
CODET: A NEW ALGORITHM FOR
CONTAINMENT AND NEAR DUPLICATE

DETECTION IN TEXT CORPORA

a thesis

submitted to the department of computer engineering

and the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Emre Varol

January, 2012

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Cevdet Aykanat(Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Uğur Güdükbay

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Osman Abul

Approved for the Graduate School of Engineering and

Science:

Prof. Dr. Levent Onural
Director of the Graduate School

ii

ABSTRACT

CODET: A NEW ALGORITHM FOR CONTAINMENT
AND NEAR DUPLICATE DETECTION IN TEXT

CORPORA

Emre Varol

M.S. in Computer Engineering

Supervisor: Prof. Dr. Cevdet Aykanat

January, 2012

In this thesis, we investigate containment detection, which is a generalized ver-

sion of the well known near-duplicate detection problem concerning whether a

document is a subset of another document. In text-based applications, there are

three way of observing document containment: exact-duplicates, near-duplicates,

or containments, where first two are the special cases of containment. To de-

tect containments, we introduce CoDet, which is a novel algorithm that focuses

particularly on containment problem. We also construct a test collection using a

novel pooling technique, which enables us to make reliable judgments for the rela-

tive effectiveness of algorithms using limited human assessments. We compare its

performance with four well-known near duplicate detection methods (DSC, full

fingerprinting, I-Match, and SimHash) that are adapted to containment detection.

Our algorithm is especially suitable for streaming news. It is also expandable to

different domains. Experimental results show that CoDet mostly outperforms the

other algorithms and produces remarkable results in detection of containments in

text corpora.

Keywords: Corpus Tree, Document Containment, Near-Duplicate Detection,

Similarity, Test Collection Preparation, Algorithm.

iii

ÖZET

CODET: YAZILI DOKÜMANLARDA KAPSAMA VE
BENZERLİK TESPİTİ İÇİN YENİ BİR ALGORİTMA

Emre Varol

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Cevdet Aykanat

Ocak, 2012

Bu tezde, birbirine benzer doküman tespitinin genelleştirilmiş versiyonu olan bir

dokümanın içerdiği bilgilerin başka bir doküman tarafından içerilip içerilmediğini

ortaya koyan kapsama tespiti konusu incelenmiştir. Yazılı dokümanlarda

dokümanlarin birbirini kapsaması üc farkli şekilde karşımıza çıkmaktadır: ilk du-

rum dokümanların tamamen aynı olması, ikinci durum dokümanların oldukça

benzer olması, üçüncü ve ilk iki durumun daha geniş kapsamlı hali ise bir

dokümanın diğerini içermesi. Kapsama tespiti için CoDet ismini verdiğimiz

özellikle peşisıra gelmekte olan haberler için kullanışlı yeni bir algoritma

önermekteyiz. Ayrıca havuzlama tekniği vasıtasıyla sınırlı insan yardımı kull-

narak algoritmaların etkinliğini ve verimliliğini güvenilir bir şekilde ölçmemizi

sağlayan bir test koleksiyonu oluşturduk. CoDet’in performansını oldukça benzer

doküman tespitinde kullanilan ve alanında başarılı kabul edilen dört farklı algo-

ritma (DSC, full fingerprinting, I-Match ve SimHash) ile karşılaştırdık. Deneysel

çalışmalarımızdan edindiğimiz bulgulara göre CoDet genellikle alternatif algorit-

malardan daha iyi sonuç vermekte ve yazılı dokümanlar üzerinde kapsama tespiti

konusunda kaydadeğer sonuçlar üretmektedir.

Anahtar sözcükler : Cümle Ağacı, Doküman Kapsama, Yakın Kopya Tespiti, Ben-

zerlik, Test Koleksiyonu Hazırlanması, Algoritma.

iv

Acknowledgement

I would like to thank my Dr. Cevdet Aykanat and also Fazlı Can for their supports

and guidance during my research. I would like to thank Dr. Uğur Güdükbay and

Dr. Osman Abul for their constructive comments.

I would like to thank all my colleagues for spending their time to discuss some

ideas.

I would like to especially thank Dr. B. Barla Cambazoğu for broadening my

vision.

Furthermore, I am grateful to my colleagues Enver Kayaaslan, Seher Acer, F.

Şükrü Torun, Kadir Akbudak, and S. Burak Sağlam.

