608, -0.1402, 1.8894].

Let p = (ro, φ) be given and qa ∈ Γi be such that qe = (p, qa) ∈ Γi, i.e. a

fixed point of Gi
p. Then, define the eigenvalues of the Jacobian DGi

p at qa as

{λ1, λ2, λ3} where the maximum absolute eigenvalue is given as

λmax(DGi
p) = max(|λ1|, |λ2|, |λ3|). (4.7)

Then, define the stable fixed point set as

Γsi =
{
qe = (p, qa) | qe ∈ Γi, λmax(DGi

p) < 1
}
. (4.8)
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Figure 4.8: AACG trajectories of period-4 motion for downhill walking with
model parameters ro = 0.0365N/m, φ = −0.04 rad and initial conditions [-
0.5773, -0.1690, 1.8352].
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Figure 4.9: AACG trajectories of period-2 motion for uphill walking with model

parameters ro = 0.4425N/m, φ = 0.02 rad and initial conditions [-0.2462, -

0.1417, 1.1373].

We assume that for a given p, if (p, qa) ∈ Γsi , then qa is unique. Hence, under

this assumption, if qe ∈ Γsi , we can write qa as a function of p. Since we do not

have an analytical expression for the apex return map Gp, the exact mathematical

proof of this assumption is quite difficult due to highly nonlinear nature of the

problem. It should be noted that during our extensive simulations we did not

encounter a counterexample to this assumption. We further define the set Ssi as

Ssi = {p | ∃ qa, {p, qa} ∈ Γsi} . (4.9)
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Figure 4.10: AACG trajectories of period-4 motion for uphill walking with model
parameters ro = 0.0435N/m, φ = 0.02 rad and initial conditions [-0.2353, -
0.1298, 1.1548].

Hence, Ssi is the projection of Γsi on (ro, φ) plane and it is depicted on Fig. 4.11

for i = 1, 2, 4, 8. The region in green depicts stable period-1 gaits and note that

the range of precompression values that our model can walk is quite large. The

blue, purple and grey regions depict period-2, period-4, period-8 walking patterns

respectively. In addition to Ssi , the regions in red represents the walking patterns

in chaotic form.

The map given in Fig. 4.11 provides information about choosing the amount

of spring precompression, i.e., the amount of energy to be injected to the body,

for walking over a given sloped ground. The model is capable of walking on

downhill slopes up to −3.9o and on uphill slopes up to 4.45o. Walking behaviour

is sustained for precompression value up to 0.425 m. In [42], during level ground

walking we had observed stable walking gaits of period-1 upto period-32 as well

as chaotic walking patterns and finally unstable walking behaviour, respectively

as we increase spring precompression. Note that, this corresponds to the φ = 0

line in Fig. 4.11, where the period doubling bifurcation scheme is illustrated in

Fig. 3.10. Furthermore, we had observed the recovery of walking patterns starting

from sustained but non-periodic chaotic gaits up to period-1 walking if the spring

precompression is further increased. Hence, a gap is formed between these two

walking patterns. Fig. 4.11 demonstrates that this, no stable region, gap can

be reduced for some ground slope and spring precompression pairs enabling the
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Figure 4.11: The figure depicts the dependence of fixed points of the AACG
model on the spring precompression r0 and ground slope φ.

model walk for a broad range of precompression values without falling. It is also

interesting to note that the period-doubling bifurcations in Fig. 4.11 does not

only occur for a single direction of spring precompression parameter or ground

slope parameter but instead it occurs for different combinations (direction) of

parameter pairs.

We, then obtain the maximum absolute value of the eigenvalues of the period-

1 walking region by using λmax(DG1
p) as depicted in Fig. 4.12. The color bar

on the right of the figure represents the values of the eigenvalues from 1 (least

stable) to 0 (most stable). It is clear from the figure that the model becomes less

stable at the boundaries and it is more stable at the middle fixed points. The
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Figure 4.12: The figure depicts the maximum absolute value of the eigenvalues
of period-1 fixed points of the AACG model.

map of Fig. 4.12 is utilized in controller design for rough terrain walking in the

next section.

Stance leg velocity at the instant of apex for period-1 fixed point gaits for

p ∈ Γsi is given as

θ̇a(p) = π1(qa(p)), (4.10)

which is the first component of qa(p) and can be depicted on (rp, φ) plane as

in Fig. 4.13. Stance leg velocity map is intended to be used controller design

purposes for velocity feedback on ankle spring precompression over rough ter-

rains. Note that, the model walks faster on steeper downhill slopes and for large

precompression values.

Furthermore, we obtain the amount of maximum leg retraction during the

swing phase for period-1 fixed point gaits as in Fig. 4.14. This map can be

used for building real-world platforms which is intended for walking over inclined

surfaces. The retraction values for downhill slope are the amount of foot scuffing

which is ignored during simulations.
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Figure 4.13: Stance leg velocity at the instant of apex of stable period-1 gaits
during swing phase.
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Figure 4.14: The amount of maximum leg retraction of stable period-1 gaits
during swing phase.
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Chapter 5

Walking over Rough Terrains

with the AACG Model

In this chapter, we first generate rough terrain by adding small ground segments

where the angle difference between segments are randomly chosen. Then, we

evaluate the model over rough terrains and assess the performance for various

ankle spring precompression controllers. We utilized the maps obtained in the

previous section for controller designs.

5.1 Rough Terrain Walking via Ground Slope

Feedback Control

A fixed choice of the spring precompression r0 does not always yield a stable

limit cycle for walking over the entire range of slopes with the AACG model.

It is, however, encouraging to note that sustained walking patterns exist for

considerable large range of precompression parameter, covering a wide range of

forward velocities, which is directly related to the stance leg velocity θ̇s at apex.

The capabilities of the proposed model is further explored by evaluating the

performance of the model on rough terrains. The terrain is formed by merging
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small ground segments where the angle differences between ground segments are

chosen randomly. These angles are picked from truncated Gaussian distribution

where the probability distribution function (PDF) of the distribution is given as

for a given angle difference dφ∗

ψ(µ, σ2,−Rtr, Rtr, dφ
∗) =


0, dφ∗ ≤ Rtr,

P (µ,σ,dφ∗)
F (µ,σ2,−Rtr)−P (µ,σ,Rtr)

, −Rtr < dφ∗ < Rtr

0, −Rtr ≤ dφ∗

(5.1)

Here, µ and σ represent the mean and variance of the normal PDF respec-

tively. The symmetrical truncation range −Rtr, Rtr is given as −∞ < Rtr < ∞.

F and P are the cumulative distribution function (CDF) and PDF of the nor-

mal distribution, respectively. Given the symmetrical truncations range (Rtr) of

Gaussian distribution we choose 100 dφ∗ values randomly within the truncation

range. Then, we form the terrain by merging 101 ground segments of length 1m

with 100 dφ∗ values. Composed of small ground segments, the roughness mea-

sure of the terrain can be configured by adjusting truncations range where dφ∗ is

chosen. The roughness of the ground can be varied from level ground, Rtr = 0

(rad), to increasingly rough terrain until the truncation range Rtr = 0.02 (rad).

We use Rtr parameter as a performance measure of walking on rough terrains

throughout the thesis.

Now, let φmin and φmax be given as

φmin = min({φ | p ∈ Γs1}), (5.2)

φmax = max({φ | p ∈ Γs1}). (5.3)

Consider the following set for a given φ∗ ∈ [φmin, φmax]

Ssc (φ
∗) = {p | p ∈ Ss1, φ = φ∗, ro < rlimit}), (5.4)
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where rlimit = (ro, φmax) ∈ Γs1 and rlimit is assumed to be unique and rlimit =

0.0765 m. Furthermore, we assume that Ssc (φ
∗) is a connected set for every φ∗.

For a given φ∗ ∈ [φmin, φmax], we define the following functions,

rmino (φ∗) = min
ro

((ro, φ
∗) ∈ Ssc (φ∗)), (5.5)

rmaxo (φ∗) = max
ro

((ro, φ
∗) ∈ Ssc (φ∗)). (5.6)

The definitions given between (5.2) and (5.6) are illustrated in Fig. 5.1.

