
PARALLEL STREAMING GRAPH
PARTITIONING UTILIZING MULTILEVEL

FRAMEWORK

a thesis submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

master of science

in

computer engineering

By

Nazanin Jafari

August 2018

Parallel Streaming Graph Partitioning utilizing multilevel framework

By Nazanin Jafari

August 2018

We certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Cevdet Aykanat(Advisor)

Gökberk Cinbiş

Erman Ayday

Approved for the Graduate School of Engineering and Science:

Ezhan Karaşan
Director of the Graduate School

ii

ABSTRACT

PARALLEL STREAMING GRAPH PARTITIONING
UTILIZING MULTILEVEL FRAMEWORK

Nazanin Jafari

M.S. in Computer Engineering

Advisor: Cevdet Aykanat

August 2018

Graph partitioning is widely used for efficient parallelization of a variety of appli-

cations. Streaming graph partitioning is a one pass partitioning solution provided

to overcome high computation costs of offline graph partitioners. Even though

these streaming algorithms can be used for successively repartitioning, aiming at

further improvements in partitioning qualities, quality improvements is limited

to few passes that make offline graph partitioning tools still a desirable solution

for graph partitioning due to the generated high quality partitions.

We propose a multilevel approach using streaming algorithms that can alle-

viate tradeoff between quality and performance in graph partitioning problem.

Moreover, our OpenMP based multi-threaded implementation, can generate fast

and highly scalable solutions compared to mt-metis, a multi-threaded solution

for METIS, the state-of-the-art offline high quality graph partitioning tool. Our

results show that our method can produce up to fifteen times faster and more

scalable results in large graph datasets. We also show that our method can im-

prove quality of partitions significantly compared to state-of-the-art streaming

graph partitioning algorithm LDG after repartitioning several times. On average

we produce partitions with 29% better qualities than LDG algorithm.

Keywords: streaming graph partitioning, parallel computing,combinatorial scien-

tific computing.

iii

ÖZET

ÇOK DÜZEYLI YAPI KULLANARAK PARALEL AKIŞ
ÇIZELGE BÖLÜMLEME

Nazanin Jafari

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Cevdet Aykanat

Ağustos 2018

Çizelge bölümleme, çeşitli uygulamaların verimli bir şekilde paralelleştirilmesi

için yaygın olarak kullanılmaktadır. Akış grafiği bölümleme, çevrimdışı çizelge

bölümleyicilerin yüksek hesaplama maliyetlerini aşmak için sağlanan bir geçiş

bölümleme çözümüdür. Bu aktarım algoritmaları, bölümleme özelliklerinde

daha fazla geliştirmeyi amaçlayan ardışık olarak yeniden bölümlendirme için kul-

lanılabilir olsa da, kalite iyileştirmeleri, birkaç geçişle sınırlıdır. Çevrimdışı çizelge

bölümleme araçlarını, oluşturulan yüksek kaliteli bölümler nedeniyle çizelge

bölümleme için hala istenen bir çözüm halindedir.

Çizelge bölümleme probleminde kalite ve performans arasındaki dengeyi

azaltabilen akış algoritmalarını kullanarak çok düzeyli bir yaklaşım öneriyoruz.

Ayrıca Openmp tabanlı çok parçalı uygulamalarımız, son teknoloji ürünü

çevrimdışı yüksek kaliteli çizelge bölümleme aracı olan METIS için çok iş

parçacıklı bir çözüm olan emph mt-metis ile kıyaslandığında hızlı ve yüksek

ölçeklenebilir çözümler üretebilir. Sonuçlarımız, yöntemimizin büyük çizelge veri

setlerinde on beş kat daha hızlı ve daha ölçeklenebilir sonuçlar üretebildiğini

göstermektedir. Ayrıca, yöntemin, birkaç kez yeniden bölümlendirildikten sonra

en gelişmiş akış grafiği bölümleme algoritması LDG’ye kıyasla önemli ölçüde

bölümlerin kalitesini artırabildiğini gösteriyoruz. Ortalama olarak LDG algo-

ritmasından 29 % daha iyi niteliklere sahip bölümler üretiyoruz.

Anahtar sözcükler : Akış çizelge bölümleme, paralel hesaplama, kombinatoryal

bilimsel hesaplama.

iv

Acknowledgement

I would like to express my immense gratitude to my supervisor Prof. Dr. Cevdet

Aykanat for his endless support, suggestions and valuable guidance throughout

development of this study. I consider it an honour to work on this study under

his supervision.

I am thankful to Asst. Prof. Gökberk Cinbiş and Asst. Prof. Erman Ayday

for reading and reviewing this thesis.

I am especially thankful to Dr. Reha Oguz Selvitopi for his persistent support

and valuable guidance in each and every step of developing this study.

I also acknowledge the scientific and Technical Research Council of Turkey

(TÜBITAK) for supporting this study financially with project EEEAG-115E212.

I would like to thank my valuable friends Noushin, Mohammad, Hamed, Sa-

harnaz, Ehsan, Mina, Pezhman, Nima, Zeynab and Wurya and all of my friends

in Bilkent University for their emotional support and encouragement through my

experiences.

I would like to express my gratitude to my Mother, Father, my little brother

Amin for their love and encouragement. I would not be here without your kind

and sincere support.

Lastly and more importantly very special thanks goes to my husband Iman

Deznabi for his persistent support, understanding and endless love.

v

Contents

1 Introduction 1

1.1 Contributions . 3

1.2 Definitions . 3

2 Background and related work 5

2.1 Multilevel frameworks . 5

2.2 Streaming graph partitioning paradigms 6

3 Multilevel Streaming Graph Partitioning Framework 9

3.1 Partitioning and coarsening . 10

3.2 Uncoarsening and repartitioning 11

4 Implementation details: Parallel Multilevel Streaming Graph

Partitioning 13

4.1 Multi Threaded LDG . 13

4.2 Multi-threaded coarsening . 19

vi

CONTENTS vii

4.3 Multi-threaded uncoarsening . 21

5 Experimental results 23

5.1 Datasets . 25

5.2 Parameter β and its effect on partitioning paradigm 27

5.3 Discussion: viability of multilevel paradigm 29

5.4 Quality comparison . 31

5.5 Scalibility and runtime analysis 34

5.5.1 Scalibility of each phase 34

5.5.2 Runtime and speedup comparison 37

5.6 Experimental evaluation on all graphs 42

6 Conclusion and future work 45

List of Figures

1.1 (a) A balanced partitioning with many edges between clusters , (b)

Edges between clusters are minimized but partitioning is highly

unbalanced . 2

3.1 Graph G` is partitioned in a streaming order. At the end of the

stream the partition with fully loaded graph constructs coarser

graph. 10

4.1 vertex u arrives into stream at time t and thread T1 assigns vertex

u into part Vk, however, thread T2 have not received the updated

part information for adjacent vertices of vertex u and assigns it

randomly. 17

5.1 Effect of different values of β on (a) runtimes and (b) edgecuts on

4 graph datasets . 28

5.2 Variation of the partitioning quality of mt-LDG with increasing

number of repartitioning passes. * shows the edgecut value of the

proposed mt-SML . 30

5.3 Edgecut quality comparison for three methods on different graphs

as a function of K . 32

viii

LIST OF FIGURES ix

5.4 Dissection of runtime of mt-SML for 32- way partitioning with β = 10 35

5.5 Variation of the running time of mt-LDG, mt-metis and mt-SML

with increasing number of threads for β = 20. 40

5.6 Comparison of mt-SML, mt-metis and mt-LDG in case of speedup

on 4 different graph datasets, the ideal speedup is also shown as

dashed red line . 42

List of Tables

5.1 table of datasets consisting of graphs from social network, web,

citation, circuit, similarity, FEM and syntethic categories. In syn-

tethic graph 3 instances of Watts-Strogatz [31] graph in different

number of vertices, |V| and edges |E| is given 26

5.2 imbalance ratio LI for each graph in K=64. 34

5.3 Runtimes of multi-threaded methods, mt-LDG, mt-SML and mt-

metis in seconds for different number of threads. 38

5.4 Extensive comparison based on runtime, imbalance ratio and edge-

cut values over all graphs for three schemes scaled relative to mt-

LDG in 10 iterations . 44

x

Chapter 1

Introduction

Graph datasets are widely used in many areas of science such as social and bio-

logical networks, scientific computing and VLSI networks. Nevertheless, graphs

grew in size rapidly in recent years, for instance twitter had over 40 million users

with 1.4 billion interactions in 2009 [32]. Web graphs also increase in size up to

trillions of links. Biological data such as protein or gene interactions can con-

sist of millions of nodes and billions of edges. Considering these large datasets,

essence of efficient computation becomes more vital. Graph partitioning is de-

fined as clustering graph into different components of roughly equal size to process

large graphs in distributed systems in parallel. Graph partitioning is beneficial

for load balancing and reducing communication overhead. However, it is known

to be an NP-hard problem [1, 2]. A good graph partitioning scheme should be

able to partition a graph into roughly equal sized clusters of nodes (or number

of edges) and at the same time reduce the number of edges (or nodes) between

clusters. The former objective corresponds to load balancing and the latter one

corresponds to reducing communication volume between processors in a paral-

lel setting. These two objectives are usually in conflict with each other. This

phenomenon is illustrated in figure 1.1

1

(a) (b)

