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ABSTRACT

DATA SENSITIVE APPROXIMATE QUERY
APPROACHES IN METRIC SPACES

Merve Dilek

M.S. in Computer Engineering

Supervisor: Assoc. Prof. Dr. İbrahim Körpeoğlu

September, 2011

Similarity searching is the task of retrieval of relevant information from datasets.

We are particularly interested in datasets that contain complex and unstructured

data such as images, videos, audio recordings, protein and DNA sequences. The

relevant information is typically defined using one of two common query types: a

range query involves retrieval of all the objects within a specified distance to the

query object; whereas a k-nearest neighbor query deals with obtaining k closest

database objects to the query object. A variety of index structures based on the

notion of metric spaces have been offered to process these two query types.

The query performances of the proposed index structures have not been sat-

isfactory particularly for high dimensional datasets. As a solution, various ap-

proximate similarity search methods offering the users a quality/time trade-off

have been proposed. The rationale is that the users might be willing to tolerate

query precision to retrieve query results relatively faster. The proposed approx-

imate searching schemes usually have strong connections to the underlying data

structures, making the comparison of the quality of the essence of their ideas

difficult.

In this thesis we investigate various approximation approaches to decrease the

response time of similarity queries. These approaches use a variety of statistics

about the dataset in order to obtain dynamic (at the time of querying) and specific

guidance on the approximation for each query object individually. The experi-

ments are performed on top of a simple underlying pivot-based index structure

to minimize the effects of the index to our approximation schemes. The results

show that it is possible to improve the performance/precision of the approxima-

tion based on data and query object sensitive guidance.

Keywords: Approximate Similarity Searching, Metric Spaces, Range Query.
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ÖZET

METRİK UZAYLARDA VERİ DUYARLI YAKLAŞIK
SORGULAMA YÖNTEMLERİ

Merve Dilek

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Doçent Dr. İbrahim Körpeoğlu

Eylül, 2011

Benzerlik taraması veri kümelerinden ilgili bilginin elde edilmesi işlemidir. İlgi

dahilindeki veri kümeleri özellikle resim, görüntü, ses kaydı, protein ve DNA

dizisi gibi karmaşık ve düzensiz veriler içerirler. İlgilenilen bilgi genellikle iki

yaygın sorgu türünden bir tanesi kullanılarak tanımlanır: Menzil sorgusu, ver-

ilen sorgu nesnesinin belirli bir uzaklığı içerisinde kalan bütün nesnelerin elde

edilmesini kapsar. Öte yandan en yakın k komşu sorgusu, sorgu nesnesine en

yakın k veritabanı nesnesinin elde edilmesi ile ilgilenir. Belirtilen sorgu türlerini

uygulayabilmek amacıyla metrik uzay kavramına dayanan çeşitli indeks yapıları

önerilmiştir.

Önerilen bu indeks yapılarının sorgu performansları özellikle yüksek boyutlu

veri kümeleri için çok tatmin edici olmamıştır. Çözüm olarak, kullanıcılara

kalite/zaman ödünleşim imkanı sunan çeşitli yaklaşık benzerlik taraması

yöntemleri geliştirilmiştir. Bu yaklaşım, kullanıcıların sorgu doğruluğundan ödün

vererek sorgu sonuçlarına görece daha hızlı erişmek istemeleri ilkesine dayanmak-

tadır. Önerilen yaklaşık tarama tasarıları genelde altta kullanılan veri yapılarına

çok bağımlıdırlar. Bu durum, bu tasarıların dayandığı temel fikirlerin kalite

açısından kıyaslanabilmesini zorlaştırmaktadır.

Bu tezde, benzerlik sorgularının cevap süresini kısaltabilmek için farklı

yaklaşık benzerlik yöntemleri araştırılmıştır. Bu yöntemler, elimizdeki veri

kümesinden elde edilen çeşitli istatistiksel bilgileri kullanarak her sorgu nes-

nesine özgü dinamik (sorgulama esnasında gerçekleşen) yönlendirmeye olanak

sağlamaktadırlar. Deneyler basit bir pivot-tabanlı indeks yapısı üzerinde

çalıştırılarak alttaki yapının yaklaşık benzerlik tasarılarına etkisi azaltılmıştır.

Sonuçlar, veri kümesine ve sorgu nesnesine duyarlı yönlendirmenin perfor-

mans/doğruluk hususunda iyileştirme sağlayabileceğini göstermektedir.
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Chapter 1

Introduction

Searching is one of the fundamental problems in computer science [12]. In tra-

ditional way of searching, one is generally interested in exact searching, where

objects satisfying a given search criteria exactly are returned as the result set.

Exact searching is mostly encountered in traditional databases, which contain

structured data. However, the increase in storage and availability of complex and

unstructured data resulted in a necessity to perform a different type of searching:

Similarity Searching.

In similarity searching, the intent is to return not exactly identical, but some-

what close objects to a given query object. Since the data has no structure, the

only applicable search criteria is an object from the same domain. The similarity

searching is applicable in a wide range of contemporary database and applica-

tions such as images [18], text files [3], videos, audio recordings, DNA and protein

sequences [30], fingerprints [22], face recognition [21], etc. The data available in

such formats are complex and unstructured, hence it is not possible to store them

in traditional databases. A popular approach is to represent data as feature vec-

tors and define the similarity between these objects in regards to the geometric

distance between the vectors. Such an approach suffers heavily when the vectors

are high-dimensional. Also the search is not performed on the real objects, but

only on what can be captured by the feature vectors. A more general solution to

the similarity searching is based on “metric spaces”.

1



CHAPTER 1. INTRODUCTION 2

1.1 Metric Space

A metric space is composed of a universe of objects X and a distance function d

defined between the objects of that universe. The distance function satisfies all

the following properties for every a, b, and c in X universe.

• Positivity: d(a, b) ≥ 0

• Symmetry: d(a, b) = d(b, a)

• Reflexivity: d(a, a) = 0

• Triangular Inequality: d(a, b) + d(a, c) ≥ d(b, c)

The metric space definition given above is a generalization of the vector spaces

where no assumption about the underlying structure of the data is made. In other

words, it is not necessary to represent the items of the database as vector spaces,

all that needed is a distance function satisfying the properties mentioned above.

It is the triangular inequality property of the distance function that is useful

in deciding the similarity of objects. Nearly all of the index structures built on

metric spaces store distances between all the database objects and a very small

subset of special objects (called pivots or vantage points). With the distances

between a pivot and many database objects at hand, one can make estimation

about the distance between a query object and all the database objects by just

calculating the distance between the pivot and the query object.

Let the pivot be represented by p, query object by q, and database object by

o. The distance between p and o, dpo, is already stored and the distance between

p and q, dpq, is calculated. By using the triangular inequality, the following two

can be derived:

• dqo ≥ |dpq − dpo|

• dqo ≤ dpq + dpo
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This means that the distance between the query object and the database object

has a calculated lower and upper bound. These bounds are used in answering two

different types of similarity queries faster: Range Query and K-Nearest Neighbor

(k-nn) Query.

1.2 Similarity Queries

In a range query, the user supplies a query object of interest, q, and a radius

value of r to a dataset X. The result set to be returned to the user contains all

the database objects residing in r range of the query object. A range query can

be summarized more formally as follows: Range(q, r) = o ∈ X : d(q, o) ≤ r

The figure below illustrates the visualization of a range query. All the objects

displayed with a green dot are returned to the user as the result of the range

query.

Figure 1.1: Visualization of the range query for query object o and radius value
of r.

In a metric space, if the lower bound of the distance between the query object

and a particular database object is greater than query radius it is obvious that

dqo (the distance between query object and the database object) is greater than

radius as well. This means the database object is outside the query range of the

query object. Conversely if the radius is greater than the upper bound, it is clear

that dqo is less than radius. This means that the particular database object is
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in query range of the query object. The database objects for which a decision is

made by either way is accepted to be eliminated (the calculation of the actual

distance dqo is not necessary). The actual distance calculation is needed to be

performed if elimination is not possible.

