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ABSTRACT
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Co-Advisor: Cevdet Aykanat

August 2019

Convolutional Neural Networks (CNNs) have become very popular and successful

in recent years. Increasing the depth and number of parameters of CNNs has

crucial importance on this success. However, it is hard to fit deep convolutional

neural networks into a single machine’s memory and it takes a very long time

to train these deep convolutional neural networks. There are two parallelism

methods to solve this problem: data parallelism and model parallelism.

In data parallelism, the neural network model is replicated among different

machines and data is partitioned among them. Each replica trains its data and

communicates parameters and their gradients with other replicas. This process

results in a huge communication volume in data parallelism, which slows down

the training and convergence of the deep neural network. In model parallelism, a

deep neural network model is partitioned among different machines and trained

in a pipelined manner. However, it requires a human expert to partition the

network and it is hard to obtain low communication volume as well as a low

computational load balance ratio by using known partitioning methods.

In this thesis, a new model parallelism method called hypergraph partitioned

model parallelism is proposed. It does not require a human expert to partition the

network and obtains a better computational load balance ratio along with better

communication volume compared to the existing model parallelism techniques.

Besides, the proposed method also reduces the communication volume overhead

in data parallelism by ∼ 93%. Finally, it is also shown that distributing a deep

neural network using the proposed hypergraph partitioned model rather than the

existing parallelism methods causes the network to converge faster to the target

accuracy.
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ÖZET

DERİN KONVOLÜSYONEL SİNİR AĞLARI İÇİN HIZLI
VE VERİMLİ MODEL PARALELLEŞTİRMESİ

Burak Eserol

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Muhammet Mustafa Özdal

İkinci Tez Danışmanı: Cevdet Aykanat

Ağustos 2019

Konvolüsyonel sinir ağları son yıllarda çok popüler ve başarılı bir hale geldiler.

Konvolüsyonel sinir ağlarının bu başarıyı elde etmesinde derinlikleri ve içerdikleri

parametre sayıları önemli bir faktördür. Fakat, derin konvolüsyonel sinir

ağlarını tek bir makinenin hafızasına sığdırmak zor bir hale gelmiştir ve bu

sinir ağlarını eğitmek çok uzun süreler gerektirir. Bu problemi çözmek için

iki adet paralelleştirme yöntemi mevcuttur: veri paralelleştirmesi ve model

paralelleştirmesi.

Veri paralelleştirmesinde sinir ağları modeli bir çok farklı makineye

kopyalanmaktadır ve veri bu makineler arasında bölüntülenmektedir. Her

bir kopya, kendisine atanmış veriyi eğitir ve modelin parametrelerini ve

parametrelerin değişimlerini diğer kopyalara gönderir. Bu süreç veri

paralelleştirmesinde çok büyük bir iletişim yoğunluğuna sebep olur. Bu yoğunluk

eğitim sürecini yavaşlatır ve derin sinir ağlarının sonuca yakınsamasını gecik-

tirir. Model paralelleştirmesinde ise derin bir sinir ağı modeli farklı makinelere

bölüntülenmektedir ve her bir bölüntü peşi sıra şekilde çalışmaktadır. Fakat,

modelin nasıl bölüntüleneceğine karar vermek için bir uzman kişi gereklidir ve

bu bölüntüleme işleminde var olan bölüntüleme yöntemlerini kullanarak düşük

iletişim yoğunluğu ile birlikte düşük iş dengesizliği oranı elde etmek zordur.

Bu tezde yeni bir model paralelleştirme yöntemi olan hipergrafik bölüntülenmiş

model paralelleştirme önerilmiştir. Bu yöntem bölüntüleme işlemi için uzman bir

kişi gerektirmez ve var olan model paralelleştirme yöntemlerine göre daha iyi iş

dengesizliği oranı ile birlikte daha iyi iletişim yoğunluğu elde etmektedir. Ek

olarak, bu yeni önerilen yöntem veri paralelleştirme yönteminde ortaya çıkan

iletişim yoğunluğunu ∼ %93 oranında azaltmaktadır. Son olarak ise önerilen
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yöntemin var olan paralelleştirme yöntemlerinden daha hızlı bir şekilde sonuca

yakınsadığı gösterilmiştir.

Anahtar sözcükler : Paralel ve Dağınık Derin Öğrenme, Konvolüsyonel Sinir

Ağları, Model Paralelleştirmesi, Veri Paralelleştirmesi.
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Özdal and Prof. Dr. Cevdet Aykanat for giving me a chance to work under their

supervision at Bilkent University. I would not be able to improve myself in such

a great way without their guidance.

Special thanks to Dr. Hamdi Dibeklioğlu and Assoc. Prof. Süleyman Tosun
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Chapter 1

Introduction

Neural networks process the given information through layers that contain a

large number of neurons similar to the human brain. Neurons in a layer of

the network get information from the neurons of the previous layer. Activated

neurons based on the given information pass their output to the next neuron. This

communication process of neurons results in different actions at the end of the

network. Influenced by the human brain, neural networks have been studied by

scientists for a long period of time. There are many research works about different

types of neural networks from 1940s [29, 14] until today [31, 34]. Although neural

networks are an old idea, they have become popular in the last decade. The

popularity of neural networks comes from its success in various areas under the

field called Deep Learning. Deep Learning is a sub-field of Machine Learning

that enables neural networks to learn representations of the given data examples.

These learned representations help neural networks to perform different tasks.

Until now, many different tasks have been achieved successfully by Deep Learning

such as image classification [21, 37], visual recognition [35, 45, 32], language

understanding [8], disease detection [10] and many more.

Another reason behind the success of Deep Learning is technological advances.

Today’s neural networks with millions of parameters require high computational

power. This computational power was not available for a long period of time.

1



CHAPTER 1. INTRODUCTION 2

With the help of technological advances, processing limitations for neural net-

works started to vanish. However, there are still processing limitations for deep

neural networks that consist of a high number of layers and millions of parameters.

Even today, it could take weeks to train a deep neural network, and high-tech

companies are still trying to overcome processing limitations by working on spe-

cialized chips [4]. In this work, a new solution is proposed to overcome processing

limitations by presenting a new way to distribute a deep neural network among

different processors.

1.1 Overview and Problem Statement

Figure 1.1: Number of Layers and Associative Error Rates for Different Deep
Neural Networks in ImageNet Challange [13]

The depth of the deep neural networks is an important parameter that can affect

the final accuracy of the network. Throughout the years, increasing the depth

of the neural networks resulted in better accuracies. One good example of this

is The ImageNet Large Scale Visual Recognition Challenge (ILSRVC) [33]. This

challenge evaluates different deep neural network algorithms for object detection

and image classification. Throughout the years, different deep neural networks

achieved lower error rates. In Figure 1.1, the number of layers in different deep
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neural network algorithms are shown. The height of the bars represents the error

rate of the given CNN architecture. In the early years of the competition, shallow

networks are used that contain a low number of layers such as 8. Throughout

the years, the number of layers is increased in the different deep neural networks

and achieved better results and reached 152 layers with ResNet [13]. However,

increasing the number of layers also requires much more computational power

and memory space. Alexnet [21] from ILSVRC’12 consists of 8 layers and 62

millions of parameters. VGG16 [35] consists of 16 layers and 138 millions of

parameters. Deep neural networks with a large number of parameters may not

fit into a single machine’s memory. One possible solution is to reduce the batch

size so that the amount of data that is passing from the network together is low.

Another solution is distributed training when the amount of data is huge or the

model has a very large number of parameters. There are two distributed training

methods: data parallelism and model parallelism.

1.1.1 Data Parallelism

Data parallelism is a widely used parallelism technique for distributed training.

In data parallelism, the neural network model is replicated among different pro-

cessors. Each processor has the same copy of the model as shown in Figure 1.2.

In every iteration in the training process, each worker uses a different part of the

input data and computes gradients for the model. Each gradient calculated in

the workers is sent to another device which is called the parameter server. The

parameter server also stores the same copy of the model and applies gradients to

the model to get updated weights. Updated weights at the parameter server are

then broadcast to each worker and a new iteration of the training continues. It

is also possible not to use the parameter server as an additional device. In this

technique of data parallelism, parameters are distributed among processors where

the model is also replicated. Thus, each processor is responsible for calculating

the gradients of a subset of parameters and sending them to other replicas.

Besides, there are two different ways of applying data parallelism. In synchronous
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Figure 1.2: Synchronous and Asynchronous Data Parallelism

data parallelism, all of the workers wait for each other to compute gradients and

send them to the parameter server. Updated weights are sent back to workers

and they continue the training process in a synchronous way when all of the

replicas obtain the updated weights. Computation in this method is completely

deterministic and convergence can be better as each mini-batch from input data

is trained using updated waits. However, each worker needs to wait for other

workers to finish to send gradients to the parameter server. Therefore, it may

take a long time to train the neural network. In contrast, in asynchronous data

parallelism, workers don’t wait for each other to send gradients to the parameter

server. Therefore, it is a faster method while there can be a convergence problem

as weights used by workers are not up-to-date all the time.

The most important drawback of data parallelism is the communication overhead.

All of the weights are needed to be communicated for each worker after each

iteration. Also, the parameter server needs to send updated weights to the workers

before each iteration. The amount of communication in data parallelism is huge

and it increases as we increase the number of workers. Therefore, it is only useful
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when we have a small model with a huge amount of data.

1.1.2 Model Parallelism

Figure 1.3: Model Parallelism [7]

In model parallelism, different processors are responsible for computation asso-

ciated with different parts of the network. Each layer of the neural network can

be assigned to a different processor or each half of a layer can be assigned to a

different processor. During the forward pass phase of the training, each processor

is responsible for the computations for its part. After the computation is done

in a processor, activations are communicated to the responsible processor that

contains the connected nodes to these activations. During backward pass, gradi-

ents of the weights are communicated among processors so that each processor

can update its weights. Model parallelism is rarely examined in the literature

and the distribution of the model to multiple processors constitutes a challeng-

ing problem. Keeping the computational load balance among processors with low

communication overhead is hard to achieve in model parallelism. Therefore, most

of the research is done on data parallelism.

In this work, a solution for the distribution problem of model parallelism is pro-

posed. In the proposed solution, a deep neural network is represented as a hyper-

graph. Then, a hypergraph partitioning method is proposed for distributing the
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network to the processors. In the proposed method, the partitioning constraint

encodes the computational load balance among processors whereas the partition-

ing objective encodes the minimization of total communication volume among

processors.

1.2 Contribution

This thesis proposes a new model parallelism technique for deep convolutional

neural networks. The proposed model parallelism technique contains the following

contributions:

• A new idea of representing a deep convolutional neural network as different

hypergraph models. For each different hypergraph model, communication

patterns are shown for different atomic task definitions.

• It does not require a human expert to decide how to partition the deep

convolutional neural networks. Hypergraph partitioning automatically par-

titions the network so that resulting partition has low computational load

balance and communication volume.

• Besides the known model parallelism partitioning method where a group of

layers is distributed among different processing units, it proposes new parti-

tioning methods called fine-grain hypergraph and coarse-grain hypergraph.

Those proposed new methods achieve better computational load balance

and communication volume than known methods.

• It proposes a threaded asynchronous model parallelism training to solve the

staleness problem of model parallelism.

• It reduces the communication volume that exists in data parallelism by

∼93% on average.

• It speeds ups the training process by ∼3x using 4 processors compared to

the single processor training.
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• It obtains faster convergence than any data parallelism technique.

1.3 Structure of the Thesis

The structure of the rest of this thesis is as follows. Chapter 2 gives background

information about deep neural networks, how they are trained, and hypergraph

partitioning as well as summarizes the related works. In Chapter 3, information

about how to represent a deep convolutional neural network as a hypergraph

is given. Computational load balance and communication volume analysis of

different parallelism techniques for distributed deep convolutional neural network

models is given in this chapter. Then, Chapter 4 provides information about

how to run asynchronous pipelined model parallelism and run time analysis of

different parallelism techniques for distributed deep convolutional neural network

methods. Next, Chapter 5 presents the accuracy and loss of convergence results of

different methods. Finally, Chapter 6 concludes the thesis and gives information

about possible future works.



Chapter 2

Background and Related Work

Deep Neural Networks consist of layers where each layer contains neurons. Neu-

rons in the layers are composed of weights and biases. When a neuron receives an

input, it applies multiply and add operations to the input using its weights and

bias. The way those multiplication and addition is applied is based on the type

of the layer. Besides, the type of the layers differs in terms of not only operations

but also neuron connectivity patterns. For each different type of network, there

might be a different connectivity pattern for neurons in successive layers.

