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ABSTRACT

MAGNETIC RESONANCE ELECTRICAL

IMPEDANCE TOMOGRAPHY BASED ON THE

SOLUTION OF THE CONVECTION EQUATION AND

3D FOURIER TRANSFORM-MAGNETIC

RESONANCE CURRENT DENSITY IMAGING

Ömer Faruk Oran

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Yusuf Ziya İder

August 2011

In Magnetic Resonance Electrical Impedance Tomography (MREIT) and Mag-

netic Resonance Current Density Imaging (MRCDI), current is injected into a

conductive object such as the human-body via surface electrodes. The resulting

internal current generates a magnetic flux density distribution which is measured

using a Magnetic Resonance Imaging (MRI) system. Utilizing this measured

data, MREIT is the inverse problem of reconstructing the internal electrical con-

ductivity distribution and MRCDI is the inverse problem of reconstructing a

current density distribution. There are hardware and reconstruction algorithm

development aspects of MREIT and MRCDI. On the hardware side, an MRI

compatible constant current source is designed and manufactured. On the other

side, two reconstruction algorithms are developed one for MREIT and one for

MRCDI. Most algorithms for MREIT concentrate on utilizing the Laplacian of

only one component of the magnetic flux density (∇2Bz). In this thesis, a new
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algorithm is proposed to solve this ∇2Bz-based MREIT problem which is math-

ematically formulated as a steady state scalar pure convection equation. Numer-

ical methods developed for the solution of the more general convection-diffusion

equation are utilized. It is known that the solution of the pure convection equa-

tion is numerically unstable if sharp variations of the field variable (in this case

conductivity) exist or if there are inconsistent boundary conditions. Various sta-

bilization techniques, based on introducing artificial diffusion, are developed to

handle such cases and in the proposed algorithm the streamline upwind Petrov

Galerkin (SUPG) stabilization method is incorporated into Galerkin weighted

residual Finite Element Method (FEM) to numerically solve the MREIT prob-

lem. The proposed algorithm is tested with simulated and also experimental data

from phantoms. It is found that for the case of two orthogonal current injections

the SUPG method is beneficial when there is noise in the magnetic flux density

data or when there are sharp variations in conductivity. It is also found that the

algorithm can be used to reconstruct conductivity using data from only one cur-

rent injection if SUPG is used. For MRCDI, a novel iterative Fourier transform

based MRCDI algorithm, which utilizes one component of magnetic flux density,

is developed for 3D problems. The projected current is reconstructed on any

slice using ∇2Bz data for that slice only. The algorithm is applied to simulated

as well as actual data from phantoms. Effect of noise in measurement data on

the performance of the algorithm is also investigated.

Keywords: Magnetic Resonance Electrical Impedance Tomography, Magnetic

Resonance Current Density Imaging, Impedance Imaging, Current Density Imag-

ing, Current Source, Finite Element Method, Partial Differential Equations, Spa-

tial Frequency Domain Techniques, Fourier Transform
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REZONANS ELEKTRİKSEL EMPEDANS TOMOGRAFİ VE

3B FOURIER DÖNÜŞÜMÜ-MANYETİK REZONANS AKIM

YOĞUNLUĞU GÖRÜNTÜLEME

Ömer Faruk Oran

Elektrik ve Elektronik Mühendisliği Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Yusuf Ziya İder

Ağustos 2011

Manyetik Rezonans Elektriksel Empedans Tomografisi’nde (MREET) ve

Manyetik Rezonans Akım Yoğunluğu Görüntülenmesi’nde (MRAYG), iletken

bir cisme (insan vücudu gibi) yüzey elektrotları vasıtasıyla akım uygulanır.

İçerideki akım, Manyetik Rezonans Görüntüleme (MRG) sistemiyle ölçülen bir

manyetik akı yoğunluğu oluşturur. MREET, ölçülen bu verinin kullanılarak cisim

içerisindeki iletkenlik dağılımının geriçatılması ters problemidir. MRAYG ise

yine ölçülen bu verinin kullanılarak cisim içerisindeki akım yoğunluğu dağılımının

geriçatılması ters problemidir. MREET ve MRAYG yöntemlerinin donanım

ve geriçatım algoritmaları geliştirilmesi tarafları vardır. Donanım geliştirilmesi

tarafında MRG uyumlu bir sabit akım kaynağı tasarlanmış ve üretilmiştir. Diğer

tarafta ise, MREET ve MRAYG yöntemleri için ayrı ayrı olmak üzere iki

geriçatım algoritması geliştirilmiştir. MREET algoritmalarının birçoğu manyetik

akı yoğunluğunun sadece bir bileşenine Laplas işleci uygulanması sonucu elde

edilen verinin (∇2Bz) kullanılmasına yoğunlaşmışlardır. Bu tezde, matematiksel

olarak yatışkın-durumdaki skalar ve saf taşınım denklemi şeklinde formüle edilen
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∇2Bz-bazlı MREET probleminin çözümü için yeni bir algoritma önerilmiştir.

Daha genel yayınım-taşınım denkleminin çözümü için geliştirilen nümerik

yöntemler kullanılmıştır. Alan değişkeninde (bu durumda iletkenlik) keskin

değişimler ya da tutarsız sınır şartları varsa saf taşınım denkleminin nümerik

çözümünün kararsız olduğu bilinmektedir. Bu gibi durumlara karşı, denk-

leme suni yayınım katılmasına dayanan birçok kararlılaştırıcı teknik önerilmiştir

ve önerilen algoritmada MREET probleminin nümerik olarak çözülmesi için

Taşınım Yönünde Petrov Galerkin (TYPG) kararlılaştırıcı tekniği, Galerkin

Ağırlıklı Artıklar Sonlu Elemanlar Yöntemi’ne dahil edilmiştir. Önerilen algo-

ritma, benzetimle elde edilen verilerle ve fantomlardan alınan deney verileri ile

sınanmıştır. Birbirine dik iki yönde akım uygulanması durumu incelendiğinde,

manyetik akı yoğunluğu verisinde gürültü ya da iletkenlikte keskin değişikler

olduğunda TYPG tekniğinin faydalı olduğu görülmüştür. Ayrıca TYPG tekniği

kullanıldığında, algoritmanın tek yönde akım uygulandığında da kullanılabileceği

görülmüştür. Üç boyutlu MRAYG problemleri için, manyetik akı yoğunluğunun

tek bileşenini kullanan ve Fourier dönüşümüne dayalı özgün bir tekrarlamalı algo-

ritma geliştirilmiştir. Herhangi bir kesitteki izdüşümsel akım yoğunluğu, o kesit-

teki∇2Bz verisi kullanılarak geriçatılmıştır. Algoritma benzetimle elde edilen ve-

rilere uygulandığı gibi deney fantomlarından elde edilen gerçek verilere de uygu-

lanmıştır. Ölçüm verilerindeki gürültünün algoritmanın performansı üzerindeki

etkileri de araştırılmıştır.

Anahtar Kelimeler: Manyetik Rezonans Elektriksel Empedans Tomografi,

Manyetik Rezonans Akım Yoğunluğu Görüntüleme, Empedans Görüntüleme,

Akım Yoğunluğu Görüntüleme, Akım Kaynağı, Sonlu Elemanlar Yöntemi, Kısmi

Türevsel Denklemler, Uzaysal Frekans Bölgesi Yöntemleri, Fourier Dönüşümü

vi



ACKNOWLEDGMENTS

I am greatly indebted to my supervisor Prof. Dr. Yusuf Ziya İder for his in-
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Chapter 1

INTRODUCTION

1.1 Motivation

In Magnetic Resonance Electrical Impedance Tomography (MREIT), electrical

current is injected into a conductive object such as the human-body via sur-

face electrodes. The resulting internal current generates a magnetic flux density

distribution both inside and outside the object. The magnetic flux density in-

side the object is measured using a Magnetic Resonance Imaging (MRI) system,

and from this measured magnetic flux density distribution, the internal electrical

conductivity distribution of the object is reconstructed.

Imaging electrical conductivity distribution of biological tissues has been an

active research area in the field of medical imaging for decades. Electrical con-

ductivity greatly varies in different tissues of human body since each tissue has

different cell concentration, cellular structure, membrane capacitance, and so on

[1]-[3]. Electrical conductivity of human tissues is also a function of the frequency

of the applied current. In MREIT and MRCDI, very low frequencies are consid-

ered (less than 1 kHz) and therefore effects of permittivity is ignored and only

1



conductivity is considered. Typical electrical conductivities of different biological

tissues at low frequencies are given Table 1.1 [4].

The conductivity distribution provides both an anatomical image and a dif-

ferent contrast mechanism. More importantly, the electrical conductivity also

depends on the pathological state of the tissues which means the electrical con-

ductivity imaging can be used for detection and characterization of, for instance,

tumors [5]-[7].

Similar to MREIT, in Magnetic Resonance Current Density Imaging (MR-

CDI), the magnetic flux density due to injected currents is measured via an MRI

system. The internal current density distribution is then reconstructed using

this data. MRCDI is strictly related to MREIT in the sense that some MREIT

algorithms require the current density distribution to be known and in other

algorithms the current density may be calculated once the conductivity is ob-

tained. Besides being a companion problem to MREIT, MRCDI itself has also

potential medical applications [8]-[15]. There are many therapeutic techniques

in which currents are injected to the body (e.g. cardiac defibrillation and pac-

ing, electrocautery, and some treatment methods in physiotherapy). Knowledge

of current density distribution would be useful in planning and designing such

therapeutic techniques.

Table 1.1: Typical electrical conductivities of some biological tissues at low fre-
quencies (reproduced from [4])

Tissue Frequency (kHz) Conductivity (S/m)

Cerebrospinal fluid (human) 1 1.56
Blood (human) DC 0.67
Plasma (human) DC 1.42
Skeletal muscle (longitudinal fibers) (human) DC 0.41
Skeletal muscle (transverse fibers) (human) 0.1 0.15
Fat (dog) 0.01 0.04
Bone (human) 0.1 0.00625
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1.2 MRCDI and MREIT Problem Definitions

1.2.1 Forward Problem

Let Ω be a connected and bounded domain in R3 representing the internal re-

gion of a three-dimensional electrically conducting object in which the electrical

current density and the conductivity distribution is to be imaged. DC current of

magnitude I is applied between two electrodes attached on the boundary of the

domain which is denoted by ∂Ω. The electric potential, ϕ(x, y, z), dictated by the

current injection satisfies the boundary-value problem with Neumann boundary

condition which is given as

∇ · σ∇ϕ(x, y, z) = 0 in Ω

σ ∂ϕ
∂n

= g on ∂Ω

(1.1)

where σ is the electrical conductivity, n is the unit outward normal along the

boundary ∂Ω,
∫
E±

g ds = ±I on electrodes (E± denotes one of the electrodes on

∂Ω and sign depends on whether current is injected through or sunk from the

electrode considered), and g = 0 on ∂Ω other than electrodes. The current

density, J, is given by J = σE where E = −∇ϕ is the electric field. Once the

problem given by Equation 1.1 is solved for electric potential, it easy to calculate

the current density distribution.

In MREIT and MRCDI, currents of very low frequency are injected into the

imaging object and therefore static version of Maxwell’s equations are used. In

the static assumption, the displacement current, ∂D
∂t
, and the magnetic induction,

∂B
∂t
, are negligible. Therefore J = ∇×B/µ0 and ∇× E = 0.

The magnetic flux density generated by the current density distribution in Ω

is given by Biot-Savart law as

B(r) =
µ

4π

∫
Ω

J(r)× r− r′

|r− r′|3
dr′ (1.2)
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where B(r) is the generated magnetic flux density, r is the position vector in R3,

and µ is the magnetic permeability which can be assumed to be space-invariant

and has the free space value of µ0 = 4π × 10−7 H/m for body tissues.

Given the conductivity distribution in Ω, the object and boundary geometry,

and the electrode configuration, the forward problem of MRCDI and MREIT is

the calculation of the magnetic flux density which is generated by the internal

current density. The internal current density distribution is calculated from the

electric potential which is the solution of Equation 1.1. The solution of forward

problem is necessary for the generation simulated data which are used to test

the developed algorithms. Furthermore, as will be discussed in Section 1.3, some

MRCDI and MREIT algorithms, including the MREIT algorithm proposed in

this thesis, requires the solution of the current density distribution when homo-

geneous conductivity is assumed in Ω.

