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ABSTRACT

DISTRIBUTED STREAM-PROCESSING
FRAMEWORK FOR GRAPH-BASED SEQUENCE

ALIGNMENT

Alim Şükrücan Gökkaya

M.S. in Computer Engineering

Advisor: Can Alkan

January 2020

Optimized the sequence alignment pipelines are needed to minimize the time re-

quired to complete processing the short-read genomic data. Today there are many

sequence alignment tools exist, yet few of them are capable of directly ingesting

the streaming base-call data. The sequencing has to be entirely completed be-

fore the mainstream aligners can begin mapping the reads to the reference. The

sequencing process can take days to complete. The output is then needs to be

demultiplexed into individual reads and aligned to the reference, which can take

several more hours. Overall time of a genomic analysis can be shortened signifi-

cantly by progressively computing the alignments at the time when the reads are

still being generated. It is important to have genomic analysis done as quickly as

possible, especially in life critical situations.

Here we introduce a distributed stream processing framework for aligning

short-reads into a graph representation of the genome. The massively parallel

nature of the genomic sequencing data requires a massively parallel computation

architecture. Thus we have designed our pipeline called R2G2Flow to align many

reads to a de Bruijn graph in parallel. Our aligning method is specialized for

the sequencing technologies that are based on base-call cycles, such as produced

by Illumina. The results are made available soon after the final bases from the

sequencing devices has been emitted.

R2G2Flow is available at https://github.com/BilkentCompGen/r2g2

Keywords: read mapping, de Bruijn graphs, stream processing.
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ÖZET

ÇİZGE TABANLI OKUMA HIZALANDIRMASI İÇİN
DAĞITIK AKINTI İŞLEME SISTEMI

Alim Şükrücan Gökkaya

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Can Alkan

Ocak 2020

Kısa okuma genom verilerinin işlenme süresini en aza indirmek için opti-

mize edilmiş okuntu hizalama sistemleri gerekmektedir. Günümüzde birçok

dizilim hizalama aracı mevcut, fakat bunlardan sadece birkaçı akıntı halin-

deki baz-çağrışımlarını doğrudan işleyebilme yeteneğine sahiptir. Anaakım

hizalayıcıların okuntuları referansa hizalamaya başlayabilmesinden önce okuma

işleminin bütünüyle tamamlanması gerekir. Okuma işleminin tamamlanması

günler sürebilir. Çıktılar daha sonra, coğullama cözme işlemiyle, tekil okumalara

dönüştürülür, bu işlem fazladan bir kaç saat daha sürebilir. Uçtan uca genom

analiz süresi, yeni okumalar henüz üretilmekte iken hizalandırların aşamalı olarak

hesaplanması halinde, önemli miktarda kısaltılabilir. Özellikle hayati durumlarda

genom analizinin mümkün olduğunca çabuk yapılması önem taşımaktadır.

Bu tez, kısa okumaların genom çizge yapılarına hizalandırılması için dağıtık

akıntı işleme sistemi sunar. Genom okuma verilerinin yüksek miktarda paralel

veri sunan doğasına karşılık yüksek miktarda paralel veri işleyebilen bilgisayım

mimarisi gerekir. Bu nedenle R2G2Flow adlı sistemimizi bir çok okumayı aynı

anda de Bruijn çizgesine hizalayabilecek şekilde tasarladık. Yöntemimiz Illumina

gibi baz-çağrışım tabanlı okuma teknolojileri için özelleşmiştir. Sonuçlar okuma

aygıtından son bazlar üretildikten kısa bir süre sonra çıkarılır.

Anahtar sözcükler : okuntu haritalandırması, de Bruijn cizgeleri, akıntı işleme.
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Fatma Kahveci, Mohammed Alser, Fatih Karaoğlanoğlu, Ezgi Ebren, Zülal Bingöl
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Chapter 1

Introduction

Every cellular organism stores its genetic material in DNA molecules that are

made of long chains of nucleotide base pairs. Human genome consists of about 3

billion bases. Every individual organism carries a copy of the genome with small

deviations, which makes their DNA a unique sequence. After the Human Genome

Project was completed in 2003, many new instruments have been developed to

extract the sequences from the DNA molecules, and the advent of High Through-

put Sequencing (HTS) technologies made it cheaper and faster to do so. Due to

these advancements, we are now able to perform widespread genome sequencing

for both research and diagnostic purposes [1]. Today, it is possible to extract

readings from an entire genome in a few days at a very little cost. However, the

immense amount of data generated by the sequencing instruments prove both

computational and engineering challenges to process and annotate the data in a

useful way for the researchers or physicians. One of these challenges is to ensure

the results from the analysis are available as early as possible by beginning the

analysis of the genetic data while it is still being generated by the sequencing

instrument. This is especially important for the time critical tasks such as the

clinical use of the genome sequencing that is becoming no longer a novelty, but

an ordinary diagnostic method.

In most applications, the analysis of the sequenced genomic data depends on
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mapping the reads to a known reference genome. Traditionally, the reference

genome is represented as a single linear continuous sequence that can obtained

from a certain individual. In contrast to the linear genomes, graph representa-

tions of genomes can provide much powerful analyses as they combine the genetic

information from a population where many known genetic variations were anno-

tated. Today, there are many studies such as the 1000 Genomes Project [2] that

highlight those genetic variations in the human populations. Researchers contin-

ually analyze the functional aspects of genomic variants to identify their roles in

specific phenotypes or diseases.

In this thesis, we propose a framework to perform read alignments to a genome

graph in near real-time and using a distributed and parallel computational infras-

tructure. In the following section, we give the necessary background information

about the concepts related to genomics and stream-processing.

