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ABSTRACT

STOCHASTIC SIGNALING FOR POWER
CONSTRAINED COMMUNICATION SYSTEMS

Cagr1 Goken
M.S. in Electrical and Electronics Engineering
Supervisor: Asst. Prof. Dr. Sinan Gezici
June 2011

In this thesis, optimal stochastic signaling problem is studied for power con-
strained communications systems. In the first part, optimal stochastic signaling
problem is investigated for binary communications systems under second and
fourth moment constraints for any given detector structure and noise probability
distribution. It is shown that an optimal signal can be represented by randomiza-
tion among at most three signal levels for each symbol. Next, stochastic signaling
problem is studied in the presence of an average power constraint instead of sec-
ond and fourth moment constraints. It is shown that an optimal signal can be
represented by randomization between at most two signal levels for each symbol
in this case. For both scenarios, sufficient conditions are obtained to determine
the improvability and nonimprovability of conventional deterministic signaling
via stochastic signaling. In the second part of the thesis, the joint design of
optimal signals and optimal detector is studied for binary communications sys-
tems under average power constraints in the presence of additive non-Gaussian
noise. It is shown that the optimal solution involves randomization between at
most two signal levels and the use of the corresponding maximum a posteriori

probability (MAP) detector. In the last part of the thesis, stochastic signaling
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is investigated for power-constrained scalar valued binary communications sys-
tems in the presence of uncertainties in channel state information (CSI). First,
stochastic signaling is performed based on the available imperfect channel coef-
ficient at the transmitter to examine the effects of imperfect CSI. The sufficient
conditions are derived for improvability and nonimprovability of deterministic
signaling via stochastic signaling in the presence of CSI uncertainty. Then, two
different stochastic signaling strategies, namely, robust stochastic signaling and
stochastic signaling with averaging, are proposed for designing stochastic signals
under CSI uncertainty. For the robust stochastic signaling problem, sufficient
conditions are derived to obtain an equivalent form which is simpler to solve.
In addition, it is shown that optimal signals for each symbol can be written as
randomization between at most two signal levels for stochastic signaling using
imperfect channel coefficient and stochastic signaling with averaging as well as
for robust stochastic signaling under certain conditions. The solutions of the
optimal stochastic signaling problems are obtained by using global optimization
techniques, specifically, Particle Swarm Optimization (PSO), and by employing
convex relaxation approaches. Numerical examples are presented to illustrate

the theoretical results at the end of each part.

Keywords: Stochastic signaling, probability of error, additive noise channels, de-
tection, binary communications, MAP decision rule, global optimization, channel

state information.

v



OZET

GUC KISITLAMALI HABERLESME SISTEMLERI ICIN
STOKASTIK ISARETLEME

Cagr1 Goken
Elektrik ve Elektronik Miithendisligi Bolumi Yiiksek Lisans

Tez Yoneticisi: Asst. Prof. Dr. Sinan Gezici

Haziran 2011

Bu tezde, gii¢ kisith haberlesme sistemleri i¢in optimal stokastik igsaretleme
problemi c¢aligilmaktadir. Ik kistmda, herhangi bir sezici ve guriiltii olasilik
dagilimi ele alinarak, ikinci ve dordiincii moment kisitlamalari altinda ikili
haberlesme sistemleri i¢in optimal stokastik igaretleme problemi incelenmektedir.
Her bir sembol i¢in, optimal igaretlemenin, en fazla ii¢ isaret seviyesi arasindaki
rastgelelegtirme ile ifade edilebilecegi gosterilmektedir. Sonrasinda, stokastik
isaretleme problemi ikinci ve doérdiincii moment kisitlamalari yerine, ortalama
gli¢ kisitlamasi altinda ¢aligilmaktadir. Bu durumda, her sembol i¢in, optimal bir
isaretin en fazla iki isaret seviyesi arasindaki rastgelelestirme ile ifade edilebilecegi
gosterilmektedir. Her iki senaryo icin de, klasik deterministik isaretlemenin
stokastik igaretleme vasitasiyla gelistirilebilmesi ve gelistirilememesine karar
veren yeter kogullar elde edilmektedir. Tezin ikinci kisminda, ortalama giic kisiti
ve Gauss’tan farkli bir giirtiltii altinda galisan ikili haberlesme sistemleri i¢in opti-
mal sezici ve isaretlerin ortak tasarlanmasi caligilmaktadir. Optimal ¢oziimiin en
fazla iki igaret seviyesi arasinda rastgelelegtirme ve buna karsilik gelen maksimum

sonsal olasiluk (MAP) sezicisinin kullanimini igerdigi gosterilmektedir. Tezin en



son kisminda stokastik isaretleme, gii¢ kisith sayil degerli ikili haberlesme sis-
temleri i¢in kanal durum bilgisi (CSI) belirsizligi altinda incelenmektedir. Tk
olarak, halihazirdaki hatal kanal katsayisi kullanimina dayali stokastik isaretleme
uygulanarak, hatali kanal durum bilgisinin etkileri incelenmektedir. CSI be-
lirsizligi altinda, deterministik isaretlemenin stokastik isaretleme vasitasiyla
geligtirilebilmesi ve gelistirilememesi icin yeter kosullar elde edilmektedir. Son-
rasinda, CSI belirsizligi altinda stokastik igsaretleme tasarimi igin giirbiiz stokastik
isaretleme ve ortalamayla stokastik isaretleme isimli iki farklh isaretleme strate-
jisi onerilmektedir. Giirbiiz stokastik isaretleme probleminin, ¢oziimii daha ko-
lay olan egdeger bir formunun elde edilebilmesi i¢in yeter kogullar sunulmaktadir.
Ayrica, hatali kanal katsayisina dayali stokastik isaretleme, ortalamayla stokastik
isaretleme ve bazi kosullar altinda giirbiiz stokastik isaretleme icin, her bir sem-
bole 6zel optimal igaretin en fazla iki isaret degeri arasindaki rastgelelestirme
ile ifade edilebilecegi gosterilmektedir. Optimal stokastik igaretleme problem-
lerinin ¢6ziimii, parcacik siirii optimizasyonu (PSO) gibi kiiresel optimizasyon
yontemleri veya konveks gevsetme teknikleri kullanilarak elde edilebilmektedir.
Her bir kismin sonunda, kuramsal sonuglar1 agiklamak i¢in sayisal ornekler sunul-

maktadar.

Anahtar Kelimeler: Stokastik isaretleme, ortalama hata olasihigi, toplanir giiriiltii
kanali, sezimleme, ikili haberlesme, maksimum sonsal olasihik (MAP) kurali,

kiiresel optimizasyon, kanal durum bilgisi.
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Chapter 1

INTRODUCTION

1.1 Objectives and Contributions of the Thesis

Optimal signaling in the presence of zero-mean Gaussian noise has been studied
extensively in the literature [1], [2]. In binary communications systems over
additive white Gaussian noise channels and under average power constraints
in the form of E{|S;]?} < A for i = 0,1, the average probability of error is
minimized when deterministic antipodal signals (Sp = —S1) are used at the
power limit (|Sp|*> = |S1|> = A) and a maximum a posteriori probability (MAP)
decision rule is employed at the receiver [2]. In addition, for vector observations,
selecting the deterministic signals along the eigenvector of the covariance matrix
of the Gaussian noise corresponding to the minimum eigenvalue minimizes the
average probability of error under power constraints in the form of ||So||? < A
and [|S;]|*> < A [2, pp.61-63]. In [3], the optimal deterministic signaling is
investigated for nonequal prior probabilities under an average power constraint
in the form of 3.7 mE{|S;|*} < A, where 7; represents the prior probability of
symbol 7, when the noise is zero-mean Gaussian and the MAP decision rule is

employed at the receiver. It is shown that the optimal signaling strategy is on-off



keying for coherent receivers when the signals have nonnegative correlation and
for noncoherent receivers with any arbitrary correlation value. In addition, it
is also concluded from [3] that, for coherent systems, the best performance is
achieved when the signals have a correlation of —1 and the power is distributed
among the signals in such a way that the Euclidean distance between them is
maximized under the given power constraint. In [4], a source-controlled turbo
coding algorithm is proposed for nonuniform binary memoryless sources over

AWGN channels by utilizing asymmetric nonbinary signal constellations.

Although the average probability of error expressions and optimal signaling
techniques are well-known when the noise is Gaussian, the noise can have signif-
icantly different probability distribution than the Gaussian distribution in some
cases due to effects such as multiuser interference and jamming [5]-[7]. In [8],
additive noise channels with binary inputs and scalar outputs are studied, and
the worst-case noise distribution is characterized. Specifically, it is shown that
the least-favorable noise distribution that maximizes the average probability of
error and minimizes the channel capacity is a mixture of discrete lattices [8]. A
similar problem is considered in [9] for a binary communications system in the
presence of an additive jammer, and properties of optimal jammer distribution

and signal distribution are obtained.

In [6], the convexity properties of the average probability of error are in-
vestigated for binary-valued scalar signals over additive noise channels under
an average power constraint. It is shown that the average probability of error
is a convex nonincreasing function for unimodal differentiable noise probability
density functions (PDFs) when the receiver employs maximum likelihood (ML)
detection. Based on this result, it is concluded that randomization of signal
values (or, stochastic signal design) cannot improve error performance for the
considered communications system. Then, the problem of maximizing the av-

erage probability of error is studied for an average power-constrained jammer,



and it is shown that the optimal solution can be obtained when the jammer
randomizes its power between at most two power levels. Finally, the results
are applied to multiple additive noise channels, and optimum channel switching
strategy is obtained as time-sharing between at most two channels and power
levels [6]. In [10], the results in [6] are generalized by exploring the convexity
properties of the error rates for constellations with arbitrary shape, order and
dimensionality for ML detector in additive white Gaussian noise (AWGN) with
no fading or frequency flat slowly fading channels. Also, the discussion in [6] for
optimum power/time sharing for a jammer to maximize average probability of
error and optimum transmission strategy to minimize average probability of error

is extended to arbitrary multidimensional constellations for AWGN channels.

Optimal randomization between two deterministic signal pairs and the cor-
responding ML decision rules is studied in [11] for an average power-constrained
antipodal binary communications system, and it is shown that power random-
ization can result in significant performance improvement. In [12], the problem
of pricing and transmission scheduling is investigated for an access point in a
wireless network, and it is proven that the randomization between two business
decision and price pairs maximizes the time-average profit of the access point.
Although the problem studied in [12] is in a different context, its theoretical
approach is similar to those in [6] and [11] for obtaining optimal signal distribu-

tions.

Although the average probability of error of a binary communications system
is minimized by conventional deterministic signaling in additive Gaussian noise
channels [2], the studies in [6, 9, 11, 12] imply that stochastic signaling can some-
times achieve lower average probability of error when the noise is non-Gaussian.
Therefore, a more generic formulation of the optimal signaling problem for bi-
nary communications systems can be stated as obtaining the optimal probability

distributions of signals Sy and S; such that the average probability of error of



the system is minimized under certain constraints on the moments of Sy and S.
It should be noted that the main difference of this optimal stochastic signaling
approach from the conventional (deterministic) approach [1, 2| is that signals
So and S; are considered as random variables in the former whereas they are

regarded as deterministic quantities in the latter.

In the first section of Chapter 2, optimal stochastic signaling is studied un-
der second and fourth moment constraints for a given decision rule (detector)
at the receiver. Firstly, a generic formulation (i.e., for arbitrary receivers and
noise probability distributions) of the optimal stochastic signaling problem is
performed under both average power and peakedness constraints on individual
signals. Then, sufficient conditions to determine whether stochastic signaling
can provide error performance improvement compared to the conventional (de-
terministic) signaling are derived. Also, the statistical characterization of optimal
signals is provided and it is shown that an optimal stochastic signal can be ex-
pressed as a randomization of at most three different signals levels. The power
constraints achieved by optimal signals are specified under various conditions.
In addition, two optimization techniques, namely particle swarm optimization
(PSO) [13] and convex relaxation [14], are studied to obtain optimal and close-
to-optimal solutions to the stochastic signaling problem. Also, simulation results
are presented to investigate the theoretical results. Finally, it is explained that
the results obtained for minimizing the average probability of error for a binary
communications system can be extended to M-ary systems, as well as to other
performance criteria than the average probability of error, such as the Bayes risk
[2, 15]. In the second section of Chapter 2, optimal stochastic signaling based
on an average power constraint in the form of 3.7 mE{|S;|>} < A is studied.
Similarly to the first section, optimal stochastic signaling problem is formulated
for any given fixed receiver and noise probability distribution and sufficient con-
ditions for improvability and nonimprovability of conventional deterministic sig-

naling via stochastic approach are obtained. In addition, the statistical structure



of the optimal stochastic signals is investigated and it is shown that an optimal
stochastic signal can be represented by a randomization between at most two sig-
nal levels for each symbol. Finally, by using particle swarm optimization (PSO),
optimal stochastic signals are calculated and numerical examples are presented

to illustrate the theoretical results.

In Chapter 3, the joint optimization of stochastic signaling and the decision
rule (detector) is studied under average power constraints on individual signals.
Firstly, the joint optimization problem, which involves optimization over a func-
tion space, is formulated. Then, theoretical results are provided to show that the
optimal solution can be obtained by searching over a number of variables instead
of functions, which greatly simplifies the original formulation. In addition, par-
ticle swarm optimization (PSO) is employed to obtain the optimal signals with

the decision rule and a numerical example is provided.

In Chapter 4, the effects of imperfect channel state information (CSI) on the
performance of stochastic signaling and the design of stochastic signals under
CSI uncertainty are studied. Firstly, stochastic signaling based on imperfect CSI
information at the transmitter is considered to observe the effects of imperfect
channel state information. It is shown that an optimal stochastic signal involves
randomization between at most two signal levels for the formulated problem.
Then by deriving upper and lower bounds on the average probability of error
for stochastic signaling under CSI uncertainty, sufficient conditions are obtained
to specify when the use of stochastic signaling can or cannot improve the per-
formance of conventional signaling. Secondly, two different methods, namely
robust stochastic signaling and stochastic signaling with averaging, are consid-
ered for designing stochastic signals under CSI uncertainty. In robust stochastic
signaling, signals are designed for the worst-case channel coefficients, and the
optimal signaling problem is formulated as a minimax problem [2, 16]. Then,

sufficient conditions under which the generic minimax problem is equivalent to



designing signals for the smallest possible magnitude of the channel coefficient
are obtained. In stochastic signaling with averaging approach, the transmitter
assumes a probability distribution for the channel coefficient, and stochastic sig-
nals are designed by averaging over different channel coefficient values based on
that probability distribution. It is shown that optimal signals obtained after this
averaging method and those for the equivalent form of robust signaling method
can be represented by at most two signal levels for each symbol. Solutions for the
optimization problems can be calculated by using Particle Swarm Optimization
(PSO) or convex relaxation approaches can be employed as in [14, 17, 18, 19].
Finally, simulations are performed and two numerical examples are presented to

illustrate the theoretical results.

1.2 Organization of the Thesis

The organization of this thesis is as follows. In Chapter 2, optimal stochastic
signaling is studied for any given detector for binary communications systems
under second and fourth moment constraints on individual signals firstly and

under an average power constraint secondly.

In Chapter 3, joint design of optimal signals and optimal detector for power

constrained communication systems is investigated.

In Chapter 4, stochastic signaling is studied for power constrained scalar
valued binary communications systems in the presence of uncertainties in channel

state information (CSI).



Chapter 2

OPTIMAL STOCHASTIC
SIGNALING FOR POWER
CONSTRAINED
COMMUNICATION SYSTEMS

In this chapter, optimal stochastic signaling is studied for the detection of scalar-
valued binary signals in additive noise channels for a given decision rule. In the
first section, optimization of the signals is performed under second and fourth
moment constraints. For this scenario, sufficient conditions are obtained to spec-
ify when the use of stochastic signals instead of deterministic ones can or cannot
improve the error performance of a given binary communications system. Also,
statistical characterization of optimal signals is presented, and it is shown that an
optimal stochastic signal can be represented by a randomization of at most three
different signal levels. In addition, the power constraints achieved by optimal
stochastic signals are specified under various conditions. Furthermore, two ap-

proaches for solving the optimal stochastic signaling problem are proposed; one



based on particle swarm optimization (PSO) and the other based on convex re-
laxation of the original optimization problem. Finally, simulations are performed
to investigate the theoretical results, and extensions of the results to M-ary com-
munications systems and to other criteria than the average probability of error

are discussed.

In the second section, optimal signaling is studied in the presence of an aver-
age power constraint. Sufficient conditions are derived to determine the cases in
which stochastic signaling can or cannot outperform the conventional signaling
in this case as well. Also, statistical characterization of the optimal signals is
provided and it is obtained that an optimal stochastic signal can be represented
by a randomization of at most two different signal levels for each symbol for
this scenario. In addition, via global optimization techniques, the solution of the
generic optimal stochastic signaling problem is obtained, and theoretical results

are investigated via numerical examples.

2.1 Stochastic Signaling Under Second and

Fourth Moment Constraints

2.1.1 System Model and Motivation

Consider a scalar binary communications system, as in [6], [8] and [20], in which

the received signal is expressed as
Y=5+N, i€ {0,1}, (2.1)

where Sy and Sy represent the transmitted signal values for symbol 0 and symbol
1, respectively, and N is the noise component that is independent of S;. In
addition, the prior probabilities of the symbols, which are represented by my and

71, are assumed to be known.



As stated in [6], the scalar channel model in (2.1) provides an abstraction for
a continuous-time system that processes the received signal by a linear filter and
samples it once per symbol interval. In addition, although the signal model in
(2.1) is in the form of a simple additive noise channel, it also holds for flat-fading
channels assuming perfect channel estimation. In that case, the signal model in

(2.1) can be obtained after appropriate equalization [1].

