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ABSTRACT

HYPERFINE AND ELECTRIC QUADRUPOLAR
INTERACTION-DRIVEN LOSCHMIDT ECHO IN

NANOSCALE NUCLEAR SPIN BATHS

Ekrem Taha Güldeste

M.S. in Physics

Advisor: Ceyhun Bulutay

July 2018

Environmental dynamics in solid state matrix is of much importance for quantum

information processing and storage purposes. Here, we first give a basic recipe to

get Loschmidt echo (LE) which is a measure of decoherence (loss of information

from the qubit) in heterogeneously interacting nuclear spin bath (NSB) in the

presence of Fermi-contact hyperfine and nuclear spin dipole-dipole interactions.

Then, by dropping the latter we discuss the basic dependencies of pure-dephasing

regime on size, initial polarization, hyperfine coupling inhomogeneity, spin quan-

tum number in nuclear spin environments, and arrive at a phenomenological

expression that governs all these attributes. For NSBs consisting of spin-I ≥ 1,

the effect of nuclear electric quadrupole interaction is also considered where its

biaxiality term has an influence on the decoherence process. Furthermore, a gen-

eral decoherence channel is also employed to see how phase-flip rate affects LE.

After insights gained from these models, we consider two generic realistic systems,

namely, donor center and quantum dot and explain the power spectral density of

LE in these cases.

Keywords: qubit decoherence, central spin decoherence, Loschmidt echo, nuclear

spin baths.
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ÖZET

NANO ÖLÇEKLİ SPİN HAMAMLARI İÇİN
ENALTYAPI VE DÖRTKUTUP ETKİLEŞİMLERİ

ALTINDA LOSCHMIDT YANKISI

Ekrem Taha Güldeste

Fizik, Yüksek Lisans

Tez Danışmanı: Ceyhun Bulutay

Temmuz 2018

Katı hal matrisinde çevresel dinamikler kuantum bilgi işleme ve depolama

amaçları için çok önemlidir. Burada, öncelikle Fermi-temas enaltyapı ve nükleer

çiftkutup etkileşiminin varlığında, nükleer spin hamamının eşevresizliğini ölçmek

için Loschmidt yankısını (LE) elde ettiğimiz temel bir reçete verilmektedir. Daha

sonra, sadece enaltyapı etkileşinin varlığında, saf faz bozunumu rejiminin, hamam

büyüklüğü, kutuplu hamam, enaltyapı etkileşiminin sapması, hamamdaki spin

kuantum özdeğeri gibi özelliklerin Loschmidt yankısına etkisini inceleyip, bu

değişken uzayında geçerli olan olgusal bir ifadeyi sunmaktayız. Bununla beraber,

dörtkutup etkileşiminin etkili olduğu, Spin-I ≥ 1 şartını sağlayan spin hamam-

larının faz bozunumu sürecinide ele almaktayız. Safsızlık merkezi ve kuantum

nokta modellemelerini kapsayan gerçekçi modellere geçmeden önce ise faz-dönmeli

kanalın spin eşevresiliğine etkisi incelemekteyiz.

Anahtar sözcükler : kuantum-bit eşevresizliği, merkez spin eşevresizliği,

Loschmidt yankısı, nükleer spin hamamı.
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my sister, İkbal Vildan, my brother, Mustafa Talha, and his wife, Göknur, for
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bath coherent spin states are uniformly distributed over the Bloch

sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

ix



LIST OF FIGURES x

3.2 (top) Effect of initial nuclear spin polarization (θp) on LE, ∆Amax =
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Chapter 1

Introduction

Nuclear spins that are in a semiconductor environment are electrically isolated

from charge noise, this endowes them long coherence lifetimes exceeding a second

at room temperatures unlike the electron spins which decohere a few orders faster

due to environmental fluctuations [1]. Charge immunity of nuclear spins makes

them good candidates to be used for various quantum information processing

(QIP) tasks such as quantum registers and gate operation processes [2, 3, 4, 5,

6]. For most of these cases, possible electrical [7] and optical [8] manipulation

methods have been addressed in quantum dot or defect center environments where

an intermediary electron spin used as the qubit. For the spin systems that consist

of both electron and nuclear spins, the hyperfine (hf) is the primary interaction

that governs the decoherence process [9, 10, 11, 12].

Foremost, this topic is related to so-called central spin model (CSM) which

has been studied to describe the decoherence of electron spin by different groups

[13, 14, 15, 16], but even so, it will be very useful to approach this model from

nuclear spin bath (NSB) perspective. One of the main enthusiasm associated with

the hf-driven NSBs comes from two electron qubit entanglement via reservoir [17].

Most notably, this is possible without any restriction on initial NSB state other

than letting NSB to interact two qubits alternatingly. Or, polarized NSB can be

employed as a quantum interface for optical fields to achieve high fidelity levels
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of quantum information for input and output field [18].

The need for a comprehensive understanding of the hyperfine interaction

(HFI)-driven NSB is triggered by these facts and can be exploited by the

Loschmidt echo (LE) which is interpreted as a return probability of a bath to its

initial state [19]. Therefore, the flow of the quantum information from the two-

level system (namely a spin qubit) through the bifurcated environment (NSB) can

be probed, thanks to LE [20] which is also experimentally accessible via nuclear

magnetic resonance tools [21, 22].

1.1 What is this thesis about?

At this stage, the physical relevance of the model must be clearly stated for the

thesis to be put into a perspective. For the most part, we shall be dealing with

Fermi-contact HFI in this work which is effective on the conduction band electrons

in semiconductors. For both second and third chapter we included secular part

in which the longitudinal part of HFI does not take place, since, it is possible to

detune this part in data storage process [23, 24]. The indirect HFI can be ignored

if the Knight field due to electron is high enough [25] which leads extra nuclear

spin precession process [26, 27, 28]. Furthermore, Zeeman splitting of nuclear

spins can be omitted due to weak nuclear magnetic moments [29] when compared

to the HFI.

Second Chapter discusses the HFI alongside with intrabath nuclear dipole-

dipole (dd) interaction which is exactly solvable model by means of Jordan-

Wigner transformation. It is noteworthy that this method is straightforward

when dd interaction within the bath is uniform, yet, for the non-uniform cou-

pling regime it becomes useful method as a mathematical warm up. Moreover, it

provides an idea for the most basic characteristics of LE and forces us to exploit

the third chapter which is the most essential part of this thesis.

When short time scales is of a concern, the dd coupling regime can be ignored as

2



discussed in the introduction section of third chapter in detail. This simplification

gives the opportunity to study NSBs from much wider perspective. Importantly,

we discuss NSBs under pure dephasing model and separately analyse various

key parameter for both temporal and spectral behaviours of LE. Quadrupolar

Interaction (QI) is also considered in addition to HFI, to construct two realistic

models: Donor impurity and Quantum Dot. Additionally, the effect of a phase-

flip channel to LE is also discussed as a generic decoherence source.