Figure 5.1: Definitions are depicted on fixed point figure.
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Now, we can define the following functions which determines the precompres-

sion value for a given slope φ∗,

rmido (φ∗) = (rmino (φ∗) + rmaxo (φ∗))/2, (5.7)

rmineigo (φ∗) = argmin
ro

(λmax(DG1
p) | (ro, φ

∗, qa) ∈ Ssc (φ∗)). (5.8)

Fig. 5.2 depicts rmido (φ∗) and rmineigo (φ∗) for φ∗ ∈ [φmin, φmax]. The curve

in red color represents the middle precompression values obtained by averaging

the precompression for any given slope cross-section where the curve in blue

corresponds to the minimum eigenvalues of the containing slope cross-section.
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Figure 5.2: The blue and red curves represents minimum eigenvalue and midvalue
spring precompression values, respectively.

Let xtoe and ytoe represent the components of ptoe. Then, the measured slope

at the instant of collision is
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φ(xtoe(tc[k])) = tan−1(
ytoe
xtoe

), (5.9)

where k = 0, 1, 2, ...,m. are the discrete time indices at ground collision instants

and for clarity let φc[k] = φ(xtoe(tc[k])).

In order to achieve walking over the rough terrain we exploit various ground

slope feedback controller on the ankle spring extension. In this respect, the first

control law chooses the middle value spring precompression for the given slope

cross section, i.e., utilizes the red curve given in Fig. 5.2, as follows,

ro[k] = rmido (φc[k]). (5.10)

The second control law chooses the precompression value that has the mini-

mum eigenvalue for the given slope cross section, i.e., utilizes the blue curve given

in Fig. 5.2, as follows,

ro[k] = rmineigo (φc[k]). (5.11)

To evaluate the performance of the AACG model on rough terrains, first we

generate a terrain composed of small segments where the first segment is chosen

to be level ground. The roughness of the terrain can be varied by adjusting the

relative angles of the remaining segments. We start with the terrain roughness

of Rtr = 0, i.e., level ground. After generating the ground, we evaluate our

model on the corresponding ground starting from apex state (θs = 0 and θ̇n > 0)

on 18 different positions which are linearly spaced between initial position (0m)

and mean stride length for level ground walking (0.43)m in order to observe the

walking performance of the model for different initial conditions. We define two

different performance measures. The first one is ”Perfect Walk” where the model

achieves 100 successful steps for all 18 different positions on a given terrain. The

second performance measure is ”Successive Steps” which is the ratio of number

of successful steps over number of expected steps. The performance of the model

is evaluated for 100 different grounds for a given roughness and the results are

normalized for the corresponding roughness. Consequently, we iterate the above
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performance measurement process for Rtr = 0 until Rtr = 0.02 with various ankle

spring controllers.
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Figure 5.3: Perfect Walk performance measurement for fixed choice of spring
precompression.

We exploit various controllers on our model over the terrains which have

increasing amount of roughness. The first controller is chosen to be a fixed

precompression value of 0.05m since the vertical cross section corresponding to

ro = 0.05m mostly covers the fixed points for uphill and downhill slopes. The

performance measures of Perfect Walk and Successive Steps are given in Fig. 5.3

and Fig. 5.4, respectively. The fixed precompression controller performs well over

the grounds having low roughness and both Perfect Walk and Successive Step

measures decrease drastically beyond the terrain roughness range of 0.002 rad.

The second controller measures the ground slope and use this slope as a feed-

back to choose an appropriate precompression r0 value at each step utilizing the

spring precompression value having the minimum eigenvalue, which is given by

the control law in (5.11). Once the precompression value is chosen the correspond-

ing spring is released during double support phase. The performance measures of

Perfect Walk and Successive Steps are given in Fig. 5.5 and Fig. 5.6, respectively.
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Figure 5.4: Successive Steps performance measurement for fixed choice of spring
precompression.

The line in red represent the results where the controller measures the ground

slope of the segment that contains stance toe and the results in red represent the

controller measuring the ground slope at the instance of collision. The controller

has a weak performance for both ground measurement results. One possible ex-

planation for such result is that the controller chooses the precompression values

that are quite close to the boundaries in the map of Fig. 5.2 which may destabilize

the model.
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Figure 5.5: Perfect Walk performance measurement for ground slope feedback
controller with spring precompression value having the minimum eigenvalue.
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Figure 5.6: Successive Steps performance measurement for ground slope feedback

controller with spring precompression value having the minimum eigenvalue.
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The third controller utilizes the ground slope measurement as a feedback into

the ankle spring precompression by making use of the middle value spring precom-

pression, which is given by the control law in (5.10). The performance measures of

Perfect Walk and Successive Steps are given in Fig. 5.7 and Fig. 5.8, respectively.

The line in red represents the results where the controller measures the ground

slope of the segment that contains stance toe and the results in red represent the

controller measuring the ground slope at the instance of collision. The results ob-

tained using the ground slope measured at the instant of collision outperform the

results obtained using the ground slope of the segment that contains stance toe

since the measurement at the collision provides more precise information about

the ground slope.
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Figure 5.7: Perfect Walk performance measurement for ground slope feedback
controller with middle value spring precompression.

For all controllers as the slope difference between two consecutive ground seg-

ment increases the success rate of perfect walk decreases. Yet, the best per-

formance is obtained with the middle value precompression controller since the

controller utilizes the width of the map given in Fig. 4.11, i.e. it avoids the

precompression values which are close to the boundaries.
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Figure 5.8: Successive Steps performance measurement for ground slope feedback
controller with middle value spring precompression.

5.2 Rough Terrain Walking via Velocity Feed-

back along with Ground Slope Feedback

Control

In order to enhance the performance of the model over the rough terrains, we

utilize a stance leg forward velocity feedback control along with the ground slope

feedback on the ankle precompression. Let qkc be the model configuration at the

kth ground collision and qk+1
pc represent the predicted model configuration of the

next ground collision which is assumed to have a constant stride length dm. Here,

dm is obtained for level ground with rmido (0) precompression. Then, let φ∗
c [k] and

φ∗
pc[k + 1] represent the ground slopes of the model configurations qkc and qk+1

pc

at the collision indices k and k + 1 respectively. Consequently, we define the

following
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rnomo = rmido (φ∗
pc[k + 1]). (5.12)

As a consequence, the velocity feedback controller on the ankle spring is given

as follows by utilizing rnomo , φ∗
pc[k + 1] and θ̇a map,

ro[k] = rnomo − kp(θ̇a(rnomo , φ∗
pc[k + 1])− θ̇ma ). (5.13)

Here, kp is the velocity feedback gain and θ̇ma is the measured stance leg velocity

at the apex instance. The velocity feedback controller utilizes the velocity map

in Fig. 4.13 to predict the desired stance leg velocity of the next apex assuming

the next stride length to be dm. Applying the relation in (5.13) the stance leg

velocity and the ground slope information is fed to the ankle spring extension.

Hence, the resultant controller enhances the walking performance of our model

as the ground roughness increases as seen in Fig. 5.9 and Fig. 5.10.
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Figure 5.9: Perfect Walk Performance Measurement for ground slope feedback
along with stance leg velocity feedback for middle value spring precompression
controller .
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Figure 5.10: Successive Steps Performance Measurement for ground slope feed-
back along with stance leg velocity feedback for middle value spring precompres-
sion controller
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Chapter 6

Active Ankle Foot Orthosis

Platform

In this chapter, we first review several active ankle foot orthosis and prosthe-

sis platforms in the literature. Then, we present the active ankle foot orthosis

platform that we have developed which is motivated by the idea of verifying our

stability results and controllers on an actual setup. The experiments indicate

that the platform can assist the user during walking. Afterwards, we integrate

our platform with an active knee orthosis platform helping the user with knee

locking and leg swinging. The test results suggest that the integrated system can

support the user and generate natural walking patterns.

Most people with disabled lower extremities are limited to conventional

wheelchairs, restricting their mobility to only flat surfaces. Powered robotic or-

thoses promise to eliminate this limitation by enabling disabled people to am-

bulate naturally through the use of their lower extremities. Studies on powered

robotic orthoses are mainly focused on gait phase detection, gait pattern genera-

tion, intention detection, actuation technologies, utilization of active and passive

mechanical elements and control methods with the intention of replacing the func-

tions of the knee and hip joints [46, 47, 48]. However, the ankle joint plays key

roles for the energetics and stability of human walking. Consequently, the lack
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of actuated ankle joints in robotic orthoses limits their energetic efficiency and

results in unnatural walking patterns that might impair their utility and adop-

tion. In addition to above observations it is stated in [49] that the ankle joint

generates more torque compared to knee and hip joints.

