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Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of Graduate School of Engineering and Science

ii



ABSTRACT

STOCHASTIC SIGNALING FOR POWER

CONSTRAINED COMMUNICATION SYSTEMS

Çağrı Göken

M.S. in Electrical and Electronics Engineering

Supervisor: Asst. Prof. Dr. Sinan Gezici

June 2011

In this thesis, optimal stochastic signaling problem is studied for power con-

strained communications systems. In the first part, optimal stochastic signaling

problem is investigated for binary communications systems under second and

fourth moment constraints for any given detector structure and noise probability

distribution. It is shown that an optimal signal can be represented by randomiza-

tion among at most three signal levels for each symbol. Next, stochastic signaling

problem is studied in the presence of an average power constraint instead of sec-

ond and fourth moment constraints. It is shown that an optimal signal can be

represented by randomization between at most two signal levels for each symbol

in this case. For both scenarios, sufficient conditions are obtained to determine

the improvability and nonimprovability of conventional deterministic signaling

via stochastic signaling. In the second part of the thesis, the joint design of

optimal signals and optimal detector is studied for binary communications sys-

tems under average power constraints in the presence of additive non-Gaussian

noise. It is shown that the optimal solution involves randomization between at

most two signal levels and the use of the corresponding maximum a posteriori

probability (MAP) detector. In the last part of the thesis, stochastic signaling
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is investigated for power-constrained scalar valued binary communications sys-

tems in the presence of uncertainties in channel state information (CSI). First,

stochastic signaling is performed based on the available imperfect channel coef-

ficient at the transmitter to examine the effects of imperfect CSI. The sufficient

conditions are derived for improvability and nonimprovability of deterministic

signaling via stochastic signaling in the presence of CSI uncertainty. Then, two

different stochastic signaling strategies, namely, robust stochastic signaling and

stochastic signaling with averaging, are proposed for designing stochastic signals

under CSI uncertainty. For the robust stochastic signaling problem, sufficient

conditions are derived to obtain an equivalent form which is simpler to solve.

In addition, it is shown that optimal signals for each symbol can be written as

randomization between at most two signal levels for stochastic signaling using

imperfect channel coefficient and stochastic signaling with averaging as well as

for robust stochastic signaling under certain conditions. The solutions of the

optimal stochastic signaling problems are obtained by using global optimization

techniques, specifically, Particle Swarm Optimization (PSO), and by employing

convex relaxation approaches. Numerical examples are presented to illustrate

the theoretical results at the end of each part.

Keywords: Stochastic signaling, probability of error, additive noise channels, de-

tection, binary communications, MAP decision rule, global optimization, channel

state information.
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ÖZET

GÜÇ KISITLAMALI HABERLEŞME SİSTEMLERİ İÇİN

STOKASTİK İŞARETLEME

Çağrı Göken

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Asst. Prof. Dr. Sinan Gezici

Haziran 2011

Bu tezde, güç kısıtlı haberleşme sistemleri için optimal stokastik işaretleme

problemi çalışılmaktadır. İlk kısımda, herhangi bir sezici ve gürültü olasılık

dağılımı ele alınarak, ikinci ve dördüncü moment kısıtlamaları altında ikili

haberleşme sistemleri için optimal stokastik işaretleme problemi incelenmektedir.

Her bir sembol için, optimal işaretlemenin, en fazla üç işaret seviyesi arasındaki

rastgeleleştirme ile ifade edilebileceği gösterilmektedir. Sonrasında, stokastik

işaretleme problemi ikinci ve dördüncü moment kısıtlamaları yerine, ortalama

güç kısıtlaması altında çalışılmaktadır. Bu durumda, her sembol için, optimal bir

işaretin en fazla iki işaret seviyesi arasındaki rastgeleleştirme ile ifade edilebileceği

gösterilmektedir. Her iki senaryo için de, klasik deterministik işaretlemenin

stokastik işaretleme vasıtasıyla geliştirilebilmesi ve geliştirilememesine karar

veren yeter koşullar elde edilmektedir. Tezin ikinci kısmında, ortalama güç kısıtı

ve Gauss’tan farklı bir gürültü altında çalışan ikili haberleşme sistemleri için opti-

mal sezici ve işaretlerin ortak tasarlanması çalışılmaktadır. Optimal çözümün en

fazla iki işaret seviyesi arasında rastgeleleştirme ve buna karşılık gelen maksimum

sonsal olasılıık (MAP) sezicisinin kullanımını içerdiği gösterilmektedir. Tezin en
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son kısmında stokastik işaretleme, güç kısıtlı sayıl değerli ikili haberleşme sis-

temleri için kanal durum bilgisi (CSI) belirsizliği altında incelenmektedir. İlk

olarak, halihazırdaki hatalı kanal katsayısı kullanımına dayalı stokastik işaretleme

uygulanarak, hatalı kanal durum bilgisinin etkileri incelenmektedir. CSI be-

lirsizliği altında, deterministik işaretlemenin stokastik işaretleme vasıtasıyla

geliştirilebilmesi ve geliştirilememesi için yeter koşullar elde edilmektedir. Son-

rasında, CSI belirsizliği altında stokastik işaretleme tasarımı için gürbüz stokastik

işaretleme ve ortalamayla stokastik işaretleme isimli iki farklı işaretleme strate-

jisi önerilmektedir. Gürbüz stokastik işaretleme probleminin, çözümü daha ko-

lay olan eşdeğer bir formunun elde edilebilmesi için yeter koşullar sunulmaktadır.

Ayrıca, hatalı kanal katsayısına dayalı stokastik işaretleme, ortalamayla stokastik

işaretleme ve bazı koşullar altında gürbüz stokastik işaretleme için, her bir sem-

bole özel optimal işaretin en fazla iki işaret değeri arasındaki rastgeleleştirme

ile ifade edilebileceği gösterilmektedir. Optimal stokastik işaretleme problem-

lerinin çözümü, parçacık sürü optimizasyonu (PSO) gibi küresel optimizasyon

yöntemleri veya konveks gevşetme teknikleri kullanılarak elde edilebilmektedir.

Her bir kısmın sonunda, kuramsal sonuçları açıklamak için sayısal örnekler sunul-

maktadır.

Anahtar Kelimeler: Stokastik işaretleme, ortalama hata olasılığı, toplanır gürültü

kanalı, sezimleme, ikili haberleşme, maksimum sonsal olasılık (MAP) kuralı,

küresel optimizasyon, kanal durum bilgisi.

vi



ACKNOWLEDGMENTS

I would like to thank Asst. Prof. Dr. Sinan Gezici for his valuable guidance,

time and continuous support throughout this study. It was a great pleasure and

experience for me to work with him. I would also like to thank Prof. Dr. Orhan

Arıkan for his constructive comments and advices to our study. In addition, I

would like to thank Asst. Prof. Dr. Ali Cafer Gürbüz for agreeing to serve in
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Chapter 1

INTRODUCTION

1.1 Objectives and Contributions of the Thesis

Optimal signaling in the presence of zero-mean Gaussian noise has been studied

extensively in the literature [1], [2]. In binary communications systems over

additive white Gaussian noise channels and under average power constraints

in the form of E{|Si|2} ≤ A for i = 0, 1, the average probability of error is

minimized when deterministic antipodal signals (S0 = −S1) are used at the

power limit (|S0|2 = |S1|2 = A) and a maximum a posteriori probability (MAP)

decision rule is employed at the receiver [2]. In addition, for vector observations,

selecting the deterministic signals along the eigenvector of the covariance matrix

of the Gaussian noise corresponding to the minimum eigenvalue minimizes the

average probability of error under power constraints in the form of ∥S0∥2 ≤ A

and ∥S1∥2 ≤ A [2, pp.61–63]. In [3], the optimal deterministic signaling is

investigated for nonequal prior probabilities under an average power constraint

in the form of
∑2

i=1 πiE{|Si|2} ≤ A, where πi represents the prior probability of

symbol i, when the noise is zero-mean Gaussian and the MAP decision rule is

employed at the receiver. It is shown that the optimal signaling strategy is on-off
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keying for coherent receivers when the signals have nonnegative correlation and

for noncoherent receivers with any arbitrary correlation value. In addition, it

is also concluded from [3] that, for coherent systems, the best performance is

achieved when the signals have a correlation of −1 and the power is distributed

among the signals in such a way that the Euclidean distance between them is

maximized under the given power constraint. In [4], a source-controlled turbo

coding algorithm is proposed for nonuniform binary memoryless sources over

AWGN channels by utilizing asymmetric nonbinary signal constellations.

Although the average probability of error expressions and optimal signaling

techniques are well-known when the noise is Gaussian, the noise can have signif-

icantly different probability distribution than the Gaussian distribution in some

cases due to effects such as multiuser interference and jamming [5]-[7]. In [8],

additive noise channels with binary inputs and scalar outputs are studied, and

the worst-case noise distribution is characterized. Specifically, it is shown that

the least-favorable noise distribution that maximizes the average probability of

error and minimizes the channel capacity is a mixture of discrete lattices [8]. A

similar problem is considered in [9] for a binary communications system in the

presence of an additive jammer, and properties of optimal jammer distribution

and signal distribution are obtained.

In [6], the convexity properties of the average probability of error are in-

vestigated for binary-valued scalar signals over additive noise channels under

an average power constraint. It is shown that the average probability of error

is a convex nonincreasing function for unimodal differentiable noise probability

density functions (PDFs) when the receiver employs maximum likelihood (ML)

detection. Based on this result, it is concluded that randomization of signal

values (or, stochastic signal design) cannot improve error performance for the

considered communications system. Then, the problem of maximizing the av-

erage probability of error is studied for an average power-constrained jammer,
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and it is shown that the optimal solution can be obtained when the jammer

randomizes its power between at most two power levels. Finally, the results

are applied to multiple additive noise channels, and optimum channel switching

strategy is obtained as time-sharing between at most two channels and power

levels [6]. In [10], the results in [6] are generalized by exploring the convexity

properties of the error rates for constellations with arbitrary shape, order and

dimensionality for ML detector in additive white Gaussian noise (AWGN) with

no fading or frequency flat slowly fading channels. Also, the discussion in [6] for

optimum power/time sharing for a jammer to maximize average probability of

error and optimum transmission strategy to minimize average probability of error

is extended to arbitrary multidimensional constellations for AWGN channels.

Optimal randomization between two deterministic signal pairs and the cor-

responding ML decision rules is studied in [11] for an average power-constrained

antipodal binary communications system, and it is shown that power random-

ization can result in significant performance improvement. In [12], the problem

of pricing and transmission scheduling is investigated for an access point in a

wireless network, and it is proven that the randomization between two business

decision and price pairs maximizes the time-average profit of the access point.

Although the problem studied in [12] is in a different context, its theoretical

approach is similar to those in [6] and [11] for obtaining optimal signal distribu-

tions.

Although the average probability of error of a binary communications system

is minimized by conventional deterministic signaling in additive Gaussian noise

channels [2], the studies in [6, 9, 11, 12] imply that stochastic signaling can some-

times achieve lower average probability of error when the noise is non-Gaussian.

Therefore, a more generic formulation of the optimal signaling problem for bi-

nary communications systems can be stated as obtaining the optimal probability

distributions of signals S0 and S1 such that the average probability of error of
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the system is minimized under certain constraints on the moments of S0 and S1.

It should be noted that the main difference of this optimal stochastic signaling

approach from the conventional (deterministic) approach [1, 2] is that signals

S0 and S1 are considered as random variables in the former whereas they are

regarded as deterministic quantities in the latter.

In the first section of Chapter 2, optimal stochastic signaling is studied un-

der second and fourth moment constraints for a given decision rule (detector)

at the receiver. Firstly, a generic formulation (i.e., for arbitrary receivers and

noise probability distributions) of the optimal stochastic signaling problem is

performed under both average power and peakedness constraints on individual

signals. Then, sufficient conditions to determine whether stochastic signaling

can provide error performance improvement compared to the conventional (de-

terministic) signaling are derived. Also, the statistical characterization of optimal

signals is provided and it is shown that an optimal stochastic signal can be ex-

pressed as a randomization of at most three different signals levels. The power

constraints achieved by optimal signals are specified under various conditions.

In addition, two optimization techniques, namely particle swarm optimization

(PSO) [13] and convex relaxation [14], are studied to obtain optimal and close-

to-optimal solutions to the stochastic signaling problem. Also, simulation results

are presented to investigate the theoretical results. Finally, it is explained that

the results obtained for minimizing the average probability of error for a binary

communications system can be extended to M -ary systems, as well as to other

performance criteria than the average probability of error, such as the Bayes risk

[2, 15]. In the second section of Chapter 2, optimal stochastic signaling based

on an average power constraint in the form of
∑2

i=1 πiE{|Si|2} ≤ A is studied.

Similarly to the first section, optimal stochastic signaling problem is formulated

for any given fixed receiver and noise probability distribution and sufficient con-

ditions for improvability and nonimprovability of conventional deterministic sig-

naling via stochastic approach are obtained. In addition, the statistical structure
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of the optimal stochastic signals is investigated and it is shown that an optimal

stochastic signal can be represented by a randomization between at most two sig-

nal levels for each symbol. Finally, by using particle swarm optimization (PSO),

optimal stochastic signals are calculated and numerical examples are presented

to illustrate the theoretical results.

In Chapter 3, the joint optimization of stochastic signaling and the decision

rule (detector) is studied under average power constraints on individual signals.

Firstly, the joint optimization problem, which involves optimization over a func-

tion space, is formulated. Then, theoretical results are provided to show that the

optimal solution can be obtained by searching over a number of variables instead

of functions, which greatly simplifies the original formulation. In addition, par-

ticle swarm optimization (PSO) is employed to obtain the optimal signals with

the decision rule and a numerical example is provided.

In Chapter 4, the effects of imperfect channel state information (CSI) on the

performance of stochastic signaling and the design of stochastic signals under

CSI uncertainty are studied. Firstly, stochastic signaling based on imperfect CSI

information at the transmitter is considered to observe the effects of imperfect

channel state information. It is shown that an optimal stochastic signal involves

randomization between at most two signal levels for the formulated problem.

Then by deriving upper and lower bounds on the average probability of error

for stochastic signaling under CSI uncertainty, sufficient conditions are obtained

to specify when the use of stochastic signaling can or cannot improve the per-

formance of conventional signaling. Secondly, two different methods, namely

robust stochastic signaling and stochastic signaling with averaging, are consid-

ered for designing stochastic signals under CSI uncertainty. In robust stochastic

signaling, signals are designed for the worst-case channel coefficients, and the

optimal signaling problem is formulated as a minimax problem [2, 16]. Then,

sufficient conditions under which the generic minimax problem is equivalent to
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designing signals for the smallest possible magnitude of the channel coefficient

are obtained. In stochastic signaling with averaging approach, the transmitter

assumes a probability distribution for the channel coefficient, and stochastic sig-

nals are designed by averaging over different channel coefficient values based on

that probability distribution. It is shown that optimal signals obtained after this

averaging method and those for the equivalent form of robust signaling method

can be represented by at most two signal levels for each symbol. Solutions for the

optimization problems can be calculated by using Particle Swarm Optimization

(PSO) or convex relaxation approaches can be employed as in [14, 17, 18, 19].

Finally, simulations are performed and two numerical examples are presented to

illustrate the theoretical results.

1.2 Organization of the Thesis

The organization of this thesis is as follows. In Chapter 2, optimal stochastic

signaling is studied for any given detector for binary communications systems

under second and fourth moment constraints on individual signals firstly and

under an average power constraint secondly.

In Chapter 3, joint design of optimal signals and optimal detector for power

constrained communication systems is investigated.

In Chapter 4, stochastic signaling is studied for power constrained scalar

valued binary communications systems in the presence of uncertainties in channel

state information (CSI).
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Chapter 2

OPTIMAL STOCHASTIC

SIGNALING FOR POWER

CONSTRAINED

COMMUNICATION SYSTEMS

In this chapter, optimal stochastic signaling is studied for the detection of scalar-

valued binary signals in additive noise channels for a given decision rule. In the

first section, optimization of the signals is performed under second and fourth

moment constraints. For this scenario, sufficient conditions are obtained to spec-

ify when the use of stochastic signals instead of deterministic ones can or cannot

improve the error performance of a given binary communications system. Also,

statistical characterization of optimal signals is presented, and it is shown that an

optimal stochastic signal can be represented by a randomization of at most three

different signal levels. In addition, the power constraints achieved by optimal

stochastic signals are specified under various conditions. Furthermore, two ap-

proaches for solving the optimal stochastic signaling problem are proposed; one
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based on particle swarm optimization (PSO) and the other based on convex re-

laxation of the original optimization problem. Finally, simulations are performed

to investigate the theoretical results, and extensions of the results toM -ary com-

munications systems and to other criteria than the average probability of error

are discussed.

In the second section, optimal signaling is studied in the presence of an aver-

age power constraint. Sufficient conditions are derived to determine the cases in

which stochastic signaling can or cannot outperform the conventional signaling

in this case as well. Also, statistical characterization of the optimal signals is

provided and it is obtained that an optimal stochastic signal can be represented

by a randomization of at most two different signal levels for each symbol for

this scenario. In addition, via global optimization techniques, the solution of the

generic optimal stochastic signaling problem is obtained, and theoretical results

are investigated via numerical examples.

2.1 Stochastic Signaling Under Second and

Fourth Moment Constraints

2.1.1 System Model and Motivation

Consider a scalar binary communications system, as in [6], [8] and [20], in which

the received signal is expressed as

Y = Si +N , i ∈ {0, 1} , (2.1)

where S0 and S1 represent the transmitted signal values for symbol 0 and symbol

1, respectively, and N is the noise component that is independent of Si. In

addition, the prior probabilities of the symbols, which are represented by π0 and

π1, are assumed to be known.
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As stated in [6], the scalar channel model in (2.1) provides an abstraction for

a continuous-time system that processes the received signal by a linear filter and

samples it once per symbol interval. In addition, although the signal model in

(2.1) is in the form of a simple additive noise channel, it also holds for flat-fading

channels assuming perfect channel estimation. In that case, the signal model in

(2.1) can be obtained after appropriate equalization [1].

It should be noted that the probability distribution of the noise component

in (2.1) is not necessarily Gaussian. Due to interference, such as multiple-access

interference, the noise component can have a significantly different probability

distribution from the Gaussian distribution [5], [6], [21].

A generic decision rule is considered at the receiver to determine the symbol

in (2.1). That is, for a given observation Y = y, the decision rule ϕ(y) is specified

as

ϕ(y) =


0 , y ∈ Γ0

1 , y ∈ Γ1

, (2.2)

where Γ0 and Γ1 are the decision regions for symbol 0 and symbol 1, respectively

[2].

The aim is to design signals S0 and S1 in (2.1) in order to minimize the

average probability of error for a given decision rule, which is expressed as

Pavg = π0P0(Γ1) + π1P1(Γ0) , (2.3)

where Pi(Γj) is the probability of selecting symbol j when symbol i is transmit-

ted. In practical systems, there are constraints on the average power and the

peakedness of signals, which can be expressed as [22]

E{|Si|2} ≤ A , E{|Si|4} ≤ κA2 , (2.4)
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for i = 0, 1, where A is the average power limit and the second constraint imposes

a limit on the peakedness of the signal depending on the κ ∈ (1,∞) parameter.1

Therefore, the average probability of error in (2.3) needs to be minimized under

the second and fourth moment constraints in (2.4).