The appendix consists of step by step derivations in detail relevant to Jordan-

Wigner transformation of chapter two to fill some sizable gaps in between equa-

tions.
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Chapter 2

Interacting spin chain: exactly

solvable many-body systems

2.1 Model Hamiltonian

This chapter discusses homogeneous and inhomogeneous 1D-XY spin-1/2 chains

which are coupled to the central spin (CS) to observe how it decoheres with

time. It serves to exemplify an exactly solvable many-body technique under

the name Jordan-Wigner transformation. The basic algorithm is to map chain

spins into spinless fermionic particles, take the Fourier transform to diagonalize

Hamiltonian and then, connect two ground states by writing them in BCS-like

form and calculate the Loschmidt echo for decoherence. This is schematically

shown on the flow-chart. The model Hamiltonian of the spin chain of N nuclear

spins is of the form,

H = −
N∑
i=1

Ji,i+1

[1 + γ

2
σxi σ

x
i+1 +

1− γ
2

σyi σ
y
i+1

]
−

N∑
i=1

λiσ
z
i , (2.1)

where i is the site index, J is coupling constant between nearest neighbor spins,

γ is anisotropy factor in xy plane, σα are Pauli spin operators (α = (x, y, z)) and

λi is the hyperfine interaction constant between CS and chain spins.
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Spin Hamiltonian

Spinless Fermionic Hamiltonian

Evaluate Φk’s and Ψk’s from,

Φk(A − B) = ΛkΨk

Ψk(A + B) = ΛkΦk for

both ground and excited states

H(g) =
∑

k Λ
(g)
k (η

(g)
k η

(g)
k ) − constant(g)

H(e) =
∑

k Λ
(e)
k (η

(e)
k η

(e)
k ) − constant(e)

G matrix,

qkm +
∑

i rkiGim = 0

Connect Ground states of H(g),

H(e) in BCS-like form and Cal-

culate the Loschmidt Echo

Jordan-Wigner Transform

Fourier Transform

Obtain normal modes

Bogoliubov Transform

to connect η
(g)
k , η

(e)
k

2.2 Diagonalization of homogeneous spin chain

For a homogeneous spin chain all coupling constants between neighbors are taken

as equal and set to 1. Also, for the sake of simplicity we assume that hyperfine

interaction constants are also the same (i.e. Ji,i+1 = J = 1 and λi = λ). Then

5



Eq. (2.1) reduces to,

H = −
N∑
i=1

[1 + γ

2
σxi σ

x
i+1 +

1− γ
2

σyi σ
y
i+1 − λσzi

]
, (2.2)

It is possible to write Eq. (2.2) in terms of raising and lowering operators which

are given by,

σ+ = (σx + iσy)/2, (2.3)

σ− = (σx − iσy)/2. (2.4)

Substituting to Eq. (2.2) yields,

H = −
N∑
i=1

[σ+
i σ
−
i+1 + σ−i σ

+
i+1 + γ(σ+

i σ
+
i+1 + σ−i σ

−
i+1)− λσzi ]. (2.5)

Observe that setting γ = 0 leaves us with only spin flip-flop term, and for any

non-zero γ, flip-flip and flop-flop interactions are also allowed.

2.3 Jordan-Wigner transformation

It is straightforward to diagonalize Hamiltonian in (2.5) by means of Jordan-

Wigner Transformation. Noting that for an SU(2) group, (σ+
i )2 = (σ−i )2 = 0, one

can easily establish a connection between spin operators and spinless fermionic

operators, where the similar conditions are satisfied [30],

c†
2

i = c
2

i = 0, (2.6)

[c†i , cj]+ = δij, (2.7)

where c† and c are fermionic creation and annihilation operators, respectively.

These relations allow us to make following mapping,

c†|0〉 = | ↑〉, (2.8)

|0〉 = | ↓〉, (2.9)
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where |0〉 is the vacuum state. Establishing fermionic number operator ni = c†ici

enables us to distinguish between | ↑〉 and | ↓〉 states just by giving one site

fermionic state or empty site. That is, if we represent | ↑i〉 state by |fi〉 then we

have,

ni|fi〉 = |fi〉, (2.10)

ni|0〉 = 0. (2.11)

Now, we are ready to define spin operators in terms of fermionic creation and

annihilation operators,

σ−i = e

(
iπ

∑i−1
j=1 c

†
jcj

)
ci, (2.12)

σ+
i = c†ie

(
−iπ

∑i−1
j=1 c

†
jcj

)
, (2.13)

σzi = 2c†ici − 1, (2.14)

where the exponentials are just a phase factor to ensure that commutation rela-

tions of different spin sites are satisfied. Let’s calculate,

eiπc
†
i ci =

∞∑
n=0

(iπ)n

n!
(c†ici)

n = 1 +
( ∞∑
n=

(iπ)n

n!

)
c†ici = 1 + (eiπ − 1)c†ici = 1− 2c†ici.

(2.15)

Here, we have used to fact that (c†ici)
n = c†ici for all non-zero integer n. Then the

total phase factor can be expressed as,

Pi =
i−1∏
j=1

(1− 2c†jcj). (2.16)

7



Then, terms in Eq. (2.5) can be written as follows,

σ+
i σ
−
i+1 = c†i [PjPj+1]ci+1

= c†i [
i−1∏
j=1

(1− 2c†jcj)
2(1− 2c†ici)]ci+1

= c†i [
i−1∏
j=1

(1− 4c†jcj + 4(c†jcj)
2)(1− 2c†ici)]ci+1

= c†i [
i−1∏
j=1

(1− 4c†jcj + 4c†jcj)(1− 2c†ici)]ci+1

= c†i (1− 2c†ici)ci+1

= (c†i − 2c†
2

i ci)ci+1

= c†ici+1. (2.17)

Similarly, other terms can be written as,

σ−i σ
+
i+1 = −cic†i+1, (2.18)

σ+
i σ

+
i+1 = c†ic

†
i+1, (2.19)

σ−i σ
−
i+1 = −cici+1. (2.20)

So that Hamiltonian in Eq. (2.5) takes the form [31],

H = −
N∑
i=1

[
(c†ici+1 + c†i+1ci) + γ[c†ic

†
i+1 + ci+1ci]− 2λ[c†ici − 1/2]

]
, (2.21)

which can also be written in a more compact form1 [31],

H =
N∑
i,j

c†iAijcj +
1

2
(c†iBijc

†
j + cjBjici), (2.22)

where,

A = −



2λ 1 1

1 2λ 1 0

1 2λ 1

0 1

1
. . .


, (2.23)

1We have used periodic boundary conditions (PBC).
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and,

B = γ



0 −1 1

1 0 −1 0

1 0 −1

0 1

−1
. . .


