
EPSILON BAYESIAN IMPLEMENTATION

A Master's Thesis

by
EMRE ERG�N

Department of
Economics

�hsan Do§ramac� Bilkent University
Ankara
July 2014

To my family

EPSILON BAYESIAN IMPLEMENTATION

The Graduate School of Economics and Social Sciences
of

�hsan Do§ramac� Bilkent University

by

EMRE ERG�N

In Partial Ful�llment of the Requirements For the Degree
of

MASTER OF ARTS

in

THE DEPARTMENT OF
ECONOMICS

�HSAN DO�RAMACI B�LKENT UNIVERSITY
ANKARA

JULY 2014

I certify that I have read this thesis and have found that it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Arts in Economics.

Assist. Prof. Dr. Nuh Aygün Dalk�ran

Supervisor

I certify that I have read this thesis and have found that it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Arts in Economics.

Assist. Prof. Dr. Rahmi �lk�l�ç

Examining Committee Member

I certify that I have read this thesis and have found that it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Arts in Economics.

Assist. Prof. Dr. Burcu Esmer

Examining Committee Member

Approval of the Graduate School of Economics and Social Sciences

Prof. Dr. Erdal Erel

Director

ABSTRACT

EPSILON BAYESIAN IMPLEMENTATION

ERG�N, Emre Ergin

M.A., Department of Economics

Supervisor: Assist. Prof. Nuh Aygün Dalk�ran

July 2014

We provide necessary and su�cient conditions for epsilon-Bayesian Imple-

mentation. Results of Jackson (1991) are extended upon the environments

where the agents has some level of bounded rationality. Yet, his necessity

condition, Bayesian Monotonicity is not nested with our necessity condition,

epsilon-Bayesian Monotonicity.

Keywords: Bayesian Implementation, Epsilon Equilibrium, Bayesian Mono-

tonicity

iii

ÖZET

EPS�LON BAYEZYEN UYGULAMA

ERG�N, Emre

Yüksek Lisans, Ekonomi Bölümü

Tez Yöneticisi: Yard. Doç Dr. Nuh Aygün Dalk�ran

Temmuz 2014

Epsilon-Bayezyen Uygulama için gerek ve yeter ko³ullar sunuyoruz. Jackson

(1991)'in sonuçlar�n� ki³ilerin belli bir seviyede irrasyonelli§i oldu§u durum-

lara geni³letiyoruz. Ancak, onun gerek ko³ulu, Bayezyen Monotonlukla, bizim

gerek ko³ulumuz epsilon-Bayezyen Monotonluk birbirini gerektirmiyor.

Anahtar Kelimeler: Bayezyen uygulama, Epsilon Denge, Bayezyen monoton-

lu§u.

iv

ACKNOWLEDGEMENTS

I am grateful to Semih Koray and Kemal Yildiz for their invaluable com-

ments. My supervisor, Nuh Aygün Dalkiran helped me to overcome many

adversities on my path, and I am indebted to him.

I would like to thank my family for their unconditional love and continuous

support. Without them, this study and I would be incomplete.

Finally, but not least, I thank TÜB�TAK �The Scienti�c & Technologi-

cal Research Council of Turkey" for the �nancial support during my study.

However, of course, all errors and omissions are mine.

v

TABLE OF CONTENTS

ABSTRACT . iii

ÖZET . iv

ACKNOWLEDGEMENTS . v

TABLE OF CONTENTS . vi

LIST OF TABLES . vii

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: PRELIMINARIES 4

2.1 Preliminaries . 4

2.2 The conditions . 6

CHAPTER 3: MAIN RESULTS 8

CHAPTER 4: EXAMPLES . 14

4.1 BM does not imply EBM . 14

4.2 EBM does not imply BM . 15

CHAPTER 5: CONCLUSION 17

BIBLIOGRAPHY . 19

APPENDIX . 21

A The Code . 22

vi

LIST OF TABLES

4.1 Payo� matrix and social choice set for Example 4.1 15

4.2 Payo� matrix and social choice set for Example 4.2 16

vii

CHAPTER 1

INTRODUCTION

After society has agreed upon a social choice rule, there is no certain way

to implement that rule correctly, since preferences can only be considered

through announcements. Agents may report their preferences falsely, accord-

ing to a strategy that ensures de�ned social choice rule bene�t them. Our

interest in this topic stems from the casual exposure to authority's decision on

some alternatives in daily life. For example, who will get which teaching as-

sistantship in an e�cient way, when the preferences of each graduate student

is unknown? Is there a way to ensure that each student won't manipulate

the found system?

Since we don't want to have unwanted strategy pro�les as equilibrium,

our work deals with the problem of full implementation. Gibbard (1973)

and Satterthwaite (1975) showed that there can be no strategy-proof game

which is not dictatorial following the work of Arrow (1963). So, after Groves

and Ledyard (1977), Hurwicz (1979), and Schmeidler (1980) which include

constructing nondictatorial game mechanisms in economic environments, im-

plementation literature highly depends on Nash Equilibrium. Maskin(1999)

includes an elegant constructive proof of existence of a mechanism that im-

plements a social choice rule via Nash Equilibrium.

When there is incomplete information, agents must also speculate about

1

other agents' true preferences when deciding their own announcement. That

brings forward Bayesian Equilibrium concept. Postlewaite and Schmeidler

(1986) and Palfrey and Srivastava (1987) analyzed incomplete information

case in nonexclusive information assumption i.e. with N agents, every group

of N-1 agents collectively has complete information. They found that, only

Bayesian monotonicity will su�ce for that kind of implementation. Palfrey

and Srivastava (1989) analyzed exclusive information case, and found that a

new condition is necessary for such implementation: Incentive Compatibility,

and a stronger version of it is su�cient for full implementation. Jackson

(1991) extends their work, and �nds necessary and su�cient conditions with

possibility of externality and noneconomic environments.