In a k − nn query, user-supplied radius value in the range query is replaced

with the number of elements to be retrieved in the result set. In other words,

the user provides a query object for which he/she desires to obtain k closest

objects from dataset X as the result. Formal representation of a k−nn query is:

Knn(q, k) = R ⊆ X, o1 ∈ R, o2 ∈ X −R, |R| = k : d(q, o1) ≤ d(q, o2)

The figure below illustrates the visualization of a k − nn query, where the

database objects tagged with n1-n4 are returned to the user as the result of the

k − nn query.

Figure 1.2: Visualization of the k − nn query for query objet o and k value of 4.

1.3 Motivation

The users might want to retrieve the results of both query types faster while

relaxing the correctness or integrity constraints of the result. In other words,

they might want to retrieve only a subset of all the correct results even with

addition of few erroneous objects. Such a motivation attracted the interests of

many researchers and different approximate similarity search algorithms have
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been offered. Most of these algorithms are heavily dependent on the underlying

index structure and provide improvements specialized for that structure. Our

motivation is to show that approximate similarity searching can be performed

via simpler methods not specifically designed for a particular index structure.

1.4 Contributions

With the motivation mentioned above, as opposed to restricting our interest

for the improvement of approximation algorithms developed for a specific index

structure, we showed that information derived from a particular dataset of interest

might be helpful in deciding on similarity search for a specific query object. We

named such an approach as “Data Sensitive”, since dynamic guidance for the

query object is provided with respect to the information gathered from the dataset

and the query object itself.

1.5 Organization of the Thesis

The organization of the rest of this thesis is as follows: In Chapter 2, a brief

survey of the existing work on similarity searching, and approximate similarity

searching along with categorization of the latter is provided. Chapter 3 is com-

posed of various methods and techniques that are used commonly by different

approximation algorithms we propose. Chapter 4 is dedicated to the algorithms

proposed, in which the details and rationale of the algorithms are provided. Chap-

ter 5 contains results of the experiments performed aside from the evaluation of

the proposed algorithms. Finally conclusion and future work are explained in

Chapter 6.



Chapter 2

Background and Related Work

Exact match is the retrieval of records that are exactly same with the query

object; whereas similarity search is the retrieval of similar records to the query

object as mentioned in Chapter 1. For many applications similarity search is

preferable over exact match. In this chapter, initially we introduce different index

structures developed for similarity searching based on metric spaces along with

a simple categorization of them. The motivation behind approximate similarity

searching, which provides improvements on the query performance of similarity

searching via decreasing the correctness of the results, is discussed and explained

shortly. The chapter concludes with the classification of existing approximate

similarity searching approaches into three categories.

2.1 Index Structures

We can categorize indexing methods into two groups as clustering based and

pivot based methods. In clustering-based methods, the space is partitioned into

clusters, and cluster centers are used to represent these partitions. Using this

cluster centers’ distances to the query object, queries may eliminate regions based

on triangular inequality. Generalized-Hyperplane Tree (GHT) [29], Geometric

Near-neighbor Access Tree (GNAT) [6], M-Tree [16], Slim-Tree [28], vp-Tree [29],

6
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and mvp-Tree [5] are among the most important clustering-based methods.

Pivot-based methods use a subset of the objects which are called pivots, and an

index stores the distances between the objects and the pivots. These distances are

used to eliminate some objects by using the triangular inequality. Approximating

and Eliminating Search Algorithm (AESA) [26], Linear AESA (LAESA) [23],

Fixed-Queries Array (FQA) [10] , Spaghettis [9] and KVP Structure [8] are well

known pivot-based methods.

The evaluation of these various indexing methods is performed according to

their query performance. The number of distance calculations is the main issue

that measures the cost of the query. Computational overhead and CPU overhead

terms are also used as additional computation costs.

2.1.1 Clustering Based Methods

The main principle of Clustering-Based Method is the hierarchical decomposition

of the data space. One of the approaches that Tree-Based Methods use is based

on grouping close objects in sub-trees. An object, which exists near the center

of the groups, is selected as a representative of these sub-trees. Some Tree-

Based methods use local pivot approach that is based on using one or more local

pivots selected from the database. Partitioning is performed by using the distance

information of objects to local pivots. This time subtrees contain objects with

similar distances to the selected pivot(s).

GHT uses the hyperplane between two representatives selected from the sub-

set. The remaining of the subset is partitioned into two according to their close-

ness to these representatives. GNAT generalizes GHT by using more than two

representatives that are used in partitioning. Each internal node of the tree stores

m×m table, where m is the number of clusters. The cells in the table contain

information of minimum and the maximum distances between cluster centers to

the objects in other clusters. Cluster elimination is performed according to the

values in the cells of the tables.
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M-Tree is a disk-based structure which is efficient at performing queries. It al-

lows split and merge operations and still optimizes the IO performance. It stores

the maximum distance to objects in a subtree. Overflow cases can be handled

by performing node splitting. Node splitting is done by selecting two pivots and

distributing the objects among two pivots. In order to have the tightest covering

radius, M-Tree tries every possible situation and chooses the one which has the

tightest covering radius. Slim-Tree improves M-Tree by introducing a more effi-

cient splitting approach, while keeping the same structure with M-Tree. In this

approach minimum spanning tree of the objects is generated. Slim-Tree also per-

forms split and merge operations efficiently but in terms of query performance,

it is less preferable over GNAT structure.

Vp-Tree is a tree-based approach that makes use of local pivot while gener-

ating partitions. Single pivot and a branching factor l is used in this approach.

Objects in the node are divided into l groups depending on their distance to the

vantage point. Along with the vantage point itself, l -1 distance ranges for each

subtrees are stored as information. It is possible to divide the space into many

partitions by a single distance computation. At query time only one distance

calculation is performed per node. However when the dimensionality increases,

vp-Tree loses its effectiveness since objects tend to cluster around a single dis-

tance value. Therefore many objects become at the same distance to the vantage

point, and the distance to the vantage points loses its importance.

The mvp-Tree improves vp-Tree by using two vantage points per node. The

partitioning process continues with the second vantage point after the first par-

titioning. In second partitioning the same branching factor l is used. Therefore

there are l2 subsets. Different distance ranges are used for each partition ob-

tained from the first partition. In this way, each subset has nearly the same

number of points, which maintains the balance of the tree. This causes more

space consumption per node.
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2.1.2 Pivot Based Methods

In pivot based methods, pre-computed distances between a subset of objects

called pivots, and the rest of the objects are stored in distance matrices. At the

query time, this distance information is used in the elimination of the candidate

objects. Index structure stores k×n distance values, where k is the number of

pivots, and n is the number of objects in the dataset. As the number of the

pivots used increases, the cost of the construction time and storage requirements

also increase. However query performance can be improved in terms of number

of distance computations by using more pivots at the construction time.

One of the earliest methods, AESA, uses all objects as pivots. The distances of

n database object to each other is stored in an n×n matrix. At the construction

time, n *(n -1)/2 distances are computed. At query time, this information is

used to perform the elimination. For large datasets, this method is not effective

because of high space requirements and construction cost.

LAESA solves the problem of high space requirements of AESA by using only

a subset of objects selected as pivots rather than using all of them. The size of the

distance matrix is reduced to n×m where m<n. In addition to the improvements

over AESA, LAESA keeps the distances to the pivots sorted and performs binary

searches to find the objects to be eliminated.

Spaghettis is designed to further decrease the computational overhead. This

approach keeps distances of objects sorted for each pivot, moreover a pointer to

the same object’s distance in the next distance array that is used for distances

to another pivot. These pointers are used in tracing the path between arrays to

perform the elimination.

FQA, one of the recent pivot-based methods, reduces computational overhead

and it does not require additional storage by storing less precise distance values.

However when the dimensions increase the accuracy of pivots decreases.

The pivot based methods achieve better results by requiring higher space

and time requirements. Kvp structure solves this problem by keeping only the
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distances to the promising pivots in the construction phase. While achieving

as good query results as other pivot based methods, it reduces space and CPU

overhead. Kvp shows that pivots that are closer to or distant from a database

object are more effective in terms of elimination. Therefore it gives importance

to the selection of pivots, by selecting pivots that are maximally separated from

each other.

2.2 Approximate Similarity Search

Efficiency problem of similarity search techniques can be overcome by focusing on

the quality-time tradeoff. There are some reasons, which motivate approximate

similarity searching as indicated in [25]. The user may not be satisfied with the

actual result of the similarity search that is implemented with a distance function.