. (2.24)

Here note that in Eq. (2.22),
1

2
factor has appeared as coefficient to prevent us

from double counting. The goal is to put this Hamiltonian into the form,

H =
N∑
k=1

Λkη
†
kηk + constant (2.25)

Looking for canonical operators of the form [32],

η†k =
N∑
i=1

gkic
†
i + hkici, (2.26)

ηk =
N∑
i=1

gkici + hkic
†
i . (2.27)

Let,

Φkj = gkj + hkj, (2.28)

Ψkj = gkj − hkj. (2.29)

Then, one can find gkj and hkj such that (See Appendix A.1 for detailed deriva-

tion),

Φk(A−B) = ΛkΨk, (2.30)

Ψk(A+B) = ΛkΦk, (2.31)

which are obviously coupled equations. One can choose row vectors Φk ,Ψk to be

orthonormal2 and also it is allowed take positive Λk values. Now it is possible to

decouple (2.30) and (2.31) as3,

Φk(A−B)(A+B) = Λ2
kΦk. (2.32)

2The orthonormality of Φk, makes Ψk normalized directly.
3Here we write the equation for vector (Φk) only since the other decoupled equation will not

be necessary.
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Once Φk are determined, Ψk can be found from (2.31). Under the constraint that

η†k, ηk need to be canonical it is straightforward to deduce constraints 4 (See A.2),∑
i

(gkihni + hkigni) = 0. (2.33)

∑
i

(gkigni + hkihni) = δij, (2.34)

2.4 Loschmidt echo

Assuming that the CS is in a pure state at t = 0, the whole wave function can

be expressed as a direct product of CS and a bath state [34],

|Ψ(0)〉 = (cg|g〉+ ce|e〉)⊗ |B(0)〉, (2.35)

and after a time evolution at time t it becomes,

|Ψ(t)〉 = cg|g〉 ⊗ |B(t)(g)〉+ ce|e〉 ⊗ |B(t)(e)〉. (2.36)

Suppose we have two different Hamiltonians which are already diagonalized by

JW transformation with the following forms,

H(g) =
∑
k

Λ
(g)
k (η

(g)
k η

(g)
k )− constant(g), (2.37)

H(e) =
∑
k

Λ
(e)
k (η

(e)
k η

(e)
k )− constant(e), (2.38)

so that, (
η(g,e)

η(g,e)†

)
= U (g,e)

(
c

c†

)
. (2.39)

where U (g,e) are both unitary matrices. Then it is possible to connect operators

of ground and excited states by,(
η(g)

η†(g)

)
= U (g)U (e)−1

(
η(e)

η†(e)

)
, (2.40)

4There is a sign mistake in Ref. [32] and [33] for the Eq. (2.33).
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where,

U (g,e) =

(
g(g,e) h(g,e)

h∗(g,e) g∗(g,e)

)
. (2.41)

Here one can find h∗(g,e), g∗(g,e) from linear combinations of Φ∗(g,e), Ψ∗(g,e).

Loschmidt Echo (LE) is the overlap of a state which evolves with two different

Hamiltonian,

M(t) = |〈B(g)(t)|B(e)(t)〉|2, (2.42)

obviously B(g)(t) is bath state and 〈B(g)(0)|B(e)(0)〉 = 1. Here, we assume that

B(g) is the ground state of Hamiltonian H(g). It is possible to connect to states

B(g) and B(e) in BCS-like form [35],

|B(g)〉 =
1

Υ
e1/2

∑
i,j η

(e)†
i Gijη

(e)†
j |B(e)〉, (2.43)

where Υ is some normalization constant and elements of G can be found from

qkm +
∑

i rkiGim = 0. which is derived in Appendix A.3 5. Then, one can find LE

as,

|〈B(g)(t)|B(e)(t)〉|2 =
1

Υ4

∏
i,j>i

[
(1 + |Gij|2)2 − 4(1 + |Gij|2)2 sin2

(Λ
(e)
i + Λ

(e)
j

2
t
)]
.

(2.44)

To show the power of this exact framework, we should mention that the nu-

merical exact diagonalization obtained from master equation solves are amenable

only for small spin chains (N < 21) due to exponential growth of Hilbert space.

Whereas, Jordan-Wigner diagonalization is much more CPU friendly, since im-

plementing (2.44) requires only 3 nested for loops. Fig. 2.4 shows the qubit

coherence for site dependent coupling constants Ji. Notice that the expression

(2.44) is only valid for ground state of H(g), initial state |B(0)〉, for exact diago-

nalization method must be seeded accordingly6.

Loschmidt Echo can be interpreted as a measure of entanglement; while M = 1

qubit is completely disentangled from the bath, M = 0 represents entangled state,

meaning loss of information to the reservoir. Figs. 2.2-2.4 show LE for different

5We are doubtful about the correctness of Eq. (B7) in ref. [35].
6Fig. 2 of Ref. [36] has been reproduced. in fig 2.2
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Figure 2.1: Loschmidt echo as a function of time. N = 10, γ = 1.0, λ(g) = 1.0,
λ(e) = 5.0, J = [0, 1]. Comparison of Exact Diagonalization (numerical) vs JW
transformation method. Difference between two curves is not distinguishable.

parameter sets, note that at t = 0 all plots start from M = 1, meaning qubit and

NSB starts completely disentangled initially. In fig 2.4 we normalize time scale

with respect to mean value of HFI coupling constant to observe when the dd

coupling dominates the system. In realistic cases dd interaction is three orders

of magnitude smaller than the HFI, and can be practically omitted for short

time scales since dd coupling shows its presence if the condition, J̄/λ̄(e) ≥ 0.1, is

satisfied.

In the remainder of this thesis, we shall not be using the JW technique as

we found the one-body hyperfine and quadrupolar interactions to be much more

important on LE for the temporal scale that we are interested in.
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Figure 2.2: Loschmidt echo for different λ(e) values. N = 100, γ = 1.0, λ(g) = 0,
J = 1.

Figure 2.3: Loschmidt echo for different λ(e) values. N = 100, γ = 1.0, λ(g) = 1.0,
J = 1.
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Figure 2.4: Loschmidt echo for different λ(e) values. N = 100, γ = 1.0, λ(g) = 1.0,
J = [0, 2].

Figure 2.5: Loschmidt echo for various dd coupling strengths values as. Here
time scale is normalized by λ̄(e) =

∑N
i=1 λi. N = 50, γ = 1.0, λ(g) = 0, J = [0, 2].
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Chapter 3

Short-time dynamics of

Loschmidt echo in nano-scale

nuclear spin baths

Even though, JW-diagonalization can provide an exact expression for LE, it is

restricted to the ground state of spin-1/2 spin chain. Furthermore, it is limited to

spin-1/2 NSB which has been extensively studied [2, 3, 4, 5, 6, 8, 15, 17, 18, 37]

in the literature, despite the fact that group III-V semiconductors consist of

I ≥ 1 nuclei [29] in which quadrupolar interaction (QI) should be considered.

All of these brings us to main subject of this chapter where we flourish the basic

characteristics of 1-body interactions, HFI and QI namely, to develop profound

understanding NSB’s temporal and spectral dynamics of LE by investigating

bath size, coupling nonuniformity, polarization of initial state, and the nuclear

spin quantum number, I dependencies of the NSB.1

One may have some worries about sacrifacing dd interaction that have been

considered in previous chapter, yet because of the static lattice spacing in solid

state matrix which restricts closeness of two neighboring nuclear spins, this makes

it smaller more than three orders of magnitude in frequency when compared to

1Contents of this chapter are reported in Ref. [38].
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the HFI, so that, dd interaction corresponds to miliseconds in time scale and can

be ignored especially if short time scales is of a concern [6, 9, 10].