Figure 1.1: (a) A balanced partitioning with many edges between clusters , (b)
Edges between clusters are minimized but partitioning is highly unbalanced

However, there exists several feasible solutions for this problem. Many off-

line graph partitioning tools are proposed such as Metis[4], Chaco [33], Patoh

[3], Jostle[26] and Scotch[23]. There are also parallel offline graph partitioning

tools such as Parmetis, [20],PT-Scotch[34], mt-metis[6]. However, these parallel

graph partitioning algorithms are not sufficiently scalable. This is because the

complexity of algorithms used in sequential version of these parallel graph parti-

tioners, are usually not amenable for parallelizm and can generate performances

in comparably low scalable setting leading to a need for more efficient algorithms

in terms of performance.

Streaming graph partitioning algorithms have been proposed in order to over-

come performance issues associated with offline frameworks. These algorithms,

partition graphs as they arrive in the stream greedily, however, the quality of

partitions in these algorithms are usually not comparable to the quality of parti-

tions in offline multilevel tools. The reason is that, streaming algorithms greedily

assign nodes (or edges) into parts with current information of the graph and

they usually neglect whole graph structure in the beginning of stream. More-

over, these streaming graph partitioning algorithms partition graphs only once

and they never move vertices (or edges) among parts targeting reducing commu-

nication between parts.

Restreaming graph partitioning [10] have been proposed for few streaming

heursitics as a method to improve partitioning quality by repartitioning graphs.

However, due to the nature of these greedy algorithms repartitioning does not

2

improve the quality of partition after few passes and they stuck in local min-

imum. We propose a paradigm that aims at producing high quality partitions

with streaming graph partitioning algorithms utilizing multilevel scheme. We also

propose a parallel implementation of our framework using OpenMP library. This

parallel version can yield very fast solutions in a more scalable fashion compared

to shared-memory offline multilevel methods.

1.1 Contributions

We introduce a novel multilevel graph partitioning approach. Our method ben-

efits fast and lightweight streaming graph partitioning algorithm, Linear Deter-

ministic Greedy (LDG), best performing heuristic proposed by Stanton and Kliot

[9], in partitioning graph in multilevel approach. We show that average gain of

our algorithm over LDG can achieve 29% in partitioning quality given the same

running time. Moreover,we propose parallel version of our multilevel framework

using OpenMP, a shared memory parallel programming platform. Our method

is more scalable than mt-metis within shorter running times on a given dataset.

In the following section we provide an explanation on notations we use in this

study.

1.2 Definitions

A Graph G = (V , E) is defined as a set of vertices V = {v1, v2, ..., vn} and a set

of edges E , such that an edge represents connection between pair of vertices i.e.,

e = (vi, vj). Vertices and edges can be associated with weight, i.e., ω(vi) and

ω(vi, vj) denote vertex and edge weight respectively.

Π = {V1, V2, ..., VK} is called a K-way partitioning of graph G = (V , E) such

that each part is nonempty and parts are pairwise disjoint. In a partition Π an

edge e = (vi, vj) said to be a cut if vi and vj are assigned to different parts. The

3

cutsize of a partition is defined as the sum of weights of edges that are cut and

it is shown as cutsize(Π) . Weight of each part,Vk, ω(Vk) is equal to the sum of

the weights of vertices, ω(vi) in that partition i.e:

ω(Vk) =
∑
vi∈Vk

ω(vi) (1.1)

A partition Π is said to be balanced if it satisfies the balance constraint:

ω(Vk) ≤ (1 + ε)Wavg (1.2)

Where ε is the maximum imbalance ratio and Wavg is equal to:

Wavg = Σvi∈V
ω(vi)

K
(1.3)

It is important to note that in this study, index notations for vertices are given

as {i, j, ..} while adressing parts we use index notations {k, l,m, ..}.

4

Chapter 2

Background and related work

In this chapter, we discuss different solutions on graph partitioning problem.

Our proposed method can be related to existing solutions in two ways: 1) offline

graph partitioning methods, and 2) online lightweight streaming graph parti-

tioning heuristics. We also discuss parallel versions of these graph partitioning

methods. Several number of methods are available for offline graph partition-

ing. Among these methods multilevel scheme is proven to obtain high quality

partitions, consequently many methods use this paradigm.

2.1 Multilevel frameworks

Multilevel partitioning is a successfull paradigm widely used in several state-

of-the-art graph/hypergraph partitioning tools (Metis [4],Patoh [3], Scotch [23],

Jostle [26], Chaco [33] and KaHIP[27]). Several parallel offline graph partitioning

tools have been proposed that can alleviate performance overhead of sequential

offline graph partitioning tools. Akhremtsev et al. [7] propose a shared memory

multilevel graph partitioning by parallelizing label propagation algorithm [24]

in coarsening phase and introducing parallel version of k-way multi try local

search[27]. ParMetis [20], as a distributed memory graph partitioning tool and

5

mt-metis, as the shared memory version of Metis are among the well known

parallel graph partitioners. PT-Scotch [34] is a parallel version of Scotch [23], the

well-known offline multilevel graph partitioning tool. However, these methods are

not very scalable because algorithms used in partitioning and uncoarsening phases

of offline multilevel graph partitioning are usually not amenable for parallelism

and may incur problems in maintaining balance because of the sequential nature

of the coarsening and refinement algorithms utilized [6].

General structure of a multilevel framework consists of coarsening the graph

into smaller graphs then applying a graph partitioning algorithm on the coars-

est graph and project it back to the original graph by performing a refinement

algorithm on each finer graph. Since finer graphs have more degree of freedom,

refinement can effectively increase quality of partition[6]. In the coarsening phase

original graph G0 = (V0, E0) transform into coarser graphs in a sequence. i.e.,

G1,G2, ...,GL. Several algorithms have been used for this phase, among which

edge matching algorithms [4, 21, 22, 23] and label propagation algorithm [24] are

mainly chosen. The coarsest graph is partitioned in initial partitioning phase.

Various algorithms can be selected for this stage. Spectral Bisection (SB), KL

algorithm, graph growing partitioning algorithm and greedy graph growing par-

titioning algorithm are among the most common paartitioning algorithms which

are introduced in [4]. At each level of uncoarsening, a refinement algorithm [25]

is applied aiming to improve the quality of the edgecut produced in the previous

level partitioning phase. Due to the expensive computations costs of these offline

graph partitioning tools, recently streaming graph partitioning algorithms have

been proposed. In the next section we will argue the nature of these algorithms.

2.2 Streaming graph partitioning paradigms

In contrast to offline graph partitioning methods, online methods use lightweight

streaming graph partitioning algorithms that can generate partitions in a suffi-

ciently good quality without needing to keep all the graph information in the

memory. These algorithms assign vertices or edges on parts as they arrive in the

6

stream.

Stanton and Kliot [9] propose 10 heuristics among which Linear Determinis-

tic Greedy (LDG) algorithm produce best results. While this heuristic greedily

assigns vertices to the partitions with most number of vertices sharing common

edge, it penalizes full partitions with a linearly weighted penalty function. Its

linear penalty function can produce highly balanced partitions without neglect-

ing the graph structure. Fennel [8], being another streaming graph partitioning

algorithm, is a modularity maximization framework that approximately balances

parts while assigning vertices to these parts greedily. Tsourakakis et.al [13] pro-

pose streaming graph partitioning in a planted partition model with higher length

walks. Besides streaming vertex based partitioning, edge based streaming parti-

tioning also got attention. Petroni et al. [14] proposed replicated streaming edge

based graph partitioning mostly focusing on power-law graphs.

As the quality of partitioning in streaming graph partitioning algorithms are

usually not comparable to the qualities produced by offline multilevel graph par-

titioners, Nishimura and Ugander [10] propose a multipass solution for two single

pass streaming algorithms, Fennel [8] and linear deterministic greedy algorithm

proposed by Stanton and Kliot [9]. aiming at improving partitioning quality. In

this work a graph partitioned with state-of-the-art streaming graph partitioning

algorithms can be repartitioned several times, even though repartitioning can be

effective in increasing quality of graph partitioning in only few passes, the quality

does not improve in the later passes.