When a neuron produces its output, it may apply a non-linearity to its output

before passing it to the next neuron. To apply a non-linearity, layers use activation

functions. One purpose of using activation functions is to deactivate some of the

connections in the network if that specific information is not important for the

final decision of the network. Another purpose is to increase the importance of

the connections that contain important information for the final decision of the

network. Activation functions are one of the most important parts of the neural

networks. They introduce non-linearity, thus neural network learns and makes

sense of complicated and complex functional mappings.

After one iteration of the given data through the network, the prediction of the

network is obtained. The training procedure for a network consists of multiple

8



CHAPTER 2. BACKGROUND AND RELATED WORK 9

iterations. After each iteration of the training, weight, and bias values are up-

dated in the layers so that they can learn information from the given data. The

updating procedure of weights and biases is called back-propagation. The main

purpose of back-propagation is to update parameters in the network so that the

predicted output of the network is close to the expected output. If the predicted

output of the network is far from the expected output, then there will be high

loss value based on the type of loss function. Loss value is the metric that shows

how far the network is from predicting accurate results. There could be different

loss functions based on the data and the problem.

General working principles of a deep neural network and important factors are

given above. The principles and important factors above may work differently for

different types of deep neural networks. There are many different types of deep

neural networks such as Recurrent Neural Networks, Long-Short Term Mem-

ory Networks, Multilayer Perceptrons, Convolutional Neural Networks and more.

The working principles of deep neural networks given above will be explained in

detail in the next sections. Also, there will be more detailed information about

Convolutional Neural Networks (CNNs) and how they work as algorithms de-

scribed in this work are more focused on CNNs.

2.1 Neural Network Layer Types

2.1.1 Fully Connected Layers

Fully connected layers apply linear transformations to the given input vector

before applying activation functions and have full connection to the neurons in

the previous layer. All of the neurons in the fully connected layer are multiplied

by neurons in the previous layer and if there is a bias in the fully connected layer,

it is added to the resulting linear transformation. We can formulate the operation

done by a fully connected layer as follows. Let us say the weights of the fully

connected layer are denoted by W and have an input dimension of k. Then we
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can formulate the operation done by a fully connected layer with respect to the

given input x as follows.

y = W × x+ b

yi =
k∑
j=1

(Wij × xj) + bi

Figure 2.1: Visualization of Fully Connected Layers

In Figure 2.1, connectivity pattern of fully connected layers is shown. The fully

connected layers with red color are also called hidden layers. Hidden layers 1, 2,

and 3 in the representation are fully connected layers and neurons in those layers

apply a linear transformation to the neurons in the previous layer. For hidden

layer 1, the input dimension is 1 and the output dimension is 4 as it includes

4 neurons. Similarly, the input dimension of hidden layer 2 is 4 since the input

for hidden layer 2 contains 4 neurons. The output layer is also fully connected.

This is because it is connected to all of the neurons from the previous layer and

outputs 1-dimensional result.

In convolutional neural networks, fully connected layers are usually used at the

end of the network after a series of convolutional layers. Convolutional layers

which will be discussed next are good at subtracting local information from the

data and connecting that information with fully connected layers at the end of
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the network is good for generalizing the local information and obtaining a result

with the given number of neurons.

2.1.2 Convolutional Layers

Convolutional layers are used widely in deep neural networks. They are the

core information extractors, and most of the computations done in deep neural

networks are done on these layers. A simple convolutional layer is composed of a

set of filters and a bias parameter. Filters are used to extract local information

from the input such as images. At the beginning of the training, the weights of

filters are set randomly. During the training process, those filters are updated

and their weights are computed (learned) so that they can detect features from

the input images. Extracted features from first convolutional layers are low-level

information such as edges, and extracted features from later convolutional layers

are high-level information such as the wheel of a car.

As data flows through the network which is also called forward-pass, the filter

of convolutional layers is slid across the width and height of the input volume.

During this sliding process, the dot product of the filter and the current slide of

the input is calculated. Resulting dot products are also called activation maps

or feature maps which represent the response of the filter at every spatial posi-

tion. Eventually, the network will learn to activate specific filters as it detects

extractable information on the image.

As shown in Figure 2.2, let us say we have an image of size [32x32x3], where the

first and second dimensions represent width and height, and the third dimension

represents color channel dimension of the image such as RGB (Red-Green-Blue).

If we a have filter with dimension [4x4] (width and height), each neuron in the

convolutional layer will have a weight tensor with dimension [4x4x3]. The last

dimension is 3 because input has 3 channels and a different filter is needed for

each channel of the input. Furthermore, if the convolutional layer consists of 32

neurons, the dimension of the layer becomes [32x4x4x3], where each parameter

is trainable.
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Figure 2.2: Visualization of Convolution Operation

As mentioned earlier, the filter is slid across the input image and the output

dimension is dependent on the sliding length, which is also called stride. When

stride is set to 1, filter slides on one pixel at a time for each dot product opera-

tion. When the stride is set to n, filter slides on n pixels after each dot product

operation. Increasing the stride value will result in smaller output volumes as the

filter skips a higher number of pixels. Another parameter for the convolutional

operation is called padding. This parameter pads zeros around the border of the

input to preserve the spatial size of the input volume so that the input and output

width and height are the same. Both stride and padding are hyperparameters for

convolutional layers, and they need to be optimized based on the problem.

The sliding of convolutional filters can be applied to different dimensions based

on the input. 1-dimensional (1D) convolution implies that sliding of the filter

is done on 1-axis, which can be time. The output of 1D convolutional is a 1D

array. 2D convolution implies that sliding of the filter is done on 2-axes (x,y), and

outputs 2D matrix. 3D convolutional implies that sliding of the filter is done on

3-axes (x,y,z) and output has 3D volume. In most of the convolutional layers, 2D

convolutions are applied on 3D data as there is a filter for the third dimension.

On 3D data, the 2D filter is slid across the x and y-axis. Therefore, the output

is also a 2D matrix with 3D volume.
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Figure 2.3: Visualization of Convolutional Layer

As shown in Figure 2.3, the connectivity pattern of convolutional layers also differs

from fully-connected layers. Convolutional layers are locally connected layers. If

the input image dimension is [32x32x3], which contains 3 color channels, and a

neuron inside the convolutional layer contains [4x4] filters, there will be a different

filter for each channel in the total dimension of [4x4x3]. Each [4x4] filter inside

a neuron is convolved with a single channel of the input image. Therefore, there

is a local connectivity pattern in convolutional layers, instead of connecting each

filter with each channel of input which is seen at fully connected layers.

2.1.3 Pooling Layers

Pooling layers are also widely used in convolutional neural networks. The main

purpose of using pooling layers is to reduce the spatial dimension of the feature

maps. Thus, the amount of data that is transferred between layers will be less and

there will be less amount of communication. While pooling layers reduce the di-

mension of the feature maps, they also extract meaning and powerful information

from small slides of the data.
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Figure 2.4: Visualization of Max Pooling Layer

There are several types of pooling layers such as max pooling, average pooling,

and sum pooling. Max pooling layer is the one that is generally used in convo-

lutional neural networks to reduce the dimension of the feature maps. In Figure

2.4, max-pooling layer is visualized. Let’s say we have a max-pooling layer with

a filter size of [2x2] and stride of 2. Then, the maximum value of each [2x2] part

of the feature map is taken. Since we have stride value as 2, the filter is slid 2

pixels after each pooling operation on both axes. In Figure 2.4, input size [4x4] is

reduced to [2x2] after the max-pooling layer and only important features are ex-

tracted while reducing the dimension. Similarly, sum pooling applies summation

operation to the slices of input instead of extracting maximum value. Besides,

since average pooling takes an average of each slice, it can be considered as a

smoothing operation.

2.1.4 Batch Normalization

The batch normalization layer adds a normalization step between layers. Al-

though batch normalization layers are recently proposed [17], they have become

very popular and they are widely used in deep neural networks. This layer reduces

internal covariate shift in neural networks and applies zero mean unit variance

normalization by subtracting mean from the output of a layer and dividing into

standard deviation. Batch normalization layers enable the use of high learning

rates while avoiding gradient saturation which happens in activation functions
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such as tanh and sigmoid (will be discussed in the next sections).

2.1.5 Bias Parameter

Bias parameters are the values added to the dot product of input and weights

of the layers. These parameters allow activation functions to shift to the left or

right so that data can fit better. Bias parameters do not have connections to the

input data and the previous neurons. They only affect the output of layers.

2.2 Activation Functions and Non-Linearity

Activation functions are one of the crucial operations for deep neural networks

to learn representations and patterns from the input. Their main purpose is

to introduce non-linear complex function mappings between input and output.

Activation functions apply non-linearity to the output of a layer so that the next

layer only gets important features from the previous layer. It is necessary to use

activation functions in deep neural networks. This is because, without activation

functions, a neural network becomes just a linear function with a limited learning

power. Different types of activation functions can be used for different purposes.

All of the different functions have different advantages and disadvantages that we

should be aware of while designing a deep neural network. Bias parameters are

the values added to the dot product of input and weights of the layers. These

parameters allow activation functions to shift to the left or right so that data can

fit better. Bias parameters do not have connections to the input data and the

previous neurons. They only affect the output of layers.

2.2.1 Sigmoid

The sigmoid function maps the given input to a range between 0 and 1 as seen

in Figure 2.5. Therefore, it can be a good choice for the layers that predict
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Figure 2.5: Sigmoid Function

probability since probability also ranges between 0 and 1,

hθ(x) =
1

1 + e−x

Since the sigmoid function is differentiable, we can find it’s slope and use it in

gradient descent during the training phase, which will be discussed in the next

section. The sigmoid function may have several disadvantages. The sigmoid

function may suffer from vanishing gradient problem. As gradients flow back

through the network, gradients for early layers may vanish. As earlier layers are

important for extracting information from the input, the learning process may

slow down. Besides, since sigmoid function outputs between 0 and 1, strongly

negative inputs become zero. This may also cause the training process to get

stuck. This is because deep neural networks use activations of the layers to

calculate parameter gradients and this can result in model parameters that are

updated less regularly than we would like.

2.2.2 Hyperbolic Tangent

Unlike sigmoid function, hyperbolic tangent outputs between -1 and 1 as shown

in Figure 2.6. Therefore, there will be a difference between the mapping of

negative values and strongly negative values. Also, only near-zero values will be
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Figure 2.6: Hyperbolic Tangent Function

mapped to zero instead of all negative values. Thus, getting stuck in the training

process is less likely to happen. Hyperbolic tangent can also be considered as a

scaled version of the sigmoid function. Although it can find a solution for getting

stuck during training, the hyperbolic tangent function also suffers from vanishing

gradient problem as gradient may become very small for earlier layers

tanh(x) =
2

1 + e−2x
− 1,

tanh(x) = 2 ∗ hθ(2x)− 1.

2.2.3 Rectified Linear Unit

Figure 2.7: Rectified Linear Unit Function and Variations
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Rectified Linear Unit (ReLU) is another activation function and a simpler one.

ReLU outputs a maximum value of 0 and the value of the input as shown in

Figure 2.7.

y(x) = max(0, x)

ReLU is good in terms of differentiating between positive and strongly positive

outputs. This shows which neuron is highly important for the given input. Similar

to sigmoid, negative outputs become 0 in ReLU and gradients will be zero for

those connections. Those connections will stop responding to the learning process.

This problem is also referred to as the Dying ReLU problem [27]. There are

different types of ReLU functions in order to solve this problem. In Figure 2.7,

Leaky ReLU is shown where negative outputs of a layer are represented as smaller

negative values. The main idea of variations of ReLU function is to make gradients

non-zero for negative activations [41].

ReLU is the most used activation function in deep neural networks. It also

increases the training speed due to its simple equation. However, this does not

mean that we should use ReLU as an activation function all the time. The

activation function should be chosen based on the characteristics of the network.

It is also possible to create custom activation functions.

2.3 Training of Deep Neural Networks

2.3.1 Loss Functions

Loss functions are used to learn how far the network predictions are from the

truth. Based on the loss value, weights inside the network are updated so that

better results can be predicted. At the beginning of the training, the weights of

the neural network are set randomly. At first, we expect the network to perform

badly as it has random weights. Eventually, based on the loss function, weights
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are updated so that it can perform better predictions. In other words, besides

predicting accurate results, the main purpose of the neural network is to minimize

the loss function. This process is the most significant part of training a neural

network.

Based on the network’s purpose, different types of loss functions can be used.

One of the basic loss functions is the mean square error.

Loss(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)2

During the training, each data in the training dataset is passed from the network.

In the equation above, y denotes the true value for the given data, and ŷ denotes

the prediction of the network for the given data. The square of the difference

between the true and the predicted value for each data gives us the mean square

error for the network. Neural networks can be trained using multiple data samples

at the same time, where data samples are referred to as batch. For a batch, the

average loss is calculated by summing the loss for all data samples and dividing by

the number of samples. The loss values calculated for a batch are used to update

the weights of the network so that there will be more accurate predictions.