It should be noted that the probability distribution of the noise component
in (2.1) is not necessarily Gaussian. Due to interference, such as multiple-access
interference, the noise component can have a significantly different probability

distribution from the Gaussian distribution [5], [6], [21].

A generic decision rule is considered at the receiver to determine the symbol
in (2.1). That is, for a given observation Y = y, the decision rule ¢(y) is specified

as

0, Yy E Ty
¢(y) = , (2.2)
1 , Y€ Fl
where ['y and I'; are the decision regions for symbol 0 and symbol 1, respectively

[2].

The aim is to design signals Sy and S; in (2.1) in order to minimize the

average probability of error for a given decision rule, which is expressed as
Pavg = moPo(I't) + mP1(To) (2.3)

where P;(I';) is the probability of selecting symbol j when symbol 4 is transmit-
ted. In practical systems, there are constraints on the average power and the

peakedness of signals, which can be expressed as [22]

E{|S;’} < A, E{|S;[*} < kA? | (2.4)



for i = 0,1, where A is the average power limit and the second constraint imposes
a limit on the peakedness of the signal depending on the x € (1, 00) parameter.!
Therefore, the average probability of error in (2.3) needs to be minimized under

the second and fourth moment constraints in (2.4).

The main motivation for the optimal stochastic signaling problem is to im-
prove the error performance of the communications system by considering the
signals at the transmitter as random variables and finding the optimal proba-
bility distributions for those signals [6]. Therefore, the generic problem can be
formulated as obtaining the optimal probability distributions of the signals Sy
and S for a given decision rule at the receiver under the average power and

peakedness constraints in (2.4).

Since the optimal signal design is performed at the transmitter, the transmit-
ter is assumed to have the knowledge of the statistics of the noise at the receiver
and the channel state information. Although this assumption may not hold in
some cases, there are certain scenarios in which it can be realized.? Consider,
for example, the downlink of a multiple-access communications system, in which
the received signal can be modeled as Y = S + 2,522 £.5% + 1, where S*)
is the signal of the kth user, & is the correlation coefficient between user 1 and
user k, and 7 is a zero-mean Gaussian noise component. For the desired signal
component S, N = Zszz £.S%) + n forms the total noise, which has Gaus-
sian mixture distribution. When the receiver sends via feedback the variance of
noise 7 and the signal-to-noise ratio (SNR) to the transmitter, the transmitter
can fully characterize the PDF of the total noise N, as it knows the transmitted

signal levels of all the users and the correlation coefficients.

INote that for E{|S;|?} = A, the second constraint becomes E{|S;|*}/(E{|S;:|*})? < &,

which limits the kurtosis of the signal [22].
2As discussed in Section 2.1.5, the problem studied in this section can be considered for

other systems than communications; hence, the practicality of the assumption depends on the

specific application domain.
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In the conventional signal design, Sy and S are considered as deterministic
signals, and they are set to Sy = —v/A and S; = VA [1], [2]. In that case, the

average probability of error expression in (2.3) becomes

nggV:m/Fle <y+\/Z>dy+m/FOpN (y—\/Z)dy, (2:5)

where py(-) is the PDF of the noise in (2.1). As investigated in Section 2.1.2.1,
the conventional signal design is optimal for certain classes of noise PDF's and
decision rules. However, in some cases, use of stochastic signals instead of de-
terministic ones can improve the system performance. In the following section,
conditions for optimality and suboptimality of the conventional signal design are

derived, and properties of optimal signals are investigated.

2.1.2 Optimal Stochastic Signaling

Instead of employing constant levels for Sy and S; as in the conventional case,
consider a more generic scenario in which the signal components can be stochas-
tic. The aim is to obtain the optimal PDFs for Sy and Sy in (2.1) that minimize

the average probability of error under the constraints in (2.4).

Let pg,(-) and pg, () represent the PDFs for Sy and Sy, respectively. Then,
the average probability of error for the decision rule in (2.2) can be expressed

from (2.3) as

Pstec — m, / psa(t) / oy — ) dy dt + / ps (1) / p(y — ) dy dt .
Fl I‘O

(2.6)
Therefore, the optimal stochastic signal design problem can be stated as
min P3¢
pSO 7p51
subject to E{|S;]*} < A, E{|S]|'} <rA*, i=0,1. (2.7)
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Note that there are also implicit constraints in the optimization problem in
(2.7), since pg, (t) represents a PDF. Namely, pg, () > 0 V¢ and [~ pg,(t)dt =1

should also be satisfied by the optimal solution.

Since the aim is to obtain optimal stochastic signals for a given receiver, the
decision rule in (2.2) is fixed (i.e., predefined I'y and I';). For a given decision
rule (detector) and a noise PDF, changing pg, has no effect on the second term in
(2.6) and the constraints for S; in (2.7). Similarly, changing pg, has no effect on
the first term in (2.6) and the constraints for Sy in (2.7). Therefore, the problem
of minimizing the expression in (2.6) over pg, and ps, under the constraints for Sy
and S) in (2.7) is equivalent to minimizing the first term in (2.6) over pg, under
the constraints for Sy in (2.7) and minimizing the second term in (2.6) over pg,
under the constraints for S in (2.7). Therefore, the signal design problems for .Sy
and S can be separated and expressed as two decoupled optimization problems.
For example, the optimal signal for symbol 1 can be obtained from the solution
of the following optimization problem:

min / psi(t) / pn(y — 1) dydt
o

Psy —00

subject to E{|S1]*} < A, E{|S|*} < rA?. (2.8)

A similar problem can be formulated for Sy as well. Since the signals can be
designed separately, the remainder of the discussion focuses on the design of

optimal S; according to (2.8).
The objective function in (2.8) can be expressed as the expectation of
G(51) é/F pn(y — S1)dy (2.9)
0
over the PDF of S;. Then, the optimization problem in (2.8) becomes

min E{G(51)}

Ps;

subject to E{|Si|*} < A, E{|S|'} < rAZ. (2.10)

12



It is noted that (2.10) provides a generic formulation that is valid for any noise
PDF and detector structure. In the following sections, the signal subscripts
are dropped for notational simplicity. Note that G(x) in (2.9) represents the
probability of deciding symbol 0 instead of symbol 1 when signal S; takes a

constant value of x; that is, S; = x.

2.1.2.1 On the Optimality of the Conventional Signaling

Under certain circumstances, using the conventional signaling approach, i.e.,
setting S = VA (or, pg(z) = 6(x — V/A)), solves the optimization problem
in (2.10). For example, if G(x) achieves its minimum at 2 = v/A; that is,
arg mxin G(x) = VA, then pg(z) = §(z — V/A) becomes the optimal solution
since it yields the minimum value for E{G(S1)} and also satisfies the constraints.
However, this case is not very common as G(z), which is the probability of de-
ciding symbol 0 instead of symbol 1 when S = z, is usually a decreasing function
of x; that is, when a larger signal value x is used, smaller error probability can
be obtained. Therefore, the following more generic condition is derived for the

optimality of the conventional algorithm.

Proposition 2.1: If G(z) is a strictly convex and monotone decreasing func-

tion, then pg(x) = 8(z — V/A) solves the optimization problem in (2.10).

Proof: The proof is obtained via contradiction. First, it is assumed that
there exists a PDF pg,(z) for signal S that makes the conventional solution

suboptimal; that is, E{G(S)} < G(v/A) under the constraints in (2.10).

Since G(z) is a strictly convex function, Jensen’s inequality implies that
E{G(S)} > G (E{S}). Therefore, as G(x) is a monotone decreasing function,
E{S} > v/A must be satisfied in order for E{G(S)} < G(v/A) to hold true.

13



On the other hand, Jensen’s inequality also states that E{S} > VA implies
E{S?} > (E{S})? > A; that is, the constraint on the average power is violated
(see (2.10)). Therefore, it is proven that no PDF can provide E{G(S)} < G(v/A)

and satisfy the constraints under the assumptions in the proposition. [

As an example application of Proposition 2.1, consider a zero-mean Gaussian
noise N in (2.1) with py(x) = ﬁ exp (—%), and a decision rule of the form
[y = (—00,0] and I'; = [0,00); i.e., the sign detector. Then, G(z) in (2.9) can

be obtained as

0 1 o 2
G(z) = /_ NP exp (—%) dy = Q (g) : (2.11)
where Q(x) = (1/v/27) [° exp(—t?/2) dt defines the Q-function. It is observed

that G(z) in (2.11) is a monotone decreasing and strictly convex function for
x > 0.2 Therefore, the optimal signal is specified by pg(z) = 6(z — V/A) from
Proposition 2.1. Similarly, the optimal signal for symbol 0 can be obtained as

ps(z) = d(z++/A). Hence, the conventional signaling is optimal in this scenario.

2.1.2.2 Sufficient Conditions for Improvability

In this section, the aim is to determine when it is possible to improve the perfor-
mance of the conventional signaling approach via stochastic signaling. A simple

observation of (2.10) reveals that if the minimum of G(z) = fFo pn(y — x)dy

2

is achieved at @y, with 27, < A, then ps(z) = §(z — Zmin) becomes a better

solution than the conventional one. In other words, if the noise PDF is such

that the probability of selecting symbol 0 instead of symbol 1 is minimized for a

signal value of S; = xy;, with 22, < A, then the conventional solution can be
improved. Another sufficient condition for the conventional algorithm to be sub-

optimal is to have a positive first-order derivative of G(x) at z = v/A, which can

31t is sufficient to consider the positive signal values only since G(z) is monotone decreasing
and the constraints z2 and z* are even functions. In other words, no negative signal value can

be optimal since its absolute value has the same constraint value but smaller G(z).
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also be expressed from (2.9) as — fFo pn(y—v/A)dy > 0, where py(-) denotes the
derivative of py(-). In this case, pgy(x) = 6(x — VA + €) yields a smaller average
probability of error than the conventional solution for infinitesimally small € > 0

values.

Although both of the conditions above are sufficient for improvability of the
conventional algorithm, they are rarely met in practice since G(x) is commonly
a decreasing function of x as discussed before. Therefore, in the following, a

sufficient condition is derived for more generic and practical conditions.

Proposition 2.2: Assume that G(x) is twice continuously differentiable
around x = /A. Then, if fFo (pn(y — VA) + pyly — VA) VA Jdy < 0 is
satisfied, pg(x) = 6(x — V/A) is not an optimal solution to (2.10).

Proof: It is first observed from (2.9) that the condition in the proposition is
equivalent to G (v/A) < G'(v/A)/v/A. Therefore, in order to prove the subop-
timality of the conventional solution pg(z) = 6(z — v/A), it is shown that when
G"(VA) < G'(VA)/VA, there exists A € (0,1), ¢ > 0 and A > 0 such that
pso(z) = Ao(x — VA+¢€) + (1 =\ d(xz — VA — A) has a lower error probability
than pg(z) while satisfying all the constraints in (2.10). More specifically, the

existence of A € (0,1), € > 0 and A > 0 that satisfy

AG(VA=€)+ (1 =N G(VA+A) < G(VA) (2.12)
AMVA— e+ (1 -NWVA+A?=A (2.13)
AVA— '+ (1= N(VA+ A < kA? (2.14)

is sufficient to prove the suboptimality of the conventional signal design.
From (2.13), the following equation is obtained.

A2+ (1=ANA2 = —2VA[(1 - N)A = Aq] . (2.15)
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If infinitesimally small € and A values are selected, (2.12) can be approximated
as

62

MG(VA) =G (VA) + = G”(\/Z)} +(1=)) {G(\/Z) +AG (VA) + %2 G'(VA)

2
< G(WA) + G (VA [(1 - XA = Ae + _G”(Q\/Z)

[N+ (1—=N)A%] <0
(2.16)

When the condition in (2.15) is employed, (2.16) becomes
(1= A)A — Ad (G’(\/Z) —\/ZG”(\/Z)> <0. (2.17)

Since (1—\)A— \e is always negative as can be noted from (2.15), the G (v/A) —
VAG"(VA) term in (2.17) must be positive to satisfy the condition. In other
words, when G (vVA) < G'(VA)/VA, psy(x) can have a smaller error value
than that of the conventional algorithm for infinitesimally small ¢ and A values
that satisfy (2.15). To complete the proof, the condition in (2.14) needs to be
verified for the specified € and A values. From (2.15), (2.14) can be expressed,

after some manipulation, as

A2 F16AVA [(1 = MDA = A —4VA [N — (1 — N)A?]

+ [Aet = (1= VA <rA?. (2.18)

Since (1 — A\)A — X e is negative, the inequality can be satisfied for infinitesimally
small € and A, for which the third and the fourth terms on the left-hand-side

become negligible compared to the first two. [J

The condition in Proposition 2.2 can be expressed more explicitly in practice.
For example, if I'y is the form of an interval, say [, 73], then the condition in
the proposition becomes py (72 — VA) —py (11 — VA) + (pn (12 — VA) = pn (11 —
VA )/ VA < 0. This inequality can be generalized in a straightforward manner

when 'y is the union of multiple intervals.

Since the condition in Proposition 2.2 is equivalent to G'(vVA) <
G'(VA)/VA (see (2.9)), the intuition behind the proposition can be explained as
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follows. As the optimization problem in (2.10) aims to minimize E{G(S)} while
keeping E{S?} and E{S*} below thresholds A and kA?, respectively, a better
solution than pg(x) = 6(x — v/A) can be obtained with multiple mass points if
G(z) is decreasing at an increasing rate (i.e., with a negative second derivative)
such that an increase from x = v/A causes a fast decrease in G(z) but relatively
slow increase in 22 and z4, and a decrease from 2 = v/A causes a fast decrease in
2? and 2 but relatively slow increase in G(z). In that case, it becomes possible
to use a PDF with multiple mass points and to obtain a smaller E{G(S)} while
satisfying E{S?} < A and E{S%} < kA%

Proposition 2.2 provides a simple sufficient condition to determine if there is
any possibility for performance improvement over the conventional signal design.
For a given noise PDF and a decision rule, the condition in Proposition 2.2 can
be evaluated in a straightforward manner. In order to provide an illustrative
example, consider the noise PDF

vr, |yl < 1.1447

pn(y) = , (2.19)
0, |yl >1.1447

and a sign detector at the receiver; that is, I'y = (—o0,0]. Then, the condition

in Proposition 2.2 can be evaluated as
prn(—VA) +pn(—VA)VA<O. (2.20)

Assuming that the average power is constrained to A = 0.64, the inequality
in (2.20) becomes 2(—0.8) + (—0.8)%/0.8 < 0. Hence, Proposition 2.2 implies
that the conventional solution is not optimal for this problem. For example,
ps(z) = 0.3915(z — 0.988) + 0.3336(x — 0.00652) + 0.276 6(x — 0.9676) yields
an average error probability of 0.2909 compared to 0.3293 corresponding to the

conventional solution pg(z) = d(z — 0.8), as studied in Section 2.1.3.

Although the noise PDF in (2.19) is not common in practice, improvements

over the conventional algorithm are possible and Proposition 2.2 can be applied
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also for certain types of Gaussian mixture noise (see Section 2.1.3), which is ob-
served more frequently in practical scenarios [21]-[24]. For example, in multiuser
wireless communications, the desired signal is corrupted by interfering signals
from other users as well as zero-mean Gaussian noise, which altogether result in

Gaussian mixture noise [21].

2.1.2.3 Statistical Characteristics of Optimal Signals

In this section, PDF's of optimal signals are characterized and it is shown that an
optimal signal can be represented by a randomization of at most three different
signal levels. In addition, it is proven that the optimal signal achieves at least
one of the second and fourth moment constraints in (2.10) for most practical

cases.

In the following proposition, it is stated that, in most practical scenarios, an
optimal stochastic signal can be represented by a discrete random variable with

no more than three mass points.

Proposition 2.3: Assume that the possible signal values are specified by
|S| < v for a finite v > 0, and G(-) in (2.9) is continuous. Then, an optimal
solution to (2.10) can be expressed in the form of ps(x) = S0 Nid(x — x;),
where Z?:1 AMi=1land \; >0 fori=1,2,3.

Proof: In order to prove Proposition 2.3, we take an approach similar to

those in [12] and [25]. First, the following set is defined:
U= {(ul,ug,ug) cuy = G(2), ug = 2?, ug = 2, for |z| < fy} ) (2.21)

Since G(x) is continuous, the mapping from [—v,7] to R? defined by F(x) =
(G(x), 2% z%) is continuous. Since the continuous image of a compact set is

compact, U is a compact set [26].
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Let V represent the convex hull of U. Since U is compact, the convex hull V'
of U is closed [26]. Also, the dimension of V' should be smaller than or equal to
3, since V C R3. In addition, let W be the set of all possible conditional error

probability P;(I'y), second moment, and fourth moment triples; i.e.,

W = {(wl,wg,wg) Dwy = /_Zpg(x)G(x)dx, Wy = /_Zpg(x)x2dx,
w3 = /_Zps(x)x4dx, Vps(x), |z] < 7}. (2.22)

where pg(z) is the signal PDF.

Similar to [25], V' C W can be proven as follows. Since V' is the convex hull
of U, each element of V can be expressed as v = .0, \; (G(x;), 22, 1), where
Zle A =1, and A\; > 0 Vi. Considering set W, it has an element that is equal
to v for pg(x) = S, \id(x — ;). Hence, each element of V also exists in W.
On the other hand, since for any vector random variable ® that takes values in

set €, its expected value E{@®} is in the convex hull of 2 [12], it is concluded

from (2.21) and (2.22) that W is in the convex hull V' of U; that is, V' 2 W [19].

Since W O V and V 2 W, it is concluded that W = V. Therefore,
Carathéodory’s theorem [27], [28] implies that any point in V' (hence, in W)
can be expressed as the convex combination of at most 4 points in U. Since an
optimal PDF should minimize the average probability of error, it corresponds to
the boundary of V. Since V' is a closed set as discussed at the beginning of the
proof, it contains its own boundary. Since any point at the boundary of V' can be
expressed as the convex combination of at most 3 elements in U [27], an optimal

PDF can be represented by a discrete random variable with 3 mass points L.

