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ABSTRACT

USER GROUPING IN WIRELESS NETWORKS WITH
FULL DUPLEX BASE STATIONS AND LEGACY

MOBILE STATIONS

Deniz Ünal

M.S. in Electrical and Electronics Engineering

Advisor: Ezhan Karaşan

August 2018

Improving spectral efficiency is a key objective in next generation wireless net-

works. Recent advances in self-interference cancellation techniques made in-band

full-duplex wireless communications possible. Unlike half-duplex systems which

require orthogonal frequency or time resources to separate transmission and re-

ception, in-band full-duplex radios utilize the channel bidirectionally and theoret-

ically can double the ergodic capacity. However due to cost, power consumption

and complexity constraints, mobile stations may not support this technology. In

this work, operation of full-duplex base stations with legacy half-duplex mobile

stations is considered. An inherent issue of this topology is the presence of sig-

nificant inter-user interference between half-duplex mobile stations. In order to

manage this at network level, an optimization problem is formulated for a cellular

network topology. Solution methods and their corresponding sum throughput are

compared with respect to the number of mobile stations. An analytic solution

is presented to evaluate the throughput and full-duplex gains of random pairing

method for the same scenario. Then the case of limited channel state informa-

tion is evaluated and a learning strategy is introduced to extend the user pairing

problem to a continuous case. Performance evaluation with 100 mobile stations

show that the proposed learning strategy can reduce the overhead airtime more

than 80%. A weighted random sequential algorithm which is integrated to the

learning process is proposed, and its performance evaluation under random walk

and random waypoint mobility cases are performed.

Keywords: Wireless Networks, Full-Duplex, Mobility, Station Pairing.
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ÖZET

TAM ÇİFT YÖNLÜ BAZ İSTASYONLU VE ESKI
MOBİL İSTASYONLU KABLOSUZ AĞLARDA

KULLANICI GRUPLAMASI

Deniz Ünal

Elektrik Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Ezhan Karaşan

Ağustos 2018

Spektral verimliliği arttırmak yeni nesil kablosuz ağların önemli hedeflerinden

biridir. Yeni öz-girişim giderim yöntemleriyle ilgili son gelişmeler aynı bant tam

çift yönlü kablosuz iletişimi olası hale getirmiştir. Aynı bant çift yönlü kablosuz

radyolar verici ve alıcı ayırması için dikey frekans ya da zaman kaynağı gerek-

tirmediğinden çift yönlü sistemlere göre kuramsal olarak ergodik kapasiteyi iki

katına çıkarabilir. Öte yandan maliyet, güç tüketimi ve karmaşıklık kısıtlamaları

nedeniyle mobil istasyonlar bu teknolojiyi kullanmayabilir. Bu çalışmada tam

çift yönlü baz istasyonları ve eski çift yönlü mobil istasyonlarının çalışması ele

alınmıştır. Bu topolojinin doğal bir sorunu çift yönlü mobil istasyonlar arasındaki

kullanıcı arası girişimdir. Bunu ağ seviyesinde yönetmek için küçük hücre ağları

için bir optimizasyon problemi formülleştirilmiştir. Çözüm yöntemleri ve bunların

toplam çıktıları kullanıcı sayısı da dikkate alınarak karşılaştırılmıştır. Rastgele

eşleme yönteminin çıktısını ve tam çift yönlü kazançlarını değerlendirmek için

analitik bir çözüm sunulmuştur. Daha sonra sınırlı kanal durum bilgisi senaryosu

değerlendirilmiş ve bir öğrenme stratejisi ortaya konularak kullanıcı eşleme prob-

lemi genişletilmiş bir hücrede sürekli hale getirilmiştir. 100 mobil istasyon ile

yapılan hesaplamalar öğrenme stratejisinin yayın süresi yükünü %80’den fazla

azaltabildiği görüşmüştür. Öğrenme stratejisiyle birleştirilmiş bir ağırlıklı sıralı

rastgele algoritma önerilmiş ve performansı rastgele yürüyüş ve rastgele güzergah

hareketlilik modelleriyle değerlendirilmiştir.

Anahtar sözcükler : Kablosuz Ağlar, Tam çift yönlü, Hareketlilik, İstasyon

Eşleme.
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Chapter 1

Introduction

The demand for mobile data traffic is growing at a massive rate. A recent report

by Cisco states that mobile data traffic has increased 18-fold over from 2011 to

2016. Their forecast includes a 49% annual compounding increase in mobile data

which is projected to reach 49 exabytes by 2021 [1].

With the emerging applications such as virtual reality, augmented reality, mo-

bile cloud services, and streaming services the need for wireless networks that sup-

port larger capacity can only increase. International Telecommunications Union

(ITU) acknowledges the growth in mobile communications and include improving

spectral efficiency for next generation wireless networks in their roadmap [2].

Textbooks on wireless communication often state using the same channel for

transmission and reception is not possible in multi user systems. In his book

Wireless Networks, Molisch refers the issue ”transmit and receive levels of wireless

signals are so different that the transmitted signal would “swamp” the RX and

make it impossible to detect the receive signal” [3]. Envisioned communication

scheme which is referred in this context is called full-duplex.

Traditional approach to this problem involves orthogonal resources in fre-

quency, time, or spatial domains. In frequency division duplexing (FDD) differ-

ent carrier frequencies are assigned for transmission and reception by extending
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resources on frequency spectrum. In time division duplexing (TDD) transmit

and receive are done consecutively through the same channel in which devices

continuously switch their operating modes. In addition to duplexing techniques

directional transmission methods can be utilized. This is practically achieved

via a set of antenna elements to prevent signals in two different directions from

interfering with each other by segregating their propagation regions.

Fundamental obstacle against simultaneous two way operation is self-

interference (SI) effect. Self interference is essentially the signal originated from

transmitter which is fed back to receiver of the same device. It is expected to

have several orders of magnitude larger power than received signal in practical

systems e.g. 90-100 dB. SI not only saturates the sampling circuit of the receiver

chain but also conceals received signal as it is additive.

Self interference can be decomposed into two sources as direct and reflected

paths [4]. In transceivers with single antenna, direct SI is caused by the leakage in

circulator component from transmit port to receive port. Systems with separate

antennas on the other hand encounter direct SI in the form of line-of-sight (LOS)

effect from transmit antenna to receive antenna. Reflected SI is caused by non-

line-of-sight (NLOS) components of the transmission that return back to the

receiver. Direct path is the prominent component of SI as it is much more powerful

than the latter one [5]. On the other hand, while direct SI mostly arises from

transceiver architecture and can be characterized relatively conveniently, reflected

SI is influenced by channel conditions and it is not straightforward to predict.

To enable full-duplex communication, self-interference cancellation technolo-

gies can be used to subtract SI component from the received signal. As a widely

studied problem, such technologies tackle with conventional transceiver architec-

tures at different blocks. Propagation domain approaches include separation of

transmit and receive antennas to leverage path loss, using directional antennas,

placement and cross-polarization arrangements for antennas [6, 7]. For the case of

single antenna, duplexer circuits are used to provide isolation for direct SI. Analog

domain technologies subtract the expected SI from received signal. While the ba-

sic implementations account for gain, phase and delay due to direct SI, adaptive
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designs provide reconfiguration capabilities that allow tuning parameters to ac-

count for reflected SI components [8]. Digital domain technologies are employed

after the received signal is sampled using the ADC. Surviving self interference is

estimated and subtracted from the signal with DSP algorithms.

MS BS

Figure 1.1: Bidirectional full-duplex

While SI cancellation techniques by themselves are not enough in real world

environments, full-duplex breakthrough emerged when propagation, analog, and

digital domain techniques are combined. Sufficient SI mitigation levels allow

reliable full-duplex wireless communication. Demonstrations with experimental

setups are reported [8, 9, 10], and research that consider small cell networks are

reported in [11, 12]. Throughout the thesis unless noted otherwise we implicitly

refer to in-band full-duplex when we use the term full-duplex.