The main motivation for the optimal stochastic signaling problem is to im-

prove the error performance of the communications system by considering the

signals at the transmitter as random variables and finding the optimal proba-

bility distributions for those signals [6]. Therefore, the generic problem can be

formulated as obtaining the optimal probability distributions of the signals S0

and S1 for a given decision rule at the receiver under the average power and

peakedness constraints in (2.4).

Since the optimal signal design is performed at the transmitter, the transmit-

ter is assumed to have the knowledge of the statistics of the noise at the receiver

and the channel state information. Although this assumption may not hold in

some cases, there are certain scenarios in which it can be realized.2 Consider,

for example, the downlink of a multiple-access communications system, in which

the received signal can be modeled as Y = S(1) +
∑K

k=2 ξkS
(k) + η , where S(k)

is the signal of the kth user, ξk is the correlation coefficient between user 1 and

user k, and η is a zero-mean Gaussian noise component. For the desired signal

component S(1), N =
∑K

k=2 ξkS
(k) + η forms the total noise, which has Gaus-

sian mixture distribution. When the receiver sends via feedback the variance of

noise η and the signal-to-noise ratio (SNR) to the transmitter, the transmitter

can fully characterize the PDF of the total noise N , as it knows the transmitted

signal levels of all the users and the correlation coefficients.

1Note that for E{|Si|2} = A, the second constraint becomes E{|Si|4}/(E{|Si|2})2 ≤ κ,

which limits the kurtosis of the signal [22].
2As discussed in Section 2.1.5, the problem studied in this section can be considered for

other systems than communications; hence, the practicality of the assumption depends on the

specific application domain.
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In the conventional signal design, S0 and S1 are considered as deterministic

signals, and they are set to S0 = −
√
A and S1 =

√
A [1], [2]. In that case, the

average probability of error expression in (2.3) becomes

Pconv
avg = π0

∫
Γ1

pN

(
y +

√
A
)
dy + π1

∫
Γ0

pN

(
y −

√
A
)
dy , (2.5)

where pN(·) is the PDF of the noise in (2.1). As investigated in Section 2.1.2.1,

the conventional signal design is optimal for certain classes of noise PDFs and

decision rules. However, in some cases, use of stochastic signals instead of de-

terministic ones can improve the system performance. In the following section,

conditions for optimality and suboptimality of the conventional signal design are

derived, and properties of optimal signals are investigated.

2.1.2 Optimal Stochastic Signaling

Instead of employing constant levels for S0 and S1 as in the conventional case,

consider a more generic scenario in which the signal components can be stochas-

tic. The aim is to obtain the optimal PDFs for S0 and S1 in (2.1) that minimize

the average probability of error under the constraints in (2.4).

Let pS0(·) and pS1(·) represent the PDFs for S0 and S1, respectively. Then,

the average probability of error for the decision rule in (2.2) can be expressed

from (2.3) as

Pstoc
avg = π0

∫ ∞

−∞
pS0(t)

∫
Γ1

pN(y − t) dy dt+ π1

∫ ∞

−∞
pS1(t)

∫
Γ0

pN(y − t) dy dt .

(2.6)

Therefore, the optimal stochastic signal design problem can be stated as

min
pS0

,pS1

Pstoc
avg

subject to E{|Si|2} ≤ A , E{|Si|4} ≤ κA2 , i = 0, 1 . (2.7)
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Note that there are also implicit constraints in the optimization problem in

(2.7), since pSi
(t) represents a PDF. Namely, pSi

(t) ≥ 0 ∀t and
∫∞
−∞ pSi

(t)dt = 1

should also be satisfied by the optimal solution.

Since the aim is to obtain optimal stochastic signals for a given receiver, the

decision rule in (2.2) is fixed (i.e., predefined Γ0 and Γ1). For a given decision

rule (detector) and a noise PDF, changing pS0 has no effect on the second term in

(2.6) and the constraints for S1 in (2.7). Similarly, changing pS1 has no effect on

the first term in (2.6) and the constraints for S0 in (2.7). Therefore, the problem

of minimizing the expression in (2.6) over pS0 and pS1 under the constraints for S0

and S1 in (2.7) is equivalent to minimizing the first term in (2.6) over pS0 under

the constraints for S0 in (2.7) and minimizing the second term in (2.6) over pS1

under the constraints for S1 in (2.7). Therefore, the signal design problems for S0

and S1 can be separated and expressed as two decoupled optimization problems.

For example, the optimal signal for symbol 1 can be obtained from the solution

of the following optimization problem:

min
pS1

∫ ∞

−∞
pS1(t)

∫
Γ0

pN(y − t) dy dt

subject to E{|S1|2} ≤ A , E{|S1|4} ≤ κA2 . (2.8)

A similar problem can be formulated for S0 as well. Since the signals can be

designed separately, the remainder of the discussion focuses on the design of

optimal S1 according to (2.8).

The objective function in (2.8) can be expressed as the expectation of

G(S1) ,
∫
Γ0

pN(y − S1) dy (2.9)

over the PDF of S1. Then, the optimization problem in (2.8) becomes

min
pS1

E{G(S1)}

subject to E{|S1|2} ≤ A , E{|S1|4} ≤ κA2 . (2.10)
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It is noted that (2.10) provides a generic formulation that is valid for any noise

PDF and detector structure. In the following sections, the signal subscripts

are dropped for notational simplicity. Note that G(x) in (2.9) represents the

probability of deciding symbol 0 instead of symbol 1 when signal S1 takes a

constant value of x; that is, S1 = x .

2.1.2.1 On the Optimality of the Conventional Signaling

Under certain circumstances, using the conventional signaling approach, i.e.,

setting S =
√
A (or, pS(x) = δ(x −

√
A) ), solves the optimization problem

in (2.10). For example, if G(x) achieves its minimum at x =
√
A ; that is,

argmin
x
G(x) =

√
A , then pS(x) = δ(x −

√
A) becomes the optimal solution

since it yields the minimum value for E{G(S1)} and also satisfies the constraints.

However, this case is not very common as G(x), which is the probability of de-

ciding symbol 0 instead of symbol 1 when S = x, is usually a decreasing function

of x; that is, when a larger signal value x is used, smaller error probability can

be obtained. Therefore, the following more generic condition is derived for the

optimality of the conventional algorithm.

Proposition 2.1: If G(x) is a strictly convex and monotone decreasing func-

tion, then pS(x) = δ(x−
√
A) solves the optimization problem in (2.10).

Proof : The proof is obtained via contradiction. First, it is assumed that

there exists a PDF pS2(x) for signal S that makes the conventional solution

suboptimal; that is, E{G(S)} < G(
√
A) under the constraints in (2.10).

Since G(x) is a strictly convex function, Jensen’s inequality implies that

E{G(S)} > G (E{S}). Therefore, as G(x) is a monotone decreasing function,

E{S} >
√
A must be satisfied in order for E{G(S)} < G(

√
A) to hold true.
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On the other hand, Jensen’s inequality also states that E{S} >
√
A implies

E{S2} > (E{S})2 > A; that is, the constraint on the average power is violated

(see (2.10)). Therefore, it is proven that no PDF can provide E{G(S)} < G(
√
A)

and satisfy the constraints under the assumptions in the proposition. �

As an example application of Proposition 2.1, consider a zero-mean Gaussian

noise N in (2.1) with pN(x) =
1√
2πσ

exp
(
− x2

2σ2

)
, and a decision rule of the form

Γ0 = (−∞, 0] and Γ1 = [0,∞); i.e., the sign detector. Then, G(x) in (2.9) can

be obtained as

G(x) =

∫ 0

−∞

1√
2π σ

exp

(
−(y − x)2

2σ2

)
dy = Q

(x
σ

)
, (2.11)

where Q(x) = (1/
√
2π)

∫∞
x

exp(−t2/2) dt defines the Q-function. It is observed

that G(x) in (2.11) is a monotone decreasing and strictly convex function for

x > 0.3 Therefore, the optimal signal is specified by pS(x) = δ(x −
√
A) from

Proposition 2.1. Similarly, the optimal signal for symbol 0 can be obtained as

pS(x) = δ(x+
√
A). Hence, the conventional signaling is optimal in this scenario.

2.1.2.2 Sufficient Conditions for Improvability

In this section, the aim is to determine when it is possible to improve the perfor-

mance of the conventional signaling approach via stochastic signaling. A simple

observation of (2.10) reveals that if the minimum of G(x) =
∫
Γ0
pN(y − x)dy

is achieved at xmin with x2min < A, then pS(x) = δ(x − xmin) becomes a better

solution than the conventional one. In other words, if the noise PDF is such

that the probability of selecting symbol 0 instead of symbol 1 is minimized for a

signal value of S1 = xmin with x2min < A, then the conventional solution can be

improved. Another sufficient condition for the conventional algorithm to be sub-

optimal is to have a positive first-order derivative of G(x) at x =
√
A , which can

3It is sufficient to consider the positive signal values only since G(x) is monotone decreasing

and the constraints x2 and x4 are even functions. In other words, no negative signal value can

be optimal since its absolute value has the same constraint value but smaller G(x).
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also be expressed from (2.9) as −
∫
Γ0
p

′
N(y−

√
A ) dy > 0, where p

′
N(·) denotes the

derivative of pN(·). In this case, pS2(x) = δ(x−
√
A+ ϵ) yields a smaller average

probability of error than the conventional solution for infinitesimally small ϵ > 0

values.

Although both of the conditions above are sufficient for improvability of the

conventional algorithm, they are rarely met in practice since G(x) is commonly

a decreasing function of x as discussed before. Therefore, in the following, a

sufficient condition is derived for more generic and practical conditions.

Proposition 2.2: Assume that G(x) is twice continuously differentiable

around x =
√
A . Then, if

∫
Γ0

(
p

′′
N (y −

√
A ) + p

′
N(y −

√
A )/

√
A
)
dy < 0 is

satisfied, pS(x) = δ(x−
√
A) is not an optimal solution to (2.10).

Proof : It is first observed from (2.9) that the condition in the proposition is

equivalent to G
′′
(
√
A) < G

′
(
√
A)/

√
A . Therefore, in order to prove the subop-

timality of the conventional solution pS(x) = δ(x−
√
A), it is shown that when

G
′′
(
√
A) < G

′
(
√
A)/

√
A, there exists λ ∈ (0, 1), ϵ > 0 and ∆ > 0 such that

pS2(x) = λ δ(x−
√
A+ ϵ) + (1− λ) δ(x−

√
A−∆) has a lower error probability

than pS(x) while satisfying all the constraints in (2.10). More specifically, the

existence of λ ∈ (0, 1), ϵ > 0 and ∆ > 0 that satisfy

λG(
√
A− ϵ) + (1− λ)G(

√
A+∆) < G(

√
A) (2.12)

λ(
√
A− ϵ)2 + (1− λ)(

√
A+∆)2 = A (2.13)

λ(
√
A− ϵ)4 + (1− λ)(

√
A+∆)4 ≤ κA2 (2.14)

is sufficient to prove the suboptimality of the conventional signal design.

From (2.13), the following equation is obtained.

λ ϵ2 + (1− λ)∆2 = −2
√
A [(1− λ)∆− λ ϵ] . (2.15)
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If infinitesimally small ϵ and ∆ values are selected, (2.12) can be approximated

as

λ

[
G(

√
A)− ϵG

′
(
√
A) +

ϵ2

2
G

′′
(
√
A)

]
+ (1− λ)

[
G(

√
A) + ∆G

′
(
√
A) +

∆2

2
G

′′
(
√
A)

]
< G(

√
A) +G

′
(
√
A) [(1− λ)∆− λ ϵ] +

G
′′
(
√
A)

2

[
λ ϵ2 + (1− λ)∆2

]
< 0

(2.16)

When the condition in (2.15) is employed, (2.16) becomes

[(1− λ)∆− λ ϵ]
(
G

′
(
√
A)−

√
AG

′′
(
√
A)
)
< 0 . (2.17)

Since (1−λ)∆−λ ϵ is always negative as can be noted from (2.15), the G
′
(
√
A)−

√
AG

′′
(
√
A) term in (2.17) must be positive to satisfy the condition. In other

words, when G
′′
(
√
A) < G

′
(
√
A)/

√
A , pS2(x) can have a smaller error value

than that of the conventional algorithm for infinitesimally small ϵ and ∆ values

that satisfy (2.15). To complete the proof, the condition in (2.14) needs to be

verified for the specified ϵ and ∆ values. From (2.15), (2.14) can be expressed,

after some manipulation, as

A2 + 16A
√
A [(1− λ)∆− λ ϵ]− 4

√
A
[
λ ϵ3 − (1− λ)∆3

]
+
[
λ ϵ4 − (1− λ)∆4

]
≤ κA2 . (2.18)

Since (1−λ)∆−λ ϵ is negative, the inequality can be satisfied for infinitesimally

small ϵ and ∆, for which the third and the fourth terms on the left-hand-side

become negligible compared to the first two. �

The condition in Proposition 2.2 can be expressed more explicitly in practice.

For example, if Γ0 is the form of an interval, say [τ1, τ2], then the condition in

the proposition becomes p
′
N(τ2−

√
A )−p

′
N(τ1−

√
A )+

(
pN(τ2−

√
A )−pN(τ1−

√
A )
)
/
√
A < 0. This inequality can be generalized in a straightforward manner

when Γ0 is the union of multiple intervals.

Since the condition in Proposition 2.2 is equivalent to G
′′
(
√
A) <

G
′
(
√
A)/

√
A (see (2.9)), the intuition behind the proposition can be explained as
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follows. As the optimization problem in (2.10) aims to minimize E{G(S)} while

keeping E{S2} and E{S4} below thresholds A and κA2, respectively, a better

solution than pS(x) = δ(x −
√
A) can be obtained with multiple mass points if

G(x) is decreasing at an increasing rate (i.e., with a negative second derivative)

such that an increase from x =
√
A causes a fast decrease in G(x) but relatively

slow increase in x2 and x4, and a decrease from x =
√
A causes a fast decrease in

x2 and x4 but relatively slow increase in G(x). In that case, it becomes possible

to use a PDF with multiple mass points and to obtain a smaller E{G(S)} while

satisfying E{S2} ≤ A and E{S4} ≤ κA2.

Proposition 2.2 provides a simple sufficient condition to determine if there is

any possibility for performance improvement over the conventional signal design.

For a given noise PDF and a decision rule, the condition in Proposition 2.2 can

be evaluated in a straightforward manner. In order to provide an illustrative

example, consider the noise PDF

pN(y) =


y2 , |y| ≤ 1.1447

0 , |y| > 1.1447

, (2.19)

and a sign detector at the receiver; that is, Γ0 = (−∞, 0]. Then, the condition

in Proposition 2.2 can be evaluated as

p
′

N(−
√
A ) + pN(−

√
A )/

√
A < 0 . (2.20)

Assuming that the average power is constrained to A = 0.64, the inequality

in (2.20) becomes 2(−0.8) + (−0.8)2/0.8 < 0. Hence, Proposition 2.2 implies

that the conventional solution is not optimal for this problem. For example,

pS(x) = 0.391 δ(x − 0.988) + 0.333 δ(x − 0.00652) + 0.276 δ(x − 0.9676) yields

an average error probability of 0.2909 compared to 0.3293 corresponding to the

conventional solution pS(x) = δ(x− 0.8) , as studied in Section 2.1.3.

Although the noise PDF in (2.19) is not common in practice, improvements

over the conventional algorithm are possible and Proposition 2.2 can be applied
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also for certain types of Gaussian mixture noise (see Section 2.1.3), which is ob-

served more frequently in practical scenarios [21]-[24]. For example, in multiuser

wireless communications, the desired signal is corrupted by interfering signals

from other users as well as zero-mean Gaussian noise, which altogether result in

Gaussian mixture noise [21].

2.1.2.3 Statistical Characteristics of Optimal Signals

In this section, PDFs of optimal signals are characterized and it is shown that an

optimal signal can be represented by a randomization of at most three different

signal levels. In addition, it is proven that the optimal signal achieves at least

one of the second and fourth moment constraints in (2.10) for most practical

cases.

In the following proposition, it is stated that, in most practical scenarios, an

optimal stochastic signal can be represented by a discrete random variable with

no more than three mass points.

Proposition 2.3: Assume that the possible signal values are specified by

|S| ≤ γ for a finite γ > 0, and G(·) in (2.9) is continuous. Then, an optimal

solution to (2.10) can be expressed in the form of pS(x) =
∑3

i=1 λi δ(x − xi),

where
∑3

i=1 λi = 1 and λi ≥ 0 for i = 1, 2, 3 .

Proof : In order to prove Proposition 2.3, we take an approach similar to

those in [12] and [25]. First, the following set is defined:

U =
{
(u1, u2, u3) : u1 = G(x), u2 = x2, u3 = x4, for |x| ≤ γ

}
. (2.21)

Since G(x) is continuous, the mapping from [−γ, γ] to R3 defined by F (x) =

(G(x), x2, x4) is continuous. Since the continuous image of a compact set is

compact, U is a compact set [26].

18



Let V represent the convex hull of U . Since U is compact, the convex hull V

of U is closed [26]. Also, the dimension of V should be smaller than or equal to

3, since V ⊆ R3. In addition, let W be the set of all possible conditional error

probability P1(Γ0), second moment, and fourth moment triples; i.e.,

W =
{
(w1, w2, w3) : w1 =

∫ ∞

−∞
pS(x)G(x)dx, w2 =

∫ ∞

−∞
pS(x)x

2dx,

w3 =

∫ ∞

−∞
pS(x)x

4dx, ∀ pS(x), |x| ≤ γ
}
. (2.22)

where pS(x) is the signal PDF.

Similar to [25], V ⊆ W can be proven as follows. Since V is the convex hull

of U , each element of V can be expressed as v =
∑L

i=1 λi (G(xi), x
2
i , x

4
i ), where∑L

i=1 λi = 1, and λi ≥ 0 ∀i. Considering set W , it has an element that is equal

to v for pS(x) =
∑L

i=1 λi δ(x − xi). Hence, each element of V also exists in W .

On the other hand, since for any vector random variable Θ that takes values in

set Ω, its expected value E{Θ} is in the convex hull of Ω [12], it is concluded

from (2.21) and (2.22) that W is in the convex hull V of U ; that is, V ⊇ W [19].

Since W ⊇ V and V ⊇ W , it is concluded that W = V . Therefore,

Carathéodory’s theorem [27], [28] implies that any point in V (hence, in W )

can be expressed as the convex combination of at most 4 points in U . Since an

optimal PDF should minimize the average probability of error, it corresponds to

the boundary of V . Since V is a closed set as discussed at the beginning of the

proof, it contains its own boundary. Since any point at the boundary of V can be

expressed as the convex combination of at most 3 elements in U [27], an optimal

PDF can be represented by a discrete random variable with 3 mass points �.

The assumption in the proposition, which states that the possible signal val-

ues belong to set [−γ, γ], is realistic for practical communications systems since

arbitrarily large positive and negative signal values cannot be generated at the

transmitter. In addition, for most practical scenarios, G(·) in (2.9) is continuous
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since the noise at the receiver, which is commonly the sum of zero-mean Gaus-

sian thermal noise and interference terms that are independent from the thermal

noise, has a continuous PDF.