1.1 Background

1.1.1 Sequencing

Genome sequencing is defined as the process of determining the exact order of

bases in the DNA molecule chains obtained from a biological sample. From a

computational view, DNA can be seen as a sequence of characters from a small

alphabet of 4 letters, each corresponding to a type of base (Σ = {A,C,G, T}).
Today, there are a variety of HTS instruments that have been made commer-

cially available, each providing trade offs between the read length, accuracy and

cost-per-megabase characteristics [3]. Read length, corresponds to the number of

sequential bases that the sequencing device is able to provide for a single read-

ing from a DNA chain. Accuracy defines the rate of mistakes made during the

sequencing, such as mixing-up between the bases (substitutions), skipping some

bases (deletions) or addition of extra bases (insertions). The characteristics of

the sequencing instruments may have significant influence over the computational
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strategies to be used for alignment. Below, we give an overview of some relevant

genome sequencing technologies.

1.1.1.1 Sanger Sequencing

Sanger sequencing [4] is the ancestor to many of the later generations of se-

quencing technologies. It has been regarded as the first successful method for

sequencing DNA fragments above the length of 500 base pairs with very little

inaccuracy below 0.01% error rate [1]. Sanger’s chain termination method in-

volves addition of modified nucleotides that terminate the natural synthesis of

the opposite strand by the DNA polymerase enzyme. This allows stochastically

generating different sized copies originating from the same DNA fragment with

a radiologically or fluorescently labeled nucleotide at the end. The terminated

DNA fragments are then sorted by their length using electrophoresis and pho-

tographed to extract the sequence. Despite the good accuracy and read length

characteristics, Sanger sequencing remains cost and time prohibitive for many

applications. Sanger sequencing was the predominant method for over 30 years

since its invention and the Human Genome Project was completed largely using

this method. Today this method is still being used for benchmarking the novel

HTS technologies or small scale studies.

1.1.1.2 High Throughput Sequencing Technologies

The advancements in the HTS technologies made it possible to sequence an entire

human genome within a few days with high fidelity and at a fraction of the

cost with the Sanger sequencing. Some HTS technologies can achieve massive

throughput by relying on having the DNA into cut into fragments even smaller

than it is in the Sanger sequencing. Other methods exist to produce reads at much

larger lengths, but they are in general much more expensive and error prone than

the short-read methods.
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1.1.1.2.1 Short Read Sequencing Illumina sequencing platform was re-

leased in 2008 and became the dominant sequencing platform in the market due

to its ability to cheaply generate high quality short reads [5]. Illumina sequencer

simultaneously reads the base-pairs starting from millions of different locations

throughout the genome. The underlying technology works by attaching the small

cuts from one strand of the DNA into a slide of glass and iteratively synthesizing

the other strand while observing the light emitted when a new base is attached to

the DNA. Akin to Sanger sequencing, the nucleotides used in this step are mod-

ified to pause the synthesis until the next cycle. In each cycle one nucleotide is

attached to every DNA chains that were attached to the slide and the light emit-

ted during the event is captured by a camera. At the end of each cycle, the slide

is prepared for the next cycle by washing off the excess molecules and cleaving

off the part of the modified nucleotide that pauses the synthesis. Furthermore,

Illumina platform is also capable of sequencing paired end reads, in other words,

the read from the opposite strand of the DNA fragment. Read length of the

Illumina sequencers averages at 150 base pairs with 0.1% error rate.

1.1.1.2.2 Long Read Sequencing Long read technologies are segmented

into two categories, single-molecule methods and synthetic long reads. Synthetic

long read methods are based on augmenting the short read sequencing technolo-

gies to preserve more information on whereabouts of the DNA fragment on the

originating DNA chain [6]. Single-molecule methods are based on rapidly sam-

pling the signals emitted during the chemical processing of the DNA molecule.

PacBio platform adopts sequence by synthesis method. Reads are observed by a

camera in real-time while the DNA is being synthesized by a modified DNA poly-

merase enzyme fixed inside a nanoscale pit. Oxford Nanopore technology threads

the DNA molecule from a nanoscale hole and samples the electrical current in

the process.
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1.1.2 The Human Genome Project and the Linear Refer-

ence Genome

A fully sequenced human genome was published for the first time in 2003 [7]

as a product of a 13 year long effort committed to the Human Genome Project

(HGP). It is estimated that in total $3 billion was spent for the project by various

institutions across the globe [8]. The scope of the HGP was more than only

sequencing the human DNA and it included many important achievements such

as identification of all protein coding genes, mapping the genome for regions

of interest and mapping the genetic variations. Only Sanger-based sequencing

methods were used. The reads obtained from sequencing was assembled into

continuous strings corresponding to each chromosome. The reference genome

assembly was built from the consensus obtained by sequencing the genome of

a few individuals. In this way the reference genome represents a model human

genome as a single continuous string. However, a linear reference is not suitable

to maintain a comprehensive representation for entire species.

Most of the HGP reference assembly donors were of European ancestry. Due

to the lack of diversity in the donor group, the reference assembly suffers from

gaps and biases in some regions [9, 10]. It is difficult to overcome of these prob-

lems using the linear genome representations since the genetic variations among

the different human populations cannot be expressed without building multiple

assemblies. Using the traditional mapping methods, one can only align the reads

to a single linear reference at a time. Thus the genomic variations cannot be

easily discovered through linear reference methods.

1.1.3 Mapping to a Linear Reference

A key step to the analysis of the genomic data is to align the sequenced DNA

strings to previously build genome assembly, such as the reference genome. This

process is often called read alignment or read mapping. Aligning the reads to a

reference genome shows the similarities and differences between the two genomes
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so that further processing can be done such as eliminating the sequencing errors,

identifying genetic variations or discovering a mutation that may lead to a disease.

Optimal sequence alignment problem was formally defined by Levenshtein as the

minimum number of edits required to obtain the target string from the initial

one, where each edit is either addition, subtraction or substitution of one letter

[11]. A dynamic programming solution was described by Needleman-Wunsch

[12]. Later Smith-Waterman described local alignment algorithm by extending

the previous work [13]. Local alignment determines the longest substrings from

the source and target sequences that have the largest score based on the given

similarity metric. Utilization of a similarity metric is especially useful alignment

of biological sequences because each kind of substitution, subtraction or addition

of a base-pair can be assigned a predetermined cost value that is proportional to

their natural occurrence in the input data.