Besides these heuristics, Firth and Missier [11] propose workload aware stream-

ing graph partitioning algorithm. They use frequent patterns seen in the graph as

workloads and partition the graph considering these motifs using the LDG algo-

rithm [9]. Grasp [12] proposes distributed-memory streaming graph partitioning.

For this purpose, it uses MPI to parallelize the framework proposed in Fennel [8].

As our proposed method is based on the lightweight greedy algorithm, LDG,

in the rest of the section the selected graph partitioning algorithm will be briefly

outlined. Our multilevel graph partitioning framework exploits this fast streaming

7

algorithm for partitioning in both coarsening and uncoarsening phase. LDG

algorithm is defined as a heuristic that assigns vertices into parts where it has

maximum number of neighbors even though it penalize full parts with a linear

penalty function. Equation 2.1 introduces LDG heuristic.

arg max
k∈K

{|Vk ∩ Adj(v)|(1− ω(Vk)

C
)} (2.1)

Vk represents the set of vertices in part k. v is a random vertex in the stream

that is ready to be assigned to a part. Adj(v) represents the set of vertices that

share same edge with v. C is the capacity constraint and K refers to the number

of parts respectively.

This LDG partitioning heuristic computes affinity of a vertex v to parts consid-

ering its neighbors and assigns the vertex into a part with the maximum affinity

score while penalizing full parts with the capacity constraint C.

8

Chapter 3

Multilevel Streaming Graph

Partitioning Framework

In this chapter, we provide an extensive explanation on our paradigm. The gen-

eral structure of our framework is simple. First the original graph is partitioned

with a streaming graph partitioning algorithm, LDG. Then generated partition

creates structure of the next level coarser graph i.e. each part produced in pre-

vious level partitioning become coarse vertices of the next level and part weights

of previous level correspond to coarse vertex weight of the next level. The cut

edges between each pair of parts are coalesced into a single edge whose weight is

set to be equal to the sum of the weights of its constituent edges. The process of

partitioning and coarsening is repeated based on the number of levels that was

previously computed. Then in the last level, parts with coarsest vertices project

back to the original graph in several steps of decomposing coarse vertices into

their corresponding finer vertices in previous levels while repartitioning finer

graph using the LDG algorithm. In the following sections different phases of our

multilevel approach will be thoroughly discussed.

9

Figure 3.1: Graph G` is partitioned in a streaming order. At the end of the
stream the partition with fully loaded graph constructs coarser graph.

3.1 Partitioning and coarsening

At level ` graph G` is partitioned with the LDG algorithm into K` parts, then

the generated partition is utilized to determine the structure of coarser graph

G`+1. Let Π` = {V `
1 , V

`
2 , ..., V

`
K`} denote the set of K` way partitioning generated

by the LDG algorithm at level `. Partition Π` determines G`+1 with K` vertices.

i.e., part k of Π` constitutes the coarse vertex vck of G`+1, where the vertices of V `
k

of Π` correspond to the constituent vertices of coarse vertex vck of G`+1. Vertex

weight of coarse vertex vck of G`+1 is equal to the sum of the weights of constituent

vertices of part k of Π` i.e.,

ω(vck) =
∑
vi∈V `k

ω(vi) (3.1)

10

The edge-set of G`+1 is constituted as follows:

(vck, v
c
m) ∈ E `+1 if

Adj(V `
k) ∩ V `

m 6= ∅
(3.2)

The adjacency relation of a set of vertices is given by:

Adj(V) =
⋃
v∈V

Adj(v)− V (3.3)

The weight of edge (vck, v
c
m) is determined as

ω(vck, v
c
m) =

∑
vi∈V `k
vj∈V `m

ω(vi, vj) (3.4)

The number of coarsening levels , L is computed in Equation 3.5.

L =
⌊
logβ

|V0|
K

⌋
(3.5)

Here K is the number of parts to be partitioned at the end and β refers to

the average number of vertices in a part and it determines the number of parts

of each level i.e., K` = |V`|/β.

It is worth noting that for each LDG partitioning we relax the strict capacity

constraint of 1 + ε of balancing in the beginning of coarsening phase with a value

equal to ε+ε′ such that ε ≤ ε′. Reducing the strict burden of balancing constraint

aids us in better decisions in partitioning. At each level we reduce the value of ε′

by a range equal to |ε−ε
′|

L
. In uncoarsening phase capacity of parts are computed

with 1 + ε constraint.

3.2 Uncoarsening and repartitioning

In the last level, when the graph GL is partitioned inK-ways, our multilevel frame-

work begin uncoarsening followed by repartitioning. Partition of last level ΠL

11

contain parts that hold coarse vertices of graph GL. Number of these coarse ver-

tices in the last level is very low while weight of each vertex is very high therefore,

moving them across parts for repartitioning is nearly impossible because presence

of approximately high capacity constraint for very limited number of vertices with

heavy weight limits ability to move vertices among parts. Therefore, decompo-

sition of these heavy weighted vertices are necessary for repartitioning to have

impact on improvements. The partition Π` = {V `
1 , V

`
2 , ..., V

`
K`} initially obtained

at level ` is projected back to a finer partition Π`−1 = {V `−1
1 , V `−1

2 , ..., V `−1
K`−1} at

level `− 1 as follows:

Consider a coarse vertex vck mapped to part V `
k at Π`. Then each constituent

vertex set V`−1 of coarse vertex vck is assigned to part V `−1
k of Π`−1. Then we

perform a number of repartitioning phases using LDG algorithm on this initial

partition Π`−1 which is projected back from the resulting partition of Π`.

12

Chapter 4

Implementation details: Parallel

Multilevel Streaming Graph

Partitioning

In this chapter we broadly explore the details of our parallel multilevel streaming

graph partitioning framework. Each phase of our framework is parallelized using

OpenMP. In the following sections we will thoroughly argue parallel implemen-

tation details of each phase of our scheme.

4.1 Multi Threaded LDG

Simple structure of Linear Deterministic Greedy algorithm provides a platform

very amenable for parallelism. Vertices of the graph are divided equally among

threads. Each thread is responsible for assigning its vertices into parts. As vertex

u arrives in stream, we compute its affinity to the parts that its neighbors have

already been assigned. Among them a part is chosen depending on its affinity

score and its capacity. Despite being simple, parallel version of LDG algorithm

in shared-memory platform can be challenging in some aspects.

13

In our implementation, part information of each vertex of graph G = (V , E) is

shared among threads and all threads can read or write these information. Part

information consists of weight value for each part k, ω(Vk) and a part vector

showing part information for each vertex, part is a vector with length equal to

|V|. For every v ∈ Vk we can define part[v] in the following way:

part[v] =

k, if v is already assigned to Vk. for 1 ≤ k ≤ K

0, otherwise.
(4.1)

Since ω(Vk) is shared among threads concurrent reading and/or writing can

cause race condition. For instance, if thread T1 assigns vertex u into part k and

at the same time thread T2 assigns another vertex v into the same part k then

weight of part k might not be correctly updated since both of the threads access

ω(Vk) at the same time and add only their own vertex weights to the part weight.

In this case weight value for part k is updated erroneously. In order to prevent

such race conditions, updating the part weight is done in an atomic section (i.e.,

one thread at a time can update part weight values.) The pseudocode for Multi-

Threaded LDG algorithm is shown in Algorithm 1. aff is a vector that computes

the affinity of adjacent vertices of vertex u to the parts. Each vertex and its

neighboring vertices are divided among threads and each thread is responsible

for assigning these vertices into parts in this algorithm. In our implementation

we track the part information of neighbors of vertex u using part vector and add

part info of these neighbors into partset, a set to store distinct parts of neighbors

of u. After processing each neighbor of vertex u, using partset and affinity score

of each part which is stored in partset LDG assigns vertex u into the part that has

highest score according to equation 2.1 while considering the capacity constraint.

However, in cases when none of the neighbors of vertex u is assigned to parts or

the weight of the parts of neighbors exceed the capacity, vertex u is assigned into

parts randomly.