Various loss functions can be used in neural networks based on the network’s

purpose. Some of them are basic and have similar ideas to each other such as

mean square error, L2 error (where we don’t divide the sum of losses into n), mean

absolute error, mean absolute percentage error, etc. Those loss functions are

generally used in regression problems where the network predicts a real number

like the age of a person or the value of a stock. There is also another problem

called classification. In the classification problem, the network predicts a class

from a discrete number of possible classes such as predicting a dog among dog

and cat images. The most frequently used loss function for the classification

problem is cross-entropy. For the binary classification task, where there are 2

possible labels that the network can predict, binary cross-entropy loss is defined

as follows:
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Loss(y, ŷ) = − 1

n

n∑
i=1

yilog(ŷi) + (1− yi) log (1− ŷi)

Cross entropy measures the divergence between two different probability distri-

butions. High cross-entropy value means that there is a big difference between

two distributions and it should be minimized more. For the classification prob-

lems where there are more than 2 possible classes, categorical cross-entropy loss

is used. Several more loss functions can be used based on the problem and it is

possible to create custom loss functions.

Optimization algorithms calculate the gradients of the weight by taking the par-

tial derivative of the weight with respect to loss. Gradient value for a weight

shows how much it should change to obtain lower loss values. In Figure 2.8,

visualization of gradient descent can be seen. There is a parameter called the

learning rate or learning step. In each iteration of gradient descent, the main

aim is to find the global minimum point that minimizes the loss function. Big

learning step values can cause reaching the global minimum earlier, while also

there is a risk of never reaching the global minimum. For a small learning rate,

there is a risk of getting in the local minimum. Therefore, the learning rate

should be chosen carefully based on the problem. There are variants of gradient

descent algorithms such as batch gradient descent, stochastic gradient descent,

and mini-batch gradient descent.

Figure 2.8: Gradient Descent Visualization
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Batch Gradient Descent

Previously, it is shown that loss functions are used to calculate the performance

of the neural network in terms of accurate predictions. In the batch gradient

descent, cost (the result of the loss function) is calculated for all of the data in

the training set for once. Then, batch gradient descent computes the gradient

of the cost for each weight and bias parameter in the network. As one update

is done for all the data in the training set, the batch gradient descent algorithm

is slow and may cause memory problems for networks with a large number of

parameters. Batch gradient descent is guaranteed to find the global minimum for

convex surfaces and the local minimum for non-convex surfaces.

Stochastic Gradient Descent

Unlike Batch Gradient Descent, Stochastic Gradient Descent (SGD) updates

weights for each data in the training set. Therefore, SGD is a much faster algo-

rithm. However, since SGD updates the network for each data in the training

set, there is a high variance between different updates.

Mini-Batch Gradient Descent

Mini-batch Gradient Descent takes advantage of the previously explained algo-

rithms. It performs an update on parameters for each mini-batch of the training

set. The mini-batch contains several data points from the training set and the

size of a mini-batch can be set. Mini-batch Gradient Descent reduces the variance

between updates from SGD. It is widely used in deep neural networks and the

batch size is an important parameter that is needed to be optimized.
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Optimization Algorithms

Several different optimization algorithms apply gradient descent. The most fre-

quently used one is called Adaptive Moment Estimation (Adam)[19] optimizer.

Adam computes a different learning rate for each parameter inside the neural

network. This allows the algorithm to take different size steps during gradient

descent. There are several other algorithms for optimization such as Adagrad

[9], Adadelta [42] etc. All of the optimization algorithms apply different rules for

updating the learning rate during the training phase.

2.3.2 Regularization Methods

One of the biggest problems in deep neural networks is over-fitting. Over-fitting

means that the neural network memorized the data instead of learning it. Mem-

orizing the training set does not mean making good predictions for the test set.

Therefore, different regularization methods are applied to avoid the over-fitting

problem in deep neural networks. Regularization methods make various changes

during the training phase so that the neural network learns representations of the

data better.

L2 and L1 Regularization

As discussed earlier, there is a loss function in the neural network that outputs

the cost of a current prediction. L2 and L1 regularization methods [22] update

the cost by adding regularization terms to it. Therefore, the network needs to

minimize both the loss function and the regularization term. Network weights

with L2 and L1 regularization are not likely to over-fit.
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Figure 2.9: Dropout Visualization

Dropout

Dropout [36] is one of the most widely used regularization techniques in deep

neural networks. As shown in Figure 2.9, it randomly selects a node from a

layer and removes all of its incoming and outgoing connections at every iteration.

Therefore, in every iteration during the training phase, the neural network has

a different set of nodes and different outputs from layers. The dropout rate is a

parameter that needs to be set before the training. It is the probability of a node

being selected to be a dropout from the network for that iteration. This makes

it hard to memorize the data for the neural network.

Data Augmentation and Early Stopping

Instead of making changes inside the neural network, we can make changes in the

training data. Data augmentation reduces over-fitting by increasing the size of the

training set. To increase the size, we can create new training sets where original

data is shifted, flipped, rotated, or noise added. After these changes, it will be

hard for the neural network to memorize the training set. However, still, there
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will be a chance for the network with a large number of parameters to memorize

new training data. Another method to avoid overfitting is early stopping. We

can stop the training process earlier in case of different conditions. One condition

could be getting similar loss values for consecutive iterations. Another condition

could be getting higher loss values for the validation set for a given number of

iterations. There can be many possible early stopping conditions that we can

use to prevent the neural network to continue training before it memorizes the

training set.

2.4 Convolutional Neural Networks

Our work mainly focuses on Convolutional Neural Networks (CNNs) to improve

distributed training performance. CNNs are built using the modules that are

described in the previous sections. CNNs are built using convolutional layers fol-

lowed by pooling layers and non-linearities. To produce outputs, fully connected

layers are used at the end of the network. Throughout the years, different CNN

models are proposed to achieve better accuracy and smaller loss values. In this

section, brief information about some of the well-known CNNs will be given and

it will be possible to see advances in Convolutional Neural Networks through the

years.

2.4.1 LeNet

One of the first successful CNN architectures is LeNet [23]. In Table 2.1, structure

of LeNet is shown. There is a sequence of three layers, which are a convolutional

layer, the pooling layer, and non-linearity. This same sequence is still widely used

in today’s CNNs. As non-linearity functions, the sigmoid and hyperbolic tangent

is used in LeNet. To subsample the feature maps, average pooling layers are used.

At the end of the network, fully connected layers are used to produce the output.

LeNet can be considered as an inspiration for the CNNs that are developed after

it.
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Layer Filters Size Kernel Size Stride Activation
Input Image 1 32x32 - - -

1 Convolution 6 28x28 5x5 1 tanh
2 Avg. Pooling 6 14x14 2x2 2 tanh
3 Convolution 16 10x10 5x5 1 tanh
4 Avg. Pooling 16 5x5 2x2 2 tanh
5 Convolution 120 1x1 5x5 1 tanh
6 FC 84 84 - - tanh

Output FC 10 10 - - softmax

Table 2.1: LeNet Structure

2.4.2 AlexNet

Layer Filters Size Kernel Size Stride Activation
Input Image 1 227x227x3 - - -

1 Convolution 96 55x55x96 11x11 4 relu
2 Max Pooling 96 27x27x96 3x3 2 relu
3 Convolution 256 27x27x256 5x5 1 relu
4 Max Pooling 256 13x13x256 3x3 2 relu
5 Convolution 384 13x13x384 3x3 1 relu
6 Convolution 384 13x13x384 3x3 1 relu
7 Convolution 256 13x13x256 3x3 1 relu
8 Max Pooling 256 6x6x256 3x3 2 relu
9 Flatten 9216 9216 - - relu
10 FC 4096 4096 - - relu
11 FC 4096 4096 - - relu

Output FC 1000 1000 - - softmax

Table 2.2: AlexNet Structure

In 2012, AlexNet is developed by Alex Krizhevsky [21]. It is a much deeper

and wider version of LeNet and became famous after winning ILSRVC ImageNet

Challenge 2012 [33]. Since AlexNet is a wider and deeper version of LeNet,

it is capable of learning features from more complex objects. Besides the size

of the network, there are several other differences in AlexNet compared to the

LeNet. The Rectified Linear Unit is used as a non-linearity function. To avoid

overfitting, dropout is used at the fully connected layers and max-pooling layers

are used instead of average pooling layers.
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2.4.3 VGG

Layer Filters Size Kernel Size Stride Activation
Input Image 1 224x224x3 - - -

1 Convolution 64 224x224x64 3x3 1 relu
2 Convolution 64 224x224x64 3x3 1 relu
3 Max Pooling 64 112x112x64 3x3 2 relu
4 Convolution 128 112x112x128 3x3 1 relu
5 Convolution 128 112x112x128 3x3 1 relu
6 Max Pooling 128 56x56x128 3x3 2 relu
7 Convolution 256 56x56x256 3x3 1 relu
8 Convolution 256 56x56x256 3x3 1 relu
9 Max Pooling 256 28x28x256 3x3 2 relu
10 Convolution 512 28x28x512 3x3 1 relu
11 Convolution 512 28x28x512 3x3 1 relu
12 Convolution 512 28x28x512 3x3 1 relu
13 Max Pooling 512 14x14x512 3x3 2 relu
14 Convolution 512 14x14x512 3x3 1 relu
15 Convolution 512 14x14x512 3x3 1 relu
16 Convolution 512 14x14x512 3x3 1 relu
17 Max Pooling 512 7x7x512 3x3 2 relu
18 Flatten 25088 25088 - - relu
19 FC 4096 4096 - - relu
20 FC 4096 4096 - - relu

Output FC 1000 1000 - - softmax

Table 2.3: VGG16 Structure

VGG was one of the most successful and deepest CNN of the time it was pro-

posed [35]. VGG16 contains 16 layers, where 13 of them are convolutional (unlike

AlexNet, 3x3 filters are used in each) and 3 of them are fully connected layers.

The success of VGG showed that the depth of the neural network is an impor-

tant factor that affects the final performance. However, besides better accuracy

and error results, increasing the depth of the network comes with its drawbacks.

The number of parameters in VGG is almost 140 million and the total memory

required to pass one image forward is almost 93MB. Thus, it is hard to train

VGG on a single machine. This is because, if we want to use a batch size of

128 (which is commonly used), the required memory is 11.625 GB and it is not

possible to run the network on platforms with RAM less than 11.625 GB. As
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described in the problem statement section, our main focus is to run networks

on multiple machines efficiently, where they do not fit into a single machine’s

memory. Therefore, VGG is used in experiments that will be discussed later.

2.4.4 Residual Network

Figure 2.10: Skip Connection [13]

Residual Network [13] (ResNet) is the winner network of ILSRVC ImageNet Chal-

lenge in 2015 [33]. The main contribution of ResNet is to keep the number of

parameters low while increasing the depth of the network. They have done this

using skip connection as shown in Figure 2.10. A skip connection is used to by-

pass the input to the next layers. Besides, fully connected layers are not used in

ResNet, which is the main reason for ResNet to have a lower number of parame-

ters.

2.5 Hypergraph Partitioning

A graph consists of vertices and edges. Edge in a graph connects a pair of vertices.

A hypergraph is a generalization of the graph where a hyperedge connects possibly

more than two vertices. A hypergraph H = (V,N) is defined as a set V of vertices

and a set N of nets or hyperedges. Every n ∈ N connects a subset of vertices,

i.e., n ⊆ V . Weights and costs can be assigned to vertices and nets respectively.
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Weight of a vertex v is denoted as w(v) and cost of a net n is denoted as cost(n).

Given hypergraph H = (V,N), {V1, ..., Vk} is called a K-way partition of vertex

set V . A K-way vertex partition of H is said to satisfy the balancing constraint

if Wk ≤ Wavg(1 + ε) for k = 1, ..., K. Wk denotes the weight of a part Vk. Wavg is

the average part weight and ε represents the predetermined maximum allowable

imbalance ratio. Weight of a part Vk is obtained as:

Wk =
∑
vεVk

w(v)

In a partition of H, a net that connects at least one vertex in a part is said to

connect that part. Connectivity λ(n) of a net n denotes the number of parts

connected by n. A net is said to be cut if it connects more than one part (i.e.,

λ(n) > 1) and uncut otherwise. The partitioning objective is to minimize the

cutsize defined over the cut nets. There are various definitions and two relevant

ones are the cut-net and connectivity metrics:

cutsizecutnet =
∑
nεNcut

cost(n) cutsizecon =
∑
nεNcut

λ(n)cost(n)

In the cut-net metric, each cut net n incurs cost(n) to the cutsize, whereas in the

connectivity metric, each cut net incurs λ(n)cost(n) to the cutsize.

2.6 Parallelism Models

In distributed deep neural network training, there are two main approaches: data

parallelism and model parallelism. Most of the works in the literature focus on

data parallelism as it is easier to implement and analyze than model parallelism.