The vast amount of data provided by the HTS instruments requires faster

alignment algorithms to be implemented. HTS devices are fast, but they also

produce less reliable output. To overcome the drawbacks of the increased error

rates with the HTS data, the genome is sequenced with higher coverage. By

super-sampling the genetic data, aligned reads can be later used for obtaining a

consensus sequence to statistically eliminate the sequencing errors. The sufficient

amount of sequencing coverage rate depends largely on the error rate and read-

depth capabilities of the sequencing platform used. For Illumina platform, it is

advised to have at least 30x to 50x coverage in human genome studies [14]. Due

to the quadratic time and space requirements of the optimal alignment algorithm,

most of the short-read alignment strategies are evolved around seed-and-extend-

based heuristics [15]. Earlier aligners developed for Sanger reads such as BLAST

[16] became successful by eliminating large amounts of regions from the reference

from dynamic programming comparison by selecting short segments of a few

consecutive characters from the query that shows high similarity to the segments

of the same length from reference. Gaps between the matched segments are later

filled using Smith-Waterman algorithm to finalize the alignment of the read.
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1.1.3.1 Seed Selection Strategies

Common approaches for selecting seeds for short-read alignment can be catego-

rized into hash-based and suffix-array-based indexing approaches to identify exact

matches. Hash-based approaches uses efficient hash strategies such as FastHASH

[17] and minimal perfect hash function (MPHF) [18] to index the fixed size seg-

ments (k-mers) from the genome for exact matching. Suffix-array methods of-

ten use Burrows-Wheeler Transform (BWT) of the reference sequence with the

support of FM-index for sparsely indexing the matching locations for memory

efficiency with little extra computational cost [19, 20]. Compressed suffix-trees

were also used for indexing genome graphs [21, 22, 23]. Limasset et al. [24] de-

scribed a read mapping strategy which used MPHF index to identify seed nodes

in a de Bruijn graph [25]. Finding good seeds are also proven to be difficult es-

pecially for the regions of the genome with high number of repetitions. In order

to improve the seed quality, some modern aligners use minimizers to eliminate

low quality matches [26, 27, 28]. A minimizer is a filtering function that selects

the least frequently occurring k-mer within all candidate matches from the same

proximity. This method is usually preferred for long read mapping tasks due to

the increased number of false positives generated by the higher read error char-

acteristics that may increase the computation cost significantly. GraphAligner

[28] uses de Bruijn graph generated from short reads for error correcting the long

reads before finding seeds. For the de Bruijn graph alignment, the seeds were

chosen from near the start and end of the read only. In both [24] and [28], k-mers

were indexed for seed selection using an implementation of the minimal perfect

hash function.

1.1.4 Graph Genomes

Many of the existing read aligners target a reference genome that is represented

as a single continuous string. Due to the shortcomings of the linear references,

pan-genome studies prefer to use graph genomes to fully utilize the diverse fea-

tures obtained from large set of genomic data at hand [29]. Graph aligners can
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map the reads to the non-linear representations of the genome, which may be

useful when studying population genomes or complex regions of the genome with

high number of repetitions. String graphs and sequence graphs are commonly

used for read alignment tasks [30, 28, 23]. The bit-parallel alignment approach

used in [30] was later expanded by the authors using Navaro’s [31] adaptation of

dynamic-programming alignment to graphs in the GraphAligner [28]. Another

data structure that efficiently can represent a genome is the de Bruijn graph

(dBG) [32]. De Bruijn graphs are useful for many tasks such as read assembly,

error correction, variant discovery and read mapping. In the next section, the

details of the dBG data structure and the alignment strategies are covered.

1.1.5 de Bruijn Graphs

De Bruijn graphs are constructed from the set of all substrings of length k of the

given input set of sequences. Such substrings are commonly referred as k-mers.

For a given set of strings S1..n in an alphabet Σ, dBGk(S) = (V,E) is a de Bruijn

graph of order k where:

V = {p ∈ Σk | ∃i ∈ {1..n}, s.t. p is a k-mer ∈ Si}

E = {(p, p′) | ∃t ∈ Σk+1, s.t. p is the prefix of t and

p′ is the suffix of t}

A notable property of de Bruijn graph is that all occurrences of a k-mer are

collapsed into a single node. This property makes the de Bruijn graphs especially

useful for genome assembly applications; once the graph constructed from the

short read data where the k is equal to the read depth, any traversal of the

graph leads to a possible assembly. For the read mapping tasks, the graph can be

efficiently constructed from multiple pre-assembled genomes. In this case, each

of the input genomes exist as a path in that can be obtained from the resulting

de Bruijn graph. However, for the highly repetitive parts of the genome, the

resulting path may contain cycles due to the collapsing property. Overlapping

cycles can further complicate the graph and lead to many false-positive paths

8



exists in the graph. Therefore not all of paths found in the graph has to be

present as a substring of an input sequence.

Due to the information loss occurred during de Bruijn graph construction,

read mapping tasks can be challenging. There are a few aligners have shown that

sequence alignment to de Bruijn graph is feasible [33, 24]. A recent study focusing

on read assembly [34] shows that the de Bruijn graphs that are augmented with

long-range information can also increase read mapping accuracy for the highly

repetitive parts of the genome.

1.1.5.1 Read Alignment on de Bruijn Graphs

The first practical application of HTS read alignment on de Bruijn graphs was

conducted by deBGA [33] with the motivation of mapping the reads to multiple

genomes at once instead of aligning to a singular linear genome at a time as the

mainstream aligners typically do. In contrast to linear genomes, the problem of

optimally aligning reads to de Bruijn graphs has been shown to be NP-complete

[24]. Different variation of the seed-and-extend based alignment heuristics include

local alignment over unipath position sets (as used by deBGA [33]) and greedy

extension of seeds (as used by BGREAT [24] and McCortex [34]). In deBGA,

seeds are first merged to find the maximal exact matches and the location infor-

mation regarding the unipaths in the input are collected. After seed processing,

the gaps between the seeds from the adjacent locations in the same genome is

filled using dynamic programming. On the other hand, greedy extension methods

used by BGREAT and McCortex does not extend the seeds on the original input

sequences based on an optimal alignment. Instead, the reads are aligned to the

graph directly using a greedy depth-first search algorithm. This type of alignment

provide more ambiguous results because typical read alignment annotations such

as the loci and edit distance are not computed. The output is still suitable for

error correction of reads and identification of potential genomic variations. The

BrownieAligner [35] demonstrated that the seed extension performance can be

significantly improved by using a cost function that is derived from the read data

and a Markov model that is derived from the reference genome sequences.
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1.1.6 Stream Processing

Stream processing systems allow immediate processing of the data produced by

continuous data sources with minimum amount of delay. In recent years, many

powerful platforms have been published with distributed processing capabilities

and fault-tolerance. Core principle to the distributed processing systems is to

divide the work into self-standing operators with definitive inputs and outputs.