Full-duplex wireless communication systems have the following advantages [4]:

• A perfect in-band full-duplex system can theoretically achieve twice the

ergodic capacity of a half-duplex system.

• It provides some flexibility in spectrum management, as the resource allo-

cation can be reconsidered to account for the choice of FD/HD mode for a

given configuration.

• It can reduce the delay of feedback signals such as acknowledgment, repeat

requests, control signaling. Since nodes do not have to wait for their turn

they can track channel condition and control throughput better as well as

provide support for rapid reconfiguration.

• SI cancellation can enhance network secrecy. While transmitted signal is

subtracted from received signal at nodes communicating with each other,

eavesdroppers can only capture the combination of two transmitted signals

through medium of propagation.
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• In the relay topology, it allows simultaneous transmission significantly re-

duce end to end delay.

Motivation on researching full-duplex networks can be justified with the fact

that these benefits intersect with spectrum, latency and privacy demands of next

generation wireless networks.

Performance limitations of the system is mainly due to imperfect SI cancel-

lation, and a study on asymptotic behavior of capacity argues that the two fold

increase in capacity is not possible if proper management is not in use [13].

Switching from network to user equipment perspective of the bidirectional

full-duplex we observe some challenges. It is anticipated that additional analog

circuitry for SI suppression to increase overall power consumption of mobile sta-

tions [14, 5]. Further advancements are needed to ensure compliance to energy

efficiency objectives of next generation networks. Antenna design also poses spa-

tial limitations. Dimensions for antenna such as presented in [15] require slightly

more area than typical antennas used in contemporary mobile equipment. Pas-

sive isolation to limit electromagnetic coupling imposes requirements for relative

spacing and positioning of antennas. Transmit and receive antennas needs to be

separated by tens of centimeters and relative placement of these are critical which

imposes mechanical design issues.

Contemporary mobile devices have tight design specifications on their sizing

and battery life. Effectiveness of SI cancellation is influenced from these design

parameters and originate a trade-off against performance [5]. Resulting compact-

ness and energy efficiency concerns do not seem to be compatible with current

state of the art SI cancellation subsystems.

It is not uncanny to foresee a progression course in which infrastructure needs

to support coexistence of full-duplex base stations with legacy mobile stations

which operate in half-duplex. This configuration is also widely anticipated in

the literature and studied under various names such as base station topology,

node-node topology, or full duplex on cell level.
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In this topology, base station is connected to two different mobile stations,

receiving packets from one and transmitting to another one. Information flowing

in both directions represent separate logical channels. Mobile stations assume

separate half-duplex operation and two links are not correlated with each other.

BS

MS MS

Figure 1.2: Full-duplex base station topology

Operation with legacy mobile stations extends the issues beyond bidirectional

topology. In addition to SI cancellation problem discussed previously, receiving

users are exposed to inter-user interference originated from transmitting user in

this configuration. Receiving station has no prior information about neither of

the two concurrent transmissions, and it is not capable of rejecting the interfering

stream originated from transmitting station destined to base station.

In this configuration, presence of inter-user interference cannot be eradicated.

Moreover depending on its intensity, it can render signal transmitted from base

station obscure which reduces spectrum efficiency gains from using full-duplex.

Unlike SI, this interference component is highly dependent on relative position-

ing of interfering and victim mobile stations. Considering a topology with sev-

eral nodes at arbitrary locations, the interference level they experience can be

regulated by controlling network resources they use. Interference management

problem in this context can utilize scheduling users in pairs or adjusting their

power levels.

In this thesis, we investigate the user grouping problem in wireless networks

with full-duplex base stations and legacy mobile stations in dynamic environments

with user mobility. Under mobility, user pairing problem needs to be constantly

updated using the information retrieved from the network. To construct the

problem we first establish and analyze user grouping in stationary scenarios,

then we extend the problem in which channel state information needs to be
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learned through reports from nodes. Finally we present heuristic algorithms for

continuous complementary operation for pairing.

The thesis is organized as follows. In Chapter 2, a literature review on full-

duplex wireless communications is provided. In Chapter 3, user pairing problem

is introduced along with various solution methods and their performance figures

are presented. In order to understand the dynamics of full-duplex cell with half-

duplex users in an unsupervised setting, an analytic approach is employed with

random pairing in Chapter 4. In Chapter 5, user pairing problem is transformed

into a time variant framework. The process of learning network parameters to

use within pairing solution is investigated with emphasis on inter-user interfer-

ence and using mobility scenarios, performance of the sequential algorithms are

contrasted. Finally, Chapter 6 concludes the thesis.

6



Chapter 2

Literature Review of Assignment

Problems in Full-Duplex

Communications

In this chapter, we survey assignment problems in in-band full-duplex commu-

nications. For the objectives such as improving spectrum usage or decreasing

latency, and under limitations of imperfect SI cancellation and inter-node inter-

ference, various assignment problems are emerged. We will review related work

involving user pairing, power control, subchannel allocation and scheduling prob-

lems.

Goyal et al. propose a scheduling algorithm that uses half-duplex as default

mode of operation and switches to full-duplex operation only when performance

gain is anticipated [11]. They provide formulations to determine conditions for

uplink and downlink full duplex gain for the cellular scenario. Then they calculate

a utility index which they use to formulate an optimization problem to choose

operation mode.

In [16], resource allocation problem is formulated using game theory. In the

context of full-duplex resources of transmit power level, subchannel and user
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pairing, a payoff function is defined using uplink and downlink channel capacities.

For base station topology, there is a trade-off between transmit power and rates.

Transmit power is proportional with capacity in the same direction but degrades

capacity of the other direction by increasing either SI or inter-node interference.

Authors specify the condition for existence of a Nash equilibrium in terms of

SI cancellation for this noncooperative game. An iterative algorithm is proposed

that uses water filling algorithm at each step to adjust power levels and an argmax

condition to update optimum pair allocations.

A heuristic algorithm for assignment problem on distance metric is proposed

by Bae et al in [17]. The study covers bidirectional and three-node full-duplex

topology for IEEE 802.11ax and incorporates a multi-cell scenario. Authors first

characterize the system and determine rate regions with respect to mobile station

distances. Then they elect threshold distance values for the two operation modes

and SI mitigation levels. They define space scheduling algorithm that compares

node distances to threshold values and assign FD or HD operation accordingly.

Authors point out that three-node topology performs better than bidirectional

FD when SI cancellation is less than 100 dB. They report 1.8 times increase over

HD in downlink but also state that uplink gains are not achieved. By comparing

the results with previous works reviewed previously, it can be concluded that this

low complexity approach is not as effective for sum rate maximization problem.

Additionally how node distances are acquired is not presented.

Another low complexity solution is formulated by Di et al. which presents a

resource allocation method to optimally allocate subcarriers to uplink downlink

pairs for a single cell full-duplex network [18]. The solution uses matching theory

with three sides and solves power allocations separately.

The assignment problem can be solved in a less flexible form and engineered

to be used in specific location. In [19] using geographical information, authors

determine isolated regions that have high signal attenuation with respect to each

other. First they extract spatial characteristics of a given well defined area us-

ing radio maps. For example, buildings are regarded as obstructions for outdoor

scenarios and walls can segregate rooms for indoor scenarios. The regions that
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they form are dependent on base station deployment positions. Then authors

systematically calculate a parameter called mitigation factor which is used to re-

late inter node interference between regions and solve resource allocation problem

using pre-calculated data for given geographical locations. Authors assume using

localization services provided by infrastructure. We note that localization ser-

vices provided such as OTDOA, E-CID offer various levels of accuracy which can

influence proposed heuristic assignment procedure provided, and some services

such as GNSS are not universally implemented in user equipment.

Approaches for assignment problems widely assume that required set of pa-

rameters are available. However this presumption is questionable due to its prac-

ticality. The concern is expressed by Nam et al. for the case which full channel

state information is not inaccessible for scheduling [20]. The study first revisits

the resource allocation problem with full CSI and formulates a sequential algo-

rithm. Downlink allocations use linear assignment problem and water filling for

node and power selection respectively. For uplink allocations a dual optimization

method is used. The combined algorithm first executes one of the two, fixes the

subchannel allocation and solves the other direction.