The result in Proposition 2.3 can be extended to the problems with more

constraints. Let E{G(S)} be the objective function to minimize over possible

PDFs pS(x), subject to E{Hi(S)} ≤ Ai for i = 1, . . . , Nc. Then, under the

conditions in the proposition, this proof implies that there exists an optimal

PDF with at most Nc + 1 mass points.4

The significance of Proposition 2.3 lies in the fact that it reduces the opti-

mization problem in (2.10) from the space of all PDFs that satisfy the second

and fourth moment constraints to the space of discrete PDFs with at most 3

mass points that satisfy the second and fourth moment constraints. In other

words, instead of optimization over functions, an optimization over a vector of

6 elements (namely, 3 mass point locations and their weights) can be considered

for the optimal signaling problem as a result of Proposition 2.3. In addition, this

result facilitates a convex relaxation of the optimization problem in (2.10) for

any noise PDF and decision rule as studied in Section 2.1.2.4.

Next, the second and the fourth moments of the optimal signals are investi-

gated. Let xmin represent the signal level that yields the minimum value of G(x)

in (2.9); that is, xmin = argmin
x
G(x). If xmin <

√
A, the optimal signal has the

constant value of xmin and the second and fourth moments are given by x2min < A

and x4min < κA2, respectively. However, it is more common to have xmin >
√
A

since larger signal values are expected to reduce G(x) as discussed before. In

that case, the following proposition states that at least one of the constraints in

(2.10) is satisfied.

4It is assumed that H1(x), . . . , HNc(x) are bounded functions for the possible values of the

signal.

20



Proposition 2.4: Let xmin = argmin
x
G(x) be the unique minimum of G(x) .

a) If A2 < x4min < κA2, then the optimal signal satisfies E{S2} = A.

b) If x4min > κA2, then the optimal signal satisfies at least one of E{S2} = A

and E{S4} = κA2.

Proof : a) Let A2 < x4min < κA2 and pS1(x) represent an optimal signal

PDF with w1 , E{G(S)}, w2 , E{S2} and w3 , E{S4}, where w2 < A and

w3 ≤ κA2. In the following, it is shown that such a signal cannot be optimal

(hence, a contradiction), and an optimal signal needs to satisfy E{S2} = A. To

that aim, define another signal PDF as follows:

pS2(x) =
A− w2

x2min − w2

δ(x− xmin) +
x2min − A

x2min − w2

pS1(x) . (2.23)

It can be shown for pS2(x) that

E{G(S)} =
A− w2

x2min − w2

G(xmin) +
x2min − A

x2min − w2

w1 < w1 , (2.24)

E{S2} =
A− w2

x2min − w2

x2min +
x2min − A

x2min − w2

w2 = A , (2.25)

E{S4} =
A− w2

x2min − w2

x4min +
x2min − A

x2min − w2

w3 < κA2 . (2.26)

The inequality in (2.24) is obtained by observing that G(xmin) is the unique

minimum value of G(x) and that no signals can achieve E{G(S)} = G(xmin)

since xmin >
√
A. The inequality in (2.26) is achieved since x4min < κA2 and

w3 ≤ κA2. From (2.24)-(2.26), it is concluded that pS2(x) defines a better signal

than pS1(x) does. In other words, the optimal signal cannot have a smaller

average power than A; that is, E{S2} = A must be satisfied by the optimal

signal.

b) Now assume x4min > κA2 and pS1(x) represents an optimal signal PDF with

w1 , E{G(S)}, w2 , E{S2} and w3 , E{S4}, where w2 < A and w3 < κA2. In

the following, it is proven that w2 < A and w3 < κA2 cannot be satisfied at the

same time for an optimal signal.
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Consider pS2(x) in (2.23) and pS3(x) below:

pS3(x) =
κA2 − w3

x4min − w3

δ(x− xmin) +
x4min − κA2

x4min − w3

pS1(x) . (2.27)

For both pS2(x) and pS3(x), it can be shown that E{G(S)} < w1 since G(xmin) <

w1. For pS2(x), the second and fourth moment constraints can be expressed as

E{S2} =
A− w2

x2min − w2

x2min +
x2min − A

x2min − w2

w2 = A , (2.28)

E{S4} =
A− w2

x2min − w2

x4min +
x2min − A

x2min − w2

w3 , β1 . (2.29)

On the other hand, for pS3(x), the constraints are given by

E{S2} =
κA2 − w3

x4min − w3

x2min +
x4min − κA2

x4min − w3

w2 , β2 , (2.30)

E{S4} =
κA2 − w3

x4min − w3

x4min +
x4min − κA2

x4min − w3

w3 = κA2 . (2.31)

Now it is claimed that at least one of the conditions β1 ≤ κA2 or β2 ≤ A

must be true. In other words, it is not possible to have β1 > κA2 and β2 > A

at the same time. To prove this, the condition for β1 > κA2 is considered first.

Since x4min > κA2 and w3 < κA2, β1 > κA2 can be expressed from (2.29) as

x4min − κA2

κA2 − w3

>
x2min − A

A− w2

. (2.32)

Next, the β2 > A condition is considered. Since x2min > A and w2 < A, that

condition can be expressed, from (2.30), as

x4min − κA2

κA2 − w3

<
x2min − A

A− w2

. (2.33)

Since (2.32) and (2.33) cannot be true at the same time, at least one of the

conditions β1 ≤ κA2 or β2 ≤ A is true. This implies that at least one of pS2(x) or

pS3(x) provides a signal that has a smaller average probability of error than that

for pS1(x). In addition, such a signal satisfies at least one of the constraints with

equality as can be observed from (2.28) and (2.31). Therefore, an optimal signal

cannot be in the form of pS1(x), which satisfies both inequalities as E{S2} < A

and E{S4} < κA2. �
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An important implication of Proposition 2.4 is that when xmin >
√
A, any

solution that results in second and fourth moments that are smaller than A and

κA2, respectively, cannot be optimal. In other words, it is possible to improve

that solution by increasing the second and/or the fourth moment of the signal

until at least one of the constraints become active.

After characterizing the structure and the properties of optimal signals, two

approaches are proposed in the next section to obtain optimal and close-to-

optimal signal PDFs.

2.1.2.4 Calculation of the Optimal Signal

In order to obtain the PDF of an optimal signal, the constrained optimization

problem in (2.10) should be solved. In this section, two approaches are studied

in order to obtain optimal and close-to-optimal solutions to that optimization

problem.

2.1.2.4.1 Global Optimization Approach Since Proposition 2.3 states

that the optimal signaling problem in (2.10) can be solved over PDFs in the

form of pS(x) =
∑3

j=1 λj δ(x− xj) , (2.10) can be expressed as

min
λ,x

3∑
j=1

λj G(xj) (2.34)

subject to
3∑

j=1

λj x
2
j ≤ A ,

3∑
j=1

λj x
4
j ≤ κA2 ,

3∑
j=1

λj = 1 , λj ≥ 0 ∀j ,

where x = [x1 x2 x3]
T and λ = [λ1 λ2 λ3]

T .

Note that the optimization problem in (2.34) is a not convex problem in gen-

eral due to both the objective function and the first two constraints. Therefore,

global optimization techniques, such as PSO, differential evolution and genetic
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algorithms [29] should be employed to obtain the optimal PDF. In this study, the

PSO approach [13], [30]-[32] is used since it is based on simple iterations with

low computational complexity and has been successfully applied to numerous

problems in various fields [33]-[37].

In order to describe the PSO algorithm, consider the minimization of an

objective function over parameter θ. In PSO, first a number of parameter values

{θi}Mi=1, called particles, are generated, where M is called the population size

(i.e., the number of particles). Then, iterations are performed, where at each

iteration new particles are generated as the summation of the previous particles

and velocity vectors υi according to the following equations [13]:

υk+1
i = χ

(
ωυk

i + c1ρ
k
i1

(
pk
i − θk

i

)
+ c2ρ

k
i2

(
pk
g − θk

i

))
(2.35)

θk+1
i = θk

i + υk+1
i (2.36)

for i = 1, . . . ,M , where k is the iteration index, χ is the constriction factor, ω is

the inertia weight, which controls the effects of the previous history of velocities

on the current velocity, c1 and c2 are the cognitive and social parameters, respec-

tively, and ρki1 and ρki2 are independent uniformly distributed random variables

on [0, 1] [30]. In (2.35), pk
i represents the position corresponding to the smallest

objective function value until the kth iteration of the ith particle, and pk
g de-

notes the position corresponding to the global minimum among all the particles

until the kth iteration. After a number of iterations, the position with the low-

est objective function value, pk
g , is selected as the optimizer of the optimization

problem.

In order to extend PSO to constrained optimization problems, various ap-

proaches, such as penalty functions and keeping feasibility of particles, can be

taken [31], [32]. In the penalty function approach, a particle that becomes infea-

sible is assigned a large value (considering a minimization problem), which forces

migration of particles to the feasible region. In the constrained optimization ap-

proach that preserves the feasibility of the particles, no penalty is applied to any
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particles; but for the positions pk
i and pk

g in (2.35) corresponding to the lowest

objective function values, only the feasible particles are considered [32].

In order to employ PSO for the optimal stochastic signaling problem in (2.34),

the optimization variable is defined as θ , [x1 x2 x3 λ1 λ2 λ3]
T , and the iterations

in (2.35) and (2.36) are used while using a penalty function approach to impose

the constraints. The results are presented in Section 2.1.3.

2.1.2.4.2 Convex Optimization Approach In order to provide an alter-

native approximate solution with lower complexity, consider a scenario in which

the PDF of the signal is modeled as

pS(x) =
K∑
j=1

λ̃j δ(x− x̃j) , (2.37)

where x̃j’s are the known mass points of the PDFs, and λ̃j’s are the weights to

be estimated. This scenario corresponds to the cases with a finite number of

possible signal values. For example, in a digital communications system, if the

transmitter can only send one ofK pre-determined x̃j values for a specific symbol,

then the problem becomes calculating the optimal probability assignments, λ̃j’s,

for the possible signal values for each symbol. Note that since the optimization

is performed over PDFs as in (2.37), the optimal solution can include more than

three mass points in general. In other words, the solution in this case is expected

to approximate the optimal PDF, which includes at most three mass points, with

a PDF with multiple mass points.

The solution to the optimal signal design problem in (2.10) over the set of

signals with their PDFs as in (2.37) can be obtained from the solution of the
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following convex optimization problem:5

min
λ̃

gT λ̃ (2.38)

subject to Bλ̃ ≼ C ,

1T λ̃ = 1 , λ̃ ≽ 0 ,

where g , [G(x̃1) · · ·G(x̃K)]T , with G(x) as in (2.9),

B ,

x̃21 · · · x̃2K

x̃41 · · · x̃4K

 , C ,

 A

κA2

 , (2.39)

and 1 and 0 represent vectors of all ones and all zeros, respectively.

It is observed from (2.38) that the optimal weight assignments can be ob-

tained as the solution of a convex optimization problem, specifically, a linearly

constrained linear programming problem. Therefore, the solution can be ob-

tained in polynomial time [14].

Note that if the set of possible signal values x̃j’s include the deterministic

signal value for the conventional algorithm, i.e.,
√
A , then the performance of

the convex algorithm in (2.38) can never be worse than that of the conventional

one. In addition, as the number of possible signal values, K in (2.37), increases,

the convex algorithm can approximate the exact optimal solution more closely.

2.1.3 Simulation Results

In this section, numerical examples are presented for a binary communications

system with equal priors (π0 = π1 = 0.5) in order to investigate the theoretical

results in the previous section. In the implementation of the PSO algorithm

specified by (2.35) and (2.36), M = 50 particles are employed and 10000 itera-

tions are performed. In addition, the parameters are set to c1 = c2 = 2.05 and

5For K-dimensional vectors x and y, x ≼ y means that the ith element of x is smaller than

or equal to the ith element of y for i = 1, . . . ,K.
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χ = 0.72984, and the inertia weight ω is changed from 1.2 to 0.1 linearly with

the iteration number [13]. Also, a penalty function approach is implemented

to impose the constraints in (2.34); namely, the objective function is set to 1

whenever a particle becomes infeasible [33].

First, the noise in (2.1) is modeled by the PDF in (2.19), A = 0.64 and

κ = 1.5 are employed for the constraints in (2.10), and the decision rule at the

receiver is specified by Γ0 = (−∞, 0] and Γ1 = [0,∞) (that is, a sign detector).

As stated after (2.20), the conventional signaling is suboptimal in this case based

on Proposition 2.2. In order to calculate optimal signals via the PSO and the

convex optimization algorithms in Section 2.1.2.4, the optimization problems in

(2.34) and (2.38) are solved, respectively. For the convex algorithm, the mass

points x̃j in (2.37) are selected uniformly over the interval [0, 2] with a step

size of ∆, and the results for ∆ = 0.01 and ∆ = 0.1 are considered. Fig. 2.1

illustrates the optimal probability distributions obtained from the PSO and the

convex optimization algorithms.6

It is calculated that the conventional algorithm, which uses a deterministic

signal value of 0.8, has an average error probability of 0.3293, whereas the PSO

and the convex optimization algorithms with ∆ = 0.01 and ∆ = 0.1 have average

error probabilities of 0.2909, 0.2911 and 0.2912, respectively. It is noted that the

PSO algorithm achieves the lowest error probability with three mass points and

the convex algorithms approximate the PSO solution with multiple mass points

around those of the PSO solution. In addition, the calculations indicate that the

optimal solutions achieve both the second and the fourth moment constraints in

accordance with Proposition 2.4-b .

6For the probability distributions obtained from the convex optimization algorithms, the

signal values that have zero probability are not marked in the figures to clarify the illustrations.
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Figure 2.1: Probability mass functions (PMFs) of the PSO and the convex opti-
mization algorithms for the noise PDF in (2.19).

Next, the optimal signaling problem is studied in the presence of Gaussian

mixture. The Gaussian mixture noise can be used to model the effects of co-

channel interference, impulsive noise and multiuser interference in communica-

tions systems [5], [7]. In the simulations, the Gaussian mixture noise is specified

by pN(y) =
∑L

l=1 vl ψl(y − yl), where ψl(y) = e−y2/(2σ2
l )/(

√
2π σl) . In this case,

G(x) can be obtained from (2.9) as G(x) =
∑L

l=1 vlQ
(

x+yl
σl

)
. In all the scenar-

ios, the variance parameter for each mass point of the Gaussian mixture is set to

σ2 (i.e., σ2
l = σ2 ∀l), and the average power constraint A is set to 1. Note that

the average power of the noise can be calculated as E{N2} = σ2 +
∑L

l=1 vl y
2
l .

First, we consider a symmetric Gaussian mixture noise which has its mass points

at ±[0.3 0.455 1.011] with corresponding weights [0.1 0.317 0.083] in order to

illustrate the improvements that can be obtained via stochastic signaling. In

Fig. 2.2, the average error probabilities of various algorithms are plotted against

A/σ2 when κ = 1.1 for both the sign detector and the ML detector. For the

sign detector, the decision rule at the receiver is specified by Γ0 = (−∞, 0] and
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Γ1 = [0,∞). In this case, it is observed from Fig. 2.2 that the conventional algo-

rithm, which uses a constant signal value of 1, has a large error floor compared

to the PSO and convex optimization algorithms at high A/σ2. Also, the average

probability of error of the conventional signaling increases as A/σ2 increases after

a certain value. This seemingly counterintuitive result is observed because the

average probability of error is related to the area under the two shifted noise

PDFs as in (2.5). Since the noise has a multi-modal PDF, that area is a non-

monotonic function of A/σ2 and can increase in some cases as A/σ2 increases. It

is also observed that the convex optimization algorithm performs very closely to

the PSO algorithm for densely spaced possible signal values, i.e., for ∆ = 0.01.

For the ML detector, the receiver compares pN(y −
√
A) and pN(y +

√
A), and

decides symbol 0 if the latter is larger, and decides 1 otherwise. It is observed

for small σ2 values that the ML receiver performs significantly better than the

other receivers that are based on the sign detector. However, stochastic signaling

causes the sign detector to perform better than the conventional ML receiver,

which uses deterministic signaling, for medium A/σ2 values. For example, the

PSO and convex optimization algorithms for ∆ = 0.01 have better performance

than the ML receiver for A/σ2 values from 20 dB to 40 dB. This is mainly due to

the fact that the conventional ML detector uses deterministic signaling whereas

the others employ stochastic signaling. However, when the stochastic signaling

is applied to the ML detector as well, it achieves the lowest probabilities of error

for all A/σ2 values as observed in Fig. 2.2 (labeled as “ML (Stochastic)”).

Another observation from Fig. 2.2 is that improvements over the conventional

algorithm disappear as σ2 increases (i.e., for small A/σ2 values). This result can

be explained from Propositions 2.1 and 2.2, based on the plots of G(x) at various

A/σ2 values. For example, Fig. 2.3 illustrates the plots of G(x) at A/σ2 of 0, 20

and 40 dB for the sign detector. The function is decreasing and convex for 0 dB

for the positive signal values, which are practically the domain of optimization

sinceG(x) is a decreasing function and the constraint functions x2 and x4 are even
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Figure 2.2: Error probability versus A/σ2 for κ = 1.1. A symmetric Gaussian
mixture noise, which has its mass points at ±[0.3 0.455 1.011] with corresponding
weights [0.1 0.317 0.083], is considered.
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Figure 2.3: G(x) in (2.9) for the sign detector in Fig. 2.2 at A/σ2 values of 0, 20
and 40 dB.
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functions.7 Therefore, Proposition 2.1 implies that the conventional algorithm

that uses a constant signal value of 1 is optimal in this case, as observed in

Fig. 2.2. On the other hand, at 20 dB and 40 dB, the calculations show that

the condition in Proposition 2.2 is satisfied; hence, the conventional algorithm

cannot be optimal in that case, and improvements are observed in Fig. 2.2 at

A/σ2 = 20 dB and A/σ2 = 40 dB. Another result obtained from the numerical

studies for Fig. 2.2 is that all the solutions achieve at least one of the second

moment or the fourth moment constraints with equality as a result of Proposition

2.4.

For the scenario in Fig. 2.2, the probability distributions of the optimal sig-

nals for the sign detector are shown in Fig. 2.4 and Fig. 2.5 for A/σ2 = 20 dB and

A/σ2 = 40 dB, respectively, where both the PSO and the convex optimization

algorithms are considered. In the first case, the convex optimization algorithm

with ∆ = 0.1 approximates the probability mass function (PMF) obtained from

the PSO algorithm with two mass points (with nonzero probabilities), whereas

the convex optimization algorithm with ∆ = 0.01 results in 8 mass points. In

the second case, the convex optimization algorithms with ∆ = 0.1 and ∆ = 0.01

result in PMFs with two and three mass points, respectively, as shown in Fig.

2.5. Since the convex optimization algorithm with ∆ = 0.1 does not provide a

PMF that is very close to those of the other algorithms in this case, the result-

ing error probability becomes significantly higher for that algorithm, as observed

from Fig. 2.2 at A/σ2 = 40 dB.