1.2.2 Inverse Problem

The inverse problem of MRCDI is the reconstruction of the current density from

the measured magnetic flux density. Some early MRCDI algorithms assume that

all components of the magnetic flux density are measured. However, as will be

discussed in Section 1.3, measurement of all components of the magnetic flux

density is impractical, and therefore currently most MRCDI algorithms utilize

only one component of the magnetic flux density, namely Bz, if main magnetic

field of the MRI scanner is assumed to be the z- direction. Bz is generated only

by transverse (x- and y- components) current density and the relation given in

Equation 1.2 is written only for Bz as

Bz(x, y, z) =
µ0

4π

∫
Ω

(y − y′)Jx(x
′, y′, z′)− (x− x′)Jy(x

′, y′, z′)

[(x− x′)2 + (y − y′)2 + (z − z′)2](3/2)
dx′dy′dz′. (1.3)
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On the other hand, the inverse problem of MREIT is the reconstruction of

the conductivity distribution from the measured magnetic flux density. Some

early MREIT algorithms assume that that all components of the magnetic flux

density are measured and all components of the current density are calculated

from Ampere’s Law (J = ∇ × B/µ0) so that the inverse problem of MREIT

reduces to reconstruction of the conductivity from the current density. These

algorithms often called J-based MREIT algorithms. Recently most algorithms

utilize only Bz, which are often called Bz-based MREIT algorithms.

Although some Bz-based MREIT problems directly utilize Bz data, other

algorithms use the Laplacian of Bz (∇2Bz). Taking the curl of both sides of

Ampere’s Law (J = ∇ × B/µ0), and using the vector identity ∇ × ∇ × B =

∇(∇ ·B)−∇2B together with the fact that ∇ ·B = 0, the following expression,

which relates the x- and y- components of the current density distribution to

∇2Bz, is obtained [8]:

∂Jx
∂y

− ∂Jy
∂x

=
∇2Bz

µ0

(1.4)

Since current density is given by J = σE and ∇× E = 0, we also have

1

σ
(Jx

∂σ

∂y
− Jy

∂σ

∂x
) =

∇2Bz

µ0

(1.5)

For the∇2Bz-based MREIT algorithms, the inverse problem is the reconstruction

of the conductivity using the relation given in Equation 1.5.

1.3 Review of Previous Studies in MRCDI and

MREIT

MRCDI was introduced in 1989 by Joy et al. [16]. In their study, by physically

rotating the experiment phantom inside the MRI scanner, they measured all

components of the magnetic flux density generated by the injected current. Since

only the component of the magnetic flux density parallel to the direction of the
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main magnetic field of the MRI scanner can be measured at one time, object

rotations are necessary for measuring all components of the magnetic flux density.

The current density distribution was calculated from Ampere’s Law (J = ∇ ×

B/µ0). As an experiment phantom, they prepared two isolated cylindrical tubes

one within the other and both tubes were filled with electrolyte. The current

was applied between two ends of the inner tube and a uniform current flowing

only in one direction was obtained. Later in 1991, Scott et al. used a similar

procedure to reconstruct nonuniform current density flowing in all directions [8].

One year later, Scott et al. published their study in which they investigated the

sensitivity of MRCDI to both random noise and systematic errors [17]. There are

some other investigators who have also measured all components of the magnetic

flux density and utilized Ampere’s Law to reconstruct the current density. In

1998, Eyüboğlu et al. [18] reported that they have reconstructed current density

magnitude of which is lower than the current density reconstructed by Scott et

al. . Also they reconstructed the current density in a slice more close to the

electrodes. They used a similar experimental phantom that was used by Scott et

al. in 1991. Other studies may be listed as applications of the MRCDI procedure

proposed by Joy et al. [8]-[15].

In practice, rotating the object inside an MRI scanner is not desirable be-

cause of possible misalignments after the rotation. Furthermore, for long objects,

subject rotations are in fact impossible in a conventional closed bore MRI sys-

tem. Last not least, since the experiment must be repeated three-times in order

to measure all three components of the magnetic flux density, total scan time

becomes three times higher. Therefore most MRCDI and MREIT algorithms use

only one component of the measured magnetic flux density, namely Bz, where

z- direction is the direction of the main magnetic field of the MRI scanner. It

was shown by Park et al. that the transverse current density distribution cannot

be fully recovered using only Bz information unless the difference between the

z-components of the actual current density and the current density calculated for
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homogeneous conductivity is negligible [19] . Nevertheless, in their study, Park

et al. have also developed an algorithm by which Jx and Jy distributions can be

estimated for a certain slice given the ∇2Bz data for that slice. They have called

this estimated transverse current density the “projected current density” which

is the recoverable portion of the actual current density.

Besides spatial domain MRCDI algorithms, some frequency domain tech-

niques for MRCDI is also suggested [20]-[22]. İder et al. have developed Fourier

Transform (FT)-based MRCDI algorithms utilizing only Bz for two- and three-

dimensional problems [22]. For two-dimensional problems where the current

density has no z- component, the proposed algorithm iteratively reconstructs

both the current density on an xy- plane inside the object and also the magnetic

flux density on the same xy- plane outside the object. For three-dimensional

problems, another algorithm has been developed in the same study by which

the “projected current density” at any desired slice is iteratively reconstructed

from the ∇2Bz data for that slice. The algorithm for three-dimensional case

is named “3D Fourier Transform-Magnetic Resonance Current Density Imaging

(FT-MRCDI)” and the work done for this thesis also includes the algorithm

developed for 3D FT-MRCDI which is discussed in Chapter 4.

As indicated in Section 1.1, MRCDI and MREIT are companion problems

such that in many MREIT algorithms current density is also reconstructed. In

the following, some MREIT algorithms will be discussed in which the current

density is reconstructed as a part of the algorithm or may be reconstructed as

an additional information once the conductivity is reconstructed. The MREIT

algorithms fall into two categories which are J-based and Bz-based algorithms

respectively. While early MREIT algorithms are members of the first group,

recently most MREIT algorithms are members of the latter group.
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In J-based MREIT algorithms, all components of the magnetic flux density is

measured from which J is calculated using Ampere’s Law. These algorithms con-

centrate on reconstructing the conductivity distribution from the reconstructed

current density. In 1992, Zhang proposed the first J-based MREIT algorithm in

his MSc thesis and so the MREIT concept was first introduced [23]. Apart from

this study, the MREIT concept is also introduced by Woo et al. [24] in 1994, and

by Birgul and İder [25] in 1995 independently. These two studies also involve

J-based algorithms. Other J-based algorithms are given in [26]-[31].

On the other hand, Bz-based MREIT algorithms provide us with the ability

to reconstruct the conductivity distribution using only Bz which is advanta-

geous over J-based algorithms since impractical object rotations are not needed.

Therefore, today, most MREIT algorithms fall into category of Bz-based MREIT

algorithms.

In 1995, Birgul and İder proposed the first Bz-based algorithm [25]. They

formed a sensitivity matrix in order to linearize the relation between the con-

ductivity and Bz which is given by Equations 1.1 and 1.3 considering the fact

that J = −σ∇ϕ. The obtained sensitivity matrix is inverted using truncated sin-

gular value decomposition. They have published simulation results [32] and the

experimental results are given in [33] for the proposed sensitivity matrix based

MREIT algorithm.

As mentioned in Section 1.2.2, some Bz-based MREIT algorithms utilize the

Laplacian of Bz (∇2Bz) in which∇2Bz is calculated from the measured Bz before

the reconstruction algorithm starts. The relation between the conductivity (σ),

current density (J) and the Laplacian of Bz (∇2Bz) was given in Equation 1.5.

If Jx and Jy are known for a certain slice (intersection of the object with a

certain z = constant plane) then the transverse gradient of the conductivity,

(∂σ
∂x
, ∂σ

∂y
), can be calculated from the ∇2Bz data obtained for that slice only.

This is the major advantage of ∇2Bz-based algorithms because reconstruction
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of conductivity at a certain slice is possible so that measuring Bz in the whole

domain is not necessary. If the electric potential (ϕ) is used, Equation 1.5 may

be written as

∂σ

∂x

∂ϕ

∂y
− ∂σ

∂y

∂ϕ

∂x
=

∇2Bz

µ0

. (1.6)

In 2003, Seo et al. proposed a ∇2Bz-based iterative algorithm which depends on

the solution of the above equation [34]. For the first iteration, they assumed a

homogeneous conductivity and solved the forward problem to find electric poten-

tial and they used this electric potential to solve Equation 1.6 for the gradient of

the conductivity in each MR pixel. They used two orthogonal current injections

to obtain a unique solution. For the calculation of the conductivity from its gra-

dient, they utilized a line integral method. The newly calculated conductivity

is used for the next iteration and the iterations stop if the change in the con-

ductivity for the consecutive iterations is sufficiently small. Oh et al. used the

same algorithm with the difference that they utilized a layer potential technique

to calculate the conductivity distribution from its gradient [35]. They called this

algorithm as “Harmonic Bz algorithm”.

In 2004, İder and Onart modified Equation 1.5 to obtain

∇2Bz = µ0(Jx
∂R

∂y
− Jy

∂R

∂x
) (1.7)

where R = ln σ [36]. They proposed an iterative algorithm based on the above

equation. For the first iteration, they assumed a homogeneous conductivity and

solved for the current density. Next, they used the finite difference approximation

to obtain a matrix system for the solution of R. Upon the solution of the matrix

system, R is obtained directly in each pixel. They used this R in the next

iteration and the iterations stop if the change in R for the consecutive iterations

are sufficiently small.

In 2008, Nam et al. used the “projected current density” [19] in Equation

1.7 to find the transverse gradient of R in each pixel at the slice of interest [37].

Starting from the gradient distribution, they utilized a layer potential technique,
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suggested by Oh et al. [35], to reconstruct the conductivity distribution on that

slice.

1.4 Objective and Scope of the Thesis

This thesis covers the research regarding both the hardware and the algorithm de-

velopment aspects of MREIT and MRCDI. As mentioned previously, for MREIT

and MRCDI, currents are injected through surface electrodes into the imaging

object which requires an MRI compatible constant current source. Therefore, on

the hardware side, a current source which is used for injecting currents in the

experiments is designed and developed.

On the other hand, we have developed two new reconstruction algorithms one

for MREIT and one for MRCDI. For MREIT, the devoloped algorithm is named

MREIT based on the solution of the convection equation. In this algorithm,

the relation which is given in Equation 1.7 is put into the form of the steady-

state scalar convection equation. Convection equation is a special case of the

more general convection-diffusion equation and describes the distribution of a

physical quantity (e.g. concentration, temperature) under the effect of two basic

mechanisms, convection and diffusion. The convection-diffusion equation arises

in many physical phenomena such as distribution of heat, fluid dynamics etc.

Although physically no convection mechanism exists in the MREIT problem, it

can nevertheless be handled as a convection problem solely from a mathematical

point of view. Furthermore, because the convection equation by itself does not

always yield stable numerical solutions, introduction of a diffusion term as a

stabilization technique is customary. Therefore, in MREIT based on the solution

of the convection equation, the MREIT problem is handled as a convection-

diffusion problem and the advanced numerical methods developed for the solution

of the convection-diffusion equation by using finite element method (FEM) are
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adapted and used for solving the MREIT problem. The methods are then tested

both with simulated and experimental data.

For MRCDI, a spatial frequency domain based MRCDI algorithm which is

named Three-dimensional Fourier transform MRCDI, is developed. In this al-

gorithm, in a imaging slice, Equation 1.4 and divergence-free condition of the

current density is utilized together in the frequency domain. To our knowledge,

the proposed algorithm is the only frequency domain MRCDI algorithm for 3D

problems. The results obtained from both the simulated data and the experi-

mental data are presented.

Noise is inherent in the actual Bz measurements. Therefore it is important to

evaluate the performance of any reconstruction algorithm for MREIT or MRCDI.

In this thesis, we also provide simulation results for both developed MREIT and

MRCDI algorithms when random noise is added to the simulated ∇2Bz.