Limited CSI discussion acknowledges the difficulties and associated overhead of

measurement and feedback procedures. Opportunistic feedback principle is used

to constraint overhead. A frame structure is proposed that defines a training se-

quence, followed by time slots for feedback and scheduling. Time slots designated

for feedback represent predetermined threshold values. Mobile stations select ap-

propriate time slots according to their measurements from training sequence and

transmit their identifier. The signals during this period are also used by downlink

nodes to identify corresponding inter-node interference to said node. Base station

then announces uplink scheduling with power levels. During the second round,

downlink nodes send their desired resources similar to uplink case with different

threshold values. Downlink scheduling concludes the resource process. Proposed

scheme allows multiple mobile stations to access the channel at the same time,

resulting in collisions. To alleviate such cases authors try to calculate threshold

values to minimize collision probabilities. Results indicate that increasing num-

ber of slots thus enlarging set of thresholds increase the performance, however

9



overhead also increases decreasing the efficiency.

2.1 Contributions of the Thesis

In this thesis, we consider user pairing problem in a single cell topology with full-

duplex base station and legacy half-duplex mobile stations. Performance evalua-

tions of pairing algorithms are provided. A closed form solution is formulated for

user capacity distribution under random pairing which is used to calculate the

sum rate distribution.

We investigate a practical issue of obtaining channel state information, specifi-

cally inter-user interference values. A learning procedure which reduces the over-

head by more than 80% is presented for this often overlooked problem. Then

using this learning procedure we tackle an unexposed problem: user mobility in

full-duplex networks. Unlike stationary environments, the pairing problem needs

to constantly update the channel state information received from mobile nodes.

Complexity of model based solutions to user selection problem for learning pro-

cess is discussed, and a heuristic algorithm with nonuniform weighted random

learning is proposed. The algorithm is a stochastic approach to the learning pro-

cess and uses receiver reports to estimate other nodes to provide more than 60%

faster convergence to the optimum solution compared to baseline algorithms.
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Chapter 3

Problem Formulation

In this chapter, we first introduce the operation mode for full duplex wireless

network with half duplex nodes. Then we define the relevant communication

parameters and performance metrics for the user pairing problem. We present

solutions to the pairing problem and lastly, evaluate their performances.

3.1 Full Duplex Operation

We consider full-duplex capable base station (BS) and half-duplex user equipment

(UE) in a single cell wireless network. Base station has the ability to suppress

self-interference sufficiently to ensure reliable communication. Each and every

user equipment utilizes a traditional half-duplex transceiver.

The operation between BS and UE are based on an enhanced version of time-

division duplexing (TDD) mode. In TDD spectrum resources are partitioned into

time slots of fixed duration. A number of time slots are grouped together to form

a frame. The structure of the frame defines assignment of slots for uplink and

downlink transmission, as well as slots reserved for special purposes. In traditional

synchronous TDD, uplink and downlink transmissions occur in mutually exclusive

time slots, and BS and UE switch between transmit and receive modes according
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(c) UE i configuration in full duplex
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(d) UE j configuration in full duplex

Figure 3.1: Half-Duplex and Full-Duplex TDD Mode Configuration

to frame structure. In this scenario we assume a modified TDD operation where

HD UE performs duplexing, while FD capable BS jointly transmits and receives.

An example frame configuration is given in Figure 3.1 for half duplex and full

duplex TDD. Time slots for DL and UL are abbreviated as D and U respectively.

In figures 3.1b, 3.1c, 3.1d BS is set up for full duplex operation at the same

frequency with two HD users UE i and UE j.

The ability of assigning two users to the same resource block premises increas-

ing utilization and doubling spectral efficiency. However such systems also bring

performance constraints as we will investigate in the following section.

3.2 Scenario

An illustration of the single cell scenario with half-duplex UE operation is depicted

in Figure 3.2.

Here uplink node UE i and BS are transmitting simultaneously with transmit

powers Pi and PBS respectively. Channel gain from UE i to BS is gi,BS, from BS

to UE j is gBS,j, and from UE i to UE j is gi,j. The scenario also incorporates

two sources of interference.

The first source is due to self-interference. In order to counteract this interfer-

ence component, base station utilizes cancellation methods described in previous

chapter. In this work self-interference cancellation is assumed to be imperfect

12



BS

UE1 UE2

UL DL

UE-UE Interference

SI

Figure 3.2: Scenario

at the full-duplex capable BS. Self-interference suppression stages are aggregated

into a parameter self-interference cancellation coefficient (SIC). The remaining

portion is residual self-interference SIR which is injected to receiver chain of BS

as interference. SI cancellation process is modeled as:

SIR = SI− SIC (3.1)

The second source is inter-node interference which is a consequence of the

scheme with half-duplex UE. From UE j perspective, transmission of UE i is

added on top of signal from BS.

In order to assess we use signal to interference plus noise ratio (SINR).

Uplink SINR:

γUL =
Pi gi,BS

NBS + SIR
(3.2)

Downlink SINR:

γDL =
PBS gBS,j
Nj + Pi gij

(3.3)
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Shannon’s channel capacity per unit bandwidth is given by

C = log2 (1 + SINR) in b/s/Hz (3.4)

Corresponding UL and DL capacities are:

CUL = log2

(
1 +

Pi gi,BS
NBS + SIR

)
(3.5)

CDL = log2

(
1 +

PBS gBS,j
Nj + Pi gij

)
(3.6)

As we can infer from figures residual self interference is a limiting factor on

UL performance while DL rates are restricted by inter-UE interference arising

from channel gain between nodes i and j. As a consequence UL performance

relies on SI suppression technology, however DL performance is directly related

to interference path gi,j. As the choice of UE pairs for UL and DL determine the

set of channel gain values by means of scheduling, the association for such pairs

is a decision parameter. In the next section we discuss how it can be exploited

to regulate network performance.

3.3 User Pairing

A reduced example scenario with four nodes for user pairing problem is illustrated

in Figure 3.3. First pairing allocation (Figure 3.3a) combines pairs as (UE1,UE2)

and (UE4,UE3) as downlink and uplink pairs respectively, whereas second allo-

cation (Figure 3.3b) favors (UE1,UE3) and (UE4,UE2). Inter-node interference

path of pairs are shown with dashed lines and for given topology. Due to link ge-

ometry, pairing (a) exhibits shorter distance between associated UE, thus larger

interference from UL nodes to DL nodes. As a result it can be inferred that

pairing (b) is more efficient than (a) as it can provide better downlink SINR.
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Figure 3.3: An example topology with two pairing configurations

The objective is to obtain an pairing in which the cumulative network capacity

is maximized. We assume that all channel gain parameters are available at the

scheduler so channel capacity for each possible pair can be calculated. The cell

consists of N number of UEs, so an N by N matrix with entries cij is formed.

Applying utility based scheduling with utility function selected as U (i, j) = ci,j,

sum of rates are maximized. We assume each node has the same priority and has

full transmit buffer.

UE assignment problem can be formulated as a bipartite graph matching with

the following model. User pairs are represented with a binary variable xij which

corresponds to a pairing of transmitter i and receiver j if xij = 1. X is the

pairing matrix where rows and columns correspond to transmitting and receiving

users respectively. Therefore the problem can be constrained to take integer

values between 0 and 1 inclusive (3.10). In addition, each user should have an

opportunity to receive and transmit so there should be at least one nonzero value

at each row and column. Furthermore, only one user can transmit to a given

user so each row and column can have at most one nonzero value. Last two

constraints, (3.8) and (3.9) state that summation of each row and column should

be precisely 1.
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Maximize
N∑
i=1

N∑
j=1

cij xij (3.7)

Subject to
N∑
i=1

xij = 1, j = 1, . . . , N (3.8)

N∑
j=1

xij = 1, i = 1, . . . , N (3.9)

xij ∈ {0, 1} , i, j = 1, . . . , N (3.10)

3.4 Solution Methods

User pairing problem described in the previous section can be solved using fol-

lowing assignment methods.