Finally, a symmetric Gaussian mixture noise which has its mass points at

±[0.19 0.39 0.83 1.03] each with a weight of 1/8 is considered. Such a noise PDF

can be considered to model the effects of co-channel interference [7], or a system

that operates under the effect of multiuser interference [5]. For example, in the

7In other words, negative signal values are never selected for symbol 1 since selecting the

absolute value of a negative signal value always gives a smaller average probability of error

without changing the signal moments.
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Figure 2.4: PMFs of the PSO and the convex optimization algorithms for the
sign detector in Fig. 2.2 at A/σ2 = 20 dB.
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Figure 2.5: PMFs of the PSO and the convex optimization algorithms for the
sign detector in Fig. 2.2 at A/σ2 = 40 dB.
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Figure 2.6: Error probability versus A/σ2 for κ = 1.5. A symmetric Gaussian
mixture noise, which has its mass points at ±[0.19 0.39 0.83 1.03], each with
equal weight, is considered.

presence of multiple users, the noise can be modeled asN =
∑K

k=2Akbk+η, where

bk ∈ {−1, 1} with equal probabilities and η is a zero-mean Gaussian thermal

noise component with variance σ2. Then, for K = 4, A2 = 0.1, A3 = 0.61

and A2 = 0.32, the noise becomes Gaussian mixture noise with 8 mass points

as specified at the beginning of the paragraph. In Fig. 2.6, the average error

probabilities of various algorithms are plotted against the A/σ2 for κ = 1.5 .

Also the plots of G(x) at A/σ2 = 0, 25, 40 dB are presented in Fig. 2.7, and

the probability distributions at A/σ2 = 25 dB and A/σ2 = 40 dB are illustrated

in Fig. 2.8 and Fig. 2.9, respectively, for the sign detector. Although similar

observations as in the previous scenario can be made, a number of differences are

also noticed. The improvements achieved via the stochastic signaling over the

conventional (deterministic) signaling are less than those observed in Fig. 2.2.

In addition, since κ = 1.5 in this scenario, only the second moment constraint is

achieved with equality in all the solutions.
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Figure 2.7: G(x) in (2.9) for the sign detector in Fig. 2.6 at A/σ2 values of 0, 25
and 40 dB.
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Figure 2.8: PMFs of the PSO and the convex optimization algorithms for the
sign detector in Fig. 2.6 at A/σ2 = 25 dB.
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Figure 2.9: PMFs of the PSO and the convex optimization algorithms for the
sign detector in Fig. 2.6 at A/σ2 = 40 dB.

In order to investigate the optimal stochastic signaling for the ML detectors

studied in Fig. 2.2 and Fig. 2.6, Table 2.1 presents the PDFs of the optimal

stochastic signals in those scenarios, where the optimal PDFs are expressed in

the form of pS(x) = λ1 δ(x−x1)+λ2 δ(x−x2)+λ3 δ(x−x3). It is observed from

the table that the conventional deterministic signaling is optimal at low A/σ2

values, which can also be verified from Fig. 2.2 and Fig. 2.6 since there is no im-

provement via the stochastic signaling over the conventional one for those A/σ2

values. However, as A/σ2 increases, the optimal signaling is achieved via ran-

domization between two signal values. In those cases, significant improvements

over the conventional signaling can be achieved as observed from Fig. 2.2 and

Fig. 2.6. Finally, it is noted from the table that the optimal solutions result in

randomization between at most two different signal levels in this example. This

is in compliance with Proposition 2.3 since the proposition does not guarantee

the existence of three different signal levels in general but states that an optimal
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Table 2.1: Optimal stochastic signals for the ML detectors in Fig. 2.2 (top block)
and Fig. 2.6 (bottom block).

A/σ2 (dB) λ1 λ2 λ3 x1 x2 x3
10 1 0 0 1 N/A N/A
15 1 0 0 1 N/A N/A
20 0.1181 0.8819 0 1.4211 0.9151 N/A
25 0.1264 0.8736 0 1.4494 0.8876 N/A
27.5 0.1317 0.8683 0 1.4465 0.8811 N/A
10 1 0 0 1 N/A N/A
15 1 0 0 1 N/A N/A
20 0.1272 0.8728 0 0.5073 1.0527 N/A
25 0.9791 0.0209 0 0.9950 1.2116 N/A
30 0.9415 0.0585 0 0.9859 1.2047 N/A
35 0.9236 0.0764 0 0.9823 1.1936 N/A

signal can be represented by a randomization of at most three different signal

levels.

2.1.4 Extensions to M-ary Pulse Amplitude Modulation

(PAM)

The results in the study can be extended toM -ary PAM communications systems

for M > 2 as well. To that aim, consider a generic detector which chooses the

ith symbol if the observation is in decision region Γi for i = 0, 1, . . . ,M − 1. In

other words, the decision rule is defined as

ϕ(y) = i , if y ∈ Γi , i = 0, 1, . . . ,M − 1 . (2.40)

Then, the average probability of error for an M -ary system can be expressed as

Pavg =
M−1∑
i=0

πi (1− Pi(Γi)) , (2.41)

where πi denotes the prior probability of the ith symbol.

If signals S0, S1, . . . , SM−1 are modeled as stochastic signals with PDFs

pS0 , pS1 , . . . , pSM−1
, respectively, the average probability of error in (2.41) can
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be expressed, similarly to (2.6), as

Pstoc
avg =

M−1∑
i=0

πi

(
1−

∫ ∞

−∞
pSi

(t)

∫
Γi

pN(y − t) dy dt

)
. (2.42)

Then, the optimal stochastic signaling problem can be stated as

min
pS0

,...,pSM−1

M−1∑
i=0

πi

(
1−

∫ ∞

−∞
pSi

(t)

∫
Γi

pN(y − t) dy dt

)
subject to E{|Si|2} ≤ A , E{|Si|4} ≤ κA2 , i = 0, 1, . . . ,M − 1 . (2.43)

Due to the structure of the objective function in (2.43) and the individual con-

straints on each signal, M separate optimization problems, similar to (2.8), can

be obtained. Namely, for i = 0, 1, . . . ,M − 1,

min
pSi

1−
∫ ∞

−∞
pSi

(t)

∫
Γi

pN(y − t) dy dt

subject to E{|Si|2} ≤ A , E{|Si|4} ≤ κA2 . (2.44)

In addition, if auxiliary functions Gi(x) are defined as Gi(x) , 1−
∫
Γi
pN(y−x) dy

for i = 0, 1, . . . ,M − 1, the optimization problem in (2.44) can be expressed as

min
pSi

E{Gi(Si)}

subject to E{|Si|2} ≤ A , E{|Si|4} ≤ κA2 (2.45)

for i = 0, 1, . . . ,M − 1. Since (2.45) is in the same form as (2.10), the results in

Section 2.1.2 can be extended to M -ary PAM systems, as well.

2.1.5 Concluding Remarks and Extensions

In this section, the stochastic signaling problem under second and fourth mo-

ment constraints has been studied for binary communications systems. It has

been shown that, under certain monotonicity and convexity conditions, the con-

ventional signaling, which employs deterministic signals at the average power

limit, is optimal. On the other hand, in some cases, a smaller average probabil-

ity of error can achieved by using a signal that is obtained by a randomization of
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multiple signal values. In addition, it has been shown that an optimal signal can

be represented by a discrete random variable with at most three mass points,

which simplifies the optimization problem for the optimal signal design consider-

ably. Furthermore, it has been observed that the optimal signals achieve at least

one of the second and fourth moment constraints in most practical scenarios.

Finally, two techniques based on PSO and convex relaxation have been proposed

to obtain the optimal signals, and simulation results have been presented.

In addition, the results in this section can be extended to a generic binary

hypothesis-testing problem in the Bayesian framework [2], [15].8 In that case, the

average probability of error expression in (2.3) is generalized to the Bayes risk,

defined as π0[C00P0(Γ0)+C10P0(Γ1)]+π1[C01P1(Γ0)+C11P1(Γ1)], where Cij ≥ 0

represents the cost of deciding the ith hypothesis when the jth one is true. Then,

all the results in this section are still valid when function G in (2.9) is replaced

by G(x) = C01

∫
Γ0
pN(y−x)dy+C11

∫
Γ1
pN(y−x)dy . Moreover, it can be shown

that the results in this section are valid in the minimax and Neyman-Pearson

frameworks [2] due to the decoupling of the optimization problem discussed in

Section 2.1.2.

8Hence, the results in this study can be applied to other systems than communications, as

well.
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2.2 Stochastic Signaling Under an Average

Power Constraint

2.2.1 System Model and Motivation

Consider a scalar binary communications system, as in [6] and [8], in which the

received signal is given by

Y = Si +N , i ∈ {0, 1} , (2.46)

where S0 and S1 denote the transmitted signal values for symbol 0 and symbol

1, respectively, and N is the noise component that is independent of Si. In

addition, the prior probabilities of the symbols, which are denoted by π0 and π1,

are supposed to be known [38].

Note that the probability distribution of the noise component in (2.46) is not

necessarily Gaussian. Due to interference, such as multiple-access interference,

the noise component can have a probability distribution that is different from

the Gaussian distribution [7], [6].

A generic decision rule is considered at the receiver to estimate the symbol

in (2.46). Specifically, for a given observation Y = y, the decision rule ϕ(y) is

expressed as

ϕ(y) =


0 , y ∈ Γ0

1 , y ∈ Γ1

, (2.47)

where Γ0 and Γ1 are the decision regions for symbol 0 and symbol 1, respectively

[2].

In this study, the aim is to design signals S0 and S1 in (2.46) in order to

minimize the average probability of error for a given decision rule, which is given
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by

Pavg = π0P0(Γ1) + π1P1(Γ0) , (2.48)

where Pi(Γj) is the probability of selecting symbol j when symbol i is transmit-

ted. In practical systems, the signal are commonly subject to an average power

constraint, which can be expressed as

π0E{|S0|2}+ π1E{|S1|2} ≤ A , (2.49)

where A is the average power limit. Therefore, the problem is to calculate the

optimal probability density functions (PDFs) for signals S0 and S1 that minimize

the average probability of error in (2.48) under the average power constraint in

(2.49).

The main motivation for the optimal stochastic signaling problem is to en-

hance the error performance of a communications system by considering the

signals at the transmitter as random variables and obtaining the optimal prob-

ability distributions for those signals [6],[11], [38].

In the conventional signal design, S0 and S1 are considered as deterministic

signals and they are designed in such a way that the Euclidean distance between

them is maximized under the constraint in (2.49). In fact, when the effective noise

has a zero-mean Gaussian PDF and the receiver employs the MAP decision rule,

the probability of error is minimized when the Euclidean distance between the

signals is maximized for a given average power constraint [2]. To that aim, S0

and S1 can conventionally be set to

S0 = −
√
A/α and S1 = α

√
A , (2.50)

where α ,
√
π0/π1 by considering the average power constraint in (2.49) (see [3]

for the derivation). Then, the average probability of error in (2.48) becomes

Pconv
avg = π0

∫
Γ1

pN

(
y +

√
A/α

)
dy

+ π1

∫
Γ0

pN

(
y − α

√
A
)
dy , (2.51)
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where pN(·) is the PDF of the noise in (2.46). Although the conventional signal

design is optimal for certain classes of noise PDFs and decision rules, in some

cases, the use of stochastic signals instead of deterministic ones can improve the

system performance, as studied in the next section.

2.2.2 Optimal Stochastic Signaling

Instead of using constant levels for S0 and S1 as in the conventional case, one can

consider a more generic scenario in which the signals can be stochastic. Then,

the aim is to calculate the optimal PDFs for S0 and S1 in (2.46) that minimize

the average probability of error under the constraint in (2.49).

Let pS0(·) and pS1(·) denote the PDFs for S0 and S1, respectively. Then, from

(2.48), the average probability of error for the decision rule in (2.47) is given by

Pstoc
avg =

1∑
i=0

πi

∫ ∞

−∞
pSi

(t)

∫
Γ1−i

pN(y − t) dy dt . (2.52)

Therefore, the optimal stochastic signal design problem can be expressed as

min
pS0

,pS1

Pstoc
avg

subject to π0E{|S0|2}+ π1E{|S1|2} ≤ A . (2.53)

After some manipulation, the objective function in (2.52) can be expressed

as

Pstoc
avg = π0

∫ ∞

−∞
pS0(x)(1−G(x))dx+ π1

∫ ∞

−∞
pS1(x)G(x)dx , (2.54)

where G(x) is defined as

G(x) ,
∫
Γ0

pN(y − x) dy . (2.55)

Then the expression in (2.54) can be written in terms of the expectation of G(S1)

over S1 and that of G(S0) over S0 as

Pstoc
avg = π0 − π0E{G(S0)}+ (1− π0)E{G(S1)} . (2.56)
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Signals S0 and S1 can be expressed as the elements of a vector random variable

S as S , [S0 S1]. Then the final form of optimization problem in (2.53) can be

formulated as

min
pS

E{F (S)} subject to E{H(S)} ≤ A , (2.57)

where the expectations are taken over S, pS(·) denotes the joint PDF of S0 and

S1,

F (S) , (1− π0) G(S1)− π0 G(S0) + π0 , (2.58)

and

H(S) , (1− π0)|S1|2 + π0|S0|2 . (2.59)

Note that there are also implicit constraints in the optimization problem in (2.57),

since pS(s) is a joint PDF.

2.2.2.1 On the Optimality of Conventional Signaling

In some cases, the conventional signaling is the optimal approach; that is, setting

pS(s) = δ(s− SA) , where SA = [−
√
A/α α

√
A] with α =

√
π0/π1, can solve the

optimization problem in (2.57). In this section, we derive sufficient conditions

that guarantee the optimality of the conventional signaling scheme.

Proposition 2.5: Assume that G(x) in (2.55) is twice continuously differ-

entiable. Then, pS(s) = δ(s − SA) is a solution of the optimization problem in

(2.57), if the following three conditions are satisfied:

• G(x) is a strictly decreasing function.

• xG
′′
(x) > 0, ∀x ̸= 0, and G

′′
(0) = 0 .

• For every (x0, x1) that satisfies

π1[G(α
√
A)−G(x1)] > π0[G(−

√
A/α))−G(x0)], (2.60)
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π0 x
2
0 + π1 x

2
1 > A is satisfied as well.

Proof : In this proof, it is shown by contradiction that, when the conditions

in the proposition are satisfied, there exist no signal PDFs that can result in a

lower probability of error than the conventional signal SA under the given average

power constraint. To that aim, it is first assumed that there exists a PDF pS(s)

for signal S = [S0 S1] such that E{F (S)} < F (SA) and E{H(S)} ≤ A. In

other words, suppose that there exists a signal S, with PDF pS(s), which is

better than the conventional signaling (see (2.57)). In addition, it is assumed

without loss of generality that S0 is a nonpositive and S1 is a nonnegative random

variable. [This assumption does not reduce the generality of the proof as G(x)

is a strictly decreasing function; hence, F (S) in (2.58) is a strictly increasing

(decreasing) function of S0 (S1). Since the average power depends only on the

absolute value of the signals, choosing nonpositive S0 and nonnegative S1 always

achieves the minimum average probability of error. In other words, for each

positive (negative) value of S0 (S1), its negative (positive) can be used instead,

which results in smaller average probability of error and the same average power

value.]

Under the assumptions above, if it is shown that there can exist no PDF pS(s)

for the signal S = [S0 S1], with S0 being nonpositive and S1 being nonnegative,

that satisfies the three conditions in the proposition and E{F (S)} < F (SA)

under the average power constraint, it means that there can exist no signal

PDF pS(s) (for any signs of S0 and S1) that has lower probability of error than

the conventional signal under the average power constraint. For that purpose,

it is shown in the following that F (x) in (2.58) is a convex function. Since

F (x) = (1− π0)G(x1)− π0G(x0) + π0, its Hessian matrix can be obtained as ∂2F
∂x2

0

∂2F
∂x0 ∂x1

∂2F
∂x1 ∂x0

∂2F
∂x2

1

 =

−π0G′′
(x0) 0

0 π1G
′′
(x1)

 . (2.61)
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Since S0 is a nonpositive random variable, x0 can take only nonpositive values

and similarly since S1 is a nonnegative random variable, x1 can take only nonneg-

ative values. Therefore, under the second condition in the proposition, namely,

xG
′′
(x) > 0, ∀x ̸= 0, and G

′′
(0) = 0, the Hessian matrix is always positive

semidefinite; hence, F (x) is a convex function.

Since F (S) is a convex function, Jensen’s inequality implies that E{F (S)} ≥

F (E{S}) = F ([E{S0} E{S1}]). Then, E{F (S)} < F (SA) requires that

F ([E{S0} E{S1}]) < F (SA), which can be expressed from (2.58) as

π1 G(E{S1})− π0 G(E{S0}) < π1 G(α
√
A)− π0 G(−

√
A/α) . (2.62)

In addition, Jensen’s inequality also implies that E{|S0|2} ≥ (E{S0})2 and

E{|S1|2} ≥ (E{S1})2. Therefore, π0E{|S0|2} + π1E{|S1|2} ≥ π0(E{S0})2 +

π1(E{S1})2 is obtained. At this point, defining x0 = E{S0} and x1 = E{S1}, and

plugging them into (2.62) yields π1 [G(α
√
A)−G(x1)] > π0 [G(−

√
A/α)−G(x0)],

which is the first inequality in the third condition of the proposition. Accord-

ing to the third condition, whenever this inequality is satisfied for any (x0, x1),

π0 x
2
0 + π1 x

2
1 > A, equivalently, π0E{|S0|2} + π1E{|S1|2} > A, is also satisfied.

Therefore, E{H(S)} > A always holds, which indicates that the average power

constraint in (2.57) is violated. Hence, it is concluded that when the conditions

in Proposition 2.5 are satisfied, no PDF can achieve E{F (S)} < F (SA) under

the average power constraint. �

As an example application of Proposition 2.5, consider a zero mean and unit

variance Gaussian noise N in (2.46) with pN(x) = exp{−x2/2}/
√
2π, and assume

equal priors (π0 = π1 = 0.5). Also, the average power constraint A in (2.57) is

taken to be 1. In this case, the conventional signaling becomes the antipodal

signaling with S0 = −1 and S1 = 1, and a decision rule of the form Γ0 =

(−∞, 0] and Γ1 = [0,∞); that is, the sign detector, is the optimal MAP decision

rule. Then, G(x) in (2.55) can be calculated as G(x) = Q(x), where Q(x) =

(
∫∞
x

e−t2/2dt)/
√
2π defines the Q-function. Since Q(x) is a monotone decreasing
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Figure 2.10: The region in which the inequality Q(x1)−Q(x0) < Q(1)−Q(−1)
is satisfied is outside of the circle 0.5x20 + 0.5x21 = 1.

function and xQ′′(x) > 0, ∀x ̸= 0 with Q
′′
(0) = 0, the first two conditions

in Proposition 2.5 are satisfied. For the third condition, we need to check the

region in which Q(x1) − Q(x0) < Q(1) − Q(−1) = −0.6827. Then, as Q(x) is

a decreasing function, if one can find (a, b) such that Q(a) = Q(b) − 0.6827,

then for every x1 > a and x0 = b, Q(x1) − Q(x0) < −0.6827 and 0.5x20 +

0.5x21 > 0.5a2 + 0.5b2. Also, since the Q-function takes values only between 0

and 1, b < −0.475 should hold. A simple search on this region reveals that

0.5a2 + 0.5b2 ≥ 1, where the equality holds only at (a, b) = (1, w − 1). This fact

can be observed from Fig. 2.10 as well. The geometrical interpretation of the

third condition in Proposition 2.5 is that the set of all (x0, x1) pairs that satisfy

π1[G(α
√
A)−G(x1)] > π0[G(−

√
A/α))−G(x0)] should be completely outside of

the elliptical region whose boundary is π0 x
2
0 + π1 x

2
1 = A.
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In Fig. 2.10, this is shown for this example and it is observed that every point

that satisfies the inequality Q(x1)−Q(x0) < Q(1)−Q(−1), is located outside of

the circle 0.5x20 + 0.5x21 = 1. Thus, the third condition in Proposition 2.5 holds

as well. Therefore, it is guaranteed that the conventional signaling is optimal in

this scenario.