Finally, I would like to thank the Scientific and Technological Research Council

of Turkey (TÜBİTAK) for financial support.

v

To vulnerable children of Africa...

vi

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 3

1.3 Outline . 4

2 Background and Related Work 5

2.1 Background . 5

2.1.1 Stemming . 5

2.1.2 Eliminating Stop Words 6

2.1.3 Term Weighting . 6

2.1.4 Cohen’s Kappa Measure 8

2.2 Related Work . 9

3 CoDet Algorithm 11

3.1 Containment Similarity Concept 11

3.2 Containment Similarity Calculation 12

vii

CONTENTS viii

3.3 Complexity Analysis . 16

3.3.1 First Scenario: One Content, N Documents 17

3.3.2 Second Scenario: N Different Contents, N Documents . . . 17

4 Experimental Setup 18

4.1 Algorithms in Comparison . 18

4.1.1 DSC . 19

4.1.2 Full Fingerprinting (FFP) 19

4.1.3 I-Match . 19

4.1.4 SimHash . 20

4.2 Test Collection Preparation . 21

5 Experimental Results 25

5.1 Impacts of IR Techniques . 25

5.1.1 Stemming . 26

5.1.2 Eliminating stop words . 26

5.1.3 IDF Value Calculation . 26

5.2 Impacts of Parameters . 27

5.2.1 Processed Suffix Count (PSC) 27

5.2.2 Depth Threshold (DT) . 27

5.2.3 Word Sorting (WS) . 28

5.2.4 Depth Score Power (DSP) 29

CONTENTS ix

5.3 Comparing with the Other Algorithms 31

6 Future Work 33

7 Conclusions 35

List of Figures

1.1 Sample Near Duplicate Relation 2

1.2 Sample Containment Relation . 3

3.1 Insertion of three documents dA:“NASDAQ starts day with an

increase. Shares gain 2%.”, dB: “NASDAQ starts the day

with a decrease. Shares lose 2%.”, and dC : “Shares lose 2%.”.

For the sake of clarity, words of sentences are not sorted ac-

cording to their idf values. (Varol, E. Can, F., Aykanat,

C., Kaya, O. “CoDet: Sentence-based Containment Detection

in News Corpora”, ACM CIKM ’11 Conf., ©2011 ACM, Inc.

http://dx.doi.org/10.1145/2063576.2063887. Reprinted by per-

mission.) . 13

4.1 Comparison Screen of News Containment Control 23

5.1 Effect of Processed Suffix Count (PSC) (Varol, E. Can, F.,

Aykanat, C., Kaya, O. “CoDet: Sentence-based Containment De-

tection in News Corpora”, ACM CIKM ’11 Conf., ©2011 ACM,

Inc. http://dx.doi.org/10.1145/2063576.2063887. Reprinted by

permission.) . 28

x

LIST OF FIGURES xi

5.2 Effect of Depth Threshold (DT): Word Sorting (WS) is on (Varol,

E. Can, F., Aykanat, C., Kaya, O. “CoDet: Sentence-based Con-

tainment Detection in News Corpora”, ACM CIKM ’11 Conf.,

©2011 ACM, Inc. http://dx.doi.org/10.1145/2063576.2063887.

Reprinted by permission.) . 29

5.3 Effect of Depth Threshold (DT): Word Sorting (WS) is off (Varol,

E. Can, F., Aykanat, C., Kaya, O. “CoDet: Sentence-based Con-

tainment Detection in News Corpora”, ACM CIKM ’11 Conf.,

©2011 ACM, Inc. http://dx.doi.org/10.1145/2063576.2063887.

Reprinted by permission.) . 30

5.4 Efficiency Comparison: Execution Time vs. Document Count

(Varol, E. Can, F., Aykanat, C., Kaya, O. “CoDet: Sentence-based

Containment Detection in News Corpora”, ACM CIKM ’11 Conf.,

©2011 ACM, Inc. http://dx.doi.org/10.1145/2063576.2063887.

Reprinted by permission.) . 32

List of Tables

2.1 180 Stop Words Automatically Generated From BilCol-2005 . . . 7

2.2 A Sample Contingency Table For Two Annotators (A and B) on

100 Documents . 8

4.1 SHA-1 Hash Function . 18

4.2 SimHash Value Calculation for document d:“NASDAQ starts day

with an increase.”. For the sake of clarity, hash values are 4 bits

long. 21

4.3 Information about distribution of stories among news sources

in BilCol2005 (Can, F. Kocberler, S., Balcik, E., Kaynak,

C., Ocalan, H. C., Uyar, E. “New event detection and topic

tracking in Turkish”, JASIST, Vol. 61:4, ©2010 ASIS&T,

http://dx.doi.org/10.1002/asi.21264. Reprinted by permission.) . 22

5.1 Effect of Depth Score Power (DSP) 31

5.2 Effectiveness Comparison . 31

xii

Chapter 1

Introduction

We consider a generalized version of the near-duplicate detection problem and

investigate whether a document is a subset of another document [3]. In text-

based applications, document containment can be observed in near-duplicates

and containments. We refer to the problem of identifying such document pairs

as the document containment detection problem. We study this problem within

the context of news corpora that involve streaming news articles.