1.5 Organization of the Thesis

This thesis consists of five chapters. Chapter 2 discusses the designed data col-

lection system for MREIT and MRCDI. In this chapter, the MRI pulse sequence,

which is used for measuring magnetic flux density due to the injected currents

is discussed. Also the designed current source is described. Chapter 3 and 4

discusses the developed MREIT based on the solution of the convection equation

algorithm and Three-dimensional Fourier transform MRCDI algorithms respec-

tively. The simulation and experimental methods and the results obtained using

these methods are given in each chapter in order to evaluate the performance of

the proposed algorithms. Finally, Chapter 5 provides conclusions to the thesis.
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Chapter 2

DATA COLLECTION SYSTEM

FOR MREIT AND MRCDI

In MRCDI and MREIT, an MRI scanner is used to measure the magnetic flux

density distribution due to the injected currents. It is known that an MRI

system is only sensitive to the transverse magnetization and only z- component

of the generated magnetic flux density can effect transverse magnetization by

providing additional phase to the spins (z- direction is the direction of the main

magnetic field of the MRI scanner). Therefore only z- component of the generated

magnetic flux density, namely Bz, can be measured at one time, and we will

discuss measurement of only Bz in this chapter. It is important to remind that,

in order to measure other components of the generated magnetic flux density, the

imaging object could be rotated inside the MRI scanner. However, in practice,

object rotations are impractical as discussed in Chapter 1.
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2.1 Measurement of Bz via an MRI Scanner

In order to measure Bz via an MRI scanner, several MRI pulse sequences is

proposed [16], [38]-[43]. In this study, the conventional spin-echo MREIT pulse

sequence proposed by Joy et al. [16] is used. The timing diagram of the sequence

is given in Figure 2.1. As evident from Figure 2.1, the imaging slice is transversal

and so Bz is measured in a transversal slice, although sagittal and coronal slices

are possible. Two acquisitions are required in which positive and negative current

injections are used separately. The complex k-space data obtained using this

pulse sequence can be written for positive and negative current injections as

S±(m,n) =
∫
R2

M(x, y) exp (jδ(x, y)) exp (±jγBz(x, y)Tc)

exp (−j2π(m∆kxx+ n∆kyy))dxdy

(2.1)

where M(x, y) is the transverse magnetization which is a function of spin density

and T1, T2 decay constants, δ(x, y) is the systematic phase artifact in radians, γ

is the gyromagnetic ratio (26.7519× 107 rad/T s), Bz is the z- component of the

magnetic flux density due to the injected current, Tc is the total current injection

time and kx, ky are the spatial frequency components in x- and y- directions.

Two complex images for positive and negative current injections, which can be

obtained from S±(m,n) using two-dimensional discrete inverse Fourier transform

(DFT), are given as

M±(x, y) = M(x, y) exp (jδ(x, y)) exp (±jγBz(x, y)Tc). (2.2)

The phases of two images in radians are

Φ1 = δ(x, y) + γBz(x, y)Tc and Φ2 = δ(x, y)− γBz(x, y)Tc. (2.3)

from which Bz can be calculated by subtracting phases to eliminate δ(x, y) and

dividing by two (Bz(x, y) = (Φ1 − Φ2)/(2γTc)). Note that the obtained phase

images are most likely wrapped and in order to unwrap the phase images, Gold-

stein’s phase unwrapping algorithm is used in this study [44].
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Figure 2.1: The conventional MREIT pulse sequence used in the study.

2.2 MR Compatible Current Source for MR-

CDI and MREIT

In MRCDI and MREIT modalities, an MRI compatible constant current source

is required to inject currents into the subject through surface electrodes. The

required current waveform is given in Figure 2.1. The current injection cycle

starts T1 milliseconds after the 90◦ RF excitation pulse. Therefore the current

source must be triggered by the MRI system to indicate the location of the

excitation RF pulse in time. Once triggered by the MRI system, the current

source must apply currents with respect to T1, T2, T3 and T4 as shown in Figure

2.1. Since TE can be differently selected for each experiment, T1-T4 is not constant

and the current source must be designed such that these values is entered for each

experiment.

In this study, a current source system which has above specifications is de-

signed and implemented for the MRCDI and MREIT experiments. The designed
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system has three parts (each part placed in a different box), namely power supply,

microcontroller, and voltage-to-current converter (Figure 2.2).

Figure 2.2: Hardware Setup: On the left, microcontroller and power supply units
which are located near MRI console are shown. The fiber-optic links which carry
A and B signals from the microcontroller unit to the voltage-to-current (V/C)
converter are also shown. On the right, the V/C converter which are located in
the scanner room is shown with the MRI scanner.

The circuit diagram for the microcontroller part is given in Figure 2.3. The

microcontroller part mainly produces A and B signals (Figure 2.4) which are

then sent to the current source box via fiber-optic links. The required trigger

is taken from the negative edge at the onset of the refocusing pulse of the z-

gradient, which is the only negative part in the z-gradient signal as shown in

Figure 2.1. The z-gradient signal is isolated from the microcontroller box circuit

by using a linear optocoupler such that the gradient signal on the isolated side

is transferred to the non-isolated side with a DC offset. The isolated side of the

circuit operates at ±12 V obtained from lead-acid batteries whereas the non-

isolated part operates at ±15 V and 8 V obtained from the power supply part.

Once the signal is transferred to the non-isolated part, the signal is entered to a
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Figure 2.3: Curcuit diagram for microcontroller part. Gz stands for z-gradient
signal. HFBR1414 is a optical transmitter which converts electrical signals to
optical signals

comparator such that another signal, which becomes 15 V during the refocusing

part of the gradient signal and stays at −15 V otherwise, is produced. This signal

is input to the interrupt port of the microcontroller board after eliminating the

negative part with a diode and the signal level is decreased by a voltage-divider

circuit. The microcontroller board consists of a 8051 microcontroller and driving

circuitry. The board is programmed to produce A and B signals with respect to

the T1-T4 which are entered with the help of a numpad and an LCD. A and B

signals are sent to the voltage-to-current converter part by using digital optical

transmitters (Avago Technologies, HFBR 1414). The circuit diagram for the

voltage-to-current converter part is given in Figure 2.5 where RL represents the

phantom. The voltage-to-current converter part converts optical A and B signals

into the electrical signals and then subtracts B from A to obtain the desired

current injection waveform as a voltage as shown in Figure 2.4. This voltage

waveform is then converted to the current waveform via a simple opamp circuit.

The magnitude of the current may be adjusted with the resistor at the negative
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interrupt

received

Figure 2.4: A and B signals

input of the opamp. The voltage-to-current converter part operates at ±12 V

obtained from the lead-acid batteries. The voltage-to-current converter part is

the only part of the current source system which is placed inside the scanner room

in the experiments (Figure 2.2). Therefore the circuit and the batteries are placed

in an aluminum case. For the output cables which transfer current from voltage-

to-current converter part to the phantom (the imaging object), feed-through

filters are used. Furthermore, fiber-optic links are used between microcontroller

part and the voltage-to-current converter part in order to preclude any possible

noise from microcontroller box inside the scanner room.
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Figure 2.5: Circuit diagram for voltage-to-current converter part. RL denotes
the load resistor which is the experimental phantom in our case. HFBR2412 is
a optical receiver which converts optical signals to electrical signals
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Chapter 3

MREIT BASED ON THE

SOLUTION OF THE

CONVECTION EQUATION

3.1 Methods

3.1.1 The Algorithm

The relation between electrical conductivity (σ), current density (J), and Lapla-

cian of the Bz (∇2Bz) was derived in Section 1.2.2 as

1

σ
(Jx

∂σ

∂y
− Jy

∂σ

∂x
) =

∇2Bz

µ0

. (3.1)

Defining R = ln σ, Equation 3.1 can be expressed as [36]

∇2Bz = µ0(Jx
∂R

∂y
− Jy

∂R

∂x
). (3.2)

Furthermore defining J̃ = (−Jy, Jx), and ∇R = (∂R
∂x
, ∂R
∂y
), Equation 3.2 can be

put into the form of the scalar pure convection equation, which is introduced and
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discussed in the Appendix A, as

J̃ · ∇R =
∇2Bz

µ0

. (3.3)

In this equation, J̃ may be recognized as the convective field defined in Equation

A.1, R is the scalar field to be solved and ∇2Bz

µ0
is the source term.

Apart from R, the J̃ vector is also unknown in Equation (3.3) since the current

density is not known. The actual current density consists of two components,

namely J0 and Jd, where J0 is the current density distribution obtained by

solving the forward problem for the homogenous conductivity distribution and

Jd is defined as the difference current density such that Jd = J− J0. Since only

Bz is utilized, only an estimate for the actual difference current density, namely

J∗, can be calculated [19]. J∗ is calculated from the relation J∗ = (∂β
∂y
,−∂β

∂x
)

where β is the solution of the two-dimensional (2-D) Laplace equation given as

∇2β =
∇2Bz

µ0

in Ω′ and β = 0 on ∂Ω′ (3.4)

where Ω′ is the intersection of Ω with a z = constant plane (the slice of interest)

and ∂Ω′ is the boundary of the intersection. Once J∗ is obtained, the projected

current density which is defined as JP = J∗ + J0 is calculated. J̃ = (−JP
y , J

P
x ) is

then substituted into Equation (3.3) so that it can be solved for R.

For the numerical solution of Equation (3.3) on the slice of interest, fi-

nite element method (FEM) is used. In the FEM formulation, either standard

Galerkin weighted residual method [45], or Galerkin weighted residual method

with streamline upwind Petrov-Galerkin (SUPG) stabilization [46], which is dis-

cussed in detail in Appendix A, is used.

In general more than one current injections may be used for MREIT. If two

orthogonal current injections are used, the final matrix system for Equation (3.3)

is written as  K1

K2


2N×N

RN×1 =

 b1

b2


2N×1

(3.5)
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where N is the number of nodes in the triangular mesh at the slice of interest,

and K1, K2 and b1, b2 are obtained for two orthogonal current injections by

using Galerkin weighted residual FEM with or without SUPG stabilization. In

solving Equation (3.3) boundary conditions must also be considered. When

Dirichlet boundary conditions are used, some nodes on the boundary are assigned

conductivity values and the matrix system given in (3.5) is reduced. The reduced

system is solved using singular value decomposition (SVD) without truncation.

If only one current injection is used, the matrix system involving only K1 and

b1 is solved.

3.1.2 Simulation methods

For simulations, a cylindrical phantom of height 20 cm and diameter 9.4 cm is

modeled (Figure 3.1(a)) using Comsol Multiphysics software package in order to

solve for electric potential in the three-dimensional forward problem explained

in Section 1.2.1. The regions that the current is injected and sunk are 3 cm re-

cessed from the body of the phantom to model the phantom used in experiments.

Current is injected through circular electrodes of diameter 1 cm located at the

ends of recessed parts. Cross-section of the recessed parts is square with edges of

2.5 cm long. Current is applied between opposite electrodes and two orthogonal

current injection directions are possible as shown in Figure 3.1(c). The amount

of injected current is 10 mA and total current injection time is 50 ms.

Background conductivity of the simulation phantom is taken to be 1 S/m and

two cylindrical regions of conductivity anomaly are modeled inside the phantom.

Figure 3.2(b) shows the conductivity distribution of the simulation phantom for

the z = 0 slice. The conductivities of the low and high conductivity anomalies

are 0.2 S/m and 5 S/m respectively. However the change of conductivity from

the background value to the low and high values in the anomalous regions is

not sharp but it is tapered as shown Figure 3.3(b), (d) and (f). Tetrahedral
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(a) (b)

(c)

Figure 3.1: (a) Phantom model drawn using Comsol Multiphysics. Two cylindri-
cal regions which have different conductivity than the background are also seen.
The height of the first cylindrical region is 10 cm while the height of the other
cylindrical region is 8 cm. z-direction is the direction of the main magnetic field
of the MRI system. (b) Picture of the experiment phantom for the first exper-
imental setup explained in section 3.1.3. The balloon inside the phantom acts
as an insulator and it isolates its inside solution from the background solution.
(c) Illustration of the center transverse slice of the phantom where z = 0. The
directions of two orthogonal current injection profiles are also shown.
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elements with quadratic shape functions are used for the FEM formulation of

the three-dimensional problem. There are 1,159,225 tetrahedral elements and

212,007 nodes (1,608,578 degrees of freedom since quadratic shape functions are

used) in total. Once the forward problem is solved, the current density distribu-

tion is obtained on the nodes of a 2-D triangular mesh representing the plane at

z = 0. The relation given in (1.4) is then used to calculate the simulated ∇2Bz.

There are 5088 triangles and 2657 nodes in the 2-D triangular mesh.

The simulated∇2Bz at the slice of interest is the input data for reconstructing

the projected transverse current density on that slice. Conductivity distribution

is then reconstructed by solving Equation (3.3) using the proposed method. Er-

rors made in the reconstructed projected current density and the reconstructed

conductivity in the slice of interest are calculated using the relative L2-error

formula:

EL2(JP ) = 100

[∑M
i=1((J

a
xi
−JP

xi
)
2
+(Ja

yi
−JP

yi
)
2
)∑M

i=1(J
a
xi

2+Ja
yi

2)

]1/2

EL2(σ) = 100

[∑N
j=1 (σ

a
j −σj)

2∑N
j=1 σ

a
j
2

]1/2 (3.6)

where Ja
xi

and Ja
yi

are the x- and y- components of the actual current density

at the center of the i’th triangle, JP
xi

and JP
yi

are the x- and y- components

of the reconstructed projected current density, σa
j and σj are the actual and

reconstructed conductivity distributions at the j’th node respectively, N is the

number of nodes in the 2-D mesh and M is the number of the triangles in the

2-D mesh.