In bounded rationality, there is a possibility that agents will not move

according to their best interest. Considering many experimental �ndings,

and the general debate on whether Nash Equilibrium is a good representa-

tion on reality, bounded rationality is a rather new, but necessary adding

to the implementation literature. So it is crucial to analyze what happens,

when the agents not strictly achieve to get their best responses, but rather

make a decision that is close to it. Barlo and Dalkiran(2009) extends Maskin

(1999) to analyze bounded rationality case, and showed that there can be im-

plementation with modi�ed version of monotonicity and limited veto power

(Benoit and Ok, 2006).Barlo and Dalkiran(2014) did a similar extension for

Bergemann and Morris (2008). Common crucial result is that, implementable

Social Choice Correspondences set and epsilon implementable SCC set are not

subset of one another for both extensions. That means, bounded rationality

will have di�erent policy implications.

Our paper will provide necessary and su�cent conditions for a social choice

set to be implementable via epsilon-Bayesian Equilibrium when agents' pref-

erences can be represented by cardinal utilities in incomplete information

environment. That is, we will extend Jackson (1991) to include bounded ra-

2

tionality as de�ned in Radner (1980), just as Barlo and Dalkiran (2009) did

it with Maskin (1999). We will use a constructive proof to show that Social

Choice Functions that provide epsilon-Incentive Compatibility and epsilon-

Bayesian Monotonicity, are epsilon-implementable in economic environments.

In proof, we will construct a general message space and a mechanism which

will ensure epsilon Bayesian implementability under those conditions.Then

our paper includes examples of social choice functions that justi�es using

epsilon-Bayesian implementation concept.

Chapter 2 describes the model, Chapter 3 provides our main result, Chap-

ter 4 covers two examples of social choice rules to show that our and Jackson's

conditions are not nested , Chapter 5 concludes.

3

CHAPTER 2

PRELIMINARIES

2.1 Preliminaries

Below, we represent the notation we use throughout the paper.

• N = {1, 2, ..., n} denotes the set of agents.

• Θi denotes the �nite set of possible types of agent i.

• ε denotes the level of bounded rationality of agents. (ε is state inde-

pendent.)

• Θ = Θ1 × ... × Θn denotes the possible states of the world. (The

knowledge is distributed among the agents.)

• A denotes the set of alternatives which is assumed to be �xed across

states.

• F = {f |f : Θ→ A} denotes the set of all social choice functions.

• F ⊂ F is said to be a social choice set.

• qi(θ) is the probability measure on the set of possible states.

4

• πi(θi) = {t ∈ Θ | ti = θi} is the set of states which i believes may be the

true state of the world when his private information is θi.

• Each agent i's state dependent preferences over the set of alternatives

is given by ui : A×Θ→ R+.

De�nition 1 (Mechanism). A mechanism, alternatively a game form, de-

scribes a message/strategy space Mi 6= ∅ for each agent i ∈ N and speci�es

an outcome function o : M → A, where M = ×i∈NMi. We denote a normal�

form mechanism by µ = (M, o). In state θ, the mechanism µ together with

the preference pro�le uθ de�ne a game of incomplete information. In such a

game, a strategy for player i is a function σi : Θi →Mi. A strategy pro�le is

denoted by σ∗(θ) = ×i∈Nσi(θi).

Below is the de�nition of an Epsilon-Bayesian Equilibrium of a mechanism

µ:

De�nition 2 (Epsilon-Bayesian Equilibrium). A strategy pro�le σ∗ is called

an Epsilon-Bayesian equilibrium of µ, if for all i, θi and σ̃i we have

∑
θ∈πi(θi)

qi(θ)ui[o(σ(θ)), θ] ≥
∑

θ∈πi(θi)

qi(θ)ui[o(σ̃i(θi), σ−i(θ−i)), θ]− ε

We continue with the de�nition of Epsilon-Bayesian Implementation.

De�nition 3 (Epsilon-Bayesian Implementation). F is said to be Epsilon-

Bayesian implementable (in pure strategies) if there exists a mechanism µ =

(M, o) such that:

1. For every f ∈ F , there exists an Epsilon-Bayesian Equilibrium σ∗ of

µ = (M, o) that satis�es

f(θ) = o(σ∗(θ)) for all θ ∈ Θ;

5

2. For every Epsilon-Bayesian Equilibrium σ∗ of µ = (M, o), there exists

f ∈ F such that:

o(σ∗(θ)) = f(θ) for all θ ∈ Θ.

2.2 The conditions

We list necessary and su�cient conditions for Epsilon-Bayesian Implementa-

tion:

De�nition 4 (Closure). Recall that πi(θi) = {t | ti = θi} and the sets πi form

a partition Πi over Θ. Let Π denote the common knowledge concatenation

de�ned by Π1, ...,ΠN . That is, Π is the �nest partition which is coarser than

each Πi.

Pick any two disjoint events Θ̂ and Θ̃ such that Θ̂ ∪ Θ̃ = Θ and for any

π ∈ Π either π ⊂ Θ̂ or π ⊂ Θ̃. (Thus, Θ̂ and Θ̃ are such that, given any state

in Θ, all agents know whether the state lies in Θ̂ or Θ̃ and this is common

knowledge among agents.) A social choice set F satis�es closure if for any

e ∈ F and f ∈ F there exists h ∈ F such that g(θ) = e(θ) ∀θ ∈ Θ̂ and

g(θ) = f(θ) ∀θ ∈ Θ̃.

This is the same condition in Jackson (1991) and was �rst discussed by

Postlewaite and Schmeidler (1986) and Palfrey and Srivastava (1987).

De�nition 5 (Epsilon bounded Incentive Compatibility). A social choice set

F satis�es Epsilon bounded Incentive Compatibility (EIC) if for all f ∈ F ,

i, and ti ∈ Θi such that∑
θ∈πi(θ)

qi(θ)ui[f(θ), θ] ≥
∑

θ∈πi(θ)
qi(θ)ui[f(ti, θ−i), θ]− ε ∀θi ∈ Θ.

One can easily see that when ε = 0, EIC condition will coincide with the

Incentive Compatibility condition in Jackson(1991).