14

Algorithm 1 multi-threaded LDG

Input: graph G = (V , E), number of parts K, capacity C
Output: part : part information vector for each v ∈ V , ω(V) : partition weight

for each part ∈ K,ω(v) : vertex weight for each v ∈ V
1: for each v ∈ V in parallel do
2: part[v] = UNPROCESSED
3: for k = 1→ K in parallel do
4: aff [k]← 0 {vector to compute affinity score for each part}
5: for each u ∈ V in parallel do
6: for each v ∈ Adj(u) do
7: if part[v] = UNPROCESSED then
8: continue
9: k ← part[v]
10: if aff [k] = 0 then
11: partset← partset ∪ {k} {set of parts holding neighbors of u}
12: aff [k]← aff [k] + ω(u, v)
13: kmax ← 0
14: αmax ← 0
15: for each k ∈ partset do
16: α← aff [k] ∗ (1− ω(Vk)

C
);

17: if α > αmax then
18: kmax ← k
19: αmax ← α
20: aff [k]← 0
21: while kmax = 0 do
22: kξ ← rand(1, k)
23: if ω(Vkξ) + ω(u) ≤ C then
24: kmax ← kξ
25: part[u]← kmax
26: ω(Vkmax)← ω(Vkmax) + ω(u); {atomic operation due to concurrent writes}

15

Considering the fact that our β parameter determines the number of levels,

number of parts and capacity constraint for each level (section 4.1), choosing

very small value for parameter β may result in high number of parts and low

capacity constraint leading to poor edgecut quality in parallel platform as the

number of threads increase. The reason is that due to the nature of streaming

graph partitioning algorithm at the beginning of the stream, there is no part

information about adjacent vertices of vertex u, thus the algorithm inevitably

assigns vertices to parts randomly. As the neighbors of vertex u already appear

in parts in stream order, LDG algorithm arrives into better decisions on vertex

u.

However, in multi-threaded environment this random assignment can happen

even more frequently. The reason is that since in a streaming order, vertices are

divided among threads, adjacent vertices might be processed by different threads.

Lets consider two adjacent vertices u and v (u, v) ∈ E that are processed near in

time by two threads T1 and T2 respectively. Let T1 to assign u to part Vk while T2

is performing affinity computation regarding the assignment of v to a proper part.

T2 might miss the part assignment decision on its neighbor u and consequently

assign it to a part other than Vk producing an edge-cut that in sequential runs

this might not occur. This process is illustrated on figure 4.1.

16

𝑇1𝑇2

𝑣 𝑢…… . .

𝑝𝑎𝑟𝑡 𝑢 = 0

𝑝𝑎𝑟𝑡 𝑣 = 0

𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 + ϵ 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

𝑝𝑎𝑟𝑡 𝑢 = 𝑘

𝑝𝑎𝑟𝑡 𝑣 = 0

Figure 4.1: vertex u arrives into stream at time t and thread T1 assigns vertex u
into part Vk, however, thread T2 have not received the updated part information
for adjacent vertices of vertex u and assigns it randomly.

It is worth noting that disregarding the value of parameter β this phenomenon

usally exist in the parallel platform of our framework. However, coarsening and

uncoarsening phases significantly recover quality of partition. Nevertheless, de-

pending on the structure of graphs being partitioned, the value of parameter β

can have severe or mild effect on the quality. The effect of the value of β can

be eliminated in graphs with irregular patterns (i.e., each vertex has distinct

degrees). In such graphs, the probability of lack of part information for nodes

reduce and threads can have better decisions on which part to assign vertices. On

the other hand, in regular graphs such as meshes where each vertex in the graph

have nearly the same degree, this probability increase therefore, more random

assignments occur.

Moreover, random vertex process ordering is an important feature of streaming

graph algorithms. However, this random processing order should be toned in

a wise way to preserve spatial locality. Graph representation in our multilevel

framework is based on CSR format. Vector vtx with length n+1 represent vertices

of graph G and points on the adjacent vertices of graph G. (i.e., vtx[u], vtx[u+ 1]

means that adjacent vertices of vertex u can be accessed in vector adjncy in the

range of [adjncy[vtx[u]], adjncy[vtx[u + 1]]). Considering this format, accessing

adjacency of each vertex should be done in a sequential order to respect spatial

locality. i.e., adjncy[vtx[u]], adjncy[vtx[u + 1], adjncy[vtx[u + 2]], adjncy[vtx[u +

17

3]], . . . However, accessing vertices and their adjacent vertices in random order in

streaming platform disturbs the spatial locality. i.e., in a random order instead

of accessing vertices in sequential order u, u+1, u+2 . . . , we trace the vertices in

a random order (u, v, ...). This problem can destroy the advantage of parallelism

as accessing adjncy vector in cache level would be impossible. We can permute

vertices in stream order such that the spatial locality will be preserved. After

permuting the order of vertices in stream, we accordingly update adjncy vector

to coalesce with the new permutation.

18

4.2 Multi-threaded coarsening

The process of creating the next level coarser graph with part information of

current level is shown in Algorithm 2. In order to create coarse graph in next level

we need to trace vertices inside each part separately. As the only information we

have as an input is the part vector that provides part of each v ∈ V` tracing each

vertex inside particular part is not possible using this vector. Hence sequentially

we create a set P and for each part k we add vertices of part k into this set. It

is crucial for this step to be implemented in sequential order since if we divide

vertices of V` among threads it is mostly probable for Pk to be accessed and

accordingly updated by several threads as there is several number of vertices that

share same part k.

Hence after obtaining the set P we begin parallel implementation and in this

implementation parts and their corresponding vertices are divided among threads

and each thread process vertices of those parts that are assigned to it. In T num-

ber of threads, each thread performs computation on approximately K`

T
number

of parts. As discussed in previous chapter, part weights of each part in current

level correspond to vertex weight of coarse vertices in next level. Hence in de-

signing our parallel implementation, we can simply map part weights to their

corresponding vertex weights in parallel. i.e., weight of part k, ω(V `
k) is equal to

the weight of coarse vertex k of next level. In parallel fashion each thread reads its

own part weights and write these weights into the corresponding coarse vertices.

Next, coarse vertex vck is added into set of vertices of level `+ 1 in parallel.

Cut edges among parts create adjacency set and adjacency weight of each

coarse vertex in new graph, i.e., if there is an edge between vertex u and v

corresponding to part p and part k respectively, then coarse vertex vck is added

to the adjacency set of coarse vertex vcp in level `+ 1, Adj(vck) and edge weight

between coarse vertex p and k is the same as edge weight between vertex u and

vertex v. Thus, in order to detect these cut edges, we trace neighbors of vertices

in each part and find part information of these adjacent vertices using part vector.

Then we can find out if vertices and their neighbors do not share same part. After

19

Algorithm 2 Multi Threaded coarsening

Input: graph G` = (V`, E `), number of parts K`, part : part information vector
for each v ∈ V`, ω(V `

k) : partition weight vector for each part k
Output: coarse graph G`+1 = (V`+1, E `+1)
1: for each u ∈ V` do
2: k ← part[u]
3: Pk ← Pk ∪ {u}
4: for k = 1→ K` in parallel do
5: ω(vck)← ω(V `

k)
6: V l+1 = V l+1 ∪ {vck}
7: for k = 1→ K` in parallel do
8: for each u ∈ Pk do
9: for each v ∈ Adj(u) do
10: p← part[v]
11: if k 6= p then
12: Adj(vck)← Adj(vck) ∪ {vcp}
13: ω(vck, v

c
p)← ω(vck, v

c
p) + ω(u, v)

detecting edgecuts updating set of adjacent vertices of coarse vertices and edge

weight between coarse vertex vcp and vck is done in parallel; each thread updates

adjacency list and edge weights for coarse vertices corresponding to the same

parts in parallel. It should be pointed out that, in our design, the edge (vck, v
c
p)

is stored twice in the adjacency lists of vertex vck and vcp, therefore they are both

updated separately leading to no need for atomic operations.

It is important to mention that, tracing vertices inside one part is done by only

one thread and other threads do not access vertices inside that particular part.

This property of our parallel implementation prevents race conditions since each

thread can access only vertices inside its own predetermined parts consequently

can only update adjacency set and edge weights locally for their own parts. More-

over, as the number of parts in each level decreases, workload of threads also re-

duces such that in last levels, only a few parts are left for coarsening. In this case,

obviously parallelism does not have much effect on the performance of coarsening

phase. But since in initial levels of coarsening, the number of parts are huge

enough, multi-threaded coarsening can effectively scale to increasing number of

threads.

20

4.3 Multi-threaded uncoarsening

At level L where graph is partitioned in K ways and its corresponding coarse

graph is created from partition at level L, uncoarsening phase can start to take

effect. In parallel implementation of uncoarsening phase, vertices of the finer

graph at each level L− 1, L− 2, . . . , 0 are divided among threads. The part

information of vertices in level L− 1 can be accessed using vector partL−1 and

we also have part information of vertices in coarser graph L which is stored in

vector partL, we can access part information of vertex v at level L − 1 using

partL−1[v] which returns part k that corresponds to the coarse vertex vck of the

coarse level L, also partL[vck] accounts for the part information of coarse vertex

vck. Hence we can find the most recent part of vertex v by utilizing these two part

vectors and we can store part information of fine vertex v in another part vector

partξ by simply mapping most recent part information of fine vertex v at level

L into this vector. Hence by having these two vectors we can simply decompose

coarse vertices in last level and project the part back to the previous level. Part

weights of coarsest level partitioning is exactly mapped to the next level finer

parts. This is also implemented in parallel with dividing parts among threads.