2.2.2.2 Sufficient Conditions for Improvability

In this section, we obtain sufficient conditions under which the performance of

the conventional signaling approach can be improved via stochastic signaling.

Proposition 2.6: Assume that G(x) in (2.55) is twice continuously differ-

entiable. Then, pS(s) = δ(s− SA) is not an optimal solution of (2.57) if

G
′′
(α

√
A) <

G
′
(α

√
A)

α
√
A

, (2.63)

or, alternatively,

G
′′
(−

√
A/α) >

G
′
(−

√
A/α)

−
√
A/α

. (2.64)

Proof : In order to prove the suboptimality of the conventional solution

pS(s) = δ(s − SA) , it is shown that, under the conditions in the proposition,

there exist λ ∈ (0, 1), ∆1, ∆2, ∆3, and ∆4 such that9

pS2(s) = λ δ(s− (SA + ϵ1)) + (1− λ) δ(s− (SA + ϵ2)) , (2.65)

where ϵ1 = [∆1 ∆2] and ϵ2 = [∆3 ∆4], yields a lower probability of error than than

pS(s) and satisfies the constraint in (2.57). Specifically, proving the existence of

λ ∈ (0, 1), ∆1, ∆2, ∆3, and ∆4 that satisfy

λF (SA + ϵ1) + (1− λ)F (SA + ϵ2) < F (SA) (2.66)

9It is assumed that ∆1, ∆2, ∆3, and ∆4 are not all zeros, since that would result in the

conventional signaling.
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and

π0 [λ (−
√
A/α+∆1)

2 + (1− λ) (−
√
A/α+∆3)

2] +

π1 [λ (α
√
A+∆2)

2 + (1− λ) (α
√
A+∆4)

2] = A (2.67)

is sufficient to prove that the conventional signaling is not optimal. From (2.67),

the following equation is obtained:[
π0
(
λ∆2

1 + (1− λ)∆2
3

)
+ π1

(
λ∆2

2 + (1− λ)∆2
4

)]
/
√
A

= −2

[
π1 (λ∆2α+ (1− λ)∆4α)− π0

(
∆1λ

α
+

(1− λ)∆3

α

)]
. (2.68)

Since the left-hand-side of the equality in (2.68) is always positive, the term on

the right-hand-side should also be positive, which leads to the following inequality

since α =
√
π0/π1 :

λ∆2 + (1− λ)∆4 < λ∆1 + (1− λ)∆3 . (2.69)

In addition, from (2.58) and (2.66), the following inequality is obtained:

λπ1G(α
√
A+∆2) + (1− λ)π1G(α

√
A+∆4)− λπ0G(−

√
A/α+∆1)

− (1− λ)π0G(−
√
A/α+∆3) < π1G(α

√
A)− π0G(−

√
A/α) . (2.70)

For infinitesimally small ∆1, ∆2, ∆3 and ∆4, the first three terms of the Tay-

lor series expansion for G(α
√
A + ∆2), G(α

√
A + ∆4), G(−

√
A/α + ∆1) and

G(−
√
A/α+∆3) can be used to approximate (2.70) as

G
′
(α

√
A)[λπ1∆2 + (1− λ)π1∆4] +G

′
(−

√
A/α)[−λπ0∆1 − (1− λ)π0∆3]

+
G

′′
(α

√
A)

2
[λπ1∆2

2 + (1− λ)π1∆4
2] +

G
′′
(−

√
A/α)

2
[−λπ0∆1

2 − (1− λ)π0∆3
2] < 0 .

(2.71)

For ∆1 = ∆3 = 0, (2.69) becomes λ∆2 + (1 − λ)∆4 < 0 and (2.68) becomes

π1(λ∆
2
2 +(1−λ)∆2

4) = −2
√
Aπ1π0 (λ∆2 +(1−λ)∆4). Then, (2.71) simplifies to

G
′
(α

√
A)[λπ1∆2 + (1− λ)π1∆4] +G

′′
(α

√
A)[−

√
Aπ0π1(λ∆2 + (1− λ)∆4)] < 0 .

(2.72)
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Since λ∆2+(1−λ)∆4 < 0, (2.72) implies that G
′
(α

√
A)π1−G

′′
(α

√
A)

√
Aπ0π1 >

0, which is equivalent to G
′
(α

√
A) − G

′′
(α

√
A)(α

√
A) > 0; that is, the first

condition in the proposition.

Similarly, for ∆2 = ∆4 = 0, (2.69) becomes λ∆1 + (1− λ)∆3 > 0 and (2.68)

becomes π0(λ∆
2
1 + (1− λ)∆2

3) = 2
√
Aπ1π0 (λ∆1 + (1− λ)∆3). Then, (2.71) can

be rewritten as follows:

G
′
(−

√
A/α)[−λπ0∆1 − (1− λ)π0∆3]

+G
′′
(−

√
A/α)[−

√
Aπ0π1 (λ∆1 + (1− λ)∆3)] < 0 . (2.73)

Since λ∆1+(1−λ)∆3 > 0, (2.73) becomesG
′
(−

√
A/α)π0+G

′′
(−

√
A/α)

√
Aπ0π1 >

0, which is equivalent to G
′
(−

√
A/α) + G

′′
(−

√
A/α)(

√
A/α) > 0. Hence, the

second condition in the proposition is obtained.

This proof indicates that that pS2(s) in (2.65) can result in a lower probability

of error than the conventional signaling for infinitesimally small ∆2 and ∆4 values

along with ∆1 = ∆3 = 0, or, for infinitesimally small ∆1 and ∆3 values along

with ∆2 = ∆4 = 0, which satisfy (2.68). �

Proposition 2.6 provides simple sufficient conditions to determine if stochastic

signaling can improve the probability of error performance of a given detector.

A practical example is presented in Section 2.2.3 on the use of the results in the

proposition.

2.2.2.3 Statistical Characteristics of Optimal Signals

The optimization problem in (2.57) may be difficult to solve in general since the

optimization needs to be performed over a space of PDFs. However, by using

the following result, that optimization problem can be formulated over a set of

variables instead of functions, hence can be simplified to a great extent.
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Lemma 2.1: Assume that G(x) in (2.55) is a continuous function and pos-

sible signal values for S0 and S1 reside in [−γ, γ] for some finite γ > 0. Then,

the solution of the optimization problem in (2.57) is in the form of

pS(s) = λ δ(s− s1) + (1− λ) δ(s− s2) , (2.74)

where λ ∈ [0, 1] and si is two-dimensional vector for i = 1, 2.

Proof : Optimization problems in the form of (2.57) have been investigated

in various studies in the literature [11], [12], [18], [25]. Under the conditions in

the lemma, the optimal solution of (2.57) can be represented by a randomization

of at most two signal levels as a result of Carathéodory’s theorem [28], [39].

Hence, the optimal signal PDF can be expressed as in (2.74). �

Lemma 2.1 states that the optimal signal PDF that solves the optimization

problem in (2.57) can be represented by a discrete probability distribution with

at most two mass points. Therefore, the optimization problem in (2.57) can be

simplified as follows:

min
λ,s1,s2

λF (s1) + (1− λ)F (s2)

subject to λH(s1) + (1− λ)H(s2) ≤ A . (2.75)

In other words, instead of optimization over functions, an optimization over a

five-dimensional space (two two-dimensional mass points, s1 and s2, plus the

weight, λ) can be considered for the optimal signaling problem as a result of

Lemma 2.1.

Although (2.75) is significantly simpler than (2.57), it can still be a nonconvex

optimization problem in general. Therefore, global optimization techniques such

as particle-swarm optimization (PSO) [13], [31], [32], genetic algorithms and

differential evolution [29], can be used to obtain the optimal solution [18], [19].

In the next section, the PSO algorithm is used to calculate the optimal stochastic

signals in the numerical examples. For the details of the PSO algorithm, please
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refer to [13] and for the PSO parameters used in PSO approach on this section,

please refer to [40].

2.2.3 Numerical Results

In this section, a numerical example is presented to show the improvements over

conventional signaling via optimal stochastic signaling. For this example, a bi-

nary communications system with priors π0 = 0.2 and π1 = 0.8 is considered [3].

Hence α =
√
π0/π1 is equal to 0.5 in this case. Also, the average power constraint

A is set to 1. It is assumed that the receiver employs a simple threshold detector

such that Γ0 = (−∞, τ) and Γ1 = (τ,∞), where τ = (2σ2 ln(0.25)− 3.75)/5. In

fact, this is the optimal MAP decision rule for given the prior probabilities and

the average power constraint, when the conventional signaling is performed and

the noise is zero-mean Gaussian noise with variance σ2.

In this example, the effective noise in (2.46) is modeled by Gaussian mixture

noise [7], whose PDF can be expressed as

pN(y) =
1√
2π σ

L∑
l=1

vl e
− (y−µl)

2

2σ2 . (2.76)

By using this noise model, and the receiver structure specified above, G(x) in

(2.55) can be obtained as

G(x) =
L∑
l=1

vlQ
(−τ + x+ µl

σ

)
. (2.77)

In the numerical example, v = [0.035 0.465 0.465 0.035] and µ = [−1.251 −

0.7 0.7 1.251] are used. Gaussian mixture noise is encountered in practical sys-

tems in the presence of interference [7]. Note that the variance of each component

of the Gaussian mixture noise is set to σ2 and the average power of the noise can

be calculated as E{N2} = σ2 + 0.5653 for the given values.

In this example, three different signaling schemes are considered:
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Conventional Signaling: In this case, the transmitter selects the signals as

S0 = −
√
A/α = −2 and S1 =

√
Aα = 0.5, which are known to be optimal if the

noise is zero-mean Gaussian and the receiver structure is as specified above [2].

Stochastic Signaling: In this case, the solution of the most generic opti-

mization problem in (2.53) is obtained. Since that problem can be reduced to

the optimization problem in (2.75), the optimal stochastic signals are calculated

via PSO based on the formulation (2.75) in this scenario.

Deterministic Signaling: In this case, it is assumed that the signals are

deterministic, and the optimization problem in (2.57) is solved under that as-

sumption. That is, the optimal signal PDF is given by pS(s) = δ(s− s∗), where

s∗ is the solution of the following optimization problem:

min
s

F (s)

subject to H(s) ≤ A . (2.78)

In other words, this solution provides a simplified version of the optimal solution

in (2.57). Indeed, there are two optimization variables (two signal levels, S0

and S1) in this case, instead of the five optimization variables in the stochastic

signaling case (see (2.75)).

In Fig. 2.11, the average probabilities of error are plotted versus A/σ2 for the

three signaling schemes. In order to calculate both the stochastic signaling and

the deterministic signaling solutions, the PSO approach is used. From Fig. 2.11,

it is observed that for low values of σ, the conventional signaling performs worse

than the others, and the stochastic signaling achieves the lowest probabilities of

error. Specifically, after A/σ2 exceeds 30 dB, significant improvements can be ob-

tained via stochastic signaling over the conventional and deterministic signaling

approaches. Indeed, improvements are expected based on Proposition 2.6 as well.

For example, at 30 dB, G
′′
(−2) = 0.6514 and G

′
(−2) = −0.441, and at 40 dB,

G
′′
(−2) = 13.84 and G

′
(−2) = −1.389, which results in G

′′
(−2) > −G ′

(−2)/2
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Figure 2.11: Average probability of error versus A/σ2 for conventional, optimal
deterministic, and optimal stochastic signaling.

for both of the cases. Therefore, the second sufficient condition in Proposition 2.6

(i.e., the inequality in (2.64)) is satisfied and improvements over the conventional

solution are guaranteed in those scenarios.

Moreover, it should be noted that the average probability of error does not

monotonically decrease for the conventional and deterministic solutions as A/σ2

increases. This is because of the fact that average probability of error is related

to the area under the two shifted noise PDFs as in (2.51). Since the noise PDF

has a multimodal PDF in this example, and the amount of shifts that can be

imposed on the noise PDFs is restricted by the average power constraint, that

area may increase or remain same as A/σ2 increases in some cases.

In order to provide further explanations of the results, Table 2.2 and 2.3

present the solutions of the stochastic and deterministic signaling schemes for

some A/σ2 values. In Table 2.2, the optimal s1 and s2 in (2.75) are expressed as
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Table 2.2: Optimal stochastic signaling.
A/σ2(dB) λ s11 s12 s21 s22

0 1 -1.8221 0.6480 N/A N/A
15 1 -1.8424 0.6336 N/A N/A
30 0.3149 -1.5467 0.5782 -2.0607 0.5782
45 0.0733 -1.4702 0.5185 -2.0159 0.5185

Table 2.3: Optimal deterministic signaling.
A/σ2(dB) S0 S1

0 -1.8221 0.6480
15 -1.8424 0.6336
30 -1.6911 0.7314
45 -1.6249 0.7306

s1 = [s11 s12] and s2 = [s21 s22] for each A/σ
2 value. For small A/σ2 values, such

as 0 dB and 15 dB, the deterministic solutions are the same as the stochastic

ones. In fact, the performance of the deterministic and the stochastic signaling

is same for A/σ2 values less than 20 dB, as can be observed from Fig. 2.11. Also,

their performance is very close to the performance of conventional signaling at

high σ values. For example, at 0 dB, the average probability of error for the

conventional signaling is 0.120, and it is 0.117 for the other schemes.

Furthermore, it can be observed from Table 2.2 that as A/σ2 increases, the

randomization between two signal vectors becomes more effective and this helps

reduce the average probability of error as compared with the other signaling

schemes. For example, at A/σ2 = 45 dB, the average probability of error for the

stochastic signaling is 5.66× 10−4, whereas it is 0.007 and 0.02 for the determin-

istic signaling and the conventional signaling schemes, respectively.
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2.2.4 Concluding Remarks

The optimal stochastic signaling problem has been studied under an average

power constraint. It has been shown that, under certain conditions, the conven-

tional signaling approach, which maximizes the Euclidean distance between the

signals, is the optimal signaling strategy. Also, sufficient conditions have been

obtained to specify when randomization between different signal values may re-

sult in improved performance in terms of the average probability of error. In

addition, the discrete structure of the optimal stochastic signals has been speci-

fied, and a global optimization technique, called PSO, has been used to solve the

generic stochastic signaling problem under the average power constraint. Finally,

numerical examples have been presented to illustrate some applications of the

theoretical results.
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Chapter 3

OPTIMAL SIGNALING AND

DETECTOR DESIGN FOR

POWER CONSTRAINED

COMMUNICATION SYSTEMS

In this chapter, joint optimization of signal structures and detectors is studied for

binary communications systems under average power constraints in the presence

of additive non-Gaussian noise. First, it is observed that the optimal signal

for each symbol can be characterized by a discrete random variable with at

most two mass points. Then, optimization over all possible two mass point

signals and corresponding maximum a posteriori probability (MAP) decision

rules are considered. It is shown that the optimization problem can be simplified

into an optimization over a number of signal parameters instead of functions,

which can be solved via global optimization techniques, such as particle swarm

optimization. Finally, the improvements that can be obtained via the joint design

of the signaling and the detector are illustrated via an example.
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3.1 Optimal Signaling and Detector Design

Consider a binary communications system, in which the receiver obtains K-

dimensional observations over an additive noise channel [41]:

y = si + n , i ∈ {0, 1} , (3.1)

where y is the noisy observation, s0 and s1 represent the transmitted signal

values for symbol 0 and symbol 1, respectively, and n is the noise component

that is independent of si. In addition, the prior probabilities of the symbols,

represented by π0 and π1, are assumed to be known. The signal model in (3.1)

can be considered for flat-fading channels assuming perfect channel estimation;

that is, the model in (3.1) can be obtained after appropriate equalization [41].

The receiver uses the observation in (3.1) in order to determine the informa-

tion symbol. A generic decision rule (detector) is considered for that purpose,

which estimates the transmitted symbol based on a given observation y as fol-

lows:

ϕ(y) =


0 , y ∈ Γϕ0

1 , y ∈ Γϕ1

, (3.2)

where Γϕ0 and Γϕ1 are the decision regions for symbol 0 and symbol 1, respectively

[2].

The average probability of error for a decision rule ϕ can be expressed as

Pe = π0Pe,0 + π1Pe,1, where

Pe,i =

∫
Γϕ1−i

pi(y) dy , (3.3)

for i = 0, 1, represents the probability of error, with pi(y) denoting the con-

ditional probability density function (PDF) of the observation, when the ith

symbol is transmitted.
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Unlike the conventional case, a stochastic signaling framework is adopted in

this study [38], and s0 and s1 in (3.1) are modeled as random variables. Since the

signals and the noise are independent, the conditional PDFs of the observation

can be calculated as pi(y) =
∫
RK p si(x)pn(y − x) dx for i = 0, 1. Then, after

some manipulation, (3.3) can be expressed as

Pe,i = E

{∫
Γϕ1−i

pn(y − si) dy

}
, E {f(ϕ ; si)} , (3.4)

where the expectation is taken over the PDF of si.

In practical systems, there is a constraint on the average power of the signals,

which can be expressed as [2]

E
{
|si|2

}
≤ A , for i = 0, 1 , (3.5)

where A is the average power limit. Then, the optimal signaling and detector

design problem can be stated as

min
p s0 ,p s1 ,ϕ

π0Pe,0 + π1Pe,1

subject to E
{
|si|2

}
≤ A , i = 0, 1 , (3.6)

where Pe,i is as in (3.4).

The problem in (3.6) is difficult to solve in general since the optimization

needs to be performed over a space of PDFs and decision rules. In the following,

a simpler optimization problem over a set of variables (instead of functions) is

formulated in order to obtain optimal signal PDFs and the decision rule. To that

aim, the following result is obtained first.

Lemma 3.1: Assume f(ϕ ; si) in (3.4) is a continuous function of si, and

each component of si resides in [−γ, γ] for some finite γ > 0. Then, for a given

(fixed) decision rule ϕ, the solution of the optimization problem in (3.6) is in the

form of

p si(y) = λiδ(y − si1) + (1− λi)δ(y − si2) , (3.7)
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for i = 0, 1, where λi ∈ [0, 1].