3.4.1 Linear Assignment

This problem structure is linear assignment problem and can be solved with

Hungarian algorithm.

As number of users increase, the size of utility matrix thus execution time

grows. We use another linear assignment problem algorithm called Shortest

Augmenting Path Algorithm (LAPJV) by Jonker and Volgenant [21]. Although

LAPJV algorithm has the same worst case complexity as Hungarian algorithm,

due to its initial preprocessing phase, on the average it is slightly faster than its

counterpart for large problems with dense matrices [22].
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3.4.2 Random Assignment

Random assignment is regarded as unmanaged scheduling configuration and used

as baseline for evaluating effectiveness of a user selection algorithm. As this

method does not contain any scheduling preference, it is regarded as the worst

case selection for this scenario.

This method is similar to concatenating half duplex UL and DL user scheduling

configurations, given a set of nodes corresponding to time slots in one direction, a

random permutation of the same set is assigned to nodes for the other direction.

Additionally assignment of the same node to both UL and DL is prohibited i.e

xi,i = 0, ∀i = {1, . . . , N}.

3.4.3 Gale-Shapley Algorithm

A matching theory approach is used to simplify the user selection problem by

transforming sum rate maximization problem into a stable matching problem.

The utility matrix is transformed into ordered preference lists for each node.

Preference lists include every possible matching ranked by their estimated rate

in descending order. In other words from user perspective, pairing with the node

in first entry of this list would achieve the best rate. The objective is to find a

stable matching, and we use Gale-Shapley algorithm [23] to solve this problem.

Algorithmic complexity is O (n2) for when the cardinality of both sides are equal

[24].

As explained previously, the downlink performance heavily relies on the

scheduling, furthermore expected uplink traffic demand and targeted uplink spec-

tral efficiency is lower than their downlink counterparts. Therefore downlink

preferences are prioritized with the expectation of a larger sum rate.

Achieving global maximum of sum rate is unlikely with this algorithm as the

objective function does not consider system utility. On the other hand compu-

tational complexity is lower than of max sum rate algorithm, also the overhead
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associated with channel estimations to interferers can be compressed with this

method.

3.4.4 Fairness

As the user association problem is structured to improve the aggregate utility of

the cell, scheduling decisions involving nodes are processed as a whole and does

not necessarily represent performance of individual nodes. Therefore objective

function can inhibit a node by pairing it with a less favorable complement to

improve throughput of another node if the resulting utility is increased. Such an

arrangement favors efficiency and reduce fairness among users.

In our scenario, network topology, in particular link geometry and distribution

of UE, can be a limiting factor for performance of particular nodes [11]. As a

consequence, scheduler is constrained in providing a fair allocation to the nodes.

For instance, a node that encounters heavy inter node interference regardless of

the pairing configuration will have a limited range of achievable rates. Considering

such instances it can be inferred that an egalitarian approach such as max-min

fairness can disrupt efficiency and limit full duplex capacity gain.

In this work, to examine fairness for user association problem we replace the

objective function (3.7) with a logarithmic utility function U (i, j) = log (cij) to

obtain a proportionally fair resource distribution [25].

N∑
i=1

N∑
j=1

log (cij) xij (3.11)

3.5 Simulation Results

In this chapter, we evaluate performance of pairing methods with a small cell

scenario. Simulation parameters are configured based on the scenario 2 of 3GPP
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Figure 3.4: Visualization of UE pairings for an example topology

specification [26] are given in Table 3.1. We assume full buffers with heavy traffic

in a single cell environment.

Table 3.1: Simulation Parameters

Parameter Value

Cell radius 50 m
UE Placement Uniformly random

Maximum Pico TX power 24 dBm
Maximum UE TX power 23 dBm

Thermal noise density -174 dBm/Hz

BS-UE Path loss model
PLLOS(R) = 103.8 + 20.9 log10(R)
PLNLOS(R) = 145.4 + 37.5 log10(R)

LOS probability
0.5−min(0.5, 5 exp(−0.156/R))

+ min(0.5, 5 exp(−R/0.03))

UE-UE Path loss model
R ≤ 50m;PL = 98.45 + 20 log10(R)
R > 50m;PL = 175.78 + 40 log10(R)

Noise figure
9 dB (UE)
13 dB (BS)

Shadowing std deviation BS and UE
3dB (LOS)

4dB (NLOS)

Abbreviations for pairing schemes used figures are given in Table 3.2.
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Table 3.2: Abbreviations used in figures

MR Max sum rate

RN Random pairing

HD Half-duplex

PF Proportionally fair

GS Stable matching

The following figures show cumulative distribution of average sum capacities

within a cell for 100 dB SI cancellation.
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Figure 3.5: Cumulative distribution of average sum capacity for 100 dB SI sup-

pression
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In Figure 3.5, it can be seen that sum rates that full-duplex pairings achieve

have larger variance than half-duplex case. Performance of random pairing grad-

ually gets worse as number of mobile stations increases. As we have noted in fair-

ness section, the topology influences rate distribution greatly such that obtaining

a more fair allocation decreases sum rate utility. We observe that proportionally

fair pairing follows max sum rate algorithm closely.

Figure 3.6 illustrates distribution of pair distances for 20 UE and 110 dB SI

suppression of 50000 pairs (105 nodes).
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Figure 3.6: Pair distances

We observe that random pairing behaves arbitrarily and follows node place-

ment distribution. Max sum rate algorithm has the least amount of pairs that

are closer than 50 m. Stable matching results in largest amount of pairs with

separation over 80 m however the overall sum rate performance is inferior than

previous algorithm which can be verified from Figure 3.5b.

In the following simulations we compare average sum rate achieved using full-

duplex with half-duplex to calculate gain percentage for numerous user density

cases.
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Figure 3.7: Sum rate improvement over half-duplex for 100 dB SI suppression

For 100dB SI cancellation, max rate algorithm and stable matching reach

46.82 % and 41.16 % improvement respectively as number of mobile stations in-

crease to 100. Random pairing for this environment results in approximately 10 %

sum rate loss.
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Figure 3.8: Sum rate improvement over half-duplex for 110 dB SI suppression
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For 110dB SI cancellation, max rate algorithm and stable matching reach

64.14 % and 58.48 % improvement respectively as number of mobile stations in-

crease to 100. Random pairing for this environment results in approximately 10 %

sum rate gain which is consistent with the improvement max rate algorithm the

change 100 dB.
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Figure 3.9: Sum rate improvement over half-duplex for 120 dB SI suppression

For 120dB SI cancellation, max rate algorithm and stable matching achieve

80.64 % and 74.98 % improvement respectively. The performance difference be-

tween two algorithms decrease as SI cancellation improves diminishing difference

between uplink and downlink rates. Random pairing attains approximately 26 %

sum rate gain over half-duplex.

In Figure 3.10 5th percentile of sum rate improvement with respect to number

of users is given for 100 dB SI cancellation.
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Figure 3.10: Cell edge sum rate improvement over half-duplex for 100 dB SI

suppression

In contrast to results in Figure 3.7, it is observed that full-duplex gains are

not equally distributed for 10, 20, 30 users. Additionally, performance difference

between stable matching and max sum rate algorithms is apparent.

Figure 3.11: Histogram of capacity improvements per node for 20 UE and 110 dB

SI suppression
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In Figure 3.11, we decompose the sum rate gains to its uplink-downlink com-

ponents and plot histogram of capacity improvement per node for max sum rate

algorithm. We observe that uplink performance is influenced by SI and node

distribution as expected. However the downlink performance is not homogeneous

and cluster formations at certain rates are present. We will be further investigat-

ing underlying reasons in the next chapter using an analytic approach.
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Chapter 4

Throughput Analysis Under

Random Pairing

Results of user pairing problem indicate that random pairing scheme exhibits

low performance. In this chapter to investigate theoretical basis of full duplex

scenario, we derive an analytic model through distance, path loss distributions,

formulation SINR and calculation of capacity.