We start by giving various definitions and phases which will be utilized in the

rest of the chapter. Orthosis is an orthopedic appliance or apparatus used to

support, align, prevent, or correct deformities or to improve function of movable

parts of the body. Prosthesis is an artificial device used to replace a missing

body part, such as a limb. Dorsiflexion is the movement of the foot upwards and

plantarflexion is the movement of the foot downwards. The phases of walking is

illustrated in Fig. 6.1. Heel strike, also known as initial contact, is a short period

which begins the moment the foot touches the ground. Midstance is the period

of foot becoming flat on the ground and during this phase, the body is supported

by one single leg. Ankle push-off is the period when the ankle propels the body

forward. Heel-off is the phase of heel leaving the ground. Swing phase is the gait

cycle during which the foot is off the ground and stance phase is the gait cycle

during which the feet are on the ground.

The impairment of ankle joint effects walking and yields unnatural and un-

healthy gait schemes. The muscles controlling the ankle joint enables the joint to

dorsiflex and plantarflex [50]. Drop foot is the inability to lift the front part of the

foot. The two major complications of drop foot are slapping of the foot after heel

strike (foot slap) and dragging of the toe during swing (toe drag). At heel strike,

the uncontrolled foot falls to the ground, producing a distinctive slapping noise

(foot slap). During mid-swing, toe dragging prevents proper limb advancement

and increases the risk of tripping.

The basic functions of ankle joint are as follows.

• Shortly after heel strike phase, the ankle joint lifts the foot so that the foot

does not hit the ground (slap foot),

• At the heel off phase it supplies the body with the energy required for
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heel strike mid stance
(flat foot)

ankle push-off heel-off

Figure 6.1: Phases of locomotion for a single stride.

walking,

• Ankle joint lifts the foot as the leg swings so that the foot does not collide

with the ground.

There are several assistive devices for supporting or replacing the ankle joint

as ankle foot orthosis, ankle foot prosthesis (AFP) [51, 52].

There are three different types of AFOs in the literature as follows.

• Standard AFOs are firm devices that are used to support or prevent unde-

sired ankle motions,

• Passive AFOs can store and release energy with passive elements like linear

spring but they can not provide energy input to the gait,

• Active AFOs can both store and provide energy to the gait with actuators.

The AFPs on the other hand are classified into two main types as follows.

• Passive AFPs, like passive AFOs, can store and release energy with passive

elements like spring but they can not provide energy to the gait,
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• Active AFPs are actuated systems that can provide energy input and they

can also store and release energy.

The actuation scheme of the orthosis with series elastic actuation is illustrated

in Fig. 6.2

Motor

Spring

Lever

Mid-stance Energy Storage Energy Release

Figure 6.2: actuation scheme of the active orthosis.

At the instance of heel strike, the series elastic actuation mechanism pre-

vents foot slapping. As the ankle rotates during mid-stance phase, the spring

is extended both by walking kinematics and position controlled motor yielding

assistive torque to be generated at the ankle for push-off. At the end of push-off

phase, the foot is lifted up via the SEA in order to prevent drop foot.

The objective of active AFO (AAFO) design is the use of passive energy storage

components in conjunction with actuators in the ankle joint, employing natural

dynamics of walking. The ankle joint will be utilized to achieve energy efficiency

compared to directly actuated ankle joint designs. Among important challenges

in this context are the design of a SEA mechanism that is sufficiently strong while

being as light as possible with appropriate passive dynamic properties to support

natural walking.

As stated in [53], the ankle joint has a key role for walking in terms of torque

generated during ankle push-off. For a 100 kg person the maximum peak torque
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requirement during healthy walking gait is 150Nm. Given a lever arm of 10cm

the motor-ballscrew complex should be able to provide 1500N of force. In order

to provide 1500N of force, the maximum torque that should be generated by the

motor is calculated using the relations in [54] as follows.

τ =
F ∗ p

2 ∗ π ∗ η
, (6.1)

where τ is the torque value that is the motor is required to generate, F is the

linear force that motor applies, p is the pitch of ball screw and η is the efficiency of

the ball screw. The required maximum motor torque is 0.65Nm for F = 1500Nm,

p = 2mm and η = 0.75. In order to calculate the speed requirement of the motor

we assume that the patient walks slower than the able-bodied person and the

time required for a single stride is two seconds. As stated in [49], 20% of a

single stride consist of push-off phase which makes 400ms of push-off time. For

5 cm spring extension, the maximum speed required for the motor is 5cm/0.4s

= 0.12m/s. In this respect, Nanotec DB42C01 Brushless DC motor fulfills our

speed, power, torque and mechanical demands. The ballscrew shaft is chosen to

be of 10cm long with a pitch of 2mm and an efficient nut. The motor driver is

chosen to be MAXON EPOS-2 motor controller which has hall sensor, encoder

signal, analog/digital inputs and RS232, USB and CAN interfaces. The control of

the AAFO is performed on 512 MHz RTD-PC/104 with 256MB DDR SDRAM,

1GB of Flash driver and various peripheral communication units such as RS232,

RS485, CAN and Ethernet.

The springs are chosen with 10N/mm stiffness and 100mm length such that

at maximum extension they can provide approximately 1500N of force for ankle

push-off. The angular position of the ankle can be determined kinematically by

measuring the amount of deflection in the spring length and utilizing the motor

encoder data. Hence, we considered measuring the linear deflection of the spring

with Opkon resistive linear position transducer. In order to determine the heel

strike event we also utilize the linear deflection of the spring.

One of the aspects of building the AAFO platform is the integration of the
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platform with an AKO system. In order to maintain the rigidity of the integration

we decided to manufacture the AAFO system with aluminum (6061) material.

The AAFO mechanism consists of three main parts.

• Ankle-foot component. It acts as a shoe with a lever arm. This lever

provides moment arm to assert controlled dorsiflexion and plantarflexion

motion to the foot.

• Knee orthosis integration component.

• SEA mechanism. This component actuates the system. By correctly posi-

tioning the motor nut, a desired spring extension is obtained. The spring

releases its stored energy to provide most of the peak power required during

ankle push-off.

The mechanical design specifications of the AAFO system are as follows.

• The SEA mechanism with two identical springs are employed to obtain

symmetric force on the lever arm.

• The length of the lever arm is designed to be 10cm.

• A guiding mechanism with bushing is designed in parallel with SEA in order

to tolerate spring buckling effects.

• A stopper is placed at end of the ballscrew shaft to limit the motion of

ballscrew nut.

• The length of the SEA mechanism can be adjusted.

The AAFO prototype is depicted in Fig. 6.3. The control of the prototype is

achieved via the real time operating system QNX over RTD PC/104 microcon-

troller.
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Figure 6.3: Active Ankle Foot Orthosis Platform.

6.1 AAFO Platform Tests

We built the experimentation setup shown in Fig. 6.4 where the tests are per-

formed on a healthy individual.

The SEA mechanism enables us to control the angle of the ankle joint by

controlling the position of the motor nut connected to one end of the spring as

illustrated in Fig. 6.2. With the use of information obtained from linear po-

tentiometer and motor encoder the platform can achieve the desired locomotion

pattern. The state machine for the controller is depicted in the Fig. 6.5 and

details are given as follows. The tests are performed with one AAFO on the left

leg and initiated from swing phase. In the Heel Strike Detection state as the

heel touches the ground, the position controller prevents slap foot by keeping

the motor nut position stationary, hence compresses the spring. The amount
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Figure 6.4: AAFO Experimentation Setup

of compression in the spring rest length is measured via the linear potentiome-

ter. The heel collision is detected if the spring rest length is below a threshold

value. During Mid-Stance Detection state the ankle rotates over the foot, spring

starts to extend and once the spring length reaches to its neutral length we detect

mid-stance instant. At this moment Spring Extension state begins and position

controller starts extending one end of the spring that results in storing energy

into the springs. The stored energy in the springs, i.e., the amount of spring ex-

tension, is injected into walking during ankle push-off via spring decompression.