3.1.3 Experimental methods

Two different experimental setups are prepared for the experiments. For the

first experimental setup, an experimental phantom, dimensions of which are the

same as the simulation phantom explained in section 3.1.2, is manufactured. The
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phantom is first filled with the background solution (12 gr/l NaCl and 1.5 gr/l

CuSO4.5H2O). An insulator object is then obtained by filling a cylindrically

shaped balloon with the background solution so that the solutions inside and

outside the balloon have no contact (Figure 3.1(b)). Current is injected through

electrodes facing each other and data is obtained for two orthogonal current

injection profiles. Bz is measured at three consecutive (no gap) transverse slices

of thickness 5 mm. ∇2Bz is calculated at the middle slice which is centered to

z = 0 plane of the phantom. For the Laplacian operator the finite difference

approximation is utilized:

∇2Bzc(m,n) = Bzc(m+1,n)−2Bzc(m,n)+Bzc(m−1,n)
(∆x)2

+ Bzc(m,n+1)−2Bzc(m,n)+Bzc(m,n−1)
(∆y)2

+

Bzu(m,n+1)−2Bzc(m,n)+Bzl(m,n−1)
(∆z)2

(3.7)

where m = 1, ..., N , n = 1, ..., N , Bzu, Bzc, Bzl are Bz matrices obtained at the

upper, center and lower slices respectively, ∆x and ∆y are the sizes of an MR

image pixel in x- and y-directions respectively, ∆z is the slice thickness and N

is the size of the MR image matrix in both directions. The standard spin-echo

MREIT pulse sequence, which is discussed in Section 2.1, is used. The magnitude

of the applied current is 10 mA and total duration of current injection is 42 ms.

The number of averages is 5, echo time (TE) is 60 ms, repetition time (TR) is

900 ms, image matrix is 128 × 128 and the field of view is 180 × 180 mm. The

experiments are conducted using a 3T MRI scanner (Siemens Magnetom Trio).

For the second experimental setup, the same experimental phantom is used.

The phantom is filled with background solution (3 gr/l NaCl, 1 gr/l CuSO4.5H2O)

and two conductive cylindrical agar (15 gr/l agar) objects of height 7 cm and

diameter 3.4 cm is placed inside the phantom. While the first object has lower

conductivity (0.8 gr/l NaCl 1 gr/l CuSO4.5H2O) than the background solution

the other object has higher conductivity (12 gr/l NaCl, 1 gr/l CuSO4.5H2O).
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All other experiment parameters including MR imaging parameters and current

injection time is the same with the first experimental setup.

3.2 Results

3.2.1 Simulation Results

Simulated ∇2Bz data, actual conductivity distribution, actual difference current

density distribution (x− and y− components), and J∗ reconstructed using the

method explained in Section 3.1.1 are shown in Figure 3.2 for the simulation

phantom. All images are drawn for the central transverse slice of the simulation

phantom where z = 0 (named as imaging slice hereafter) and when current is

injected in I1 direction shown in Figure 3.1(c). The relative L2-error made in the

reconstructed J∗ is 23.59%.

Figure 3.3(a) shows the reconstructed conductivity distribution at the imag-

ing slice for the case of single current injection (I1 direction in Figure 3.1(c)) when

no stabilization is used in the FEM with Galerkin weighted residual method.

Conductivity values on the boundary are assumed to be 1 S/m (R = 0 since

R = ln σ). Reconstructed conductivity of the upper and lower recessed regions

is not shown in the figure because in these regions excessively noisy distributions

of conductivity with very large variance are obtained. This is most likely due to

the fact that in the upper and lower recessed regions current density is very low

and therefore the convection equation is ill-defined in these regions. Next, SUPG

stabilization is utilized in the numerical solution of equation (3.3) for the case

of single current injection and the reconstructed conductivity distribution at the

imaging slice is given in Figure 3.3(c). A more stable solution is obtained and

the relative L2-error made in the reconstructed conductivity is 6.26% (L2-error

in the previous case without using stabilization was 56% even excluding upper
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(a) (b)

(c) (d)

Figure 3.2: Figures at the central slice of the simulation phantom: (a) simulated
∇2Bz, (b) actual conductivity distribution, (c) quiver plot of the actual difference
current density distribution (x− and y− components), (d) quiver plot of the
reconstructed J∗
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and lower recessed regions). Figure 3.3(b) and (d) show the reconstructed con-

ductivity profiles on the x = y line of the imaging slice for the cases of without

and with stabilization respectively. It is observed that oscillations seen in the

profile when no stabilization is used disappear with the use of stabilization and

yet transition regions of conductivity change are still well represented.

Figure 3.3(e) and (f) show the reconstructed conductivity at the imaging slice

for the case of two current injections when no stabilization is used. The solution

is stable even though no stabilization is utilized and the L2-error made in the

reconstructed conductivity is 3.68%. With two current injections, we know that

the current distribution in the recessed regions has large values at least for one

of the current injection cases. Therefore, when two current injections are used,

the ill-defined convection equation situation is not observed. Furthermore, when

SUPG stabilization is used, no significant improvement is obtained in the recon-

structed conductivity distribution. It is also important to note that, in the ex-

ample investigated, the conductivity distribution does not have sharp variations

nor the given boundary conditions are inconsistent, and therefore stabilization is

not necessary.

The algorithm is also tested when the conductivity distribution at the imaging

slice has sharp variations. For this purpose, the phantom geometry same with the

previous case is used with a narrower conductivity transition region. The actual

conductivity profile on the x = y line at the imaging slice is given in Figure 3.4(b)

and (d). Reconstruction results for the case of two current injections are also

shown in Figure 3.4. Figure 3.4(a) and (b) show the conductivity reconstructions

when no stabilization is utilized. L2-error made in the reconstructed conductivity

is 15.88% and considerable oscillations are observed. However, when SUPG

stabilization is used L2-error decrease to 7.11% and oscillations disappear as

shown in Figure 3.4(c) and (d). Therefore, although stabilization is not found

to be necessary when conductivity variations are not sharp, it is found that
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Figure 3.3: Reconstructed conductivity in the simulations: (a) the reconstructed
conductivity distribution at the center slice, (b) the reconstructed conductivity
profile on the x = y line at the center slice. (a) and (b) are obtained when a
single current injection is used without stabilization. (c) and (d) are same as
(a) and (b) but with the SUPG stabilization applied in the solution. (e) and
(f) are same as (a) and (b) but when two current injections are utilized without
stabilization.
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for subjects in which conductivity variations are sharp and abrupt, stabilization

becomes necessary.

(a)
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Figure 3.4: Reconstructed conductivity in the simulations when conductivity
change is sharp: (a) reconstructed conductivity distribution at the center slice,
(b) the reconstructed (solid line) and actual (broken line) conductivity profiles
on the x = y line at the center slice.

Performance of the algorithm against noise in measurement data is also in-

vestigated. The noise in Bz is assumed to have Gaussian distribution with

the standard deviation σBz = 1/(2γTCSNR) where γ is the gyromagnetic ra-

tio (26.7519× 107rad/Ts), TC is the duration of current injection in seconds and

SNR is the signal-to-noise ratio of the MR system [17]. Although in practice one

needs to know Bz in three consecutive slices in z direction in order to calculate
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∇2Bz using finite difference approximation as given in Equation (3.7), we use

the relation given in (1.4) to calculate ∇2Bz. Therefore in order to calculate

the noise image which will be added to ∇2Bz, the following steps are followed:

Let Gu, Gc, and Gl be the noise images representing the noise in Bz at upper,

center and lower slices respectively each of which calculated independently for

specific SNR and TC . ∇2G is then calculated using Equation (3.7) when Bz is

replaced with G and it is added to ∇2Bz which is calculated using (1.4). Noisy

∇2Bz and J∗ obtained using the noisy ∇2Bz are given in Figure 3.5(a) and (b)

when SNR = 180 and TC = 50ms. The reconstructed conductivity distribu-

tion and conductivity profile on the x = y line are given at the imaging slice

in Figure 3.5(c) and (d) when no stabilization is applied and in Figure 3.5(e)

and (f) when SUPG stabilization is applied. Two current injection profiles are

utilized in all reconstructions. The relative L2-error made in the reconstruction

of the conductivity is 17.33% when no stabilization is utilized and 13.41% when

SUPG stabilization is utilized. The last two given relative L2-errors are 29.94%

and 20.71% when SNR is 120 (TC is the same), 54.76% and 31.65% when SNR

is 90. The benefit of using SUPG stabilization technique in decreasing the os-

cillations and the L2-errors is clearly seen and is more pronounced for low SNR

values.

3.2.2 Experimental Results

Experimental results for the first experimental setup explained in Section 3.1.3

are given in Figure 3.6. Figure 3.6(a) and (b) show the “masked”∇2Bz which are

calculated from the data obtained from the experimental phantom for two current

injections respectively at the center slice of the phantom (called as imaging slice

hereafter). All conductivity reconstructions for experiments is made using two

current injections. It is observed that the numerical error in the calculated ∇2Bz

is most pronounced in recessed parts of the phantom since Bz changes rapidly
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Figure 3.5: Simulation results for the evaluation of the performance of the algo-
rithm against noise: (a) Noisy ∇2Bz for SNR = 180 and TC = 50ms, (b) Quiver
plot of calculated J∗ using noisy ∇2Bz, (c) reconstructed conductivity distribu-
tion at the center slice, (d) reconstructed conductivity profile on the x = y line
at the center slice. (c) and (d) are obtained when no stabilization is applied. (e)
and (f) are same with (c) and (d) but with SUPG stabilization applied.
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and also has high magnitude in these regions. Also Bz measurements near the

boundary of the phantom have relatively high noise probably due to the partial

volume effect in MR voxels here. Therefore ∇2Bz data is masked such that only

∇2Bz calculated on the circular region of radius 0.045 m is used and outside of

this region, including recessed parts, ∇2Bz is taken as zero in the calculations

(it is known that ∇2Bz = 0 in these regions since the conductivity is constant).

The differentiation process during the calculation of ∇2Bz amplifies high spa-

tial frequency components of Bz which leads to the amplification of the noise

inherent in Bz measurements. Therefore, a Hanning window low pass filter is

applied to the ∇2Bz data in the frequency domain. Figure 3.6(c) and (d) show

the low pass filtered versions of the ∇2Bz data for two current injection profiles.

The Hanning window is w(kx, ky) = 0.5(1− cos πk
kmax

) where kx and ky are spatial

frequencies in x and y directions respectively [47]. kmax should be chosen sepa-

rately for each experimental setup depending on the SNR of the MR system and

to the magnitude of the ∇2Bz data which depends on the spatial contrast of the

conductivity. For the experimental data given in Figure 3.6, kmax is chosen as

400m−1. It should be noted that the choice of kmax sets a lower bound for the

spatial resolution of the reconstructed conductivity [22]. Figure 3.6(e) and (f)

show the calculated J∗ for two current injections using filtered ∇2Bz data.

In Figure 3.7(a) and (b) the reconstructed conductivity distribution and con-

ductivity profile on the x = y line are given at the imaging slice when the ∇2Bz

data shown in Figure 3.6(a) and (b) is used without any stabilization. The recon-

structed conductivity suffered from spurious oscillations. Since the differentiation

process amplifies the noise, ∇2Bz data contain sharp variations due to the noise

and the conductivity reconstructed from such an input would have sharp varia-

tions too. However, as indicated in Section 3.2.1, when no stabilization is used

in the FEM formulation, sharp variations in the solution cause oscillations as

seen in Figure 3.7(a) and (b). When the low-pass filtered versions of ∇2Bz data
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Input data and the reconstructed current densities for the first ex-
perimental setup explained in Section 3.1.3. (a) and (b) are ∇2Bz calculated
from the measured Bz for two current injections respectively, (c) and (d) are
filtered versions of ∇2Bz given in (a) and (b), (e) and (f) are the quiver plots of
calculated J∗ for the two current injections respectively
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(Figure 3.6(c) and (d)) are used, since the sharp variations in ∇2Bz due to the

amplified noise are smoothed by the filter, the oscillations in the reconstructed

conductivity decrease as shown in Figure 3.7(c) and (d). Figure 3.7(e) and (f)

show the reconstructed conductivity when the original ∇2Bz data (no filter) is

used with SUPG stabilization. This time, the artificial diffusion term which is

introduced to the convection equation by SUPG stabilization smears out the

sharp variations in the solution so that the oscillations decrease. Figure 3.7(g)

and (h) show the reconstructed conductivity when both the filtered versions of

∇2Bz (Figure 3.6(c) and (d)) and also SUPG stabilization are used.