There might be some difference between the similarity the user expects and the

distance function used underneath. Users might not agree with the exact results

of the query and count some of them as incorrect. Therefore results achieved in

less time with some incorrect results might be more preferable. In addition, the

user may want to give feedback during query time. Depending on the results of

the previous searches, the user may want to redefine queries. The most important

of all, even if the user is satisfied with the results of the query, it may be preferable

to get faster but approximate result.

We can categorize the existing approaches for approximate similarity search

into three groups as in [25]: Approaches that reduce the size of data objects,

approaches that reduce the size of data set, and approaches which guarantee on

the result query.

2.2.1 Approaches that reduce the size of data objects

These types of approaches generally use the techniques of dimensionality reduc-

tion based on idea that the most important information can be represented with
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a few dimensions. Linear Algebraic Methods such as Discrete Fourier Trans-

form can be used in dimensionality reduction. Another common approach is

VA-file [31], which contains approximation of vectors based on a fixed number of

bits. FASTMAP [19] is another important method in this category. The idea is to

map a set of objects from a generic metric space to a Euclidean space with a user

defined dimension value. A distance matrix that holds the EuclideanDistance

between the objects in the vector space is used to project the objects in a vector

space. Quality of the performance of the approximation depends on the number

of dimensions of target vector and distance matrix.

2.2.2 Approaches that reduce the size of data set

Approaches in this group can further be classified into two categories according

to the strategies they use while reducing the size of data set: Early Stopping

Strategies and Aggressive Pruning Strategies.

In Early Stopping Strategies, the algorithm stops according to a stop condition

such as the maximum cost to be paid or a distance value to be reached. Although

the correctness of the algorithm can be improved, after some iteration steps, the

improvements on the correctness are negligible in comparison to the cost of the

query. Practically algorithm generally stops when the chance of obtaining better

results decreases. Stop condition is the factor that affects the quality of the query.

Approaches in Aggressive Pruning Strategies, use probabilistic bounds to elim-

inate regions of metric space, which are unlikely to contain results. BBD-Tree [2]

index structure belongs to this category. It is main memory index that responses

the k-NN queries in a poly-logarithmic time with the number of objects in the

dataset. In this structure regions are represented with nodes of the tree, where

each node has pointers to the other nodes. This method follows an aggressive

pruning strategy via reducing query radius by a factor with respect to the radius

used for exact search, in order to prune tree nodes.

Amato et al. proposed a proximity based approximation that uses proximity
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measures in pruning areas [1]. The largeness of the overlapped area between

two ball regions does not always mean that a large amount of data exists in

the intersection of these regions, since this amount depends on data distribution.

There may be large amounts of data in a small intersection area and a small

amount of data in a large intersection area. The proximity measure is used in the

decision of elimination of tree nodes even if their bounding regions intersect with

the query region. Probabilistic approach is used when analyzing the proximity

of two ball regions. The aim is to discard data regions with small probability of

sharing objects with the query region. Proximity measurement is an important

factor to get accurate results for the approximate similarity search. Since regions

that contain qualifying objects may be discarded, it as an approximate approach.

This approximation solution can be used for both range and nearest neighbor

queries.

P-Sphere tree [20] is another example. It is a 2-level index structure for

nearest neighbor approximate search. The lead node closest to the query point is

accessed when finding the nearest neighbor of query. Simple linear scan of objects

contained in such node is performed to solve the query.

2.2.3 Approaches which guarantee on the result query

Another assessment criterion of approximation approaches is the guarantee of

quality that the algorithms have. Some algorithms use only heuristic conditions

in approximation without defining a formal bound on the error. FASTMAP can

be given as an example to this category, since no guarantee is given on the error.

Some algorithms have an upper bound on the error. BBD-Tree gives a deter-

ministic guarantee since the error cannot exceed ε, which is used for reducing the

query radius. Some algorithms gives probabilistic guarantee by using distribution

of data to calculate the error bound. DBIN [4], which is used for k-NN queries, is

an example of this category. DBIN is a 2-level index structure. Dataset is divided

into clusters, where the objects can be modeled by a Gaussian distribution. At

the query time, the cluster that best fits the query object is searched. If the

probability that k-NN have not been found yet is higher than a threshold, the
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search continues for the remaining clusters.



Chapter 3

Methods

This chapter includes various methods and techniques used in different approx-

imation algorithms, which are explained in Chapter 4. Since many of the al-

gorithms make use of some common concepts and methodologies, we introduce

them before the algorithms themselves.

3.1 Index Structure

In applying the algorithms developed, the Kvp Structure [8] is used with a minor

variation. The Kvp Structure is based on the following idea: The effectiveness

of a pivot in eliminating a database object is related to the distance between

the pivot and the database object. The pivots those are closer or farther to

a database object are proven to be more effective in the elimination of that

particular database object in [7]. Hence, in order to benefit from the memory

and performance improvements, the Kvp Structure is used in the implementation

of the algorithms. For instance, among 100 pivots used for Corel database we

made use of 10 most promising pivots in some of our experiments. This means

for every database object only a small portion of the pivot distances are stored,

which results in less memory usage and better computational performance.

14
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One slight difference of the structure we use with the Kvp is in the determi-

nation of pivots. Kvp applies a reasonable methodology in deciding for the pivots

to use for a particular database. In order to determine as effective as possible

pivots for all the objects in the database, the pivot selection schema chooses the

object that is farthest from all the pivots selected so far. Instead of making use

of this pivot selection mechanism, all the pivots are selected randomly in this

thesis for the sake of implementation simplicity. We initially decided to store

approximately 0.2% of total number of dataset objects for all datasets as pivots.

After performing initial experiments, we further decreased the number of pivots

to 0.02% in order to decrease the effect of the index structure in the elimination

of database objects as explained later in Section 5.1.

3.2 Global Distance Distribution

Distance distribution of a dataset is one of the tools that we benefitted in the ap-

proximation of range query results. Use of distance distribution has attracted the

interest of other researches such as [11], [14], [27], [33]. In [14], the use of distance

distribution in metric spaces is claimed to be the counterpart of data distribution

in vector spaces. In this study, the view of the whole distance distribution for

a particular database object along with the discrepancy of distance distributions

for different objects are emphasized. The study in [33] uses the findings of the

previous study and defines the concept of “representative distance distribution”

for using in approximate queries in metric spaces. In [27], it is mentioned that

the distance distribution of the items in the dataset is expected to be very close

to the distance distribution of the items in the query set. Hence, the distance

distribution of a query object can be approximated by the distance distribution

derived from the training set. In this thesis, we used a similar approach to that

of the last study mentioned instead of dealing with the relativity of distance

distribution from the view point of individual items.

In our study, the distance distribution of each data set used in the experiments

is constructed by using the distances between all the database objects and the
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pivots, already computed for the construction of the index structure explained

in 3.1. The maximum distance computed is divided into a pre-defined number

of intervals. A histogram is constructed to hold the number of distances falling

into each such interval. An illustration of the construction of such a distance

histogram is shown in Figure 3.1 below.

Figure 3.1: Distance distribution histogram construction for dis-
tances={0,1,1,4,5,6} and interval length=2, where min. and max. distances are
0 and 6.

We performed experiments with 3 different data sets. In the figure below,

distance distribution histograms for these datasets are shown as line graphs. Dis-

tance distribution of each data set is divided into 200 intervals, where interval

lengths vary. Corel dataset has 0.01, Nasa has 0.014, and Gaussian data set has

0.45 interval length. Corel dataset shown on the left has negative skew, where

as the right most data set, Gaussian, has a slightly positive skew. The data set

shown in the middle, Nasa data set, has no skew, thus holding the characteristics

of a symmetric distribution.

Some of the algorithms to be mentioned do not make use of the distance dis-

tribution array directly; but rely on cumulative distance probability of a distance

provided. As a result, an array holding the cumulative distance probabilities for

each interval is constructed from the distance distribution histogram as follows:
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Figure 3.2: Distance distribution for Corel, Nasa, and Gaussian data sets in
order. The x-axis is the interval number, where the y-axis represents the number
of distances falling into the corresponding interval.

method createCumDistProbArray(distanceDistHist)
1) sum := 0
2) cumDistProbArray :=new float array
3) for each i smaller than size of distanceDistHist do
4) increment sum by distanceDistHist[i]
5) assign cumDistProbArray[i] to sum divided by total # of distances

Figure 3.3: The algorithm explaining construction of cumulative distance proba-
bility array from distance distribution histogram.