Once the spring decompresses into its natural length, injecting all the stored en-

ergy, we detect the end of ankle push-off phase in Toe Lift-off Detection state and

finally in Foot Lift-off state the controller lifts of the foot to avoid drop foot and

eventually swing phase starts. The state transition parameter values are chosen

heuristically during experiments.

Fig. 6.6 depicts the heel strike and ankle push-off instances during the platform

tests, respectively. Fig. 6.7 and Fig. 6.8 shows the motor nut position and the

spring length measurement for three consecutive steps, respectively. In Fig. 6.7,

the motor extends the spring for 12 mm during Spring Extension state and lifts
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Figure 6.5: AAFO Control State Machine.

the foot up during Foot Lift-off state. In Fig. 6.8 heel strike is detected as the

spring length decreases beyond 98 mm. Once the spring starts extending and

reaches to 104 mm mid-stance phase is detected. Finally, toe lift-off event is

detected when the spring length becomes 100 mm. During ankle roll-over the

maximum amount of spring extension is observed to be 15 mm, which generates

an approximate of 30 Nm of torque at the ankle during push-off. This torque

corresponds to 20% of the torque required during ankle push-off, hence it helps

propelling the body forward while decreasing energy loss due to ground collision.
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(a) Heel Strike Phase. (b) Ankle Push-off Phase.

Figure 6.6: Walking Phases of the AAFO Test.
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Figure 6.7: AAFO Motor nut position during the experiment.
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Figure 6.8: AAFO Motor spring length measurement during the experiment.
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6.2 AAFO and AKAFO Integration Tests

Another important motivation aspect of realizing the AAFO platform is the in-

tegration of the platform with a lower body robotic orthosis. In this respect, the

AAFO platform is integrated with the AKO platform on the leg, excluding hip

joints. The AKO platform is designed for the patients whose knee does not lock

during stance phase and for those who can not perform an effective leg swing.

Figure 6.9: Active Knee Orthosis

As can be seen in Fig. 6.9 the AKO locks the knee joint during stance phase and

helps the patient to perform a well defined leg swinging with the help of a Maxon

RE45 brushless rotary motor. The integration of AAFO with AKO is achieved

as shown in Fig. 6.10. The control of the AAFO-AKO integration prototype

is achieved via RTD/104 microcontroller and EPOS2 motor driver over QNX

environment.
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Figure 6.10: AAFO-AKO Integration.

The control state machine of AAFO-AKO integration is extended to include

the knee flexion and extension as shown in the Fig. 6.11. After lifting up the

foot, algorithm flexes the knee joint in Knee Flexion state to avoid toe dragging.

Once the knee flexion reaches up to 40o, the controller starts extending the knee

with Knee Extension state helping the user to perform an effective leg swing for

the preparation of the next heel strike.

Fig. 6.12 depicts the heel strike, ankle push-off and knee flexion instances

during the tests, respectively.

Fig. 6.13, Fig. 6.14 and Fig. 6.15 shows the AAFO motor nut position, the

spring length measurement and AKO motor angle for three consecutive steps
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Figure 6.11: AAFO-AKO Control State Machine.

taken with AAFO-AKO system, respectively. In Fig. 6.13, the ankle motor ex-

tends the spring for 15 mm during Spring Extension state and lifts the foot up

during Foot Lift-off state. In Fig. 6.14 heel strike is detected as the spring length

decreases beyond 98 mm. Once the spring starts extending and reaches to 104

mm mid-stance phase is detected. Finally, toe lift-off event is detected when the

spring length becomes 100 mm. During ankle roll-over the maximum amount of

spring extension is observed to be 22.5 mm, which generates an approximate of

45 Nm of torque at the ankle during push-off. This torque corresponds to 30%

of the torque required during ankle push-off, hence it helps propelling the body

forward while decreasing energy loss due to ground collision. Finally, in Fig. 6.15
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(a) Heel Strike Phase. (b) Ankle Push-off Phase. (c) Knee-Flexion Phase.

Figure 6.12: Walking Phases of the AAFO-AKO Test.

following Foot Lift-off state the motor of the knee joint is rotated in Knee Flexion

state in order to flex the knee which prevents the collision of foot with ground.

Then, the knee joint is extended with Knee Extension state helping the user for

an effective leg swing.

The spring energy stored during stance phase both utilizes active motor input

and walking kinematics through the lever. During the ankle push-off phase, this

energy is injected to the body. Hence, this assistive energy propels the body

forward while decreasing energy loss due to ground collision. The ankle joint of

a healthy being generates 120-150 Nm of torque during walking. The integrated

AAFO-AKO system can generate approximately 45 Nm of torque which compen-

sates 40% of the required torque. Consecutively, the contribution of knee orthosis

on walking is twofold. Firstly, during knee flexion it prevents toe dragging and

secondly, knee extension assists leg swinging. Motivated by the idea of series elas-

tic ankle ankle actuation our results state that the integrated system generates

more effective walking pattern.
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Figure 6.13: Ankle motor nut position of AAFO-AKO integrated system.
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Figure 6.14: Spring length measurement of AAFO-AKO integrated system.
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Figure 6.15: Knee motor angle of AAFO-AKO integrated system.
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Chapter 7

Conclusion

The passive compass gait model captures the basic properties of biped walking

without any actuation, however it depends on a downhill sloped ground. To

overcome this limitation, we proposed a novel compass gait model called Ankle

Actuated Compass Gait model which utilizes a precompressed ankle spring. The

proposed model can walk over level ground and exhibits reasonable performance

over significantly inclined and rough terrains.

Our model summarizes the action of the normally rotary ankle joint with a

simplified prismatic joint. The spring situated in the ankle joint of the stance leg

is activated immediately following the collision of the swing leg with the ground,

modeling toe push-off similar to human walking. We derived equations of motion

associated with all locomotory phases for this model, namely single stance dy-

namics, impulsive collision map and double stance dynamics, and we numerically

implemented the resulting hybrid dynamics. Subsequently, we defined a Poincaré

section at the highest point of the stance phase and used numerical methods to

compute the associated Poincaré return map and its Jacobian. Fixed points of

this map were then used to identify limit cycles of this system, with the eigen-

values of the corresponding Jacobian matrix leading to a careful characterization

of limit cycle stability. Our results showed that the Ankle-Actuated Compass

Gait model we proposed in this study exhibits locally asymptotically stable limit

89



cycles corresponding to feasible, sustained walking gaits on flat ground.

We extended our analysis by investigating the dependence of gait stability of

level ground walking on the spring precompression realized prior to the swing leg

collision. The increase in this precompression parameter eventually destabilizes

period-1 limit cycles and introduces a regime of period doubling bifurcations. Pe-

riod doublings evolve into non-periodic but sustained walking gaits and further

increase of the precompression parameter results in unsustainable locomotion. We

observed an interesting recovery of walking gaits for larger values of the spring

precompression where a sustained but chaotic gait is reintroduced. Possible ex-

planation for this behavior is due to the use of a unidirectional ankle spring to

model the effects of the heel in our collision map. Further increase in the precom-

pression parameter yields period-2n through period-1 gaits. For both regions of

bifurcating behavior, we showed that the ratio of distances between successive pe-

riod doubling values converge to the Feigenbaum constant. Our results revealed

that walking with a fixed spring precompression at each step does not always gen-

erate stable, period-1 walking behavior. Consequently, we implemented feedback

control adjusting the ankle spring precompression, which enabled us to stabilize

the otherwise unstable, period-1 fixed points, allowing explicit, stable control on

the walking speed for the model.

We investigated the stability of the model on inclines surfaces by utilizing

Poincaré methods. Our proposed model exhibits asymptotically stable limit cy-

cles over uphill and downhill inclined grounds between slopes of −3.9o and 4.45o,

respectively. We then, analyzed the dependence of gait stability as a function of

ground slope and spring precompression parameters yielding a map of regions of

period-doubling bifurcations as well as chaotic walking patterns. During downhill

walking and for a given slope the increase in spring precompression parameter

yields regions of period doubling bifurcations starting from period-1 up to chaotic

walking patterns. However, interestingly, during uphill walking we observed pe-

riod doubling bifurcation regimes in both increasing and decreasing directions of

precompression variable. We then obtained several versions of this spring pre-

compression versus ground slope map for the period-1 regions such as stance leg

velocity at the apex instant and minimum eigenvalue of the Jacobian matrix.
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These maps could be utilized to decide which spring precompression should be

chosen during walking for a given desired slope or stance leg velocity. Further-

more we obtained the maximum amount of leg retraction for uphill and downhill

slopes which could be utilized for platform implementations.