4.1 User Distribution

We consider a circular cell of radius B with a BS at the center (0,0). Users are

distributed with uniform density. The PDF of position of a UE in Cartesian

coordinates are:

fXY (x, y) =

 1
πB2 x2 + y2 ≤ B2

0 otherwise
(4.1)

In order to derive distance dependent path loss functions we need two variables:
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• Distance between BS and UE (R)

• Distance between UE and UE (D)

R is the random variable for distance between BS and UE and has the following

PDF:

fR (r) =

 2
B2 r 0 ≤ r ≤ B

0 otherwise
(4.2)

Random variable for angle between BS and UE Θ is uniform in interval [0, 2π).

The distance distribution for two points is derived for uniform distribution in

R2 space by following the derivation by Moltchanov for two random points in a

region [27].

Crofton’s formula for two points [28]. P1 denotes the probability that one

point is chosen at random in the boundary of the cell. P is the probability that

distance between two points is between l and l + ∆l. A is the area of the cell.

dP = 2 (P1 − P )
dA

A
(4.3)

P1 =
(2ldl) cos−1 (l/2B)

πB2
(4.4)

Here ldl is the line segment that corresponds to the probability P,

2 cos−1 (l/2R) is the angle that this line segment can be rotated and πR2 in

the denominator normalizes the probability with respect to cell area. If P1, and

A is placed into formula

B dP + 4P dB =
8l∆l cos−1 (l/2B)

πB2
(4.5)
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The result is obtained by integration of this expression. Using variable d we

can express corresponding PDF in 0 ≤ d ≤ 2B as;

fD (d) =
2d

B2

[
d

πB

√
1− d2

4B2
− 2

π
cos−1

(
d

2B

)]
(4.6)

For a boundary B = 50 m the PDF is calculated as follows
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Figure 4.1: Distribution of distance between two points in a cell

The conditional distance distribution given BS-UE separation fD|R (d|R = r)

is calculated as follows:

For uniformly distributed nodes, two cases form a partition of sample space.

An illustration where a node is separated from BS by r1 (R = r1) can be seen in

the Figure 4.2.

Due to symmetry of the topology, angular orientation can be left out and the

first node is fixed at -x direction. The two cases are separated by the radius the

circle which is centered on first UE and its edge intersects with the cell boundary

at only one point. In Figure d = l1 and d = l2 are inside and outside of that circle

respectively.

The distance distribution inside this circle is a scaled version of fR (r) with

radius B− r1 and the center is shifted to position of first node.
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Figure 4.2: Illustration of distance distribution given r1

For the second case, the probability of distance d corresponds to an arc. End

points of this arc are determined with trigonometry. Lastly factoring two cases

with their probabilities leads to:

fD|R (d|R = r1)


2d
B2 0 ≤ d ≤ B − r1

2d
πB2 cos−1

(
d2+r12−B2

2r1d

)
B − r1 < d ≤ B + r1

(4.7)
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Figure 4.3: Conditional distribution examples

4.2 Distribution of Path Loss

The distribution of the path loss is calculated for the model in the form PL =

A1 + A2 log10 (r) where A1 and A2 are constants and r is the distance between
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source and destination in kilometers. We first represent this model in meters and

natural logarithm.

PL = (A1 − 3A2) + A2 log10 (d)

= (A1 − 3A2) +
A2

log (10)
log (d)

(4.8)

For brevity two constants K1 = A1 + 3A2 and K2 = A2/ log (10) are defined

and d is nonnegative by definition. By inverse transform method the CDF and

PDF of the loss function are as follows:

FY (y) = FX

(
exp

(
y −K1

K2

))
(4.9)

fL (l) =
1

K2

exp

(
l −K1

K2

)
fD

(
exp

(
l −K1

K2

))
(4.10)

fL (l) is defined for l ≤ A1 + A2 log10 (2r/103), which corresponds to domain

0 ≤ d ≤ 2B. A lower bound on loss can be set as the probability of small

separations (d < 1m) is negligible. This bound can also be justified with the

minimum distance requirements in the network topology models.

4.2.1 BS-UE Path Loss

The path from BS to UE or UE to BS is distributed with the random variable R

and the distribution of path loss can be easily derived by replacing fD (d) with

fR (r) for l ≤ K1 +K2 log (R)

fL (l) =
1

K2

exp

(
l −K1

K2

)
fR

(
exp

(
l −K1

K2

))
=

2

B2K2

exp

(
2
l −K1

K2

) (4.11)
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Using the model PL = 103.8 + 20.9 log10(R) the received signal level at the

UE fS (s) = PBS − PL is as follows.
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Figure 4.4: BS-UE path loss

Root mean square error between simulation and analytical formulation is

9.3566e-04 (106 sample points, 103 histogram bins).

4.2.2 UE-UE Path Loss

The interference component for the downlink transmission is derived with distance

distribution. For brevity let l∗

l∗ := −K1 − l
K2

Replacing fD (d) with the expression in previous section :

fL (l) = − 1

K2

exp (l∗)

[
4

πB2
exp (l∗) sin−1

(
1

2B
exp (l∗)

)
− 2

B2
exp (l∗)

]
− 1

K2

exp (l∗)

[
1

πB4
exp (2l∗)

√
4B2 − exp (2l∗)

]
(4.12)

Illustration of this distribution with the PL model PL = 148.03 + 40 log10(d):
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Figure 4.5: Distribution of path loss with respect to distance

The path loss model of interest has two cases

PL =

98.45 + 20 log10 (d/1e3) d ≤ 50

55.78 + 40 log10 (d) d > 50
(4.13)

A combination of the two partitions is expressed with a sum of product of fL (l)

times an indicator function which is valid in given domains [0, 50) and [50, 2B].

Interference level at the receiver UE fI (i) = PUE − PL is as follows.

-120 -100 -80 -60 -40 -20 0

Interference [dBm]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

f I(i
)

Distribution of UE-to-UE Interference

empirical

analytical

Figure 4.6: UE-UE interference distribution

Root mean square error between simulation and analytical formulation is
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8.7954e-04 (106 sample points, 103 histogram bins).

4.3 Distribution of SINR

4.3.1 Uplink SINR

Uplink SINR is given as

γUL =
Pi gi,BS

NBS + SIR

(4.14)

Transmit power level of UE, noise level and residual self interference can be

assumed constant. Channel gain is also simplified by removing antenna gain

and shadow fading effect. Then the random variable S can be derived from the

random variable -R by shifting its PDF.

35 40 45 50 55 60 65 70

SINR [dB]

0

0.05

0.1

0.15

0.2

0.25

f S
(s

)

Uplink SINR Distribution

empirical

analytical

Figure 4.7: Uplink SINR distribution

4.3.2 Downlink SINR

Downlink SINR is given as

γDL =
PBS gBS,j
Pi gi,j +Nj

(4.15)
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In dB units, it can be restated, noting the power sum of noise and inter-node

interference terms.

Γ = (PBS −K1a −K2a log (R))− 10 log10

(
N + 10(PUE−K1b+K2b log(D))/10

)
(4.16)

Noise can be ignored under the condition that it is negligible compared to

interference power.

N � 10
PUE−K1b+K2b log(D)

10 (4.17)

In addition to simplifications described in Uplink SINR calculation, noise

power is assumed to be negligible compared to interference component, and the

expression is evaluated in dB scale:

Γ = (PBS − gBS,j)− (Pi − gi,j)

= (PBS −K1a −K2a log (R))− (Pi −K1b −K2b log (D))

= (PBS −K1a − Pi +K1b) + (K2b log (D)−K2a log (R))

(4.18)

Note that random variables R and D are not independent thus difference of

two channel gain random variables are evaluated using their joint probability.

Loss constants K1 and K2 follows the definition in section 4.2 while subscript

a and b are used for nominator and denominator of signal to interference ratio

respectively. Let K be a constant and K = K2a/K2b then define a random variable

Z.