6

De�nition 6 (Deception). A deception by agent i ∈ N is denoted by αi :

Θi → Θi. A deception αi by agent i with a true type θi is interpreted as i's

reported type, αi(θi), as a function of his true type. A pro�le of deceptions

is denoted by α(θ) = (α1(θ1), α2(θ2), ..., αn(θn)). f ◦ α(θ) = f(α(θ)) and

naturally, it de�nes of a deception's outcome on a single state.

De�nition 7 (Epsilon-Bayesian Monotonicity). F is said to be Epsilon-

Bayesian Monotonic (EBM) if, for every f ∈ F and deception α with f ◦α /∈

F , there exists i ∈ N, r : Θ−i → A such that

∑
θ∈πi(θi)

qi(θ)ui[r(α−i(θ−i)), θ
′] >

∑
θ∈πi(θi)

qi(θ)ui[f ◦ α(θ), θ′] + ε (2.1)

for some θ′i ∈ Θi and

∑
θ∈πi(θi)

qi(θ)ui[f(θ), θ] ≥
∑

θ∈πi(θi)

qi(θ)ui[r(θ−i), θ]− ε (2.2)

for all θi ∈ Θi

Here i can be interpreted as a whistle-blower and r as a reward: Condition

(1) guarantees that i has (strict) incentive to blow the whistle when the

outcome is incompatible with F and Condition (2) makes sure that if the

outcome is compatible with F , i does not have enough incentive to blow the

whistle.

7

CHAPTER 3

MAIN RESULTS

We are working in epsilon-economic environment which is de�ned below.

The social choice function f/Ψh is de�ned along set Ψ ⊂ Θ as [f/Ψh(θ)] =

f(θ) ∀θ ∈ Ψ and [f/Ψh(θ)] = h(θ) otherwise.

Notation:

fP ε
i (θi)f̃ ⇔

∑
θ∈πi(θi)

qi(θ)ui[f(θ), θ] >
∑

θ∈πi(θi)

qi(θ)ui[f̃(θ), θ] + ε

De�nition 8 (Epsilon-Economic Environment). An environment satis�es

(EE) if for any h ∈ F and θ ∈ Θ, there exist i and j (i 6= j) such that

f ∈ F and g ∈ G while f and g are constant, f/ΨhP
ε
i (θi)h and g/ΨhP

ε
j (θj)h

for all Ψ ⊂ Θ with θ ∈ Ψ. Environments satisfying (EE) are said to be

epsilon-economic.

Condition (EE) requires that for any given social choice function and

state, there are at least two agents who have strict incentives (more than ε)

to alter the social choice function. The condition is economic in nature since

it implies that agents can not be simultaneously satiated, thus there is no

ultimate social choice.

Theorem 1. In an environment which satis�es (EE), N ≥ 3 a social choice

set F is implementable, if and only if F satis�es C,EIC and EBM .

8

Proof. Necessity:(⇒)

[Closure:] Let (M, g) implement F . Take any f, f ′ ∈ F such that f 6= f ′.

Suppose Θ̂ ∪ Θ̃ = Θ where for any π ∈ Π we either have π ∈ Θ̂ or π ∈ Θ̃.1

Consider the corresponding Epsilon Bayesian Equilibria σ∗ and σ′∗ where

f(θ) = g(σ∗(θ)) and f ′(θ) = g(σ′∗(θ)) for all θ ∈ Θ. Let σ′′∗(θ) = σ∗(θ) for all

θ ∈ Θ̂ and σ′′∗(θ) = σ′∗(θ) for all θ ∈ Θ̃. Then σ′′∗(θ) must be another Epsilon-

Bayesian Equilibrium. Letting f ′′(θ) = f(θ) when θ ∈ Θ̂ and f ′′(θ) = f ′(θ)

when θ ∈ Θ̃, we get f ′′(θ) = g(σ′′∗(θ)) hence by (2) of Epsilon-Bayesian

Implementation we must have f ′′ ∈ F which assures Closure.

[EIC:] Take any f ∈ F and the corresponding Epsilon-Bayesian Equilib-

rium σ such that g[σ(θ)] = f(θ) for all θ ∈ Θ. Consider any i, ti ∈ Θi and the

strategy σ̃i(θi) = σ(ti) for some ti ∈ Θi. Since σ is an equilibrium we must

have:

∑
θ∈πi(θi)

qi(θ)ui[g(σ(θ)), θ] ≥
∑

θ∈πi(θi)

qi(θ)ui[g(σ̃i(θi), σ−i(θ−i)), θ]− ε

Since h[σ(θ)] = f(θ) for all θ ∈ Θ we have g((σ̃i(θi), σ−i(θ−i)) = g(σ(ti, θ−i)) =

f(ti, θ−i) which establishes (EIC).

[EBM:]Let f and σ be as above. Consider a deception α such that there

is no g ∈ F with g(θ) = f ◦ α(θ) for all θ ∈ Θ. We must hence have that

σ ◦α is not an Epsilon-Bayesian-equilibrium. Therefore, there exist i, θi, and

m̃i such that

∑
θ∈πi(θi)

qi(θ)ui[h(m̃i, σ−i ◦ α−i(θ−i)), θ] >
∑

θ∈πi(θi)

qi(θ)ui[h(σ ◦ α(θ)), θ] + ε

Since f(θ) = h(σ(θ)) for all θ ∈ Θ we have g(σ◦α(θ)) = f ◦α(θ). De�ning

r(θ−i) := h(m̃i, σ−i(θ−i)) follows (1) of EBM:

1Recall that πi(θi) =
{
t | ti = θi

}
and the sets πi form a partition Πi over Θ. Let

Πdenote the common knowledge concatenation de�ned by Π1, ...,ΠN . That is, Π is the

�nest partition which is coarser than each Πi.