The assumption in the proposition, which states that the possible signal val-
ues belong to set [—7, 7], is realistic for practical communications systems since
arbitrarily large positive and negative signal values cannot be generated at the

transmitter. In addition, for most practical scenarios, G(-) in (2.9) is continuous
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since the noise at the receiver, which is commonly the sum of zero-mean Gaus-
sian thermal noise and interference terms that are independent from the thermal

noise, has a continuous PDF.

The result in Proposition 2.3 can be extended to the problems with more
constraints. Let E{G(S)} be the objective function to minimize over possible
PDFs pg(x), subject to E{H;(S)} < A; for i = 1,..., N.. Then, under the
conditions in the proposition, this proof implies that there exists an optimal

PDF with at most N, 4+ 1 mass points.*

The significance of Proposition 2.3 lies in the fact that it reduces the opti-
mization problem in (2.10) from the space of all PDFs that satisfy the second
and fourth moment constraints to the space of discrete PDFs with at most 3
mass points that satisfy the second and fourth moment constraints. In other
words, instead of optimization over functions, an optimization over a vector of
6 elements (namely, 3 mass point locations and their weights) can be considered
for the optimal signaling problem as a result of Proposition 2.3. In addition, this
result facilitates a convex relaxation of the optimization problem in (2.10) for

any noise PDF and decision rule as studied in Section 2.1.2.4.

Next, the second and the fourth moments of the optimal signals are investi-
gated. Let x,;, represent the signal level that yields the minimum value of G(z)
in (2.9); that is, x;, = arg mxin G(z). If 2y < VA, the optimal signal has the
constant value of ,,;, and the second and fourth moments are given by 2, < A

and xfmn < kA?, respectively. However, it is more common to have x, > VA
since larger signal values are expected to reduce G(x) as discussed before. In
that case, the following proposition states that at least one of the constraints in

(2.10) is satisfied.

1t is assumed that Hy(z),..., Hy.(z) are bounded functions for the possible values of the

signal.
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Proposition 2.4: Let x,, = argmin G(z) be the unique minimum of G(x) .

a) If A% < xl, < kA2, then the optimal signal satisfies E{S?*} = A.

min

min

and E{S*} = kA%

b) If 2%, > kA2, then the optimal signal satisfies at least one of E{S?} = A

Proof: a) Let A? < zl, < rkA? and pg,(x) represent an optimal signal
PDF with w; = E{G(S)}, wy £ E{S?} and w3 = E{S*}, where w, < A and
w3 < kA% In the following, it is shown that such a signal cannot be optimal

(hence, a contradiction), and an optimal signal needs to satisfy E{S?} = A. To

that aim, define another signal PDF as follows:

A— Wo 1'2 . — A
= 50— Tpin) + 5——— . 2.23
Psale) = S Bl — ) + sy () (223)

It can be shown for pg,(x) that

A— Wa £L'2 . — A

E{G(S)} = "2 Glan) + —min 2y 2.24

{ ( )} 'r?nin — W2 (:E ) - ?nin — W2 o o ( )
A— Wa $2 . — A

E{S?} = — = 2. - =A 2.25

{ } Iilin Wy Tnin Iilin Wy W2 ) ( )
A— Wa £C2 . — A

E{St} = — = % - < kA% . 2.26

{ } :EIQnin — Wy T min + :EIQnin — W, w3 R ( )

The inequality in (2.24) is obtained by observing that G(z) is the unique
minimum value of G(x) and that no signals can achieve E{G(S)} = G(xmn)

since Ty > VA. The inequality in (2.26) is achieved since 2%, < kA2 and

wy < kA?. From (2.24)-(2.26), it is concluded that pg,(z) defines a better signal
than pg,(z) does. In other words, the optimal signal cannot have a smaller

average power than A; that is, E{S?} = A must be satisfied by the optimal

signal.

4

min

w; 2 E{G(S)}, wy £ E{S?} and ws = E{S*}, where wy < A and wy < kA% In

b) Now assume z. > kA% and pg,(x) represents an optimal signal PDF with

the following, it is proven that wy < A and ws < KA? cannot be satisfied at the

same time for an optimal signal.
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Consider pgy(x) in (2.23) and pgs(z) below:

KA? — w3 zi. — kA
pSS(.T) = 1’4——103 (5(17 — xmin) + mpsl(x) . (227)

For both pg,y(z) and ps4(z), it can be shown that E{G(S)} < w; since G(Zmin) <

wy. For pgy(x), the second and fourth moment constraints can be expressed as

A—wy 2. —A

E{$?} = a2, +-20 —wy,=A 2.28

{ } 'Trgnin — Wy Lnin + xrgnin — Wy W2 ’ ( )
A — wy 2. — A

E{S*} = — = 4. - £ . 2.29

{ } xrgnin — Wy Lnin xrgnin — wy ws 51 ( )

On the other hand, for pg4(z), the constraints are given by

KA? — ws . — kA2
E{S$?} = —— 2, 400 T 2 2.30
{ } xfnin QU | Min + xfmn — ws W2 ﬁ? ) ( )
2 4 2
4 K’A — W3 4 Lmin — H:A 2
E{S } = m L min + m W3 = KA® . (231)

Now it is claimed that at least one of the conditions 3; < kA% or B, < A
must be true. In other words, it is not possible to have 8; > kA? and 3, > A
at the same time. To prove this, the condition for 3; > xkA? is considered first.

Since 7. > kA? and w3 < kA%, B; > kA? can be expressed from (2.29) as

4 A2 2 _ 4
xmln K ':Emln . (232)
kA2 — ws A — wy

Next, the 3, > A condition is considered. Since z2. > A and w, < A, that

min

condition can be expressed, from (2.30), as

4 A2 2 _ A
Imln K xmln (233)
kA2 — ws A — wy

Since (2.32) and (2.33) cannot be true at the same time, at least one of the
conditions f; < kA? or By < A is true. This implies that at least one of pg,(z) or
pss(z) provides a signal that has a smaller average probability of error than that
for pg,(z). In addition, such a signal satisfies at least one of the constraints with
equality as can be observed from (2.28) and (2.31). Therefore, an optimal signal
cannot be in the form of pg; (), which satisfies both inequalities as E{S?*} < A
and E{S*} < kA% O
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An important implication of Proposition 2.4 is that when zny, > VA, any
solution that results in second and fourth moments that are smaller than A and
kA2, respectively, cannot be optimal. In other words, it is possible to improve
that solution by increasing the second and/or the fourth moment of the signal

until at least one of the constraints become active.

After characterizing the structure and the properties of optimal signals, two
approaches are proposed in the next section to obtain optimal and close-to-

optimal signal PDFs.

2.1.2.4 Calculation of the Optimal Signal

In order to obtain the PDF of an optimal signal, the constrained optimization
problem in (2.10) should be solved. In this section, two approaches are studied
in order to obtain optimal and close-to-optimal solutions to that optimization

problem.

2.1.2.4.1 Global Optimization Approach Since Proposition 2.3 states
that the optimal signaling problem in (2.10) can be solved over PDFs in the

form of pg(z) = Z;’:l Ajd(x —x;), (2.10) can be expressed as
3
min > X Glz)) (2.34)
x

3 3
subject to Z)\j x? <A, Z)\j x? < kA%,
Jj=1 Jj=1
3
D=1 =0V,

7j=1

where x = [.%‘1 i) .Tg]T and A = [)\1 )\2 )\3]T.

Note that the optimization problem in (2.34) is a not convex problem in gen-
eral due to both the objective function and the first two constraints. Therefore,

global optimization techniques, such as PSO, differential evolution and genetic
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algorithms [29] should be employed to obtain the optimal PDF. In this study, the
PSO approach [13], [30]-[32] is used since it is based on simple iterations with
low computational complexity and has been successfully applied to numerous

problems in various fields [33]-[37].

In order to describe the PSO algorithm, consider the minimization of an
objective function over parameter . In PSO, first a number of parameter values
{6,}M, called particles, are generated, where M is called the population size
(i.e., the number of particles). Then, iterations are performed, where at each
iteration new particles are generated as the summation of the previous particles

and velocity vectors v; according to the following equations [13]:

Vit = x (wof + el (pF — 07) + capliy (P — 7)) (2.35)
0F = 0F v (2.36)
fori=1,..., M, where k is the iteration index, y is the constriction factor, w is

the inertia weight, which controls the effects of the previous history of velocities
on the current velocity, ¢; and ¢, are the cognitive and social parameters, respec-
tively, and pf, and pf, are independent uniformly distributed random variables
on [0,1] [30]. In (2.35), p¥ represents the position corresponding to the smallest
objective function value until the kth iteration of the ¢th particle, and p’; de-
notes the position corresponding to the global minimum among all the particles
until the kth iteration. After a number of iterations, the position with the low-
est objective function value, p’;, is selected as the optimizer of the optimization

problem.

In order to extend PSO to constrained optimization problems, various ap-
proaches, such as penalty functions and keeping feasibility of particles, can be
taken [31], [32]. In the penalty function approach, a particle that becomes infea-
sible is assigned a large value (considering a minimization problem), which forces
migration of particles to the feasible region. In the constrained optimization ap-

proach that preserves the feasibility of the particles, no penalty is applied to any
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particles; but for the positions p¥ and p’;’ in (2.35) corresponding to the lowest

objective function values, only the feasible particles are considered [32].

In order to employ PSO for the optimal stochastic signaling problem in (2.34),
the optimization variable is defined as 6 £ [T1 T2 3 A1 Ay )\3]T, and the iterations
in (2.35) and (2.36) are used while using a penalty function approach to impose

the constraints. The results are presented in Section 2.1.3.

2.1.2.4.2 Convex Optimization Approach In order to provide an alter-
native approximate solution with lower complexity, consider a scenario in which

the PDF of the signal is modeled as
K ~
ps(x) =Y Xjd(z— i), (2.37)
j=1

where z;’s are the known mass points of the PDFs, and S\j’s are the weights to
be estimated. This scenario corresponds to the cases with a finite number of
possible signal values. For example, in a digital communications system, if the
transmitter can only send one of K pre-determined Z; values for a specific symbol,
then the problem becomes calculating the optimal probability assignments, S\j’s,
for the possible signal values for each symbol. Note that since the optimization
is performed over PDF's as in (2.37), the optimal solution can include more than
three mass points in general. In other words, the solution in this case is expected
to approximate the optimal PDF, which includes at most three mass points, with

a PDF with multiple mass points.

The solution to the optimal signal design problem in (2.10) over the set of

signals with their PDFs as in (2.37) can be obtained from the solution of the
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following convex optimization problem:?
min g’ X (2.38)
A
subject to B\ <C,
1"X=1, A>o0,

where g 2 [G(Z;) - - - G(7k)]¥, with G(z) as in (2.9),

P2 q2 A
B2 | Kl oca , (2.39)
# o kA2

and 1 and O represent vectors of all ones and all zeros, respectively.

It is observed from (2.38) that the optimal weight assignments can be ob-
tained as the solution of a convex optimization problem, specifically, a linearly
constrained linear programming problem. Therefore, the solution can be ob-

tained in polynomial time [14].

Note that if the set of possible signal values Z;’s include the deterministic
signal value for the conventional algorithm, i.e., v/A, then the performance of
the convex algorithm in (2.38) can never be worse than that of the conventional
one. In addition, as the number of possible signal values, K in (2.37), increases,

the convex algorithm can approximate the exact optimal solution more closely.

2.1.3 Simulation Results

In this section, numerical examples are presented for a binary communications
system with equal priors (mp = m; = 0.5) in order to investigate the theoretical
results in the previous section. In the implementation of the PSO algorithm
specified by (2.35) and (2.36), M = 50 particles are employed and 10000 itera-

tions are performed. In addition, the parameters are set to ¢; = ¢ = 2.05 and

5For K-dimensional vectors x and y, x < y means that the ith element of x is smaller than

or equal to the ith element of y fori=1,... K.
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x = 0.72984, and the inertia weight w is changed from 1.2 to 0.1 linearly with
the iteration number [13]. Also, a penalty function approach is implemented
to impose the constraints in (2.34); namely, the objective function is set to 1

whenever a particle becomes infeasible [33].

First, the noise in (2.1) is modeled by the PDF in (2.19), A = 0.64 and
xk = 1.5 are employed for the constraints in (2.10), and the decision rule at the
receiver is specified by 'y = (—00,0] and I'; = [0, 00) (that is, a sign detector).
As stated after (2.20), the conventional signaling is suboptimal in this case based
on Proposition 2.2. In order to calculate optimal signals via the PSO and the
convex optimization algorithms in Section 2.1.2.4, the optimization problems in
(2.34) and (2.38) are solved, respectively. For the convex algorithm, the mass
points Z; in (2.37) are selected uniformly over the interval [0,2] with a step
size of A, and the results for A = 0.01 and A = 0.1 are considered. Fig. 2.1
illustrates the optimal probability distributions obtained from the PSO and the

convex optimization algorithms.®

It is calculated that the conventional algorithm, which uses a deterministic
signal value of 0.8, has an average error probability of 0.3293, whereas the PSO
and the convex optimization algorithms with A = 0.01 and A = 0.1 have average
error probabilities of 0.2909, 0.2911 and 0.2912, respectively. It is noted that the
PSO algorithm achieves the lowest error probability with three mass points and
the convex algorithms approximate the PSO solution with multiple mass points
around those of the PSO solution. In addition, the calculations indicate that the
optimal solutions achieve both the second and the fourth moment constraints in

accordance with Proposition 2.4-b.

SFor the probability distributions obtained from the convex optimization algorithms, the

signal values that have zero probability are not marked in the figures to clarify the illustrations.
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Figure 2.1: Probability mass functions (PMFs) of the PSO and the convex opti-
mization algorithms for the noise PDF in (2.19).

Next, the optimal signaling problem is studied in the presence of Gaussian
mixture. The Gaussian mixture noise can be used to model the effects of co-
channel interference, impulsive noise and multiuser interference in communica-
tions systems [5], [7]. In the simulations, the Gaussian mixture noise is specified
by pn(y) = S wthi(y — ), where ¢y(y) = e /@) /(v/27 7). In this case,
G(z) can be obtained from (2.9) as G(z) = Zle v Q <%lyl> In all the scenar-
ios, the variance parameter for each mass point of the Gaussian mixture is set to
o? (i.e., 0} = 0% V), and the average power constraint A is set to 1. Note that
the average power of the noise can be calculated as E{N?} = o + 3.1 v y?.
First, we consider a symmetric Gaussian mixture noise which has its mass points
at £[0.3 0.455 1.011] with corresponding weights [0.1 0.317 0.083] in order to
illustrate the improvements that can be obtained via stochastic signaling. In
Fig. 2.2, the average error probabilities of various algorithms are plotted against
A/o? when k = 1.1 for both the sign detector and the ML detector. For the

sign detector, the decision rule at the receiver is specified by I'y = (—o0, 0] and
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[’y = [0,00). In this case, it is observed from Fig. 2.2 that the conventional algo-
rithm, which uses a constant signal value of 1, has a large error floor compared
to the PSO and convex optimization algorithms at high A/o?. Also, the average
probability of error of the conventional signaling increases as A/c? increases after
a certain value. This seemingly counterintuitive result is observed because the
average probability of error is related to the area under the two shifted noise
PDFs as in (2.5). Since the noise has a multi-modal PDF, that area is a non-
monotonic function of A/c? and can increase in some cases as A/o? increases. It
is also observed that the convex optimization algorithm performs very closely to
the PSO algorithm for densely spaced possible signal values, i.e., for A = 0.01.
For the ML detector, the receiver compares py(y — v/A) and py(y + Vv A), and
decides symbol 0 if the latter is larger, and decides 1 otherwise. It is observed
for small o2 values that the ML receiver performs significantly better than the
other receivers that are based on the sign detector. However, stochastic signaling
causes the sign detector to perform better than the conventional ML receiver,
which uses deterministic signaling, for medium A/c? values. For example, the
PSO and convex optimization algorithms for A = 0.01 have better performance
than the ML receiver for A/o? values from 20 dB to 40 dB. This is mainly due to
the fact that the conventional ML detector uses deterministic signaling whereas
the others employ stochastic signaling. However, when the stochastic signaling
is applied to the ML detector as well, it achieves the lowest probabilities of error

for all A/o? values as observed in Fig. 2.2 (labeled as “ML (Stochastic)”).

Another observation from Fig. 2.2 is that improvements over the conventional
algorithm disappear as o increases (i.e., for small A/c? values). This result can
be explained from Propositions 2.1 and 2.2, based on the plots of G(x) at various
A/o? values. For example, Fig. 2.3 illustrates the plots of G(z) at A/a? of 0, 20
and 40dB for the sign detector. The function is decreasing and convex for 0 dB
for the positive signal values, which are practically the domain of optimization

since G(r) is a decreasing function and the constraint functions z? and z* are even
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Figure 2.2: Error probability versus A/o? for k = 1.1. A symmetric Gaussian
mixture noise, which has its mass points at +[0.3 0.455 1.011] with corresponding
weights [0.1 0.317 0.083], is considered.
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Figure 2.3: G(x) in (2.9) for the sign detector in Fig. 2.2 at A/o? values of 0, 20

and 40 dB.
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functions.”

Therefore, Proposition 2.1 implies that the conventional algorithm
that uses a constant signal value of 1 is optimal in this case, as observed in
Fig. 2.2. On the other hand, at 20 dB and 40 dB, the calculations show that
the condition in Proposition 2.2 is satisfied; hence, the conventional algorithm
cannot be optimal in that case, and improvements are observed in Fig. 2.2 at
A/o? =20 dB and A/o? = 40 dB. Another result obtained from the numerical
studies for Fig. 2.2 is that all the solutions achieve at least one of the second

moment or the fourth moment constraints with equality as a result of Proposition

24.