With this mindset, the applications can achieve very large throughput by adding

more hosts to the system so that more instances of the operators can be run.

One of such platforms is the Apache Flink [36]. Flink is an open-source platform

with enterprise grade capabilities, supporting many execution environments such

as Hadoop YARN and Kubernetes.

1.1.6.1 Apache Flink

1.1.6.1.1 Architecture and Operations Flink has an distributed stream

processing architecture that provides an abstraction with the application logic

and the execution environment. Each Flink program defines an execution plan

that layouts an order of atomic transformations to be performed on the underly-

ing data stream. The instructions are defined using Java or Scala APIs are then

serialized and published to the task execution cluster. Flink Applications can

define operations such as low level process functions, map/reduce functions and

window functions for batch processing. In addition, a key can be defined on a

stream to efficiently perform operations on a certain aspect of the data without

changing the event order. Such streams are named keyed streams and the func-

tions defined on them become keyed functions. Using keyed stream, one can

compute complex aggregation that are grouped by a specific aspect. Each Flink

application typically define a source function that produce events to down stream

operators and a sink function to digest the final events.

1.1.6.1.2 State Management In the ideal case, an event processing function

should be idempotent. Such functions can be distributed to any host without

10



any side effects since the function is not maintaining any internal or global state.

However in many applications, pure functions cannot be efficiently implemented.

Flink provides a state management infrastructure such that the functions can

register their state in a safe way. At any time, a host can be removed from the

cluster. In that case the sub-tasks can be redistributed to another host without

data loss if the state was managed by Flink storage engine. Keyed data streams

have separate state management for each key in the data stream. Depending on

the application needs, in-memory and file based state management back ends can

be chosen by the application developer.

1.1.6.2 Streaming Alignment

Real-time alignment methods are required to be designed with respect to the

low level output characteristics of the specific HTS equipments. For Illumina

short reads, this means that there has to be a simultaneous alignment procedure

corresponding to each of the individual DNA fragments attached to the flowcell

from the start of the sequencing run. Depending on the setup, there might up to

a few billion read alignments in parallel. HiLive [37] implements a BWT based

aligner that consumes raw Illumina BCL data from the file system. Alignment

state of each read is kept in the file system until the next cycle in order to avoid

overloading the memory. HiLive does not support distributed execution out-of-

the-box, yet it can finish the read alignment as soon as the sequencing run is

ended. There is also a streaming pipeline [38] made for BCL data which feeds

reads to the BWA tool [39], but read alignment is blocked until the final cycle of

the sequencing run is completed.

1.1.7 Our Contribution

We have created a sequence-to-graph alignment pipeline in a distributed stream

processing environment specialized for Illumina short reads. Our computation

model is a streaming implementation of seed-and-extend based graph alignment
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heuristics that avoids unnecessarily delaying the read alignment until sequencing

run to be completed, in contrast to many existing alignment pipelines do. The

results of analysis are made soon after the last sequencing cycle is completed.

Distributed nature of our aligner enables taking advantage of horizontally scaled

computation for genomic analysis tasks.
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Chapter 2

Methods

In a streaming short-read alignment task, all reads has to be processed in parallel

as the next base in each of the reads are gradually emitted by the processing

cycles of the sequencing device. Thus, we designed an alignment pipeline called

R2G2Flow, that can scale up with the space and computational power required by

the large number of reads can be provided by the HTS equipment (Figure 2.1).

Our system has two main components that execute the main alignment logic,

a Flink alignment job and a graph alignment service. This separation allows

us to define the alignment jobs without depending the graph data directly. Both

alignment job and the graph service can be scaled up individually by adding more

instances. In addition, we implement an indexing tool to correlate the nodes of

the graph with the positions of the input genome and a file broker service that

connects sequencing equipment to the aligner.

Main motivation of the project is to adapt the sequence-to-graph aligners to

a stream processing system. Aligning reads to a graph genome is an key step

for the further analysis of genomic variants and population related studies. For

that reason, we chose to implement the greedy seed-and-extend based heuristics

similar to state-of-the-art de Bruijn graph aligners [24, 35]. Since finding the

optimal alignment of a read to a de Bruijn graph is proven to be NP-complete

[24] we output the first feasible mapping with the limited contextual information
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Figure 2.1: Overview of the R2G2Flow pipeline. Raw sequencing files are fed to
the system through the broker service in BCL format. Alignment job is deployed
to the Flink cluster to consume many files in parallel. State of each parallel read
alignment is kept within the Flink alignment job only. Thus each call to the
graph alignment service is an idempotent call, allowing graph service to be scaled
behind a load balancing proxy.

around the seed rather than performing a semi-global alignment.

Additionally we explore further innovations in greedy sequence-to-graph align-

ment methods to support outputting the possible mapping locations on the orig-

inal reference sequences. The greedy aligners we know [24, 34, 35] do not nec-

essarily provide positional information for the alignment. We include an novel

processing step in our pipeline determine the possible locations in the original

reference sequences so that the more detailed mapping information can be ex-

tracted.

Input format We take BCL frames as input where in each cycle k of the

sequencing run, a frame is emitted to contain the base at the kth position of the

reads contained in a specific cluster in the flowcell. We identify each read by their

cluster id and the index of the read within the cluster.