9

∑
θ∈πi(θi)

qi(θ)ui[r(α−i(θ−i)), θ] >
∑

θ∈πi(θi)

qi(θ)ui[f ◦ α(θ)), θ] + ε

On the other hand, σ is an Epsilon-Bayesian Equilibrium implies:

∑
θ∈πi(θi)

qi(θ)ui[h(σ(θ)), θ] ≥
∑

θ∈πi(θi)

qi(θ)ui[h(m̃i, σ−i(θ−i)), θ]− ε

Again, since f(θ) = h(σ(θ)) and r(θ−i) = h(m̃i, σ−i(θ−i)) follows (2) of

EBM as well:

∑
θ∈πi(θi)

qi(θ)ui[f(θ), θ] ≥
∑

θ∈πi(θi)

qi(θ)ui[r(θ−i)), θ]− ε .

Su�ciency: (⇐)

Let F be a social choice set which satis�es closure, EIC and EBM .

Consider the following mechanism:

De�ne message space of each agent i as: Mi = Θi×F ×{∅∪F}×N and

M = ×i∈NMi.

That is, each agents sends a 4 dimensional message. The �rst coordinate is

chosen form their type space, the second coordinate is a social choice function

from the social choice set, F , to be implemented, third coordinate can either

be empty or is an (unrestricted) social choice function, F , fourth coordinate

is chosen to be a natural numbers.

10

To de�ne the outcome function we partition M as follows:

M0 = {m ∈M |mj = (., f,∅, k) for all j ∈ N for some f ∈ F and k ∈ N}

M∗
i = {m ∈M |mj = (., f,∅, k) for all j 6= i for some f ∈ F

and mi = (., f,∅, l) or mi = (., f ′, ., .)}

M∗∗
i = {m ∈M |mj = (., f,∅, k) for all j 6= i and

mi = (., f, f̃ , .) for some f ∈ F}

M∗∗∗ = {m ∈M |m /∈M∗ ∪M∗∗}

where M∗ = ∪iM∗
i and M∗∗ = ∪iM∗∗

i . Clearly, M = M0 ∪M∗ ∪M∗∗ ∪M∗∗∗.

For any given message pro�le m let θm = m1
1 ×m1

2 × . . .×m1
n where m1

i

is the �rst coordinate of the message sent by agent i. Consider the outcome

function h : M → A given as below:

• o(m) = f(θm) if m ∈M0 ∪M∗;

• o(m) = f̃(θm) if m ∈M∗∗
i and∑

θ∈πi(θ)
qi(θ)ui[f(θ), θ] ≥

∑
θ∈πi(θ)

qi(θ)ui[f̃(m1
i , θ−i), θ]− ε for all θi ∈ Θi;

• o(m) = f(θm) if m ∈M∗∗
i and∑

θ∈πi(θi)
qi(θ)ui[o(m

1
i , θ−i), θ] >

∑
θ∈πi(θi)

qi(θ)ui[f(θ), θ] + ε for some θi ∈ Θi;

• o(m) = m3
i∗(θm) if m ∈ M∗∗∗ where m3

i∗ is the social choice func-

tion which is the third coordinate of the message sent by agent i∗ =

argmaxi{m4
i }, i.e., i∗ is the agent who has the highest natural number

in his message's fourth coordinate.

Now we will show that µ = (M, g) as de�ned above implements F in

Epsilon-Bayesian Equilibrium.

11

Lemma 1. For every f ∈ F , there exists an Epsilon-Bayesian Equilibrium σ∗

of µ such that h(σ(θ)) = f(θ) for all θ ∈ Θ.

Proof. Take any f ∈ F consider σ∗ such that σ∗i (θi) = (θi, f,∅, ., k) for all

i ∈ N and for some k ∈ N. Hence, by construction of µ we have o[σ(θ)] = f(θ)

for all θ ∈ Θ as desired.

To see that σ∗ is an equilibrium consider a deviation σ̃i by agent i. First

observe that we can either have (σ̃i(θi), σ−i(θ−i)) ∈M∗
i or (σ̃i(θi), σ−i(θ−i)) ∈

M∗∗
i . If (σ̃i(θi), σ−i(θ−i)) ∈ M∗

i , that is, σ̃i(θi) = (θ̃i, f,∅, l) or σ̃i(θi) =

(θ̃i, f
′, f̂ , l) then the outcome changes to f(θ̃i, θ−i). It follows from EIC that

such a deviation cannot be pro�table more than ε. If (σ̃i(θi), σ−i(θ−i)) ∈M∗∗
i ,

then σ̃i(θi) = (θ̃i, f, f̃ , l), then the outcome is either f(θ̃i, θ−i) or f̃(θ̃i, θ−i). In

the case of former again it follows from EIC that such a deviation cannot be

pro�table more than ε. For the case of latter, by construction, we must have

∑
θ∈πi(θ)

qi(θ)ui[f(θ), θ] ≥
∑

θ∈πi(θ)

qi(θ)ui[f̃(θ̃i, θ−i), θ]− ε for all θi ∈ Θi

which means such a deviation is not pro�table more than ε as well.

Lemma 2. For every Epsilon-Bayesian Equilibrium σ∗ of µ = (M,h), there

exists f ∈ F such that h(σ∗(θ)) = f(θ) for all θ ∈ Θ.

Proof. Let σ∗ be an Epsilon-Bayesian equilibrium and let α describe the an-

nouncement of the state (m1 as a function of θ) under σ .

Suppose that there does not exist a social choice function f in F which is

equivalent to h(σ). We will �nd a deviating player to prove by contradiction.

Without loss of generality, we can take f = g ◦ α since for any f , there is

some g and α which satis�es this. 2

We are interested in �nding a deviating player, so we will look for all cases

whether if there is such deviating player i. Remembering our mechanism, a

2g = f and α being the identity deception is the trivial case.

12

message pro�le m, can belong to four di�erent sets, namely, M0,M?
i ,M

??
i and

M???.

Case 1 σ∗ ∈M0

A player i can change the outcome by deviating only with choosing his

m̃i =
(
., f, f̃ , .

)
which satis�es∑

θ∈πi(θ)
qi(θ)ui[f(θ), θ] ≥

∑
θ∈πi(θ)

qi(θ)ui[f̃(m1
i , θ−i), θ]− ε for all θi ∈ Θi.