Information about some of the works for both parallelism models will be given in

this section.
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2.6.1 Data Parallelism

In data parallelism, the same neural network model is replicated among different

processors and data is partitioned among them so that each replica uses a different

part of the data. Those processors need to communicate with each other to send

gradients to each other and to continue the training process. Data parallelism

does not solve the problem of the network not fitting into a single machine’s

memory, because all of the replicas still contain the complete network. Therefore,

data parallelism does not meet the requirements of training large deep neural

networks [2, 3, 7, 39, 40].

In terms of communication patterns, there are different works in the literature. In

[11], the All-Reduce communication pattern is used in the backpropagation phase.

Before starting backpropagation, each processor computes its gradients. Then,

the All-Reduce communication pattern reduces the gradients and ditributes the

results to all processors. In the early distributed machine learning techniques,

similar communication primitives were widely used between processors. Later,

another and widely used technique in data parallelism called parameter server

[25, 6, 2, 7, 5, 15] has become very popular and widely studied. As stated earlier

in the Introduction section, in this method all of the worker processors send their

gradients to the parameter server. Afterward, worker processors get updated

weights from the parameter server before starting the forward pass of the next

batch.

Another important factor to consider while using data parallelism is the synchro-

nization of worker processors after training of every mini-batch of data. It is

possible to synchronize the worker processors so that each worker waits for all

others to finish computing their gradients. When all of the gradients are summed

and applied to the weights, each worker processor starts to train a new mini-batch

with the same updated weights. This synchronization is also known as Bulk Syn-

chronous Parallelism (BSP) [38]. The problem with BSP data parallelism is that

worker processors may stay idle for a long period because of synchronization and



CHAPTER 2. BACKGROUND AND RELATED WORK 30

communication overheads, which become a bigger problem as computation be-

comes faster with technological advances. There are some other works [43] that

try to solve the problem of processors being idle by overlapping communication

and computation, which can affect the convergence performance negatively.

Another approach is called Asynchronous Parallel (ASP) data parallelism. In this

approach, worker processors do not wait for other processors to compute their

gradients in ASP data parallelism [44]. This reduces idle processor times and leads

to more efficient processor utilization compared to BSP. However, since processors

do not wait for other processors’ gradients being applied to their weights, ASP

may result in stale weights.

Other works apply different synchronization techniques [15] such as Stale Syn-

chronous Parallel (SSP), which is a combination of BSP and ASP. In SSP, there

is a control mechanism where fast iterated processors check the network at every

iteration for possible communications, and slow processors only check every S

iterations for fewer network accesses to catch up the training process.

2.6.2 Model Parallelism

In model parallelism, a neural network model is partitioned across different pro-

cessors so that each processor is responsible for the training of different parts of

the neural network model. Works in the literature about model parallelism [16,

26, 24, 18] showed that model parallelism can achieve faster training times than

data parallelism. There are several properties of model parallelism that makes it

hard to implement and results in less amount of research in literature than data

parallelism.

During the training of deep neural networks, each layer should wait for the previ-

ous layer to get its output. This means that when we partition the neural network

among different processors, each processor has to wait for the previous proces-

sor to continue to the training process. When a processor computes its output

(feature maps or activation maps) it becomes idle until the iteration of the next
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mini-batch. Therefore, in some of the works [20, 7, 2], model parallelism is only

applied when a neural network does not fit into a single machine’s memory, but

not to improve the efficiency of training performance. In this thesis, this problem

of model parallelism is solved by using threaded asynchronous model parallelism

technique which will be discussed in detail in later chapters.

Another problem with model parallelism is to decide on how to partition a deep

neural network among multiple processors. This decision process is left to a

human expert so that he/she should decide on which parts of the network should

reside in which processor. It is a hard problem for a human expert to solve as

a deep neural network contains millions of parameters and there exist hundreds

of communications. In [16], a ”giant” convolutional neural network is trained

that contains 557 million of parameters. In this work, it is stated that it is hard

to partition a convolutional neural network model so that it achieves both low

computational load balance and low communication volume. Therefore, their

way of partitioning (layer-wise) causes a convolutional neural network training

to waste time because of imbalanced work overhead. Another work [30] tried to

solve this problem using another deep learning technique called Reinforcement

Learning. However, this is also a complicated, time and resource-consuming

process. In this thesis, this problem of model parallelism is solved by using

hypergraph partitioning which decides automatically on the partitioning of a

deep neural network model.

It is also possible to combine model parallelism and data parallelism in a single

deep neural network. In [20], it is shown that most of the computation is done on

convolutional layers, and most of the parameters are contained in fully connected

layers. Therefore, it is suggested that data parallelism should be used on convo-

lutional layers, while model parallelism should be used on fully connected layers.

Although it is a good way of partitioning a deep neural network among different

processors, it still requires a human expert to decide on the partitioning process.

In [12], a neural network model is partitioned in a layer-wise manner among dif-

ferent processors. For the parts with low computational load, data parallelism

is used to improve computational load balance. Data parallelism is used at the

parts where there is a low computational load compared to the others pars after
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layer-wise partitioning. When a deep neural network is partitioned in a layer-wise

manner, it is almost inevitable to have imbalanced computational load between

different processors. In this thesis, the problem of model parallelism is solved by

using coarse-grain and fine-grain hypergraph partitioning of deep neural networks

so that the computational load balance ratio of different processors is close to 1,

while keeping communication volume low.



Chapter 3

Modeling Communication and

Computation

In this chapter, graph and hypergraph representations of CNNs will be given

for different levels of granularity. The graph model of a CNN is straightforward

and shows the order of the operations inside a CNN. However, the graph model

does not accurately capture the communication pattern inside the network. We

propose the hypergraph representations of the CNNs, and we show that these

hypergraph models more accurately capture the communication pattern.

3.1 Graph Representation

A CNN can be represented as a multistage graph. A multistage graph is a directed

graph where vertices can be divided into a set of stages in such a way that all

edges connect vertices belonging to two successive stages. The input layer and

the intermediate feature maps can be represented as vertices, and tasks between

those vertices such as convolution operation, pooling, nonlinearity, etc. can be

modeled as edges between vertices. The important thing to decide on while

33
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representing a convolutional neural network is granularity. There can be fine-

grain representation where there are small but many operations, or there can be

coarse grain representations where there are big but fewer operations.

Figure 3.1: Fine and Coarse-grain CNNs Graph Representations

Let’s say that we have a convolutional neural network with an input layer and

two convolutional layers that contain a and b number of filters. This convolu-

tional neural network can be represented as a graph shown in Figure 3.1. In the

fine-grain representation, each edge is a convolution operation of each channel of

a filter and each vertex is a feature map which is the reduced result of convolu-

tion done by connected edges. This means that for each vertex, outgoing edges

represent convolution operations on that feature map, and the incoming edges

represent the reduction operation. V i
j denotes the feature map on the ith layer

obtained using jth filter. f ijk denotes the kth channel of the jth filter on the ith

layer. If on ith layer there are n numbers of feature maps, then the formula to

obtain a feature map on (i+ 1)th layer is as follows,

V i+1
j =

n∑
k=1

V i
j ~ f ijk,

where ~ denotes the convolution operation. In the coarse grain representation,

the atomic task definition is different from the fine-grain representation. This

time, instead of applying the convolution operation using each channel of a filter,

convolution is done using the filter itself. This means that instead of applying
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the 2D convolution on 2D data using a 2D filter, this time 2D convolution is

applied on 3-dimensional data using 3-dimensional filter. In this representation,

V i
j represents the feature map on the ith layer obtained using jth filter. f ij denotes

the jth filter on the ith layer. Then the formula to obtain feature map on the

(i+ 1)th layer is as follows,

V i+1
j = V i

j ~ f ij ,

where ~ denotes the convolution operation. The main difference between the

two graph representations is the definition of the atomic task as stated earlier.

By taking the CNN graph representations into account, we designed hypergraph

representations for both fine and coarse grain representations.

3.2 Modelling Communication

Our hypergraph representations of a CNN are shown in Figure 3.2. In these rep-

resentations, we changed the definitions of vertices and edges compared to the

graph representation. A vertex in our hypergraph representation (except for the

vertices in the input layer) denotes the convolution operation and the other layer

operations such as activation or pooling if any. A vertex can also represent the

reduction operation of the results of the convolution operation of multiple filter

channels. Also, a net in our hypergraph models represents the communication

between vertices (tasks). This means that dependency of the operations inside

the consecutive layers is modeled. Therefore, representing tasks as a vertex and

connecting them using hyperedges accurately models the communication inside

the network. This modeling allows us to partition the vertices (tasks) to different

processors while considering their dependency on each other and the communi-

cation volume.

Let’s say that we have a CNN with an input layer and two convolutional layers

that contain a and b number of filters respectively. This CNN can be represented
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Figure 3.2: Fine-grain and Coarse-grain Hypergraph Representations of the CNNs

as a hypergraph as shown in Figure 3.2. In the fine-grain representation, except

input layer, f ij,k denotes the kth channel of the jth filter on the ith layer and rij de-

notes the reduced result of jth filter on the ith layer. There are two types of vertex

definitions in the fine-grain hypergraph representation. Vertices f ij,k denote the

convolution operation of a channel inside the filter. Vertices rij denote the reduc-

tion operation of the feature maps, which sums the results obtained from previous

convolutional operations. These vertices also apply pooling and non-linearity op-

erations. Also, there are two types of nets in our fine grain representation, where

one is to model the communication pattern of convolution operations, and the

other one is to denote the reduction operation for feature maps. In the fine-

grain hypergraph, the pins of nets corresponding to the convolution operations

are defined as follows:

pins(nij) = {rij} ∪ {f
(i+1)
j,∀k }

In the fine-grain hypergraph, the pins of nets that correspond to the reduction

operation are defined as follows:

pins(nij) = {f ij,∀k} ∪ {r
(i+1)
j }

The definition of an atomic task is different in Figure 3.2 for fine and coarse grain

hypergraphs. In the fine-grain hypergraph representation, each vertex represents
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a 2D convolution operation on 2D data using a 2D filter. In the coarse grain

hypergraph representation, each vertex represents 2D convolution operation on

3-dimensional data using 3-dimensional filter. In the coarse grain hypergraph,

the pins of nets are defined as follows:

pins(nij) = {f ij} ∪ {f i+1
∀j }

Given hypergraph representations above, a partition Π is obtained such that Π =

{V1, V2, ..., Vk}. This partition is decoded as follows: without loss of generality all

vertices (the tasks) are represented by vertices of the part Vk assigned to processor

Pk for i = 1, 2, ..., k. For partitioning, there are two important components used

which are constraint and objective function. Partitioning constraint is to maintain

the balance such that:

W (Vk) =
Wavg

k
(1 + ε)

As an objective function, the connectivity metric is used. For given hypergraph

representations, connectivity λ(n) − 1 denotes the number of communications

occurring in the given partition. However, communication overhead is not neces-

sarily determined by the number of communications. It is typically determined by

the volume of communication. Therefore, the objective function of partitioning

to minimize the following cost function:

cutsizecon =
∑
nεNcut

(λ(n)− 1)cost(n)

More detailed information about hypergraph representations of well-known con-

volutional neural networks and their performance for different partitions will be

given in the next sections.
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3.3 Fine-grain Hypergraph Representation

Figure 3.3: Fine-grain Hypergraph

In the fine-grain hypergraph representation of the CNNs, each channel inside of

a filter is represented as a vertex. The fine-grain hypergraph model of the CNN

is represented in Figure 3.3 with three convolutional layers that contain 4, 3, and

2 filters respectively after the input layer. Each vertex corresponds to a 2D filter

and the definition of the atomic task in a fine-grain hypergraph is given in the

previous section.

There are different operations inside the fine-grain hypergraph as described in

the previous section. It is needed to sum the convolution results of the channels

inside the same filters to get the feature maps. For example, the results of the

convolutional operation between vertex 0 and 3, 1 and 4, 2 and 5 are reduced

to one feature map and communicated (if necessary) to the vertex 15. If there

exist operations such as pooling, and activation, they are done in the vertex 15.
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Therefore, vertex 15 corresponds to the output feature map of the first filter in

convolutional layer 1. Then, the output feature maps of each layer are fed into

the next layer as an input.

The number of channels inside a filter is determined by the number of filters in

the previous layer. For example, in the first convolutional layer, each filter is

composed of three channels, corresponds to RGB. In the second convolutional

layer, each filter is composed of four channels. Because there are four filters in

the first convolutional layer and thus there are four feature maps that are used

in the second convolutional layer.

3.4 Coarse-grain Hypergraph Representation

In the coarse-grain hypergraph, the definition of the atomic task is bigger and

each filter inside a layer is represented as a vertex. A net connects filters from

consecutive layers. To visualize, let’s consider the same network presented for the

fine-grain hypergraph representation, where the first layer is the input layer and

there are 3 consecutive convolutional layers with the number of filters 4, 3, and

2 respectively.