Output format As a result from the alignment operation, we find a path in

the reference de Bruijn graph for each read in the input. When unitig-to-reference
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location index is available, possible mapping locations in the original reference is

also provided in the output.

2.1 Indexing

We enhance the de Bruijn graph with an additional k-mer index to determine the

unitig identifier in order to locate the match positions on the original input se-

quences. By having a bidirectional index on the k-mer set, we can efficiently map

the reads on the de Bruijn graph then extract the possible alignment locations.

2.1.1 Graph Construction

From given set of reference sequences we build a reference de Bruijn graph. This

graph is used for identifying the seeds and extending them to come up with a

sequence to graph mapping. We used the GATB tool [40] build the reference

graph. Since the graph creation tool is usually targets the read data, the k-mers

are filtered by occurrence frequency to eliminate sequencing errors. We disabled

the k-mer abundance filter to ensure that all input k-mers included in the graph

because the reference strings are assumed to contain no errors.

2.1.2 K-mer Index

K-mers are stored in a minimal perfect hash index available as part of the GATB

tool [41]. Minimal hash indexes are efficient data structures to keep large number

of entries with minimal amount of space requirements.
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2.1.3 Unitig Index

A unitig is a maximal non-branching path in the de Bruijn graph. To keep the

minimal memory footprint, a hash index is used for keeping the reference positions

per unitig and a suffix array [42] to keep k-mer position within each unitig. We

use BCALM2 [43] to extract unitigs from the graph, Then we populate a lookup

table for the reference positions each unitig. Once a k-mer is mapped to a unitig,

the lookup table is used for extracting locations in the reference strings.

2.2 Alignment Pipeline

The graph alignment seed-and-extend heuristic algorithm is divided into the a

series of functional operations. Each operation tackles one responsibility by re-

acting to a certain event in the data stream. Due to the streaming nature of

the data, we employ aspects of functional programming while structuring our

alignment method. Thus, we designed an interface between the streaming part

of the system and static part of the system to be a set of idempotent operations.

The streaming part of the system is responsible to keep track of each on-going

alignment operation, such as demultiplexing the base calls into k-mers and keep-

ing track of the seed and gaps in a read alignment. However the static part of

the system encapsulate the operations on the reference graph only, such as k-mer

lookup and searching for a path between given two nodes of the graph.

2.2.1 Read Demultiplexer

In non-streaming alignment tasks, short-reads are demultiplexed usually into

FASTQ formatted files in advance so that the aligner can iterate over each read

and perform alignment. We have integrated the read demultiplexing step into

our alignment pipeline minimize the processing delay. Since the seeding step of

graph alignment algorithm relies on determining exact matches to the nodes of
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Figure 2.2: Data flow in the streaming read aligner. On the left-hand side of each
step the functional operation name is given. (a) Raw BCL data is demultiplexed
into a k-mer stream using a sliding window of size k. (b) Positions in the read is
marked (+) or (-) to signify whether the k-mer is found in the graph, consecutive
k-mers are merged to create windows of gaps or seeds. (c) A stream of alignment
events are formed. (d) Alignment stream is processed to form a path in the
graph where the read is aligned. Unitigs are a highlighted for querying the actual
genomic positions to output the most likely positions in the reference.
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the de Bruijn graph, we are only interested in the fixed size window of sequences

from each read. Read demultiplexer function produces a stream of such k-mers

in the same order as the read. Computation of the k-kmer stream is performed

efficiently using bitwise shift operations. Thus the output of the demultiplexer is

KmerEvent(ri, pc) where ri is a unique identifier of the read, pc is a pattern of

k bases at as of cycle c.

2.2.2 K-mer Lookup

The k-mer index is queried during the streaming alignment flow to identify exact

matches to the graph. The queries are made to the k-mer index are batched and

done through asynchronous I/O methods to reduce the cost of the each query.

We select a sufficiently large batch size to minimize the networking overhead and

use non-blocking calls to avoid blocking the processing threads unnecessarily.

2.2.2.1 K-mer Sharding and Lookup Cache

Additionally we have implemented a caching method further reduce the computa-

tional cost of the k-mer lookup operation by allocating a least-recently-used cache

(LRU-cache) to each processing thread. To do so, the k-mer stream is sharded

by the value of p mod T where p is the numerically encoded value of a k-mer and

T is the number of processing threads allocated for the operation. This ensures

that a specific k-mer sequence is always assigned to the same physical instance

of the demultiplexer in the Flink cluster. With this shortcut we keep the query

results for the most frequently occurring k-mers in the cache so that redundant

queries are avoided. The k-mer lookup cache is kept in the thread local memory

to keep all cache operations lock-free.
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2.2.3 Processing Candidate Seeds

2.2.3.1 Maximizing Seeds

Consecutive k-mer hits are grouped together to find maximum spanning exact

matches. The seed maximization is implemented using a finite state machine that

takes a KmerEvent as an input and keeps track of the beginning and ending inter-

vals of the immediate context before the current k-mer. The state of the machine

is defined as AlignmentContext(pbranching, psolid, sextension) where pbranching is the

last solid k-mer before a discordant block of read, psolid is the first k-mer in a

concordant block of read and sextension is the additional sequences in the current

block. Upon a transition between a discordant block and a concordant block, a

PartialAlignment event is emitted to the stream. The partial alignment event

contains the corresponding begin and end KmerEvents.

2.2.3.2 Greedy Chaining

Partial alignments are chained into graph alignment events where each event cor-

respond to an operation on the graph. The possible output events are gap and

match events within a read (Figure 2.2.c). The chaining method is greedy because

only one exact maximized matches are before the current event is considered for

extension. Ideally seeds should be chained globally and all possible extensions

should be explored to identify the path that minimizes the alignment cost. How-

ever this not possible during stream processing since it requires the read to be

fully sequenced. As a result, events corresponding to gaps and matches from the

read are stream to the output to be processed by the graph alignment operation.
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2.2.4 Graph Alignment

Graph alignment function invokes the graph server to execute the given path

search problem on the graph. The gaps between the seeds are filled using depth-

first search algorithm and the context from the graph. Additionally left-most and

right-most seeds can also be extended to the read boundaries. The contextual

information is always provided by the streaming aligner to the graph server for the

gap alignment queries. The gaps are filled using a branch-and-bound algorithm

[44, 24]. The gap events contain the context from read around one or two anchor

points where the exact matches occur. Similar to the [24], we assign cost function

for each base that did not match the sequence from the read. All path search

request calls are made in an asynchronous stream to avoid blocking the event

processing threads.