This process is shown in Algorithm 3.

21

Algorithm 3 Multi Threaded uncoarsening

Input: graph GL−i = (VL−i, EL−i),number of parts K, partL−i : part information
vector for each vertex ∈ VL−i, partL : part information vector for each vertex
∈ VL ω(V L) : partition weight vector for each part ∈ K at level L, i =
{1, 2, ..., L}, uncoarsening steps.

Output: partξ,ω(V ξ)
1: for each v ∈ VL−iin parallel do
2: k ← partL−i[v]
3: partξ[v]← partL[k]
4: for k = 1→ kL in parallel do
5: ω(V ξ

k)← ω(V L
k)

Part vectors and partition weight is globally shared among threads however, as

each thread locally update its share of vertices and parts for partξ and ω(V ξ) we

incur no concurrent writes. This straightforward parallel algorithm in sufficiently

large graphs can produce highly scalable results. Nevertheless, it is important to

mention that, clearly in initial steps of uncoarsening where number of vertices in

finer graph is still small, work space for threads can be negligible, as the number

of vertices in latter steps increase, parallelism is visibly more effective.

After projecting back coarse vertices of parts into finer vertices, we apply re-

finement by repartitioning the graph using LDG algorithm. Since all neighbors

of vertices are assigned to parts, random assignment is eliminated from the algo-

rithm since there is no vertex with zero affinity score. All the threads compute

affinity scores for all the neighbors of vertex u in graph G. Absence of random

assignment in this section increases the work space of threads and consequently

provide a very good scalibility for repartitioning.

22

Chapter 5

Experimental results

In this chapter we discuss effectiveness of our paradigm by providing variety of

results on different graph datasets. In our experiments we consider exploring

several topics. After explaining our datasets, we discuss our parameter β and

its effect on performance and quality given different values. Then we argue the

essence of multilevel paradigm on streaming graph partitioning algorithms. Next,

we compare our scheme to two approaches. The first compared framework is LDG

algorithm in several iterations of repartitioning. Second approach is well-known

multi-threaded multilevel scheme, mt-metis. We compare our results to these

methods in terms of quality of partitions and performance.

We implemented our framework in C and compiled in gcc with the -O3 flag. In

our parallel implementation we exploited OpenMP multi-threading library. All

of the results reported are the average of five runs. Our imbalance ratio is set

to ε = 0.10. We have tested our paradigm and compared it on 24 graphs. It

is important to note that in all the experiments that we have reported, after

each level of partitioning single pass of repartitioning is applied. At each level

more repartitioning passes can be done leading to more refinement. In evaluating

quality of partitions two metrics are examined. First, the number of edges being

cut between parts and second, imbalance ratio for each part, which is defined

23

below:

EC =
cutsize(Π)

|E|
∗ 100 (5.1)

LI =
Wmax

Wavg

(5.2)

EC calculates fraction of edges cut in a graph and LI computes how much the

maximum loaded part diverse from average part weight where Wmax denotes the

weight of maximally loaded part and Wavg denotes average part weight under

perfect balance. i.e.,

Wavg =

∑
v∈V

ω(v)

K
(5.3)

In the following section we explore details of datasets that we have used in this

study.

24

5.1 Datasets

We perform experiment on a number of real graph datasets. Type of these real

world graphs are from different domains. Social graphs, Web graphs, finite el-

ement meshes (FEMs), collaboration graphs and similarty is among our chosen

real-world graph categories. Most of these graphs are collected from SNAP[35]

archive. Table 5.1 shows the basic information about each graph such as num-

ber of vertices, number of edges and type. We have also tested our method in

synthetic graphs of Watts-Strogatz [31]. For creating these synthetic graphs we

followed the parameters mentioned in [9] and used NetworkX package in python

with a rewiring parameter of 0.1 for any number of nodes and edges.

25

Graph name |V| |E| category

ljournal-2008 5363260 49514271 social-network

soc-LiveJournal1 4847571 42851237 social-network

hollywood-2009 1139905 56375711 social-network

Web-notredome 325729 1090108 web

Web-google 916428 4322051 web

Eu-2005 862664 16138468 web

copapersDBLP 540486 15245729 citation

coAuthorsDBLP 299067 977676 citation

dblp-2010 326186 807700 citation

cit-Patents 3774768 16518947 citation

coPapersCiteseer 434102 16036720 citation

Patents 3774768 14970766 citation

hcircuit 105676 203734 circuit

circuit5M 5558326 26983926 circuit

Fullchip 2987012 11817567 circuit

amazon-2008 735323 3523472 similarity

Bump 2911 2911419 62409240 FEM

HV15R 2017169 162357569 FEM

ML Laplace 377002 13656485 FEM

Flan 1565 1564794 57920625 FEM

Dubcova1 16129 118440 FEM

WS 1000000 10000000 synthetic

WS 5000000 55000000 synthetic

WS 10000000 110000000 synthetic

Table 5.1: table of datasets consisting of graphs from social network, web, ci-
tation, circuit, similarity, FEM and syntethic categories. In syntethic graph 3
instances of Watts-Strogatz [31] graph in different number of vertices, |V| and
edges |E| is given

26

5.2 Parameter β and its effect on partitioning

paradigm

Before representing our results, it is important to briefly discuss our chosen pa-

rameter β and its effect on the quality and performance of our algorithm. As we

discussed in Chapter 4, β, which determines the average number of vertices in

each part, can lead to partition with different qualities in the presence of several

number of threads hence for a more stable results between each thread, we need

to choose proper number for β in parallel platform. On the other hand, with-

out considering the effect of this parameter on parallelism, β also have effect on

overall quality of partitioning and runtimes. The reason is that, this parameter

determines number of levels of coarsening, very low value for this parameter can

produce high number of levels leading to more improvements in qualities because

of additional steps for partitioning and repartitioning. Obviously, more levels

lead to increase in the performance cost as number of coarsening and partition-

ing phases increase. Therefore, choosing very high value for parameter β reduce

number of levels but at the same time it reduces the quality of partitions. This

tradeoff between quality and runtime is demonstrated in Figure 5.1 for three

values of β = 10, β = 20 and β = 40.

Values less than 10 can give very volatile results in multi-threaded implementa-

tion and values above 40 can totally ignore multilevel scheme by reducing number

of levels to as low as 1, which can perform the same as LDG in one pass. Thus

we have chosen this range of values for our experiments. As shown in figure 5.1,

runtime of each graph reduce by increasing value of β however, at the same time

percentage of edgecut increases, leading to poor quality. Therefore we set a value

for this parameter such that it can provide a solution which can reduce the trade-

off between quality and performance. Even though using empirical tests we can

reach desired value for β for each graph, in our current experiments for the sake

of simplicity we set this parameter to a fix value of 20.

27

(a)

ljournal-2008 cit-Patents Bump_2911 patents
5

10

15

20

25

30

35

ru
nt

im
e

(in
 s

ec
on

ds
)

partitioning time

-=10 -=20 -=40

(b)

ljournal-2008 cit-Patents Bump_2911 patents
5

10

15

20

25

30

35

40

%
 e

dg
ec

ut

partitioning quality(edgecut)

-=10 -=20 -=40

Figure 5.1: Effect of different values of β on (a) runtimes and (b) edgecuts on 4
graph datasets

28

5.3 Discussion: viability of multilevel paradigm

In this section we aim on showing viability of a multilevel method within the

context of streaming algorithm. Even though repartitioning graphs using LDG

algorithm in several number of iterations can boost quality of partitions in first

few passes, due to its structure, it stuck into a local minimum and produce nearly

same edgecuts in the following repartitioning phases. Considering this fact, we

aim at showing that our multilevel paradigm can improve quality of parts beyond

the improvements in LDG algorithm when given the same running time as our

method.

In Figure 5.2 we report edgecut values for each iteration of LDG algorithm in

40 iterations for 4 graphs. As can be seen, in at most first 10 iterations LDG

algorithm is able to improve quality of partitions while in the rest of the iterations

edgecut values remain almost the same. We have also specified the edgecut value

attained by each graph of our method, mt-SML. The iteration number where our

algorithm has same runtime as LDG algorithm is also determined in this figure.