In Figure 3.4, the same CNN architecture in Figure 3.3 is modeled as coarse-

grain hypergraph. Each filter (vertex) is numbered from 3 to 11 and nets are

represented as diamonds. Except for the input layer, the definition of all of the

vertices is the same. This is because all of the operations such as convolution,

reduction, pooling, and activation is done within a vertex.

Vertices 3, 4, 5, and 15 in Figure 3.3, are represented as vertex 3 in the coarse-

grain representation. If the input of the network has 3 channels, such as RGB

images, then the channel size of the vertices 3, 4, 5, and 6 is also 3. Since the

number of filters in convolutional layer 1 is 4, the channel size of the vertices 7,

8, and 9 is also 4. Each vertex in the layers performs a 2D convolution operation

on the vertex from the previous layer that it is connected to. To exemplify,
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Figure 3.4: Coarse-grain Hypergraph

the vertices 3, 4, 5, and 6 contain a 3D filter and perform separate convolution

operation on input layer on axis x and y. Non-linearity operation is applied after

each convolutional operation. If there is a pooling layer between convolutional

layers, pooling operation is applied to the feature maps before communicating

the result to the vertices in the next layer. This procedure also reduces the

communication volume.

All of the filters are connected to each vertex from the previous layer. This is

because all of the feature maps that are produced from previous layers are re-

quired for each vertex inside the current layer. For example, feature maps that

are obtained from the vertices 3, 4, 5, and 6 are used in vertex 7. Therefore,

there is a net that connects vertices 3, 4, 5, 6 and vertex 7, which implies these

vertices are dependent on each other, and there have to be communication if

they reside on different processors. Definition of the atomic task is finer grain

than++ the convolution of a layer and it is convolution of a single filter. Thus,

this reduces the communication volume between layers if any of the vertices re-

side on different processors. A hypergraph partitioning algorithm is aware of the

fact that consecutive layers are dependent on each other. Therefore, it is unlikely

to partition a single layer among many processors. Even if there is a processor

difference between consecutive layers, there will be a communication of feature
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map that is produced from a single vertex. Therefore, instead of communicating

all of the filters inside the layer, there will be a communication of a single fea-

ture map which also reduces communication overhead and also provides a better

computational load balance.

A profiler run is performed to set the vertex weights. After profiler, based on

the total run time of the layer during the forward and backward pass, and the

number of floating-point operations is used to set the weight of a vertex. The net

weights are set based on the communication volumes. Therefore, the hypergraph

partitioning algorithm will try to allocate vertices on the same part that are

connected with a high weighted net (net with a high cost). Otherwise, there will

be a large amount of communication between pins.

Fine-grain hypergraph representation is better in terms of having lower computa-

tional load balance ratio and communication volume. However, coarse-grain hy-

pergraph representation could be better in terms of computational performance,

because Tensorflow is highly optimized for coarser operations. Therefore, instead

of doing smaller operations many times, it is usually better to have less but coarser

operations to get the benefit of the optimized Tensorflow structure. Besides, the

Tensorflow implementation of the fine-grain hypergraph representation requires

a high level of optimization, because there are millions of connections and many

possible partition scenarios. Implementation of the coarse-grain representation is

a lot easier and still achieves good performance, which will be discussed in the

next sections.

3.5 Hypergraph Partitioning Details

Graph representation of the CNNs does not model the communication volume

exactly, because feature maps and products of the operations are represented

as vertices. Also, operations inside the network are represented as edges, which

only model the relation between operations and their products. Our hypergraph

representations model the communication volume that exists on CNN. This is
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because the relationship between operations and their dependence is shown using

hyperedges that can connect more than two operations. Partitioning our hyper-

graph representations results in a well-defined partition of the operations while

considering their relation and communication pattern.

Without representing a CNN as a graph or hypergraph, it can be distributed easily

using layer by layer partitioning. What is meant by layer by layer partitioning

is that placing groups of succesive layers among the different processors. For

example, for VGG16 with 16 layers, the first 8 layers can be placed into one

processor, and the last 8 layers can be placed into the other processor. This

kind of partitioning can cause work balance problems as work that is done by

each layer differs from each other. Especially for the number of processors that

is greater than 2, there will be a large work imbalance between partitions with

large communication overhead.

To solve the given problem about model parallelism above, an algorithm is de-

signed to represent a deep convolutional neural network as a hypergraph and then

partition it. The purpose of hypergraph partitioning is to partition the vertex set

into different disjoint blocks while minimizing an objective function as described

in the previous sections.

To partition the hypergraph, the hypergraph partitioning tool Patoh [1] is used.

To be able to use Patoh for hypergraph partitioning, it is necessary to prepare

a hypergraph file that is acceptable by the tool. A sample input file consists

of information about the hypergraph such as zero-indexed vertices, number of

vertices, number of nets, number of pins, weights of the net, and weights of

vertices.

A sample input file for Patoh is shown in Figure 3.5 by using the convolutional

neural network described in Figure 3.4. To create a more complete convolutional

neural network, three fully connected layers are also added to the sample file

where the last one is with a softmax activation function. Each net in the same

layer has the same cost, as the amount of communication is the same for all

vertices in a layer. Besides, each vertex in the same layer has also the same
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0 13 12 38 3
1 0 1 2 3 4
2 1 5 6 7
2 2 5 6 7
2 3 5 6 7
2 4 5 6 7
3 5 8 9
3 6 8 9
3 7 8 9
4 8 10
4 9 10
5 10 11
6 11 12

1 2 2 2 2 3 3 3 4 4 5 6 7

Figure 3.5: Sample Input File for Patoh

weight, as the amount of the work that is done for those vertices is the same. In

the sample input file, let’s assume that weights of nets and vertices are increasing

by one at each layer.

The first line of the input file gives information about the hypergraph. The first

integer can be 0 or 1 denoting the start index of the vertices. The second integer is

the number of vertices, the third integer is the number of nets, the fourth integer

is the number of pins. The last integer is to show Patoh that weights of both

nets and vertices are given. It is also possible to give an input file with only net

costs or vertex weights or none of them. In our case, the last integer is 3 as we

are providing weights of both nets and vertices. Lines after the first line except

the last one contain information about each net. The first integer of each line is

the weight of the net, and the rest are vertex indices that are connected through

this net. Finally, the last line contains weights of each vertex in the hypergraph.

Given an input file, Patoh partitions the hypergraph. After partitioning is done,

Patoh returns an array which contains the partition index for each vertex in the

hypergraph. Given the resulting partitioning array, Tensorflow [28] implementa-

tion is done that creates a convolutional neural network by distributing each part

of the partition among different processors and creates a trainable TensorFlow
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graph. From the resulting partitioning array, it is possible to compute computa-

tional load balance and communication volume between partitions and compare

them between different methods.



Chapter 4

Asynchronous Pipelined Model

Parallelism

In traditional model parallelism, where each worker is responsible for different

parts of the network, there is an underutilization of the compute resources. This

is because the worker computes and passes activation maps to the next worker

and then becomes idle until the next iteration. This type of model parallelism is

still useful when a network does not fit in a single machine’s memory, yet many

of the processors stay idle for a long period throughout the training. To achieve

fast and efficient training using model parallelism, all of the workers should be

working throughout the training.

4.1 Collocating Gradient Operations

To achieve efficient training, first problem is that each processor should perform

backpropagation of parameters only it is responsible for. By default, the back-

propagation of all of the parameters is done by one processor only. This results

in longer wait times for other processors which are not responsible for backpropa-

gation. Also, all of the activation maps should be communicated to the processor

45
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that is responsible for backpropagation so that it can compute all of the gradi-

ents. Then, all of the computed gradients are needed to be communicated back

to the processors. This means that, when one processor is responsible for all of

the backpropagation process, besides processors being idle, also communication

volume increases.

Figure 4.1: Model Parallelism Working Schema

Figure 4.2: Model Parallelism Working Schema - Illustration

Figure 4.1 shows the basic model parallelism explained above for one iteration.

In Figure 4.2, basic model parallelism is illustrated for two iterations. When

processor 1 completes the forward pass of a batch, it sends activation maps to the

processor 2 which is responsible for backpropagation operation. While processor

2 is busy with backpropagation, processor 1 stays idle. When processor 2 finishes

backpropagation and sends gradients to processor 1, the same process starts for

a new iteration.

To solve the described problem, gradient operations are collocated so that each

processor is responsible for the backpropagation of its parameters only. Although

this does not solve the processors’ staying idle problem during the training, it
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reduces the communication volume and it is necessary for efficient and fast train-

ing.

Figure 4.3: Model Parallelism with Collocated Gradients Working Schema

Figure 4.4: Model Parallelism with Collocated Gradients Working Schema - Il-
lustration

Figure 4.3 shows the basic model parallelism with collocated gradients operations

for one iteration and it is also illustrated in Figure 4.4 for two iterations. This

time, processors are responsible for the backpropagation of parameters they are

responsible for.

4.2 Threaded Training of Model Parallelism

Efforts so far did not affect the run time of a training process. A deep neural

network model is distributed to different processors for both forward pass and

backpropagation operations. However, still, each processor waits for other pro-

cessors to continue the training process. To solve this issue, threads are used so

that whenever a processor becomes idle, it fetches the next batch of the data and
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starts to process. This kind of working schema is used in one of the recent works

[12] as well, where model parallelism is studied.

Figure 4.5: Model Parallelism with Collocated Gradients Working Schema

Figure 4.6: Threaded Model Parallelism with Collocated Gradients Working
Schema

Figure 4.5 shows the training process without using threads. As seen in the

Figure 4.5, there are many time slots where processors stay idle. In Figure 4.6,

threads are used and whenever a processor becomes idle, it fetches the next

batch and continues to the training process. Thus, the training process becomes

fully utilized and each processor is applying operations for parameters only it is

assigned for. This process is also illustrated in Figure 4.7.

Considering the computational load balance and communication volume, parti-

tioning results are obtained from PatoH. To obtain partitioning results, a deep

convolutional neural network is modeled as fine-grain and coarse-grain hyper-

graphs. To summarize the work that is done so far, we obtained a hypergraph
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Figure 4.7: Threaded Model Parallelism with Collocated Gradients Working
Schema - Illustration

model of deep CNN, distributed the network among different processors by tak-

ing consideration of computational load balance and communication volume, and

fully utilized the run time by using asynchronous pipelined model parallelism.



Chapter 5

Experiment Results

In this chapter, different parallelism models on VGG16 network will be analyzed

and compared based on the computational load balance, communication volume,

run time performance, and convergence performance in reaching the target accu-

racy and loss.

5.1 Computational Load Balance and Commu-

nication Volume Analysis

With the properties described above, an input file has been created for the VGG16

network for both coarse-grain hypergraph and fine-grain hypergraph. Besides

those, several naive partitioning algorithms are also implemented to show that

hypergraph partitioning is better than naive methods in terms of computational

load balance and communication volume between partitions.

To model the vertex weights, a profiler run is executed on a single processor

using batch size of 32. Then for each layer inside the VGG16 network, a weight

is calculated using the time passed for a forward pass and backpropagation and

also using the number of floating-point operations. Since the input size and the

50
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number of filters are different for each layer, the weight of layers also differs from

each other.

Communication volumes are also calculated for batch size of 32 and value for

communication analysis on tables is in terms of megabytes (MB). Each layer needs

to communicate its output to the next layer and the volume of this communication

increases linearly with batch size. Therefore, it is important to place consecutive

layers into the same partition so that there will be less amount of communication.

It is also important to partition layers or filters so that each partition has a similar

amount of computational load.

In this experiment, SKL (Skylake Xeon) nodes are used where nodes have 112

logical cores each. The Xeon nodes are connected by Intel Omni-Path (Intel

OPA) 100 Series interconnect. All nodes are connected via 10Gb Ethernet. More

information about each node(processor) can be seen in Figure 5.1.

5.1.1 Layer-wise Partitioning

Layer-wise partitioning is to partition a deep neural network by distributing layers

among different processors. Layer-wise partitioning is widely used in the literature

and easy to implement. It requires a human expert to decide on which layers

should be assigned to different processors. To illustrate, it is possible to apply

layer-wise partitioning on a 16 layer VGG16 network by placing the first 8 layers

to one partition, and the last 8 layers to the other partition. However, this is one

of the very bad examples of layer-wise partitioning as the work that is done by

the first 8 layers is much more than the work that is done by the last 8 layers.

Therefore, there will be a computational load balance problem, and the second

processor will have to wait for long time for the first processor to finish its job.

Considering the above problem, layer-wise partitioning is applied to the VGG16

network where partition points are set recursively to obtain the lowest computa-

tional load balance (maximum work balance / average work balance) ratio. Then,

for each number of processors N, computational load balance analysis is done in
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Table 5.1, and communication volume analysis is done in Table 5.2.