3.1 Basic formalism for hyperfine interaction

mediated Loschmidt echo

When terms associated with the dd interaction in Eq. (2.1) are dropped out,

Hamiltonian remains with secular part of HFI, so-called pure dephasing model.

Spin qubit with non-interacting spin chain allows us to employ analytic expression

for LE in straightforward manner, providing various degree of freedoms upon the

choice of NSBs at the same time which are going to be discussed in detail in

following sections.

3.1.1 Hyperfine interaction with the central spin

The spin qubit consist of two level basis (|↑〉, |↓〉) interacting with nuclear spin-I

environment which forms the bath sector via transverse part of HFI. In the scope

of this chapter, homospin-I environment, where the I value changes from 1/2

to 9/2, is choosen for simplicity even our model allows heterogeneous NSBs. As

mentioned, thanks to interested time scale for HFI interaction, qubit and NSB

together can be considered as a closed system (the open system approximations

can also be made see Sec. 3.1.4 ). Now it is possible to define pure dephasing

Hamiltonian as [39],

Ĥ = Ĥ+ ⊗ |↑〉 〈↑|+ Ĥ− ⊗ |↓〉 〈↓| , (3.1)

where each nuclear spin is conditioned on the two level basis as: |↑〉 → Ĥ+,

|↓〉 → Ĥ−, with

Ĥ± = ±
∑
i

AiÎ
z
i , (3.2)
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where Îzi is the zth component of i’th nuclear spin operator along the quantization

axis of the qubit, and Ai is the hf coupling strength in frequency.

3.1.2 Loschmidt echo

It is possible to probe quantum coherence via, creating central spin state as a

linear combination of spin up and down states (i.e. |ψ〉 = C+ |↑〉+C− |↓〉) which

is set to be completely uncorrelated with its environment |B0〉 at t = 0, so that

overall system can be expressed with the tensor product of the two,

|Ψ(t = 0)〉 = |ψ〉 ⊗ |B0〉 . (3.3)

For some arbitrary time t, system propagates under the Hamiltonian given in

Eq. (3.1) resulting into some entangled state,

|Ψ(t)〉 = C+ |↑〉 ⊗ |B+(t)〉+ C− |↓〉 ⊗ |B−(t)〉 . (3.4)

Central spin and NSB’s entanglement indicates qubit decoherence which can

be tracked down by LE, M(t) = |L(t)|2, where [19],

L(t) = 〈B−(t)|B+(t)〉 = 〈B0| eiĤ−te−iĤ+t |B0〉 . (3.5)

3.1.2.1 Initial bath state

Initial bath state of nanoscale spins bath can be choosen as a tensor product of

pure states which is more convinient when compared to mixed states and can

be cooked through different techniques [39]. Furthermore, initial bath state de-

pendency can be reduced significantly by dynamical decoupling methods [40].

Consequently, initial spin states can be choosen to be pure coherent spin states

(CSS) [41] which are determined by spherical angles Ωi = θi, φi so that, for unpo-

larized and polarized baths we choose spherical angles from uniform distribution

and a cone defined by a polar angle θp respectively.
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For the one-body Hamiltonian given in Eq. (3.2) L(t) can be computed as a

product of individual spin propagations. Then, Eq. (3.5) can be re-expressed as,

L(t) =
N∏
i=1

〈Ωi(0)| e−i2AiÎ
z
i t |Ωi(0)〉 , (3.6)

where,

|Ω〉 =
m=I∑
m=−I

(
2I

I +m

)1/2

[cos(θ/2)]I+m [sin(θ/2)]I−m e−i(I−m)φ |m〉 . (3.7)

from which we can calculate,

L(t) =
N∏
i=1

{ Ii∑
mi=−Ii

Wmi
i e−i2Aimit

}
. (3.8)

Here,

Wmi
i =

(
2Ii

Ii +mi

)
[cos(θi/2)]2(Ii+mi) [sin(θi/2)]2(Ii−mi) , (3.9)

is the weight function which is completely independent from azimuthal angle φ,

m ∈ {−I,−I + 1, . . . , I − 1, I} are the eigenvalues along the quantization axis, θ

is the polar angle and the subscript i again denotes the nuclear site index. The

simplest case is available for homospin-1/2 environment where Eq. (3.8) reduces

to,

L(t) =
∏
i

{
cos2(θi/2)e−iAit + sin2(θi/2)eiAit

}
, (3.10)

which shares same structure with Eq. (16) derived in [42]. It is also possible to

calculate power spectra of LE, |M(f)|2 through the Fourier transform which is

given by,

M(f) =
∑

m1,m2,...,mN ,
m′1,m

′
2,...,m

′
N

( N∏
i=1

Wmi
i W

m′i
i

)
δ

(
f +

1

π

N∑
i

Ai(mi −m′i)
)
. (3.11)
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3.1.3 Effect of quadrupolar interaction to Loschmidt echo

As we mention in the Introduction section we also consider nuclei with I > 1/2,

and they possess aspherical charge distributions giving rise to a non-zero elec-

tric quadrupole moment [43, 44]. These quadrupolar nuclei are affected by the

gradient of an electric field that is present at a nuclear site. Such a setting be-

comes readily available in low-dimensional alloy structures of group III-V semicon-

ductors (like InGaAs quantum dots) arising from the atomistic scale distortions

within the tetrahedral bonding of polar constituents [45, 46]. Thus, a quadrupolar

NSB has an additional interaction channel described by the Hamiltonian

ĤQ =
∑
i

fQi
6

{
3
(
Îzi

)2

+
ηi
2

[(
Î+
i

)2

+
(
Î−i

)2
]}

, (3.12)

where, Î± ≡ Îx± iÎy are the standard spin raising/lowering operators, fQi and ηi,

are respectively the quadrupolar frequency and the tensorial electric field gradient

biaxiality at the i’th nuclear site, and here we dropped a constant Î2
i term [43].

We should note that, QI is not conditioned on the state of central spin, unlike

the HFI. So, when both interactions coexist the total Hamiltonian takes the form

Ĥ =
(
ĤQ + Ĥ+

)
⊗ |↑〉 〈↑|+

(
ĤQ + Ĥ−

)
⊗ |↓〉 〈↓| . (3.13)

3.1.4 Phase flip decoherence

In addition to the above one-body interactions, we would like to consider a generic

dephasing channel as well. Qubit decoherence can be calculated via the Lindblad

Master equation [47, 48],

d

dt
ρ̂(t) = −i

[
Ĥ, ρ̂(t)

]
+

2I∑
m=1

[
L̂mρ̂(t)L̂†m −

1

2

{
L̂†mL̂m, ρ̂(t)

}]
, (3.14)

here ρ̂ is the density matrix, [ , ] and { , } represent commutator and anti-

commutator, respectively, L̂m is the Lindblad operator characterizing the nuclear

spin’s coupling to spin bath. The phase-flip channel can be emloyed for simulat-

ing unaccounted, mainly virtual processes in spin-I systems by allowing NSB to
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be open as governed by [49, 50]

L̂m =

√
(2I)!

m!(2I −m)!