Interestingly our method on average accounts for 10 iterations of LDG algorithm

however, edgecut produced by our method is considerably lower than that of

LDG algorithm in that specific iteration number. For instance, in graph HV15R

our algorithm has run time equal to 8 iterations of LDG algorithm, however, we

can achieve better quality than LDG algorithm in 8 iterations.

In a broad comparison it is interpretative that multilevel paradigm on stream-

ing graph partitioning algorithms is a viable solution for improvements in quality

of partitions and can usually generate results better than a flat repartitioning

approach. In the next evaluations we set the iteration number of LDG algorithm

to 10 iterations as it accounts for approximately same runtime as our method and

further improvements in edgecuts in more number of iterations is not feasible.

29

0 10 20 30 40

iterations

10

15

20

25

30

%
 e

dg
ec

ut

web-Google,K=32

 t=1020 msec

mt-LDG mt-SML

0 10 20 30 40
20

40

60

80
cit-Patents,K=32

 t=9710 msec

0 10 20 30 40
20

30

40

50
amazon-2008,K=32

 t=940 msec

0 10 20 30 40
10

20

30

40

50
HV15R,K=32

 t=29200 msec

0 10 20 30 40
0

10

20

30

40
ML_Laplace,K=32

 t=1490 msec

0 10 20 30 40
15

20

25

30

35
eu-2005,K=32

 t=217 msec

Figure 5.2: Variation of the partitioning quality of mt-LDG with increasing num-
ber of repartitioning passes. * shows the edgecut value of the proposed mt-SML

30

5.4 Quality comparison

In this section we compare our method, mt-SML against mt-metis and LDG al-

gorithm in terms of edgecut and imbalance ratio. As LDG algorithm cannot

achieve further improvements in terms of quality through performing large num-

ber of repartitioning, we choose this algorithm in 10 iteration as a lower bound in

our comparisons while mt-metis which is a successful multi-threaded multilevel

scheme is chosen as our upper bound as it is among fast state-of-the-art practical

graph partitioners and can provide good quality parts. Our goal is to generate

partitions close to the quality of mt-metis while using a lightweight algorithm,

LDG.

Figure 5.3 compares percentage of edgecuts, EC of 6 datasets for LDG algo-

rithm in 10 iterations, mt-metis and our framework, mt-SML as a function of

K. Our method has a steady performance in between these upper and lower

bounds. In syntethic graph WS (10m) mt-SML performs nearly the same as mt-

metis for all values of K. In three irregular graphs, amazon-2008, web-google

and coPapersCiteseer our performance in each K values are nearly in between

upper and lower bounds while in regular graphs HV15R and ML Laplace, mt-SML

performs closely to the mt-metis.

31

4 8 16 32 64 128
10

15

20

25

30

%
 e

dg
ec

ut

WS10m

mt-LDG, 10 itr mt-metis mt-SML

4 8 16 32 64 128
0

10

20

30
amazon-2008

4 8 16 32 64 128
0

5

10

15

20
web-google

4 8 16 32 64 128
0

5

10

15
coPapersCiteseer

4 8 16 32 64 128

K

0

10

20

30
HV15R

4 8 16 32 64 128
0

5

10

15

20
ML_Laplace

Figure 5.3: Edgecut quality comparison for three methods on different graphs as
a function of K

32

Performance comparison of our method in terms of imbalance ratio, LI is also

given in Table 5.2 for each graph in K = 64. In all experiments we set capacity

constraint by setting ε = 0.1 for all methods. Due to the penalty function in LDG

algorithm, having an exact balance is expectable thus for each graph dataset

it produces steadily balanced partitions. Our method, mt-SML, on the other

hand, due to its multilevel structure and the fact that we further relax capacity

constraint ε in coarsening phase, produces slightly imbalanced partitions however,

compared to mt-metis our partitions achieve better balance. In the following

sections we will provide a broad comparison on imbalance ratio and edgecut

qualities on all graph datasets.

33

graph name mt-SML mt-LDG mt-metis

amazon-2008 1.05 1.01 1.10

web-Google 1.07 1.00 1.10

hcircuit 1.00 1.00 1.10

cit-Patents 1.06 1.00 1.05

coPapersCiteseer 1.02 1.03 1.10

HV15R 1.08 1.01 1.08

WS (10m) 1.00 1.00 1.08

ML Laplace 1.00 1.00 1.10

patents 1.00 1.01 1.07

Table 5.2: imbalance ratio LI for each graph in K=64.

5.5 Scalibility and runtime analysis

Our parallel design is built on several phases and each of these phases are paral-

lelized. Before demonstrating our runtime and performance analysis, we briefly

argue the scalibility of each phase of our method in the following section. Then

we compare our runtime results with LDG and mt-metis.

5.5.1 Scalibility of each phase

In our implementation, in each phase of multilevel partitioning (partitioning,

coarsening, uncoarsening and repartitioning) threads are created at the begin-

ning of the parallel section and killed at the end. Hence no synchronization is

needed among each phase. We calculate runtime for each phase independently.

Despite the fact that our algorithms for each phase are highly amenable for par-

allelism, some phases are less scalable than others. Figure 5.4 shows runtimes

34

1 2 4 6 8 12 18

threads

0

5

10

15

20

25

30

35

ru
nt

im
e

(in
 s

ec
on

ds
)

ljournal-2008

partitioning constructing coarser graph uncoarsening + repartitioning

1 2 4 6 8 12 18
0

2

4

6

8

10

12
patents

1 2 4 6 8 12 18
0

5

10

15

20

25

30
Soc-Livejournal1

1 2 4 6 8 12 18
0

5

10

15

20
circuit5M

Figure 5.4: Dissection of runtime of mt-SML for 32- way partitioning with β = 10

35

for each phase of our partitioning in several number of threads for social-network

graphs ljournal-2008 and soc-Livejournal1 a citation graph patents and a

circuit graph circuit5M. These irregular graphs are large enough and can pro-

vide logically enough workspace for each thread. It is important to note that due

to very small runtime results for uncoarsening phase, we have reported runtime

results for repartitioning and uncoarsening as a unit.

Figure 5.4 shows that partitioning phase has the least scalability while repar-

titioning provide best scalable results in three phases. In partitioning graph in

each level from scratch, random assignment can be bottleneck for the parallel

performance as, number of parts in initial levels can be very big leading to more

time consumption in random assignments for each thread. Since, random assign-

ment is eliminated in repartitioning, this obstacle is removed consequently we

have better scalibility in this phase. In coarsening phase, even though assigning

vertices into each part from part vector is an atomic operation, scalibility is not

limited to this sequential assignment and we can see that coarsening can provide

acceptably scalable results in 18 threads.

36

5.5.2 Runtime and speedup comparison

We have compared our multi-threaded implementation, mt-SML, with a publicly

availabale multi-threaded graph partitioning tool, mt-metis, and multi-threaded

implementation of LDG algorithm on multiple passes. We have partitioned 13

graphs on 32 parts and we set β = 20. As we discussed in previous sections,

LDG algorithm improve quality of partitions nearly in 10 iterations and after

that, it has a nearly steady performance in terms of quality of partitions. Hence

in our runtime analysis we compute runtimes for 10 passes of LDG algorithm

and compare it to our method. Table 5.3 shows runtime results for these three

methods.

37

2
T

h
re

a
d

s
4

T
h

re
a
d

s
8

T
h

re
a
d

s
1
8

T
h

re
a
d

s

G
ra

p
h

L
D

G
m

et
is

S
M

L
L

D
G

m
et

is
S
M

L
L

D
G

m
et

is
S
M

L
L

D
G

m
et

is
S
M

L

am
az

on
-2

00
8

0.
60

1.
75

0
.5

2
0.

39
1.

12
0
.3

2
0.

30
0.

70
0
.2

3
0.

26
0.

60
0
.1

8

w
eb

-G
o
og

le
0.

56
1.

52
0
.6

2
0.

36
0.

92
0
.3

4
0.

24
0.

62
0
.2

5
0.

20
0.

49
0
.1

9

eu
-2

00
5

1.
34

2.
45

1
.4

3
0.

78
1.

59
0
.7

9
0.

47
1.

02
0
.4

7
0.

34
0.

82
0
.3

2

ci
t-

P
at

en
ts

5.
61

19
.5

5
.2

6
3.

20
12

.3
6

2
.9

1
2.

14
7.

26
1
.8

1.
65

5.
62

1
.2

7

co
P

ap
er

sC
it

es
ee

r
1.

12
1.

51
0
.9

3
0.

63
1.

1
0
.5

0.
36

0.
72

0
.3

0.
20

0.
6

0
.1

8

p
at

en
ts

5.
27

18
.9

7
4
.9

6
3.

02
11

.6
5

2
.7

9
2.