For the scenario in Fig. 2.2, the probability distributions of the optimal sig-
nals for the sign detector are shown in Fig. 2.4 and Fig. 2.5 for A/o? = 20 dB and
A/a? = 40 dB, respectively, where both the PSO and the convex optimization
algorithms are considered. In the first case, the convex optimization algorithm
with A = 0.1 approximates the probability mass function (PMF) obtained from
the PSO algorithm with two mass points (with nonzero probabilities), whereas
the convex optimization algorithm with A = 0.01 results in 8 mass points. In
the second case, the convex optimization algorithms with A = 0.1 and A = 0.01
result in PMFs with two and three mass points, respectively, as shown in Fig.
2.5. Since the convex optimization algorithm with A = 0.1 does not provide a
PMF that is very close to those of the other algorithms in this case, the result-
ing error probability becomes significantly higher for that algorithm, as observed

from Fig. 2.2 at A/o* = 40 dB.

Finally, a symmetric Gaussian mixture noise which has its mass points at
+[0.19 0.39 0.83 1.03] each with a weight of 1/8 is considered. Such a noise PDF
can be considered to model the effects of co-channel interference [7], or a system

that operates under the effect of multiuser interference [5]. For example, in the

"In other words, negative signal values are never selected for symbol 1 since selecting the
absolute value of a negative signal value always gives a smaller average probability of error

without changing the signal moments.
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Figure 2.4: PMFs of the PSO and the convex optimization algorithms for the
sign detector in Fig. 2.2 at A/0* = 20 dB.
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Figure 2.5: PMFs of the PSO and the convex optimization algorithms for the
sign detector in Fig. 2.2 at A/o? = 40 dB.
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Figure 2.6: Error probability versus A/c? for k = 1.5. A symmetric Gaussian
mixture noise, which has its mass points at £[0.19 0.39 0.83 1.03], each with
equal weight, is considered.

presence of multiple users, the noise can be modeled as N = Zf:z Ajbr+n, where
by € {—1,1} with equal probabilities and 7 is a zero-mean Gaussian thermal
noise component with variance o2. Then, for K = 4, Ay, = 0.1, A3 = 0.61
and Ay = 0.32, the noise becomes Gaussian mixture noise with 8 mass points
as specified at the beginning of the paragraph. In Fig. 2.6, the average error

probabilities of various algorithms are plotted against the A/o? for k = 1.5 .

Also the plots of G(z) at A/o? = 0,25,40 dB are presented in Fig. 2.7, and
the probability distributions at A/c? = 25 dB and A/0? = 40 dB are illustrated
in Fig. 2.8 and Fig. 2.9, respectively, for the sign detector. Although similar
observations as in the previous scenario can be made, a number of differences are
also noticed. The improvements achieved via the stochastic signaling over the
conventional (deterministic) signaling are less than those observed in Fig. 2.2.
In addition, since k = 1.5 in this scenario, only the second moment constraint is

achieved with equality in all the solutions.
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Figure 2.7: G(x) in (2.9) for the sign detector in Fig. 2.6 at A/c? values of 0, 25
and 40 dB.
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Figure 2.8: PMFs of the PSO and the convex optimization algorithms for the
sign detector in Fig. 2.6 at A/o? = 25 dB.
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Figure 2.9: PMFs of the PSO and the convex optimization algorithms for the
sign detector in Fig. 2.6 at A/0* = 40 dB.

In order to investigate the optimal stochastic signaling for the ML detectors
studied in Fig. 2.2 and Fig. 2.6, Table 2.1 presents the PDFs of the optimal
stochastic signals in those scenarios, where the optimal PDFs are expressed in
the form of pg(z) = A\ §(x —x1) + Mg 0(x — x9) + A3 0(z — x3). It is observed from
the table that the conventional deterministic signaling is optimal at low A/c?
values, which can also be verified from Fig. 2.2 and Fig. 2.6 since there is no im-
provement via the stochastic signaling over the conventional one for those A/c?
values. However, as A/o? increases, the optimal signaling is achieved via ran-
domization between two signal values. In those cases, significant improvements
over the conventional signaling can be achieved as observed from Fig. 2.2 and
Fig. 2.6. Finally, it is noted from the table that the optimal solutions result in
randomization between at most two different signal levels in this example. This
is in compliance with Proposition 2.3 since the proposition does not guarantee

the existence of three different signal levels in general but states that an optimal
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Table 2.1: Optimal stochastic signals for the ML detectors in Fig. 2.2 (top block)
and Fig. 2.6 (bottom block).

A/o?* (dB) A\ Ao A3 T To T3
10 1 0 0] 1 | N/A [N/A
15 | 0 |o| 1 | N/A|N/A
20 0.1181 | 0.8819 | 0 | 1.4211 | 0.9151 N/A
25 0.1264 | 0.8736 | 0 | 1.4494 | 0.8876 | N/A

27.5 0.1317 | 0.8683 | 0 | 1.4465 | 0.8811 | N/A
10 1 0 0] 1 | N/A [N/A
15 1 0 o] 1 | NJA |[N/A
20 0.1272 | 0.8728 | 0 | 0.5073 | 1.0527 | N/A
25 0.9791 | 0.0209 | 0 | 0.9950 | 1.2116 | N/A
30 0.9415 | 0.0585 | 0 | 0.9859 | 1.2047 | N/A
35 0.9236 | 0.0764 | 0 | 0.9823 | 1.1936 | N/A

signal can be represented by a randomization of at most three different signal

levels.

2.1.4 Extensions to M-ary Pulse Amplitude Modulation
(PAM)

The results in the study can be extended to M-ary PAM communications systems
for M > 2 as well. To that aim, consider a generic detector which chooses the
1th symbol if the observation is in decision region I'; for ¢ = 0,1,..., M — 1. In

other words, the decision rule is defined as
oy) =i, ifyely, i=01,... . M—1. (2.40)

Then, the average probability of error for an M-ary system can be expressed as

M-1

Pavg = Y i (1= Pi(T%)) (2.41)

1=0

where 7; denotes the prior probability of the ith symbol.

If signals Sg, S1,...,Sy_1 are modeled as stochastic signals with PDFs

DSes PSys - - - s DSyy_qs Tespectively, the average probability of error in (2.41) can
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be expressed, similarly to (2.6), as

M-1

Pz =S m (1= [ pato | iy wat) . @

1=0 -

Then, the optimal stochastic signaling problem can be stated as

M—1 o)
min Z e (1 — / Ds; (t)/ py(y —t)dy dt)
Psys-ees PSpr_q i=0 —00 r;

subject to E{|S;|*} <A, E{|S|*} <kA*, i=0,1,...,M—1. (243)

Due to the structure of the objective function in (2.43) and the individual con-

straints on each signal, M separate optimization problems, similar to (2.8), can

be obtained. Namely, for i =0,1,..., M — 1,

min 1—/ psi(t)/ pn(y —t)dydt
F.

ps; —o0 i

subject to E{|S;|*} < A, E{|S]|*} < rA?. (2.44)

In addition, if auxiliary functions G;(z) are defined as G;(z) = 1— [ pn(y—z)dy

fori =0,1,..., M — 1, the optimization problem in (2.44) can be expressed as

min E{G;(5;)}

ps;

subject to E{|S;|*} < A, E{|S]|'} < rA? (2.45)

fori=0,1,...,M — 1. Since (2.45) is in the same form as (2.10), the results in

Section 2.1.2 can be extended to M-ary PAM systems, as well.

2.1.5 Concluding Remarks and Extensions

In this section, the stochastic signaling problem under second and fourth mo-
ment constraints has been studied for binary communications systems. It has
been shown that, under certain monotonicity and convexity conditions, the con-
ventional signaling, which employs deterministic signals at the average power
limit, is optimal. On the other hand, in some cases, a smaller average probabil-

ity of error can achieved by using a signal that is obtained by a randomization of

37



multiple signal values. In addition, it has been shown that an optimal signal can
be represented by a discrete random variable with at most three mass points,
which simplifies the optimization problem for the optimal signal design consider-
ably. Furthermore, it has been observed that the optimal signals achieve at least
one of the second and fourth moment constraints in most practical scenarios.
Finally, two techniques based on PSO and convex relaxation have been proposed

to obtain the optimal signals, and simulation results have been presented.

In addition, the results in this section can be extended to a generic binary
hypothesis-testing problem in the Bayesian framework [2], [15].% In that case, the
average probability of error expression in (2.3) is generalized to the Bayes risk,
defined as mo[CooPo(I'o) + C10Po(I'1)] +m1[Co1P1 (o) + C11P1(I'1)], where C;; > 0
represents the cost of deciding the ith hypothesis when the jth one is true. Then,
all the results in this section are still valid when function G in (2.9) is replaced
by G(z) = Cypy fFo pn(y—2)dy+Chu [, pn(y —2)dy . Moreover, it can be shown
that the results in this section are valid in the minimazr and Neyman-Pearson
frameworks [2] due to the decoupling of the optimization problem discussed in

Section 2.1.2.

8Hence, the results in this study can be applied to other systems than communications, as

well.
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2.2 Stochastic Signaling Under an Average

Power Constraint

2.2.1 System Model and Motivation

Consider a scalar binary communications system, as in [6] and [8], in which the

received signal is given by
Y=5+N, i€ {0,1}, (2.46)

where Sy and S denote the transmitted signal values for symbol 0 and symbol
1, respectively, and N is the noise component that is independent of S;. In
addition, the prior probabilities of the symbols, which are denoted by 7y and m,

are supposed to be known [38].

Note that the probability distribution of the noise component in (2.46) is not
necessarily Gaussian. Due to interference, such as multiple-access interference,
the noise component can have a probability distribution that is different from

the Gaussian distribution [7], [6].

A generic decision rule is considered at the receiver to estimate the symbol
in (2.46). Specifically, for a given observation Y = y, the decision rule ¢(y) is

expressed as

0 y Y E F0
o(y) = ) (2.47)
1 RS Fl
where 'y and I'y are the decision regions for symbol 0 and symbol 1, respectively

2].

In this study, the aim is to design signals Sy and S; in (2.46) in order to

minimize the average probability of error for a given decision rule, which is given
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Pavg = moPo(I'1) + mP1(I) (2.48)

where P;(I';) is the probability of selecting symbol j when symbol 7 is transmit-
ted. In practical systems, the signal are commonly subject to an average power

constraint, which can be expressed as
moB{|So|*} + mE{|S1]*} < A4, (2.49)

where A is the average power limit. Therefore, the problem is to calculate the
optimal probability density functions (PDFs) for signals Sy and S; that minimize
the average probability of error in (2.48) under the average power constraint in

(2.49).

The main motivation for the optimal stochastic signaling problem is to en-
hance the error performance of a communications system by considering the
signals at the transmitter as random variables and obtaining the optimal prob-

ability distributions for those signals [6],[11], [38].

In the conventional signal design, Sy and S are considered as deterministic
signals and they are designed in such a way that the Euclidean distance between
them is maximized under the constraint in (2.49). In fact, when the effective noise
has a zero-mean Gaussian PDF and the receiver employs the MAP decision rule,
the probability of error is minimized when the FEuclidean distance between the
signals is maximized for a given average power constraint [2]. To that aim, Sy

and S; can conventionally be set to
So = —VA/a and S; =aVA, (2.50)

where o 2 /7y /m by considering the average power constraint in (2.49) (see [3]

for the derivation). Then, the average probability of error in (2.48) becomes

P‘;S,Igw = WO/F PN (y + \/Z/oz> dy
+ 7T1/ PN (y — oz\/Z) dy , (2.51)
To
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where py(-) is the PDF of the noise in (2.46). Although the conventional signal
design is optimal for certain classes of noise PDFs and decision rules, in some
cases, the use of stochastic signals instead of deterministic ones can improve the

system performance, as studied in the next section.

2.2.2 Optimal Stochastic Signaling

Instead of using constant levels for Sy and 57 as in the conventional case, one can
consider a more generic scenario in which the signals can be stochastic. Then,
the aim is to calculate the optimal PDFs for Sy and S in (2.46) that minimize

the average probability of error under the constraint in (2.49).

Let ps,(+) and pg, () denote the PDFs for Sy and Sy, respectively. Then, from

(2.48), the average probability of error for the decision rule in (2.47) is given by

1 o
Pioc =Y "m / ps,(t) /F pn(y —t)dydt . (2.52)
i=0 —0o0 1—1

Therefore, the optimal stochastic signal design problem can be expressed as

: stoc
min P
pSO 7p51

subject to mE{|So*} + mE{|S1*} < A . (2.53)

After some manipulation, the objective function in (2.52) can be expressed

as
Pster = m, / pe, (2)(1 — G())dz + m / ps, ()G (@) da (2.54)
where G(z) is defined as
Gz) 2 / pa(y — ) dy . (2.55)
o

Then the expression in (2.54) can be written in terms of the expectation of G(S;)

over S; and that of G(Sy) over Sy as

Psoe — o~ moB{G(So)} + (1 — mo)E{G(S1)} . (2.56)

avg
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Signals Sy and S; can be expressed as the elements of a vector random variable
S as S £ [Sp S1]. Then the final form of optimization problem in (2.53) can be

formulated as

min E{F(S)} subject to E{H(S)} < A, (2.57)

ps
where the expectations are taken over S, pg(:) denotes the joint PDF of S; and

St
F(S) 2 (1 —m) G(S1) — m G(Sy) + 7o , (2.58)

and
H(S) £ (1 —70)|S1|* + mo|Sol? . (2.59)

Note that there are also implicit constraints in the optimization problem in (2.57),

since ps(s) is a joint PDF.

2.2.2.1 On the Optimality of Conventional Signaling

In some cases, the conventional signaling is the optimal approach; that is, setting
ps(s) = 6(s — S4), where Sy = [-VA/a av/A] with a = /7y /71, can solve the
optimization problem in (2.57). In this section, we derive sufficient conditions

that guarantee the optimality of the conventional signaling scheme.

Proposition 2.5: Assume that G(x) in (2.55) is twice continuously differ-
entiable. Then, ps(s) = 0(s — S4) is a solution of the optimization problem in

(2.57), if the following three conditions are satisfied:

e G(x) is a strictly decreasing function.
e £G'(x)>0,Ve #0, and G"(0) = 0.
e [or every (xo,x1) that satisfies

m[G(aVA) — G(x1)] > mo[G(—VA/a)) — G(x0)], (2.60)
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To i + m i > A is satisfied as well.

Proof: In this proof, it is shown by contradiction that, when the conditions
in the proposition are satisfied, there exist no signal PDFs that can result in a
lower probability of error than the conventional signal S, under the given average
power constraint. To that aim, it is first assumed that there exists a PDF pg(s)
for signal S = [Sy S| such that E{F(S)} < F(Sa) and E{H(S)} < A. In
other words, suppose that there exists a signal S, with PDF pg(s), which is
better than the conventional signaling (see (2.57)). In addition, it is assumed
without loss of generality that Sy is a nonpositive and S is a nonnegative random
variable. [This assumption does not reduce the generality of the proof as G(z)
is a strictly decreasing function; hence, F(S) in (2.58) is a strictly increasing
(decreasing) function of Sy (S7). Since the average power depends only on the
absolute value of the signals, choosing nonpositive Sy and nonnegative S, always
achieves the minimum average probability of error. In other words, for each
positive (negative) value of Sy (S), its negative (positive) can be used instead,
which results in smaller average probability of error and the same average power

value.]

Under the assumptions above, if it is shown that there can exist no PDF pg(s)
for the signal S = [Sy S;], with Sy being nonpositive and S} being nonnegative,
that satisfies the three conditions in the proposition and E{F(S)} < F(Sa)
under the average power constraint, it means that there can exist no signal
PDF ps(s) (for any signs of Sy and S;) that has lower probability of error than
the conventional signal under the average power constraint. For that purpose,
it is shown in the following that F(x) in (2.58) is a convex function. Since

F(x) = (1 —m) G(x1) — mo G(xg) + 7o, its Hessian matrix can be obtained as

62F 82F 7

S —mo G (x 0

R I (o) ) . (2.61)
(9:?1 gxo gz? 0 1 G (xl)
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Since Sy is a nonpositive random variable, xy can take only nonpositive values
and similarly since S; is a nonnegative random variable, x; can take only nonneg-
ative values. Therefore, under the second condition in the proposition, namely,
rG'(x) > 0, Vo # 0, and G"(0) = 0, the Hessian matrix is always positive

semidefinite; hence, F'(x) is a convex function.