Since our model can walk over significant uphill and downhill slopes we wanted

to test the performance of the model over rough terrains. In this respect, ini-

tially we generated random grounds composed of small ground segments where

roughness of the overall ground can be adjusted by varying the angles of slope

differences. The roughness of the ground can be varied from level ground to signif-

icantly rough terrain using truncated Gaussian distribution. Then, we evaluated

the walking performance of our model on rough terrains as the ground roughness

vary starting from level ground by using various slope based controllers such as

midvalue, minimum eigenvalue, fixed precompression. Our results demonstrate

that our model can walk over significantly rough terrains. We further improve the

performance of our model by introducing a one-step-lookahead velocity feedback

control along with ground slope feedback on the ankle spring precompression.

One of our long-term motivations in this research is our goal of implementing

stable and energy efficient actuation methods for AAFO systems that can also be

integrated with lower-extremity exoskeletons. Such platforms allow people with

mobility disorders to stand and walk. In this context, existing research focuses

on restoring only the functionalities of the knee and hip joints and ignore ankle

joint despite its key role for the energetics and stability of walking. This lack of

ankle actuation limits energetic efficiency for these platforms, and results in un-

natural walking patterns. Our results provide a step in understanding parametric

design and stability trade-offs in achieving dynamic walking with Series-Elastic

Actuation on the ankle. In this respect, we built an experimental platform of

active ankle foot orthosis enabling people with ankle and foot problems walk ef-

ficiently and naturally, over level, inclined and rough terrains. The experiments

suggests that the assistive torque generated by the orthosis platform helps pro-

pelling the body during ankle push-off by compensating for the energy loss due

to ground collision. Furthermore, we integrate the AAFO platform an active

knee orthosis platform that is used by the patients who has knee locking and leg
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swinging problems. The experimentation results suggest that the AAFO-AKO

integrated system generates more effective walking pattern by actively control-

ling knee locking and leg swinging phases and by injecting energy to the body

via SEA mechanism on the ankle.

To summarize, the main contributions of this thesis can be given as follows.

• We proposed a novel compass gait model called Ankle Actuated Compass

Gait model.

• Hybrid dynamics of the proposed model are derived.

• We thoroughly explored and investigated the effect of ankle spring param-

eters on stability of walking which led to discovery of period doubling bi-

furcation behaviour.

• We proposed an active feedback controller on the spring precompression

which stabilize gaits that were previously period 2n, chaotic and unstable.

• The walking capabilities of the model is extended by introducing inclined

grounds. Our model can walk on a large range of uphill and downhill sloped

grounds.

• The performance of the model is evaluated on rough terrains by exploiting

various controllers on the spring precompression.

• The principle of series elastic ankle actuation is realized with an active ankle

foot orthosis platform which is intended for the patients having impaired

ankle.

• The active ankle foot orthosis platform is integrated with an active knee

orthosis platform. The resulting setup generates effective walking pattern.

In the near future, we plan to explore possible efficiency gains by adjusting

the timing of toe push-off, that might enable the model to achieve approximate

ground speed matching for the swing toe prior to its collision with the ground.
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For walking over rough terrains various feedback controllers could be developed

to improve the walking performance. We will explore the pediod-3 motions over

a large range of model parameters. In the long term, we hope to conduct further

experiments on the AAFO platform to verify our stability results and controllers,

eventually leading to integration with full body lower extremity robotic orthosis

platforms.
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[42] D. Kerimoğlu, Ö. Morgül, and U. Saranlı, “Stability and control of planar

compass gait walking with series-elastic ankle actuation,” Transactions of

the Institute of Measurement and Control, vol. 39, no. 3, pp. 312–323, 2017.

[43] H. Gritli, N. Khraief, and S. Belghith, “Period-three route to chaos induced

by a cyclic-fold bifurcation in passive dynamic walking of a compass-gait

biped robot,” Communications in Nonlinear Science and Numerical Simu-

lation, vol. 17, no. 11, pp. 4356–4372, 2012.
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Appendix A

General Collision Map for the

AACG Model

In this section, we obtain the Lagrangian for three DOF AACG model with a

released spring shown in Fig. 2.3 by writing the system kinetic and potential

energy expressions as a function of qc as follows

L =
1

8
(
L11

L12

+
L21

L22

+ L3). (A.1)

L11 = 2gl cos(θs(t))(−3d4lm+ r(t)2(22d2lm+ 32l3(2m+ 3M)) + 12d2l3m

+ 4r(t)3(2d2m+ l2(9m+ 16M)) + r(t)(−4d4m+ 28d2l2m+ 8l4(5m+ 8M))

+ 8l5(m+ 2M) + l(m+ 16M)r(t)4 − 4mr(t)5). (A.2)

L12 =
(
r(t)2 − d2

)
(l + r(t))(−d+ 2l + r(t))(d+ 2l + r(t)). (A.3)
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L21 = l((l + r(t))2θ̇s(t)
2 + ṙ(t)2)(−3d4lm+ r(t)2(22d2lm+ 32l3(2m+ 3M))

+ 12d2l3m+ 4r(t)3(2d2m+ l2(9m+ 16M)) + r(t)(−4d4m+ 28d2l2m

+ 8l4(5m+ 8M)) + 8l5(m+ 2M) + l(m+ 16M)r(t)4 − 4mr(t)5). (A.4)

L22 =
(
r(t)2 − d2

)
(l + r(t))2(−d+ 2l + r(t))(d+ 2l + r(t)). (A.5)

L3 = +4gm(l(cos(θn(t))− 3 cos(θs(t)))− 4r(t) cos(θs(t)))− 4k(ro − r(t))2

+m((5l2 + 12lr(t) + 8r(t)2)θ̇s(t)
2 + l2θ̇n(t)2

− 4l(l + r(t))θ̇s(t)θ̇n(t) cos(θs(t)− θn(t))− 4lθ̇n(t)ṙ(t) sin(θs(t)− θn(t)) + 8ṙ(t)2).

(A.6)

In order to obtain equations of motion for the model, we apply the following

Lagrangian formula
d

dt
(
∂L

∂q̇c
)− ∂L

∂qc
= 0. (A.7)

which yields (2.10). Then, we provide the open forms of the components of

(2.10)

Mc(qc)q̈c + Bc(qc, q̇c)q̇c + Gc(qc) = JTc (qc)FIδ(t− tc) . (A.8)

Here, Mc(qc) is given as

Mc(qc) :=


Mn

11

Md
11

M12 M13

M21 M22 M23

M31 M32
Mn

33

Md
33

 , (A.9)
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where the components of Mc(qc) are given as follows.

Mn
11 = (l + r(t))2(−2d4m+ r(t)(8d2lm+ 2l3(3m+ 4M))

+ r(t)2(4d2m+ l2(4M − 3m)) + 8d2l2m+ 2l4(m+ 2M)

− 8lmr(t)3 − 2mr(t)4). (A.10)

Md
11 = (d2 − r(t)2)(d− 2l − r(t))(d+ 2l + r(t)). (A.11)

M12 = −1

2
lm(l + r(t)) cos(θs(t)− θn(t)). (A.12)

M13 = 0. (A.13)

M21 = −1

2
lm(l + r(t)) cos(θs(t)− θn(t)). (A.14)

M22 =
l2m

4
. (A.15)

M23 = −1

2
lm sin(θs(t)− θn(t)). (A.16)

M31 = 0. (A.17)

M32 = −1

2
lm sin(θs(t)− θn(t)).s (A.18)
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Mn
33 = 11d4l2m− 44d2l4m+ r(t)3(4l3(15m− 16M)− 72d2lm) + r(t)4(l2(103m

− 16M)− 16d2m) + 4r(t)(5d4lm− 31d2l3m− 2l5(5m+ 8M)) + 2r(t)2(4d4m

− 67d2l2m− 16l4(m+ 3M))− 8l6(m+ 2M) + 52lmr(t)5 + 8mr(t)6.