The approximation algorithms make use of this cumulative distance probabil-

ity array in calculating the cumulative distance probability for a given distance,

which is denoted by F(distance). The algorithm to calculate cumulative distance

probability of a given distance is as follows:

3.3 Local Distance Distribution

Although some of our approximation algorithms make use of global distance dis-

tribution, some others depend on local distance distributions in the hope of ob-

taining better approximation. Local distribution is the distribution of distance

values for which similar lower and upper bound values are calculated via trian-

gular inequality. In other words, a local distance distribution is a conditional

distribution depending on the lower-upper bound values.

The same array structure explained in Section 3.2 for the global distance

distribution is reused for the creation of local distance distribution. However, in
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method calculateCumDistProb(distance)
1) result := 0
2) if distance smaller than 0
3) return 0
4) index :=biggest integer <= distance divided by interval length
5) if index >= size of cumulativeDistProbabilityArray
6) return 1
7) ratio := (remainder of distance from interval length) / interval length
8) result :=cumDistProbArray[index] + ratio *

(cumDistProbArray[index+ 1]− cumDistProbArray[index])
9) return result

Figure 3.4: The algorithm explaining calculation of cumulative distance proba-
bility for a target distance.

this case there are many distance distribution arrays constructed for lower-upper

pairs calculated. The maximum value for the lower bound can be as large as

the maximum distance existing in the database; whereas the maximum value for

the upper bound can be equal to 2 times maximum distance. The lower-upper

values are divided into intervals. We name this interval value as precision in

order to discriminate it from the interval length of the distance distribution. The

greater the precision value, the more similar the localized distance distribution

arrays are to the global distance distribution array. The smaller it is, more precise

the local distance distributions are. However if precision is chosen too small, it

will be more difficult to obtain valuable information about the distribution of

distances since there will be fewer actual distances per lower-upper pair. For the

construction of local distance distribution arrays for each dataset, each pivot is

considered as a query object and the distances between this target pivot and all

dataset objects are estimated by using the other pivots via triangular inequality.

Since, we already have the distance values calculated for the construction of index

structure explained in Section 3.1, no new distance calculation except between

the pivots is needed. The algorithm below explains the construction of local

distribution arrays in this fashion.

The figure below is an illustration of the application of the algorithm lines

9-12 for calculated lower bound value of 0.196 and upper bound value of 0.298

for an actual distance 0.238. In this particular example precision is 0.1 whereas



CHAPTER 3. METHODS 19

method constructLocalDistArrays()
1) lowerIntervalCount :=maximum possible lower value / precision
2) upperIntervalCount :=maximum possible upper value / precision
3) localDistArrays :=initialize a double array of distribution arrays of size
lowerIntervalCount × upperIntervalCount
4) for each pivot p in pivots
5) remainingP ivots :=pivots - {p}
6) for each dataset object o
7) actualDistance :=distance btw p and o
8) calculate lowerBound and upperBound for actualDistance
by using remainingP ivots via triangular inequality
9) lowerIndex :=lowerBound / precision
10) upperIndex :=upperBound / precision
11) targetInterval :=the interval actualDistance falls in
localDistArrays[lowerIndex][upperIndex] distribution
12) increment the value stored in targetInterval

Figure 3.5: The algorithm explaining construction of local distance distribution
arrays for data sets.

interval length of distance distribution is 0.01. The lower value falls into interval

0.1-0.2, while the upper value falls into 0.2-0.3 interval. After the local distance

distribution array is determined, the value in the corresponding interval, to which

actual distance falls, is incremented. In this scenario, the value 5 in 0.23-0.24

interval is incremented to 6.

Figure 3.6: Illustration of modification of local distance distribution array for
lower=0.196, upper=0.298, and actual distance=0.238 values.
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3.4 Regression

One of the approximation algorithms we propose is based on regression technique

that is the estimation of the actual distance with respect to the lower and upper

bound values calculated. In other words, a model to estimate required informa-

tion is needed to be built. This model should depend on the prior knowledge

extracted from the data set (used as training data) before any query object (test

data) is processed. Similarity search is built upon maximum lower and minimum

upper bound values calculated by application of pivoting for all available pivots

in the index structure. Hence, the most promising attributes to estimate actual

distance between the query object and the database object should be these two.

Nevertheless, we applied some experiments on Corel, Nasa, and Gaussian datasets

to prove that maximum lower bound value and minimum upper value pair can be

used without loss of significant representation power in the estimation of actual

distance value.

A similar approach to that applied in the construction of local distributions

is conducted in order to create an estimation model from the training data. A

random pivot is chosen as the target pivot and treated like a query (test) object

and its distance between a randomly chosen training object is tried to be esti-

mated with respect to following attributes: dqp is distance between the target

pivot and other pivot used in application of triangular inequality. dop is distance

between the training object and other pivot. dif is absolute value of the differ-

ence between dqp and dop; whereas sum is the summation of two as the name

applies. maxLower is the maximum of lower bounds calculated and minUpper is

the minimum of upper bounds calculated by using all other pivots. For the sake

of performance, only a small percent of the pivot-training object distance values

are practiced for the datasets.

We performed experiments with Weka [32], an open source machine learning

software. The training set used in building the model is used as the training

set to evaluate the model in terms of error. Among suitable regression functions

available in Weka, Isotonic Regression is used initially.
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3.4.1 Isotonic Regression

Isotonic regression model picks the attribute that results in least squared error in

the estimation of the target attribute. For all of the datasets maxLower attribute

is chosen as the attribute resulting in least squared error among 6 attributes. We

applied Isotonic Regression once more by using the remaining attributes. This

time minUpper attribute is chosen for all data sets. This is an indication of our

claim about using the maximum lower bound and minimum upper bound values

in the estimation of the actual distance. The snapshot below is a summary of the

results gathered after running of Isotonic Regression for Corel Dataset.
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3.4.2 Simple Regression Methods

After being sure about maxLower and minUpper attributes being the best at-

tributes to use in the estimation of the actual distance, we applied various re-

gression algorithms existing in Weka with different sub-sets of 6 attributes. The

subsets are formed as follows: All of the attributes are used, only maxLower and

minUpper attributes are used, and lastly remaining 4 attributes are used. The

results are compared with respect to root mean squared error and mean absolute

error.

Linear Regression, Least Median Squared Regression, and Pace Regression

are simple regression methods applied to the datasets. Table 3.1 displays the

results gathered for the first three classifiers mentioned. The last two columns

of the table are dedicated to “Mean Absolute Error” and “Root Mean Squared

Error”. Mean Absolute Error is the average magnitude of the difference between

the actual and estimated distances. Root Mean Squared Error is the square

root of average of the errors squared. It gives large errors more weight than

the smaller ones, whereas mean absolute treats each error equally. Despite the

difference mentioned, a good regression function should result in small values for

both of them.

There are two inferences those should be derived from Table 3.1. The first

one is that the attributes maxLower and minUpper are good enough to use in

the estimation of the actual distance, when used together. The derivation of this

finding is as follows: Note that all of the regression models resulted in least error

when all the attributes are used for each data set. However, it is crucial to notice

that the coefficients of maxLower and minUpper attributes are much larger than

the others’ coefficients, which means they play a more important role in the esti-

mation. Take the model conducted for Nasa dataset for “LeastMedSq” method as

an example. The coefficient for dqp, dop, and dif attributes are ‘-0.0002’, ‘0.014’.

and ‘0.0096’ in order; whereas those for maxLower and minUpper are ‘0.4785’ and

‘0.571’ respectively. Moreover, difference in terms of both Mean Absoulte Error

and Root Mean Squared Error between the cases where all attributes are used and

only maxLower and minUpper are used is so small that it can be neglected. For
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instance, consider the “Pace Regression” method applied to Corel dataset. The

values for errors are ‘0.0966’ and ‘0.1198’ for the first case; where they are ‘0.0973’

and ‘0.1205’ for the latter. Even the errors are same for two cases for Gaussian

dataset. However, when the vice versa, the use of all attributes but maxLower

and minUpper, is applied the errors increase to ‘0.2454’ and ‘0.3041’. Hence, use

of maxLower and minUpper values for the estimation yields satisfactory results.