Z = log (D)−K log (R) = W − U (4.19)

fU (x) =
1

K
e
x
K fR

(
e
x
K

)
−∞ ≤ x ≤ K log (B)

=
2 exp

(
2x
K

)
KB2

−∞ ≤ x ≤ K log (B)

(4.20)
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
2e2y
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2e2y
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K ey
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x
K

)
(4.21)

From conditional probability fW |U (w|U = u), we calculate joint probability

density function.

fW,U (w, u) = fW (w|U = u) fU (u) (4.22)

fW,U (w, u) =


4

KB4 e
2we

2u
K −∞ ≤ w ≤ log

(
B − e uK

)
4e2we

2u
K

πKB4 cos−1
(
e2w+e

2u
K −B2

2e
u
K ew

)
log
(
B − e uK

)
< w ≤ log

(
B + e

u
K

)
(4.23)

Using joint probability distribution function, we can evaluate difference of two

correlated random variables using (4.24).

fZ (z) =

∫
fW,U (τ, τ − z) dτ (4.24)

fZ (z) is a linear combination of the two cases listed below for −∞ ≤ τ ≤
K log (B) + z.

fZ (z) =
4

KB4
e

−2z
K

∫ log

(
B−e

τ−z
K

)
−∞

eτ
2(K+1)
K dτ

+
4

πKB4
e

−2z
K

∫ log
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B+e
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K

)
log
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B−e

τ−z
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) eτ
2(K+1)
K cos−1

(
e2τ + e

2(τ−z)
K −B2

2e
τ
K eτe

−z
K

)
dτ

(4.25)

Loss function described in section 4.2.2 has two cases conditioned on the dis-

tance which sets a lower and upper bound. Integration limits should be replaced

with logarithm of these bounds if they are tighter. After numerical calculation
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of this PDF, SINR distribution is obtained by applying inverse transformation

fΓ (γ) = fZ ((γ − (PBS − PUE +K1b −K1a)) /K2b) /K2b (4.26)

for the first loss model. Similarly solution for the second one follows the same pro-

cedure with subscripts c instead of b. Numerical evaluation leads to distribution

in Figure 4.8.
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Figure 4.8: Downlink SINR distribution

4.4 Distribution of Channel Capacity

The upper bound of the bit rate per unit bandwidth for a channel is derived using

calculated SINR distributions.

C = log2 (1 + SINR) (4.27)

Following transformation function relates SINR to channel capacity distibu-

tion.

fC (c) = 10 log10 (2)
2c

2c − 1
fS (10 log10 (2c − 1)) (4.28)
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Figure 4.9: Uplink channel capacity distribution

Downlink case is numerically calculated from SINR distribution.
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Figure 4.10: Downlink channel capacity distribution

While the downlink performance of one node can be expressed as such, in

order to characterize the system performance contribution of each node should

be considered. When the resources are distributed to each user evenly in time

domain and mean capacity of the cell is calculated as follows where CDL
i is the

downlink channel capacity of user i.

C̄ =
1

N

N∑
i=1

CDL
i (4.29)
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In order to derive this metric we make an assumption that capacity of each

link is independent as uniform pairing method does not impose biasing. Note

that if assignments in both directions are symmetrical (i.e. given (i, j) ; (j, i) is

an UL&DL pair) then the random variables for their downlink capacities are

dependent as their interference path distance is derived from the same random

variables. On the other hand increasing number of users decrease the probability

of such assignment and its influence to mean capacity.
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Figure 4.11: Average channel capacity with random pairing

We observe peaks at certain points which corresponds to combinatorial nature

of the matching operation. The peak observed at the smallest capacity value

corresponds to the case where all pairings are picked from the lower range down-

link SINR distribution (i.e. smaller than 15bps/Hz). Other peaks correspond to
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selecting more pairs from the high SINR region. As the number of users increase,

the distribution predictably converges to the mean value with smaller variance.

In the next chapter, we will study the node pairing problem under a dynamic

setting where the base station updates the node pairings based on the inter-nodal

interference information received from the mobile stations. We use a learning

algorithm to update the inter-nodal interference matrix.
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Chapter 5

Learning-Based Pairing

Algorithms under Mobility

One of the assumptions for pairing problem in previous chapters was that com-

plete information for scheduling is always accessible. Though this presumption is

common in literature, it might not be feasible for various full duplex applications.

In this chapter, we focus on a practical aspect where inter-node interference

figures are not available at the scheduler and they need to be learned. Moreover

in this work we consider mobility aspect of such a system where link geometries

are not stationary and require constant tracking.

We first start with the concept of learning the environment, specifically inter-

node interference parameters for the scenario given. We then discuss the pro-

cedure and resulting efficiency constraints. We present a generic model that

represents practical aspects of the wireless network, introduce design parameters

and formulate the learning problem. Lastly, we present three algorithms and

assess their performance.
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5.1 Learning the Environment

In Chapter 3, we have observed that performance metric is influenced by how

well utility function is processed at the scheduler. Based on the observation

from random pairing instance, it can be inferred that absence of channel state

information is detrimental. In this section we will focus on how this information

can be obtained. We first describe the structure of parameter of interest, its

efficiency and requirements to establish a learning strategy.

Reference signals in 3GPP LTE are used for channel estimation and coherent

demodulation at UE. Some of these are cell-specific reference signals (CRS), de-

modulation reference signals (DM-RS), and CSI reference signals (CSI-RS) [29].

Sounding reference signal (SRS) on the other hand is requested by BS from UE

to estimate UL channel state. We assume all such methods to determine and

exchange channel state information are available and utilized to characterize BS-

UE links however there are some distinctions related to UE to UE interference

measurement.

First let us focus on objective parameter G = {gij}; channel state information

matrix for inter node interference. Given N nodes G is an N × N matrix of

N2 elements. Main diagonal of this matrix gii; i ∈ {1, . . . , N} represent self

interference. In this work we assume none of the UEs are full duplex capable, as

a result self interference at UE side due to UL transmission always saturates the

receiver chain, obscuring the received signal from BS. Therefore we determine

main diagonal to be deterministic and for the purposes of scheduling problem

assign gii =∞; i ∈ {1, . . . , N} so in total we need to learn N2 −N elements.

Moreover as UL and DL transmissions share the same frequency channels,

we can assume channel reciprocity, such that channel gain between node i and

node j is the same in both directions. In that case we can assign gji = gij and

equivalently represent G = {gij} with an upper triangular matrix which would

decrease parameters of interest to (N2 −N) /2.
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UEs transmit reference signal which is received for every other node to esti-

mate channel state information. Reference signal transmissions from each node

occur in predefined orthogonal time slots, so that every receiver can identify the

source. Furthermore during these transmissions, an in band DL operation is not

permitted as the measurement would be distorted by signal from BS. Therefore

channel utilization of full duplex mode cannot be achieved during these refer-

ence signal transmissions. In order to fill the matrix under channel reciprocity

assumption, N − 1 transmissions are required to be made as row vector for last

node can be reconstructed from previous sequences.

In this work, we consider a centralized scheduler, in order to make an UE pair-

ing allocation, inter node interference matrix should be present at this unit. As we

have calculated previously, there are (N2 −N) /2 parameters to be transmitted

from UEs to BS to form a utility function. Unlike reference signal transmission

from UEs, feedback data transmission allows full duplex operation. Let reference

signal transmissions krs bits each and feedback transmissions take kfb bits per

element; then every learning sequence will require (N − 1) krs bits for downlink

and (N − 1) krs + ((N2 −N) /2) kfb bits in total for uplink channel.

The high level model for learning scheme for inter node interference at UE side

for a single reference node at a given measurement event is illustrated in Figure

5.1 and can be described as follows:

1. BS elects node to transmit sounding reference signal and propagates this

information to all nodes

2. UE i transmits a sounding signal at its designated slot

3. UE j : j ∈ V − {i} receives the reference signal and estimates gij

4. UE j reports its estimate to BS in conformance to the feedback scheme

It is assumed that reference signal is received by any node j (i.e. no hidden nodes).