Proof : When the decision rule ϕ is given, f(ϕ ; si) =
∫
Γϕ1−i

pn(y − si) dy in

(3.4) can be considered as a function of si only. In other words, Pe,i in (3.4)

can be expressed as Pe,i = E{f(si)} for i = 0, 1. Since the objective function

in (3.6) is the sum of π0Pe,0 and π1Pe,1, and the average power constraints are

individually imposed on the signals, the optimization problem in (3.6) can be

decoupled into two separate optimization problems as follows:

min
p si

E{f(si)} , subject to E
{
|si|2

}
≤ A , (3.8)

for i = 0, 1. Optimization problems in the form of (3.8) have been investigated

in various studies in the literature [38], [11]. Under the conditions in the lemma,

the optimal solution of (3.8) can be represented by a randomization of at most

two signal levels as a result of Carathéodory’s theorem [39]. Hence, the optimal

signal PDFs can be expressed as in (3.7). �

Note that the assumption in the lemma about the continuity of f in (3.4)

is quite realistic for communications systems since the noise n in (3.1) has a

continuous PDF in practice, as it is commonly the sum of zero-mean Gaussian

thermal noise and interference terms that are independent of the thermal noise.

Lemma 3.1 states that, under certain conditions, the optimal stochastic sig-

naling involves randomization among at most four different signal levels (two for

symbol “0” and two for symbol “1”). Therefore, the problem in (3.6) can be

solved over the signal PDFs that are in the form of (3.7). Hence, the search

space for the optimization problem is reduced significantly. To achieve further

simplification, the following result is obtained.
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Proposition 3.1: Under the conditions in Lemma 3.1, the optimization prob-

lem in (3.6) can be expressed as follows:

min
{λi,si1,si2}1i=0

∫
RK

min{π0g0(y) , π1g1(y)} dy

subject to λi|si1|2 + (1− λi)|si2|2 ≤ A

λi ∈ [0, 1] , i = 0, 1 (3.9)

where gi(y) = λipn(y − si1) + (1− λi)pn(y − si2).

Proof : For a given signal PDF pair p s0 and p s1 , the conditional probability

of observation y in (3.1) can be expressed as pi(y) =
∫
RK p si(x)pn(y − x)dx for

i = 0, 1. When deciding between two symbols based on observation y, the MAP

decision rule, which selects symbol 1 if π1p1(y) ≥ π0p0(y) and selects symbol 0

otherwise, minimizes the average probability of error [2]. Therefore, when signal

PDFs p s0 and p s1 are specified, it is not necessary to search over all the decision

rules; only the MAP decision rule should be determined and its corresponding

average probability of error should be considered.

From (3.3), the average probability of error for any decision rule ϕ can be

expressed as

Pe =

∫
Γϕ1

π0p0(y) dy +

∫
Γϕ0

π1p1(y) dy . (3.10)

Since the MAP decision rule decides symbol 1 if π1p1(y) ≥ π0p0(y) and decides

symbol 0 otherwise, the average probability of error expression in (3.10) can be

expressed for a MAP decision rule, as [6]

Pe =

∫
RK

min {π0p0(y) , π1p1(y)} dy . (3.11)

Since Lemma 3.1 states that the optimal signal PDFs are in the form of

(3.7), the conditional PDFs pi(y) =
∫
RK p si(x)pn(y − x)dx can be obtained as

pi(y) = λipn(y− si1) + (1− λi)pn(y− si2), and the average power constraints in

(3.6) become λi|si1|2 + (1 − λi)|si2|2 ≤ A, for i = 0, 1. Therefore, (3.11) implies
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that the optimization problem in (3.6) can be implemented as the constrained

minimization problem in the proposition. �

Comparison of the optimization problems in (3.6) and (3.9) reveals that the

latter is much simpler than the former since it is over a set of variables instead

of a set of functions. However, it is still a non-convex optimization problem

in general; hence, global optimization techniques, such as PSO [13], differential

evolution and genetic algorithms [29], should be employed to obtain the optimal

PDF. In this chapter, the PSO approach is used in the next section to obtain

the solution of (3.9).

After obtaining the solution of the optimization problem in (3.9), the optimal

signals are specified as poptsi
(y) = λopti δ(y−sopti1 )+(1−λopti )δ(y−sopti2 ) for i = 0, 1,

and the optimal detector is the MAP decision rule that decides symbol 1 if

π1p1(y) ≥ π0p0(y) and decides symbol 0 otherwise.

Finally, it should be noted for symmetric signaling, that is, when s01 = −s11,

s02 = −s12 and λ0 = λ1, the optimization in (3.9) can be performed over s11, s12

and λ1 only.

3.2 Numerical Results and Conclusions

A numerical example is presented to illustrate the improvements that can be

obtained via the joint design of the signaling structure and the decision rule for

scalar observations. The noise in (3.1) is modeled by a Gaussian mixture as in

[7] with its PDF being given by pn(y) =
1√

2π σL

∑L
i=1 e

− (y−µi)
2

2σ2 , where L = 6 and

µ = [0.27 0.81 1.08 −1.08 −0.81 −0.27] are used. Note that the average power

of the noise can be calculated as E{n2} = σ2 + 0.6318. In addition, the average

power limit in (3.5) is set to A = 1 and equally likely symbols are considered

(π0 = π1 = 0.5).
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In the following, three different approaches are compared.

Gaussian Solution: In this case, the transmitter is assumed to have no

information about the noise PDF and selects the signals as s0 = −
√
A and

s1 =
√
A , which are known to be optimal in the presence of zero-mean Gaussian

noise [2]. On the other hand, the MAP decision rule is used at the receiver.

Optimal – Stochastic: This approach refers to the solution of the most

generic optimization problem in (3.6), which can also be obtained from (3.9) as

studied in the previous section.

Optimal – Deterministic: This is a simplified version of the optimal so-

lution in (3.9). It assumes that the signals are deterministic; i.e., they are not

randomization of two different signal levels. Hence, the optimization problem in

(3.9) becomes

min
s0,s1

∫
RK

min{π0pn(y − s0) , π1pn(y − s1)} dy

subject to |s0|2 ≤ A , |s1|2 ≤ A . (3.12)

In other words, this approach provides the optimal solution when the signals are

deterministic.

In Fig. 3.1, the average probabilities of error are plotted versus A/σ2 for

the three algorithms above by considering symmetric signaling. In obtaining

the optimal stochastic solution from (3.9), the PSO algorithm is employed with

50 particles and 1000 iterations. Please refer to [13] for the details of the PSO

algorithm1. On the other hand, the optimal deterministic solution in (3.12) can

be obtained via a one-dimensional search due to symmetric signaling. From Fig.

3.1, it is observed that the Gaussian solution performs significantly worse than

the optimal approaches for small σ values. In addition, the optimal approach

based on stochastic signaling has the best performance. In other words, the

1The other parameters are set to c1 = c2 = 2.05 and χ = 0.72984, and the inertia weight ω

is changed from 1.2 to 0.1 linearly with the iteration number [13].
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Figure 3.1: Average probability of error versus A/σ2 for the three algorithms.

smallest average probability of error is obtained when each signal is modeled as

stochastic signal that is a randomization of two signal values as in (3.7).

In order to explain the results in Fig. 3.1, Table 3.1 presents the solutions of

the optimization problems in (3.6) and (3.12) for the optimal stochastic and the

optimal deterministic approaches, respectively. Note that the results for symbol

1 are listed in Table 3.1, and the results for symbol 0 are the negatives of the

signal values in the table since symmetric signaling is considered. For small

A/σ2 values, such as 15 dB, the optimal solutions are the same as the Gaussian

solution, that is, s11 = s12 = s1 =
√
A = 1. However, for large A/σ2’s, the

Gaussian solution becomes quite suboptimal and choosing the largest possible

deterministic signal value, 1, results in higher average probabilities of error, as

can be observed from Fig. 3.1. For example, at A/σ2 = 30 dB, the optimal

deterministic solution sets s1 = −s0 = 0.7476 and achieves an error rate of 7.66×

10−3, whereas the Gaussian one uses s1 = −s0 = 1, which yields an error rate

of 0.0146. This seemingly counterintuitive result is obtained since the average

probability of error is related to the area under the overlaps of the two shifted
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Table 3.1: Optimal stochastic and deterministic signals for symbol 1.
Stochastic Deterministic

A/σ2 (dB) λ1 s11 s12 s1
15 N/A 1 1 1
20 0.1836 1.648 0.7846 0.7927
25 0.2104 1.614 0.7576 0.7587
30 0.2260 1.586 0.7475 0.7476
35 0.2347 1.568 0.7441 0.8759

noise PDFs as in (3.12). Although optimal deterministic signaling uses less power

than permitted, it results in a lower error probability than Gaussian signaling

by avoiding the overlaps between the components of the Gaussian mixture noise

more effectively. On the other hand, optimal stochastic signaling further reduces

the average probability of error by using all the available power and assigning

some of the power to a large signal component that results in less overlapping

between the shifted noise PDFs. For example, at A/σ2 = 30 dB, the optimal

stochastic signal is a randomization of s11 = −s01 = 1.586 and s12 = −s02 =

0.7475 with λ0 = λ1 = 0.226 (cf. (3.7)), which achieves an error rate of 5.95 ×

10−3.

The results in this chapter can be extended toM -ary communications systems

as well by noting that the average probability of error expression in (3.11) be-

comes Pe = 1−
∫
max{π0p0(y), . . . , πM−1pM−1(y)}dy for M -ary systems. Then,

an optimization problem similar to that in Proposition 3.1 can be obtained, where

the optimization is performed over {λi, si1, si2}M−1
i=0 .
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Chapter 4

STOCHASTIC SIGNALING

UNDER CHANNEL STATE

INFORMATION

UNCERTAINTIES

In this chapter, stochastic signaling is studied for power-constrained scalar val-

ued binary communications systems in the presence of uncertainties in channel

state information (CSI). First, stochastic signaling based on the available im-

perfect channel coefficient at the transmitter is discussed, and it is shown that

optimal signals can be represented by randomization between at most two dif-

ferent signal levels for each symbol. Then, performance of stochastic signal-

ing and conventional deterministic signaling is compared for this scenario, and

sufficient conditions are derived for improvability and nonimprovability of de-

terministic signaling via stochastic signaling in the presence of CSI uncertainty.

Furthermore, under CSI uncertainty, two different stochastic signaling strategies,

namely, robust stochastic signaling and stochastic signaling with averaging, are
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proposed. For robust stochastic signaling problem, sufficient conditions are de-

rived for reducing the problem to a simpler form. It is shown that optimal signals

for each symbol can be expressed as randomization between at most two signal

values for stochastic signaling with averaging, as well as for robust stochastic sig-

naling under certain conditions. Finally two numerical examples are presented

to explore the theoretical results.

4.1 System Model and Motivation

Consider a binary communications system with scalar observations [6] in which

the channel effect can be modeled by a multiplicative term as in flat-fading

channels [1], and the received signal is given by

Y = αSi +N , i ∈ {0, 1} , (4.1)

where S0 and S1 denote the transmitted signal values for symbol 0 and symbol

1 respectively, N is the noise component that is independent of Si, and α is the

channel coefficient. In addition, the prior probabilities of the symbols, which are

denoted by π0 and π1, are supposed to be known.

In (4.1), the noise term N is modeled to have an arbitrary probability dis-

tribution considering that it can include the combined effects of thermal noise,

interference, and jamming. Hence, the probability distribution of the noise com-

ponent is not necessarily Gaussian [7].

A generic decision rule is considered at the receiver to determine the symbol

in (4.1). For a given observation Y = y, the decision rule ϕ(y) is expressed as

ϕ(y) =


0 , y ∈ Γ0

1 , y ∈ Γ1

, (4.2)

where Γ0 and Γ1 are the decision regions for symbol 0 and symbol 1, respectively

[2].
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The aim is to design signals S0 and S1 in (4.1) in order to minimize the

average probability of error for a given decision rule, which is given by

Pavg = π0P0(Γ1) + π1P1(Γ0) , (4.3)

with Pi(Γj) denoting the probability of selecting symbol j when symbol i is

transmitted. In practical systems, there exists an average power constraint on

the signals, which can be expressed as

E{|Si|2} ≤ A , (4.4)

for i = 0, 1, where A is the average power limit. Therefore, in the stochastic

signaling approach, the aim becomes the calculation of the optimal probabil-

ity density functions (PDFs) for signals S0 and S1 that minimize the average

probability of error in (4.3) under the average power constraint in (4.4) [17].

Unlike stochastic signaling, in the conventional signal design, S0 and S1 are

modeled as deterministic signals and set to S0 = −
√
A and S1 =

√
A [1], [2].

Then, the average probability of error in (4.3) becomes

Pconv = π0

∫
Γ1

pN

(
y + α

√
A
)
dy

+ π1

∫
Γ0

pN

(
y − α

√
A
)
dy , (4.5)

where pN(·) is the PDF of the noise in (4.1).

As investigated in [17], [40], [42] stochastic signaling results in lower average

probabilities of error than the conventional deterministic signaling in some cases

in the presence of non-Gaussian noise. However, the common assumption in the

previous studies is that the channel coefficient α in (4.1) is known perfectly at

the transmitter, i.e., the CSI is available at the transmitter. In practice, the

transmitter can obtain CSI via feedback from the receiver, or by utilizing the

reciprocity of forward and reverse links under time division duplexing [41]. In

both scenarios, it is realistic to model the CSI at the transmitter to include

certain errors/uncertainties. Therefore, the main motivation behind this study
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is to investigate stochastic signaling under imperfect CSI; that is, to evaluate

the performance of stochastic signaling in practical scenarios and to develop

different design methods for stochastic signaling under CSI uncertainty. In the

next section, the effects of CSI uncertainties on the performance of stochastic

signaling are examined.

4.2 Effects of Channel Uncertainties on the

Stochastic Signaling

4.2.1 Stochastic Signaling with Imperfect Channel Coef-

ficient

Let pS0(·) and pS1(·) denote the PDFs of S0 and S1 in (4.1), respectively. Also

define Ŝ0 , αS0 and Ŝ1 , αS1, and denote their PDFs as pŜ0
(·) and pŜ1

(·),

respectively. Then, from (4.3), the average probability of error for the decision

rule in (4.2) is given by

Pstoc =
1∑

i=0

πi

∫ ∞

−∞
pŜi

(t)

∫
Γ1−i

pN(y − t) dy dt . (4.6)

Since pŜi
(t) is given by pŜi

(t) = (1/|α|) pSi
(1/α) for i = 0, 1, (4.6) can also be

expressed, after a change of variable (t = αx), as

Pstoc =
1∑

i=0

πi

∫ ∞

−∞
pSi

(x)

∫
Γ1−i

pN(y − αx) dy dx . (4.7)

Since imperfect CSI is considered in this study, the transmitter has a distorted

version of the correct channel coefficient α. Let α̂ denote this distorted (noisy)

channel coefficient at the transmitter. In this section, it is assumed that the

transmitter uses α̂ in the design of stochastic signals. Then, the stochastic signal
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design problem can be expressed as

min
pS0

,pS1

1∑
i=0

πi

∫ ∞

−∞
pSi

(x)

∫
Γ1−i

pN(y − α̂ x) dy dx

subject to E{|Si|2} ≤ A , i = 0, 1. (4.8)

Note that there are also implicit constraints in the optimization problem in (4.8)

because pS0(·) and pS1(·) need to satisfy the conditions to be valid PDFs. As in

[17], this optimization problem can be expressed as two separate optimization

problems for S0 and S1. Namely, the optimal signal PDF for symbol 1 can be

obtained from the solution of the following optimization problem:

min
pS1

∫ ∞

−∞
pS1(x)

∫
Γ0

pN(y − α̂ x) dy dx

subject to E{|S1|2} ≤ A . (4.9)

If G(x, k) is defined as

G(x, k) ,
∫
Γ0

pN(y − k x) dy , (4.10)

(4.9) can also be written as

min
pS1

E{G(S1, α̂)} subject to E{|S1|2} ≤ A , (4.11)

where the expectations are taken over S1. Note that, G(S1, α̂) is only a function

of S1 for a given fixed α̂. In the previous studies, such as [17] and [11], the

optimization problems with the same structure as (4.11) have been explored

thoroughly. If G(S1, α̂) in (4.11) is a continuous function of S1 and S1 takes

values in [−γ, γ] for some finite γ > 0, then the optimal solution of (4.11) can

be represented by a randomization of at most two signal levels as a result of

Carathéodory’s theorem [39]. Hence, the optimal signal PDF for S1 can be

expressed as

pS1(s) = λ1 δ(s− s11) + (1− λ1) δ(s− s12) , (4.12)

where λ1 ∈ [0, 1].
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A similar optimization problem can also be formulated for S0. After obtaining

the optimal signal PDFs for S0 and S1, the corresponding average probability of

error can be calculated. Since the optimization problems are similar for S0 and

S1, we focus on the design of S1 in the remainder of this section.

4.2.2 Stochastic Signaling versus Conventional Signaling

It is known that, in the presence of perfect CSI at the transmitter, conventional

signaling, which sets S1 =
√
A [that is, pS1(x) = δ(x −

√
A)], can or cannot be

optimal under certain sufficient conditions as discussed in [17]. In this section,

we explore the conditions under which the use of stochastic signaling instead

of deterministic signaling can result in improved average probability of error

performance in the presence of imperfect CSI.

In the presence of imperfect CSI, let the transmitter have the channel coef-

ficient information as α̂. Then, the transmitter obtains the optimal stochastic

signal S1 from (4.11). Let p α̂
S1
(·) denote the solution of (4.11) for a given value

of α̂. Then, the corresponding conditional probability of error for symbol 1 can

be expressed as

Pα̂
e =

∫ ∞

−∞
p α̂
S1
(x)G(x, α) dx , (4.13)

where G(x, α) is as defined in (4.10). Note that G(x, α) specifies the probability

of choosing symbol 0 for a given signal value x for symbol 1 when the channel

coefficient is equal to α. Therefore, when the stochastic signal for symbol 1 is

specified by the PDF p α̂
S1
(x), the corresponding conditional probability of error

for symbol 1 is obtained as in (4.13).

Suppose that α̂ can be modeled as a random variable with a generic PDF

pα̂(·). In order to improve the performance of conventional signaling for symbol

1 via stochastic signaling, we need to have Pe < G(
√
A ,α), where G(

√
A ,α) is

the conditional probability of error for conventional signaling, i.e., for S1 =
√
A
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(see (4.5) and (4.10)), and Pe is the average conditional probability of error for

stochastic signaling based on imperfect CSI, which can be calculated as

Pe =

∫ ∞

−∞
pα̂(a) P

a
e da , (4.14)

with Pa
e being given by (4.13).

In order to derive sufficient conditions for the improvability and nonimprov-

ability of conventional signaling via stochastic signaling, assume that the channel

coefficient information at the transmitter is specified as α̂ = α + η, where η is a

zero-mean Gaussian noise with standard deviation ε; that is, η ∼ N (0, ε2). Al-

though the Gaussian error model is employed for the convenience of the analysis,

the results are valid also for non-Gaussian error models, as will be discussed at

the end of this section. In addition, it is assumed that α is a positive number

without loss of generality.1. Then, the following proposition presents sufficient

conditions on the improvability and nonimprovability of conventional signaling

via stochastic signaling.

Proposition 4.1: Stochastic signaling performs worse than conventional sig-

naling if the standard deviation of the channel coefficient error ε is greater than

or equal to a threshold ε∗ and it performs better than conventional signaling if ε is

less than or equal to another threshold ε̂ when G(x, k) and Pα̂
e have the following

properties:

• G(x, k) is a strictly decreasing function of x for any fixed positive k, and

G(x, k) = 1−G(−x, k).

• Pα̂
e < κ1 when α̂ > γth > 0, Pα̂

e < κ2 < κ1 when α > α̂ > θth > γth, and

Pα̂
e = G(

√
A,α) when α̂ > βth > α.