(A.19)

Md
33 = 4(r(t)2 − d2)(l + r(t))2(−d+ 2l + r(t))(d+ 2l + r(t)). (A.20)

The coriolis matrix, Bc(qc, q̇c)q̇c is given as

Bc(qc, q̇c)q̇c :=


Bn

11

Bd
11

B12
Bn

13

Bd
13

B21 B22 B23

B31 B32 B33

 , (A.21)

where the components of Bc(qc, q̇c)q̇c are given as follows.

Bn
11 = 2(l + r(t))ṙ(t)(r(t)5(62l3m− 48d2lm)− 8m(d2 − 6l2)r(t)6 + 4r(t)3(12d4lm

+ d2l3(8M − 23m) + l5(5m+ 8M)) + r(t)4(12d4m+ 2d2l2(4M − 51m)

+ l4(33m+ 8M)) + r(t)2(−8d6m+ 2d4l2(35m− 4M) + 4d2l4(m+ 16M)

+ 8l6(3m+ 5M)) + 2lr(t)(−8d6m+ d4l2(25m− 8M) + 4d2l4(7m+ 8M)

+ 4l6(m+ 2M)) + d2(2d6m− 16d4l2m+ d2l4(27m− 8M) + 8l6(2m+ 3M))

+ 16lmr(t)7 + 2mr(t)8) (A.22)

Bd
11 = (d2 − r(t)2)2(−d+ 2l + r(t))2(d+ 2l + r(t))2. (A.23)

B12 = 0. (A.24)
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Bn
13 = 2(l + r(t))θ̇s(t)(r(t)

5(62l3m− 48d2lm)− 8m(d2 − 6l2)r(t)6 + 4r(t)3(12d4lm

+ d2l3(8M − 23m) + l5(5m+ 8M)) + r(t)4(12d4m+ 2d2l2(4M − 51m)

+ l4(33m+ 8M)) + r(t)2(−8d6m+ 2d4l2(35m− 4M) + 4d2l4(m+ 16M)

+ 8l6(3m+ 5M)) + 2lr(t)(−8d6m+ d4l2(25m− 8M) + 4d2l4(7m+ 8M)

+ 4l6(m+ 2M)) + d2(2d6m− 16d4l2m+ d2l4(27m− 8M) + 8l6(2m+ 3M))

+ 16lmr(t)7 + 2mr(t)8) (A.25)

B13 = (d2 − r(t)2)2(−d+ 2l + r(t))2(d+ 2l + r(t))2. (A.26)

B21 = −lmṙ(t) cos(θs(t)− θn(t)). (A.27)

B22 = 0. (A.28)

B23 = −lmθ̇s(t) cos(θs(t)− θn(t)). (A.29)

B31 = 0. (A.30)

B32 = 0. (A.31)

B33 = 0. (A.32)

Gc(qc) matrix is given as

Gc(qc) :=


G11

G12

G2

G311+G312

G32

 , (A.33)
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where the components are given as follows.

G11 = 2m(l sin(θs(t)− θn(t))θ̇n(t)2 + 4g sin(θs(t)) + 8θ̇s(t)ṙ(t))r(t)
10

+ 2lm(10l sin(θs(t)− θn(t))θ̇n(t)2 + 41g sin(θs(t)) + 80θ̇s(t)ṙ(t))r(t)
9

− (2l(4d2 − 41l2)m sin(θs(t)− θn(t))θ̇n(t)2 + g(32md2 + l2(16M

− 325m)) sin(θs(t)) + 16(4d2 − 41l2)mθ̇s(t)ṙ(t))r(t)
8 − 8l(2l(4d2

− 11l2)m sin(θs(t)− θn(t))θ̇n(t)2 + g(33md2 + l2(16M − 77m)) sin(θs(t))

+ 2(32d2 − 87l2)mθ̇s(t)ṙ(t))r(t)
7 + 4(l(3d4 − 54l2d2 + 52l4)m sin(θs(t)

− θn(t))θ̇n(t)2 + g(12md4 + l2(8M − 219m)d2 + l4(127m− 104M)) sin(θs(t))

+ 2(12md4 + 2l2(4M − 103m)d2 + l4(205m+ 8M))θ̇s(t)ṙ(t))r(t)
6 + 4l(2l(9d4

− 50l2d2 + 16l4)m sin(θs(t)− θn(t))θ̇n(t)2 + g(75md4 + 2l2(24M − 191m)d2

− 2l4(3m+ 88M)) sin(θs(t)) + 8(18md4 + 2l2(6M − 43m)d2 + l4(37m

+ 12M))θ̇s(t)ṙ(t))r(t)
5 − 2(2l(2d6 − 47l2d4 + 108l4d2 − 8l6)m sin(θs(t)

− θn(t))θ̇n(t)2 + g(16md6 + l2(8M − 393m)d4 + 8l4(89m− 32M)d2 + 164l6(m

+ 2M)) sin(θs(t)) + 4(8md6 + 2l2(4M − 89m)d4 + 2l4(141m− 68M)d2 − l6(97m

+ 112M))θ̇s(t)ṙ(t))r(t)
4 − 8l(2d2l(2d4 − 17l2d2 + 16l4)m sin(θs(t)− θn(t))θ̇n(t)2

+ g(17md6 + l2(8M − 141m)d4 + 32l4(2m− 3M)d2 + 8l6(3m+ 5M)) sin(θs(t))

+ 2(16md6 + l2(16M − 119m)d4 + 14l4(m− 8M)d2 − 2l6(19m

+ 32M))θ̇s(t)ṙ(t))r(t)
3 + 2(d2l(d6 − 28l2d4 + 120l4d2 − 32l6)m sin(θs(t)

− θn(t))θ̇n(t)2 + 2(g(2md8 − 61l2md6 + l4(247m− 24M)d4 + 24l6(2m+ 7M)d2

− 8l8(m+ 2M)) sin(θs(t)) + 2(2md8 − 56l2md6 + l4(197m− 48M)d4 + 12l6(11m

+ 18M)d2 + 8l8(5m+ 9M))θ̇s(t)ṙ(t)))r(t)
2 + 2l(2l(d4 − 12l2d2 + 32l4)m sin(θs(t)

− θn(t))θ̇n(t)2d4 + g(9md6 − 108l2md4 + 4l4(67m− 8M)d2 + 32l6(3m

+ 5M)) sin(θs(t))d
2 + 16(md8 − 12l2md6 + 2l4(13m− 4M)d4 + 2l6(11m+ 14M)d2

+ 2l8(m+ 2M))θ̇s(t)ṙ(t))r(t) + d2l2(2d2l(d2 − 4l2)2m sin(θs(t)− θn(t))θ̇n(t)2

+ g(d2 − 4l2)(9md4 − 36l2md2 − 8l4(m+ 2M)) sin(θs(t)) + 8(2md6 − 16l2md4

+ l4(27m− 8M)d2 + 8l6(2m+ 3M))θ̇s(t)ṙ(t)). (A.34)

G12 = 4(l + r(t))(−d+ 2l + r(t))2(d+ 2l + r(t))2(d2 − r(t)2)2. (A.35)
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G2 =
1

2
lm(g sin(θn(t))+(l+r(t))θ̇s(t)

2 sin(θs(t)−θn(t))+2θ̇s(t)ṙ(t) cos(θs(t)−θn(t))).