Any other deviation will put the σ̃ into M??
i with ,o(m) = f(θm) thus pro-

viding no possible deviation.

We know that by EBM, since f = g ◦α /∈ F, there is some i and r satis�es

r(α−i(θ−i))P
ε
i (θi)f for some θi ∈ Θi, while gRε

i r(θ−i) for all θ′i ∈ Θi. It can

easily be seen that second condition of EBM coincides with the requirement

for o(m) = f̃(θm) in our mechanism. We know that this deviation will be

bene�cial for i, because of �rst condition of EBM. So, for this case, i has

pro�table deviation.

Case 2 σ∗ ∈M?
i ∪M??

i

If the starting included a deviation from some player i, then some other

player j could change his message with highest natural number as its fourth

component, contradicting σ∗ being a Epsilon Bayesian Equilibrium. This is

due to environment is epsilon-economic, all agents can not be simultaneously

satiated.

Case 3 σ∗ ∈M???

Since the environment is economic, there is no ultimate social choice. So,

whenever this is the case, some player j can deviate to his ultimate choice

using highest natural number as his fourth component, contradicting σ being

a Epsilon Bayesian Equilibrium.

Therefore, i is better o� by submitting (α(θ), f, r, .) whenever θi is ob-

served.This contradicts that σ is an equilibrium, so our supposition about

nonexistence of a social choice function equivalent to h(σ) is wrong.

13

CHAPTER 4

EXAMPLES

This chapter proves that epsilon-Bayesian Monotonicity (henceforth EBM)

and Bayesian Monotonicity (henceforth BM) are not nested. This directly

implies implementable social choice rules with or without bounded rationality

are not nested. Examples are tested with a C++ code, which is included in

the appendix.

4.1 BM does not imply EBM

Following is an example to Bayesian Monotonic social choice rule which is

not epsilon-Bayesian monotonic (result holds for ε = 0.75).

Suppose N=1,2,3 and Θi = {0, 1}. Hence a type pro�le (θ1, θ2, θ3) ∈ Θ =

{0, 1}3. There are 8 possible outcomes given by

A = {0-0-0,0-0-1,0-1-0,0-1-1,1-0-0,1-0-1,1-1-0,1-1-1}

The naming of outcomes implies our preferred social choice rule's outcome

for each situation, assuming perfect honesty. For every type of pro�le, θ =

(θ1, θ2, θ3), of the society, payo� corresponding to each outcome is given by

the following matrix. Circled entries are our social choice rule, which maps

each state to the e�cient fair outcome.

14

0− 0− 0 0− 0− 1 0− 1− 0 0− 1− 1 1− 0− 0 1− 0− 1 1− 1− 0 1− 1− 1

0,0,0 1,1,1 1, 1, 0 1, 0, 1 5/4, 0, 0 0, 1, 1 0, 5/4, 0 0, 0, 5/4 0, 0, 0

0,0,1 1, 1, 0 1,1,1 5/4, 0, 0 1, 0, 1 0, 5/4, 0 0, 1, 1 0, 0, 0 0, 0, 5/4

0,1,0 1, 0, 1 5/4, 0, 0 1,1,1 1, 1, 0 0, 0, 5/4 0, 0, 0 0, 1, 1 0, 5/4, 0

0,1,1 5/4, 0, 0 1, 0, 1 1, 1, 0 1,1,1 0, 0, 0 0, 0, 5/4 0, 5/4, 0 0, 1, 1

1,0,0 0, 1, 1 0, 5/4, 0 0, 0, 5/4 0, 0, 0 1,1,1 1, 1, 0 1, 0, 1 5/4, 0, 0

1,0,1 0, 5/4, 0 0, 1, 1 0, 0, 0 0, 0, 5/4 1, 1, 0 1,1,1 5/4, 0, 0 1, 0, 1

1,1,0 0, 0, 5/4 0, 0, 0 0, 1, 1 0, 5/4, 0 1, 0, 1 5/4, 0, 0 1,1,1 1, 1, 0

1,1,1 0, 0, 0 0, 0, 5/4 0, 5/4, 0 0, 1, 1 5/4, 0, 0 1, 0, 1 1, 1, 0 1,1,1

Table 4.1: Payo� matrix and social choice set for Example 4.1

For deception α(θ) =

 (1, 1, 1) : θ = (1, 1, 1)

(0, 0, 0) : otherwise.
and with ε = 0.75, there

is no i ∈ N and r : Θ−i → A satisfying both conditions of epsilon-Bayesian

Monotonicity for this payo� matrix and social choice rule.

4.2 EBM does not imply BM

This example is constructed upon a similar setup. Again, there are 3 agents,

N={1,2,3} which can be type 0 or type 1, (Θi = {0, 1}). This is Epsilon

Bayesian Monotonic for ε = 0.75 but not Bayesian Monotonic.

For every type of pro�le, θ = (θ1, θ2, θ3), of the society, payo� correspond-

ing to each outcome is given by the following matrix. Circled entries are our

social choice rule, which maps each state to the e�cient fair outcome.

For deception α′(θ) =


(0, 0, 1) : θ = (0, 1, 0)

(0, 0, 0) : θ = (1, 0, 1)

θ : otherwise.

, there is no i ∈ N and

r : Θ−i → A satisfying both conditions of Bayesian Monotonicity for this

payo� matrix and social choice rule.