2.2.4.1 Extracting Positions in the Reference

Reference position lookup takes place after a path in the de Bruijn graph ob-

tained. During the graph alignment process, we return the unitig identifier that

the seed was mapped if the unitig information was available. We extract the set

of reference positions from the reference table that we have precomputed. Finally

the most frequently mapped references are selected to present the approximate

locations that the read is mapped in the reference genomes. Note that a read may

be aligned to multiple reference sequences due to common variations an repeats.

2.2.5 Output

The graph alignment results are written to the file system in text format where

the name, original sequence and results from the mapping events are recorded

in each line. For unsuccessful mappings, only the read name and the sequence

is written. Otherwise the path from the graph is highlighted. If the reference

positions were extracted from the reference genome, a separate file is produced to
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include the sequence of the genomic positions and read positions for each read.

2.2.6 Read Termination Events

Since the streaming read alignment consists of reactive event processing functions

that we have explained in 2.2, the down stream processing functions should be

notified when a read is terminated, i.e., when the HTS equipment signals that the

last sequencing cycle is completed. To handle this, we implement additional input

cases for each operation in the pipeline to flush the batched data and finalize the

read alignment.

2.2.7 Backpressure and Out-of-Order Events

In some cases, the slowest operation in the stream processing pipeline causes

the input events to back-up. This may introduce performance problems as the

waiting queue takes more and more memory. Thanks to the Flink data stream

architecture, we can handle this problem at the source by introducing the back-

pressure to the upstream processors. We have ensured that our implementation

can reflect the backpressure up to the BCL file uploading step. Thus, if the

cluster is overloaded, the further load will not be added to the system until the

system catches up with the existing work load.

2.3 Graph Server

The graph server is an essential part of the streaming alignment pipeline where

the graph related operations are abstracted from the stream processing opera-

tions. We have established an graph service interface that provides the func-

tional endpoints to perform the seed discovery and seed extension tasks required

by graph-based seed-and-extend algorithms. Our graph server implementation
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performs heuristics similar to the BGREAT [24]. However more robust heuristics

can also be applied without making significant changes to the service interface.

2.4 BCL Broker

We implement a HTTP service utility to publish raw to the stream alignment

pipeline. This design allows running the pipeline independently of the HTS equip-

ment. The broker service is a high-performance application where the files are

uploaded to the alignment pipeline using non-blocking calls. A file upload oper-

ation ensures that the BCL data frame is actually takes its place in the stream

processing steps of the graph alignment application.
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Chapter 3

Results

We have evaluated our method using simulated read data to compare performance

and accuracy against other short-read alignment tools; BWA [39], BGREAT2

(successor to BGREAT [24]) and BrownieAligner [35]. We select BWA as the

baseline to compare the performance characteristics of the R2G2Flow to the tra-

ditional short-read alignment methods. BGREAT2 and BrownieAligner are both

greedy aligners for de Bruijn graphs with state-of-the-art seed-and-extend heuris-

tics. Since our tool is the only greedy de Bruijn graph aligner to extract genomic

positions from the original input references, we compare our alignment results

with BWA only for evaluating the accuracy of the aligner. For these experiments

we build the reference graph using a single reference genome in order to make

reasonable comparison with the BWA tool.

3.1 Simulation Details

We used ART [45] to simulate read data from Illumina HiSeq 2500 equipments.

We used predefined settings that are provided by ART in order to approximate

the error profile of the physcial equipment. The read length is chosen to be 150

base pairs.
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3.1.1 Fastq2BCL Tool

The simulated read data needs to be converted to the base call cycle based format

for the streaming alignment. We developed an utility for extracting multiplexed

BCL frames from the given FASTQ file and uploading the frames to the broker

service. Thus we can simulate end-to-end streaming alignment without having to

rely on actual sequencing device.

3.2 Experiments with Bacterial Genome

3.2.1 Simulated Read Alignment

We have generated 1 million reads from the UMN026 strain of the E. Coli genome

[46]. Approximately 30× read-depth is achieved in this data set due to small size

of the bacterial genome. We have compared the performance and read alignment

quality of R2G2Flow with the other aligners (Table 3.2.1). As the baseline BWA

run shows, it is possible to have all reads mapped back to the reference suc-

cessfully. Furthermore R2G2Flow demonstrated similar read alignment quality

in terms of alignment coverage to the state-of-the-art de Bruijn graph aligners

(Figure 3.1).

Table 3.1: Results for mapping 1M simulated short-reads on E. Coli UMN026
compared to the other tools. All tasks are executed on a single host with 112
cores. Remarked run times are shown without the demultiplexer time.

Tool Name #Aligned Aligned% Coverage% Run Time

BWA 1,000,000 100% 100% 9s*
BGREAT 963,153 96.3% 96.3% 46s*

BrownieAligner 999,993 100% 100% 27s*
R2G2Flow 1,000,000 100% 99.4% 2m20s

(∼50s demux.)

Compared to the other tools, R2G2Flow run times are noticably longer for the
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Figure 3.1: Read alignment coverage histogram of 1 million simulated HTS reads
from E. Coli genome. More than 96% of the reads were aligned to graph with at
least 140 base pairs.

same number of reads alignments. However, our stream alignment pipeline car-

ries out other important tasks for demultiplexing the raw BCL data into reads.

Considering that computationally intensive read pre-processing and cluster coor-

dination tasks are not being performed by the traditional alignment tools, addi-

tional overhead is expected. There are at least two places in the pipeline where

the alignment events are transferred between different processes over the net-

work, namely in between BCL broker, Flink data stream and the graph service.