Upon receiving reference signal BS that can measure the channel quality in the

UL direction as in current system implementation. After scheduling decisions
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Figure 5.2: Generic timing scheme

are made they can be propagated and executed as usual. Some of the design

parameters for this model are as follows:

Learning sequence is executed periodically during predetermined time slots

and it can use reference signals that is used to measure UE-to-BS channel state.

Time delay to next learning sequence is Ts.

A periodic uplink reference signal can be transmitted as frequent as 2 ms [29].

However not only such a small value would increase total overhead rate signifi-

cantly but also considering practical mobility requirements, it would be wasteful

to collect relatively large amount of data with low expected utility increase per

slot. Therefore we choose Ts = 10 ms as inter learning sequence time. For the
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We assume every node participates in feedback phase and complete information

of their respective measurements are available at the scheduler.

The process described above is generated for m; m ∈ {1, . . . , N} different in-

stances at a given sequence. This number influences efficiency of learning process

and we assume m is fixed during a simulation.

The resulting overhead for sequential learning is calculated similar to full in-

formation case. We presume reference signal request and scheduling signals for

our problem does not incur additional overhead as they are available and in use.

This scheme uses m nodes as reference points for measurement, thus m× krs bits

are reserved in UL and DL resources. Feedback process requires m (N − 1) kfb

bits are assigned in UL resources, and if channel reciprocity is assumed, selected

nodes do not need to transmit same parameters so this overhead is reduced to

[m (N − 1)−m (m− 1) /2] kfb.

For the illustration purposes let each reference signal take one subframe krs = 7

and each feedback symbol take four bits kfb = 4, then for 100 UE and Ts = 10 ms

we can calculate overhead in kilobits per second and ratio of improvement over

complete information case in terms of action size as given in Table 5.1.

Table 5.1: Overhead calculation for learning sequence

Action Overhead [kb/s] Improvement
m = 100 2118.6 -
m = 2 80.2 96.2%
m = 4 158.8 92.5%
m = 8 311.2 85.3%
m = 10 385.0 81.8%

These calculations show that limiting m lead to significant overhead reduction,

but the resulting loss of channel state information can also degrade performance.

Here we formulate the learning problem. Action a(t) is the set of m nodes to ini-

tiate learning sequence by transmitting reference signals. The sequential process

of inter-user channel measurement is to update the information used for alloca-

tion with the information obtained from the learning sequence sequentially. We

would like to select a path of users equivalently a set of actions a(0), . . . , a(t) to
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minimize the difference between the actual achievable capacity R(t) using full

CSI and capacity obtained with available information.

Let ∆r (a, t) = R (t)− r (a, t) select i, j such that

arg min
a

(∆r (i, t))

Number of possible actions prior to a given learning sequence is
(
N
m

)
, however to

evaluate a particular action in terms of aggregate capacity it is required to know

prior actions and time instances when they are executed to reconstruct pairing

metric. Note that each previous action can also happen in
(
N
m

)
different ways. In

addition for an arbitrary policy, it is not clear how many previous actions should

be considered. A policy that avoids selecting a partition of users after a certain

time is an example where previous actions are unbounded as time goes to infinity.

Due to these two properties, a value function can grow exponentially and reach

unmanageable sizes even for sparse networks.

Transition function which represents change in node parameters due to mobil-

ity and shadowing are stochastic and not necessarily stationary processes. There-

fore it is rather difficult to generate a structured approach due to extensive state

and action space and obscurity of transition functions. We present deterministic

and stochastic algorithms to solve this problem in the next section.

5.2 Learning Algorithms

Since modeling and optimizing the learning process in action-reward framework

presents a large complexity, we take a heuristic approach. We learn the envi-

ronment using Round-Robin, Uniform Weighted Random, Nonuniform Weighted

Random algorithms. Algorithms are centralized and they are run in conjunc-

tion with a scheduler and they determine a set of nodes to be measured for the

following learning sequence. Towards the solution of scheduling problem under

mobility, we utilize LAPJV algorithm for its efficiency considering the number of

users.
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5.2.1 Round-Robin

Round-robin is a deterministic method which allocates an equal amount of learn-

ing opportunity to each node. At every sequence round-robin algorithm sets an

action of m nodes with consecutive indices:

a (t) = {i, i+ 1, . . . , i+m} (5.1)

Time between two measurements of any node is upper bounded by dN
m
e.

5.2.2 Uniform Weighted Random

Action a (t) is selected among the full set of nodes equally likely.

5.2.3 Nonuniform Weighted Random

This stochastic method uses a weight vector W to generate a probability mass

function which is then used to randomly select action of size m. At the beginning

of full-duplex activation phase, we assume no information is available about the

network topology, hence the weight vector is initialized to equally likely weights.

Once the vector containing inter UE interference is received for all m nodes,

each row i ∈ a(t) is inspected column by column for path loss smaller then

threshold η. If such an entry is found in column j we duplicate the transposed

vector to row j to improve pairing algorithm by making the assumption nodes

that are close to each other have similar interference vectors. We then factor out

weight of estimated node by β; 0 ≤ β < 1 to reduce the probability that this

node is selected for next sequences.

This procedure by itself inherently introduces error to inter-user interference

matrix G and it will influence pairing performance and it will delay measurement

from estimated node. To constraint redundant we use two conditions. If there
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are unknown elements, we update them selectively, otherwise we use a tighter

threshold value η? to determine nearby nodes and to prevent loops we ensure

previous value is changed at least five percent.

Once update procedure is complete, we use a parameter α, 0 ≤ α < 1 to factor

weight of previously selected users a(t), to reduce their probability further and

redistribute the weight they have lost to other users to satisfy probability axiom∑N
i=1Wi = 1.

Pseudo-algorithm that runs at every learning sequence is presented in Algo-

rithm 1.
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Algorithm 1 Weighted random algorithm

initialize W ← {1/N}
nodes← {1, 2, . . . , N}
E ← ∅ {set of estimated nodes}
a← select m random nodes from distribution W

Obtain g from learning sequence with a

if G has unknown elements then

for all i ∈ a do

V ← nodes with less than η loss to i

for all j ∈ V do

fill empty elements of gj ← gi

E ∪ j
end for

end for

else

for all i ∈ a do

V ← nodes with less than η? loss to i

for all j ∈ V do

if gji and gij differ then

gj ← gi

E ∪ j
end if

end for

end for

end if

for all j ∈ E do

W ← W +Wj(1− β)/(N − 1)

Wj ← βWj

end for

for all i ∈ a do

W ← W +Wi(1− α)/(N − 1)

Wi ← αWi

end for

pairs ← matching(g)
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5.3 Numerical Results

In this section, we will present the simulation environment and evaluate algo-

rithms under mobility.

5.3.1 Simulation Environment

Modifications are made to simulation environment in Chapter 3 as we incorporate

user mobility. In order to investigate the effect clearly we extend the cell size and

number of users to alleviate excessive interruption to node movement due to

constrained space.

Simulation parameters are configured based on the scenario 2 of 3GPP speci-

fication [26] are given in Table 5.2. As in Chapter 3, we assume full buffers with

heavy traffic in a single cell environment.

We evaluate two test cases to examine performance of sequential algorithms.

The first setup covers the initial phase when the scheduler starts with no prior

inter node interference information. Second setup is initialized with ideal user

pairing configuration for all algorithms and after 10 ms mobility parameters are

perturbed. At this time instance, users stop momentarily, select a new direction

or waypoint and a new speed value according to new parameter set.