(
1− e−γ

2

)m(
1 + e−γ

2

)2I−m

Îmz , (3.15)

where γ is the phase-flip rate. When this is the case LE can be expressed in terms

of spin density matricies ρ̂i±(t) of (±) bath trajectories so that LE becomes,

M(t) =
N∏
i=1

Tr
(
ρ̂i−(t)ρ̂i+(t)

)
, (3.16)

where Tr is the trace operator.

3.2 Results

It is possible to observe that for nonthermalized nanoscale NSBs that are cou-

pled to a spin qubit with small deviation in coupling constants Ai, LE can reveal

rephase within time since it shows closed system dynamics in short time scales

[20]. In pure dephasing model, we show that LE for different NSB or spin length

can coalesce to single one. We also consider the nuclear electric quadrupole inter-

action which is due to atomistic strain in semiconductor matricies for quadrupolar

NSBs [45, 46] and reveal under which conditions the QI becomes significant for

LE dynamics. Furthermore, we employ phase flip channel to simulate other pos-

sible decoherence effects. And finally, we present power spectra of LE for two

possible realistic cases of a donor center and a quantum dot which are instances

of small and big reservoir respectively.

Throughout this section we use normalized time and frequency, defined by the

mean value of uniformly distributed hf coupling constants as, Ā =
∑N

i=1Ai/N

such that normalized time takes the form t̃ ≡ tĀ, and normalized frequency be-

comes f̃ ≡ f/Ā; other normalization schemes also are employed in the literature

[15, 37, 51]. The non-zero spread in hf coupling constant is invevitable because

of the spatial variation of electron wave function over semiconductor medium.

Moreover, we use initial bath state that is consist of tensor product of CSSs
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each constructed with polar angle θi which distributed uniformly over the in-

terval [0, θp]. Therefore, the θp = π case corresponds unpolarized nuclear spin

environment.

3.2.1 Bath size dependence of LE

As a first example, bath size dependence of LE is employed under mentioned

normalization related to mean value of HFI coupling constants. Fig. 3.1 shows

LE of spin-1/2 CSSs consist of N = 1000 nuclei which are unifromly distributed

all over the Bloch sphere initially. The spread in hf coupling constants set to be

0.025Ā. Altough, this is a small quantity when compared to realistic cases, our

purpose here is to show rephasing characteristics2. The upper panel of Fig. 3.1

reveals the dephasing in LE and rephasings which are Gaussians of the same

halfwidth. Whereas, Fig. 3.1 (bottom) illustrates bath size dependence of LE;

observe that larger NSBs shows faster dephasing as experimental studies implies

[21]. If the NSB is large enough, rephasing are periodic of the form
[
cos t̃

]αNI
with a Gaussian envelope function.

2To see the relationship bewteen rephasing amplitude and deviation in HFI coupling con-
stants see Fig. 3.2
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Figure 3.1: (top) LE for N = 1000. Insets show the halfwidth (HW) of revivals.

(bottom) Effect of different number of nuclear spins, N , forming the bath. In all

cases I = 1/2, ∆Amax = 0.025Ā, initial bath coherent spin states are uniformly

distributed over the Bloch sphere.
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3.2.2 Effect of bath polarization and hf couplings

Coherence time and rephasing amplitudes are highly initial bath polarization

dependent, In Fig. 3.2 (top) we display LE for different initial nuclear spin po-

larizations which introduce a bias to NSB. The non-vanishing Overhauser Field

at t = 0 provides longer coherence times in pure dephasing model. It is pos-

sible to observe that polarized NSB incorporates stronger rephasing when echo

amplitudes and slower decaying Gaussian envelope are considered, consequently.

Figure 3.2 (bottom), ∆Amax is the maximum deviation from the mean value of

HFI constant in NSB (i.e. ∆Amax = max{|Ai − Ā|}) and individual detuning is

added for each nuclear spin site from the uniform distribution. The expression[
cos t̃

]αNI
implies that there is no change in width of the first decays since mean

value of coupling constants (Ā) remains same. However, As HFI constants are

chosen to be more resonant, the rephasing amplitudes and number of echoes gets

higher exhibiting a similar behavior when compared to the initial spin polariza-

tion case.

23



10−2 10−1 100 101

normalized time (tĀ)

0.0

0.2

0.4

0.6

0.8

1.0
M

(t
)

θp = π

θp = π/4

θp = π/8

10−2 10−1 100 101

normalized time (tĀ)
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0.025Ā. (bottom) Effect of spread in the hf coupling constants (∆Amax) of indi-

vidual nuclear spins; initial bath coherent spin states are uniformly distributed

over the Bloch sphere. In all cases N = 100, I = 1/2.
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3.2.3 Spin length dependence

LE can be interpreted as a return probability to a initial bath configuration,

since higher spin quantum number (I) deploys more eigenstates, dephasing oc-

curs faster. In Fig. 3.3 (top) we present first decay behavior of LE for different

homospin−I environments. When LE is taken into account as a quantum me-

chanical notion, classical spin baths feature when I � 1 is satisfied [52, 53].

Whereas, spin-I family of curves can be reduced to single one under the normal-

ization of tĀ
√
I as in the inset of Fig 3.3. The power spectra of LEs are also

given in Fig. 3.3 (bottom) which contains all the necessary information regarding

the internal dynamics of dephasing process. Note that here and throughout this

thesis we shift power spectra to 0 dB to visualize broadening effect of spin length

more clearly. Note that the power spectra widening is also in agreement with

temporal behaviour which is proportional to
√
I.
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0.0

0.2

0.4

0.6

0.8

1.0
M

(t
)

I = 1/2
I = 3/2
I = 5/2
I = 7/2
I = 9/2

0 10 20 30 40 50 60 70 80
normalized frequency (f/Ā)
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tion. (bottom) spectral behavior. In all cases N = 1000, ∆Amax = 0.25Ā, and

the initial bath spins are uniformly distributed over the Bloch sphere.

An analytical approximated expression of LE for large spin bath limit would

be highly desirable, yet it remains as a future work. Cucchietti et al. obtained a

derivation for spin-1/2 baths and under some serious assumptions [54]. However,

after some numerical analysis we reach to a widely applicable phenomenological
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expression that summarizes properties mentioned in previous three subsections

which given by,

M(t̃) ∼ exp
[
−NI

(
αp sin2(t̃) + βpσ

2t̃ 2
) ]
, (3.17)

where σ is the standard deviation of the hf coupling constants, and αp, βp, are

NSB polarization-dependent fitting parameters. For NSBs that are governed

by hf regime, LE curve asymptotically approaches to Eq. (3.17) as long as the

number of spins in the environment are increasing without any restriction on

spin quantum number, hf coupling spread, etc. Note that it predicts periodicity

and rephasing amplitudes correctly especially for N & 1000 and NI product

governs the halfwidth of the first decay, together with the initial bath polarization

parameters as covered in Figs. 3.1-3.3.