Additional network calls may also occur in case the streaming alignment flow is

distributed to more than one hosts. Although we have included all services on the

same physical server during the experiment, data serialization and deserialization

events still occur during the remote procedure calls (RPC).

3.2.2 K-mer Cache Improvements

We have also evaluated the performance gain achieved by using thread-local k-

mer cache optimization as described in section 2.2.2.1. The LRU cache is shown
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to be effective in decreasing the impact of RPC I/O overhead for the remainder

of the k-mer lookup process by at least 25%. However batching the consecutive

k-mer lookup calls in to single network call makes a greater impact for reducing

I/O overhead.

Table 3.2: Comparison of k-mer lookup performance with respect to the k-mer
LRU cache and batch query settings using 50K reads and 8 CPU cores

Run Time

With batch queries
LRU-cache enabled 34s
LRU-cache disabled 45s

Without batch queries
LRU-cache enabled 1m49s
LRU-cache disabled 2m42s

3.3 Experiments with Human Genome

We compared the alignment rate, base coverage and speed of R2G2Flow to other

tools using a single chromosome from human genome as reference (Table 3.3).

The GRCh38 assembly published by the Genome Reference Consortium [47]. We

used ART to generate about 9.5 million reads to achieve 28× read coverage in

the simulated data. Although the alignment performance of R2G2Flow is similar

to the state-of-the-art methods, the alignment took much longer in comparison

to the other aligners. We measured that about 40% of the CPU time accounts for

the seed extension phase of the pipeline. In comparison to the bacterial genome

experiment, time spent during k-mer lookup is also slightly increased due to larger

number of unique k-mers found in the human genome. To evaluate the run time

impact of using larger reference graphs, performed another experiment using 1

million reads only (Table 3.4). In comparison to the bacterial genome, mapping

the same number of reads in parallel was nearly took 2 times as long where as the

reference genome is 10 times longer. In human genome, increasing the number of

parallel reads aligned from 1M to 10M resulted in less than 1.2 times increase in

the runtime.

It is worth noting that the experimental setup for the other tools does not cover

the demultiplexing time performed after the sequencing is completed. Although
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Table 3.3: Results for mapping 9.5M simulated short-reads on GRCh38.Chr19
assembly compared to the other tools on single host with 112 cores. Remarked
run times shown without added time cost of demultiplexing, which might take
up to an hour in practical applications.

Tool Name #Aligned Aligned% Coverage% Run Time

BWA 9,513,560 100% 100% 1m49s*
BGREAT 5,532,418 58.1% 58.1% 52s*

BrownieAligner 9,498,837 99.6% 99.6% 8m2s*
R2G2Flow 9,513,560 100% 99.5% 1h6m

(∼18m
demux.)

Table 3.4: Results for mapping 1M simulated short-reads on GRCh38.Chr19 on
single host with 112 cores.

Mapping Coverage% Run Time (real) RunTime (user)
R2G2Flow 99.4% 5m34s 6h5m

R2G2Flow performs slower in these experiments than the baseline, our pipeline

has the demultiplexer built-in (Figure 3.2). As a result, the end to end time

between preparing the genetic material and obtaining read mapping data would

be shorter.

In terms of mapping quality, R2G2Flow performed similar to the state-of-the-

art de Bruijn aligners. However BGREAT2 was not able to map 41.9% of the

reads with the default alignment parameters. Both R2G2Flow and the Brown-

ieAligner were able to map with the accuracy above 99.5%. We calculated the

number of bases that are covered per each read aligned by R2G2Flow (Figure

3.3). 97% of the reads were mapped with at least 140 base pairs. Small number

of reads mapped to a larger length in the reference than the read read itself due

to gaps. This problem can be resolved with better alignment scoring heuristics

such as used by the BrownieAligner.
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Figure 3.2: Approximate timing diagram demonstrates the difference of
R2G2Flow run time characteristics in comparison to the other aligners. The
traditional read aligners can only be used after the sequencing run is completed.
For Illumina sequencing platform this process may take 30 hours.

3.3.1 Simulated Variants

In the practical applications, the source of the sequenced data carries a number

of variations from the reference genome. In order to simulate the effect of the

variations, we have generated a new genome from the actual reference genome

using VarSim [48]. Then, we have simulated reads using ART [45] from the

new genome we have obtained and repeated the experiment we have performed

for single chromosome (Table 3.3.1). Due to the larger divergence between the

sample and reference, a small drop in the alignment rate occurred as expected.

R2G2Flow has performed similarly to the baseline graph aligners in terms of the

alignment rate.
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Figure 3.3: Read alignment coverage histogram of 9.5 million simulated HTS
reads from E. Coli genome. There were 15 reads that were mapped to region
greater than the read length (> 150bp).
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Table 3.5: Results for mapping 9.4M simulated short-reads from the sample gen-
erated by VarSim from the reference GRCh38.Chr19 assembly. All alignments
are performed on single host with 112 cores. Remarked run times shown without
added time cost of demultiplexing, which might take up to an hour in practical
applications.

Tool Name #Aligned Aligned% Coverage% Run Time

BWA 9,447,932 100% 100% 2m19s*
BGREAT 5,308,131 56.5% 56.6% 52s*

BrownieAligner 9,186,650 97.2% 97.2% 13m30s*
R2G2Flow 9,447,070 99.99% 98.6% 1h19m
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3.4 Reference Location Resolution

As a post-processing step, R2G2Flow enriches the de Bruijn graph alignment re-

sults with the possible locations that the read could be mapped from the original

reference strings. We indexed the unitigs from the de Bruijn graph we used in

section 3.2 with the help of BCALM [43] and BWA [39] programs. Then we per-

formed a post-processing step to calculate offsets in the original reference genome

from the unitig alignment offsets and converted the results to SAM format. We

compared the genomic alignment positions from R2G2Flow to the results of a

BWA run (Figure 3.4). Although the alignment coordinates mostly overlap with

the baseline, there are a few locations where the reads are aligned different lo-

cations than the baseline. The most of the discordant alignments occur at the

locations of the genome where there are repetitive k-mer patterns.