15

0− 0− 0 0− 0− 1 0− 1− 0 0− 1− 1 1− 0− 0 1− 0− 1 1− 1− 0 1− 1− 1

0,0,0 1,1,1 0, 0, 0 0, 0, 0 17/4, 0, 0 0, 0, 0 0, 17/4, 0 0, 0, 0 0, 0, 0

0,0,1 0, 0, 0 1,1,1 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

0,1,0 0, 0, 0 0, 0, 0 1,1,1 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

0,1,1 0, 0, 0 0, 0, 0 0, 0, 0 1,1,1 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

1,0,0 17/4, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 1,1,1 0, 0, 0 0, 0, 0 0, 0, 0

1,0,1 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 1,1,1 0, 0, 0 0, 0, 0

1,1,0 0, 0, 17/4 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 1,1,1 0, 0, 0

1,1,1 0, 0, 0 0, 0, 17/4 0, 17/4, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 1,1,1

Table 4.2: Payo� matrix and social choice set for Example 4.2

16

CHAPTER 5

CONCLUSION

This thesis analyzes full implementation of a social choice rule via epsilon-

Bayesian equilibrium and de�nes corresponding conditions, namely Epsilon

bounded Incentive Compatibility (EIC) and Epsilon Bayesian Monotonicity

(EBM). We prove that, together with Closure, these conditions are both

necessary and su�cient for full implementation under our assumptions which

includes the environment is epsilon-economic and there are at least three

agents in the society.

Our analysis extends Jackson (1991) to consider bounded rationality, and

gives examples in order to show that Bayesian implementable and epsilon-

Bayesian implementable sets are not nested with each other. Our results show

that full implemenation via Epsilon-Bayesian Equilibrium is possible when the

conditions in Jackson (1991) are modi�ed considering bounded rationality.

There are two main reasons that makes this valuable. First, as we exem-

plify, there are some social choice sets which are not Bayesian implementable

as de�ned in Jackson (1991), but nevertheless is implementable via epsilon-

Bayesian implementation. Second, when a social planner takes on a more

behavioral approach, he may �nd epsilon-Bayesian equilibrium more sensible

under bounded rationality hypothesis.

17

Possible extensions are analyzing incomplete information case with di�er-

ent levels of boundedness for each agent, or dealing with non-economic envi-

ronments.

18

BIBLIOGRAPHY

Arrow, J., 1963. Social Choice and Individual Values. Yale University Press.

Barlo, M., Dalkiran, N., 2009. Epsilon-nash implementation. Economics Let-

ters 102 (1), 36�38.

Barlo, M., Dalkiran, N., 2014. Epsilon ex-post implementation.

Benoît, J.-P., Ok, E. A., 2006. Maskin's theorem with limited veto power.

Games and Economic Behavior 55 (2), 331�339.

Bergemann, D., Morris, S., 2008. Ex post implementation. Games and Eco-

nomic Behavior 63 (2), 527�566.

Gibbard, A., 1973. Manipulation of voting schemes: a general result. Econo-

metrica, 587�601.

Groves, T., Ledyard, J., 1977. Optimal allocation of public goods: A solution

to the" free rider" problem. Econometrica, 783�809.

Hurwicz, L., 1979. Outcome functions yielding walrasian and lindahl alloca-

tions at nash equilibrium points. The Review of Economic Studies, 217�225.

Jackson, M. O., 1991. Bayesian implementation. Econometrica, 461�477.

Maskin, E., 1999. Nash equilibrium and welfare optimality. Review of Eco-

nomic Studies 66, 23�38.

19

Palfrey, T. R., Srivastava, S., 1987. On bayesian implementable allocations.

The Review of Economic Studies 54 (2), 193�208.

Palfrey, T. R., Srivastava, S., 1989. Implementation with incomplete infor-

mation in exchange economies. Econometrica, 115�134.

Postlewaite, A., Schmeidler, D., 1986. Implementation in di�erential infor-

mation economies. Journal of Economic Theory 39 (1), 14�33.

Radner, R., 1980. Collusive behavior in noncooperative epsilon-equilibria of

oligopolies with long but �nite lives. Journal of economic theory 22 (2),

136�154.

Satterthwaite, M., 1975. Strategy-proofness and arrow's conditions: Existence

and correspondence theorems for voting procedures and social welfare func-

tions. Journal of economic theory 10 (2), 187�217.

Schmeidler, D., 1980. Walrasian analysis via strategic outcome functions.

Econometrica, 1585�1593.

20

APPENDIX

Now, we explain the C++ code we use for checking examples 4.1 and 4.2.

Below are the de�nitions of processes and functions.

• fstate function �nds corresponding states for each row in our examples.

• �pos function �nds all possible states for agent i, given his state.

• funa function �nds the result of f ◦ α(θ) for given a social choice rule

f , and a deception α.

• runa function does the similar for a reward function r : Θ−i → A.

• pref1 function checks non-strict preference and also considers degree of

boundedness of rationality. Since we are only checking this for (2.1),

format of f1 and f2 is de�ned in a way that is compatible to that

condition.

• pref2 function checks strict preference and also considers degree of

boundedness of rationality. Since we are only checking this for (2.2),

format of f1 and f2 is de�ned in a way that is compatible to that con-

dition.

• halfdec function �nds the deception pro�le, when agent i tells the truth.

What we will �nd via this function is a mapping from possible states

for agent i, to itself. More formally this gives us α−i(θi) as in (2.1).

21

• There are 88 possible deceptions. Because of memory constraints, all

deceptions are de�ned within-loop. That is di�erent for possible reward

functions, since there are only 84 = 4096 possible r. Those functions

are stored in posg array, and called when needed.

• Remaining parts are straightforward, code checks whether there is r :

Θ−i → A, i ∈ N as in De�nition 7, which satis�es 2.1 and 2.2.

• Code asks which boundedness level should be used, and which example

to analyze. After taking these inputs, program will print corresponding

whistleblowers, types of agents and reward functions to each deceptions.

If there is a problematic deception, that is with no possible reward

function no matter what type of which player is chosen, the code will

print out that deception and stop checking. If there is not, it will

continue to check until counter hits 16777216 and, this will show that

given payo� matrix is Bayesian monotonic, in the default or the epsilon

bounded sense.

A The Code

Below, we include C++ code which is explained above.