Layer-wise Max Work Min Work Avg. Work Max/Min Max/avg Max*N
N=2 22,757 20,244 21,500 1.1 1.0 51,308
N=4 12,827 8,497 10,750 1.5 1.1 51,308
N=8 7,253 2,677 5,375 2.7 1.3 58,024
N=16 6,624 60 2,687 110.4 2.4 105,984

Table 5.1: Layer-wise Partitioning Computational Load Balance Analysis

Layer-wise Comm. Vol Max Comm. Avg Comm. Max/Avg comm
N=2 24.5 24.5 12.2 2.0
N=4 85.7 49.0 21.4 2.2
N=8 131.6 49.0 16.4 2.9
N=16 273.5 98.0 17.0 5.7

Table 5.2: Layer-wise Partitioning Communication Volume Analysis

Although computational load balance is not a problem for small values of N,

computational load balance starts to become a problem as we increase the number

of partitions. This is because the work that is done for a layer could be much

more than the work of any other layer. When N is equal to 16, this means that

each layer is assigned to a different partition. A huge difference in the amount of

work for different layers can be seen in Table 5.1 where N is equal to 16.

The main problem of layer-wise partitioning is the definition of the atomic task,

which is a convolution of a layer. Since a layer is not partitioned also within itself,

it is not easy to obtain good partitions. There are also other problems such as

it requires a human expert to decide on where to partition the network, and the

number of partitions is bounded by the number of layers. To solve the problems of

layer-wise partitioning, a deep neural network is modeled as different hypergraphs

where an atomic task is defined as the convolution of a filter or convolution of

a channel. Thus, a deep neural network becomes easier to be partitioned that

results in better computational load balance and communication volume.
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5.1.2 Filter-wise Horizontal Naive Partitioning

As described previously, a deep neural network is represented as a hypergraph for

coarse-grain partitioning. As a naive partitioning approach, horizontal partition-

ing can be used. What is meant by horizontal naive partitioning is that for each

value of N, the network is partitioned horizontally so that each partition has the

same amount of work. In short, filters inside each layer is partitioned among N

different parts equally.

Filter-wise Max. Work Min. Work Avg. Work Max./Min. Max./avg. Max.*N
N=2 21,500 21,500 21,500 1.0 1.0 43,001
N=4 10,750 10,750 10,750 1.0 1.0 43,001
N=8 5,375 5,375 5,375 1.0 1.0 43,001
N=16 2,687 2,687 2,687 1.0 1.0 43,001
N=32 1,343 1,343 1,343 1.0 1.0 43,001
N=64 671 671 671 1.0 1.0 43,001
N=128 335 335 335 1.0 1.0 43,001

Table 5.3: Filter-wise Horizontal Naive Partitioning Computational Load Balance
Analysis

Filter-wise Comm. Vol Max. Comm. Avg. Comm. Max./Avg. comm
N=2 484 98 242 0.4
N=4 1,144 294 286 1.0
N=8 2,307 686 288 2.3
N=16 4,556 1,470 284 5.1
N=32 9,016 3,038 281 10.7
N=64 17,916 6,174 279 22.0
N=128 35,707 12,446 278 44.6

Table 5.4: Filter-wise Horizontal Naive Partitioning Communication Volume
Analysis

From the computational load balance analysis in Table 5.3, it can be seen that

filter-wise horizontal naive partitioning is much better in terms of computational

load balance. This is because each part has the same amount of work. However,

as it can be seen in Table 5.4, partitioning a network horizontally results in a huge

amount of communication volume. When a network is partitioned horizontally,

there is communication at each consecutive layer as filters of those layers always

reside in different partitions. As the number of parts increases, the amount
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of communication volume also increases due to the increase in communication

between successive layers.

5.1.3 Filter-wise Incremental Naive Partitioning

In the filter-wise incremental naive partitioning, by starting from the first layer,

filters of the layers are assigned to a partition until total work of that partition

exceeds average work (total work / N). When a partition’s total work exceeds

average work, the next filters are assigned to a new partition until that partition’s

total work exceeds average work.

Filter-wise Max. Work Min. Work Avg. Work Max/Min Max/avg Max*N
N=2 21,524 21,495 21,510 1.0 1.0 43,049
N=4 10,767 10,732 10,755 1.0 1.0 43,069
N=8 5,419 5,289 5,377 1.0 1.0 43,352
N=16 2,720 2,535 2,688 1.0 1.0 43,528
N=32 1,362 1,161 1,344 1.1 1.0 43,597
N=64 919 144 682 6.3 1.3 57,957
N=128 715 144 352 4.9 2.0 87,317

Table 5.5: Filter-wise Incremental Naive Partitioning Computational Load Bal-
ance Analysis

Filter-wise Comm. Vol Max Comm. Avg Comm. Max/Avg comm
N=2 42 24.5 21.3 1.1
N=4 117 49.0 29.3 1.6
N=8 372 98.0 46.5 2.1
N=16 667 196.0 41.6 4.7
N=32 1,294 490.0 40.4 12.1
N=64 2,212 882.0 35.1 25.1
N=128 4,091 1568.0 33.5 46.7

Table 5.6: Filter-wise Incremental Naive Partitioning Communication Volume
Analysis

Similar to the previous partitioning algorithm, in the filter-wise incremental naive

partitioning, computational load imbalance is expected to be low as all of the

partitions’ work close to each other. As shown in Table 5.5, computational load

balance for different N values is low until N becomes higher values such as 64
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and 128. Therefore, considering the work balance, this method results in a good

partition.

When we compare the communication volume analysis of this method in Table

5.6 with the layer-wise partitioning method in Table 5.2, it can be seen that this

method does not result in better communication volumes. As stated previously,

work that is done by each layer can be very different from each other. Therefore,

applying incremental naive partitioning can result in many different partitions

between successive layers which results in higher communication volumes. How-

ever, the incremental naive partitioning algorithm obtains better computational

load imbalance ratios than layer-wise partitioning. The reason for this is that

the definition of an atomic task is smaller in naive partitioning and it is easier to

obtain lower computational load imbalance ratios.

The filter-wise incremental naive partitioning algorithm obtains much better com-

munication volume for all values of N compared to the horizontal naive partition-

ing algorithm. The main reason behind this is that there is not communication at

each successive layer in the incremental naive algorithm. Although incremental

naive algorithm obtains slightly worse computational load imbalance ratios com-

pared to the horizontal algorithm, values of computational load imbalance ratio

are very close to the 1. Therefore, the incremental naive partitioning algorithm

becomes better than the horizontal naive partitioning algorithm for having a bet-

ter combination of communication volumes and computational load imbalance

ratios.

5.1.4 Channel-wise Incremental Naive Partitioning

The same incremental naive partitioning algorithm is applied to fine-grain hy-

pergraph. The result of horizontal naive partitioning for fine-grain and coarse-

grain hypergraph is the same. As expected, the channel-wise incremental naive

partitioning algorithm also results in similar computational load balance and

communication volume results with the filter-wise incremental naive partitioning

algorithm. This is because the work of the layers is the same for both hypergraph
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models. Thus, applying a naive partitioning algorithm on these methods results

in similar results.

Channel-wise Max Work Min Work Avg. Work Max/Min Max/avg Max*N
N=2 21,507 21,231 21,369 1.0 1.0 43,015
N=4 10,753 10,477 10,684 1.0 1.0 43,015
N=8 5,378 5,099 5,342 1.0 1.0 43,027
N=16 2,689 2,410 2,671 1.1 1.0 43,030
N=32 1,345 1,061 1,335 1.2 1.0 43,060
N=64 915 144 667 6.3 1.3 58,621
N=128 576 144 336 4.0 1.7 73,226

Table 5.7: Channel-wise Incremental Naive Partitioning Computational Load
Balance Analysis

Channel-wise Comm. Vol Max Comm. Avg Comm. Max/Avg comm
N=2 42 24.5 21.4 1.1
N=4 118 49.0 29.5 1.6
N=8 373 98.0 46.6 2.1
N=16 663 196.0 41.4 4.7
N=32 1,275 490.0 39.8 12.2
N=64 2,371 980.0 37.0 26.4
N=128 4,471 1960.0 35.2 55.6

Table 5.8: Channel-wise Incremental Naive Partitioning Communication Volume
Analysis

There can be numerous algorithms that can be applied to both hypergraph mod-

els. However, these algorithms should take consideration of nets which denote

communication patterns between different vertices. Otherwise, it will be hard

to obtain good computational load balance and communication volume at the

same time. For this purpose, a hypergraph partitioning tool Patoh [1] is used as

it tries to minimize both communication volume and computational load imbal-

ance by taking consideration of nets and communication patterns. In the next

sections, results obtained from Patoh for fine-grain and coarse-grain hypergraphs

are presented.
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5.1.5 Coarse-grain Hypergraph Partitioning

As described in previous sections, the VGG16 network is modeled as a coarse-

grain hypergraph and it is partitioned using Patoh. Resulting computational

load balance analysis and communication volume analysis can be seen in Table

5.9 and Table 5.10. There is a parameter that can be tuned in Patoh which is

the final imbalance that denotes the imbalance ratio of the final partition. The

tables below are obtained using the default final imbalance ratio which is 0.1.

For several other results that are obtained using different final imbalance ratios,

please see Appendix A.

Coarse-grain Max Work Min Work Avg. Work Max/Min Max/avg Max*N
N=2 21,825 21,195 21,510 1.0 1.0 43,650
N=4 11,123 10,189 10,755 1.0 1.0 44,494
N=8 5,740 5,012 5,377 1.1 1.0 45,924
N=16 3,177 2,544 2,688 1.2 1.1 50,838
N=32 1,691 1,242 1,344 1.3 1.2 54,113
N=64 951 620 672 1.5 1.4 60,897
N=128 623 144 336 4.3 1.8 79,823

Table 5.9: Coarse-grain Hypergraph Partitioning Computational Load Balance
Analysis

Coarse-grain Comm. Vol Max Comm. Avg Comm. Max/Avg comm
N=2 27 24.5 13.7 1.7
N=4 61 24.5 15.3 1.5
N=8 298 98.0 37.3 2.6
N=16 661 196.0 41.3 4.7
N=32 1,300 490.0 40.6 12.0
N=64 2,388 980.0 37.3 26.2
N=128 4,604 1,960.0 35.9 54.4

Table 5.10: Coarse-grain Hypergraph Partitioning Communication Volume Anal-
ysis

When computational load balance and communication volume metrics of coarse-

grain hypergraph partitioning is compared to the both of the filter-wise naive

partitioning methods given above, it can be seen that hypergraph partitioning

results in a better combination of computational load balance and communication

volume. Although both naive methods are targeting perfect computational load
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balance and achieve better computational load balance ratios, it is important

to have low computational load imbalance while keeping communication volume

as low as possible. In this manner, it can be said that coarse-grain hypergraph

partitioning obtains better results.

It is also important to compare coarse-grain hypergraph partitioning with layer-

wise partitioning. This is because layer-wise partitioning is the model parallelism

method that is used most of the time. In terms of communication volume, both

of the methods achieve a better result than others at various values of N. In terms

of computational load balance, for each value of N, the coarse-grain hypergraph

partitioning algorithm achieves low computational load imbalances.

5.1.6 Fine-grain Hypergraph Partitioning

As described earlier, VGG16 network is transformed into fine-grain hypergraph

and its partitioning results obtained using Patoh can be seen in Table 5.11 and Ta-

ble 5.12. Similar to the coarse-grain version, the fine-grain hypergraph model also

achieves a better combination of computational load balance and communication

volume compared to the naive methods. When we compare two different hy-

pergraph methods, the fine-grain hypergraph achieves better computational load

balance ratios than the coarse-grain hypergraph, as its definition of an atomic

task is smaller. Therefore, it is easier to partition. In terms of communication

volume, both of the methods achieve better results than the others for various

values of N. One disadvantage of the fine-grain hypergraph model is it is harder

to implement than the coarse-grain hypergraph model using deep learning frame-

works. That is because implementing the convolution of each channel requires

much more optimization than the convolution of each filter.
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Fine-grain Max Work Min Work Avg. Work Max/Min Max/avg Max*N
N=2 21,761 20,978 21,369 1.0 1.0 43,522
N=4 11,262 10,165 10,684 1.1 1.0 45,049
N=8 5,516 5,171 5,342 1.0 1.0 44,129
N=16 2,807 2,563 2,671 1.0 1.0 44,926
N=32 1,552 1,105 1,335 1.4 1.1 49,681
N=64 690 624 667 1.1 1.0 44,160
N=128 546 144 333 3.7 1.6 69,888

Table 5.11: Fine-grain Hypergraph Partitioning Computational Load Balance
Analysis

Fine-grain Comm. Vol Max Comm. Avg Comm. Max/Avg comm
N=2 27.5 24.5 13.7 1.7
N=4 56.3 24.5 14.0 1.7
N=8 307.3 98.0 38.4 2.5
N=16 549.2 196.0 31.8 6.1
N=32 916.8 197.5 28.6 6.8
N=64 1,340.1 275.6 20.9 13.1
N=128 1,964.0 444.0 15.3 28.9

Table 5.12: Fine-grain Hypergraph Partitioning Communication Volume Analysis

5.1.7 Data Parallelism

As described in the problem statement section, data parallelism is the other and

the most used way of distributing deep neural networks. It is not meaningful

to analyze data parallelism in terms of computational load balance as all of the

replicas contain the same network model. However, we can analyze data paral-

lelism in terms of communication volume and compare it with communication

volumes obtained from hypergraph partitioning algorithms.