Another finding from the table is that, the use of different regression methods

did not result in big differences both in terms of the model itself and the error

values. Consider the results of each three method applied to Gaussian dataset

with maxLower and minUpper attributes used. The results of each method is so

close to each other that it does not make much more of a difference to choose

among one of them.

We decided to use a more complicated regression method, Multilayer Percep-

tron, in order to see if there will be considerable improvement in terms of error

or a simpler one is good enough to stick to.
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3.4.3 Multilayer Perceptron

A multilayer perceptron is a kind of neural network, in which units in one layer

are connected to the units of the next layer. There are three layers named as

input layer, hidden layer, and output layer. In our case input layer consist of the

attributes used in the estimation model, and output layer is composed of just the

actual distance value estimated. Figure 3.8 displays the multilayer perceptron

constructed when all the attributes are used. The red nodes labeled as ‘Sigmoid

Nodes’ uses a sigmoidal function for the activation that is transmission of the

summation of input values to the next layer if it is greater than a threshold

value. The yellow node labeled as ‘Linear Node’ uses a linear function instead of

a sigmoidal one.

Figure 3.8: Visual representation of multilayer perceptron(Screenshot from
Weka).

In a multilayer perceptron, the weights of the connection between units in one

layer and the next one are calculated to give as small errors as possible. Figure
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3.9 is a summary of the model constructed by Weka for Nasa dataset by using the

network visualized in Figure 3.8. Note that, the summary contains weight values

for all the connections existing in the model along with the activation values for

the nodes of the hidden layer.

Figure 3.9: Summary of the model constructed by using the network visualized
in Figure 3.8.

The multilayer perceptron is applied to all three datasets just like the simple

regression methods explained in Section 3.4.2. First with all the attributes, then

with maxLower and minUpper attributes, and lastly with the remaining ones.

The results are shown in Table 3.2. The findings of the previous section also

apply to multilayer perceptron. In other words, we can conclude that using

just maxLower and minUpper attributes in the estimation model is acceptable

in terms of error since there is not a major difference with the case where all

attributes are used.

The most important finding is that multilayer perceptron did not give better

results than the other regression methods. This is most probably due to the

fact that, the model can simply be built with just two attributes where each of

them contributes to the model equally roughly. In summary, we decided to use

models built by Linear Regression method along with maxLower and minUpper

attributes for our approximation algorithms relying on regression technique.
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Dataset Attributes MAE RMSE

Corel All 0.1019 0.1277

Corel maxLower, minUpper 0.1213 0.153

Corel dop, dqp, sum, dif 0.2457 0.3081

Nasa All 0.0701 0.1005

Nasa maxLower, minUpper 0.0767 0.1081

Nasa dop, dqp, sum, dif 0.2991 0.2881

Gaussian All 0.21 0.2623

Gaussian maxLower, minUpper 0.2287 0.2868

Gaussian dop, dqp, sum, dif 0.6994 0.9014

Table 3.2: Results of Multilayer Perceptron applied to Corel, Nasa, and Gaussian

datasets in terms of Mean Absolute Error and Root Mean Squared Error.



Chapter 4

Algorithms

This chapter describes various approximation algorithms we propose for the im-

provement of similarity range search query performance whilst introducing some

amount of error in the results. The results of the experiments performed are

to be provided and discussed in Chapter 5. Before introducing the algorithms

themselves, a classification of possible approximation strategies is provided. The

selection of appropriate strategy for each algorithm is mentioned in the corre-

sponding section.

4.1 Approximation Strategies

An approximation algorithm can make approximate decisions in three different

ways: Negative, Positive, and Mixed.

4.1.1 Negative Strategy

Negative strategy can be applicable for cases, where it is not tolerated to result in

false positive decisions, but false negatives can be tolerated up to a limit. In other

words, in this type of the algorithm either “out” or “not decided” decisions are

29
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made. By using this strategy, one can be sure to achieve 100% precision, whereas

the recall value will vary depending on the elimination rate of the algorithm.

All the database objects returned to the user as the query result will be actually

inside the query range, since they will be included in the query result either by the

index structure decision or distance calculation. However, some of the database

objects will be mistakenly removed from the result set due to false out decisions

made.

4.1.2 Positive Strategy

Positive strategy can be applicable for cases, where false positives can be toler-

ated, but false negatives must be strictly forbidden. As opposed to the negative

strategy, the users will achieve varying precision values; whereas the recall value

is guaranteed to be 100%. The reason is that, positive strategy does not discard

any correct results; but introduces erroneous objects to the result set returned to

the user. In other words, only “in” or “not decided” decisions are made.

4.1.3 Mixed Strategy

Mixed strategy is a combination of positive and negative strategies. In other

words, both “in” and “out” decisions should be made by the algorithm, which

results in varying values for both of precision and recall.

4.2 Radius Shrinking Based On Distance Dis-

tribution (RSDD)

Shrinking the radius is an effective technique to eliminate the database objects

for which a decision could not be made by the application of triangular inequality.

Let the radius be denoted by r and the reduced radius by r’. The database objects

for which the lower bound calculated is smaller than r can now be eliminated if
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that lower bound is greater than r’. The figure shown below displays database

objects whose lower bounds are smaller than r but greater than r’. By reducing

the query radius, the approximation algorithm will now decide for all of these

objects as “out”. This means the algorithm should result in correct decisions for

the database objects shown with green dots; but should make erroneous decisions

for the ones shown with red dots.

Figure 4.1: Shrinking the radius should result in the elimination of objects shown
with green dots successfully, but the objects shown with red dots are also elimi-
nated mistakenly.

Radius shrinking is a technique that was previously applied in different re-

searches, i.e. [2], [11], [13], [15], and [33]. In these researches, either the radius is

shrunk by multiplying it with Ω, where Ω is between 0 and 1 or by dividing it to

(1+ε), where ε is a user supplied error rate.

In our case, we applied radius shrinking with respect to the distance distri-

bution explained in Section 3.2. A user supplied parameter, α, is taken and the

inverse of the distance distribution is used to obtain r’ that is smaller than r. In

other words, F(r’)/F(r)=α. Hence r’ is equal to F−1(F (r) × α). The application

of this approach is visualized in Figure 4.2 given below for Corel dataset, where

r is equal to 1.4 and α is equal to 0.5. Radius is reduced to 1.15, which means

the database objects whose lower bounds are between 1.4 and 1.15 are decided
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to be outside 1.4 range of the query object. A formal summary of the algorithm

is provided in Figure 4.3. As explained above and seen in the algorithm, RSDD

is inherently a negative strategy algorithm.

Figure 4.2: Radius is reduced from 1.4 to 1.15 with respect to the distance dis-
tribution of Corel Dataset when α is equal to 0.5.

method applyRSDDAlgorithm(q, o, rα)
1) lowerBound :=maximum of lower bound values calculated for each pivot
2) upperBound :=minimum of upper bound values calculated for each pivot
3) if lowerBound >r
4) decide for OUT and return
5) if upperBound <= r
6) decide for IN and return
7) r′ :=F−1(F (r) × α)
8) if r′ >lowerBound
9) a decision cannot be made and distance calculation is needed
10)else
11) decide for OUT and return

Figure 4.3: The pseudocode explaining the application of RSDD approximation
algorithm for query object q, database object o, radius r, and user-supplied α.
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4.3 Conditional Probability Based Elimination

(CPBE)

This section is dedicated to “Conditional Probability Based Elimination”, which

is the first of the approximation algorithms performing elimination in regards to

particular query-database object pair. The term conditional comes from the fact

that the elimination of database objects for which index structure did not help

is performed in regard to a user supplied threshold value, Ω. The probability

calculation is performed by using either the global or local distance distributions

explained in Sections 3.2 and 3.3 respectively.

The algorithm starts with the application of triangular inequality in order to

decide for a database object o to be inside or outside of radius r of a query object

q like all other algorithms. Let the lower bound calculated for the distance doq

by using all pivots available be l and upper bound be u. If l is smaller than r

and u is greater than r then there comes the application of CPBE for making a

decision approximately.