1If it is negative, one can redefine function G (4.10) by using pN (y+kx) instead of pN (y−kx)
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In addition, ε∗ and ε̂ can be obtained by solving2(
1

2
− κ1

)
Q

(
α+ γth
ε∗

)
+

1

2
Q
( α
ε∗

)
+ (κ1 − κ2)

(
Q

(
2α

ε∗

)
−Q

(
α+ θth
ε∗

))

=

(
1−Q

(
βth − α

ε∗

))
G(

√
A,α) (4.15)

and

1

2

(
κ1 + κ2 +Q

(α
ε̂

))
+

(
1

2
− κ1

)
Q

(
α− γth

ε̂

)
− κ1Q

(
βth − α

ε̂

)
+ (κ1 − κ2)Q

(
α− θth

ε̂

)
=

(
1−Q

(
βth − α

ε̂

)
+Q

(
α+ βth

ε̂

))
G(

√
A,α) ,

(4.16)

respectively.

Proof : In the following, lower and upper bounds for the expression in (4.14) are

derived in order to prove the statements in the proposition. We start by noticing

the fact that the sign of the channel coefficient knowledge at the transmitter is

important. Suppose that pα̂S1
is the optimal PDF obtained from (4.11) for a given

α̂. Therefore, if −α̂ is used instead of α̂, then p−α̂
S1

will be the optimal solution

of (4.11) and the value of p−α̂
S1

(x) will be equal to pα̂S1
(−x). This observation can

be utilized in (4.13), and also using the fact that G(x, k) = 1 − G(−x, k), Pα̂
e=

1− P−α̂
e can be obtained as follows:∫ ∞

−∞
p α̂
S1
(x)G(x, k)dx =

∫ ∞

−∞
p−α̂
S1

(−x)(1−G(−x, k))dx =

∫ ∞

−∞
p−α̂
S1

(t)(1−G(t, k))dt

= 1−
∫ ∞

−∞
p−α̂
S1

(t)G(t, k)dt = 1− P−α̂
e . (4.17)

It is stated in the second condition of the proposition that Pα̂
e < κ1 when α̂ > γth,

and Pα̂
e < κ2 < κ1 when α > α̂ > θth. Therefore, if we insert −α̂ instead of α̂

in these conditions, we get P−α̂
e < κ1 when −α̂ > γth and P−α̂

e < κ2 < κ1

when α > −α̂ > θth. Using the result in (4.17) and rearranging the terms yield

2Note that the choice of parameters in the conditions of Proposition 4.1 is important to

ensure the existence of solutions to (4.15) and (4.16). Also, the Q-function is defined as

Q(x) = (
∫∞
x

e−t2/2dt)/
√
2π.
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Pα̂
e > 1 − κ1 when α̂ < −γth and Pα̂

e > 1 − κ2 > 1 − κ1 when −α < α̂ < −θth.

Also, since G(x, k) is a strictly decreasing function of x when k is positive, then

G(x, α̂) is a strictly increasing function of x if α̂ is negative. Therefore, for

a given α̂ < 0, the optimal signal PDF p α̂
S1

assigns the weights on negative

numbers instead of positive ones since for each positive value of S1, its negative

can be used instead, which results in the same average power value and a smaller

E{G(S1, α̂)}. Furthermore, since G(x, α) is a strictly decreasing function, and

G(x, α) = 1 − G(−x, α), we have G(x, α) > G(0, α) = 0.5 for x < 0. Thus, by

using these two facts and the expression in (4.13), we conclude that if α̂ < 0,

then Pα̂
e > 0.5 [and Pα̂

e < 0.5, if α̂ > 0]. Now, one can find a lower bound on Pe

in (4.14) as follows:

Pe =

∫ ∞

−∞
pα̂(a)P

a
eda ≥

∫ −γth

−∞
pα̂(a)P

a
eda+

∫ 0

−γth

pα̂(a)P
a
eda+

∫ ∞

βth

pα̂(a)P
a
eda

> (1− κ1)P(α̂ < −γth) + (κ1 − κ2)P(−α < α̂ < −θth) +
1

2
P(−γth < α̂ < 0)

+ P(βth < α̂)G(
√
A,α) = (1− κ1)P

(
η

ε
>
α+ γth

ε

)
+ (κ1 − κ2)P

(
−2α

ε
<
η

ε
<

−α− θth
ε

)
+

1

2
P

(
−α
ε

<
η

ε
<

−α− γth
ε

)
+ P

(
η

ε
>
βth − α

ε

)
G(

√
A,α) = (1− κ1)Q

(
α+ γth

ε

)
+

(κ1 − κ2)

(
Q

(
2α

ε

)
−Q

(
α+ θth
ε

))
+

1

2

(
Q
(α
ε

)
−Q

(
α+ γth

ε

))
+Q

(
βth − α

ε

)
G(

√
A,α) =

(
1

2
− κ1

)
Q

(
α+ γth

ε

)
+ (κ1 − κ2)

(
Q

(
2α

ε

)
−Q

(
α+ θth
ε

))
+

1

2
Q
(α
ε

)
+Q

(
βth − α

ε

)
G(

√
A,α) .

(4.18)

If we equate this bound to G(
√
A,α) and solve for ε, we obtain ε∗. Therefore, if

ε = ε∗, we have Pe > G(
√
A,α). Notice that the Q-function is strictly decreasing,

hence the derived lower bound is an increasing function of ε. Thus, for ε > ε∗, we

still have Pe > G(
√
A,α). Overall, under the conditions given in the proposition,

having the standard deviation of the channel coefficient error being larger than
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or equal to a certain value ε∗ is sufficient to conclude that conventional signaling

performs better than stochastic signaling.

Next, one can find an upper bound on Pe in (4.14) as follows:

Pe =

∫ ∞

−∞
pα̂(a)P

a
eda =

∫ −βth

−∞
pα̂(a)P

a
eda+

∫ 0

−βth

pα̂(a)P
a
eda+

∫ γth

0

pα̂(a)P
a
eda

+

∫ βth

γth

pα̂(a)P
a
eda+

∫ ∞

βth

pα̂(a)P
a
eda ≤ (1−G(

√
A,α))P(α̂ < −βth)

+ P(−βth < α̂ < 0) +
1

2
P(0 < α̂ < γth) + κ1P(γth < α̂ < βth)

+ (κ2 − κ1)P(θth < α̂ < α) + P(α̂ > βth)G(
√
A,α)

= (1−G(
√
A,α))P

(
η

ε
>
α+ βth

ε

)
+ P

(
−βth − α

ε
<
η

ε
<

−α
ε

)
+

1

2
P

(
−α
ε

<
η

ε
<

−α+ γth
ε

)
+ κ1P

(−α+ γth
ε

<
η

ε
<

−α+ βth
ε

)
+ (κ2 − κ1)P

(
−α+ θth

ε
<
η

ε
< 0

)
+ P

(
η

ε
>
βth − α

ε

)
G(

√
A,α)

= (1−G(
√
A,α))Q

(
α+ βth

ε

)
+

1

2

(
Q

(
α− γth

ε

)
−Q

(α
ε

))
+Q

(α
ε

)
−Q

(
α+ βth

ε

)
+ κ1

(
1−Q

(
α− γth

ε

)
−Q

(
βth − α

ε

))
+ (κ2 − κ1)

(
1

2
−Q

(
α− θth

ε

))
+Q

(
βth − α

ε

)
G(

√
A,α) =

1

2

(
κ1 + κ2 +Q

(α
ε

))
+

(
1

2
− κ1

)
Q

(
α− γth

ε

)
− κ1Q

(
βth − α

ε

)
+ (κ1 − κ2)Q

(
α− θth

ε

)
+

(
Q

(
βth − α

ε

)
−Q

(
α+ βth

ε

))
G(

√
A,α) . (4.19)

Therefore, if we equate this bound to G(
√
A,α) and solve for ε, we obtain ε̂.

Therefore, if ε = ε̂, we have Pe < G(
√
A,α). Since the derived upper bound

decreases as ε decreases, for ε < ε̂, we still have Pe < G(
√
A,α). Overall, under

the conditions given in the proposition, having ε ≤ ε̂ is sufficient to conclude

that stochastic signaling performs better than conventional signaling. �

Although the results in Proposition 4.1 are presented for channel coefficient

errors with a zero-mean Gaussian distribution, they can easily be extended for

any type of probability distribution as well. For example, consider a generic
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PDF for the channel coefficient error, which is denoted by pη(·). The cor-

responding cumulative distribution function (CDF) Fη(·) can be expressed as

Fη(x) =
∫ x

−∞ pη(t) dt. Then, the results in Proposition 4.1 are valid when Q(x/ε∗)

in (4.15) and Q(x/ε̂) in (4.16) are replaced by 1 − Fη(x). Hence, ε∗ and ε̂ can

still be obtained by solving the updated equations.

As discussed before, G(x, k) can be inferred as the probability of deciding

symbol 0 instead of symbol 1, when the value of the channel coefficient is k, and

S1 = x. In general, for a specific channel coefficient, when a larger signal value is

employed, a lower probability of error can be obtained; hence, G(x, k) is usually

a decreasing function of x in practice. Moreover, G(x, k) = 1−G(−x, k) can be

satisfied when the channel noise has a symmetric PDF (i.e. pN(x) = pN(−x)) and

the decision regions of the detector at the receiver are symmetric (Γ0 = −Γ1). In

fact, the channel noise is symmetric in most practical scenarios (for example, zero-

mean additive white Gaussian noise or Gaussian mixture noise with symmetric

components [7]), and some receivers such as the sign detector or the optimal

MAP detector for symmetric signaling under symmetric channel noise will have

symmetric decision regions in fact. All in all, the first condition in the proposition

is expected to hold in many practical scenarios. The details of how the second

condition is satisfied and how the parameters are selected will be investigated in

the Section 4.4.

4.3 Design of Stochastic Signals Under CSI Un-

certainty

First, suppose that pα(·) denotes the PDF of the actual channel coefficient α,

where each instance of the channel coefficient resides in a certain set Ω. In this

section, we propose two different methods for designing the stochastic signals
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under CSI uncertainty in the transmitter, and evaluate the performance of each

method in Section 4.4.

4.3.1 Robust Stochastic Signaling

In this part, robust design of optimal stochastic signals is presented under CSI

uncertainty at the transmitter. Suppose that Ω is given by Ω = [α0, α1], that is,

the channel coefficient α takes values in the interval of [α0, α1], where α0 < α1.

It is assumed that the transmitter has the knowledge of set Ω. Note that this

can be realized via feedback from the receiver to the transmitter. In robust

stochastic signaling, signals are designed in such a way that they minimize the

average probability of error for the worst-case channel coefficient, that is, the

one which maximizes the average probability of error for the transmitted signals.

For this design criterion, the optimal stochastic signaling problem in (4.8) can

be expressed as a minimax problem as follows:

min
pS0

,pS1

max
α∈[α0,α1]

1∑
i=0

πi

∫ ∞

−∞
pSi

(x)

∫
Γ1−i

pN(y − αx) dy dx

subject to E{|Si|2} ≤ A . (4.20)

The problem in (4.20) might be difficult to solve in general. In the following,

it is shown that in most practical scenarios, this problem can be reduced to a

simpler form and the optimal signal PDFs can be obtained by solving a simpler

optimization problem:

Proposition 4.2: The minimax problem in (4.20) is equivalent to the

stochastic signaling problem for channel coefficient α0, that is,

min
pS0

,pS1

1∑
i=0

πi

∫ ∞

−∞
pSi

(x)

∫
Γ1−i

pN(y − α0 x) dy dx

subject to E{|Si|2} ≤ A (4.21)

when the following conditions are satisfied:
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• G(x, α) is a strictly decreasing function of x for any α ∈ [α0 α1].

• G(x, α) is a strictly decreasing (increasing) function of α for all x > 0

(x < 0).

Proof : The minimax problem in (4.20) can be expressed as follows:

min
pS0

,pS1

max
α∈[α0,α1]

π1

∫ ∞

−∞
pS1(x)G(x, α)dx+ π0

∫ ∞

−∞
pS0(x) (1−G(x, α))dx

subject to E{|Si|2} ≤ A . (4.22)

Assume that S1 is a nonnegative and S0 is a nonpositive random variable. First,

it is shown that this assumption does not reduce the generality of the proof.

Suppose that p∗S1
is the PDF of S1 which is a nonnnegative random variable, and

p∗S0
is the PDF of S0 which is any random variable (that is, its instances can take

both positive or negative values). Therefore, in the minimax problem, for given

p∗S0
and p∗S1

, we maximize π1
∫∞
−∞ p∗S1

(x)G(x, α)dx+π0
∫∞
−∞ p∗S0

(x) (1−G(x, α))dx

over α ∈ [α0, α1]. Now assume that p†S1
is symmetric with p∗S1

, that is, p†S1
will be

a PDF for a nonpositive random variable such that p∗S1
(−x) = p†S1

(x). Similarly,

for a given p∗S0
and p†S1

, we maximize π1
∫∞
−∞ p†S1

(x)G(x, α)dx+π0
∫∞
−∞ p∗S0

(x) (1−

G(x, α))dx over α ∈ [α0, α1]. Because of the first condition in the proposition, for

every α ∈ [α0, α1],
∫∞
−∞ p∗S1

(x)G(x, α)dx ≤
∫∞
−∞ p†S1

(x)G(x, α)dx, since G(x, α)

is strictly decreasing function of x; hence, the value of the maximum for p∗S1
will

be less than or equal to that for p†S1
, and both PDFs will yield the same average

power value because of the symmetry. Since it is a minimax problem, we look for

the optimal signal PDFs pS0 and pS1 which minimize the value of the maximum.

Thus, by using a nonnegative S1 we achieve a lower maximum value as compared

to a nonpositive S1. Similarly, a nonpositive S0 will yield a smaller maximum

value as compared to a nonnegative S0. Therefore, instead of considering all

PDFs, one can just consider the PDFs of a nonpositive S0 and a nonnegative S1

without loss of generality under the first condition in the proposition.
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By using this fact, for any given pS0 and pS1 , which are the PDFs of

a nonpositive S0 and a nonnegative S1 respectively, we maximize V (α) =

π1
∫∞
0
pS1(x)G(x, α)dx + π0

∫ 0

−∞ pS0(x) (1 − G(x, α))dx over α ∈ [α0, α1]. De-

fine

V1(α) =

∫ ∞

0

pS1(x)G(x, α)dx

and

V0(α) =

∫ 0

−∞
pS0(x)G(x, α)dx .

Then, we maximize V (α) = π1 V1(α)−π0 V0(α)+π0 over α ∈ [α0, α1]. Under the

second condition in the proposition, ∂G(x,α)
∂α

< 0, ∀x > 0 and ∂G(x,α)
∂α

> 0, ∀x < 0

3. First, assume that pSi
(x) ̸= δ(x) for i = 0, 1. Then,

dV1(α)

dα
=

∫ ∞

0

pS1(x)
∂G(x, α)

∂α
dx < 0.

Similarly,

dV0(α)

dα
=

∫ 0

−∞
pS0(x)

∂G(x, α)

∂α
dx > 0.

Therefore, we can write that dV (α)
dα

= π1
dV1(α)
dα

− π0
dV0(α)
dα

< 0. This shows that

V (α) is a strictly decreasing function of α. Hence, for pS0 and pS1 , under the

conditions in the proposition, max
α∈[α0 α1]

V (α) = V (α0), meaning that the minimax

problem can be reduced to the form in (4.21). Note that, when pSi
(x) = δ(x),

then dVi(α)
dα

= 0. If pS1(x) = pS0(x) = δ(x), then V (α) becomes a constant

function. Also, if one of pS1(x) or pS0(x) is not equal to δ(x), V (α) is still strictly

decreasing function of α. Therefore, max
α∈[α0 α1]

V (α) = V (α0) holds for all possible

pS0 and pS1 in fact. �

Proposition 4.2 states that, under certain sufficient conditions, the robust

design of stochastic signals becomes equivalent to the stochastic signal design for

the smallest magnitude of the channel coefficient in set Ω. The simplified problem

3When x = 0, G(x, α) is independent of α and just a constant as it can be seen from (4.10).
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in (4.21) has a well-known structure, which was investigated for example in [17].

The problem can be solved separately for S0 and S1 by expressing the problem

as two decoupled optimization problems. Then it can be shown that if G(Si, α0)

is a continuous function of Si and Si takes values in [−γ, γ] for some finite γ > 0,

then each optimal signal PDF pSi
can be represented by a randomization of at

most two signal levels [17, 39].

It is also noted that if [α0, α1] is a positive interval, then the two conditions in

Proposition 4.2 can be reduced to a single condition. Suppose that u = αx, then

G(x, α) can be written as G(u) =
∫
Γ0
pN(y − u) dy. Therefore, if α is positive,

then the conditions in Proposition 4.2 are equivalent to that G(u) is a decreasing

function of u, that is, dG(u)
du

< 0 .

After obtaining the optimal signal PDFs pS0 and pS1 by solving (4.21), the

conditional average probability of error for a given α ∈ Ω can be calculated as

Pα
rob =

1∑
i=0

πi

∫ ∞

−∞
pSi

(x)

∫
Γ1−i

pN(y − αx) dy dx . (4.23)

Finally, the average probability of error for robust stochastic signaling can be

calculated as

Prob =

∫
Ω

pα(a) P
a
Rob da . (4.24)

Note that, while calculating the conditional average probability of error for

a given α, the same signal PDF is used for all α values, since the optimal signal

PDFs do not depend on the value of the actual channel coefficient α, but only

depend on the lower boundary point of the set Ω in robust stochastic signaling.

4.3.2 Stochastic Signaling with Averaging

In robust stochastic signaling, signal PDFs are designed for the worst-case chan-

nel coefficient, which belongs to a certain set Ω. In this section, an alternative
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way of designing stochastic signals under CSI uncertainty is discussed. In this

method, the transmitter assumes that the channel coefficient is distributed ac-

cording to a PDF p̂α(·) .4 Then, optimal stochastic signal PDFs are designed in

such a way that the average probability of error is minimized for this assumed

CSI statistics under the average power constraints. This can be formulated as

follows:

min
pS0

,pS1

∫ ∞

−∞
p̂α(a)

1∑
i=0

πi

∫ ∞

−∞
pSi

(x)

∫
Γ1−i

pN(y − ax)dydxda

subject to E{|Si|2} ≤ A . (4.25)

Note that this problem is separable over S0 and S1 as well. Therefore, one can

consider the the optimal signals for symbol 0 and symbol 1 separately. Specif-

ically, the optimal signal PDF for symbol 1 can be obtained by solving the

following problem:

min
pS1

∫ ∞

−∞
p̂α(a)

∫ ∞

−∞
pS1(x)

∫
Γ0

pN(y − ax) dy dx da

subject to E{|S1|2} ≤ A . (4.26)

Changing the order of the first and the second integrals in (4.26), the following

formulation can be obtained:

min
pS1

∫ ∞

−∞
pS1(x)

∫ ∞

−∞
p̂α(a)G(x, a) da dx

subject to E{|S1|2} ≤ A (4.27)

where G(x, a) is as defined in (4.10). In addition, if H(x) is defined as

H(x) ,
∫ ∞

−∞
p̂α(a)G(x, a) da = E{G(x, a)} (4.28)

where the expectation is taken over the assumed PDF of the channel coefficient,

then (4.27) can be written as

min
pS1

E{H(S1)} subject to E{|S1|2} ≤ A . (4.29)

4Note that this will not be the actual PDF of the channel coefficient in general due to CSI

uncertainty at the transmitter.
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For this problem, it can be concluded that, under most practical scenarios, the

optimal signal PDF can be characterized by a randomization between at most

two signal levels similarly to the previous results. The optimal signal PDF for

symbol 0 can be obtained similarly.