(A.36)

G311 = 4(k − 2mθ̇s(t)
2)r(t)12 + 2(−48lmθ̇s(t)

2 + lm cos(θs(t)− θn(t))θ̇n(t)2 + 22kl

− 2kro + 4gm cos(θs(t)))r(t)
11 + (−16kd2 + 204kl2 + 16(2d2 − 31l2)mθ̇s(t)

2

+ 22l2m cos(θs(t)− θn(t))θ̇n(t)2 − 44klro + 88glm cos(θs(t)))r(t)
10 + (516kl3

− 204krol
2 + 429gm cos(θs(t))l

2 + 16gM cos(θs(t))l
2 + 8(40d2 − 179l2)mθ̇s(t)

2l

+ 2(51l2 − 4d2)m cos(θs(t)− θn(t))θ̇n(t)2l − 2mṙ(t)2l − 144d2kl + 16d2kro

− 32d2gm cos(θs(t)))r(t)
9 + (24kd4 − 560kl2d2 + 144klrod

2 − 288glm cos(θs(t))d
2

+ 768kl4 − 4(12md4 + 2l2(4M − 171m)d2 + l4(635m+ 8M))θ̇s(t)
2 + 6l2(43l2

− 12d2)m cos(θs(t)− θn(t))θ̇n(t)2 + 3l2mṙ(t)2 + 16l2Mṙ(t)2 − 516kl3ro

+ 1189gl3m cos(θs(t)) + 144gl3M cos(θs(t)))r(t)
8 + 4(168kl5 − 192krol

4

+ 521gm cos(θs(t))l
4 + 152gM cos(θs(t))l

4 + 20mṙ(t)2l3 + 32Mṙ(t)2l3 − 308d2kl3

+ 140d2krol
2 − 271d2gm cos(θs(t))l

2 + 8d2gM cos(θs(t))l
2 + (3d4 − 70l2d2

+ 96l4)m cos(θs(t)− θn(t))θ̇n(t)2l + 2d2mṙ(t)2l + 42d4kl − 4((183m+ 16M)l5

+ d2(16M − 205m)l3 + 24d4ml)θ̇s(t)
2 − 6d4kro + 12d4gm cos(θs(t)))r(t)

7 − 4(4kd6

− 130kl2d4 + 42klrod
4 − 84glm cos(θs(t))d

4 + 416kl4d2 − 13l2mṙ(t)2d2 − 308kl3rod
2

+ 553gl3m cos(θs(t))d
2 − 56gl3M cos(θs(t))d

2 − 80kl6 + (−8md6 + 2l2(167m

− 4M)d4 − 24l4(49m− 10M)d2 + 2l6(299m+ 108M))θ̇s(t)
2 − 7l2(3d4 − 22l2d2

+ 12l4)m cos(θs(t)− θn(t))θ̇n(t)2 − 78l4mṙ(t)2 − 112l4Mṙ(t)2 + 168kl5ro

− 637gl5m cos(θs(t))− 392gl5M cos(θs(t)))r(t)
6 − 2(−32kl7 + 160krol

6

− 1220gm cos(θs(t))l
6 − 1320gM cos(θs(t))l

6 − 308mṙ(t)2l5 − 448Mṙ(t)2l5

+ 688d2kl5 − 832d2krol
4 + 1228d2gm cos(θs(t))l

4 − 384d2gM cos(θs(t))l
4

− 76d2mṙ(t)2l3 − 460d4kl3 + 260d4krol
2 − 493d4gm cos(θs(t))l

2 + 24d4gM cos(θs(t))l
2

+ 2(2d6 − 65l2d4 + 208l4d2 − 40l6)m cos(θs(t)− θn(t))θ̇n(t)2l + 6d4mṙ(t)2l + 40d6kl

− 4(−(209m+ 200M)l7 + 4d2(117m− 68M)l5 + 3d4(8M − 111m)l3 + 24d6ml)θ̇s(t)
2

− 8d6kro + 16d6gm cos(θs(t)))r(t)
5. (A.37)
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G312 = 2(2kd8 − 88kl2d6 + 40klrod
6 − 80glm cos(θs(t))d

6

+ 512kl4d4 − 37l2mṙ(t)2d4 − 8l2Mṙ(t)2d4 − 460kl3rod
4 + 801gl3m cos(θs(t))d

4

− 120gl3M cos(θs(t))d
4 − 320kl6d2 + 148l4mṙ(t)2d2 + 16l4Mṙ(t)2d2 + 688kl5rod

2

− 488gl5m cos(θs(t))d
2 + 800gl5M cos(θs(t))d

2 − 2(2md8 − 128l2md6 + l4(851m

− 120M)d4 + 2l6(400M − 103m)d2 + l8(289m+ 440M))θ̇s(t)
2 + 2l2(−10d6 + 115l2d4

− 172l4d2 + 8l6)m cos(θs(t)− θn(t))θ̇n(t)2 + 358l6mṙ(t)2 + 552l6Mṙ(t)2 − 32kl7ro

+ 968gl7m cos(θs(t)) + 1448gl7M cos(θs(t)))r(t)
4 + 2(−8((41m+ 72M)l9 + 3d2(27m

+ 64M)l7 + 8d4(23m− 5M)l5 − 48d6ml3 + 2d8ml)θ̇s(t)
2 + d2l(d6 − 44l2d4 + 256l4d2

− 160l6)m cos(θs(t)− θn(t))θ̇n(t)2 + 2(k((3l − ro)d6 + (44l2ro − 52l3)d4 + 8l4(23l

− 32ro)d
2 − 32l6(l − 5ro))d

2 + 2(2(31m+ 52M)l7 + 2d2(25m+ 8M)l5 − 2d4(11m

+ 4M)l3 + d6ml)ṙ(t)2 + g(2md8 − 89l2md6 + l4(409m− 120M)d4 + 8l6(28m

+ 65M)d2 + 16l8(18m+ 31M)) cos(θs(t))))r(t)
3 + 2l(−8(2(7m+ 13M)l9

+ d2(81m+ 116M)l7 + 6d4(18m− 5M)l5 − 42d6ml3 + 3d8ml)θ̇s(t)
2 + d2l(3d6

− 52l2d4 + 184l4d2 − 32l6)m cos(θs(t)− θn(t))θ̇n(t)2 + 2(k(3(l − ro)d6 + 4l2(13ro

− 8l)d4 + 8l4(10l − 23ro)d
2 + 32l6ro)d

2 + (8(6m+ 11M)l7 + 12d2(7m+ 4M)l5

− 2d4(25m+ 12M)l3 + 5d6ml)ṙ(t)2 + g(6md8 − 107l2md6 + l4(281m− 120M)d4

+ 8l6(41m+ 51M)d2 + 8l8(13m+ 24M)) cos(θs(t))))r(t)
2 + l(64gm cos(θs(t))l

9

+ 128gM cos(θs(t))l
9 + 32mṙ(t)2l8 + 64Mṙ(t)2l8 + 608d2gm cos(θs(t))l

7

+ 704d2gM cos(θs(t))l
7 + 160d2mṙ(t)2l6 + 128d2Mṙ(t)2l6 + 64d4kl6

− 320d4krol
5 + 504d4gm cos(θs(t))l

5 − 240d4gM cos(θs(t))l
5 − 120d4mṙ(t)2l4

− 64d4Mṙ(t)2l4 − 32d6kl4 + 128d6krol
3 − 272d6gm cos(θs(t))l

3 − 8(4md8

− 40l2md6 + l4(79m− 24M)d4 + 20l6(3m+ 4M)d2 + 4l8(m+ 2M))θ̇s(t)
2l2

+ 2d4(3d4 − 32l2d2 + 80l4)m cos(θs(t)− θn(t))θ̇n(t)2l2 + 24d6mṙ(t)2l2 + 4d8kl2

− 12d8krol + 25d8gm cos(θs(t))l − 2d8mṙ(t)2)r(t) + d2l2(96gm cos(θs(t))l
7

+ 128gM cos(θs(t))l
7 + 32mṙ(t)2l6 + 32Mṙ(t)2l6 − 64d2krol

5 + 112d2gm cos(θs(t))l
5

− 48d2gM cos(θs(t))l
5 − 28d2mṙ(t)2l4 − 16d2Mṙ(t)2l4 + 32d4krol

3

− 72d4gm cos(θs(t))l
3 + 2d2(d2 − 4l2)2m cos(θs(t)− θn(t))θ̇n(t)2l2 + 8d4mṙ(t)2l2

− 4d6krol + 9d6gm cos(θs(t))l − 4(8(2m+ 3M)l8 + d2(27m− 8M)l6 − 16d4ml4

+ 2d6ml2)θ̇s(t)
2 − d6mṙ(t)2). (A.38)108



G32 = 4(l + r(t))3(−d+ 2l + r(t))2(d+ 2l + r(t))2(d2 − r(t)2)2. (A.39)