07
6.

65
1
.7

6
1.

64
5.

08
1
.2

6

M
L

L
ap

la
ce

0.
96

5.
76

0
.9

6
0.

54
4.

00
0
.5

4
0.

47
2.

59
0
.3

4
0.

35
2.

0
0
.2

1

H
V

15
R

16
.7

3
14

.9
5

1
6
.1

0
8.

4
9.

2
8
.2

0
4.

35
6.

32
4
.3

1
2.

14
4.

44
2
.2

2

lj
ou

rn
al

-2
00

8
14

.3
5

61
.2

8
1
4
.6

6
7.

34
36

.5
6

7
.7

5
5.

16
21

.2
5

4
.3

3
2.

49
17

.8
3

2
.9

ci
rc

u
it

5M
6.

2
12

0.
99

7
.3

5
3.

6
72

.7
4
.9

2.
16

47
.9

4
2
.6

2
1.

59
42

.4
7

1
.9

5

W
S
(1

m
)

1.
28

4.
15

1
.1

5
0.

79
2.

33
0
.6

8
0.

6
1.

39
0
.4

4
0.

51
1.

19
0
.3

4

W
S
(5

m
)

15
.0

7
30

.9
0

1
2
.5

2
7.

75
17

.1
2

7
.1

7
4.

34
9.

97
3
.7

2
2.

86
8.

37
2
.4

2

W
S
(1

0m
)

40
.5

3
71

.2
3

3
2
.8

4
20

.8
5

39
.6

2
1
8
.2

9
11

.4
6

23
.4

2
1
0
.5

0
6.

64
20

.0
5

6
.4

9

Table 5.3: Runtimes of multi-threaded methods, mt-LDG, mt-SML and mt-metis
in seconds for different number of threads.

38

In nearly all graph partitioning instances that we have tested, mt-SML runs

faster and produce better speedup compared to mt-metis. Only in FEM graph,

HV15R, we have higher runtime than mt-metis when implemented with two

threads, however our algorithm produces approximately two times faster results

in 18 threads which accounts for better speedup in our algorithm. In graph

ML Laplace, mt-SML saw its largest lead in performance compared to mt-metis

in 18 threads. Our scheme performs nearly ten times faster than mt-metis in

same number of threads. In comparing runtime results of our method to LDG

algorithm we can see approximately same performances where in some graphs

LDG achieve slightly faster results and in others we achieve better results. As

the number of iterations where LDG algorithm can have nearly same runtime as

our method differes in each dataset, this diversity can be justified. For instance,

in graph dataset coPapersCiteseer our method have nearly the same runtime as

LDG algorithm in 8 iterations therefore 10 iterations of LDG algorithm can take

more time. Figure 5.5 demonstrates the runtime results with respect to number

of threads for three methods on different graphs as a log scale. In this figure we

can clearly observe that mt-SML has the most scalable and fast results.

39

1 2 4 6 8 12 18
0.1

0.3

1

4
amazon-2008,K=32

mt-metis mt-LDG,10 itr mt-SML

1 2 4 6 8 12 18
0.1

0.3

1

4
web-Google,K=32

1 2 4 6 8 12 18
0.3

0.5

1

2

4
eu-2005,K=32

1 2 4 6 8 12 18
1

4

16

64
cit-Patents,K=32

1 2 4 6 8 12 18

threads

0.1

0.3

1

4

ru
nt

im
es

 (
se

c)

coPapersCiteseer,K=32

1 2 4 6 8 12 18
0.1

0.3

1

4

16
ML_Laplace,K=32

Figure 5.5: Variation of the running time of mt-LDG, mt-metis and mt-SML with
increasing number of threads for β = 20.

40

Figure 5.6 demonstrate comparison of three methods in terms of speedup for

4 graphs. As can be seen, mt-SML overall runs faster and achieve better speedup

than mt-metis, in all 4 datasets. In graph HV15R our method perform close to the

ideal speedup line. In graph WS(10m) speedup value for mt-SML, mt-metis and

LDG algorithm in 7 iterations for 18 threads is 9.37, 6.46 and 11.44 respectively.

Even though mt-metis has speedup close to mt-SML, our algorithm can achieve

3.5 times faster results in 18 threads.

41

0 2 4 6 8 12 18
0

5

10

15

20
eu-2005

0 2 4 6 8 12 18
0

5

10

15

20
coPapersciteseer

0 2 4 6 8 12 18
0

5

10

15

20
HV15R

0 2 4 6 8 12 18

Threads

0

5

10

15

20

sp
ee

du
p

WS(10m)

ideal mt-metis mt-LDG mt-SML

Figure 5.6: Comparison of mt-SML, mt-metis and mt-LDG in case of speedup
on 4 different graph datasets, the ideal speedup is also shown as dashed red line

5.6 Experimental evaluation on all graphs

In this section we evaluate our method on all graphs for three different values

of β = {10, 20, 40}. In table 5.4 we provide scaled geometric mean of all graphs

with respect to LDG algorithm in 10 iterations for the methods that we have dis-

cussed in this thesis both in terms of quality and runtime for K = {4, 32, 64} and

all thread numbers {1, 2, 4, 6, 8, 12, 18}. The Table 5.4 displays the performance

42

results of mt-metis and mt-SML normalized with respect to those of mt-LDG.

Normalized geomtric means are displayed within different graph category. Over-

all, mt-metis has worse imbalance ratio and runtimes than LDG while its edgecut

quality is better. This is expectable as mt-metis utilizes more sophisticated al-

gorithms in its refinement phase and as a result it has better improvements with

the cost of increased runtime and imbalance ratio. Our method, mt-SML, on the

other hand provides different results depending on the β values for each metric.

In edgecut comparison even though overall mt-SML attain better qualities in all

values of β compared to LDG, degree to which our algorithm can provide better

partitions has reverse relationship with β i.e. with increasing β edgecut quality

reduces. Also the tradeoff between edgecut quality and runtimes is visibly clear in

this table. As we increase β edgecut quality reduce compared to LDG while run-

time results improve, such that we achieve even faster runs than LDG algorithm

in 10 iterations. Our imbalance ratio does not diverge from results obtained for

LDG algorithm.

We also provide averages for each graph types in this table which we specify

them with the category they belong. In FEM graphs mt-SML has better EC

quality compared to LDG algorithm. In syntethic graphs our edgecut quality is

mostly close to quality of the mt-metis. In social networks however, impact of

multilevel paradigm on streaming algorithms is less visible as our edgecut results

are nearly the same as LDG. As social networks are usually power law graphs with

few high degree vertices and many low degree vertices, this result is interpretative

due to the strict penalty function in the nature of LDG algorithm which usually

prevents assigning most of the neighbors of high degree vertices to be in same

parts. Nevertheless, mt-metis also has the least improvement compared to LDG

in this type of networks.

43

type metrics mt-LDG mt-metis mt-SML

β=10 β=20 β=40

general
EC 1.00 0.32 0.71 0.75 0.77
LI 1.00 1.08 1.02 1.01 1.01
runtime 1.00 2.56 1.12 0.95 0.87

social
EC 1.00 0.76 0.92 1.00 1.03
LI 1.00 1.09 1.02 1.01 1.02
runtime 1.00 4.65 1.26 1.01 0.97

web
EC 1.00 0.18 0.73 0.73 0.74
LI 1.00 1.09 1.02 1.01 1.00
runtime 1.00 2.53 1.26 1.09 0.98

citation
EC 1.00 0.46 0.73 0.81 0.81
LI 1.00 1.05 1.02 1.01 1.00
runtime 1.00 2.94 1.08 0.93 0.85

circuit
EC 1.00 0.20 0.82 0.89 0.97
LI 1.00 1.15 1.02 1.01 1.01
runtime 1.00 3.78 1.12 0.97 0.91

similarity
EC 1.00 0.30 0.67 0.67 0.72
LI 1.00 1.08 1.04 1.02 1.00
runtime 1.00 2.68 0.97 0.84 0.76

mesh
EC 1.00 0.15 0.49 0.53 0.58
LI 1.00 1.04 1.02 1.01 1.01
runtime 1.00 1.48 1.06 0.89 0.81

syntethic
EC 1.00 0.66 0.82 0.77 0.72
LI 1.00 1.12 1.07 1.04 1.05
runtime 1.00 1.81 1.09 0.90 0.78

Table 5.4: Extensive comparison based on runtime, imbalance ratio and edgecut
values over all graphs for three schemes scaled relative to mt-LDG in 10 iterations

44

Chapter 6

Conclusion and future work

In this study we proposed a parallel multilevel streaming graph partitioning ap-

proach. The main contribution of our framework is to utilize lightweight stream-

ing graph partitioning heuristic in a multilevel framework. Streaming graph par-

titioning solutions are proposed for one pass graph partitioning in a stream order

and repartitioning using these algorithms have little effect on improvements in

quality of partitions. Our proposed method embed streaming heuristic in a mul-

tilevel approach aiming at boosting quality of partitions. Moreover, we proposed

multi-threaded implementation of our graph partitioning framework targeting at

increasing performance both on partition quality and runtimes.