Table 5.13 shows output size, memory consumption, and number of parameters

for each layer in VGG16. Output size shows the number of activations in every

layer. During the training of a neural network, activations of early layers are

also kept in the memory as they will be needed during the backpropagation

phase. Parameters show the number of parameters the network contains. These

parameters are updated using their gradients during backpropagation. Therefore,

for deep networks such as VGG16, there should be enough amount of memory
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Layer Output Size Memory Parameters
INPUT [224x224x3] 224*224*3 = 150K 0
CONV1 [224x224x64] 224*224*64 = 3.2M 3*3*3*64 = 1,728
CONV2 [224x224x64] 224*224*64 = 3.2M 3*3*64*64 = 36,864
POOL1 [112x112x64] 112*112*64 = 800K 0
CONV3 [112x112x128] 112*112*128 = 1.6M 3*3*64*128 = 73,728
CONV4 [112x112x128] 112*112*128 = 1.6M 3*3*128*128 = 147,456
POOL2 [56x56x128] 56*56*128 = 400K 0
CONV5 [56x56x256] 56*56*256 = 800K 3*3*128*256 = 294,912
CONV6 [56x56x256] 56*56*256 = 800K 3*3*256*256 = 589,824
CONV7 [56x56x256] 56*56*256 = 800K 3*3*256*256 = 589,824
POOL3 [28x28x256] 28*28*256 = 200K 0
CONV8 [28x28x512] 28*28*512 = 400K 3*3*256*512 = 1,179,648
CONV9 [28x28x512] 28*28*512 = 400K 3*3*512*512 = 2,359,296
CONV10 [28x28x512] 28*28*512 = 400K 3*3*512*512 = 2,359,296
POOL4 [14x14x512] 14*14*512 = 100K 0
CONV11 [14x14x512] 14*14*512 = 100K 3*3*512*512 = 2,359,296
CONV12 [14x14x512] 14*14*512 = 100K 3*3*512*512 = 2,359,296
CONV13 [14x14x512] 14*14*512 = 100K 3*3*512*512 = 2,359,296
POOL5 [7x7x512] 7*7*512 = 25K 0
FC1 [1x1x4096] 4096 7*7*512*4096 = 102,760,448
FC2 [1x1x4096] 4096 4096*4096 = 16,777,216
FC3 [1x1x1000] 1000 4096*1000 = 4,096,000
Total 93 MB / image 138,357,544 (with biases)

Table 5.13: VGG16 Memory and Parameter Analysis

to keep the parameters. Besides, batch size should be small so that all of the

memory consumed by the network should fit into RAM.

5.1.8 Hypergraph Partitioning Based Model Parallelism

vs Data Parallelism

In data parallelism, all of the parameters are needed to be communicated between

processors after every iteration. The amount of communication for the total

number of parameters is 527.792 MB for the VGG16 network given above as there

are 138,357,544 parameters and each parameter is 32 bits. If there are n processors

and collective communication primitives are used instead of parameter server, the
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formula for communication volume becomes 2∗(n−1)∗thenumberofparameters.
To simplify, if we denote the number of parameters as p, the amount of the

communication for data parallelism after each iteration is 2 ∗ (n − 1) ∗ p. This

shows that the amount of communication is related to the number of processors

and the size of the parameters. Besides, since the number of iterations decreases

as batch size increases, the amount of communication is also related to the batch

size for one epoch. However, increasing the batch size can also lead to late

convergence of the network and may not be possible as it is hard to fit a large

network with big batch size into a single machine’s memory.

To compare communication volume between data parallelism and hypergraph

partitioning model parallelism, let’s say we have data of 64000 images with shape

[224x224x3] each. In Table 5.10, communication volume for different values of

N with batch size 32 for only forward pass is given. Those communication vol-

ume values needed to be doubled for complete training procedures with forward

pass and backpropagation. Then, we can compare the communication volume

for different distributed neural network methods for 1 epoch using the VGG16

network.

In Table 5.14, communication volume comparison is done for data parallelism

and hypergraph partitioning model parallelism using the experiment setup given

above. For all number of processors and batch size values, hypergraph partition-

ing obtain better communication volumes than data parallelism. The proposed

method in this thesis decreases the communication volume that exists in data

parallelism by 93.315% on average.

5.2 Run Time Analysis

In the previous section, different methods for distributed deep neural network

training are analyzed in terms of computational load balance and communication

volume. In this section, the run time of the aforementioned methods will be

analyzed based on different batch sizes, and different number of processors. In
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Comm. Volume Data Parallelism Hypergraph Partitioning Comm. Reduce
N = 2, BS = 16 4,123 GB 107 GB 97%
N = 2, BS = 32 2,061 GB 107 GB 94%
N = 2, BS = 64 1,030 GB 107 GB 89%
N = 4, BS = 16 12,370 GB 239 GB 98%
N = 4, BS = 32 6,185 GB 239 GB 96%
N = 4, BS = 64 3,092 GB 239 GB 92%
N = 8, BS = 16 28,863 GB 1167 GB 95%
N = 8, BS = 32 14,431 GB 1167 GB 91%
N = 8, BS = 64 7,215 GB 1167 GB 83%
Average 93%

Table 5.14: VGG16 Communication Volume Comparison for 1 Epoch

these experiments, a subset of data from the Imagenet dataset is used with 10240

images and run time for completing 10 epochs are measured in terms of seconds.

In this experiment, SKL (Skylake Xeon) nodes are used where nodes have 112

logical cores each. The Xeon nodes are connected by Intel Omni-Path (Intel

OPA) 100 Series interconnect. All nodes are connected via 10Gb Ethernet. More

information about each node(processor) can be seen in Figure 5.1.

5.2.1 Single Processor

In Table 5.15, a single processor is used to train VGG16 network for 10 epochs

with 10240 images. Increasing batch size also decreases the run time as there will

be less number of backpropagation stage and using higher batch sizes does not

increase run time linearly as hardware is more optimized for larger operations.

For example, doubling the batch size does not double the run time of forward pass

and backpropagation. Although increasing batch size decreases the overall run

time, it negatively affects convergence. When the batch size is high, calculated

gradients become less representative for the given batch as there are data for

many different classes in a single batch. Therefore, it takes much more time for

the network to converge to a global minimum using a big batch size.



CHAPTER 5. EXPERIMENT RESULTS 63

5.2.2 Model Parallelism

There are various types of model parallelism methods as described earlier. In this

section, these different methods will be compared based on run time.

As expected, layer-wise parallelism achieves faster run time results than the single

processor and run time results are shown in Table 5.15.

As shown in Table 5.15, the incremental naive partitioning algorithm on the

coarse-grain hypergraph model achieves slower run time results than layer-wise

partitioning. Both of the methods just focus on computational load balance

without taking into consideration of the communication patterns inside a deep

neural network. This shows us that partitioning a network using incremental

naive method does not lead to better run time results.

Table 5.15 shows the run time results of the coarse-grain hypergraph partitioning.

When we compare it with an incremental naive method, hypergraph partitioning

obtains far better results for most of the N and batch size values. This shows

that even if a deep neural network is converted into a hypergraph, communi-

cation patterns should be taken into consideration while partitioning it. When

we compare hypergraph partitioning run time results with layer-wise partitioning

run time results, it is seen that hypergraph partitioning obtains faster results

again for most of the cases. Therefore, during accuracy and loss convergence per-

formance tests between data parallelism and model parallelism, the coarse-grain

hypergraph partitioned model parallelism will be used.

5.2.3 Data Parallelism

In this section, run time analysis of different data parallelism techniques will

be done using the same setup used for model parallelism. As stated earlier,

running 10 epochs faster does not mean reaching to the target accuracy faster.

Therefore, it is not appropriate to say whether model parallelism is better than

data parallelism in terms of epoch run times alone. Each parallelism technique
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will be compared within itself with various changes.

The difference between asynchronous and synchronous data parallelism is de-

scribed earlier. There are several parameters that we can change in data par-

allelism such as the number of parameter servers and parameter distribution

algorithm. In one technique in data parallelism, we can set 1 parameter server so

that each worker sends its updates to that parameter server and receives updated

weights from there also. In another technique, instead of using a parameter server,

each worker can behave like a small parameter server. This means that we can

partition the parameters between different workers so that each worker is respon-

sible for the update of the subset of parameters. While distributing parameters

we can take consideration of different distribution algorithms. The first algorithm

performs in a round-robin manner. Each parameter inside a network is assigned

to workers iteratively. However, this also can lead to an imbalanced distribution

of parameters as each parameter’s weight is different from each other. The sec-

ond algorithm performs greedily. Each parameter is assigned to the worker which

has the minimum amount of assignments so far. Thus, more balanced parameter

distribution is obtained between workers.

In Table 5.15, it can be seen that synchronous data parallelism achieves faster

run times when the parameter server is distributed among workers. This shows

that in synchronous data parallelism, where each worker waits for each other to

complete updates, the distributed parameter server reduces the communication

time between workers and achieves faster results. The same observation can

not be made for asynchronous data parallelism as none of the workers wait for

each other. Since we observed that the greedy distribution of parameters leads

to better results than round-robin distribution, Table 5.15 provides the results

obtained by greedy distribution for results using a distributed parameter server.



CHAPTER 5. EXPERIMENT RESULTS 65

Run Time Analysis BS=16 BS=32 BS=64 BS=128 BS=256 BS=512

N=1
Single
Processor

9405 9536 6265 5420 5150 4842

N=2

Layer-wise 5431 4718 3831 3560 3293 3079
Filter-wise 5506 5002 4392 3557 3503 3301
Coarse-grain
Hypergraph

5630 4754 4012 3527 3276 2862

Async. DP
(1PS)

10256 6736 4758 3700 3106 2705

Sync. DP
(1PS)

10731 7231 5068 3938 3244 2790

Async. DP
(Dist. PS)

9757 6704 4833 3797 3214 2737

Sync. DP
(Dist. PS)

10140 6906 4979 3875 3176 2934

N=4

Layer-wise 3263 2801 2478 2209 2100 1949
Filter-wise 3856 3407 2915 2672 2529 2313
Coarse-grain
Hypergraph

3306 2662 2050 1971 1814 1682

Async. DP
(1PS)

5361 3411 2366 1868 1569 1351

Sync. DP
(1PS)

6657 4181 2796 2120 1679 1510

Async. DP
(Dist. PS)

5007 3371 2421 1864 1567 1367

Sync. DP
(Dist. PS)

5898 3855 2628 2040 1684 1431

Table 5.15: VGG16 Per Epoch Run Time Analysis of Different Parallelism Meth-
ods in Seconds

5.2.4 Hypergraph Partitioning Based Model Parallelism

vs Data Parallelism

It is possible to compare model parallelism which is applied using coarse-grain

hypergraph partitioning and data parallelism in terms of run times using Table

5.15. For small batch size values such as 16, 32, 64, model parallelism achieves

faster run times for one epoch. This is because the number of backpropagation

increases when batch size is small and thus the number of communication for

data parallelism increases. Therefore, data parallelism becomes slower than the
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model parallelism for small batch sizes. For bigger batch size values such as

128, 256, 512, data parallelism becomes faster than model parallelism. Because,

the number of backpropagation and amount of communication decreases for data

parallelism, while the amount of communication stays same for model parallelism.

However, having statistically efficient weights during training is more important

than the fast run time of one epoch. What is meant by statistically efficient

weights is that during the training of the neural network, always having the most

up to date weights is important to achieve fast convergence. Therefore, in the

next section, the convergence performance of model parallelism with coarse-grain

hypergraph partitioning will be compared with data parallelism.

5.3 Accuracy and Loss Convergence Results

So far, different distributed deep neural network training methods are analyzed

based on computational load balance, communication volume and epoch run time.