Experimental results for the second experimental setup explained in Section

3.1.3 are given in Figure 3.8. Since MR signals coming from the agar objects are

relatively low, the measured Bz data in these regions is greatly corrupted with

noise. Therefore all reconstructions are done with low-pass filtered versions of

∇2Bz data. The cosine window explained above is used with kmax = 300m−1.

Figure 3.8(a) and (b) show the low-pass filtered ∇2Bz data for two current in-

jections respectively. Figure 3.8(c) shows the reconstructed conductivity distri-

bution at the center slice of the phantom when no stabilization is used. The

reconstructed conductivity distribution suffers from oscillations when no stabi-

lization is used. Figure 3.8(d) shows the reconstructed conductivity distribution

when SUPG stabilization is used. The oscillations in the solution decreases and

the conductivity is well reconstructed.

3.3 Discussion

In this chapter, a new MREIT algorithm is proposed to reconstruct conductivity

distribution on a slice of interest given the ∇2Bz data for that slice. The relation

between conductivity and ∇2Bz data is formulated as a steady-state scalar con-

vection equation (Equation 3.3) and reconstruction of conductivity is achieved by
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Figure 3.7: Reconstructed conductivity distributions for the first experimental
setup explained in Section 3.1.3. (a) reconstructed conductivity distribution at
the center slice of the phantom, (b) reconstructed conductivity profile on the
x = y line at the center slice. (a) and (b) is obtained when the original ∇2Bz

(no filter) is used without stabilization. (c) and (d) are same with (a) and (b)
but the filtered ∇2Bz is used without stabilization. (e) and (f) are same with (a)
and (b) but the original ∇2Bz (no filter) is used with the SUPG stabilization.
(g) and (h) are same with (a) and (b) but the filtered ∇2Bz is used with the
SUPG stabilization
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(a) (b)

(c) (d)

Figure 3.8: Results for the second experimental setup explained in Section 3.1.3).
(a) and (b) are ∇2Bz calculated from the measured Bz for two current injections
respectively. ∇2Bz is multiplied with a cosine window in the frequency domain
(kmax = 300m−1). (c) the reconstructed conductivity distribution at the center
slice when no stabilization is used (d) the reconstructed conductivity distribution
at the center slice when SUPG stabilization is used
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the numerical solution of the convection equation using FEM. Effects of includ-

ing stabilization in the FEM formulation are also investigated. Reconstructed

conductivity distributions using both simulated and experimental data show that

the proposed algorithm is successful. To our knowledge, it is the first time that

the MREIT problem is handled as the solution of a scalar convection equation.

It is well known that the numerical solution of the pure convection equation

with Galerkin weighted residual FEM is unstable and gives inaccurate results

if the actual solution includes sharp variations [48, 49]. Sharp variations in the

solution may be due to internal regions where the solution has steep gradient or

due to inconsistent Dirichlet boundary conditions. In a general sense, the solution

of Equation 3.3 may be thought of as taking the line integral of ∇R along the

direction of the convective field J̃. If the given R on the inlet boundary on which

J̃.n < 0 (n being the outward normal to the boundary) and the outlet boundary

on which J̃.n > 0 are inconsistent, the solution will have a sharp variation near

the outlet boundary (Please see Appendix A for a one-dimensional example).

The instability of the numerical solution, which is caused by any sharp variation

in the solution, may be overcome by choosing a stabilization technique which in

effect adds a diffusion term to the partial differential equation. In this study the

streamline-upwind Petrov Galerkin (SUPG) stabilization technique is used.

It is found that when two current injections are used the Galerkin weighted

residual FEM formulation without stabilization gives accurate results as shown in

Figure 3.3(e) and (f) if the actual conductivity distribution does not have sharp

variations and the given Dirichlet boundary conditions are consistent. However,

for the case when the conductivity distribution has sharp variations, spurious

oscillations occur in the solution and an accurate solution is not obtained as

shown in Figure 3.4(a) and (b). The oscillations disappear with the use of SUPG

stabilization as shown in Figure 3.4(c) and (d). L2-errors in the reconstructed

conductivities with and without stabilization also support that the stabilization
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improves the accuracy of the solution. The case for which the conductivity vari-

ations are not sharp but the given Dirichlet boundary conditions are inconsistent

is also investigated. Although the reconstructed conductivity suffered from spu-

rious oscillations when FEM without stabilization is used, the solution is stable

when SUPG stabilization is used.

In general for MREIT at least two orthogonal current injection profiles are

used in order to guarantee unique conductivity reconstruction apart from a con-

stant factor [29]. However it is also of interest to investigate what can be done

for the case of a single current injection [50]. As evident from Equation (1.5),

the conductivity reconstruction problem is ill-defined in the regions where the

current density is low. This problem can be overcome by using more than one

current injection profiles such that the current density is high enough in the prob-

lematic regions for at least one current injection. However if one current injection

is used this is not possible and the inaccurate solution in the problematic regions

may harm the accuracy of the solution in the whole domain. For the simula-

tion phantom considered in this study, if the current is injected in I1 direction,

the current density in upper and lower recessed regions is very low which makes

the convection equation ill-defined here. When the FEM without stabilization is

used, the reconstructed unstable conductivity is shown in Figure 3.3(a) and (b).

On the other hand, SUPG stabilization introduces an artificial diffusion term to

the convection equation such that the amount of diffusion is higher in the re-

gions where the magnitude of the convective field J̃ is low. Although we may not

guarantee the accuracy of the solution in the problematic regions, the accuracy

of the solution in other regions is higher (L2-error is decreased) and the solution

is stabilized as shown in Figure 3.3(c) and (d). Therefore, if there are regions in

the solution domain where the convection equation is ill-defined, which especially

occur when single current injection is used, the SUPG stabilization is beneficial.

Note that we may use more than one current injection and still have problematic
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regions where the current density is low for all of the current injection profiles.

Therefore SUPG stabilization is also beneficial for such cases.

In practice, noise is inherent in the measurement of Bz and robustness of

the proposed algorithm against noise must also be investigated. Noise in Bz

simulations is modeled by using the noise model given by Scott et al. (1992).

Two current injection profiles are used for all reconstructions using noisy data. It

is observed that when no stabilization technique is utilized in the solution using

noisy data, the reconstructed conductivity contained unacceptable oscillations

(Figure 3.5(c) and (d)). On the contrary, when SUPG stabilization technique is

utilized, the oscillations in the solution are diminished and L2-error made in the

reconstructions of the conductivity is lower. The reconstructed conductivity for

this case is given in Figure 3.5(e) and (f).

The role that stabilization techniques play in the solution of the MREIT

convection equation is better understood when experimental results are investi-

gated. For the first experimental setup with an insulated region in the phantom,

when neither a low-pass filter is applied to measured data nor any stabilization

technique is utilized, the reconstructed conductivity suffers from oscillations and

is relatively unstable as shown in Figure 3.7(a) and (b). However when either a

low-pass filter is applied to measurement data or SUPG stabilization technique is

utilized, a smoother conductivity is obtained. The best result is obtained when

both the low-pass filter and SUPG stabilization technique are used. Similar ob-

servations are made regarding the results obtained for the second experimental

setup for which two anomalous regions with higher and lower conductivity with

respect to the background exist in the phantom. Therefore, we think, by way of

introducing artificial diffusion, SUPG acts to avoid oscillations in regions where

the solution has sharp variations.

In all reconstructions made using both simulated and experimental data the

conductivity values at the boundary are assumed to be known. In experiments
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conducted by phantoms this information is available since the conductivity of

background solution is known. Furthermore in experiments that would be con-

ducted using human or animal subjects, the information is available when large

carbon hydro-gel electrodes are used or the subject is covered with conductive

gel pads with appropriate conductivity [51].

Seo et al. (2003) have also proposed an ∇2Bz-based algorithm for the recon-

struction of conductivity and later it was modified and named as Harmonic Bz

algorithm as discussed in Section 1.3 [34, 35]. This is an iterative algorithm and

at each iteration the equation Ẽ · ∇σ = ∇2Bz

µ0
, where Ẽ = [−Ey Ex]

T and Ex, Ey

are the x- and y- components of the electric field, is used. At the first iteration

Ẽ is calculated for a uniform conductivity distribution and for other iterations it

is calculated using the conductivity from the previous iteration. This equation

is in the same convection equation form as the equation J̃ · ∇R = ∇2Bz

µ0
that we

used in this study. Therefore the solution methods that we have suggested can

also be applied to reconstruct the conductivity at each iteration of Harmonic Bz

algorithm.

As discussed in Section 1.3 [34, 35], some previously proposed algorithms for

MREIT utilize either Ẽ · ∇σ = ∇2Bz

µ0
[34, 35] or J̃ · ∇R = ∇2Bz

µ0
[37] to first

calculate ∇σ or ∇R and then from the gradient information they use an line

integral method [34] or layer potential technique [34, 37] to reconstruct σ or R.

In these algorithms, in order to calculate the distribution of ∇σ or ∇R, one

needs to apply at least two orthogonal current injections. However using our

method, reconstructions for single current injection are also possible. On the

other hand, calculation of distribution of ∇σ or ∇R give other information as

well. Namely, if electric field or current density for two current injections are

collinear at a spatial location then the 2× 2 matrix obtained to solve for ∇σ or

∇R becomes ill-conditioned. In such a situation, regularization techniques are

used to estimate the gradient. In our method, stabilization techniques are used
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in the FEM formulation for the whole domain and we think these techniques act

as a sort of regularization for ill-conditioned cases.

İder and Onart previously proposed an algorithm based on the finite difference

discretization of J̃ ·∇R = ∇2Bz

µ0
[36]. However, the method proposed in this study

uses FEM and the triangular mesh of the solution domain provides a more handy

method for real objects with irregular boundary.

There are many FEM software packages which use advanced numerical tech-

niques for the solution of partial differential equations. Comsol Multiphysics is

one of these packages and it has a module for solving the convection-diffusion

equation which also employs stabilization techniques. Although Comsol Mul-

tiphysics cannot solve the MREIT convection equation using two current in-

jections, the K1, K2 matrices and the b1, b2 vectors in Equation 3.5 can be

imported from the Comsol environment for two current injections separately as

done in this study. The final matrix system is solved by Matlab using SVD. We

think the possibility of using FEM software packages in the implementation of

the algorithm is one of its advantages.

Before developing the MREIT based on the solution of the convection equa-

tion algorithm, we had proposed another MREIT algorithm, namely triangular

mesh based MREIT [52], whereby the conductivity distribution is reconstructed

at nodes of a triangular mesh by solving Equation 3.2. In this algorithm, the

projected current density [19] is utilized in Equation 3.2 and the projected cur-

rent density is reconstructed by the proposed triangular mesh based MRCDI

algorithm. Although R values are defined on the nodes of the triangular mesh

and ∇R is approximated using linear shape functions inside a triangle, the al-

gorithm is not based on FEM. This algorithm is described and some simulation

and experimental results are given in Appendix B. Although we have obtained

satisfactory results for both the simulation and experiment cases considered, the

theoretical foundation of the algorithm is yet to be investigated and we have not
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developed a solid mathematical ground for the algorithm. Therefore we have

decided to discuss the algorithm in the appendix rather than the mainstream of

the manuscript.
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Chapter 4

THREE-DIMENSIONAL

FOURIER TRANSFORM

MAGNETIC RESONANCE

CURRENT DENSITY

IMAGING (FT-MRCDI)

Some Fourier transform based MRCDI (FT-MRCDI) methods has been proposed

before for two-dimensional (2D) problems where the current density has no z-

component inside the object [20]-[22]. In this thesis, we have developed a novel

MRCDI algorithm for three-dimensional problems. This chapter is devoted to

the developed algorithm which we named “3D FT-MRCDI”.
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4.1 Methods

4.1.1 The Algorithm

The 3D FT-MRCDI method developed and presented in this thesis aims at esti-

mating the difference current density using a Fourier transform formulation. It is

a slice based method such that the 2D Fourier transforms are utilized rather than

3D Fourier transforms. Utilizing 3D Fourier transforms would require measure-

ment of Bz in the whole 3D domain which is impractical and time-consuming.

The starting point for the derivations is the two relations which are derived in

Appendix B.1.2 for the estimate of the difference current density which is de-

noted by J∗ (this terminology is also used by Park et al. [19]). The relations are

given as:
∂J∗

x

∂y
− ∂J∗

y

∂x
= ∇2Bz

µ0
and

∂J∗
x

∂x
+

∂J∗
y

∂y
= 0.

(4.1)

The above relations may be written in spatial frequency domain using 2D Fourier

transforms of J∗
x , J

∗
y and ∇2Bz as

j2πkyF2{J∗
x(x, y, t)} − j2πkxF2{J∗

y (x, y, t)} = F2{[∇2Bz ](x,y,t)}
µ0

and

j2πkxF2{J∗
x(x, y, t)}+ j2πkyF2{J∗

y (x, y, t)} = 0.