We, then present detailed expressions for the collision map, mapping velocities

before and after the collision event with q̇+
c = Hc(q

−
c )q̇−

c . We define

Hc :=
1

Hd

[

H11 H12 H13

H21 H22 H23

H31 H32 H33

] , (A.40)

whose components are obtained from (2.17) to yield

Hd :=− l2(7m+ 8M)− 16l(m+M)r− − 2(5m+ 4M)(r−)2

+ml(3l + 4r−) cos(2(θ−s − θ−n )), (A.41)

and

H11 := −2 cos(θ−s − θ−n )2(l2(3m+ 4M) + 8l(m+M)r− + 2(3m+ 2M)(r−)2)

H12 := 2ml cos(θ−s − θ−n )(l + r−)

H13 := −(6m+ 4M)(l + r−) sin(2(θ−s − θ−n ))

H21 := −2 cos(θ−s − θ−n )(l + r−)(l2(3m+ 4M) + 8l(m+M)r− + (6m+ 4M)(r−)2)/l

H22 := 2m(l + r−)2

H23 := −4(3m+ 2M)(l + r−)2 sin(θ−s − θ−n )/l

H31 := −(l + r−) sin(2(θ−s − θ−n ))(l2(3m+ 4M) + (6m+ 4M)(r−)2)

H32 := 2ml(l + r−)2 sin(θ−s − θ−n )

H33 := −(12m+ 8M)(l + r−)2 sin(θ−s − θ−n )2.

This general form of the collision map is further simplified for the AACG

model, whose single stance ends with r− = 0 and ṙ− = 0 to yield the simplified

map of (2.18).
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Appendix B

Dynamics of the Double Support

Phase for the AACG Model

We present the Lagrangian of the single DOF AACG model having both legs

fixated to the ground with a released spring.

L =
1

2
(−gm((l + 2r(t)) sin(cos−1(

d2 + 2lr(t) + r(t)2

2dl + 2dr(t)
) + φ)

+ l cos(csc−1(
2dl

d2 − r(t)(2l + r(t))
) + φ) + 2d sin(φ))

− 2gM(l cos(csc−1(
2dl

d2 − r(t)(2l + r(t))
) + φ) + d sin(φ))

− 4l2M(l + r(t))2ṙ(t)2

(d2 − r(t)2)(d− 2l − r(t))(d+ 2l + r(t))

− L1

4(r(t)2 − d2)(l + r(t))2(−d+ 2l + r(t))(d+ 2l + r(t))
− k(ro − r(t))2).

(B.1)

L1 = lmṙ(t)2(−3d4l + 12d2l3 + r(t)(−4d4 + 28d2l2 + r(t)(r(t)(8d2 + 36l2 + r(t)(l

− 4r(t))) + 22d2l + 64l3) + 40l4) + 8l5). (B.2)
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The general form of equations of motion for the single DOF double support

phase is given as follows,

Mr(qr)q̈r + Br(qr, q̇r)q̇r + Gr(qr) = 0. (B.3)

Here, Mr(qr) is given as

Mr(qr) = − Mn
r

4(r(t)2 − d2)(l + r(t))2(−d+ 2l + r(t))(d+ 2l + r(t))
. (B.4)

Mn
r = l(−3d4lm+ r(t)2(22d2lm+ 32l3(2m+ 3M)) + 12d2l3m+ 4r(t)3(2d2m

+ l2(9m+ 16M)) + r(t)(−4d4m+ 28d2l2m+ 8l4(5m+ 8M)) + 8l5(m+ 2M)

+ l(m+ 16M)r(t)4 − 4mr(t)5). (B.5)

Br(qr, q̇r) =
Bn
r q̇r

4(d2 − r(t)2)2(l + r(t))3(−d+ 2l + r(t))2(d+ 2l + r(t))2
. (B.6)

Bn
r = l(−d2 + 2l2 + 2lr(t) + r(t)2)(r(t)5(6d2m+ 2l2(35m+ 48M)) + lr(t)4(d2(47m

+ 16M) + 2l2(79m+ 112M)) + r(t)2(−15d4lm+ 32d2l3(4m+ 3M) + 16l5(5m

+ 9M)) + r(t)3(−6d4m+ 4d2l2(29m+ 16M) + 32l4(5m+ 8M)) + d2l(d4m

− 6d2l2m+ 16l4(m+M)) + 2r(t)(d6m− 9d4l2m+ 4d2l4(9m+ 8M) + 8l6(m

+ 2M)) + l(7m+ 16M)r(t)6 − 2mr(t)7). (B.7)

Gr(qr) =
Gn
r

Gd1
r G

d2
r

. (B.8)
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Gn
r = 2(

√
(d2 − r(t)2)(−d2 + 4l2 + r(t)2 + 4lr(t))

d2(l + r(t))2
(g(m+ 2M) sin(φ

+ csc−1(
2dl

d2 − r(t)(2l + r(t))
)) + dk

√
(d2 − r(t)2)(−d2 + 4l2 + r(t)2 + 4lr(t))

d2l2
)

− gm cos(φ+ cos−1(
d2 + r(t)2 + 2lr(t)

2dl + 2dr(t)
))

√
(d2 − r(t)2)(−d2 + 4l2 + r(t)2 + 4lr(t))

d2l2
)r(t)3

+ (2

√
(d2 − r(t)2)(−d2 + 4l2 + r(t)2 + 4lr(t))

d2(l + r(t))2
(3gl(m+ 2M) sin(φ

+ csc−1(
2dl

d2 − r(t)(2l + r(t))
)) + dk(2l − ro)

√
(d2 − r(t)2)(−d2 + 4l2 + r(t)2 + 4lr(t))

d2l2

+ dgm sin(φ+ cos−1(
d2 + r(t)2 + 2lr(t)

2dl + 2dr(t)
))

√
(d2 − r(t)2)(−d2 + 4l2 + r(t)2 + 4lr(t))

d2l2
)

− 5glm cos(φ+ cos−1(
d2 + r(t)2 + 2lr(t)

2dl + 2dr(t)
))

√
(d2 − r(t)2)(−d2 + 4l2 + r(t)2 + 4lr(t))

d2l2
)r(t)2

+ 2(g(d2 − 3l2)m cos(φ+

cos−1(
d2 + r(t)2 + 2lr(t)

2dl + 2dr(t)
))

√
(d2 − r(t)2)(−d2 + 4l2 + r(t)2 + 4lr(t))

d2l2
+ l(3gl(m

+ 2M) sin(φ+ csc−1(
2dl

d2 − r(t)(2l + r(t))
)) + dk(l

− 2ro)

√
−(d2 − r(t)2)(d2 − 4l2 − r(t)2 − 4lr(t))

d2l2
+ 2dgm sin(φ

+ cos−1(
d2 + r(t)2 + 2lr(t)

2dl + 2dr(t)
))V1)

√
(d2 − r(t)2)(−d2 + 4l2 + r(t)2 + 4lr(t))

d2(l + r(t))2
)r(t)

+ l(g(d2 − 2l2)m cos(φ+ cos−1(
d2 + r(t)2 + 2lr(t)

2dl + 2dr(t)
))V1

− 2l

√
(d2 − r(t)2)(−d2 + 4l2 + r(t)2 + 4lr(t))

d2(l + r(t))2
(−gl(m+ 2M) sin(φ

+ csc−1(
2dl

d2 − r(t)(2l + r(t))
))− dgm

√
−(d2 − r(t)2)(d2 − 4l2 − r(t)2 − 4lr(t))

d2l2
sin(φ

+ cos−1(
d2 + r(t)2 + 2lr(t)

2dl + 2dr(t)
)) + dkro

√
−(d2 − r(t)2)(d2 − 4l2 − r(t)2 − 4lr(t))

d2l2
)).

(B.9)
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V1 =

√
−(d2 − r(t)2)(d2 − 4l2 − r(t)2 − 4lr(t))

d2l2
. (B.10)

Gd1
r = 2d(l + r(t))2

√
−(r(t)2 − d2)(−d2 + 4l2 + r(t)2 + 4lr(t))

d2l2
. (B.11)

Gd2
r =

√
−(r(t)2 − d2)(−d2 + 4l2 + r(t)2 + 4lr(t))

d2(l + r(t))2
. (B.12)
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