Figure 3.4: Accuracy of alignment visualized by number of hits per coordinates
of E. Coli genome. Blue line represents the baseline alignment, orange lines
corresponds to the actual mapped coordinates of R2G2Flow.

Since the alignments are performed against the de Bruijn graph, the output

produced by R2G2Flow may favor a specific copy of a repeat in the genome when

calculating locations in the original references. This is because we currently take

the first alternative to output during the reference location resolution. The map-

ping accuracy may be improved if multiple outputs are taken into accounts by
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evaluating the set of reference positions across the mapped unitigs and extract-

ing possible chains based on the continuity of the mapped positions within the

reference. Further analysis of the mapping path we produce may also be used for

extracting novel variation events in case the interspecies genome references were

used.
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Chapter 4

Discussion and Future Work

We demonstrated that our novel aligner R2G2Flow can perform genome graph

alignments on a distributed streaming infrastructure. Our assessment shows that

it feasible to adapt greedy de Bruijn graph alignment methods for streaming read

data. Evidently, sufficiently high throughput can be achieved with the stream

processing adaptations of the state-of-the-art graph aligners that are relying on

seed-and-extend paradigm.

4.1 Mission Critical Streaming Alignments

There is a growing need for streaming analysis for genome sequencing workflows

in mission critical tasks. Streamlined analysis pipelines are being used to reduce

time needed for accurate diagnosis such as determining antibiotic resistance by

genome sequencing [49]. The overall diagnosis time can be very important for

responding to life-threatening situations and major outbreaks such as COVID-19.

Streaming aligners can be used for monitoring the mutations and determining

the particular strains of pathogens affecting many patients at the same time.

Although the overall computational requirements of the R2G2Flow is greater

than the non-streaming alternatives, overall run time is still projected to take
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much less than a full run of the underlying sequencing session. R2G2Flow can be

deployed to as many hosts as required to meed the throughput requirements to

provide real-time response.

4.2 Distributed Execution Environment

The distributed nature of R2G2Flow processing architecture makes is possible to

distribute the work load into multiple hosts with ease. As both streaming flow

and the graph alignment service of R2G2Flow supports distributed execution,

the system can be scaled up horizontally. With horizontal scaling, the total

computational capacity of the system can exceed the capacity of what can be

achieved using a single host. We also believe that operational costs of sequence

alignment work flows can be reduced if many but smaller instances are allocated

to the cluster as opposed to allocating single large instance. This feature may be

especially useful for the institutions where the cloud computing is on demand.

The streaming flow of R2G2Flow is using the Scala API of Apache Flink [36]

and runs on Java Virtual Machine. K-mer index and graph search algorithms are

implemented natively in C++ using de Bruijn graph API provided by GATB [40].

The two parts of the system communicate through asynchronous calls through

a platform agnostic gRPC [50] protocol. We have taken measures to reduce the

impact of communication overhead between different parts of the system so that

the overall runtime is not affected significantly by the separation of processes.

The design of the k-mer cache takes advantage of CPU affinity of the individual

processes. As the k-mer lookup tasks are routed to the worker threads based on

hash value of the seed, the k-mer index is being implicitly redistributed across

the cluster based on the access pattern and availability of resources. The access

locality is positively impacted from this process. We believe this may benefit

significantly for the cluster configurations where large number of CPU cores are

available.
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4.3 Future Work

4.3.1 Improved de Bruijn Graph Alignment Heuristics

The alignment accuracy profile of R2G2Flow can be improved by incorporating

more advanced alignment heuristics as exemplified by BrownieAligner [35] and

McCortex [34]. The BrownieAligner introduces major alignment heuristics such

as applying an edit distance-based cost function and a Markov model derived

from the original reference strings. These improvements help the greedy aligner

to choose better paths at the branching nodes of the de Bruijn graph. Markov

model may be especially beneficial for the regions of the genome where there

are a large number of repetitions since the context from the read before the

branching node is important for path decision. Utilization of a Markov model

helps this decision by using a statistical method. In McCortex [34], the long range

information from the respective reference strings are stored in the de Bruijn graph

itself. We believe our alignment procedure can be extended in the future by using

similar heuristics for the seed-and-extend algorithm.

4.3.2 Integration of Other Types of Graph Aligners

There are a number of graph aligners [23, 28] that are not based on de Bruijn

graphs. Instead the derivations of string graphs and sequence graphs are used for

representing the set of genomes. We believe that with small set of modifications

to our streaming pipeline, these alignment algorithms can be used for continuous

analysis of the HTS data in the future.

4.3.3 Post-alignment Analysis Flows

Continuous processing of the sequencing data for read mapping is an essential step

for building the systems perform higher level analyses such as structural variant
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discovery in an automated manner. Thus, R2G2Flow paves the way to perform

streamlined genome analyses on the streaming HTS data by having partial align-

ment events exposed as soon as a the related sequencing cycle is completed. In

a future application, the partial alignment streams can be used for extracting

preliminary results with increasingly better confidence as the sequencing cycles

progress forward. Thus, it may be proven that some preliminary results from the

sequencing experiments can be made available even before the final sequencing

cycles.

Streaming read aligners allow performing additional analysis even before the

sequencing cycles are fully completed. Since R2G2Flow incrementally outputs the

partial read alignments, preliminary results can be obtained towards the later cy-

cles with incrementally higher fidelity. When combined with other bioinformatics

pipelines such as variant discovery and detecting mutations based on the read

depth statistics, a streaming alignment workflow expose crucial findings hours

before it would normally take with non-streaming pipelines.
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Appendix A

Glossary

BCL: Base calls cycle file generated by Illumina devices

DNA: Deoxyribonucleic Acid, the main regulatory molecule in the cell

FASTQ: A text file format to store reads with quality information

HGP: Human Genome Project

HTS: High Throughput Sequencing

I/O: Input/Output

LRU cache: A data structure to hold least recently used items

RPC: Remote Procedure Call

SAM: Sequence Alignment Mapping format
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Appendix B

Code

Code is available at https://github.com/BilkentCompGen/r2g2.
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