In this section, all of these methods will be analyzed based on convergence per-

formance, which is the most important run-time metric. In this experiment, 50

subclasses of the imagenet dataset are used to train a VGG16 network using dif-

ferent distributed neural network training methods. The reason for using a subset

of imagenet is that a training epoch of the VGG16 network takes approximately

30 hours on a single processor using CPU. When we consider that there should

be hundreds of epochs to reach the benchmark accuracy of VGG16, training of

the network will take months. Additionally, reducing the number of classes in

the dataset causes VGG16 to overfit. To prevent the network from overfitting,

some regularization methods can be applied without changing the neural net-

work structure. However, these regularization methods can be in addition to any

of the methods. Therefore, without changing network structure and applying

regularization methods, training accuracy and loss values are reported in this

section.

In this experiment, SKL (Skylake Xeon) nodes are used where nodes have 112

logical cores each. The Xeon nodes are connected by Intel Omni-Path (Intel
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Figure 5.1: Node Specifications

OPA) 100 Series interconnect. All nodes are connected via 10Gb Ethernet. More

information about each node(processor) can be seen in Figure 5.1. Also, run time

analysis that was previously presented in Section 5.2 also obtained using the same

cluster.

Figure 5.2: VGG16 Training Accuracy and Loss

In Figure 5.2, change in the training accuracy and loss are shown until accuracy

exceeds the value of 90%. It takes almost 122 hours for a single processor to

achieve the target accuracy, while the coarse-grain hypergraph model parallelism
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achieves the target accuracy in almost 44 hours. This shows that the coarse-

grain hypergraph model parallelism speeds up the training process ∼3x times

using 4 processor. When different data parallelism techniques are compared,

asynchronous data parallelism achieved faster convergence than synchronous data

parallelism in this experiment setup, as also stated by other works [2, 15, 25]. It

is also possible to compare the hypergraph partitioning based model parallelism

with data parallelism techniques. When N is equal to 2, hypergraph partition-

ing model parallelism achieves ∼1.2x times faster convergence compared to the

asynchronous data parallelism, and ∼2.25x times faster convergence compared to

the synchronous data parallelism. When N is equal to 4, hypergraph partition-

ing model parallelism achieves ∼1.5x times faster convergence compared to the

asynchronous data parallelism, and ∼3.5x times faster convergence compared to

the synchronous data parallelism. This shows that for each value of N in Figure

5.2, hypergraph partitioning model parallelism achieves faster convergence than

any other data parallelism technique. The performance gap between these two

methods also increases as the value of N increases.
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Conclusion

Deep learning has become very popular because of its success in various fields.

These successes have been mainly owing to the model’s capacity to learn and

represent complex functions. Besides, it has been shown that increasing the size

of the models has a big impact on the performance. However, increasing the size

of the model also causes it to not fit into a single machine’s memory and training

takes a very long time. There are two main efforts to solve this problem: model

parallelism and data parallelism.

It is shown that the current model parallelism techniques have limitations, such

as layerwise partitioning which causes high computational load imbalance and

communication volume. In this thesis, new model parallelism techniques based

on coarse-grain hypergraph and fine-grain hypergraph models are proposed to

solve the limitations of traditional model parallelism. The first problem of tradi-

tional model parallelism is that it requires a human expert to decide on where to

partition layers. Secondly, as long as a model is partitioned by placing a group

of layers among different parts, having a high computational load imbalance is

inevitable as work that is done by each layer is very different from each other.

Besides the high computational load imbalance, the current model parallelism

methods may also cause high communication volume. In this thesis, we pro-

posed new model parallelism techniques to automatically partition the network
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based on work that is done by each filter or channel and communication pattern

inside the network. Thus, the proposed methods in this thesis obtain a better

computational load imbalance while keeping communication volume low.

Data parallelism also has its limitations. The first one is that if the model does

not fit into a single machine’s memory, it also won’t fit into the memory of replicas

that are used in data parallelism. Therefore, the batch size has to be reduced to be

able to take advantage of data parallelism. Also, since the size of the model is huge

and there are millions of parameters, the amount of communication that is done

in data parallelism is huge and time consuming. The model parallelism techniques

proposed in this work reduce the communication volume of data parallelism by

∼93%. Finally, it is also shown that proposed methods reach the target accuracy

faster than any data parallelism technique during training.

6.1 Future Work

Several future works can improve the results shown in this thesis.

• The same hypergraph partitioning model parallelism based algorithms

should be applied on a cluster of GPUs. New algorithms proposed in this

thesis are mainly bound by the computation power. If GPUs are used,

those algorithms will perform better. Data parallelism techniques will have

communication volume as the bottleneck even if computational power is

increased. Therefore, the performance gap between the hypergraph par-

titioning model parallelism and data parallelism could become larger for

experiments on a cluster of GPUs. Also, to report test accuracy and loss

convergence performance results on a complete Imagenet dataset, GPU us-

age is a necessity. This is because it takes a very long time to train a deep

neural network using the Imagenet dataset with a CPU cluster.

• Implementation of a fine-grain hypergraph is not presented in this thesis

and it should be implemented. However, this implementation requires too
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much effort on optimization as there are millions of connections and com-

munications.

• Besides coarse-grain and fine-grain hypergraph models, there should be dif-

ferent hypergraph models to represent a convolutional neural network. For

these new hypergraph models, the definition of atomic tasks should be dif-

ferent based on the problem.

• Hypergraph models of different types of convolutional neural networks

should be done such as inception modules in [37] or residual connections in

[13].

• Besides convolutional neural networks, there should be hypergraph models

for deep neural networks that contain different types of layers and connec-

tion patterns such as LSTMs.
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Appendix A

Hypergraph Partitioning

Statistics

Coarse-grain Max Work Min Work Avg. Work Max/Min Max/avg Max*N
N=2 21,825 21,195 21,510 1.0 1.0 43,650
N=4 11,123 10,576 10,755 1.0 1.0 44,494
N=8 5,844 5,237 5,377 1.1 1.0 46,752
N=16 3,177 2,587 2,688 1.2 1.1 50,838
N=32 1,659 1,242 1,344 1.3 1.2 53,100
N=64 939 621 672 1.5 1.3 60,117
N=128 584 78 336 7.4 1.7 74,800

Table A.1: Coarse-grain Hypergraph Partitioning Work Imbalance Analysis with
Final Imbalance = 0.03

Coarse-grain Max Work Min Work Avg. Work Max/Min Max/avg Max*N
N=2 21,825 21,195 21,510 1.0 1.0 43,650
N=4 11,280 9,914 10,755 1.1 1.0 45,121
N=8 5,654 4,844 5,377 1.1 1.0 45,238
N=16 3,177 2,403 2,688 1.3 1.1 50,838
N=32 1,714 1,252 1,344 1.3 1.2 54,874
N=64 960 612 672 1.5 1.4 61,454
N=128 599 144 336 4.1 1.7 76,743

Table A.2: Coarse-grain Hypergraph Partitioning Work Imbalance Analysis with
Final Imbalance = 0.15
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Coarse-grain Max Work Min Work Avg. Work Max/Min Max/avg Max*N
N=2 21,825 21,195 21,510 1.0 1.0 43,650
N=4 11,545 9,649 10,755 1.1 1.0 46,183
N=8 5,818 4,807 5,377 1.2 1.0 46,548
N=16 2,951 2,328 2,688 1.2 1.0 47,220
N=32 1,643 1,234 1,344 1.3 1.2 52,578
N=64 995 606 672 1.6 1.4 63,741
N=128 606 144 336 4.2 1.8 77,634

Table A.3: Coarse-grain Hypergraph Partitioning Work Imbalance Analysis with
Final Imbalance = 0.2

Fine-grain Max Work Min Work Avg. Work Max/Min Max/avg Max*N
N=2 22,004 20,734 21,369 1.0 1.0 44,009
N=4 11,004 10,386 10,684 1.0 1.0 44,019
N=8 5,449 5,236 5,342 1.0 1.0 43,597
N=16 2,709 2,619 2,671 1.0 1.0 43,354
N=32 1,817 851 1,335 2.1 1.3 58,156
N=64 690 638 667 1.0 1.0 44,160
N=128 546 144 333 3.7 1.6 69,888

Table A.4: Fine-grain Hypergraph Partitioning Work Imbalance Analysis with
Final Imbalance = 0.03

Fine-grain Max Work Min Work Avg. Work Max/Min Max/avg Max*N
N=2 23,107 19,631 21,369 1.1 1.0 46,215
N=4 11,665 10,097 10,684 1.1 1.0 46,663
N=8 5,793 4,880 5,342 1.1 1.0 46,351
N=16 2,787 2,526 2,671 1.1 1.0 44,606
N=32 1,409 1,267 1,335 1.1 1.0 45,092
N=64 700 598 667 1.1 1.0 44,863
N=128 546 144 333 3.7 1.6 69,888

Table A.5: Fine-grain Hypergraph Partitioning Work Imbalance Analysis with
Final Imbalance = 0.15
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Fine-grain Max Work Min Work Avg. Work Max/Min Max/avg Max*N
N=2 22,708 20,031 21,369 1.1 1.0 45,416
N=4 11,012 10,353 10,684 1.0 1.0 44,048
N=8 5,604 5,104 5,342 1.0 1.0 44,833
N=16 2,802 2,573 2,671 1.0 1.0 44,833
N=32 1,463 1,061 1,335 1.3 1.0 46,821
N=64 711 595 667 1.1 1.0 45,532
N=128 546 144 333 3.7 1.6 69,888

Table A.6: Fine-grain Hypergraph Partitioning Work Imbalance Analysis with
Final Imbalance = 0.2

Coarse-grain Comm. Vol Max Comm. Avg Comm. Max/Avg Comm.
N=2 27.5 24.5 13.7 1.7
N=4 63.4 24.5 15.8 1.5
N=8 303.1 98.0 37.8 2.5
N=16 659.5 196.0 41.2 4.7
N=32 1,302.1 490.0 40.6 12.0
N=64 2,477.8 1,078.0 38.7 27.8
N=128 4,634.2 1,960.0 36.2 54.1

Table A.7: Coarse-grain Hypergraph Partitioning Communication Volume Anal-
ysis with Final Imbalance = 0.03

Coarse-grain Comm. Vol Max Comm. Avg Comm. Max/Avg Comm.
N=2 27.5 24.5 13.7 1.7
N=4 59.8 24.5 14.9 1.6
N=8 293.1 98.0 36.6 2.6
N=16 655.7 196.0 40.9 4.7
N=32 1,288.9 490.0 40.2 12.1
N=64 2,430.8 980.0 37.9 25.8
N=128 4,582.7 1,960.0 35.8 54.7

Table A.8: Coarse-grain Hypergraph Partitioning Communication Volume Anal-
ysis with Final Imbalance = 0.15
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Coarse-grain Comm. Vol Max Comm. Avg Comm. Max/Avg Comm.
N=2 27.5 24.5 13.7 1.7
N=4 58.4 24.5 14.6 1.6
N=8 282.4 98.0 35.3 2.7
N=16 629.9 196.0 39.3 4.9
N=32 1,284.0 392.0 40.1 9.7
N=64 2,479.5 980.0 38.7 25.2
N=128 4,510.6 1,960.0 35.2 55.6

Table A.9: Coarse-grain Hypergraph Partitioning Communication Volume Anal-
ysis with Final Imbalance = 0.2

Fine-grain Comm. Vol Max Comm. Avg Comm. Max/Avg Comm.
N=2 26.6 12.2 13.3 0.9
N=4 61.2 24.5 15.3 1.5
N=8 288.9 98.0 36.1 2.7
N=16 540.0 196.0 33.4 5.8
N=32 812.9 196.0 22.2 7.7
N=64 1,344.0 298.5 20.3 14.6
N=128 2,114.1 457.8 16.5 27.7

Table A.10: Fine-grain Hypergraph Partitioning Communication Volume Analy-
sis with Final Imbalance = 0.03

Fine-grain Comm. Vol Max Comm. Avg Comm. Max/Avg Comm.
N=2 15.3 12.2 7.6 1.6
N=4 61.0 24.5 15.2 1.6
N=8 260.0 98.0 31.7 3.0
N=16 426.2 196.0 35.0 5.5
N=32 891.2 196.0 27.4 7.1
N=64 1,382.8 290.9 21.0 13.8
N=128 1,971.1 418.0 15.3 27.1

Table A.11: Fine-grain Hypergraph Partitioning Communication Volume Analy-
sis with Final Imbalance = 0.15
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Fine-grain Comm. Vol Max Comm. Avg Comm. Max/Avg Comm.
N=2 24.5 24.5 12.2 2.0
N=4 72.8 24.5 13.7 1.7
N=8 303.2 98.0 37.9 2.5
N=16 532.6 196.0 33.1 5.9
N=32 851.4 196.0 26.2 7.4
N=64 1,410.2 272.5 21.5 12.6
N=128 2,123.8 526.7 16.5 31.7

Table A.12: Fine-grain Hypergraph Partitioning Communication Volume Analy-
sis with Final Imbalance = 0.2