(4.2)

where z = t at the imaging slice and 2D Fourier transform of J∗
x is defined

as F2{Jx}(kx, ky) =
∫
R2

Jx(x, y, t)e
−j2π(kxx+kyy)dxdy and the definitions for other

Fourier transforms are similar. Combining these two equations, the relations for

the Jx
∗ and Jy

∗ in the spatial frequency domain are obtained as

F2{J∗
x(x, y, t)} = − 1

2π
jky

1
k2x+k2y

F2{[∇2Bz ](x,y,t)}
µ0

and

F2{J∗
y (x, y, t)} = 1

2π
jkx

1
k2x+k2y

F2{[∇2Bz ](x,y,t)}
µ0

(4.3)
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The expressions − 1
2π
jky

1
k2x+k2y

and − 1
2π
jky

1
k2x+k2y

, which are multiplier to the

Fourier transform of ∇2Bz in Equation 4.3, may be named as “inverse filters”

and magnitude of the filters are shown in Figure 4.1. Thus, starting from the

measurement of∇2Bz at z = t one can find estimates for Jd
x(x, y, t) and Jd

y (x, y, t)

currents at that slice. These are estimates because we have made the assumption

that ∂Jd
z

∂z
(x, y, t) is negligible, as discussed in Section B.1.2. Of course, as evident

from Equation 3.7, calculation of ∇2Bz at z = t requires at least the measure-

ment of Bz at z = t, z = t + δ, and z = t − δ with δ chosen to be sufficiently

small so that ∂2Bz

∂2z
can be calculated at z = t.

Let Ω denote the interior of the imaging slice (the region of the z = t plane

which is inside the imaging object), Γ denote its boundary, and ΩL denote a

sufficiently large region such that Ω ⊂ ΩL. Fourier transforms are evaluated in

ΩL. ∇2Bz = 0 outside Ω but it may not be zero on Γ, as evident from the relation

∇2Bz

µ0
= ∂Jx

∂y
− ∂Jy

∂x
(this is actually Equation 1.4). Since Jx and Jy are zero just

outside Ω, their derivatives will have jumps on Γ when evaluated by a discrete

approximation. However it is not possible to calculate ∇2Bz on Γ because this

requires the measurement of Bz slightly outside of Ω. 3D FT-MRCDI algorithm

is as follows:

1. ∇2Bz is calculated in Ω from the measured Bz. On Γ, ∇2Bz is taken equal

to its immediate value in Ω. ∇2Bz in (ΩL \ (Ω ∪ Γ)) is taken as zero since

no conductivity change occurs in this region. As a result, ∇2Bz in whole

ΩL is obtained and this data is the input of the first iteration.

2. F2{[∇2Bz](x, y, t)} is calculated and inverse filters are used to calculate

Fourier transform of currents in ΩL. Inverse Fourier transform is then used

to calculate currents in the spatial domain.

3. The outside-to-inside ratio (ϕ) of currents, which is defined as the ratio of

sum of magnitudes of the reconstructed current in (ΩL \ Ω) to the sum of
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magnitudes of the reconstructed current in Ω, is calculated. ϕ defines a

stopping criteria for the algorithm.

4. If the difference of the two ϕ ratios in consecutive iterations are close

enough, the algorithm stops. Otherwise, the currents are nulled for (ΩL\Ω)

and ∇2Bz is calculated from ∇2Bz

µ0
= ∂Jx

∂y
− ∂Jy

∂x
in Ω and on Γ. Values of

∇2Bz calculated on Γ are retained but the measured values are assigned to

∇2Bz in Ω (obviously with this procedure ∇2Bz becomes 0 outside of Ω)

and steps 2 to 4 are repeated with the newly obtained ∇2Bz.

It is important to note that once the J∗ is reconstructed via the proposed

algorithm, one may calculate the “projected current density” from the relation

JP = J∗ + J0 where J0 is the current density when homogeneous conductivity is

assumed inside the object and may be calculated by solving the forward problem

discussed in Section 1.2.1. The name “projected current density” is given by

Park et al. [19] and since J∗ is an estimate for the actual difference current

density JP is an estimate for the actual current density.

4.1.2 Simulation and Experimental Methods

The simulation phantom is modeled using Comsol Multiphysics software package

in order to solve for electric potential in the 3D forward problem explained in

Section 1.2.1 and the same simulation phantom described in Section 3.1.2 is

used for the simulations. Furthermore the same methods discussed in Section

3.1.2 are used for calculating ∇2Bz and for calculating the L2-errors made in the

reconstructions.

For the experiments done for 3D-FTMRCDI, two experimental setups which

are discussed in Section 3.1.3 are used. Therefore, in the first experimental

setup, a balloon, which is filled with the background solution and which have

electrically no connection to background solution, is used inside the phantom as
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an insulator. On the other hand, in the second experimental setup, two agar

objects which have lower and higher conductivity than the background solution

is used inside the experimental phantom. Other experimental methods, including

the calculation of ∇2Bz from measured Bz and the MRI parameters, are also the

same with the methods discussed in Section 3.1.3.

4.2 Simulation Results

In the following, simulation results are given for the simulation phantom dis-

cussed in Section 3.1.2. For this phantom, simulated ∇2Bz data, actual conduc-

tivity distribution and actual difference current density distribution (x− and y−

components) were shown before in Figure 3.2.

Figure 4.2 shows the simulation results which are obtained using the 3D-

FTMRCDI algorithm. In Figure 4.2(a) and (b), the initial ∇2Bz which is input

to the algorithm and the ∇2Bz which is reconstructed after the tenth iteration

are shown respectively. On the boundary (Γ), ∇2Bz has built up at the end of

the tenth iteration. The magnitude of reconstructed J∗ at the recessed regions

are low compared to the J∗ reconstructed inside the object as seen in Figure

4.2(c) and (d). Therefore, as evident from the relation ∂Jx
∂y

− ∂Jy
∂x

= ∇2Bz

µ0
, we

observe that, the ∇2Bz, which is built on the recessed sections of the boundary

by the algorithm, is low compared to the other sections of the boundary.

It is also of interest to observe the behavior of reconstructed J∗ as iterations

proceed. Figure 4.2(e) and (f) show the magnitude of the reconstructed J∗ at the

first and tenth iterations respectively (the figures are drawn at the same color

scale). Although, at the first iteration, significant amount of reconstructed J∗ is

located outside of the object (ϕ = 2.44%), after the tenth iteration, reconstructed

J∗ is more confined to the inside of the object (ϕ = 0.59%). Actually, the build

up of the ∇2Bz on Γ, is what forces the reconstructed J∗ to be inside the object.
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Therefore, as iterations proceed, the reconstructed J∗ becomes more confined

to the inside of the object, in other words, becomes more close to the actual

difference current density and thus both the L2-error made in the reconstruction

of the J∗ and the ϕ ratio decreases simultaneously. In Figure 4.3(a) and (b)

iteration number vs. the L2-error made in the reconstruction of the J∗ and

iteration number vs. the ϕ ratio are shown respectively. While the L2-error is

22.79% at the first iteration it is 21.00% after the tenth iteration. The L2 error

is 23.59% when Park’s method is used. The L2-error and the ϕ ratio follows

each other as iterations proceed which proves that observing the ϕ ratio is a

good stopping criteria for the algorithm. Although no significant improvement

is achieved after the fifth iteration (ϕ ratio stays almost constant), we continued

until the tenth iteration to guarantee that no further improvements in the L2-

error is possible. It is important to remember that we do not expect the L2-error

to be close to zero since J∗ is only an estimate in a 3D problem and this error is

strictly related to ∂Jd
z

∂z
(x, y, t).

The algorithm is also tested when the ∇2Bz given to the algorithm at the

first iteration has non-zero regions closer to the boundary. Inside the simulation

phantom, the same two objects are used but the centers of the objects are located

at (−0.021,−0.021) and (0.021, 0.021) respectively. In Figure 4.4(a) and (b) the

conductivity distribution and the quiver plot of the actual difference current

density are shown at the imaging slice for this case and Figure 4.5 shows the

reconstruction results. If the non-zero part of ∇2Bz is closer to the boundary,

then the reconstructed J∗ at the outside of the object is much higher at the first

iteration (ϕ = 5.99%) as can be observed in Figure 4.5(c) and (d). The L2-error

made in the reconstruction of J∗ and the ϕ ratio are shown in Figure 4.3(c) and

(d) respectively as iterations proceed. While the L2-error is 29.06% at the first

iteration it is 25.57% after the tenth iteration. The decrease in the L2-error and

the ϕ ratio as iterations proceed is observed better for this case. However the

final L2-error is higher than the previous simulation case.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Simulation results for the 3D FT-MRCDI: (a) initial ∇2Bz (input
to the algorithm), (b) ∇2Bz reconstructed at the tenth iteration, (c, d) quiver
plot of the reconstructed J∗ at the first and tenth iterations respectively, (e, f)
magnitude of the reconstructed J∗ at the first and tenth iterations respectively
(The region inside the object is nulled to emphasize the decrease of the magnitude
outside the object throughout the iterations).

50



1 2 3 4 5 6 7 8 9 10
20.8

21

21.2

21.4

21.6

21.8

22

22.2

22.4

22.6

22.8

Iteration Number

L2  e
rr

or
 (

%
)

(a)

1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

Iteration Number

R
at

io
 (

%
)

(b)

1 2 3 4 5 6 7 8 9 10
25.5

26

26.5

27

27.5

28

28.5

29

29.5

Iteration Number

L2  e
rr

or
 (

%
)

(c)

1 2 3 4 5 6 7 8 9 10
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Iteration Number

R
at

io
 (

%
)

(d)

Figure 4.3: The L2-error made in the reconstruction of J∗ and the ϕ ratio as
iterations proceed for two different simulation cases. (a) and (b) are drawn for
the first simulation case explained in Section 3.1.2. (c) and (d) are drawn for the
simulation case in which the non-zero regions of ∇2Bz is closer to the boundary.
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(a) (b)

Figure 4.4: Conductivity distribution((a)) and the quiver plot of actual difference
current density((b)) for the simulation case in which the non-zero regions of∇2Bz

is closer to the boundary.

The success of the proposed algorithm is also investigated when noise is added

to the simulated ∇2Bz. In order to simulate the noise in ∇2Bz data, a similar

procedure explained in Section 3.2.1, is followed. The simulation results are given

in Figure 4.6 when SNR = 180. It is evident from Figure 4.1 that the inverse

filters have a low-pass character. Therefore, ∇2Bz which is reconstructed in Ω in

the fourth step of the last iteration is the low-pass filtered version of the initial

∇2Bz. This situation can only be observed when the input data is noisy or have

high frequency components. Otherwise the effect of the low-pass inverse filters

are not seen. Figure 4.6(a) show the initial ∇2Bz which is noisy and Figure

4.6(b) show the ∇2Bz obtained in the fourth step of the last iteration. ∇2Bz

has built up on Γ and when ∇2Bz in Ω is observed, the low-pass filter effect

which is mentioned above is seen. After seven iterations the algorithm stops

since the stopping criteria is met and the L2-error made in the reconstruction

of J∗ is 28.80%. The L2-error is 37.29% when SNR = 120, and 46.24% when

SNR = 90.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Simulation results for the 3D FT-MRCDI when the non-zero regions
of ∇2Bz is closer to the boundary : (a) initial ∇2Bz (input to the algorithm), (b)
∇2Bz reconstructed at the tenth iteration, (c, d) quiver plot of the reconstructed
J∗ at the first and tenth iterations respectively, (e, f) magnitude of the recon-
structed J∗ at the first and tenth iterations respectively (The region inside the
object is nulled to emphasize the decrease of the magnitude outside the object
throughout the iterations).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Simulation results for the 3D FT-MRCDI when noise is added to
∇2Bz: (a) initial ∇2Bz (input to the algorithm), (b) ∇2Bz reconstructed at the
tenth iteration, (c, d) quiver plot of the reconstructed J∗ at the first and tenth
iterations respectively, (e, f) magnitude of the reconstructed J∗ at the first and
tenth iterations respectively (The region inside the object is nulled to emphasize
the decrease of the magnitude outside the object throughout the iterations).
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4.3 Experimental Results

For the first experimental setup, Figure 4.7 shows the initial and final (after the

eight iteration) ∇2Bz, quiver plot of the reconstructed J∗ after the first and the

eighth iterations, and the magnitude of the reconstructed J∗ at the outside region

of the object. In order to emphasize the decrease of the reconstructed current

density at the outside the object, the reconstructed current density inside the

object is nulled in Figure 4.7(e) and (f). For the second experimental setup, the

same results are given in Figure 4.9.