We experimentally tested our method, mt-SML, on more than 20 graphs. First

we show that a greedy streaming graph partitioning algorithm cannot improve

partition qualities after a few passes of repartitioning, then we show that our

multilevel framework achieves much better qualities than streaming graph par-

titioning algorithm as given the same amount of running time. Moreover, we

compare performance of our method against the state-of-the-art multi-threaded

multilevel graph partitioning tool. Our results clearly indicate that our frame-

work can achieve faster results which are also more scalable to the number of

threads used for parallel implementation.

45

As a future work, we first propose testing several streaming graph partitioning

heuristics besides the one used in our work. This can be a good empirical exami-

nation on the effects of these heuristics on different graph structures. The second

approach can be modifying stream order for a more structure aware order. After

partitioning graph using streaming graph partitioning algorithm, we can store

graph information such as degree of each vertex to modify the order of vertices in

the next iteration. In this case we may have a chance to assign vertices in parts

with most number of neighbors before getting penalized by full parts.

46

Bibliography

[1] Garey, Michael R., David S. Johnson, and Larry Stockmeyer. ”Some simplified

NP-complete graph problems.” Theoretical computer science 1.3 (1976): 237-

267.

[2] Bui, Thang Nguyen, and Curt Jones. ”Finding good approximate vertex and

edge partitions is NP-hard.” Information Processing Letters 42.3 (1992): 153-

159.

[3] Catalyurek, Umit V., and Cevdet Aykanat. ”Hypergraph-partitioning-based

decomposition for parallel sparse-matrix vector multiplication.” IEEE Trans-

actions on parallel and distributed systems 10.7 (1999): 673-693.

[4] Karypis, George, and Vipin Kumar. ”A fast and high quality multilevel scheme

for partitioning irregular graphs.” SIAM Journal on scientific Computing 20.1

(1998): 359-392.

[5] Pellegrini, François, and Jean Roman. ”Scotch: A software package for static

mapping by dual recursive bipartitioning of process and architecture graphs.”

International Conference on High-Performance Computing and Networking.

Springer, Berlin, Heidelberg, 1996.

[6] LaSalle, Dominique, and George Karypis. ”Multi-threaded graph partitioning.”

Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th International

Symposium on. IEEE, 2013.

[7] Akhremtsev, Yaroslav, Peter Sanders, and Christian Schulz. ”High-Quality

Shared-Memory Graph Partitioning.” arXiv preprint arXiv:1710.08231

(2017).

47

[8] Tsourakakis, Charalampos, et al. ”Fennel: Streaming graph partitioning for

massive scale graphs.” Proceedings of the 7th ACM international conference

on Web search and data mining. ACM, 2014.

[9] Stanton, Isabelle, and Gabriel Kliot. ”Streaming graph partitioning for large

distributed graphs.” Proceedings of the 18th ACM SIGKDD international con-

ference on Knowledge discovery and data mining. ACM, 2012.

[10] Nishimura, Joel, and Johan Ugander. ”Restreaming graph partitioning: sim-

ple versatile algorithms for advanced balancing.” Proceedings of the 19th ACM

SIGKDD international conference on Knowledge discovery and data mining.

ACM, 2013.

[11] Firth, Hugo, and Paolo Missier. ”Workload-aware Streaming Graph Parti-

tioning.” EDBT/ICDT Workshops. 2016.

[12] Battaglino, Casey, Pienta Pienta, and Richard Vuduc. ”Grasp: distributed

streaming graph partitioning.” 1st High Performance Graph Mining work-

shop, Sydney, 10 August 2015. 2015.

[13] Tsourakakis, Charalampos. ”Streaming graph partitioning in the planted

partition model.” Proceedings of the 2015 ACM on Conference on Online

Social Networks. ACM, 2015.

[14] Petroni, Fabio, et al. ”Hdrf: Stream-based partitioning for power-law

graphs.” Proceedings of the 24th ACM International on Conference on In-

formation and Knowledge Management. ACM, 2015.

[15] Stanton, Isabelle. ”Streaming balanced graph partitioning algorithms for

random graphs.” Proceedings of the twenty-fifth annual ACM-SIAM sympo-

sium on Discrete algorithms. Society for Industrial and Applied Mathematics,

2014.

[16] Abou-Rjeili, Amine, and George Karypis. ”Multilevel algorithms for parti-

tioning power-law graphs.” Parallel and Distributed Processing Symposium,

2006. IPDPS 2006. 20th International. IEEE, 2006.

48

[17] Huang, Jiewen, and Daniel J. Abadi. ”Leopard: Lightweight edge-oriented

partitioning and replication for dynamic graphs.” Proceedings of the VLDB

Endowment 9.7 (2016): 540-551.

[18] Stanton, Isabelle. ”Streaming balanced graph partitioning algorithms for

random graphs.” Proceedings of the twenty-fifth annual ACM-SIAM sympo-

sium on Discrete algorithms. Society for Industrial and Applied Mathematics,

2014.

[19] Huang, Jiewen, and Daniel J. Abadi. ”Leopard: Lightweight edge-oriented

partitioning and replication for dynamic graphs.” Proceedings of the VLDB

Endowment 9.7 (2016): 540-551.

[20] Schloegel, Kirk, George Karypis, and Vipin Kumar. ”Parallel static and dy-

namic multi-constraint graph partitioning.” Concurrency and Computation:

Practice and Experience 14.3 (2002): 219-240.

[21] Walshaw, Chris, and Mark Cross. ”Mesh partitioning: a multilevel balanc-

ing and refinement algorithm.” SIAM Journal on Scientific Computing 22.1

(2000): 63-80.

[22] Diekmann, Ralf, et al. ”Shape-optimized mesh partitioning and load balanc-

ing for parallel adaptive FEM.” Parallel Computing 26.12 (2000): 1555-1581.

[23] Pellegrini, François, and Jean Roman. ”Scotch: A software package for static

mapping by dual recursive bipartitioning of process and architecture graphs.”

International Conference on High-Performance Computing and Networking.

Springer, Berlin, Heidelberg, 1996.

[24] Raghavan, Usha Nandini, Réka Albert, and Soundar Kumara. ”Near lin-

ear time algorithm to detect community structures in large-scale networks.”

Physical review E 76.3 (2007): 036106.

[25] Kernighan, Brian W., and Shen Lin. ”An efficient heuristic procedure for

partitioning graphs.” The Bell system technical journal 49.2 (1970): 291-307.

49

[26] Walshaw, Chris, and Mark Cross. ”JOSTLE: parallel multilevel graph-

partitioning software–an overview.” Mesh partitioning techniques and domain

decomposition techniques (2007): 27-58.

[27] Sanders, Peter, and Christian Schulz. ”Engineering multilevel graph parti-

tioning algorithms.” European Symposium on Algorithms. Springer, Berlin,

Heidelberg, 2011.

[28] Karypis, George, and Vipin Kumar. ”Multilevel algorithms for multi-

constraint graph partitioning.” Supercomputing, 1998. SC98. IEEE/ACM

Conference on. IEEE, 1998.

[29] Aykanat, Cevdet, B. Barla Cambazoglu, and Bora Uçar. ”Multi-level direct

k-way hypergraph partitioning with multiple constraints and fixed vertices.”

Journal of Parallel and Distributed Computing 68.5 (2008): 609-625.

[30] Schloegel, Kirk, George Karypis, and Vipin Kumar. ”Parallel multilevel al-

gorithms for multi-constraint graph partitioning.” European Conference on

Parallel Processing. Springer, Berlin, Heidelberg, 2000.

[31] Watts, Duncan J., and Steven H. Strogatz. ”Collective dynamics of ‘small-

world’networks.” nature 393.6684 (1998): 440.

[32] Kwak, Haewoon, et al. ”What is Twitter, a social network or a news media?.”

Proceedings of the 19th international conference on World wide web. AcM,

2010.

[33] Hendrickson, Bruce, and Robert Leland. ”A multi-level algorithm for parti-

tioning graphs.” (1995): 28.

[34] Chevalier, Cédric, and François Pellegrini. ”PT-Scotch: A tool for efficient

parallel graph ordering.” Parallel computing 34.6-8 (2008): 318-331.

[35] http://snap.stanford.edu/snap/

50