In order to illustrate relative performance with respect to channel state infor-

mation knowledge we provide two endpoints:

• Random pairing performs user pairing without the knowledge of channel

parameters and represents worst case with best possible overhead perfor-

mance

• Ideal pairing runs the learning algorithm with N nodes to accumulate full

information thus it is an indicator of best possible pairing performance for

the given time instance but it also requires maximum amount of overhead
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Table 5.2: Simulation Parameters

Parameter Value

Cell radius 100 m
Initial UE Placement Uniformly random

Maximum Pico TX power 24 dBm
Maximum UE TX power 23 dBm

Thermal noise density -174 dBm/Hz

BS-UE Path loss model
PLLOS(R) = 103.8 + 20.9 log10(R)
PLNLOS(R) = 145.4 + 37.5 log10(R)

LOS probability
0.5−min(0.5, 5 exp(−0.156/R))

+ min(0.5, 5 exp(−R/0.03))

UE-UE Path loss model
R ≤ 50m;PL = 98.45 + 20 log10(R)
R > 50m;PL = 175.78 + 40 log10(R)

Noise figure
9 dB (UE)
13 dB (BS)

Shadowing std deviation BS and UE
3dB (LOS)

4dB (NLOS)

Visualization of results contain time domain data which appears noisy due to

high frequency fluctuations. In order to make plots more coherent, we smooth out

data using locally weighted polynomial regression (LOWESS) with first degree

polynomial and moving window of 10 ms along time axis.

5.3.2 Mobility

In order to assess the learning performance, we introduce user mobility to achieve

time variant parameters for pairing. In the following subsections we summarize

two of the mobility models that we have used. Mobility data is generated using

ns3 modules and then processed with main program code.

5.3.2.1 Random Walk Mobility Model

The properties of this model are as follows according to [30]. At each slot a

uniformly distributed direction θi (t) ∈ [0, 2π] and a uniformly distributed speed

50



vi (t) ∈ [vmin, vmax] is selected for each node i. The process is memoryless so

θi (t) and vi (t) are independent from past and previous values. Whenever a node

arrives at the cell edge, the direction θi (t) is updated as θi (t) = π− θi (t) so that

the node stays inside the cell.

5.3.2.2 Random Waypoint Mobility Model

Random waypoint mobility model consists of selects a destination point uniformly

random inside cell and starts moving to this waypoint with uniformly distributed

speed vi (t) ∈ [vmin, vmax]. Once node reaches its destination, it selects a time

value from uniform distribution [pmin, pmax], and waits for that duration prior to

selecting its new waypoint.

In contrast to random walk mobility model where displacement between two

time instances is quite limited due to Brownian motion, random waypoint model

can introduce continuous movements that can span long distances across the cell.

5.3.3 Results

For the following simulations we use random waypoint mobility model. We use

η, η? equivalent to 10m and 5m distances respectively, and set α = 0.01, β = 0.3.
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Figure 5.3: Random walk, vmax=10m/s, m=1
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Figure 5.4: Random walk, vmax=10m/s, m=2
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Figure 5.5: Random walk, vmax=10m/s, m=4

For the cases with action sizes 1,2,4 nonuniform weighted random algorithm

converges approximately 60% faster than round robin algorithm. Uniformly ran-

dom algorithm performs the worst, but it can surpass round robin for certain

periods of time. These experiments often contain transient effects such as the

spike uniformly random weighted algorithm has at 34s in Figure 5.3. Since every

inter-user interference vector at an arbitrary time have a different contribution

to pairing process, it is possible that such a spike can persistently improve sub-

sequent performance. However in this occurrence utility matrix does not contain

sufficient information, so it can be inferred that the pairing is influenced randomly.

Here, maximum speed parameter of mobility model is doubled to 20m/s.
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Figure 5.6: Random walk, vmax=20m/s, m=1
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Figure 5.7: Random walk, vmax=20m/s, m=2
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Figure 5.8: Random walk, vmax=20m/s, m=4

In Figure 5.6 due to simultaneously changing network parameters, achieving

near optimal aggregate capacity takes more time, since learned parameters not

only become obsolete but also influence pairing algorithm. Nonuniform weighted

algorithm is relatively faster than the other two compared to vmax=10m/s case.

Uniformly random selection has difficulty obtaining optimal performance in Fig-

ure 5.7.

From these experiments, we make the observation that round robin algorithm

reaches optimum performance after N/2 sequences per measurement node. In

other words, we expect convergence at N/2m measurement. The effect of action

size can be abstracted with this notion and failure in this pattern might indicate

selected action size is too low to track the environment.

For the following simulations, we use random waypoint mobility model. Note

that this model has a slightly different steady state user distribution than uniform

[30]. To reject transient sum capacity changes we dropout 103 seconds of initial

movement to better approximate steady state positioning.
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Figure 5.9: Random waypoint, vmax=10m/s, m=4

In Figure 5.9, the action size of four is not sufficient to track user mobility for

all algorithms. Nonuniform weighted algorithm still rapidly converges close to

optimum solution but drops back to the level of others. We note that although

average user speeds are consistent between random walk and random waypoint

models, displacement of a user in the latter model during a period of time is

greater. Therefore it can be stated that random waypoint model is more chal-

lenging in context of tracking link geometries between users.
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Figure 5.10: Random waypoint, vmax=10m/s, m=8

For the following simulations, we setup the environment as before but intro-

duce perturbation to user mobility at t = 10. Initial conditions for user pairing

are taken from the steady state values of previous experiments. Therefore result

simulation starts with performance of optimum pairing. As soon as perturbation

occurs at designated time, users stop and change their direction and speed, ren-

dering the accumulated information at scheduler obsolete. In order to isolate the

effect of recovery, we prefer a scenario with less mobility activity and low number

of measurement nodes.

In Figure 5.11, initially random walk mobility with vmax=10m/s is assumed

and perturbation event doubles maximum speed to vmax=20m/s.
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Figure 5.11: Random walk with perturbation, m=2

Similar to initial phase experiments, weighted algorithm with tuned parameters

under perturbation condition can converge faster than other algorithms. However

we observe that estimation inter-user interference values have an adverse effect.

Depending on the threshold to select nearby nodes, a trade-off between settling

time and tracking error is present. The simulation provided in 5.11 features a

threshold equivalent of 10m distance and has notable tracking error. Further

increasing the threshold results in oscillations. A conservative value on the other

hand is slower to converge.

In Figure 5.12, we consider inverted case where simulation starts with random

walk mobility with vmax=20m/s and perturbation event relaxes maximum speed

to vmax=10m/s.
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Figure 5.12: Random walk with perturbation, m=2

We observe that the pattern for average sum capacity is consistent with previ-

ous perturbation case. As expected tracking error of weighted random algorithm

is decreased due to constrained user mobility after perturbation. Reducing dis-

tance threshold in this context could only superficially contribute to steady state

error. Therefore it can be concluded that the value of threshold should be se-

lected assertively with consideration of risk induced in worse case scenarios for

stability.
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Chapter 6

Conclusions

In this thesis, user pairing and grouping methods is studied in single cell wireless

network with full-duplex base station and half-duplex mobile stations.

For the pairing problem, it is shown that as the number of users increase,

for the uniform user placement case, the pairing algorithm gradually performs

better. This is due to the fact that it is possible to locate more prospective pairs

which consist of users imposing lower inter-user interference figure to each other.

On the other hand, analytic solution for random pairing suggests an important

conclusion about user placement. As it is shown, under random geometry and

random pairing conditions there exists pairs with capacities close to the ones that

are obtained with linear integer programming solution. The number of such pairs

hence the weight of their presence relative to network distribution is a direct

consequence of using uniformly random distribution. As a result, topological

limitations for our scenario can be used as an advantage in certain geographical

contexts.

The learning based approach for obtaining inter-user interference parameters is

evaluated. The initial estimation procedure for the missing elements significantly

reduce the time delay to reach optimal pairing algorithm with full information.

It is observed that random waypoint model due to its large influence in link
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geometries between nodes causes larger perturbation to aggregate capacity for

the same maximum velocity parameter as the random walk model. It is also

observed that the tracking error for large mobility activity for this mobility model

is considerably larger and can lead to failure.

In future works, a control system can be implemented to tune the action and

threshold parameters to improve robustness against fluctuations in network pa-

rameters while retaining rapid convergence features to further improve efficiency

in networks with mobility.
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