Since F(S) is a convex function, Jensen’s inequality implies that E{F(S)} >
FE{S}) = F(E{S} E{Si}]). Then, E{F(S)} < F(Sa) requires that
F([E{So} E{S1}]) < F(Sa), which can be expressed from (2.58) as

m G(E{S1}) — mo G(E{So}) < m1 G(aVA) — 1 G(—VA/a) . (2.62)

In addition, Jensen’s inequality also implies that E{|So|*} > (E{S;})? and
E{|S1]?} > (E{Si})%. Therefore, mE{|So|*} + mE{[S1|?} > mo(E{So})* +
71 (E{S:1})? is obtained. At this point, defining xo = E{Sy} and x; = E{S,}, and
plugging them into (2.62) yields 7, [G(avA)—G(z1)] > 7o [G(—VA/a) =G (x0)],
which is the first inequality in the third condition of the proposition. Accord-
ing to the third condition, whenever this inequality is satisfied for any (xg, 1),
oz + m xt > A, equivalently, moE{|So|*} + mE{|S1|*} > A, is also satisfied.
Therefore, E{H(S)} > A always holds, which indicates that the average power
constraint in (2.57) is violated. Hence, it is concluded that when the conditions

in Proposition 2.5 are satisfied, no PDF can achieve E{F(S)} < F(Sa) under

the average power constraint. [

As an example application of Proposition 2.5, consider a zero mean and unit
variance Gaussian noise NN in (2.46) with py(z) = exp{—22/2}/v/27, and assume
equal priors (my = m = 0.5). Also, the average power constraint A in (2.57) is
taken to be 1. In this case, the conventional signaling becomes the antipodal
signaling with Sy = —1 and S; = 1, and a decision rule of the form I'y =
(—00,0] and I'y = [0, 00); that is, the sign detector, is the optimal MAP decision
rule. Then, G(x) in (2.55) can be calculated as G(z) = Q(x), where Q(x) =
(f= e "/2dt) //27 defines the Q-function. Since Q(x) is a monotone decreasing
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Set defined by (2.60)
~ — 05X2+0.5%=1

-3 T I I I I
-3 -2 -1 0 1 2 3

Figure 2.10: The region in which the inequality Q(z1) — Q(z0) < Q(1) — Q(—1)
is satisfied is outside of the circle 0.523 + 0.523 = 1.

function and x@Q”(z) > 0, Vo # 0 with Q"(0) = 0, the first two conditions
in Proposition 2.5 are satisfied. For the third condition, we need to check the
region in which Q(z1) — Q(z9) < Q(1) — Q(—1) = —0.6827. Then, as Q(z) is
a decreasing function, if one can find (a,b) such that Q(a) = Q(b) — 0.6827,
then for every ¥y > a and 2y = b, Q(x1) — Q(zg) < —0.6827 and 0.5z2 +
0.5z7 > 0.5a* + 0.50?. Also, since the Q-function takes values only between 0
and 1, b < —0.475 should hold. A simple search on this region reveals that
0.5a% + 0.5b* > 1, where the equality holds only at (a,b) = (1,w — 1). This fact
can be observed from Fig. 2.10 as well. The geometrical interpretation of the
third condition in Proposition 2.5 is that the set of all (zg, x1) pairs that satisfy
m[G(aVA) — G(x1)] > mo[G(—VA/a)) — G(x0)] should be completely outside of

the elliptical region whose boundary is mg 23 + m 73 = A.
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In Fig. 2.10, this is shown for this example and it is observed that every point
that satisfies the inequality Q(z1) — Q(zo) < Q(1) — Q(—1), is located outside of
the circle 0.5 22 + 0.5 2% = 1. Thus, the third condition in Proposition 2.5 holds
as well. Therefore, it is guaranteed that the conventional signaling is optimal in

this scenario.

2.2.2.2 Sufficient Conditions for Improvability

In this section, we obtain sufficient conditions under which the performance of

the conventional signaling approach can be improved via stochastic signaling.

Proposition 2.6: Assume that G(x) in (2.55) is twice continuously differ-
entiable. Then, ps(s) = 0(s —S4) is not an optimal solution of (2.57) if

"(av/A) < G'(av/A)

G (« “ovi (2.63)

or, alternatively,

G (—VA/a)

G'(—VA/a) > dja

(2.64)

Proof: In order to prove the suboptimality of the conventional solution
ps(s) = d(s — Sa), it is shown that, under the conditions in the proposition,

there exist A € (0,1), Ay, Ay, Az, and A4 such that?
pSQ(S) = )\5(S — (SA + 61)) + (1 — >\) (5<S — (SA + 62)) s (265)

where €; = [A; As] and €3 = [A3 Ay, yields a lower probability of error than than
ps(s) and satisfies the constraint in (2.57). Specifically, proving the existence of

A€ (0,1), Ay, Ag, Ag, and Ay that satisfy

AF(Sa+€)+ (1 —\) F(Sa +€) < F(Sy) (2.66)

9Tt is assumed that Aj, Ay, Az, and A4 are not all zeros, since that would result in the

conventional signaling.
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and

T [M(—VA/a+ A1) + (1= A) (—VA/a+ D) +
T A (@VA+ A2+ (1= (aVA+ A7) = A (2.67)

is sufficient to prove that the conventional signaling is not optimal. From (2.67),

the following equation is obtained:

[0 (AAZ + (1 — NA2) + 1 (AA2 + (1 - N)A2)] VA

AL (1 )\)Ag)
« (0

= —2|m (M + (1 — N)A) — 7 ( (2.68)

Since the left-hand-side of the equality in (2.68) is always positive, the term on
the right-hand-side should also be positive, which leads to the following inequality

since a = /7 / 7 :

Ay + (1= M)Ay < A+ (1= AN)A; (2.69)

In addition, from (2.58) and (2.66), the following inequality is obtained:

A G(aVA + Ay) + (1 — N1y GlavVA + Ay) — Amg G(—VA/a + Ay)

— (1= Nm G(—VA)a+ A3) < m G(aVA) — 1 G(—VA/a) . (2.70)

For infinitesimally small Ay, Ay, Az and Ay, the first three terms of the Tay-
lor series expansion for G(av/A + Ay), G(avVA + Ay), G(—VA/a + A}) and
G(—vAJa + As) can be used to approximate (2.70) as

G (VA I Ag 4 (1 = NmAg] + G (—VA/a)[=AmoA; — (1 — N)mAs]

+ —G” (Q{2\/Z) [)\7T1A22 + (1 - )\)71'1A42] + —GH (_;/Z/Oé) [—/\70A12 - (1 - /\)7T0A32] <0.

(2.71)

For A; = Az =0, (2.69) becomes AAy + (1 — A\)Ay < 0 and (2.68) becomes
T (AAZ + (1= N)A?T) = =2/ Ammo (Mg + (1 — XN)Ay). Then, (2.71) simplifies to

el (a\/Z) A1 A + (1 — A)m Ay + G" (a\/Z)[—\/ Amomi (A + (1 — N)Ay)] < 0.
(2.72)

47



Since Mg+ (1—\)A, < 0, (2.72) implies that G (av/A)m, — G (a/A)/ Amgmy >
0, which is equivalent to G'(av/A) — G” (av/A)(a/A) > 0; that is, the first

condition in the proposition.

Similarly, for Ay = Ay = 0, (2.69) becomes AA; + (1 — A\)A3z > 0 and (2.68)
becomes m(AA? + (1 — A)A2) = 2¢/Ammo (AMA; + (1 — A)A3). Then, (2.71) can

be rewritten as follows:

G (—VA/a)[-AmoA; — (1 — N)moAs]
+ G (=VA)a)[=/Arem (AAL + (1 — N)A3)] < 0. (2.73)

Since AMA1+(1-M\)As > 0, (2.73) becomes G (—vVA/a)mo+G" (—V A/ o)/ Amgm, >
0, which is equivalent to G'(=vA/a) + G"(=vA/a)(v/A/a) > 0. Hence, the

second condition in the proposition is obtained.

This proof indicates that that ps,(s) in (2.65) can result in a lower probability
of error than the conventional signaling for infinitesimally small Ay and A4 values
along with A; = A3 = 0, or, for infinitesimally small A; and Ajz values along

with Ay = Ay = 0, which satisfy (2.68). O

Proposition 2.6 provides simple sufficient conditions to determine if stochastic
signaling can improve the probability of error performance of a given detector.
A practical example is presented in Section 2.2.3 on the use of the results in the

proposition.

2.2.2.3 Statistical Characteristics of Optimal Signals

The optimization problem in (2.57) may be difficult to solve in general since the
optimization needs to be performed over a space of PDFs. However, by using
the following result, that optimization problem can be formulated over a set of

variables instead of functions, hence can be simplified to a great extent.
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Lemma 2.1: Assume that G(x) in (2.55) is a continuous function and pos-
sible signal values for Sy and Sy reside in [—v,~] for some finite v > 0. Then,

the solution of the optimization problem in (2.57) is in the form of
ps(s) =Ad(s —s1) + (1 —N) (s —s2) , (2.74)
where X € [0,1] and s; is two-dimensional vector for i =1,2.

Proof: Optimization problems in the form of (2.57) have been investigated
in various studies in the literature [11], [12], [18], [25]. Under the conditions in
the lemma, the optimal solution of (2.57) can be represented by a randomization
of at most two signal levels as a result of Carathéodory’s theorem [28], [39].

Hence, the optimal signal PDF can be expressed as in (2.74). O

Lemma 2.1 states that the optimal signal PDF that solves the optimization
problem in (2.57) can be represented by a discrete probability distribution with
at most two mass points. Therefore, the optimization problem in (2.57) can be

simplified as follows:

min AF(s;) + (1 — A)F(sy)

)"51752

subject to AH(s1) + (1 — A\)H(sg) < A. (2.75)

In other words, instead of optimization over functions, an optimization over a
five-dimensional space (two two-dimensional mass points, s; and s,, plus the
weight, A) can be considered for the optimal signaling problem as a result of

Lemma 2.1.

Although (2.75) is significantly simpler than (2.57), it can still be a nonconvex
optimization problem in general. Therefore, global optimization techniques such
as particle-swarm optimization (PSO) [13], [31], [32], genetic algorithms and
differential evolution [29], can be used to obtain the optimal solution [18], [19].
In the next section, the PSO algorithm is used to calculate the optimal stochastic

signals in the numerical examples. For the details of the PSO algorithm, please
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refer to [13] and for the PSO parameters used in PSO approach on this section,

please refer to [40].

2.2.3 Numerical Results

In this section, a numerical example is presented to show the improvements over
conventional signaling via optimal stochastic signaling. For this example, a bi-
nary communications system with priors mp = 0.2 and m; = 0.8 is considered [3].
Hence a = \/W is equal to 0.5 in this case. Also, the average power constraint
Ais set to 1. It is assumed that the receiver employs a simple threshold detector
such that I’y = (—oo, 7) and 'y = (7, 00), where 7 = (202 In(0.25) — 3.75) /5. In
fact, this is the optimal MAP decision rule for given the prior probabilities and
the average power constraint, when the conventional signaling is performed and

the noise is zero-mean Gaussian noise with variance o2.

In this example, the effective noise in (2.46) is modeled by Gaussian mixture

noise [7], whose PDF can be expressed as

L
1 (y—pp)?
= E vie | 202 . 2.76
pN(:U) \/%0 - l ( )

By using this noise model, and the receiver structure specified above, G(x) in

(2.55) can be obtained as

L
—T+r+p
Gla) = vy (2.77)
I=1
In the numerical example, v = [0.035 0.465 0.465 0.035] and p = [—1.251 —

0.7 0.7 1.251] are used. Gaussian mixture noise is encountered in practical sys-
tems in the presence of interference [7]. Note that the variance of each component
of the Gaussian mixture noise is set to o2 and the average power of the noise can

be calculated as E{N?} = 02 + 0.5653 for the given values.

In this example, three different signaling schemes are considered:
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Conventional Signaling: In this case, the transmitter selects the signals as
So = —\/Z/oz =-2and S, = VAo = 0.5, which are known to be optimal if the

noise is zero-mean Gaussian and the receiver structure is as specified above [2].

Stochastic Signaling: In this case, the solution of the most generic opti-
mization problem in (2.53) is obtained. Since that problem can be reduced to
the optimization problem in (2.75), the optimal stochastic signals are calculated

via PSO based on the formulation (2.75) in this scenario.

Deterministic Signaling: In this case, it is assumed that the signals are
deterministic, and the optimization problem in (2.57) is solved under that as-
sumption. That is, the optimal signal PDF is given by ps(s) = d(s — s*), where

s* is the solution of the following optimization problem:

min F(s)

s

subject to H(s) < A . (2.78)

In other words, this solution provides a simplified version of the optimal solution
in (2.57). Indeed, there are two optimization variables (two signal levels, Sy
and S7) in this case, instead of the five optimization variables in the stochastic

signaling case (see (2.75)).

In Fig. 2.11, the average probabilities of error are plotted versus A/a? for the
three signaling schemes. In order to calculate both the stochastic signaling and
the deterministic signaling solutions, the PSO approach is used. From Fig. 2.11,
it is observed that for low values of o, the conventional signaling performs worse
than the others, and the stochastic signaling achieves the lowest probabilities of
error. Specifically, after A/o? exceeds 30 dB, significant improvements can be ob-
tained via stochastic signaling over the conventional and deterministic signaling
approaches. Indeed, improvements are expected based on Proposition 2.6 as well.
For example, at 30 dB, G"(—2) = 0.6514 and G'(—2) = —0.441, and at 40 dB,
G"(—2) = 13.84 and G'(—2) = —1.389, which results in G"(-2) > —G'(-2)/2
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————— Deterministic |
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Average Probability of Error

Figure 2.11: Average probability of error versus A/o? for conventional, optimal
deterministic, and optimal stochastic signaling.

for both of the cases. Therefore, the second sufficient condition in Proposition 2.6
(i.e., the inequality in (2.64)) is satisfied and improvements over the conventional

solution are guaranteed in those scenarios.

Moreover, it should be noted that the average probability of error does not
monotonically decrease for the conventional and deterministic solutions as A/c?
increases. This is because of the fact that average probability of error is related
to the area under the two shifted noise PDFs as in (2.51). Since the noise PDF
has a multimodal PDF in this example, and the amount of shifts that can be
imposed on the noise PDF's is restricted by the average power constraint, that

area may increase or remain same as A/o? increases in some cases.

In order to provide further explanations of the results, Table 2.2 and 2.3
present the solutions of the stochastic and deterministic signaling schemes for

some A/o? values. In Table 2.2, the optimal s; and s, in (2.75) are expressed as
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Table 2.2: Optimal stochastic signaling.

A/o*(dB) A S11 S12 s21 $22
0 1 -18221 06480 N/A N/A
15 1 -1.8424 06336 N/A  N/A
30 0.3149 -1.5467 0.5782 -2.0607 0.5782
45 0.0733 -1.4702 0.5185 -2.0159 0.5185

Table 2.3: Optimal deterministic signaling.

AJo?(dB) | So S
0 -1.8221  0.6480
15 -1.8424 0.6336
30 -1.6911 0.7314
45 -1.6249 0.7306

s1 = [811 S12] and sy = [sy; Sgo] for each A/0? value. For small A/a? values, such
as 0 dB and 15 dB, the deterministic solutions are the same as the stochastic
ones. In fact, the performance of the deterministic and the stochastic signaling
is same for A/o? values less than 20 dB, as can be observed from Fig. 2.11. Also,
their performance is very close to the performance of conventional signaling at
high o values. For example, at 0 dB, the average probability of error for the

conventional signaling is 0.120, and it is 0.117 for the other schemes.

Furthermore, it can be observed from Table 2.2 that as A/o? increases, the
randomization between two signal vectors becomes more effective and this helps
reduce the average probability of error as compared with the other signaling
schemes. For example, at A/0? = 45 dB, the average probability of error for the
stochastic signaling is 5.66 x 10~%, whereas it is 0.007 and 0.02 for the determin-

istic signaling and the conventional signaling schemes, respectively.
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2.2.4 Concluding Remarks

The optimal stochastic signaling problem has been studied under an average
power constraint. It has been shown that, under certain conditions, the conven-
tional signaling approach, which maximizes the Euclidean distance between the
signals, is the optimal signaling strategy. Also, sufficient conditions have been
obtained to specify when randomization between different signal values may re-
sult in improved performance in terms of the average probability of error. In
addition, the discrete structure of the optimal stochastic signals has been speci-
fied, and a global optimization technique, called PSO, has been used to solve the
generic stochastic signaling problem under the average power constraint. Finally,
numerical examples have been presented to illustrate some applications of the

theoretical results.
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Chapter 3

OPTIMAL SIGNALING AND
DETECTOR DESIGN FOR
POWER CONSTRAINED
COMMUNICATION SYSTEMS

In this chapter, joint optimization of signal structures and detectors is studied for
binary communications systems under average power constraints in the presence
of additive non-Gaussian noise. First, it is observed that the optimal signal
for each symbol can be characterized by a discrete random variable with at
most two mass points. Then, optimization over all possible two mass point
signals and corresponding maximum a posteriori probability (MAP) decision
rules are considered. It is shown that the optimization problem can be simplified
into an optimization over a number of signal parameters instead of functions,
which can be solved via global optimization techniques, such as particle swarm
optimization. Finally, the improvements that can be obtained via the joint design

of the signaling and the detector are illustrated via an example.
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3.1 Optimal Signaling and Detector Design

Consider a binary communications system, in which the receiver obtains K-

dimensional observations over an additive noise channel [41]:
y=s;+n, ie€{0,1}, (3.1)

where y is the noisy observation, sy and s; represent the transmitted signal
values for symbol 0 and symbol 1, respectively, and n is the noise component
that is independent of s;. In addition, the prior probabilities of the symbols,
represented by my and 7y, are assumed to be known. The signal model in (3.1)
can be considered for flat-fading channels assuming perfect channel estimation;

that is, the model in (3.1) can be obtained after appropriate equalization [41].

The receiver uses the observation in (3.1) in order to determine the informa-
tion symbol. A generic decision rule (detector) is considered for that purpose,
which estimates the transmitted symbol based on a given observation y as fol-

lows:

¢(y) = : (3.2)

where I'y, and I'y, are the decision regions for symbol 0 and symbol 1, respectively

2].

The average probability of error for a decision rule ¢ can be expressed as

Pe = 7T0P670 + 7T1Pe’1, where

P, — / pily) dy | (3.3)
Pory

for i = 0,1, represents the probability of error, with p;(y) denoting the con-
ditional probability density function (PDF) of the observation, when the ith

symbol is transmitted.
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Unlike the conventional case, a stochastic signaling framework is adopted in
this study [38], and sy and s; in (3.1) are modeled as random variables. Since the
signals and the noise are independent, the conditional PDFs of the observation
can be calculated as p;(y) = [px Ps,(X)Pn(y — x) dx for i = 0,1. Then, after

some manipulation, (3.3) can be expressed as

Pe,i =E {/F pn(y - Si) dY} £ E{f(gbasz)} ) (34)

where the expectation is taken over the PDF of s;.