#include <stdio.h>

#include <conio.h>

#include <vector>

#include <iostream>

#include <string.h>

using namespace std;

//states

//0-1-2-3-4-5-6-7

22

int Theta[8][3]=

{

{0,0,0},{0,0,1},{0,1,0},{0,1,1},{1,0,0},{1,0,1},{1,1,0},{1,1,1},

};

//4.01

float U1[3][8][8]=

{ {

{1,1,1,5/4,0,0,0,0},

{1,1,5/4,1,0,0,0,0},

{1,5/4,1,1,0,0,0,0},

{5/4,1,1,1,0,0,0,0},

{0,0,0,0,1,1,1,5/4},

{0,0,0,0,1,1,5/4,1},

{0,0,0,0,1,5/4,1,1},

{0,0,0,0,5/4,1,1,1}

},

{

{1,1,0,0,1,5/4,0,0},

{1,1,0,0,5/4,1,0,0},

{0,0,1,1,0,0,1,5/4},

{0,0,1,1,0,0,5/4,1},

{1,5/4,0,0,1,1,0,0},

{5/4,1,0,0,1,1,0,0},

{0,0,1,5/4,0,0,1,1},

{0,0,5/4,1,0,0,1,1}

},

{

{1,0,1,0,1,0,5/4,0},

23

{0,1,0,1,0,1,0,5/4},

{1,0,1,0,5/4,0,1,0},

{0,1,0,1,0,5/4,0,1},

{1,0,5/4,0,1,0,1,0},

{0,1,0,5/4,0,1,0,1},

{5/4,0,1,0,1,0,1,0},

{0,5/4,0,1,0,1,0,1}

}, };

//4.02

float U2[3][8][8]=

{ {

{1,0,0,17/4,0,0,0,0},

{0,1,0,0,0,0,0,0},

{0,0,1,0,0,0,0,0},

{0,0,0,1,0,0,0,0},

{17/4,0,0,0,1,0,0,0},

{0,0,0,0,0,1,0,0},

{0,0,0,0,0,0,1,0},

{0,0,0,0,0,0,0,1}

},

{

{1,0,0,0,0,17/4,0,0},

{0,1,0,0,0,0,0,0},

{0,0,1,0,0,0,0,0},

{0,0,0,1,0,0,0,0},

{0,0,0,0,1,0,0,0},

{0,0,0,0,0,1,0,0},

{0,0,0,0,0,0,1,0},

{0,0,17/4,0,0,0,0,1}

24

},

{

{1,0,0,0,0,0,0,0},

{0,1,0,0,0,0,0,0},

{0,0,1,0,0,0,0,0},

{0,0,0,1,0,0,0,0},

{0,0,0,0,1,0,0,0},

{0,0,0,0,0,1,0,0},

{17/4,0,0,0,0,0,1,0},

{0,17/4,0,0,0,0,0,1}

}, };

//FSTATE------finds the state

std::vector<int> fstate(int st)

{

int i;

std::vector<int> state;

state.resize(3);

for (i = 0; i < 3; i++)

{

state[i] = Theta[st][i];

}

return(state);

}

//FPOS-possible states for calculating pref

std::vector<int> ffpos(int tip,int pl)

{

int count=0;

25

int k;

std::vector<int> possible;

possible.resize(4);

for (k = 0; k < 8; k++)

{

std::vector<int> ol=fstate(k);

if (tip==ol[pl])

{

possible[count]=k;

count++;

}

}

return(possible);

}

//Funiona-foalpha

std::vector<int> funiona(std::vector<int> f,int dec[8][1])

{

int i;

std::vector<int> y;

y.resize(8);

for (i = 0; i < 8; i++)

{

y[i] = f[dec[i][0]];

}

return(y);

}

//Guniona-goalpha

26

std::vector<int> guniona(std::vector<int> g,int dec[4][1])

{

int i;

std::vector<int> y;

y.resize(4);

for (i = 0; i < 4; i++)

{

y[i] = g[dec[i][0]];

}

return(y);

}

//Pref1-----R---

bool pref1(std::vector<int> pos,std::vector<int> f1,std::vector

<int> f2,float U[3][8][8],int pl,float eps)

{

float out11=U[pl][pos[0]][f1[pos[0]]]+U[pl][pos[1]][f1[

pos[1]]]+U[pl][pos[2]][f1[pos[2]]]+U[pl][pos[3]][f1[

pos[3]]];

float out21=U[pl][pos[0]][f2[0]]+U[pl][pos[1]][f2[1]]+U[

pl][pos[2]][f2[2]]+U[pl][pos[3]][f2[3]];

if (out11>=(out21-4*eps))

{

return(1);

}

else

{

return(0);

}

}

27

//Pref2-----P---

bool pref2(std::vector<int> pos,std::vector<int> f1,std::vector

<int> f2,float U[3][8][8],int pl,float eps)

{

float out11=U[pl][pos[0]][f1[0]]+U[pl][pos[1]][f1[1]]+U[

pl][pos[2]][f1[2]]+U[pl][pos[3]][f1[3]];

float out21=U[pl][pos[0]][f2[pos[0]]]+U[pl][pos[1]][f2[

pos[1]]]+U[pl][pos[2]][f2[pos[2]]]+U[pl][pos[3]][f2[

pos[3]]];

if (out11>(out21+4*eps))

{

return(1);

}

else

{

return(0);

}

}

//halfdec-------------half deception, one agent is honest

--

std::vector<int> halfdec(int wb,int dec[8][1],std::vector<int>

pos)

{

int halfdec1[4][3];

int i,a,k;

for (i = 0; i < 4; i++)

28

{

halfdec1[i][0]=fstate(dec[pos[i]][0])[0];

halfdec1[i][1]=fstate(dec[pos[i]][0])[1];

halfdec1[i][2]=fstate(dec[pos[i]][0])[2];

halfdec1[i][wb]=fstate(pos[i])[wb];

}

std::vector<int> y,l;

l.resize(4);

y.resize(4);

for (i = 0; i < 4; i++)

{

for (a = 0; a < 8; a++)

{

if (halfdec1[i][0]==Theta[a][0])

{

if (halfdec1[i][1]==Theta[a][1])

{

if (halfdec1[i][2]==Theta[a][2])

{

l[i]=a;

break;

}

}

}

}

}

for (i = 0; i < 4; i++)

{

29

for (a = 0; a < 4; a++)

{

if(l[i]==pos[a])

{

y[i]=a;

break;

}

}

}

return(y);

}

//MAIN FUNCTION

int main(void)

{

float eps;

int a1,a2,a3;

int aa;

float U[3][8][8];

cout << "Please choose epsilon- degree of bounded rationality:

";

cin >> eps;

cout <<"Please choose the example payoff matrix for working on.