The algorithm stops after eight iterations for the first experimental setup and

after seven iterations for the second experimental setup. Iteration number vs.

the ϕ ratio is given in Figure 4.8 (a) and (b) respectively for two experimental

setups. The algorithm stops since the difference between the ϕ ratios in two

consecutive algorithms are close enough.

The differentiation process during the calculation of ∇2Bz amplifies high spa-

tial frequency components of Bz which leads to the amplification of the noise

inherent in Bz measurements. Therefore, as done in the experiments for the

convection equation based MREIT, a Hanning window low pass filter is applied

to the ∇2Bz data in the frequency domain. The ∇2Bz data given in Figures 4.7

and 4.9 are low-pass filtered versions of the original data. The Hanning window

is w(kx, ky) = 0.5(1− cos πk
kmax

) where kx and ky are spatial frequencies in x and

y directions respectively [47]. Since in the first experimental setup an insulator

is used the contrast of the ∇2Bz is higher than the second experimental setup.

Therefore, although for the first experimental setup kmax is chosen to be 400

m−1, for the second experimental setup kmax is chosen to be 300 m−1.

For both experimental setups, it is observed that the numerical error in the

calculated ∇2Bz is most pronounced in recessed parts of the phantom since Bz

55



(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Experimental results for the first experimental setup: (a) initial∇2Bz

(input to the algorithm), (b)∇2Bz at the eighth iteration, (c, d) quiver plot of the
reconstructed J∗ at the first and eighth iterations respectively, (e, f) magnitude
of the reconstructed J∗ at the first and eighth iterations respectively (The region
inside the object is nulled to emphasize the decrease of the magnitude outside
the object throughout the iterations).
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Figure 4.8: The iteration number versus the ϕ ratio: (a) the first experimental
setup, (b) the second experimental setup.

changes rapidly and also has high magnitude in these regions. Also Bz measure-

ments near the boundary of the phantom have relatively high noise probably

due to the partial volume effect in MR voxels here. Therefore, as done in the

experiments for the convection equation based MREIT, ∇2Bz data is masked

such that only ∇2Bz calculated on the circular region of radius 0.045 m is used

and outside of this region, including recessed parts, ∇2Bz is taken as zero in the

calculations (it is known that ∇2Bz = 0 in these regions since the conductivity

is constant).

4.4 Discussion

In this chapter, an iterative Fourier transform based MRCDI algorithm for 3D

problems is proposed. The algorithm is capable of reconstructing the current

density at a desired slice from the ∇2Bz data obtained for that slice only. To

reconstruct an estimate for the difference current density (J∗), the relation be-

tween the difference current density and ∇2Bz is utilized in spatial frequency

domain. Furthermore the divergence-free condition of the difference current den-

sity is also considered for obtaining inverse filters. Successful reconstructions
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Experimental results for the second experimental setup: (a) initial
∇2Bz (input to the algorithm), (b) ∇2Bz at the seventh iteration, (c, d) quiver
plot of the reconstructed J∗ at the first and seventh iterations respectively, (e, f)
magnitude of the reconstructed J∗ at the first and seventh iterations respectively
(The region inside the object is nulled to emphasize the decrease of the magnitude
outside the object throughout the iterations).
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which are obtained from both simulated and experimental data are presented.

The performance of the algorithm against measurement noise of Bz is also in-

vestigated and successful reconstructions are obtained when different amount of

noise is added to the input data. To our knowledge, the algorithm is the only

Fourier transform based MRCDI algorithm for 3D problems.

Fourier transform methods for 2D MRCDI have also been proposed. Lee et

al. and Oh et al. considered a special geometry in which one component of

the magnetic flux density is related to one component of current only [20, 21].

While in the study of Lee et al. current has z-component only, in the study

of Oh et al. , current is predominantly in the z direction. It is known that

F3{Jz} = 2πjkxF3{Hy} − 2πjkyF3{Hx}. Assuming that Hz is negligible, and

since magnetic flux density is divergence free, and assuming that µ is uniform,

one obtains 2πjkxF3{Hx}+2πjkyF3{Hy} = 0 . Therefore one can relate F3{Jz}

to F3{Hx} only. Thus the methods developed in by Lee et al. and Oh et al. are

not applicable to the 3D problems considered in this study. Other investigators

have used Fourier transform methods for the CDI problem in which the magnetic

field is measured outside the object using non-MRI methods [47, 53, 54]. Pesikan

et al. have also used Fourier domain methods for the CDI problem and they have

used MRI to measure the magnetic field but their measurements are confined to

a region away from the current sources [55].

Park et al. have analyzed the recovery of current density in a 3D object

[19]. They have developed a theory whereby the “projected current” density

is calculated from ∇2Bz data. Their algorithm for finding the “projected cur-

rent density” was discussed in Section 3.1.1. The theory of Park et al. and the

3D FT-MRCDI technique presented in this chapter are closely related. Park et

al. have developed their theory for reconstructions from ∇2Bz data directly.

Let f(x, y) denote the ∇2Bz/µ0 which is measured at z = 0. Then from

Park et al. theory ( ∂2

∂x2 + ∂2

∂y2
)β(x, y, 0) = f(x, y) and in the Fourier domain
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−4π2(k2
x + k2

y)F2{β(x, y, 0)} = F2{f}. Therefore F2{J∗
x} = j2πky

F2{f}
−4π2(k2x+k2y)

=

− jky
2π(k2x+k2y)

F2{f} and J̃∗
y = jkx

2π(k2x+k2y)
F2{f}. These expressions are identical to

what we have stated in Equation 4.3.

The method developed in this study is more suitable for the problem of in-

duced current MRCDI [56]. In induced current MRCDI current is not injected

but is induced by an applied magnetic field. Thus the current density in the

object is divergence free both inside and also on the boundary. In such a sce-

nario, the current density itself is reconstructed rather than the difference current

density.
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Chapter 5

CONCLUSIONS

In this thesis, two new reconstruction algorithms one for MREIT and one for

MRCDI are proposed. Handling MREIT reconstruction problem, based on the

solution of the convection equation is a new approach. The convection-diffusion

type of problems arises in many areas, especially in fluid dynamics, and solv-

ing the convection-diffusion equation is, therefore, of broad interest. In MREIT,

physically no convection nor diffusion mechanisms exist. However, from a mathe-

matical point of view, the main equation for ∇2Bz-based MREIT is a convection

equation. When the convection is dominant in the problem or the problem is

of pure convection type as in our case, the numerical solution of the convection-

diffusion equation is not trivial due to instability of the numerical solution in

certain cases. The numerical solution of the convection equation has been an

active research area for decades and numerous stabilization techniques has been

proposed. In this study, these techniques are also investigated and utilized for the

numerical solution of the MREIT convection equation. We believe that handling

the MREIT problem as a convection problem provides a useful insight about the

problem.
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Considering the simulation and experimental results for MREIT based on the

solution of the convection equation algorithm we conclude that for the case of

two orthogonal current injections, the SUPG stabilization technique is beneficial

when there is noise in the measured magnetic flux density data or when there are

sharp variations in conductivity of the object at the imaging slice. The SUPG

stabilization technique is beneficial in the sense that it substantially decreases

the L2-error made in the reconstruction and provides more stable solutions (no

spurious oscillations are seen in the solution).

We have also shown that SUPG stabilization technique can be used to recon-

struct conductivity from only one current injection. When one current injection

is used the magnitude of the current in some region may be low which causes

these regions to be ill defined. However SUPG stabilization technique intro-

duces much more artificial diffusions for these regions and a stable solution of

the problem is possible.

In the proposed algorithm for MREIT, we have used SUPG stabilization

technique for MREIT convection equation. However there are some other sta-

bilization techniques as well. In the future, we would also investigate other

stabilization techniques for MREIT convection equation. Every stabilization

technique has its own advantages in different cases and we would like to compare

the results from different stabilization techniques quantitatively. Furthermore,

more than one stabilization technique might be applied at the same time.

For MRCDI, the proposed algorithm is a Fourier transform based algorithm

and the reconstruction is made in the spatial frequency domain. The proposed

algorithm is developed for 3D problems. Reconstruction of the current density at

a desired slice is possible using the ∇2Bz data only at the desired slice. Once the

discrete Fourier transforms in the algorithm are calculated using “Fast Fourier

Transform” the reconstruction process is simply element-wise multiplication of
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inverse filter matrix and the Fourier transform of currents (x- and y- compo-

nents). Therefore the algorithm is fast and very easy to implement. We think

this is the most important advantage of the algorithm.

The study involving MREIT based on the solution of the convection equa-

tion is submitted for publication [57]. Furthermore, 3D FT-MRCDI algorithm

presented in this thesis is published in [22] (in this paper we have presented only

simulation results for 3D problems). Triangular mesh based MRCDI and MREIT

algorithm and experimental results for 3D FT-MRCDI algorithm were presented

in Workshop on MR-based Impedance Imaging, Seoul, Korea [52, 58].
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APPENDIX A

Stabilization Techniques for the

Solution of Convection-Diffusion

Equation

The general form of the scalar stationary convection-diffusion equation may be

written as

β · ∇u+∇ · (k∇u) = F (A.1)

where β is the divergence-free convective field, k is the diffusion coefficient, u is

the scalar quantity which is distributed under the effect of diffusion and convec-

tion, and F is the source term. A measure of how relatively the convective term is

dominant is given by element Péclet number which is defined as Pe = ∥β∥h/(2c)

where h is the finite element size. A larger Péclet number means the convection

is more dominant in the equation than the diffusion. It is known that if the solu-

tion contains sharp variations then there will be local disturbances in the regions

where Pe > 1 which leads to spurious oscillations in the solution. Furthermore

the solution may be purely oscillatory in the case of pure convection equation

(Pe = ∞). To illustrate the concept of stability of the convection-diffusion
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equation, consider a simple one-dimensional problem which is given as

β
du(x)

dx
+ k

d2u(x)

dx2
= 1 (A.2)

The problem is to be solved with FEM in the range 0 ≤ x ≤ 1 with 97

elements and Dirichlet boundary conditions are used at both ends, and with β

taken as 1. If k = 0 the problem is purely convective and in this case, if consistent

boundary conditions are chosen (e.g. u(0) = 0, u(1) = 1), the problem may

be solved with the standard FEM with Galerkin weighted residual formulation

as seen in Figure A.1(a). On the other hand, if the boundary conditions are

inconsistent (e.g. u(0) = 0, u(1) = 0) then the boundary condition on the

right (u(1) = 0) will cause a sharp variation on the solution near the right

boundary. In this case, solving the equation with Galerkin formulation will gives

a pure oscillatory unstable solution as seen in Figure A.1(b). To stabilize the

solution a diffusion term may be added to the equation. Such a diffusion is often

called artificial diffusion. Let the artificial diffusion term be k̃ d2u(x)
dx2 . Choosing

k̃ = 0.5 ∥β∥h is natural for a pure convective equation since this guarantees that

Pe = 1 in the whole domain. For this example this choice gives k̃ = 1/194

since β is constant and Figure A.1(c) shows the solution for this choice. Adding

too much artificial diffusion however (e.g. k̃ = 10/194) introduces too much

smoothing effect as shown Figure A.1(d).

For two-dimensional problems, it would be enough to introduce artificial dif-

fusion in only one particular direction to stabilize the solution and therefore k̃

may be anisotropic. A number of stabilization techniques that introduce ar-

tificial diffusion in the direction of convective field (upwind) or in the direction

perpendicular to the convective field (crosswind) has been suggested in the litera-

ture. One popular stabilization technique is streamline upwind Petrov-Galerkin

(SUPG) [46]. SUPG uses the special Petrov-Galerkin shape functions in the

Galerkin weighted residual FEM formulation. It is explained below that the
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SUPG procedure is equivalent to adding a diffusion term to the pure convection

equation.