In practical systems, there is a constraint on the average power of the signals,

which can be expressed as [2]
E{ls;)|*’} <A, for i=0,1, (3.5)

where A is the average power limit. Then, the optimal signaling and detector

design problem can be stated as

min 7T0P670 + 7TlP671
PsgiPsy>

subject to E{|s;[’} <A, i=0,1, (3.6)

where P, ; is as in (3.4).

The problem in (3.6) is difficult to solve in general since the optimization
needs to be performed over a space of PDFs and decision rules. In the following,
a simpler optimization problem over a set of variables (instead of functions) is
formulated in order to obtain optimal signal PDFs and the decision rule. To that

aim, the following result is obtained first.

Lemma 3.1: Assume f(¢;s;) in (3.4) is a continuous function of s;, and
each component of s; resides in [—~,v| for some finite v > 0. Then, for a given

(fized) decision rule ¢, the solution of the optimization problem in (3.6) is in the

form of

Psi(y) = Xid(y —su) + (1 = X)d(y —sia) (3.7)

57



for i =0,1, where \; € [0,1].

Proof: When the decision rule ¢ is given, f(¢;s;) = ffm,i Pn(y — si) dy in
(3.4) can be considered as a function of s; only. In other words, P.; in (3.4)
can be expressed as P.; = E{f(s;)} for i = 0,1. Since the objective function
in (3.6) is the sum of myP.o and m P, 1, and the average power constraints are
individually imposed on the signals, the optimization problem in (3.6) can be
decoupled into two separate optimization problems as follows:

min E{f(s;)} , subject to E{[s;|’} < A, (3.8)

Ps;
for i = 0,1. Optimization problems in the form of (3.8) have been investigated
in various studies in the literature [38], [11]. Under the conditions in the lemma,
the optimal solution of (3.8) can be represented by a randomization of at most
two signal levels as a result of Carathéodory’s theorem [39]. Hence, the optimal

signal PDF's can be expressed as in (3.7). O

Note that the assumption in the lemma about the continuity of f in (3.4)
is quite realistic for communications systems since the noise n in (3.1) has a
continuous PDF in practice, as it is commonly the sum of zero-mean Gaussian

thermal noise and interference terms that are independent of the thermal noise.

Lemma 3.1 states that, under certain conditions, the optimal stochastic sig-
naling involves randomization among at most four different signal levels (two for
symbol “0” and two for symbol “1”). Therefore, the problem in (3.6) can be
solved over the signal PDFs that are in the form of (3.7). Hence, the search
space for the optimization problem is reduced significantly. To achieve further

simplification, the following result is obtained.
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Proposition 3.1: Under the conditions in Lemma 3.1, the optimization prob-

lem in (3.6) can be expressed as follows:

min /K min{7mgo(y) , m6:1(y)} dy
R

{Aissinsiz} i,
subject to Ailsa P+ (1= N)[sp* < A

nNel01], i=0,1 (3.9)
where gi(y) = Aipn(y —si1) + (1 = Xi)pa(y — si2)-

Proof: For a given signal PDF pair pg, and pg,, the conditional probability
of observation y in (3.1) can be expressed as p;(y) = [px Ps,(X)pu(y — x)dx for
1 =0,1. When deciding between two symbols based on observation y, the MAP
decision rule, which selects symbol 1 if mpi(y) > mopo(y) and selects symbol 0
otherwise, minimizes the average probability of error [2]. Therefore, when signal
PDFs pg, and pg, are specified, it is not necessary to search over all the decision
rules; only the MAP decision rule should be determined and its corresponding

average probability of error should be considered.

From (3.3), the average probability of error for any decision rule ¢ can be

expressed as

P, = / mopo(y) dy + / mpi(y) dy . (3.10)
F¢1 F¢0

Since the MAP decision rule decides symbol 1 if mp;(y) > mopo(y) and decides
symbol 0 otherwise, the average probability of error expression in (3.10) can be

expressed for a MAP decision rule, as [6]
Pe= | min{mpo(y), mpi(y)} dy - (3.11)

R

Since Lemma 3.1 states that the optimal signal PDFs are in the form of
(3.7), the conditional PDFs p;(y) = [px Ps,(X)pu(y — X)dx can be obtained as
Pi(y) = Aibn(y —si1) + (1 — X\)pn(y — si2), and the average power constraints in
(3.6) become A;[s;1]? + (1 — \;)|si]? < A, for i = 0,1. Therefore, (3.11) implies
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that the optimization problem in (3.6) can be implemented as the constrained

minimization problem in the proposition. [

Comparison of the optimization problems in (3.6) and (3.9) reveals that the
latter is much simpler than the former since it is over a set of variables instead
of a set of functions. However, it is still a non-convex optimization problem
in general; hence, global optimization techniques, such as PSO [13], differential
evolution and genetic algorithms [29], should be employed to obtain the optimal
PDF'. In this chapter, the PSO approach is used in the next section to obtain

the solution of (3.9).

After obtaining the solution of the optimization problem in (3.9), the optimal
signals are specified as p2*(y) = A6 (y —s") + (1= AP )d(y —sia") for i = 0, 1,
and the optimal detector is the MAP decision rule that decides symbol 1 if

mp1(y) > mopo(y) and decides symbol 0 otherwise.

Finally, it should be noted for symmetric signaling, that is, when sg; = —sy1,
Sp2 = —s12 and A9 = A1, the optimization in (3.9) can be performed over s;q, s12
and A\; only.

3.2 Numerical Results and Conclusions

A numerical example is presented to illustrate the improvements that can be
obtained via the joint design of the signaling structure and the decision rule for

scalar observations. The noise in (3.1) is modeled by a Gaussian mixture as in
)2

(y—py
[7] with its PDF being given by p,(y) = ﬁ Zle e 202 | where L =6 and

p=1[0.270.81 1.08 —1.08 —0.81 —0.27] are used. Note that the average power
of the noise can be calculated as E{n?} = 0% + 0.6318. In addition, the average
power limit in (3.5) is set to A = 1 and equally likely symbols are considered

(7T0 =T = 05)
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In the following, three different approaches are compared.

Gaussian Solution: In this case, the transmitter is assumed to have no
information about the noise PDF and selects the signals as sp = —v A and
s; = VA, which are known to be optimal in the presence of zero-mean Gaussian

noise [2]. On the other hand, the MAP decision rule is used at the receiver.

Optimal — Stochastic: This approach refers to the solution of the most
generic optimization problem in (3.6), which can also be obtained from (3.9) as

studied in the previous section.

Optimal — Deterministic: This is a simplified version of the optimal so-
lution in (3.9). It assumes that the signals are deterministic; i.e., they are not
randomization of two different signal levels. Hence, the optimization problem in

(3.9) becomes

min / min{mopn(y — so), m1pn(y —s1)} dy
REK

S0,81

subject to [so]* < A, [siP < A. (3.12)

In other words, this approach provides the optimal solution when the signals are

deterministic.

In Fig. 3.1, the average probabilities of error are plotted versus A/o? for
the three algorithms above by considering symmetric signaling. In obtaining
the optimal stochastic solution from (3.9), the PSO algorithm is employed with
50 particles and 1000 iterations. Please refer to [13] for the details of the PSO
algorithm!. On the other hand, the optimal deterministic solution in (3.12) can
be obtained via a one-dimensional search due to symmetric signaling. From Fig.
3.1, it is observed that the Gaussian solution performs significantly worse than
the optimal approaches for small ¢ values. In addition, the optimal approach

based on stochastic signaling has the best performance. In other words, the

!The other parameters are set to ¢; = c3 = 2.05 and y = 0.72984, and the inertia weight w

is changed from 1.2 to 0.1 linearly with the iteration number [13].
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Average Probability of Error

— - — - Gaussian Solution
— — — Optimal — Deterministic
Optimal - Stochastic

15 20 25 30 35
Alo? (dB)

Figure 3.1: Average probability of error versus A/c? for the three algorithms.

smallest average probability of error is obtained when each signal is modeled as

stochastic signal that is a randomization of two signal values as in (3.7).

In order to explain the results in Fig. 3.1, Table 3.1 presents the solutions of
the optimization problems in (3.6) and (3.12) for the optimal stochastic and the
optimal deterministic approaches, respectively. Note that the results for symbol
1 are listed in Table 3.1, and the results for symbol 0 are the negatives of the
signal values in the table since symmetric signaling is considered. For small
A/o? values, such as 15 dB, the optimal solutions are the same as the Gaussian
solution, that is, s;;1 = 819 = 81 = VA = 1. However, for large A/Jz’s, the
Gaussian solution becomes quite suboptimal and choosing the largest possible
deterministic signal value, 1, results in higher average probabilities of error, as
can be observed from Fig. 3.1. For example, at A/c? = 30 dB, the optimal
deterministic solution sets s; = —sy = 0.7476 and achieves an error rate of 7.66 x
1073, whereas the Gaussian one uses s; = —sy = 1, which yields an error rate
of 0.0146. This seemingly counterintuitive result is obtained since the average

probability of error is related to the area under the overlaps of the two shifted
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Table 3.1: Optimal stochastic and deterministic signals for symbol 1.

Stochastic Deterministic
A/O’2 (dB) )\1 S11 S12 S1
15 N/A 1 1 1
20 0.1836 1.648 0.7846 0.7927
25 0.2104 1.614 0.7576 0.7587
30 0.2260 1.586 0.7475 0.7476
35 0.2347 1.568 0.7441 0.8759

noise PDFs as in (3.12). Although optimal deterministic signaling uses less power
than permitted, it results in a lower error probability than Gaussian signaling
by avoiding the overlaps between the components of the Gaussian mixture noise
more effectively. On the other hand, optimal stochastic signaling further reduces
the average probability of error by using all the available power and assigning
some of the power to a large signal component that results in less overlapping
between the shifted noise PDFs. For example, at A/c* = 30 dB, the optimal
stochastic signal is a randomization of s;; = —sg; = 1.586 and s13 = —sp =
0.7475 with A\g = Ay = 0.226 (cf. (3.7)), which achieves an error rate of 5.95 x
1073,

The results in this chapter can be extended to M-ary communications systems
as well by noting that the average probability of error expression in (3.11) be-
comes P, =1 — [ max{mpo(y), ..., Tm—1pm-1(y)}dy for M-ary systems. Then,
an optimization problem similar to that in Proposition 3.1 can be obtained, where

the optimization is performed over {\;,s;1,si2 "
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Chapter 4

STOCHASTIC SIGNALING
UNDER CHANNEL STATE
INFORMATION
UNCERTAINTIES

In this chapter, stochastic signaling is studied for power-constrained scalar val-
ued binary communications systems in the presence of uncertainties in channel
state information (CSI). First, stochastic signaling based on the available im-
perfect channel coefficient at the transmitter is discussed, and it is shown that
optimal signals can be represented by randomization between at most two dif-
ferent signal levels for each symbol. Then, performance of stochastic signal-
ing and conventional deterministic signaling is compared for this scenario, and
sufficient conditions are derived for improvability and nonimprovability of de-
terministic signaling via stochastic signaling in the presence of CSI uncertainty.
Furthermore, under CSI uncertainty, two different stochastic signaling strategies,

namely, robust stochastic signaling and stochastic signaling with averaging, are
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proposed. For robust stochastic signaling problem, sufficient conditions are de-
rived for reducing the problem to a simpler form. It is shown that optimal signals
for each symbol can be expressed as randomization between at most two signal
values for stochastic signaling with averaging, as well as for robust stochastic sig-
naling under certain conditions. Finally two numerical examples are presented

to explore the theoretical results.

4.1 System Model and Motivation

Consider a binary communications system with scalar observations [6] in which
the channel effect can be modeled by a multiplicative term as in flat-fading

channels [1], and the received signal is given by
Y=aS8+N, ie{01}, (4.1)

where Sy and S; denote the transmitted signal values for symbol 0 and symbol
1 respectively, N is the noise component that is independent of S;, and « is the
channel coefficient. In addition, the prior probabilities of the symbols, which are

denoted by 7y and 7, are supposed to be known.

In (4.1), the noise term N is modeled to have an arbitrary probability dis-
tribution considering that it can include the combined effects of thermal noise,
interference, and jamming. Hence, the probability distribution of the noise com-

ponent is not necessarily Gaussian [7].

A generic decision rule is considered at the receiver to determine the symbol

in (4.1). For a given observation Y = y, the decision rule ¢(y) is expressed as

0 , Y€ Fo
o(y) = , (4.2)
1 NS Fl

where 'y and I'y are the decision regions for symbol 0 and symbol 1, respectively

2].
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The aim is to design signals Sy and S; in (4.1) in order to minimize the

average probability of error for a given decision rule, which is given by
Payvg = moPo(I'1) + mP1(T'o) , (4.3)

with P;(I';) denoting the probability of selecting symbol j when symbol 7 is
transmitted. In practical systems, there exists an average power constraint on

the signals, which can be expressed as
E{lS;[*} <4, (4.4)

for ¢ = 0,1, where A is the average power limit. Therefore, in the stochastic
signaling approach, the aim becomes the calculation of the optimal probabil-
ity density functions (PDFs) for signals Sy and S; that minimize the average

probability of error in (4.3) under the average power constraint in (4.4) [17].

Unlike stochastic signaling, in the conventional signal design, Sy and S; are
modeled as deterministic signals and set to Sy = —vA and S; = VA [1], [2].

Then, the average probability of error in (4.3) becomes
Poow = 7T0/ DN <y + aﬂ) dy
'
+ m/ PN (y - m/Z) dy , (4.5)
o

where py(-) is the PDF of the noise in (4.1).

As investigated in [17], [40], [42] stochastic signaling results in lower average
probabilities of error than the conventional deterministic signaling in some cases
in the presence of non-Gaussian noise. However, the common assumption in the
previous studies is that the channel coefficient o in (4.1) is known perfectly at
the transmitter, i.e., the CSI is available at the transmitter. In practice, the
transmitter can obtain CSI via feedback from the receiver, or by utilizing the
reciprocity of forward and reverse links under time division duplexing [41]. In
both scenarios, it is realistic to model the CSI at the transmitter to include

certain errors/uncertainties. Therefore, the main motivation behind this study
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is to investigate stochastic signaling under imperfect CSI; that is, to evaluate
the performance of stochastic signaling in practical scenarios and to develop
different design methods for stochastic signaling under CSI uncertainty. In the
next section, the effects of CSI uncertainties on the performance of stochastic

signaling are examined.

4.2 Effects of Channel Uncertainties on the

Stochastic Signaling

4.2.1 Stochastic Signaling with Imperfect Channel Coef-

ficient

Let pg,(-) and pg, (-) denote the PDFs of Sy and Sy in (4.1), respectively. Also
define Sy £ oSy and S; 2 « Sy, and denote their PDFs as pg,(+) and pg (+),
respectively. Then, from (4.3), the average probability of error for the decision
rule in (4.2) is given by

1 o0

Paoe= 3o [ ) [ vty—tdya. (16)

i=0 - 1—i

Since pg (t) is given by pg (1) = (1/]a]) ps,(1/a) for i = 0,1, (4.6) can also be

expressed, after a change of variable (t = ax), as

1 00
Pove=S / ps, (@) / ply — az)dyde . (4.7)
=0 — 1

Since imperfect CSI is considered in this study, the transmitter has a distorted
version of the correct channel coefficient a. Let & denote this distorted (noisy)
channel coefficient at the transmitter. In this section, it is assumed that the

transmitter uses & in the design of stochastic signals. Then, the stochastic signal
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design problem can be expressed as

1 oo

min Zm/ psi(x)/ pn(y — az)dyde
Psg-Ps,y i=0 —0o0 I'i—;
subject to E{|S;]*} <A, i=0,1. (4.8)

Note that there are also implicit constraints in the optimization problem in (4.8)
because pg,(+) and pg, (+) need to satisfy the conditions to be valid PDFs. As in
[17], this optimization problem can be expressed as two separate optimization
problems for Sy and S;. Namely, the optimal signal PDF for symbol 1 can be

obtained from the solution of the following optimization problem:

win [ ps,(a) [ paly - da)dyd
_ To

Ps, .

subject to E{|S1]*} < A . (4.9)

If G(z, k) is defined as

Glak) 2 [ ply—ka)dy (1.10)
o
(4.9) can also be written as

min E{G(S;,a&)} subject to E{|S|*} < 4, (4.11)

Ps,
where the expectations are taken over S;. Note that, G(S1, @) is only a function
of S; for a given fixed &. In the previous studies, such as [17] and [11], the
optimization problems with the same structure as (4.11) have been explored
thoroughly. If G(S1,4) in (4.11) is a continuous function of S; and S; takes
values in [—v, ] for some finite v > 0, then the optimal solution of (4.11) can
be represented by a randomization of at most two signal levels as a result of
Carathéodory’s theorem [39]. Hence, the optimal signal PDF for S; can be

expressed as

Ps,(8) = A 0(s—811) + (1= A1) d(s — s12) (4.12)

where A € [0, 1].
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A similar optimization problem can also be formulated for Sy. After obtaining
the optimal signal PDFs for Sy and S7, the corresponding average probability of
error can be calculated. Since the optimization problems are similar for Sy and

S1, we focus on the design of S; in the remainder of this section.

4.2.2 Stochastic Signaling versus Conventional Signaling

It is known that, in the presence of perfect CSI at the transmitter, conventional
signaling, which sets S; = v/A [that is, pg, (z) = §(z — V/A)], can or cannot be
optimal under certain sufficient conditions as discussed in [17]. In this section,
we explore the conditions under which the use of stochastic signaling instead
of deterministic signaling can result in improved average probability of error

performance in the presence of imperfect CSI.