 \n 1 for 4.1, 2 for 4.2 :";

cin>> aa;

switch(aa)

{

case 1:

for(a1=0;a1<3;a1++)

{

30

for(a2=0;a2<8;a2++)

{

for(a3=0;a3<8;a3++)

{

U[a1][a2][a3]=U1[a1][a2][a3];

}

}

}

break;

case 2:for(a1=0;a1<3;a1++)

{

for(a2=0;a2<8;a2++)

{

for(a3=0;a3<8;a3++)

{

U[a1][a2][a3]=U1[a1][a2][a3];

}

}

}

break;

}

printf(":::Working:::\n\n");

//Definition of F

int i1,i2,i3,i4,i5,i6,i7,i8;

int ff[8][1]={0,1,2,3,4,5,6,7};

//int ff[8][1]={0,0,0,0,0,0,0};

std::vector<int> f;

f.resize(8);

f[0]=ff[0][0];

31

f[1]=ff[1][0];

f[2]=ff[2][0];

f[3]=ff[3][0];

f[4]=ff[4][0];

f[5]=ff[5][0];

f[6]=ff[6][0];

f[7]=ff[7][0];

int say=1;

int pog[4][8]=

{

{0,1,2,3,4,5,6,7},

{0,1,2,3,4,5,6,7},

{0,1,2,3,4,5,6,7},

{0,1,2,3,4,5,6,7}

};

int posg[4][4097];

for(i1=0;i1<8;i1++)

{

for(i2=0;i2<8;i2++)

{

for(i3=0;i3<8;i3++)

{

for(i4=0;i4<8;i4++)

{

posg[0][say]=pog[0][i1];

posg[1][say]=pog[1][i2];

posg[2][say]=pog[2][i3];

posg[3][say]=pog[3][i4];

say++;

32

}

}

}

}

printf("Deception check starts\n\n");

int d1,d2,d3,d4,d5,d6,d7,d8,wb,sg,ii,iic,k,pl,count,deccount;

deccount=1;

bool p,r;

int wbb[4][1]={0,0,1,2};

int iii[3][1]={0,0,1};

for(d1=0;d1<8;d1++)

{

for(d2=0;d2<8;d2++)

{

for(d3=0;d3<8;d3++)

{

for(d4=0;d4<8;d4++)

{

for(d5=0;d5<8;d5++)

{

for(d6=0;d6<8;d6++)

{

for(d7=0;d7<8;d7++)

{

for(d8=0;d8<8;d8++)

{

int dec[8][1]={d1,d2,d3,d4,d5,d6,d7,d8};

std::vector<int> funa;

funa=funiona(f,dec);

33

count=0;

printf("%d ",deccount);

deccount++;

for(pl=0;pl<4;pl++)

{

wb=wbb[pl][0];

for(sg=0;sg<4097;sg++)

{

std::vector<int> g;

g.resize(4);

g[0]=posg[0][sg];

g[1]=posg[1][sg];

g[2]=posg[2][sg];

g[3]=posg[3][sg];

if((pref1(ffpos(0,wb),f,g,U,wb,eps)==1)&&(pref1(ffpos(1,wb),f,g

,U,wb,eps)==1))

{

for(iic=0;iic<3;iic++)

{

ii=iii[iic][0];

std::vector<int> pos;

pos=ffpos(ii,wb);

std::vector<int> halfdecc;

halfdecc=halfdec(wb,dec,pos);

int halfdeccc[4][1];

halfdeccc[0][0]=halfdecc[0];

halfdeccc[1][0]=halfdecc[1];

halfdeccc[2][0]=halfdecc[2];

halfdeccc[3][0]=halfdecc[3];

34

std::vector<int> gunhalfdec;

gunhalfdec=guniona(g,halfdeccc);

p=pref2(pos,gunhalfdec,funa,U,wb,eps);

if(p==1)

{

count++;

}

if (count>0)

{

break;

}

}

}

if (count>0)

{

printf("-deception: %d ",dec[0][0]+1);

printf("%d ",dec[1][0]+1);

printf("%d ",dec[2][0]+1);

printf("%d ",dec[3][0]+1);

printf("%d ",dec[4][0]+1);

printf("%d ",dec[5][0]+1);

printf("%d ",dec[6][0]+1);

printf("%d ",dec[7][0]+1);

printf("agent: %d ",wb+1);

printf("type: %d ",ii);

printf("reward: %d",g[0]+1);

printf("%d",g[1]+1);

printf("%d",g[2]+1);

printf("%d\n",g[3]+1);

35

posg[0][0]=g[0];

posg[1][0]=g[1];

posg[2][0]=g[2];

posg[3][0]=g[3];

wbb[0][0]=wb;

iii[0][0]=ii;

break;

}

}

if (count>0)

{

break;

}

}

if (count==0)

{

if((d1==0)&&(d2==1)&&(d3==2)&&(d4==3)&&(d5==4)&&(d6==5)

&&(d7==6)&&(d8==7))

{

count=1;

}

}

if (count==0)

{

printf("Problematic deception: %d ",d1+1);

printf("%d ",d2+1);

printf("%d ",d3+1);

printf("%d ",d4+1);

36

printf("%d ",d5+1);

printf("%d ",d6+1);

printf("%d ",d7+1);

printf("%d\n",d8+1);

break;

}

}

if (count==0)

{

break;

}

}

if (count==0)

{

break;

}

}

if (count==0)

{

break;

}

}

if (count==0)

{

break;

}

}

if (count==0)

37

{

break;

}

}

if (count==0)

{

break;

}

}

if (count==0)

{

break;

}

}

getch();

}

38