The cumulative distance probabilities of r and l are calculated and let them

be represented by F(r) and F(l) respectively. If the difference between F(r) and

F(lower) is smaller than Ω, then the algorithm decides for o to be outside of r

distance of q. Otherwise, the algorithm still cannot decide and actual distance

between o and q is needed to be calculated. The logic behind this approach is

derived from the fact that the probability of o being outside of r radius of q is

inversely proportional to the distance between l and r. In other words, as l gets

closer to r, the probability of dqo being greater than r increases.

The visualization of the region between l and r is provided in the figure below,

which is the distance distribution of Corel dataset for intervals of length 0.01. In

the figure radius is equal to 1.4 and lower bound is around 1.05. The probability

of a distance being in the shaded area is equal to F(r) - F(l). If this probability

is small, CPBE tends to decide for database object o being outside r range of

the query object o.
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Figure 4.4: Distance distribution for Corel Data Set, where sample r, l, and u
values are shown. The shaded area represents the distances falling between r and
l.

Among possible strategies explained in Section 4.1, we decided to implement

only negative strategy of CPBE algorithm. The reason is as follows: In a range

query, the radius value is generally selected to retrieve only a small portion of

all the database objects, such as 1%, 3% or 5% at most. As a result, most of

the objects is outside the range of the query object. In such a case, a positive

strategy should decide on only a very small portion of all the objects, since it

cannot make any “out” decisions. So, actual distance calculation is needed for

most of the objects not eliminated by the index structure and the cost of the

query is not decreased as desired. A mixed strategy might have been preferred, if

only the parameter value Ω should have been tuned to give good results for both

of positive and negative strategies.

4.3.1 Relative Probability

There should be some improvements related to using F(r) - F(l) value in CPBE

algorithm. For instance consider the following case: If F(r) itself is smaller than

Ω, then negative strategy decides for “out” regardless of lower value. In order to

overcome such a situation, we decided to improve CPBE results by using (F(r) -
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F(l))/(F(u) - F(l)) value instead of F(r) - F(l).

We call this approach RelativeProbability, since the difference between the

cumulative distance probabilities of radius and lower bound values is divided to

the difference between cumulative distance of upper bound value and that of

lower bound value. Using relative probability can be justified by the following

argument: As indicated above for Figure 4.4, the probability of a distance being

inside the shaded area is equal to the total number of distances falling in that

region divided by the total number of distances. However, one little flaw in this

calculation is that some of the distances are counted redundantly even though

there is no chance for them to occur. The upper value, shown with the green line

in the figure, displays the maximum possible value, somewhere around 1.62. This

means, the values greater than 1.62 has no chance to occur for this particular

case, thus there is no point in including them in the calculation of the probability

of the shaded area. Similarly, the lower bound value, shown with blue line in

the figure, displays the minimum possible value, somewhere around 1.04. Hence,

the distance doq can only take values between 1.04(lower bound) and 1.62(upper

bound). As a result, the probability of the shaded area can be calculated by total

number of distances between lower and radius values divided to total number of

distances between lower and upper values.

4.4 Boundary Guided Error Sensitive Elimina-

tion (BGESE)

The algorithm that uses regression techniques explained in Section 3.4 is named

“Boundary Guided Error Sensitive Elimination”. BGESE uses both of the lower

and upper bound values in the estimation of the actual distance between a query

object and a database object. The “Model” field of the rows of Table 3.1, which

contain maxLower and minUpper as “Attributes”, are used as the estimation

model by BGESE algorithm for the corresponding dataset. Moreover, “Mean

Absolute Error” fields of the same rows are used in making the decision whether

or not the distance between a query object and a database object is smaller than
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the radius value specified. We decided to parameterize the error sensitivity and

give user the opportunity to perform aggressive (where the error of the model

is ignored) approximation, cautious approximation (the error rate is at least 1),

or an approximation in between two extremes. In other words, a parameter

β is taken from the user along with the query object itself and the radius. β

parameter determines the effect of the mean absolute error in making a decision.

The pseudocode given below summarizes the BGESE algorithm.

method applyBGESEAlgorithm(q, o, r, β)
1) lowerBound :=maximum of lower bound values calculated for each pivot
2) upperBound :=minimum of upper bound values calculated for each pivot
3) if lowerBound >r
4) decide for OUT and return
5) if upperBound <= r
6) decide for IN and return
7) estimatedDistance :=use lowerBound and upperBound in estimation of doq
8) if |estimatedDistance− r| <β × MAE
9) a decision cannot be made and return
10)if estimatedDistance >r
11) decide for OUT and return
12)else
13) decide for IN and return

Figure 4.5: The pseudocode explaining the application of BGESE approximation
algorithm for query object q, database object o, radius r, and error sensitivity β.
Note that MAE is “Mean Absolute Error” of the specific dataset.

The BGESE algorithm given above illustrates a Mixed Strategy variant; where

lines 1-11 makes up Negative Strategy and lines other than 10-11 composes the

Positive Strategy. We implemented two variants of BGESE algorithm: Mixed and

Negative. We discarded the Positive Strategy variant due to the same reasons

explained in Section 4.3 above.



Chapter 5

Results

This chapter starts with an explanation of how the experiments are performed and

a definition of the evaluation criteria used in comparing different algorithms. The

results obtained for different datasets with different configurations are provided

as graphs in order to ease the comparison with respect to the evaluation criteria.

Finally, interpretation of the results and an overall discussion are provided.

5.1 Experiments

We performed experiments with three different datasets: Corel (32-featured),

Nasa(20-featured), and Gaussian(16-featured). Among these three, Corel and

Nasa are real life examples obtained from [17] and [24] respectively. Gaussian

dataset is an artificial dataset whose features are obtained from a Gaussian distri-

bution. For Corel dataset we used 49900 database objects and 100 query objects.

The corresponding numbers for Nasa and Gaussian are 39270, 80 and 48000, 100

in order. The number of pivots to be used by the underlying pivot-based structure

is another important parameter that should have an impact on the performance

of the approximation algorithms. Initially we decided to use 100, 80, and 100

pivots for Corel, Nasa, and Gaussian datasets respectively and store 10, 8, and

10 closest pivots per database objects in the same order. However, the initial

37
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experiment results revealed that such a configuration might result in a very high

elimination rate by the index structure itself, and the effect of approximation

algorithms might be relatively small. Hence, we decided to go along with just 10,

8, and 10 pivots. We used Manhattan distance for Corel and Gaussian datasets;

whereas Eucledian distance is used for Nasa dataset.

Among the algorithms described in Chapter 4, RSDD decreases the radius

value with respect to the distance distribution of the dataset and does not take

into account the features of individual query object. Due to this characteristic,

we accepted RSDD as the base algorithm whose performance is expected to be

outperformed or achieved by the remaining algorithms. The reason is that, all

the other algorithms are more sensitive to the query object than RSDD is.

For CPBE algorithm we decided to use three different variations. The first one

is named “Global Negative CPBE” (GN-CPBE). It uses the global distance dis-

tribution and negative strategy, but does not benefit from the relativity explained

in Section 4.3.1. The second variant is called “Global Relative Negative CPBE”

(GRN-CPBE). It is very similar to the first one, but relies on relative probability

concept. The last variant is “Local Relative Negative CPBE” (LRN-CPBE). It

differs from the second one by using local distance distributions instead of a single

global distance distribution.

For BGESE algorithm, two different versions are used in experiments. They

are named as “Negative BGESE” (N-BGESE) and “Mixed BGESE” (M-BGESE).

The first one makes use of negative strategy, while the latter adopts a mixed

one. We decided not to apply positive strategy for both of BGESE and CPBE

algorithms. The reason is that no major improvement in terms of elimination of

the database objects can be achieved with positive strategy alone as explained in

Section 4.3.

We executed the variation of the algorithms mentioned above for all datasets

for 3 different radius values. The radius values are calculated so as to cover

1%, 3%, and 5% of all the database objects. The effect of the index structure

in eliminating the database objects decreases as the covering radius increases.

As a result, the scales of the graphs for different radius values differ from each
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other in order to emphasize the difference of the performance between different

algorithms.