In the presence of imperfect CSI, let the transmitter have the channel coef-
ficient information as &. Then, the transmitter obtains the optimal stochastic
signal S) from (4.11). Let pg (-) denote the solution of (4.11) for a given value
of &. Then, the corresponding conditional probability of error for symbol 1 can

be expressed as

P% = /OO p§ (z) G(z, ) dz | (4.13)

—00

where G(z, «) is as defined in (4.10). Note that G(z, ) specifies the probability
of choosing symbol 0 for a given signal value x for symbol 1 when the channel
coefficient is equal to a. Therefore, when the stochastic signal for symbol 1 is
specified by the PDF pgl (x), the corresponding conditional probability of error

for symbol 1 is obtained as in (4.13).

Suppose that & can be modeled as a random variable with a generic PDF

pa(+). In order to improve the performance of conventional signaling for symbol
1 via stochastic signaling, we need to have P, < G(v/A, ), where G(vA, a) is

the conditional probability of error for conventional signaling, i.e., for S; = v/A
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(see (4.5) and (4.10)), and P, is the average conditional probability of error for
stochastic signaling based on imperfect CSI, which can be calculated as

P, = / pala) P da , (4.14)

e}

with P? being given by (4.13).

In order to derive sufficient conditions for the improvability and nonimprov-
ability of conventional signaling via stochastic signaling, assume that the channel
coefficient information at the transmitter is specified as & = a + 7, where 7 is a
zero-mean Gaussian noise with standard deviation ¢; that is, n ~ N(0,¢?). Al-
though the Gaussian error model is employed for the convenience of the analysis,
the results are valid also for non-Gaussian error models, as will be discussed at
the end of this section. In addition, it is assumed that « is a positive number
without loss of generality.!. Then, the following proposition presents sufficient
conditions on the improvability and nonimprovability of conventional signaling

via stochastic signaling.

Proposition 4.1: Stochastic signaling performs worse than conventional sig-
naling if the standard deviation of the channel coefficient error € is greater than
or equal to a threshold * and it performs better than conventional signaling if € is
less than or equal to another threshold é when G(x, k) and P& have the following

properties:

o G(x,k) is a strictly decreasing function of x for any fized positive k, and

Gz, k) =1—-G(—xz,k).

0P§</—£1 when&>%h>O,P§</{2</{1 when a > & > Oy, > yp, and

P = G(VA, o) when & > By, > a.

f it is negative, one can redefine function G (4.10) by using py (y+kx) instead of px (y—kx)
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In addition, €* and & can be obtained by solving®

(5-e)e(=52) + 50 (@) +m-m(o (%) ~o(*£))

_ (1 _q (ﬁfh—_“» G(VA, o) (4.15)

3

and

o (2))+ (3-m) 0 (152) - (222
()~ (1-0(552) o (25 v

(4.16)

respectively.

Proof: In the following, lower and upper bounds for the expression in (4.14) are
derived in order to prove the statements in the proposition. We start by noticing
the fact that the sign of the channel coefficient knowledge at the transmitter is
important. Suppose that pgl is the optimal PDF obtained from (4.11) for a given
&. Therefore, if —& is used instead of &, then pglé‘ will be the optimal solution
of (4.11) and the value of pg®(z) will be equal to p& (—z). This observation can
be utilized in (4.13), and also using the fact that G(z,k) = 1 — G(—=, k), Pé=
1 — P_% can be obtained as follows:

/ " P (2)G(a, k)da = / T Pt (—)(1 - G, k))dz = / P01 — Gt k))dt

=1- / ps (H)G(t, k)dt =1 — P2 (4.17)

It is stated in the second condition of the proposition that P¥ < x; when & > v,
and PY < ko < Ky when o > & > 0y,. Therefore, if we insert —a instead of &
in these conditions, we get PJ% < k; when —& > vy, and P < Ky < iy

when o« > —& > 6y,. Using the result in (4.17) and rearranging the terms yield

2Note that the choice of parameters in the conditions of Proposition 4.1 is important to
ensure the existence of solutions to (4.15) and (4.16). Also, the @Q-function is defined as

Qz) = ([ e~ /2dt) /2.
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P& > 1—k; when & < —v,;, and PY > 1 — kg > 1 — k; when —a < & < —0y,.
Also, since G(x, k) is a strictly decreasing function of x when k is positive, then
G(z,&) is a strictly increasing function of z if & is negative. Therefore, for
a given & < 0, the optimal signal PDF pgl assigns the weights on negative
numbers instead of positive ones since for each positive value of 57, its negative
can be used instead, which results in the same average power value and a smaller
E{G(S1,&)}. Furthermore, since G(x,«) is a strictly decreasing function, and
G(z,a) =1 — G(—z,a), we have G(z,a) > G(0,a) = 0.5 for < 0. Thus, by
using these two facts and the expression in (4.13), we conclude that if & < 0,
then PY > 0.5 [and P& < 0.5, if @ > 0]. Now, one can find a lower bound on P,
n (4.14) as follows:
0 —— 0 0
P, = / pa(a)Plda > / pa(a)Plda +/ pa(a)Plda —I—/ pala)Plda

- > Ttk Btn
> (1= r)P(@ < =vy) + (k1 — R2)P(—a < d < ch)—i—;P( Yo < & < 0)
P < GWA ) = (- mpp (1> “00)
+(H1—ﬁ2)P(;M<Q<_a_gth)_i_lp( <Q<_a—7th)
€ € 15 2 e
+P< /Bth ) . Q
€
o) (222
+Q(Bth€_a G(VA, ) = (1_,{1)@<O‘+%h)
+ (k1 — K2) (Q(?)_Q(Oé+6th))+%Q<g>+Q(ﬁth_&)G(\/Z’a).

(4.18)

If we equate this bound to G(\/Z, a) and solve for ¢, we obtain £*. Therefore, if
e =¢*, wehave P, > ¢ (\/Z, «). Notice that the Q-function is strictly decreasing,
hence the derived lower bound is an increasing function of €. Thus, for e > ¢*, we
still have P, > G(v/A, a). Overall, under the conditions given in the proposition,

having the standard deviation of the channel coefficient error being larger than
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or equal to a certain value €* is sufficient to conclude that conventional signaling

performs better than stochastic signaling.

Next, one can find an upper bound on P, in (4.14) as follows:

o0 —5th 0 Yth
Pe:/ pd(a)Pgda:/ pd(a)Pgda—l—/ p&(a)PgdajL/ pa(a)Pida
_ 0

. . L
+f " pelayPrda + /ﬁ " pa(@)Pida < (1 - G(VA,0))P( < ~Bu)
on h
P(—fu < & <0) + % P(0 < & < ym) + m1P(yn < & < Bun)
+ (K2 — k1) P(Oy, < & < @) + P(& > Bu)G(VA, a)
= (1 - G(VA, )P (g > @) +P (—_ﬁt’“‘ —2 0o —_a)
lp (_?a <1< —_aj%h> +m1P<—_aj%h < g < —_OhLﬁ”‘)

2 €
—l—(@—ml)P( <0)+P(">5”1_O‘ G(VA,a)
- (1= G(VA.0) (Wth) () -q(2))+a(2)

() e 10 (252) - (B2)
Y Y () R = P MR YO P )

rlamn)o () ma () s (F50)

+ (Q <6“l€_ O‘) —Q (%ﬁth)) G(VA,q) . (4.19)

Therefore, if we equate this bound to G(\/Z, «) and solve for £, we obtain £.

0
o+ th<ﬂ
€

Therefore, if ¢ = £, we have P, < G(v/A,«). Since the derived upper bound
decreases as ¢ decreases, for £ < &, we still have P, < G(v/A, ). Overall, under
the conditions given in the proposition, having ¢ < ¢ is sufficient to conclude

that stochastic signaling performs better than conventional signaling. [

Although the results in Proposition 4.1 are presented for channel coefficient
errors with a zero-mean Gaussian distribution, they can easily be extended for

any type of probability distribution as well. For example, consider a generic
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PDF for the channel coefficient error, which is denoted by p,(-). The cor-
responding cumulative distribution function (CDF) F,(-) can be expressed as
Fy(z) = [*_py(t)dt. Then, the results in Proposition 4.1 are valid when Q(x/¢*)
in (4.15) and Q(x/€) in (4.16) are replaced by 1 — F,(z). Hence, €* and ¢ can

still be obtained by solving the updated equations.

As discussed before, G(z, k) can be inferred as the probability of deciding
symbol 0 instead of symbol 1, when the value of the channel coefficient is k, and
S1 = z. In general, for a specific channel coefficient, when a larger signal value is
employed, a lower probability of error can be obtained; hence, G(x, k) is usually
a decreasing function of = in practice. Moreover, G(z,k) =1 — G(—xz, k) can be
satisfied when the channel noise has a symmetric PDF (i.e. py(z) = py(—2)) and
the decision regions of the detector at the receiver are symmetric (I'y = —I'7). In
fact, the channel noise is symmetric in most practical scenarios (for example, zero-
mean additive white Gaussian noise or Gaussian mixture noise with symmetric
components [7]), and some receivers such as the sign detector or the optimal
MAP detector for symmetric signaling under symmetric channel noise will have
symmetric decision regions in fact. Allin all, the first condition in the proposition
is expected to hold in many practical scenarios. The details of how the second
condition is satisfied and how the parameters are selected will be investigated in

the Section 4.4.

4.3 Design of Stochastic Signals Under CSI Un-

certainty

First, suppose that p,(-) denotes the PDF of the actual channel coefficient «,
where each instance of the channel coefficient resides in a certain set 2. In this

section, we propose two different methods for designing the stochastic signals
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under CSI uncertainty in the transmitter, and evaluate the performance of each

method in Section 4.4.

4.3.1 Robust Stochastic Signaling

In this part, robust design of optimal stochastic signals is presented under CSI
uncertainty at the transmitter. Suppose that €2 is given by Q = [ag, o], that is,
the channel coefficient « takes values in the interval of [, a;], where ag < ;.
It is assumed that the transmitter has the knowledge of set (2. Note that this
can be realized via feedback from the receiver to the transmitter. In robust
stochastic signaling, signals are designed in such a way that they minimize the
average probability of error for the worst-case channel coefficient, that is, the
one which maximizes the average probability of error for the transmitted signals.
For this design criterion, the optimal stochastic signaling problem in (4.8) can

be expressed as a minimax problem as follows:

min  max Zm/ s, ( / pn(y — az)dyde
|

PSg:Ps; a€lap,a1]

subject to E{|S;|*} < A . (4.20)

The problem in (4.20) might be difficult to solve in general. In the following,
it is shown that in most practical scenarios, this problem can be reduced to a
simpler form and the optimal signal PDF's can be obtained by solving a simpler

optimization problem:

Proposition 4.2: The minimax problem in (4.20) is equivalent to the

stochastic signaling problem for channel coefficient oy, that is,

1 oo
min Zm/ psi(x)/ pn(y — g ) dy dx
PsyPsy i—0 —c0 |
subject to E{|S;i|*} < A (4.21)

when the following conditions are satisfied:
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o G(z,a) is a strictly decreasing function of x for any o € [ag ay].

e G(z,a) is a strictly decreasing (increasing) function of o for all x > 0

(x <0).

Proof: The minimax problem in (4.20) can be expressed as follows:

min  max m /00 ps, (2) G(z, a)dx + m /OO ps,(x) (1 — G(z, ) )dx

PSgPs, a€lag,ai] —oo —o0

subject to E{|S;]*} < A . (4.22)

Assume that S is a nonnegative and Sy is a nonpositive random variable. First,
it is shown that this assumption does not reduce the generality of the proof.
Suppose that pg is the PDF of S which is a nonnnegative random variable, and
Py, is the PDF of Sy which is any random variable (that is, its instances can take
both positive or negative values). Therefore, in the minimax problem, for given
P, and p% , we maximize my [*._p% () G(z, a)de+m [ p, (z) (1-G(z, a))dx
over a € [ap, ay]. Now assume that pTS1 is symmetric with pg , that is, pgl will be
a PDF for a nonpositive random variable such that p§ (—z) = pgl (x). Similarly,
for a given p¥, and pgl, we maximize my [°._ pTS1 (2) Gz, a)dz+mo [7_ph, (x) (1—
G(z,a))dz over a € [ayp, ay]. Because of the first condition in the proposition, for
every a € [ag, a1, [ pk () Gla,a)dz < [ pL (v) Gz, a)dz, since G(z, )
is strictly decreasing function of x; hence, the value of the maximum for p§, will
be less than or equal to that for pgl, and both PDFs will yield the same average
power value because of the symmetry. Since it is a minimax problem, we look for
the optimal signal PDF's pg, and pg, which minimize the value of the maximum.
Thus, by using a nonnegative S; we achieve a lower maximum value as compared
to a nonpositive S;. Similarly, a nonpositive Sy will yield a smaller maximum
value as compared to a nonnegative Sy. Therefore, instead of considering all
PDFs, one can just consider the PDF's of a nonpositive Sy and a nonnegative S;

without loss of generality under the first condition in the proposition.
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By using this fact, for any given pg, and pg,, which are the PDFs of
a nonpositive Sy and a nonnegative S; respectively, we maximize V(o) =
T [y s (2) G(z, a)dx + m ffoopgo(x) (1 — G(z,a))dx over a € [ag, 1]. De-

fine

Vi(a) = /Ooopsl () G(z,a)dx

and

Vola) = / ps, (z) G(z, a)dx .

Then, we maximize V(a) = m Vi(a) — mo Vo(a) + 7o over « € [, a1]. Under the

second condition in the proposition, % <0, Vx > 0 and % >0,Vr <0

3. First, assume that pg, (z) # §(x) for i = 0,1. Then,

dVile) [ 0G(z, «)

Similarly,

dr > 0.

dVy(a) 0 IG(x, )
do /

Psy (l‘) o

— 00

Therefore, we can write that d‘g((:) =m d‘g;a) — T d‘g;a) < 0. This shows that

V() is a strictly decreasing function of . Hence, for pg, and pg,, under the

conditions in the proposition, rfaax ]V(a) = V (), meaning that the minimax
ac|lag aq

problem can be reduced to the form in (4.21). Note that, when pg,(x) = d(z),

d‘z'—((f‘) = 0. If pg(z) = ps,(x) = 0(x), then V(a) becomes a constant

then

function. Also, if one of pg, (z) or ps,(x) is not equal to §(z), V() is still strictly

decreasing function of a. Therefore, IFaX ]V(oz) = V(o) holds for all possible
ac|ag o

ps, and pg, in fact. O

Proposition 4.2 states that, under certain sufficient conditions, the robust
design of stochastic signals becomes equivalent to the stochastic signal design for

the smallest magnitude of the channel coefficient in set €2. The simplified problem

3When z = 0, G(z, ) is independent of « and just a constant as it can be seen from (4.10).
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in (4.21) has a well-known structure, which was investigated for example in [17].
The problem can be solved separately for Sy and S; by expressing the problem
as two decoupled optimization problems. Then it can be shown that if G(.S;, ap)
is a continuous function of S; and S; takes values in [—7, ] for some finite v > 0,
then each optimal signal PDF pg, can be represented by a randomization of at

most two signal levels [17, 39].

It is also noted that if [, o] is a positive interval, then the two conditions in
Proposition 4.2 can be reduced to a single condition. Suppose that © = ax, then
G(z,) can be written as G(u) = [, pn(y — u)dy. Therefore, if a is positive,
then the conditions in Proposition 4.2 are equivalent to that G(u) is a decreasing

function of u, that is, %i“) <0.

After obtaining the optimal signal PDFs pg, and pg, by solving (4.21), the

conditional average probability of error for a given ao € €2 can be calculated as

1 00
= Zm/ Ds, (1;)/ pn(y — ax)dyde . (4.23)
=0 — AR

Finally, the average probability of error for robust stochastic signaling can be

calculated as

Prob = /pa(a) PaRob da . (424)
Q

Note that, while calculating the conditional average probability of error for
a given «, the same signal PDF is used for all a values, since the optimal signal
PDF's do not depend on the value of the actual channel coefficient «, but only

depend on the lower boundary point of the set {2 in robust stochastic signaling.

4.3.2 Stochastic Signaling with Averaging

In robust stochastic signaling, signal PDFs are designed for the worst-case chan-

nel coefficient, which belongs to a certain set {2. In this section, an alternative
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way of designing stochastic signals under CSI uncertainty is discussed. In this
method, the transmitter assumes that the channel coefficient is distributed ac-
cording to a PDF p,(+) .* Then, optimal stochastic signal PDFs are designed in
such a way that the average probability of error is minimized for this assumed
CSI statistics under the average power constraints. This can be formulated as

follows:

o 1 o
min / Pala) Z T / ps, () / pn(y — az)dydzda
—00 i=0 —00 ',

PsysPsy

subject to E{|S;]*} < A . (4.25)

Note that this problem is separable over Sy and S; as well. Therefore, one can
consider the the optimal signals for symbol 0 and symbol 1 separately. Specif-
ically, the optimal signal PDF for symbol 1 can be obtained by solving the
following problem:

min/_oo 5a(a) /_OO ps (2) /FOpN(y—ax) dy d da

psy 00 00

subject to E{|Si|*} < A . (4.26)

Changing the order of the first and the second integrals in (4.26), the following

formulation can be obtained:

min / " e (2) / " o(a) Gla, a) dada

Ps1 J -0 —00

subject to E{|S1]*} < A (4.27)

where G(x,a) is as defined in (4.10). In addition, if H(z) is defined as
H(z) 2 / 5a(@)G(x, a) da = B{G(z,a)} (4.28)

where the expectation is taken over the assumed PDF of the channel coefficient,

then (4.27) can be written as

min E{H(S;)} subject to E{|S;|*} < A. (4.29)

psy

4Note that this will not be the actual PDF of the channel coefficient in general due to CSI

uncertainty at the transmitter.
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For this problem, it can be concluded that, under most practical scenarios, the
optimal signal PDF can be characterized by a randomization between at most
two signal levels similarly to the previous results. The optimal signal PDF for

symbol 0 can be obtained similarly.