3.2.4 Quadrupolar interaction

So far, we only included the hf coupling of each nucleus with the central spin

(Eq. (3.1)). In the case of quadrupolar NSBs having I ≥ 1 the QI as described by

Eq. (3.12) becomes operative. In Fig. 3.4 the temporal behavior of LE of spin-3/2

and 9/2 NSBs are compared for various mean f̄Q =
∑N

i=1 fQi/N rates from weak

to strong coupling limits. We should point out that the QI has a null effect on

LE for a nuclear spin under ηi = 0, i.e., at a uniaxial electric field gradient site,

or equivalently, its major principal axis aligned with the quantization direction

[46]. This is because the (Îzi )2 term in Eq. (3.12) commutes with the ±Îzi parts

of HFI; that is, the fluctuations caused by (Î±i )2 terms are critical, and together

with them, the (Îzi )2 term imposes a nontrivial outcome on the dynamics. This

necessitates η > 0, where for alloy quantum dots (like InxGa1−xAs), η ∼ 0.2−0.6

[45]. Since ηi term appears in product with fQi in Eq. (3.12), for simplicity we

fix the former to ηi = 0.5 for all nuclear spins, and let ∆fQ,max = 0.2f̄Q. The

distribution of hf coupling constants is taken as ∆Amax = 0.25Ā that prohibits

any revival of LE beyond the initial decay as inferred from Fig. 3.2. In such

a practical setting, we first observe that for a given bath size, N , as QI gets

stronger it causes a faster decay, and hence broadens the frequency spectrum
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of LE. Moreover, the contribution of QI is much more pronounced on polarized

NSBs (minding the logarithmic time scale in Fig. 3.4), acting in the direction to

depolarize NSB. Furthermore, we note that the significance of QI decreases as

the bath size, N , increases. This stems from the fact that the (normalized) first

decay rate, f̃1D as can be extracted from the variance of M(t̃) from Eq. (3.17),

has the dependence f̃1D ∝
√
NI, so that for a given f̄Q, as N increases so does

f̃1D, rendering ineffective the QI within the first decay time frame of the LE.
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0.0

0.2

0.4

0.6

0.8

1.0

M
(t
)

I = 9/2

[N, θp]

[100, θp = π/8]

[100, θp = π]

[1500, θp = π/8]
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3.2.5 Phase flip channel

Before confronting realistic models, other possible decoherence effects can be

modelled by introducing phase-flip channel which acts on the off-figonal terms of

he density operator. Fig. 3.5 shows both the temporal and spectral behaviour

of LE for different phase-flip rates, γ for the spin-1/2 and 3/2. The higher spin-

I length makes system more vulnerable to channel and LE’s Gaussian profile

gains an exponential tail for non-zero phase-flip rate γ. Correspondingly, the

power spectra sweeps from Gaussian to Voigt and under strong decoherence limit

the Voigt profile becomes a Lorentzian.This agrees with previous works on the

deviation from gaussianity under various environmental conditions [55, 20, 56, 57].
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Figure 3.5: Effect of phase flip decoherence, (left) spin-1/2, (right) spin-3/2.

N = 100, ∆Amax = 0.3Ā. Initial bath spins are uniformly distributed over the

Bloch sphere.
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3.2.6 Realistic solid-state models

After analyzing the NSBs basic traits for LE, we are at the point where the real-

istic NSBs can be examined. We employ two common NSBs which corresponds

small and large reservoir namely, donor/defect center within a semiconductor

host matrix, and a lateral quantum dot where the latter represents large NSBs.

For an electron which is assumed to be s like state, the slowly varying part of the

wave function can be choosen as [51],

Ψ(ri) = Ψ(0) exp

(
− r

2
i

2l20

)
, (3.18)

where ri is the distance of the i’th nuclear site from the origin, and l0 is the

electron confinement radius. In our choice, the NSB constitutes all the nuclei

with |Ψ(ri)/Ψ(0)| > 10−3. An effective number of spins Neff can be defined as

[10],

Neff = ρ
4πl30
3v0

, (3.19)

in terms of the ratio of spinful nuclei, ρ, and the volume occupied by a single atom,

v0, constrained by normalization condition v0

∑
i |Ψ(ri)|2 ≈ 1. For 3 dimensional

defect center (top) with radius of 5 nm, number of total spins Ntot ≈ 25 000, num-

ber of effective spins Neff = 100, the sum of coupling constants can be calculated

as,
∑Neff

i=1 Ai ≈ 0.141 µeV under the assumption 95% of nuclei in the environ-

ment carry spin-0 [55]. For a disk-shaped quantum dot with radius ρ = 12.5 nm,

height z = 3 nm of which the electron envelope wave function taken as uniform

in the growth direction, whereas in the radial direction it is taken to be Gaussian,

Ntot ≈ 70 000, Neff = 10 000,
∑Ntot

i=1 Ai ≈ 82 µeV, the sum of couplings estimated

as
∑Neff

i=1 Ai ≈ 70.856 µeV.

Power spectra of LE for both defect center and quantum dot are considered

in Fig. 3.6 under different set of parameters which are all agreement with NSB

properties addressed in previous subsection. To begin with, the polarized bath

dramatically narrows the frequency spectrum. The observation of
√
I broaden-

ing still valid when spin-1/2,3/2,9/2 environments compared. Furthermore, the

frequency bandwidth of donor center is two orders of magnitude narrower than

comared to quantum dot case where the latter is about hundreds of megahertz.
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This situation is directly related to Eq. (3.17). Regarding QI, the quadrupolar

frequency dictated by strain is typically in the range fQ ∼ 2–8 MHz for typical

quantum dots [45], and 3–6 MHz for defect centers, as in hexagonal BN flakes

[58]. In our examples here, the mean hf coupling constant, Ā is about 0.34 MHz

(1.7 MHz) for the donor center (quantum dot), so as a representative value we

consider f̄Q/Ā = 10, along with ηi = 0.5. From Fig. 3.6 it can be seen that QI

is ineffective on LE for a large quantum dot, whereas it leaves its mark in the

donor center with polarized NSB having a small NI product, in parallel to our

conclusions from Fig. 3.4 and Eq. (3.17).

Finally, we would like to comment on the utility of such power spectra as in

Fig. 3.6. In simple terms, they specify the characteristic bandwidth of HFI and

QI fluctuations in relation to the qubit coherence. As such, this may help to

assess the efficacy of the dynamical decoupling techniques [40]. In a more specific

context, the spectrum of NSB hf fluctuations plays a crucial role in the recently

discovered hf-mediated electric dipole spin resonance, in the form of both driving

and detuning it [59, 60].
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Figure 3.6: Power spectra of LE for realistic systems under different spin-I, po-
larization (θp) and quadrupolar frequencies (f̄Q). (top) donor center, Neff = 100,
(bottom) lateral quantum dot, Neff = 10 000. For the bottom case, f̄Q/Ā=0, 10
curves become indiscernible for each I.
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Chapter 4

Conclusions and future work

In nanoscale spin bath the analysis of spin decoherence is important for var-

ious purposes in quantum technologies [27, 61, 62]. This thesis first gives a

basic recipe for deducing LE by JW diagonalization both for uniform and site

dependently-interacting spin chains. Then, uncovers the characteristic effects of

key parameters to non-interacting NSBs like size, initial polarization, coupling

inhomogeneity, spin quantum number, and offers a phenomenological expression

of LE in the pure dephasing regime.