5.1.1 Evaluation Criteria

All but one of the algorithms we used in the experiments adopt negative strategy

described in Section 4.1.1. This means that they should result in 100% precision

no matter how. If all of our algorithms were to use negative strategy, we should

have compared them with respect to the elimination rate for the same recall

value. Due to the existence of M-BGESE algorithm, which uses a mixed strategy

and should result in varying recall and precision values, such a comparison is not

possible. As a result, we decided to compare the algorithms with respect to the

elimination rate for the same or relatively close F1-score values. F1-score takes

into account both of the recall and precision values. We adopted a balanced

F1-score that uses the harmonic mean of precision and recall. More formally, we

used the following formula in our calculations:

F1− score =
2× recall × precision
recall + precision

The elimination rate is equal to the ratio of total number of database objects

eliminated by the index structure and the approximation algorithm in total to

the total number of database objects. It can be formulated with the following

formula:

EliminationRate =
# of db objects −# of distance computations needed

# of db objects

5.2 Results and Comparison

This section includes scatter graphs, which illustrate the comparison of the ap-

proximation algorithms with respect to “Elimination Rate-F1 Score” pair. One
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common characteristic of all the scatter graphs to be provided is that the elimi-

nation rate of an approximation algorithm decreases as F1-score value increases.

This means that as less error is desired in the results of a query, the approxi-

mation algorithm will become more cautious in eliminating objects. As a result,

more distance computations will be required. The elimination rate will become

closer to that of index structure’s as F1-score approaches to 1.

Figure 5.1: Elimination Rate-F1 Score comparison for dataset=Corel, radius cov-

erage=1%, pivot #=100, and Index structure elimination=85.3%
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The first of the scatter graphs is depicted in Figure 5.1 above. RSDD al-

gorithm is outperformed by all the other algorithms as expected. M-BGESE

algorithm gives the best performance for F1-score values from 60% to 75%. For

F1-score values between 80%-90%, N-BGESE seems to outperform the remain-

ing ones slightly. In this particular experiment, the index structure elimination

rate is quite high. This means that, the index structure eliminates most of the

database objects even without an approximation algorithm’s help.

Figure 5.2: Elimination Rate-F1 Score comparison for dataset=Corel, radius cov-

erage=3%, pivot #=10, and Index structure elimination=50%



CHAPTER 5. RESULTS 42

In order to decrease the effect of the index structure in the elimination, we

decided to decrease the number of pivots used and increase the radius. As the

number of pivots decreases, the lower and upper bound values calculated between

a query object and a database object will become looser. As a result, the index

structure will not be able to eliminate as much objects as before.

Figure 5.2 above illustrates the effect of decreasing the pivot number whilst

increasing the radius coverage from 1% to 3%. The first observation of the figure

is that rates of all the algorithms drop from values above 95% to values around

85%. The main reason is the decrease of the elimination power of the index struc-

ture itself. The most outstanding finding about the elimination rate comparison

among the algorithms seems to be the decrease of the performance of “BGESE”

variants. Both M-BGESE and N-BGESE performs worse than RSDD for F1-

score values greater than 80%. This can be due to the fact that the estimation

models built for 100-pivot index structure is more representative than the mod-

els constructed for 10-pivot structure. In other words, the change of the pivot

number of the underlying structure required regeneration of the models listed in

Table 3.1. Since the lower bound and upper bound values are looser with 10

pivots, the new estimation models results in greater “Mean Absolute Error” and

“Root Mean Squared Error”. This means that the estimation models do not

model the underlying dataset as well as they did. The most successful algorithm

in regard to the evaluation criteria is LRN-CPBE as expected, since it is more

sensitive to the dataset and the query object thanks to using local distance distri-

butions. GN-CPBE’s performance is very similar to RSDD; whereas GRN-CPBE

outperforms RSDD for F1-score values greater than 80%.

Figure 5.3 below displays the effect of increasing the radius coverage to 5%.

GN-CPBE’s performance is again very similar to RSDD. GRN-CPBE also gives

a similar performance to its performance with in Figure 5.2. Until F1-score value

of 85% its performance is very close to that of RSDD. After that, its performance

does not decrease as much as the other algorithms. It is even the best performer

for 95% F1-score value. Even if it is not the best performer for many individual

F1-score values, LRN is again the best performer for increased radius value in

average. BGESE variants perform better when the radius increases. They always
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outperform RSDD, where M-BGESE gives the best performance up to 75% F1-

score value. The performance of M-BGESE becomes identical to N-BGESE’s after

F1-score surpasses a certain value. This is due to the reason that the probability

of the algorithm to eliminate a database object that is inside the radius of the

query object degrades considerably as the algorithm becomes more cautious since

only a small percentage of the database objects are inside the query range.

Figure 5.3: Elimination Rate-F1 Score comparison for dataset=Corel, radius cov-

erage=5%, pivot #=10, and Index structure elimination=37.3%
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Figure 5.4: Elimination Rate-F1 Score comparison for dataset=Nasa, radius cov-

erage=1%, pivot #=8, and Index structure elimination=47.2%

Figure 5.4 displays the first of the experiment results performed on Nasa

dataset. The findings derived from this figure are consistent with the results de-

rived for Corel dataset with minor exceptions. BGESE variants give very identical

performance to each other, which means M-BGESE could not succeed to make

remarkable number of “IN” type eliminations. BGESE variants give the best

performance up until 75% F1-score value and they perform worse than RSDD

after 90%. GN-CPBE gives similar performance to RSDD as it was the case for

Corel dataset. LRN-CPBE is again the best performer in the average.
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Figure 5.5: Elimination Rate-F1 Score comparison for dataset=Nasa, radius cov-

erage=3%, pivot #=8, and Index structure elimination=32.4%

One of the most important observations is the poor performance of GRN-

CPBE. It is surpassed by even RSDD for half of the F1-scores. This is the

major difference from the experiments conducted for Corel. We performed more

experiments with Nasa dataset via increasing the radius coverage in order to see

how the performance of the algorithms change.

Figure 5.5 above includes the result of the experiments performed with in-

creased radius value that covers 3% of the database objects. BGESE variants
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surpass RSDD almost for all F1-scores, where M-BGESE is the best performer

until F1-score of 85%. After that value both variants give identical performances

which have been the case for the experiments performed also on Corel dataset.

LRN-CPBE is always among the top three performers for all F1-score values

and it is the best one after the performance of BGESE variants decrease. GN-

CPBE follows the same routine of giving alike performance to RSDD; whereas

GRN-CPBE outperforms RSDD until 85% F1-score.

Figure 5.6 below illustrates the change of the performance of the algorithms

when the radius coverage increases to 5%. M-BGESE gives the best performance

for almost all F1-score values and its performance is outstanding especially for

smaller ones. N-BGESE follows M-BGESE for most F1-score values until 95%

where it gives an identical performance and outperformed by LRN-CPBE. LRN-

CPBE keeps on resulting in consistent elimination rates by beating RSDD for

all samples. GN-CPBE keeps on giving alike performance to RSDD; whereas the

performance of GRN-CPBE is more determined than it was in surpassing RSDD.

Before continuing discussing the results obtained for Gaussian dataset, it is

better to compare the performance of the algorithms for Corel and Nasa datasets.

GN-CPBE has been among the most consistent performer for both datasets. It

neither achieved an improvement over RSDD nor was surpassed by it. GRN-

CPBE has not been a regular performer and it has given inconsistent perfor-

mances as the dataset and the radius values change. LRN-CPBE has given solid

performances and outperformed RSDD no matter what the dataset or the radius

value is. BGESE variants have been more successful when the radius increases;

but their performances decreased more than the others when F1-score value passes

85%. We see that BGESE variants have been more successful for Nasa than they

have been for Corel. This can be due to the reason that the estimation model

obtained via regression technique is more successful for Nasa dataset.
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Figure 5.6: Elimination Rate-F1 Score comparison for dataset=Nasa, radius cov-

erage=5%, pivot #=8, and Index structure elimination=26.3%

Figure 5.7 below includes the results of the first experiment performed with

Gaussian dataset. Note that elimination rates of RSDD and GN-CPBE algo-

rithms are missing for F1-scores smaller than 80% and 85% respectively. The

elimination rates for these F1-scores could not be achieved. LRN-CPBE and

BGESE variants have very similar performances up to 85%, where the per-

formance of BGESE variants decrease much more as it is the case with other

datasets. Both of N-BGESE and M-BGESE are outperformed by RSDD for the
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last two F1-scores. GN-CPBE’s performance is very close to RSDD’s as usual.