In the stochastic signaling with averaging approach, the transmitter assigns
different weights to different values of the channel coefficient and designs signals
based on this averaging operation over possible channel coefficient values. For
example, instead of directly using the distorted channel coefficient & in the signal
design as in Section 4.2.1, the transmitter may assume a legitimate PDF around
& for the channel coefficient and design the stochastic signals. The performance

of this approach and the other approaches is compared in the following section.

4.4 Performance Evaluation

In this section, two numerical examples are presented in order to investigate the
theoretical results in the previous sections. In the first numerical example, we
compare the performance of conventional signaling and stochastic signaling in the
presence of channel coefficient errors and observe the effects of CSI uncertainty
on stochastic signaling. In the second example, we evaluate the performance of
the proposed design methods in Section 4.3. In both of the examples, a binary
communications system with equally likely symbols are considered (my = m =
0.5), the average power limit in (4.4) is set to A = 1, and the decision rule at the
receiver is specified by I'g = (—00,0] and I'; = [0,00) (i.e., the sign detector).
Also the noise in (4.1) is modeled by a Gaussian mixture noise [7] with its PDF

being given by
L 2

1 (n—py
n)= E v e_ 202 . 430
pN( ) Voro =) : ( )

Gaussian mixture noise is encountered in practical systems in the presence of

interference [7]. For the channel noise and the detector structure as described
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above, G(x, k) in (4.10) can be calculated as

Gz, k) = EL:UIQ (’” +‘”) | (4.31)

g
=1

In the first example, the mass points j; are located at pu =
[—1.013 — 0.275 — 0.105 0.105 0.275 1.013] with corresponding weights v =
[0.043 0.328 0.129 0.129 0.328 0.043]. Also each component of the Gaussian mix-
ture noise has the same variance o? and the average power of the noise can be

calculated as E{n?} = 02 4 0.1407.

The channel coefficient information at the transmitter is modeled as & = a+n,
where o = 1 and 7 is a zero-mean Gaussian random variable with variance 2.
Due to the symmetry of the problem, the conditional probability of error expres-
sion in (4.14) also provides the average probability of error in this scenario. In
order to evaluate that expression, 100 realizations are obtained for &. Then, the
optimization problem in (4.11) is solved for each realization and the optimal sig-
nal PDFs that are in the form of (4.12) are obtained by using the PSO algorithm
[30]. For the details of the PSO parameters employed in this study, please refer
to [40].

In Fig. 4.1, the average probabilities of error are plotted versus A/c? for
conventional signaling, stochastic signaling with no channel coefficient errors (e =
0), and stochastic signaling with various levels of channel coefficient errors. It
is observed that, for high A/0o? values, the best performance is obtained by
stochastic signaling with perfect CSI and the performance of stochastic signaling
gets worse as the variance of the channel coefficient error increases. For example,
when ¢ = 0.5 and € = 0.6, stochastic signaling performs worse than conventional
signaling for all A/o? values. Another observation is that for low values of e,
stochastic signaling still performs better than conventional signaling for high
A/o? values and their performance is similar for high o2, i.e. when A/o? is

smaller than 15 dB. In fact, one can calculate the average probability of error
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Figure 4.1: Average probability of error versus A/o? for conventional signaling
and stochastic signaling with various ¢ values.

analytically for low A/o? values for each e. At low A/o? values, P% in (4.13) can
be expressed as

Pd _ 1— Sgn(@)

. 5 + sgn(&) G(\/Z, a)) (4.32)

where sgn denotes the sign operator. Then, from (4.14), P_ can be calculated
as Q(a/e) + G(VA, a) —2G(VA,a) Q(a/e) . For instance, when A/0? = 10dB,
G(VA,a) = 0.02613 in this example. Then, for ¢ = 0.6, P, is calculated as
0.9477Q(5/3) + 0.0261 = 0.0714, which is very close to the result shown in
Fig. 4.1. For this example, we can apply the conditions given in Proposition 4.1
and calculate € and €*. Firstly, we check the first condition in the proposition.
G(z, k) is calculated above for this example and it is a linear combination of @
functions. Therefore, G(z, k) is a strictly decreasing function of = as Q(x) is a
monotone decreasing function. Also, since Q(z) = 1—Q(—x) and the components
of Gaussian mixture noise are symmetric, we have G(z, k) = 1 —-G(—=x, k) as well.
Hence, the first condition in Proposition 4.1 is satisfied. In order to check the

second condition, the plot of P& versus & is presented in Fig. 4.2. Tt is observed
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10

G(VA, )

Figure 4.2: P versus & for A/o* = 40dB. The second condition in Proposition
4.1 is satisfied for k1 = 0.04354, ko = 0.01913, v, = 0.1135, 0y, = 0.8, By, =
1.038, and G(V/A, @) = 0.03884.

that PY does not have a monotonic structure; that is, it increases, decreases or
remains the same as & increases. However, it obeys the structure specified in the
second condition of Proposition 4.1. Specifically, when & > v, = 0.1135, P is
less than s, = 0.04354, and when 0y, = 0.8 < & < a = 1, P becomes less than
ko = 0.01913, which is even smaller than x;. Also, when & > By = 1.038, P¢
becomes equal to G(v/A, a)) = 0.03884, which is the average probability of error
for conventional signaling. The values of k1, Ko, Vi, Oin, and [y, are illustrated in

Fig. 4.2. Now, by using the above parameters and solving (4.15), which becomes
1.1135 1 2 1.8

0.45646 Q) ( ) +0.5Q (—) +0.02441 Q (—) -Q ( )
e* e* c* c*

= 0.03884 (1 —Q (o.gss)) :

one can obtain e* = 0.5394. This means that when A/0? = 40 dB, if the standard

deviation of the channel coefficient error is larger than 0.5394, we can conclude
that stochastic signaling is outperformed by conventional signaling. In fact, it

can be observed from Fig.4.1 that for A/o? = 40dB and € = 0.6 > ¢*, the
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Figure 4.3: Average probability of error versus e for stochastic signaling. At
e = 0.413, stochastic signaling has the same average probability of error as
conventional signaling.

performance of stochastic signaling is quite worse than conventional signaling as

Proposition 4.1 asserts. Similarly, by solving (4.16), which becomes

1 . .
0.5 (0.06267 +Q (g)) + 0.45646 Q) (0 8565) —0.04354 Q@ (@)

+0.02441Q <O;> — 0.03884 (1 —Q (0‘238> +Q (2'238» ,

one can calculate ¢ = 0.3395. This means that, at A/o? = 40dB, if the standard

deviation of the channel coefficient error is smaller than 0.3395, we can con-
clude that conventional signaling is outperformed by stochastic signaling. From
Fig. 4.1, it is seen that for A/0? = 40dB and € = 0.3, 0.1,0.01 < &, stochastic

signaling performs better than conventional signaling.

In order to explore performance variations of stochastic signaling with respect
to €, Fig. 4.3 is presented. It is observed that as the variance of the channel co-
efficient error increases, the average probability of error for stochastic signaling
increases. This is expected since the transmitter designs the stochastic signals
in the presence of channel coefficient errors (imperfect CSI) and these errors

get more significant as ¢ increases. Therefore, it can be concluded that in the
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presence of large channel coefficient errors (i.e., large ), using conventional de-
terministic signaling instead of stochastic signaling would be more preferable,
whereas for small channel coefficient errors, stochastic signaling can be employed
to achieve smaller average probabilities of error than conventional signaling. In
Fig. 4.3, the upper bound * and the lower bound ¢ obtained from Proposition
4.1 are also illustrated, together with the point ¢, at which the performance
of stochastic signaling and conventional signaling becomes the same. It is ob-
served that Proposition 4.1 provides sufficient conditions for the improvability
and nonimprovability of conventional signal via stochastic signaling. However,

the conditions are not necessary as illustrated in Fig. 4.3.

In the second example, the mass points y; of the Gaussian mixture noise are
located at p = [—1.31 — 0.275 — 0.125 0.125 0.275 1.31] with corresponding
weights v = [0.002 0.319 0.179 0.179 0.319 0.002]. Each component of the Gaus-
sian mixture noise has the same variance o2 and the average power of the noise
can be calculated as E{n?} = 02 +0.0607. For this example, & is again modeled
as & = a+n where 7 is a zero-mean Gaussian random variable with variance &2.
We assume that the actual channel coefficient o has a uniform distribution over

set 2 =[0.8,1.2]; i.e., a is distributed as ¢4[0.8,1.2].

First, we compare the average probability of error performance of different

signaling strategies:

Stochastic-Perfect: It is assumed that the transmitter has the knowledge
of the actual channel coefficient, which is used in the signal design. In the simu-
lations, 100 realizations are generated for uniformly distributed a. The optimal
signal PDFs and the corresponding probabilities of error are calculated for each
realization. Then, by averaging over the PDF of «, the average probabilities of

error are obtained.
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Conventional: The transmitter selects the signals as S; = —Sy = VA = 1.
For each realization of «, the corresponding probabilities of error are calculated

and then their average is taken over the PDF of a.

Stochastic-Distorted: The transmitter has imperfect CSI and it uses a
distorted (imperfect) channel coefficient & directly in the design of signals, as
discussed in Section 4.2.1. In Fig. 4.4, average probabilities of error are plotted

for e = 0.05 and € = 0.1.

Stochastic-Average: The transmitter assumes that the PDF of the channel
coefficient is p, (a) is specified by N (&, A?). Then, by solving (4.29), the optimal
signal PDF pg‘l for signal 1 can be obtained for each &. Next, the conditional
probability of error for symbol 1 can be expressed as

Per = / pa(a)/ pda(d)/ pé () G(z,a) dzdada (4.33)
where psjo(-) is the conditional PDF of & for a given a. Note that, due to the
symmetry, the conditional error probability is equal to the average probability
of error in this example as well. In Fig. 4.4, the average probabilities of error are

plotted for A = 0.01, A = 0.05, and A = 0.2, where £ = 0.05 in each case.

Stochastic-Robust: First, one can show that this example satisfies the
conditions in Proposition 4.2. In this example, G(z, @) can be calculated by using
(4.31). Note that G(z, ) is a linear combination of @ functions, i.e. Q (*=#4).
Then, since « is always be positive (a € [0.8,1.2]), @ (%’ﬂ) is a decreasing
function of x. Also, it is a decreasing function of « if x is positive, and it
increases with o when x is negative. In fact, since [0.8,1.2] is a positive interval,
we can write u = ax and G(u) will be a decreasing function of u as @ (*£4)
decreases with u. Therefore, we can apply the result in Proposition 4.2 in this
example. That is, the optimal signal PDFs are obtained by solving (4.20) with

ap = 0.8 as © = [0.8,1.2]. Then, the average probabilities of error are calculated

via (4.23) and (4.24).
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Figure 4.4: Average probability of error versus A/c? for various signaling strate-
gies.

In Fig. 4.4, the average probabilities of error are plotted versus A/c? for
conventional signaling, stochastic signaling with perfect CSI, distorted channel
coefficient, averaging and robust stochastic signaling. It is observed that, for high
o2, that is, specifically when A/c? is smaller than 15 dB, all signaling strategies
perform similarly. For high A/0? values, it is observed that stochastic signaling
with perfect CSI achieves the best performance. The second best performance is
obtained by the stochastic signaling with averaging method when the parameters
are ¢ = A = 0.05. Although conventional signaling gives the worst performance
for medium A/o? values, the worst performance is observed for stochastic sig-
naling with distorted channel coefficient for high A/o? values. Robust stochastic
signaling performs somewhere between stochastic signaling with perfect CSI and
conventional signaling. Robust signaling performs better (worse) than stochastic
signaling with averaging for A = 0.2 (A = 0.05) at high or medium A/c? values.
For e = 0.05, stochastic signaling with averaging when A = 0.01 and stochas-
tic signaling with distorted channel coefficient performs very similarly and they
achieve better performance than robust signaling for medium A/o? values; how-

ever, their performance is worse than robust signaling for high A/c? values.
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Figure 4.5: Average probability of error versus A for stochastic signaling with
averaging when A/0? = 40dB and e = 0.05. Stochastic signaling with averaging
performs same with conventional signaling when A = 0.0078. It has the same
average probability of error as robust stochastic signaling at A = 0.0236 and
A =0.1684.

In order to investigate the effects of value of A on the average probability of
error performance of the stochastic signaling with averaging method, Fig. 4.5 is
presented. It can be observed that setting A to 0.05 provides the best perfor-
mance. This means that the average probability of error performance is smaller
when the standard deviation of the assumed PDF of the channel coefficient A
gets closer to the standard deviation of the channel coefficient error €. As we
increase or decrease the value of A from 0.05, the average probability of er-
ror increases. Therefore, choosing very small or very large A values degrades
the performance of the stochastic signaling with averaging strategy. Note that
A = 0 corresponds to the stochastic signaling with distorted channel coefficient
in fact. It can be observed from Fig. 4.5 that if A is less than 0.0078, con-
ventional signaling which has an average probability of error of 0.002 is better
than this averaging strategy. Also, if A is less than 0.0236 or it is larger than
0.1684, robust stochastic signaling which has an average probability of error of

0.00136 achieves a better performance than stochastic signaling with averaging,
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Figure 4.6: Average probability of error versus « for various signaling strategies
when A/o? = 40dB.
whereas the performance of stochastic signaling with averaging is better than

robust signaling if 0.0236 < A < 0.1684.

Furthermore, we investigate in Fig. 4.6 the average probability of error per-
formance of conventional signaling, stochastic signaling with perfect CSI, ro-
bust stochastic signaling, stochastic signaling with averaging when ¢ = 0.05
and A = 0.1, and stochastic signaling with distorted channel coefficient when
€ = 0.05 versus the actual value of the channel coefficient o when A/c? = 40dB.
We observe that the average probability of error decreases as « increases for
all strategies °. For each value of the channel coefficient, the lower bound for
the probability of error is obtained by stochastic signaling with perfect CSI. For
small values of «, i.e., when a < 0.9276, robust stochastic signaling is better
than stochastic signaling with averaging. However, for larger o values such as
when « > 1.107, robust signaling performs worse than stochastic signaling with

averaging and with distorted channel coefficient. This shows that since the sig-

nals are designed for ay = 0.8 in robust stochastic signaling, when the actual «

5 Although it is not very clear in Fig. 4.6, the average probabilities of error for conventional

signaling and robust signaling also slightly decrease as « increases.
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is close to that value, robust signaling gives a better performance. Performance
of stochastic signaling with averaging is better than conventional signaling and
stochastic signaling with distorted channel coefficient for every o value. Although
conventional signaling gives larger average probabilities of error than stochastic
signaling with distorted channel coefficient for a > 0.9935, using noisy a channel
coefficient in the signal design directly results in the worst average probability of

error performance when « has a smaller value.

Finally, in order to provide additional explanations of the results, Table 4.1
and Table 4.2 are presented. In Table 4.1, the optimal signals for robust stochas-
tic signaling and stochastic signaling for the given channel coefficient value «
are presented for various A/c? values. Note that in robust signaling the actual
value of « is not important since the signals are designed for a = 0.8. It is
observed that when A/0? = 10dB both strategies have the same solution as the
conventional signaling. However, as A/o? increases, the randomization between
two signal values becomes more effective and this may help reduce the average
probability of error. For example, when A/o? = 25dB, the average probability
of error for robust signaling is 0.00155, whereas it is 0.00199 for conventional
signaling. In Table 4.2, the optimal signals for stochastic signaling with aver-
aging when A/0c? = 40dB are presented. Note that the assumed PDF of the
channel coefficient in that strategy is N (&, A?%). Tt is observed that when A is
very small, i.e.,; A = 0.01, the optimal signal PDFs are close to the optimal signal
PDFs of the stochastic signaling case given in Table 4.1. Also, when & = 0.9 and
A = 0.2, the optimal signal PDF is close to that for conventional signaling since

the optimal PDF has a mass point at 0.9684 with a weight of 0.9302.

90



Table 4.1: Optimal signals for stochastic signaling for various o and robust design

for symbol 1.

Stochastic

A/U2 (dB) o A1 811 S12
10 0.9 N/A 1 1
10 1.1 N/A 1 1
25 0.9 | 0.3254 1.5642 0.5496
25 1.1 | 0.5557 1.2798 0.4497
40 0.9 |0.4211 1.4838 0.3546
40 1.1 | 0.6590 1.214 0.2901

Robust

A/‘72 (dB) « A1 S11 S12
10 N/A | N/A 1 1
25 N/A | 0.2276 1.7597 0.6183
40 N/A | 0.3200 1.6693 0.3989

Table 4.2: Optimal signals for stochastic signaling with averaging for symbol 1
when A/0? = 40dB.

Averaging

a | A A1 S11 S12

0.9 | 0.01 0.41 1.5016 0.3575
0.9 10.05| 0.351 1.5922 0.4114
0.9 1] 0.2 | 0.0698 1.3519 0.9684
1.1 | 0.01 | 0.6466 1.2247 0.2917
1.1 | 0.05 | 0.575 1.2892 0.323
1.1 | 0.2 0.476 1.2815 0.6453

4.5 Conclusions

The effects of imperfect CSI on stochastic signaling and the design of stochastic
signals in the presence of CSI uncertainty have been investigated. First, a prob-
lem formulation has been presented to explore the effects of errors in the channel
coefficient, and the two mass point structure of an optimal signal PDF has been
observed when the signals are designed based on noisy channel coefficients at the
transmitter. Then, sufficient conditions have been presented to specify when the
performance of conventional deterministic signaling can or cannot be improved
via stochastic signaling. Upper and lower bounds on the variance of the chan-
nel estimation error have been derived and improvability and nonimprovability

conditions have been presented. Then, two different signaling strategies, called
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robust stochastic signaling and stochastic signaling with averaging, have been
discussed. Sufficient conditions are derived to obtain an equivalent but simpler
form for the robust stochastic signaling design problem. Finally, the theoretical

results have been presented over two examples.
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