Additionally, the effect of QI on LE is taken into account for the quadrupolar

nuclei which are prevalent in III-V semiconductors. In particular, it is the QI

biaxiality term that has important ramifications on the qubit decoherence. From

the moderate coupling regime onwards (f̄Q & Ā), QI causes a faster decay of

initial coherence that gets more pronounced for polarized and small NI-product

NSBs. Furthermore, phase-flip channel is studied to see vulnerability of spin-I

environments especially when I � 1. Lastly, we contrasted two realistic cases of a

donor center and a quantum dot representing small and large NSBs, respectively.

Here, for quantum dots with N & 10 000 nuclear spins, the LE spectrum can

stretch to 100 MHz range, and the effect of QI is rather negligible. On the other

hand for donor centers, as this width narrows down by more than an order of

magnitude both the dynamical decoupling techniques become feasible, and the
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QI begins to show its presence.

It remains as a future work to discover long term dynamics in a detailed

way where intrabath interactions also becomes crucial, that can be compared

with the experimental results in the literature [63]. As a matter of fact, there

are specialized techniques for handling the large interacting NSBs like cluster-

correlation expansion [64, 61] which can be compared with exact solutions like

the ones derived in second chapter.
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Appendix A

Derivations relevant to

Jordan-Wigner transformation

A.1 Coupled equations

Let’s have a look at commutation, [ηk, H]

[ηk, H] = ηkH −Hηk
=
∑
k′

Λk′ηkη
†
k′
ηk′ −

∑
k′

Λk′η
†
k′
ηk′ηk

=
∑
k′

Λk′ (δkk′ − η†k′ηk)ηk′ −
∑
k′

Λk′η
†
k′
ηk′ηk

=
∑
k′

Λk′δkk′ηk′

= Λkηk (A.1)

Using the relation above with (2.22) and (2.27),

[ηk, H] =
∑
n

(gkncn + hknc
†
n)
[∑

i,j

(c†iAijci) +
1

2
(c†iBijc

†
j + cjBjici)

]
−
[∑

i,j

(c†iAijci) +
1

2
(c†iBijc

†
j + cjBjici)

]∑
n

(gkncn + hknc
†
n) (A.2)
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=
∑
i,j,n

{
gkn(

δni−c†i cn︷︸︸︷
cnc
†
i Aijcj − c†iAijcjcn)

+
gkn
2

(

δni−c†i cn︷︸︸︷
cnc
†
i Bijc

†
j − c†iBijc

†
jcn)

+
gkn
2

(

−cjcn︷︸︸︷
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+
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†
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+
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†
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†
i Bijc

†
j − c†iBijc

†
jc
†
n)

+
hkn
2

(

δnj−cjc†n︷︸︸︷
c†ncj Bjici − cjBjicic

†
n)
}

(A.3)

=
∑
i,j,n

{
gkn(Aijcjδni − c†iAij(

0︷ ︸︸ ︷
cncj + cjcn))

+
gkn
2

(Bijc
†
jδni − c†iBij(

δnj︷ ︸︸ ︷
cnc
†
j + c†jcn))

+
gkn
2

(−Bjicj(

0︷ ︸︸ ︷
cnci + cicn))

+ hkn(−Aijc†i (
δij︷ ︸︸ ︷

c†ncj + cjc
†
n))

+
hkn
2

(−Bijc
†
i (

0︷ ︸︸ ︷
c†nc
†
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†
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+
hkn
2

(Bjiciδnj − cjBji(

δni︷ ︸︸ ︷
c†nci + cic

†
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}

= Λk

∑
n

(gkncn + hknc
+
n ). (A.4)

Here, we obviously used anticommutation relations for fermions. Equating like

terms and rearranging indicies of A and B matrices1 yields following coupled

1Here we used symmetric and anti-symmetric properties of A and B matrices.
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equations,

Λkgkn =
∑
i

(gkiAin − hkiBin), (A.5)

Λkhkn =
∑
i

(gkiBin − hkiAin). (A.6)

A.2 Constraints for ηk and η†k to be cannonical

Considering that η+
k , η+

n to be canonical

[ηk, ηn]+ = ηkηn + ηnηk = 0

=
∑
i

(gkici + hkic
†
i )
∑
j

(gnjcj + hnjc
†
j)

+
∑
j

(gnjcj + hnjc
†
j)
∑
i

(gkici + hkic
†
i )

=
∑
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(gkignjcicj + gkihnjcic
†
j)

+
∑
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(hkignjc
†
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†
ic
†
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+
∑
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+
∑
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(hkignjcjc
†
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†
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†
i )

=
∑
ij

(gkignj[ci, cj]+ + hkihnj[c
†
i , c
†
j]+)

+
∑
ij

(gkihnj[ci, c
†
j]+ + hkignj[cj, c

†
i ]).

Yielding, ∑
i

(gkihni + hkigni) = 0. (A.7)

Similarly, one can deduce, ∑
i

(gkigni + hkihni) = δij, (A.8)

from [ηk, η
†
n]+ = δnk. (2.33) and (2.34) are two constraints that needs to be

satisfied for canonical operators ηk, η
†
k.
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A.3 Elements of G Matrix

Let’s write, matrix elements of U (g)U (e)−1 as,

U (g)U (e)−1 =

(
r q

q∗ r∗

)
. (A.9)

Connecting excited and ground state operators,

η
(g)
k =

∑
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(e)
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i ) (A.10)

Observe that ηk|B(g)〉 = 0. Then,
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∑
i

rkiη
(e)
i Gnmη

†(e)
n η†(e)m

]
|B(e)〉

=
∏
n,m

[∑
i

qkiη
†(e)
i +

1

2

∑
i

rkiGnm(δin − η†(e)n η
(e)
i )η†(e)m

]
|B(e)〉

=
∏
n,m

[∑
i

qkiη
†(e)
i +

1

2

∑
i

rkiGnm(δinη
†(e)
m − η†(e)n η

(e)
i η†(e)m )

]
|B(e)〉

=
∏
n,m

[∑
i

qkiη
†(e)
i +

1

2

∑
i

rkiGnm(δinη
†(e)
m − η†(e)n (δim − η†(e)m η

(e)
i ))

]
|B(e)〉

=
∏
n,m

[∑
i

qkiη
†(e)
i +

1

2

∑
i

rkiGnm(δinη
†(e)
m − η†(e)n δim)

]
|B(e)〉

Then, collecting coefficients of like terms yields the following equation,

qkm +
∑
i

rkiGim = 0, (A.11)
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which one can find elements of G.

A.4 Derivation of generalized expression for

Loschmidt echo

The overlap of ground and excited states can be written as,

〈B(g)(t)|B(e)(t)〉 =
1

Υ2
〈B(e)|e(1/2

∑
n,m η

(e)
n G∗nmη

(e)
m )eiE0te−iH

(e)

e(1/2
∑

i,j η
†(e)
i G†ijη

†(e)
j )|B(e)〉

(A.12)

Working out the e(1/2
∑

i,j η
†(e)
i G†ijη

†(e)
j )|B(e)〉 part,

e(1/2
∑

i,j η
†(e)
i Gijη

†(e)
j )|B(e)〉 =

∏
i,j

[
1 +

1

2
Gijη

†(e)
i η

†(e)
j +

1

8
(Gijη

†(e)
i η

†(e)
j )2 + . . .