Finally, GRN-CPBE’s performance is particularly poor for all F1-scores.

Figure 5.7: Elimination Rate-F1 Score comparison for dataset=Gaussian, radius

coverage=1%, pivot #=10, and Index structure elimination=51.3%

Figure 5.8 illustrates the performance of the algorithms when the radius value

is increased so as to cover 3% of all the database objects. The elimination rates

of RSDD and GN-CPBE algorithms are again missing this time for F1-scores

smaller than 70% and 80% in order. The performance of every algorithm with

respect to each other is very similar to the corresponding performances depicted

in Figure 5.7. The only exception is relatively improved performances of BGESE
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variants, where they are only outperformed by RSDD for just 95% F1-score.

Figure 5.8: Elimination Rate-F1 Score comparison for dataset=Gaussian, radius

coverage=3%, pivot #=10, and Index structure elimination=42.2%

Figure 5.9 includes the results of the last experiment performed with an in-

creased radius to cover 5% of the objects in Gaussian dataset. The relative

performance of the algorithms with respect to each other has not changed drasti-

cally. LRN-CPBE is still the best performer; where GRN-CPBE gives the worst

performance. BGESE variants are relatively more successful, since they surpass

RSDD for every F1-score value.
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Figure 5.9: Elimination Rate-F1 Score comparison for dataset=Gaussian, radius

coverage=5%, pivot #=10, and Index structure elimination=36.7%

5.3 Overall Comparison

We performed experiments with three different datasets for increasing radius

values with radius coverage rates of 1%, 3%, and 5%. This section includes an

overall comparison of the algorithms and a discussion about the variance of the

performance with respect to dataset and radius value.
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All of the proposed algorithms give higher elimination rates for lower F1-

scores as mentioned. The effect of increasing the F1-score varies for different

algorithms. BGESE algorithms seem to be the most effected ones, since they

are surpassed by the base algorithm, RSDD, for a few higher F1-score values for

the experiments performed with smaller radius values. Even if this is the case,

BGESE variants outperform RSDD for most of the cases and they are particularly

more successful as the radius value increases. This is due to the following reason:

BGESE algorithms estimate the actual distance by using a model derived by the

application of regression technique. In this approach, the overall error between

the estimated and the actual distance is tried to be minimized. This means that

the distances around the median are given more care than the distances at the

edge of the distribution, so we think that regression models should give optimum

performance around the median of the distance distribution. Therefore as we

increase the radius value to approach the median, the performance of BGESE

variants should increase as expected.

Regarding the comparison of BGESE variants between themselves, M-BGESE

performs slightly better than N-BGESE for higher radius values and lower F1-

scores. Other than that configuration, their performances are alike. The reason

is that, M-BGESE eliminates some of the objects, which reside inside the radius

of the query object and cannot be eliminated by N-BGESE. Since the number of

such objects is very small with respect to the size of the dataset (1%, 3%, and 5%

for our experiments), M-BGESE’s performance becomes identical to N-BGESE’s

when a higher F1-score value is aimed.

LRN-CPBE seems to be the most successful algorithm in average. Although

it is sometimes outperformed by one or both of BGESE variants, it shows a

better performance than all the remaining ones for every dataset and radius

configuration. This is not a big surprise considering the fact that LRN-CPBE

provides a more sensitive guidance for the approximation of the distance of query

object with the database objects with respect to the query object and the dataset.

GRN-CPBE is the algorithm that showed the most variance with respect

to the radius and the dataset. It resulted in a poor performance especially for
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the Gaussian dataset; whereas it was slightly better than RSDD for Corel and

somewhere in between for Nasa. This indicates a weakness with the algorithm. It

might be the case that its performance is very sensitive to the distance distribution

and distribution of the lower bounds of the particular dataset.

GN-CPBE has always given a very similar performance to RSDD. The reason

is that the algorithm relies on F(r) - F(l) formula; but the cumulative distance

distribution for the lower bound value is very small when compared to that of

radius for most cases. As a result, the lower bound did not have much of an

impact on the decision of the algorithm.
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Conclusion

In this thesis, we investigated approximation algorithms which can provide dy-

namic and particular guidance for the distance between a query object and a

database object in metric spaces. Such guidance is based on various information

derived from the dataset of interest and the lower and upper bound values calcu-

lated for the distance between a query object and the database object obtained

via triangular inequality. Our contribution is the investigation and demonstration

of the benefit of such a dynamic guidance; where most of the existing approxi-

mate similarity search algorithms are heavily dependent on the underlying index

structure and offer index structure focused improvements.

We developed five different approximation algorithms; GN-CPBE, GRN-

CPBE, LRN-CPBE, N-BGESE, and M-BGESE; which are dataset sensitive in

their guidance for the approximation of distances. We compared the performance

of these algorithms with another algorithm we developed: RSDD. We accepted

RSDD as the base algorithm since it is only dependent on the distance distribu-

tion of the particular dataset; whereas the others are more sensitive to the query

object.

Among the algorithms proposed, N-BGESE, M-BGESE, and LRN-CPBE per-

form better than RSDD nearly in most of the experiments. These three algorithms

are also the algorithms we have expected to perform better than the others. The
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remaining algorithms could not provide an improvement over RSDD. This indi-

cates some weakness related with these algorithms, which deserve further analysis

as indicated below in Section 6.1.

6.1 Future Work

Although we have obtained improvements with some of the algorithms we devel-

oped, there is still room for further investigation and future work that should be

carried out to see the benefits of our claims.

1. The number of pivots to use for the underlying index structure is determined

in an emprical way. Further study can be carried out to determine the

number of pivots with respect to the size and characteristics of the dataset.

Moreover, the pivot selection mechanism explained in Kvp structure [8]

might be used.

2. For LRN-CPBE algorithm, the precision value explained in Section 3.3

needs to be analyzed for an optimal value. A clever method to determine

such a value needs to be determined instead of trying to discover it with an

empirical way.

3. BGESE variants performance has been better for increased radius values.

In order the algorithms to perform better for smaller radius values, we

can develop multiple estimation models obtained via regression techniques

instead of relying on a single global model. The construction of such models

can be performed in a similar way to the construction of local distance

distributions in Section 3.3.

4. The performances of GN-CPBE and GRN-CPBE algorithms have not been

as satisfactory as expected. Although some of the possible reasons are

explained in Section 5.3 above, further investigation might reveal the cause

of the weaknesses of these algorithms.
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5. Further work can be carried on the application of the finding of this thesis

on different similarity search index structures.

6. The focus of this thesis has been range queries. We can develop similar ap-

proximate similarity search algorithms to answer k-nearest neighbor queries

approximately. One perspective on approximating these queries is to put

the objects or sets of objects (such as sub-trees) in a proper order so that

the more likely candidates appear in front of the list. If we visit the objects

on such an order, the distance of the k’th closest neighbor decreases more

rapidly, increasing the chances of pruning of other objects. Ordering on

the lower bound in particular gives the optimum solution in terms of the

number of distances to the k-nearest neighbor queries. A good ordering can

also be useful in an approximation scheme, if we can rapidly find out close

neighbors, we can terminate the search early. In particular, our regression

approach can be used to order the objects instead of using lower bound

values only.
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[23] M. L. Micó, J. Oncina, and E. Vidal. A new version of the nearest-neighbour

approximating and eliminating search algorithm (aesa) with linear prepro-

cessing time and memory requirements. Pattern Recogn. Lett., 15:9–17, Jan-

uary 1994.

[24] Metric Space Library. http://sisap.org/Metric_Space_Library.html/,

Accessed in August 2011.

[25] M. Patella and P. Ciaccia. The many facets of approximate similarity search.

In Data Engineering Workshop, 2008. ICDEW 2008. IEEE 24th Interna-

tional Conference on, pages 308 –319, april 2008.

[26] E. V. Ruiz. An algorithm for finding nearest neighbours in (approximately)

constant average time. Pattern Recogn. Lett., 4:145–157, July 1986.



BIBLIOGRAPHY 59
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