In order to introduce artificial diffusion only in the upwind direction, the

pure convection equation can be modified by adding a diffusion term with k̃i,j =

0.5hβiβj/ ∥β∥ as a tensor. In this case, let A1 denote the N× N matrix (N is

the number of nodes in the triangular mesh) which is obtained from the FEM

with Galerkin weighted residual formulation of the modified equation such that

A1u = b1, where u is the vector denoting u values on the nodes and b1 vector

is obtained from the source term. The SUPG technique, which uses the Petrov-

Galerkin shape functions, gives a different system equation A2u = b2. It is

known that A1 matrix is the same with A2 matrix [48] but b1 and b2 are not

the same. Therefore SUPG method has the properties of introducing artificial

upwind diffusion and it is also consistent in the sense that Petrov-Galerkin shape

functions are applied to both sides of the convection equation.
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(a) (b)

(c) (d)

Figure A.1: The solution of equation (A.2): (a) β = 1, k = 0 and u(0) = 0,
u(1) = 1 (b) β = 1, k = 0 and u(0) = 0, u(1) = 0 (c) β = 1, k = 1/194 and
u(0) = 0, u(1) = 0 (d) β = 1, k = 10/194 and u(0) = 0, u(1) = 0
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APPENDIX B

Triangular Mesh Based MRCDI

and MREIT

B.1 Methods

B.1.1 Background Information

Let f be a scalar function defined on the nodes of a triangular mesh, then the

function can be approximated in a triangular element as

f(x, y) =
3∑

i=1

fiαi(x, y) (B.1)

where fi is the value of function at the i’th node and αi(x, y) is the linear shape

function for the i’th node which is defined as αi(x, y) = ai + bix + ciy . The

coefficients ai, bi and ci can be obtained by using the definition that αi(xj, yj) = 1

if i = j and αi(xj, yj) = 0 otherwise where (xj, yj) is the coordinates of the j’th

node (i, j = 1, 2, 3). Once the coefficients are known, it is easy to see derivative

of f with respect to x and y as

∂f(x, y)

∂x
=

3∑
i=1

fibi (B.2)
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∂f(x, y)

∂y
=

3∑
i=1

fici (B.3)

inside an element.

B.1.2 The Triangular Mesh Based MRCDI

As discussed in Section 3.1.1, the actual current density (J) consists of two

components, namely J0 and Jd, where J0 is the current density distribution for

the homogenous conductivity distribution and Jd is defined as the difference

current density such that Jd = J − J0. Since ∇2Bz = 0 for J0 (refer Equation

1.5) with the algorithms which utilize ∇2Bz data, including the triangular mesh

based MRCDI, only an estimation to Jd can be reconstructed. However J0 can be

calculated by solving the forward problem given in Section 1.2.1 for homogeneous

conductivity.

Two relations are utilized in the triangular mesh based MRCDI for recon-

structing an estimation to difference current density. As discussed in Section

1.3, this is an estimation because only one component of the magnetic flux den-

sity is available. The first relation which is between the current density (J), and

the Laplacian of the Bz (∇2Bz) was derived in Section 1.2.2 as

∂Jx
∂y

− ∂Jy
∂x

=
∇2Bz

µ0

. (B.4)

The second relation is derived as follows. Let J0 be the current density

distribution obtained from solving 3D forward problem defined in Section 1.2.1

when a uniform conductivity is assumed in the object. It is clear from Equation

1.5 that ∇2Bz is zero when the conductivity distribution is uniform. Thus, (B.4)

also holds for the difference current density which is defined as (Jd = J−J0) and

Furthermore, it is known that the difference current density holds the divergence-

free condition:

∂Jd
x

∂x
+

∂Jd
y

∂y
+

∂Jd
z

∂z
= 0 (B.5)
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Assuming that the conductivity change in the z direction is negligible, third

term in on the left-hand side of (B.5) can be omitted. In this case, a current

density holding (B.5) and (B.4) can be defined. This current density will be an

estimation to the actual difference current density and named as J∗ by Park et

al. [19]. Therefore J∗ is the solution to

∂J∗
x

∂y
−

∂J∗
y

∂x
=

∇2Bz

µ0

(B.6)

and

∂J∗
x

∂x
+

∂J∗
y

∂y
= 0 (B.7)

In the triangular mesh MRCDI method, (B.6) and (B.7) is solved on a trian-

gular mesh on the imaging plane: Let J∗
x and J∗

y is defined on the nodes of the

triangular mesh, then both of the two can be approximated inside a triangular

element using (B.1). In this case, using (B.2) and (B.3), derivatives of J∗
x and J∗

y

with respect to x and y can be obtained in terms of nodal J∗
x and J∗

y . Next, as-

suming ∇2Bz is constant inside an triangular element, (B.6) and (B.7) is written

as
3∑

i=1

(J∗
x,ici − J∗

y,ibi) =
∇2Bz

µ0

(B.8)

3∑
i=1

(J∗
x,ibi − J∗

y,ici) = 0 (B.9)

where J∗
x,i is the value of J∗

x at the i’th node and J∗
y,i is similarly defined. Using

(B.8) and (B.9) for each triangular element, an matrix equation is formed where

the nodal J∗
x and J∗

y are unknowns. Since J ∗ is an estimation to the difference

current density, it is known that the normal components of J∗
x and J∗

y on the

boundary is zero and this condition is also considered by adding extra equations

into the matrix system. The matrix system is then solved using the singular

value decomposition.
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B.1.3 The Triangular Mesh Based MREIT

The relation used for the triangular mesh based MREIT is the same with the

relation used for the MREIT based on the solution of the convection equation

(Equation 3.2) and given as

∇2Bz = µ0(Jx
∂R

∂y
− Jy

∂R

∂x
). (B.10)

where R = ln σ. Using a similar strategy as the triangular mesh based MRCDI,

R function can be approximated inside an element with nodal R values of the

element using (B.1), and its derivatives with respect to x and y may be computed

using (B.2) and (B.3). In this case, Equation B.10 can be written as

Jx(x, y)
3∑

i=3

Rici − Jy(x, y)
3∑

i=3

Ribi =
∇2Bz(x, y)

µ0

. (B.11)

In order to solve for nodal R, Jx and Jy must be known. Since the actual

current density cannot be recovered from one component of magnetic flux density,

projected current can be used. Projected current density is simply JP = J∗ + J0

and it may be calculated on nodes using the triangular mesh based MRCDI

algorithm. Integrating JP over the area of a triangle, one obtains the average of

the three nodal JP , which may be assumed as the value for that element. (B.11)

is then written as
3∑

i=1

Ri(biJ
P
y − ciJ

P
x ) =

∇2Bz

µ0

(B.12)

Writing (B.12) for all elements one can obtain a set of equations for nodal R

values which then can be converted into a matrix equation. In order to obtain

absolute values of conductivity distributions, the value of the conductivity must

be known on at least one node. The obtained matrix equation may be modified

to take known conductivity values into account. It was shown that at least two

independent current injections are needed in order to reconstruct distinguishable

conductivity distribution [29]. Thus, the obtained matrix equations for each

independent current injections may be solved together in order to reconstruct a
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unique conductivity distribution. For the solution of the matrix singular value

decomposition is used.

B.1.4 Simulation and Experimental Methods

For both simulations and experiments, the same methods with MREIT based on

the solution of the convection equation algorithm are used. Please refer Sections

3.1.2 and 3.1.3 for further information.

B.2 Results

B.2.1 Simulation Results

Simulated ∇2Bz data, actual difference current density distribution (x− and y−

components), and J∗ reconstructed using both the method proposed by Park

et al. and explained in Section 3.1.1 and the triangular mesh based MRCDI

are shown in Figure 3.2 for the simulation phantom. All images are drawn for

the center transverse slice of the simulation phantom where z = 0 (named as

imaging slice hereafter) and when current is injected in I1 direction shown in

Figure 3.1(c). The relative L2-error made in the reconstructed J∗ is 23.59% for

Park’s method and 22.44% for triangular mesh based MRCDI. For other current

injection direction (I2 direction shown in Figure 3.1(c)) the last two given L2-

errors are 23.18% and 22.05%. The proposed algorithm gives similar L2-errors

as Park’s algorithm.

72



(a) (b)

(c) (d)

Figure B.1: Simulation results for the triangular mesh based MRCDI: (a) simu-
lated ∇2Bz, (b) quiver plot of the actual difference current density distribution
(x− and y− components), (c) quiver plot of the J∗ reconstructed using the
method proposed by Park et al. , (d) quiver plot of the J∗ reconstructed using
the triangular mesh based MRCDI method.
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Once J∗ is reconstructed using the triangular mesh based MRCDI, the pro-

jected current density is calculated and the conductivity distribution is recon-

structed using the triangular mesh based MREIT. Figure B.2(a) shows the re-

constructed conductivity distribution at the imaging slice when two current in-

jections are utilized. Conductivity values on the boundary are assumed to be 1

S/m (R = 0 since R = ln σ). Figure B.2(b) show the reconstructed conductivity

profile on the x = y line of the imaging slice. The relative L2-error made in the

reconstructed conductivity is 2.12%. Since the projected current density is used,

rather than the actual current density, this amount of error is reasonable in the

numerical simulations (it is known that the conductivity distribution cannot be

fully recovered from projected current).

Performance of the triangular mesh based MRCDI and MREIT against noise

in Bz data is also investigated. The noisy Bz is calculated using the procedure

explained in Section 3.2.1. Noisy ∇2Bz and J∗ obtained from the noisy ∇2Bz

using Park’s method and triangular mesh based MRCDI are given in Figure

B.3 when SNR = 180 and TC = 50ms. The relative L2-error made in the

reconstruction of the J∗ is 42.46% when Park’s method is used and 43.05% when

triangular mesh based MRCDI is used. For other current injection direction the

last two given L2-errors are 41.00% and 44.74%. When J∗ reconstructed from

the noisy ∇2Bz using triangular mesh based MRCDI is used, the reconstructed

conductivity distribution and conductivity profile on the x = y line are given at

the imaging slice in Figure B.2(c) and (d). The relative L2-error made in the

reconstruction of the conductivity is 12.68% when SNR is 180, 15.47% when

SNR is 120, and 17.08% when SNR is 90.

B.2.2 Experimental Results

Two experiment setup which are explained in Section 3.1.3 are also used for the

triangular mesh based MRCDI and MREIT. While in the first experiment setup
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Figure B.2: Reconstructed conductivities using triangular mesh based MREIT
in the simulations: (a) the reconstructed conductivity distribution at the center
slice, (b) the reconstructed conductivity profile on the x = y line at the center
slice. (c) and (d) are same as (a) and (b) but reconstructions are made with
noisy ∇2Bz (SNR = 180 and TC = 50ms).
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(a)

(b) (c)

Figure B.3: Simulation results for the evaluation of the performance of the tri-
angular mesh based MRCDI against noise: (a) Noisy ∇2Bz for SNR = 180 and
TC = 50ms, (b) quiver plot of J∗ reconstructed using the method proposed by
Park et al. from noisy ∇2Bz, (c) quiver plot of the J∗ reconstructed using the
triangular mesh based MRCDI method from noisy ∇2Bz.
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an insulator object is used inside the phantom, in the second experiment setup

two conductive agar objects are used in the phantom. Experimental results for

the first experiment setup are given in Figure B.4. Figure B.4(a) and (b) show

the J∗ reconstructed using the triangular mesh based MRCDI for two current

injection direction respectively and Figure B.4(c) shows the reconstructed con-

ductivity using the triangular mesh based MREIT. Due to the reasons explained

in Section 3.2.2, “masked” and filtered ∇2Bz is used for the reconstruction and

kmax is taken as 400 m−1 for the first experiment setup and 300 m−1 for the

second experiment setup. Masked and filtered ∇2Bz data for first and second

experiment setups are shown in Figure 3.6 and 3.8 respectively. Experimental

results for the second experiment setup are shown in Figure B.5. For the same

experiment setup, the reconstructed conductivity, when MREIT based on the

solution of the convection equation algorithm is used, was given in Figure 3.7.

Comparing two algorithms we conclude that they give similar results.
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(a) (b)

(c)

Figure B.4: Experimental results for the first experiment setup explained in
Section 3.1.3: (a) and (b) are quiver plots of J∗ at the center slice reconstructed
using the triangular mesh based MRCDI method from noisy∇2Bz for two current
injection directions respectively, (c) is the conductivity distribution at the center
slice reconstructed using the triangular mesh based MREIT.
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(a) (b)

(c)

Figure B.5: Experimental results for the second experiment setup explained in
Section 3.1.3: (a) and (b) are quiver plots of J∗ at the center slice reconstructed
using the triangular mesh based MRCDI method from noisy∇2Bz for two current
injection directions respectively, (c) is the conductivity distribution at the center
slice reconstructed using the triangular mesh based MREIT.
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magnetic resonance electrical impedance tomography (MR-EIT) using mag-

netic flux density in one direction,” Physics in Medicine and Biology, vol. 48,

pp. 3485–3504, 2003.

[34] J. K. Seo, J.-R. Yoon, E. J. Woo, and O. Kwon, “Reconstruction of con-

ductivity and current density images using only one component of mag-

netic field measurements,” Biomedical Engineering, IEEE Transactions on,

vol. 50, pp. 1121–1124, 2003.

[35] S. H. Oh, B. I. Lee, E. J. Woo, S. Y. Lee, M. H. Cho, O. Kwon, and J. K. Seo,

“Conductivity and current density image reconstruction using harmonic Bz

algorithm in magnetic resonance electrical impedance tomography,” Physics

in Medicine and Biology, vol. 48, pp. 3101–3116, 2003.
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