]
|B(e)〉

=
∏
i 6=j

[
1 +

1

2
Gijη

†(e)
i η

†(e)
j

]
|B(e)〉

=
∏
i,j>i

[
(1 +

1

2
Gijη

†(e)
i η

†(e)
j )(1 +

1

2
Gjiη

†(e)
j η

†(e)
i )

]
|B(e)〉

=
∏
i,j>i

[
1 +Gjiη

†(e)
j η

†(e)
i

]
|B(e)〉 (A.13)

Here we used the fact that η
†(e)2
l |B(e)〉 = 0 and Gjiη

†(e)
j η

†(e)
i = Gijη

†(e)
i η

†(e)
j since

Gij = −Gji. Similarly, for bra part,

〈B(e)|e(1/2
∑

n,m η
(e)
n G∗nmη

(e)
m ) = 〈B(e)|

∏
m,n>m

[
1 +G∗mnη

†(e)
n η†(e)m

]
. (A.14)

Then, (A.12) becomes,

〈B(g)(t)|B(e)(t)〉 =
1

Υ2
〈B(e)|

∏
m,n>m

[
1 +G∗mnη

†(e)
n η†(e)m

]
eiE0t

∏
k

e−iΛ
(e)
k (η

(e)
k η

(e)
k +E

(e)
0 )t

∏
i,j>i

[
1 +Gjiη

†(e)
j η

†(e)
i

]
|B(e)〉

=
ei(E0−E(e)

0 )t

Υ2
〈B(e)|

∏
m,n>m

[
1 +G∗mnη

†(e)
n η†(e)m

]
(A.15)

∏
k

e−iΛ
(e)
k (η

(e)
k η

(e)
k )t

∏
i,j>i

[
1 +Gjiη

†(e)
j η

†(e)
i

]
|B(e)〉
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where we have expressed constant part of excited Hamiltonian as E
(e)
0 . Let’s

calculate the commutation considering η
(e)
k |B(e)〉 = 0,

[η†i , e
−itΛkη

†
kηk ] = e−itΛk [(η†i )(1 + η†kηk)− (1 + η†kηk)(η

†
i )]

= e−itΛk(η†i η
†
kηk − η†kηkη†i )

= −e−itΛkη†kδik. (A.16)

Using the relation above twice yields,

〈B(g)(t)|B(e)(t)〉 =

ei(E0−E(e)
0 )t

Υ2
〈B(e)|

∏
m,n>m

[
1 +G∗mnη

†(e)
n η†(e)m

] ∏
i,j>i

[
1 + e−it(Λi+Λj)Gjiη

†(e)
j η

†(e)
i

]
|B(e)〉

=
ei(E0−E(e)

0 )t

Υ2

∏
i,j>i

(1 + e−it(Λi+Λj)|Gij|2). (A.17)

So expression (A.12) has been reduced to,

|〈B(g)(t)|B(e)(t)〉|2 =
1

Υ4

∏
i,j>i

[
(1 + |Gij|2)2 − 4(1 + |Gij|2)2 sin2

(Λ
(e)
i + Λ

(e)
j

2

)]
.

(A.18)

A.5 Circulant symmetric matrix for uniform

coupling regime

Observe that, in (2.32) matrix (A−B)(A+B) is symmetric circulant matrix of

the form,

C =



c0 c1 c2
. . . cN−2 cN−1

cN−1 c0 c1
. . . cN−3 cN−2

cN−2 cN−1 c0
. . . cN−4 cN−3

. . . . . . . . . . . . . . . . . .

c2 c3 c4
. . . c0 c1

c1 c2 c3
. . . cN−1 c0


, (A.19)
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has n distinct eigenvectors and eigenvalues,

Φk =



1

ςk

ς2
k

.

.

.

ςN−1
k


, Λ2

k = c0 + c1ςk + c2ς
2
k + · · ·+ cN−1ς

N−1
k , (A.20)

where ςk = eik is the Nth roots solution of 1 (k = 2πm/N,m = 0, . . . , N − 1). In

uniform coupling regime, eigenvalues are,

Λ2
k = (cos(k)− h)2 + γ2 sin2(k). (A.21)

Please note that, If spin couplings are not uniform then the matrix (A−B)(A+B)

is no more circulant, meaning (A.20) and (A.21) cannot be used consequently.

A.6 Loschmidt echo for uniform coupling

regime

In case of, all chain spins coupled uniformly to each other, (A.18) can be fur-

ther reduced [35], but instead, it is possible to deduce Loschmidt Echo in more

straightforward manner. Start with (2.37),(2.38). Taking Bogoliubov Transfor-

mation to connect ground and excited operators 2,

η(g) = cos(αk)η
(e)
k − i sin(αk)η

(e)†
−k (A.22)

where,

αk = [θk(λ
(e))− θk(λ(g))]/2, (A.23)

θk(λ
(i)) = arctan

( γ sin(k)

λ(i) + cos(k)

)
. (A.24)

2What we do is actually same with (2.40).
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One can establish connection between, ground and excited states as,

|B(g)〉 =
∏
k>0

[cos(αk) + i sin(αk)η
(e)†
k η

(e)†
−k ]|B(e)〉. (A.25)

Then Loschmidt Echo can be written as,

|〈B(g)(t)|B(e)(t)〉|2 = |〈B(g)|e−iH(e)t|B(e)〉|2

= |〈B(e)|
∏
k>0

[cos(αk)− i sin(αk)η
(e)
−kη

(e)
k ]e−iH

(e)t

×
∏
k>0

[cos(αk) + i sin(αk)η
(e)†
k η

(e)†
−k ]|B(e)〉|2

= |〈B(e)|
∏
k>0

[cos2(αk)e
−iH(e)t

+ sin2(αk)η
(e)
−kη

(e)
k e−iH

(e)tη
(e)†
k η

(e)†
−k ]|B(e)〉|2

Now, using the identity, e−iH
(e)tη(e)†e+iH(e)t = η(e)†e−i2Λ

(e)
k t,

|〈B(g)(t)|B(e)(t)〉|2 = |〈B(e)|
∏
k>0

[cos2(αk)e
−iH(e)t

+ sin2(αk)η
(e)
−kη

(e)
k e−iH

(e)tη
(e)†
k e+iH(e)te−iH

(e)tη
(e)†
−k e

+iH(e)te−iH
(e)t]|B(e)〉|2

= |〈B(e)|
∏
k>0

[cos2(αk) + e−i4Λ
(e)
k t sin2(αk)η

(e)
−kη

(e)
k η

(e)†
k η

(e)†
−k ]|B(e)〉|2

= |
∏
k>0

cos2(αk) sin2(αk)e
−i4Λ

(e)
k t|2

=

N/2−1∏
k>0

[1− sin2(2αk) sin2(2Λ
(e)
k t)]. (A.26)
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