In the stochastic signaling with averaging approach, the transmitter assigns

different weights to different values of the channel coefficient and designs signals

based on this averaging operation over possible channel coefficient values. For

example, instead of directly using the distorted channel coefficient α̂ in the signal

design as in Section 4.2.1, the transmitter may assume a legitimate PDF around

α̂ for the channel coefficient and design the stochastic signals. The performance

of this approach and the other approaches is compared in the following section.

4.4 Performance Evaluation

In this section, two numerical examples are presented in order to investigate the

theoretical results in the previous sections. In the first numerical example, we

compare the performance of conventional signaling and stochastic signaling in the

presence of channel coefficient errors and observe the effects of CSI uncertainty

on stochastic signaling. In the second example, we evaluate the performance of

the proposed design methods in Section 4.3. In both of the examples, a binary

communications system with equally likely symbols are considered (π0 = π1 =

0.5), the average power limit in (4.4) is set to A = 1, and the decision rule at the

receiver is specified by Γ0 = (−∞, 0] and Γ1 = [0,∞) (i.e., the sign detector).

Also the noise in (4.1) is modeled by a Gaussian mixture noise [7] with its PDF

being given by

pN(n) =
1√
2π σ

L∑
l=1

vl e
− (n−µl)

2

2σ2 . (4.30)

Gaussian mixture noise is encountered in practical systems in the presence of

interference [7]. For the channel noise and the detector structure as described
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above, G(x, k) in (4.10) can be calculated as

G(x, k) =
L∑
l=1

vlQ

(
k x+ µl

σ

)
. (4.31)

In the first example, the mass points µl are located at µ =

[−1.013 − 0.275 − 0.105 0.105 0.275 1.013] with corresponding weights v =

[0.043 0.328 0.129 0.129 0.328 0.043]. Also each component of the Gaussian mix-

ture noise has the same variance σ2 and the average power of the noise can be

calculated as E{n2} = σ2 + 0.1407.

The channel coefficient information at the transmitter is modeled as α̂ = α+η,

where α = 1 and η is a zero-mean Gaussian random variable with variance ε2.

Due to the symmetry of the problem, the conditional probability of error expres-

sion in (4.14) also provides the average probability of error in this scenario. In

order to evaluate that expression, 100 realizations are obtained for α̂. Then, the

optimization problem in (4.11) is solved for each realization and the optimal sig-

nal PDFs that are in the form of (4.12) are obtained by using the PSO algorithm

[30]. For the details of the PSO parameters employed in this study, please refer

to [40].

In Fig. 4.1, the average probabilities of error are plotted versus A/σ2 for

conventional signaling, stochastic signaling with no channel coefficient errors (ε =

0), and stochastic signaling with various levels of channel coefficient errors. It

is observed that, for high A/σ2 values, the best performance is obtained by

stochastic signaling with perfect CSI and the performance of stochastic signaling

gets worse as the variance of the channel coefficient error increases. For example,

when ε = 0.5 and ε = 0.6, stochastic signaling performs worse than conventional

signaling for all A/σ2 values. Another observation is that for low values of ε,

stochastic signaling still performs better than conventional signaling for high

A/σ2 values and their performance is similar for high σ2, i.e. when A/σ2 is

smaller than 15 dB. In fact, one can calculate the average probability of error
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Figure 4.1: Average probability of error versus A/σ2 for conventional signaling
and stochastic signaling with various ε values.

analytically for low A/σ2 values for each ε. At low A/σ2 values, Pα̂
e in (4.13) can

be expressed as

Pα̂
e =

1− sgn(α̂)

2
+ sgn(α̂)G(

√
A,α)) (4.32)

where sgn denotes the sign operator. Then, from (4.14), Pe can be calculated

as Q(α/ε) +G(
√
A,α)− 2G(

√
A,α)Q(α/ε) . For instance, when A/σ2 = 10 dB,

G(
√
A,α) = 0.02613 in this example. Then, for ε = 0.6, Pe is calculated as

0.9477Q(5/3) + 0.0261 = 0.0714, which is very close to the result shown in

Fig. 4.1. For this example, we can apply the conditions given in Proposition 4.1

and calculate ε̂ and ε∗. Firstly, we check the first condition in the proposition.

G(x, k) is calculated above for this example and it is a linear combination of Q

functions. Therefore, G(x, k) is a strictly decreasing function of x as Q(x) is a

monotone decreasing function. Also, sinceQ(x) = 1−Q(−x) and the components

of Gaussian mixture noise are symmetric, we have G(x, k) = 1−G(−x, k) as well.

Hence, the first condition in Proposition 4.1 is satisfied. In order to check the

second condition, the plot of Pα̂
e versus α̂ is presented in Fig. 4.2. It is observed
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Figure 4.2: Pα̂
e versus α̂ for A/σ2 = 40 dB. The second condition in Proposition

4.1 is satisfied for κ1 = 0.04354, κ2 = 0.01913, γth = 0.1135, θth = 0.8, βth =
1.038, and G(

√
A,α)) = 0.03884.

that Pα̂
e does not have a monotonic structure; that is, it increases, decreases or

remains the same as α̂ increases. However, it obeys the structure specified in the

second condition of Proposition 4.1. Specifically, when α̂ > γth = 0.1135, Pα̂
e is

less than κ1 = 0.04354, and when θth = 0.8 < α̂ < α = 1, Pα̂
e becomes less than

κ2 = 0.01913, which is even smaller than κ1. Also, when α̂ > βth = 1.038, Pα̂
e

becomes equal to G(
√
A,α)) = 0.03884, which is the average probability of error

for conventional signaling. The values of κ1, κ2, γth, θth, and βth are illustrated in

Fig. 4.2. Now, by using the above parameters and solving (4.15), which becomes

0.45646Q

(
1.1135

ε∗

)
+ 0.5Q

(
1

ε∗

)
+ 0.02441Q

(
2

ε∗

)
−Q

(
1.8

ε∗

)
= 0.03884

(
1−Q

(
0.038

ε∗

))
,

one can obtain ε∗ = 0.5394. This means that when A/σ2 = 40 dB, if the standard

deviation of the channel coefficient error is larger than 0.5394, we can conclude

that stochastic signaling is outperformed by conventional signaling. In fact, it

can be observed from Fig.4.1 that for A/σ2 = 40 dB and ε = 0.6 > ε∗, the
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Figure 4.3: Average probability of error versus ε for stochastic signaling. At
εth = 0.413, stochastic signaling has the same average probability of error as
conventional signaling.

performance of stochastic signaling is quite worse than conventional signaling as

Proposition 4.1 asserts. Similarly, by solving (4.16), which becomes

0.5

(
0.06267 +Q

(
1

ε̂

))
+ 0.45646Q

(
0.8865

ε̂

)
− 0.04354Q

(
0.038

ε̂

)
+ 0.02441Q

(
0.2

ε̂

)
= 0.03884

(
1−Q

(
0.038

ε̂

)
+Q

(
2.038

ε̂

))
,

one can calculate ε̂ = 0.3395. This means that, at A/σ2 = 40 dB, if the standard

deviation of the channel coefficient error is smaller than 0.3395, we can con-

clude that conventional signaling is outperformed by stochastic signaling. From

Fig. 4.1, it is seen that for A/σ2 = 40 dB and ε = 0.3, 0.1 , 0.01 < ε̂, stochastic

signaling performs better than conventional signaling.

In order to explore performance variations of stochastic signaling with respect

to ε, Fig. 4.3 is presented. It is observed that as the variance of the channel co-

efficient error increases, the average probability of error for stochastic signaling

increases. This is expected since the transmitter designs the stochastic signals

in the presence of channel coefficient errors (imperfect CSI) and these errors

get more significant as ε increases. Therefore, it can be concluded that in the
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presence of large channel coefficient errors (i.e., large ε), using conventional de-

terministic signaling instead of stochastic signaling would be more preferable,

whereas for small channel coefficient errors, stochastic signaling can be employed

to achieve smaller average probabilities of error than conventional signaling. In

Fig. 4.3, the upper bound ε∗ and the lower bound ε̂ obtained from Proposition

4.1 are also illustrated, together with the point εth at which the performance

of stochastic signaling and conventional signaling becomes the same. It is ob-

served that Proposition 4.1 provides sufficient conditions for the improvability

and nonimprovability of conventional signal via stochastic signaling. However,

the conditions are not necessary as illustrated in Fig. 4.3.

In the second example, the mass points µl of the Gaussian mixture noise are

located at µ = [−1.31 − 0.275 − 0.125 0.125 0.275 1.31] with corresponding

weights v = [0.002 0.319 0.179 0.179 0.319 0.002]. Each component of the Gaus-

sian mixture noise has the same variance σ2 and the average power of the noise

can be calculated as E{n2} = σ2 +0.0607. For this example, α̂ is again modeled

as α̂ = α+ η where η is a zero-mean Gaussian random variable with variance ε2.

We assume that the actual channel coefficient α has a uniform distribution over

set Ω = [0.8, 1.2]; i.e., α is distributed as U [0.8, 1.2].

First, we compare the average probability of error performance of different

signaling strategies:

Stochastic-Perfect: It is assumed that the transmitter has the knowledge

of the actual channel coefficient, which is used in the signal design. In the simu-

lations, 100 realizations are generated for uniformly distributed α. The optimal

signal PDFs and the corresponding probabilities of error are calculated for each

realization. Then, by averaging over the PDF of α, the average probabilities of

error are obtained.
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Conventional: The transmitter selects the signals as S1 = −S0 =
√
A = 1.

For each realization of α, the corresponding probabilities of error are calculated

and then their average is taken over the PDF of α.

Stochastic-Distorted: The transmitter has imperfect CSI and it uses a

distorted (imperfect) channel coefficient α̂ directly in the design of signals, as

discussed in Section 4.2.1. In Fig. 4.4, average probabilities of error are plotted

for ε = 0.05 and ε = 0.1.

Stochastic-Average: The transmitter assumes that the PDF of the channel

coefficient is p̂α(a) is specified by N (α̂,∆2). Then, by solving (4.29), the optimal

signal PDF p α̂
S1

for signal 1 can be obtained for each α̂. Next, the conditional

probability of error for symbol 1 can be expressed as

Paver =

∫ ∞

−∞
pα(a)

∫ ∞

−∞
pα̂|α(â)

∫ ∞

−∞
p â
S1
(x)G(x, a) dxdâda (4.33)

where pα̂|α(·) is the conditional PDF of α̂ for a given α. Note that, due to the

symmetry, the conditional error probability is equal to the average probability

of error in this example as well. In Fig. 4.4, the average probabilities of error are

plotted for ∆ = 0.01, ∆ = 0.05, and ∆ = 0.2, where ε = 0.05 in each case.

Stochastic-Robust: First, one can show that this example satisfies the

conditions in Proposition 4.2. In this example, G(x, α) can be calculated by using

(4.31). Note that G(x, α) is a linear combination of Q functions, i.e. Q
(
αx+µl

σ

)
.

Then, since α is always be positive (α ∈ [0.8, 1.2]), Q
(
αx+µl

σ

)
is a decreasing

function of x. Also, it is a decreasing function of α if x is positive, and it

increases with α when x is negative. In fact, since [0.8, 1.2] is a positive interval,

we can write u = αx and G(u) will be a decreasing function of u as Q
(
u+µl

σ

)
decreases with u. Therefore, we can apply the result in Proposition 4.2 in this

example. That is, the optimal signal PDFs are obtained by solving (4.20) with

α0 = 0.8 as Ω = [0.8, 1.2]. Then, the average probabilities of error are calculated

via (4.23) and (4.24).
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Figure 4.4: Average probability of error versus A/σ2 for various signaling strate-
gies.

In Fig. 4.4, the average probabilities of error are plotted versus A/σ2 for

conventional signaling, stochastic signaling with perfect CSI, distorted channel

coefficient, averaging and robust stochastic signaling. It is observed that, for high

σ2, that is, specifically when A/σ2 is smaller than 15 dB, all signaling strategies

perform similarly. For high A/σ2 values, it is observed that stochastic signaling

with perfect CSI achieves the best performance. The second best performance is

obtained by the stochastic signaling with averaging method when the parameters

are ϵ = ∆ = 0.05. Although conventional signaling gives the worst performance

for medium A/σ2 values, the worst performance is observed for stochastic sig-

naling with distorted channel coefficient for high A/σ2 values. Robust stochastic

signaling performs somewhere between stochastic signaling with perfect CSI and

conventional signaling. Robust signaling performs better (worse) than stochastic

signaling with averaging for ∆ = 0.2 (∆ = 0.05) at high or medium A/σ2 values.

For ϵ = 0.05, stochastic signaling with averaging when ∆ = 0.01 and stochas-

tic signaling with distorted channel coefficient performs very similarly and they

achieve better performance than robust signaling for medium A/σ2 values; how-

ever, their performance is worse than robust signaling for high A/σ2 values.
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performs same with conventional signaling when ∆ = 0.0078. It has the same
average probability of error as robust stochastic signaling at ∆ = 0.0236 and
∆ = 0.1684.

In order to investigate the effects of value of ∆ on the average probability of

error performance of the stochastic signaling with averaging method, Fig. 4.5 is

presented. It can be observed that setting ∆ to 0.05 provides the best perfor-

mance. This means that the average probability of error performance is smaller

when the standard deviation of the assumed PDF of the channel coefficient ∆

gets closer to the standard deviation of the channel coefficient error ϵ. As we

increase or decrease the value of ∆ from 0.05, the average probability of er-

ror increases. Therefore, choosing very small or very large ∆ values degrades

the performance of the stochastic signaling with averaging strategy. Note that

∆ = 0 corresponds to the stochastic signaling with distorted channel coefficient

in fact. It can be observed from Fig. 4.5 that if ∆ is less than 0.0078, con-

ventional signaling which has an average probability of error of 0.002 is better

than this averaging strategy. Also, if ∆ is less than 0.0236 or it is larger than

0.1684, robust stochastic signaling which has an average probability of error of

0.00136 achieves a better performance than stochastic signaling with averaging,
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Figure 4.6: Average probability of error versus α for various signaling strategies
when A/σ2 = 40dB.

whereas the performance of stochastic signaling with averaging is better than

robust signaling if 0.0236 < ∆ < 0.1684.

Furthermore, we investigate in Fig. 4.6 the average probability of error per-

formance of conventional signaling, stochastic signaling with perfect CSI, ro-

bust stochastic signaling, stochastic signaling with averaging when ϵ = 0.05

and ∆ = 0.1, and stochastic signaling with distorted channel coefficient when

ϵ = 0.05 versus the actual value of the channel coefficient α when A/σ2 = 40dB.

We observe that the average probability of error decreases as α increases for

all strategies 5. For each value of the channel coefficient, the lower bound for

the probability of error is obtained by stochastic signaling with perfect CSI. For

small values of α, i.e., when α < 0.9276, robust stochastic signaling is better

than stochastic signaling with averaging. However, for larger α values such as

when α > 1.107, robust signaling performs worse than stochastic signaling with

averaging and with distorted channel coefficient. This shows that since the sig-

nals are designed for α0 = 0.8 in robust stochastic signaling, when the actual α

5Although it is not very clear in Fig. 4.6, the average probabilities of error for conventional

signaling and robust signaling also slightly decrease as α increases.
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is close to that value, robust signaling gives a better performance. Performance

of stochastic signaling with averaging is better than conventional signaling and

stochastic signaling with distorted channel coefficient for every α value. Although

conventional signaling gives larger average probabilities of error than stochastic

signaling with distorted channel coefficient for α > 0.9935, using noisy a channel

coefficient in the signal design directly results in the worst average probability of

error performance when α has a smaller value.

Finally, in order to provide additional explanations of the results, Table 4.1

and Table 4.2 are presented. In Table 4.1, the optimal signals for robust stochas-

tic signaling and stochastic signaling for the given channel coefficient value α

are presented for various A/σ2 values. Note that in robust signaling the actual

value of α is not important since the signals are designed for α = 0.8. It is

observed that when A/σ2 = 10dB both strategies have the same solution as the

conventional signaling. However, as A/σ2 increases, the randomization between

two signal values becomes more effective and this may help reduce the average

probability of error. For example, when A/σ2 = 25dB, the average probability

of error for robust signaling is 0.00155, whereas it is 0.00199 for conventional

signaling. In Table 4.2, the optimal signals for stochastic signaling with aver-

aging when A/σ2 = 40dB are presented. Note that the assumed PDF of the

channel coefficient in that strategy is N (α̂,∆2). It is observed that when ∆ is

very small, i.e., ∆ = 0.01, the optimal signal PDFs are close to the optimal signal

PDFs of the stochastic signaling case given in Table 4.1. Also, when α̂ = 0.9 and

∆ = 0.2, the optimal signal PDF is close to that for conventional signaling since

the optimal PDF has a mass point at 0.9684 with a weight of 0.9302.

90



Table 4.1: Optimal signals for stochastic signaling for various α and robust design
for symbol 1.

Stochastic

A/σ2 (dB) α λ1 s11 s12
10 0.9 N/A 1 1
10 1.1 N/A 1 1
25 0.9 0.3254 1.5642 0.5496
25 1.1 0.5557 1.2798 0.4497
40 0.9 0.4211 1.4838 0.3546
40 1.1 0.6590 1.214 0.2901

Robust

A/σ2 (dB) α λ1 s11 s12
10 N/A N/A 1 1
25 N/A 0.2276 1.7597 0.6183
40 N/A 0.3200 1.6693 0.3989

Table 4.2: Optimal signals for stochastic signaling with averaging for symbol 1
when A/σ2 = 40dB.

Averaging

α̂ ∆ λ1 s11 s12
0.9 0.01 0.41 1.5016 0.3575
0.9 0.05 0.351 1.5922 0.4114
0.9 0.2 0.0698 1.3519 0.9684
1.1 0.01 0.6466 1.2247 0.2917
1.1 0.05 0.575 1.2892 0.323
1.1 0.2 0.476 1.2815 0.6453

4.5 Conclusions

The effects of imperfect CSI on stochastic signaling and the design of stochastic

signals in the presence of CSI uncertainty have been investigated. First, a prob-

lem formulation has been presented to explore the effects of errors in the channel

coefficient, and the two mass point structure of an optimal signal PDF has been

observed when the signals are designed based on noisy channel coefficients at the

transmitter. Then, sufficient conditions have been presented to specify when the

performance of conventional deterministic signaling can or cannot be improved

via stochastic signaling. Upper and lower bounds on the variance of the chan-

nel estimation error have been derived and improvability and nonimprovability

conditions have been presented. Then, two different signaling strategies, called
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robust stochastic signaling and stochastic signaling with averaging, have been

discussed. Sufficient conditions are derived to obtain an equivalent but simpler

form for the robust stochastic signaling design problem. Finally, the theoretical

results have been presented over two examples.
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