If a document dC possesses all the text that document dA has, then dC is

said to contain dA, which is denoted as dC ⊇ dA, and this relation is called

containment. Moreover, if two documents contain roughly the same content,

they are near-duplicates [9]. Although near-duplicate condition is a special case

of containment, these two cases are not usually distinguished from each other [22].

Similar to the conditional equivalence concept defined by Zobel and Bernstein

[25], if dC ⊇ dA, then a news-consumer who have already read dC would have

no need to read dA. Of course, dC ⊇ dA does not necessarily imply dA ⊇ dC ,

i.e. containment relation is asymmetric. By detecting dC ⊇ dA, news consumers

that have already seen dC can be informed to skip reading dA. We believe that

it is more useful to detect containments rather than near-duplicates; because like

a previously seen article, a reader does not want to read a new article that is a

part of a already read one. An example of near-duplicate and containment cases

is given in Fig. 1.1 and Fig. 1.2

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Sample Near Duplicate Relation

In related studies, containment problem is addressed by near-duplicate de-

tection algorithms [3]. Therefore, we compare performance of our proposed al-

gorithm CoDet, whose name is originated from Containment Detection, with

well-known near-duplicate detection approaches.

1.1 Motivation

Near-duplicate detection is an important task in various web applications. Due to

reasons such as mirroring, plagiarism, and versioning such documents are common

in many web applications [25]. One of the main reason behind is the rapid growth

of the web, which eventually causes redundant information. Advances in the web

technologies also increase the number of online news sources. These news sources

generally disseminate slightly different versions of news stories coming from syn-

dicated agencies by making small changes in the news articles. Identifying such

documents increases the efficiency and effectiveness of search engines. It is also

helpful for readers because most people tend to use more than one news source

and nobody wants to read almost the same content twice. When comparing two

CHAPTER 1. INTRODUCTION 3

Figure 1.2: Sample Containment Relation

documents, in our case two news articles, it is easy to detect if they are completely

identical; however, if there is only slight changes between them, the problem gets

more difficult.

1.2 Contributions

Contributions of this thesis are the following.

� Introduction and implementation a sentence-based containment detection

method, which is especially suitable for streaming news and also adaptable

to different text-based problem domains.

� Implementation four well-known near-duplicate document detection algo-

rithms’ (DSC, full fingerprinting, I-Match, and SimHash) adapted versions

for containment detection.

� We show that our approach generally outperforms these methods in terms

CHAPTER 1. INTRODUCTION 4

of efficiency and effectiveness.

� Construction of a test collection to serve as a benchmark using a novel

pooling technique, which enables us to make reliable judgments for the

relative effectiveness of algorithms using limited human assessments.

� Development of a software tool for testing document pairs for containment.

1.3 Outline

The rest of the thesis organized as follows. Chapter 2 gives necessary background

information and summarizes the past and recent related work on near-duplicate

and containment detection. Chapter 3 explains the proposed algorithm CoDet

in detail and illustrates its processing principles on a running example. Chapter

4 describes the environment used in the experiments, and also gives detailed

information about algorithms in comparison (DSC, full fingerprinting, I-Match,

and SimHash) and ends with test collection preparation. In Chapter 5, we provide

the results from our experimental evaluation. Chapter 6 discusses the future work

that is left to be done and Chapter 7 concludes the thesis.

Chapter 2

Background and Related Work

In this chapter, we first give required background information about the utilized

information retrieval techniques in this work. It is followed by an overview of the

studies on near-duplicate document detection.

2.1 Background

In this section, we first present well-known information retrieval techniques that

are applied after document parsing and just before similarity measure computa-

tion. Most common techniques are stemming, eliminating stop words, and term

weighting. Cohen’s Kappa measure [16] is also covered since it is used in test

collection preparation.

2.1.1 Stemming

In information retrieval, stemming is the process of reducing words to their stem,

which is their approximate root form. The stem does not have to be the same with

its morphological root. It is mostly sufficient to map related words to the same

stem, which may be different from the real root. Stemming is not a new topic in

5

CHAPTER 2. BACKGROUND AND RELATED WORK 6

computer science, algorithms on it have been studied widely. As a result, there

exists several types of stemming algorithms [15] [12] [1]. Can et al. [7] state that

stemming has a significant effect on information retrieval in Turkish but CoDet

and the other algorithms used in our work do not make any semantic analysis;

hence, we consider two cases: no stemming and first-5, 5-prefix characters of each

word.

� No-Stemming (NS): This option does not apply stemming on the words,

i.e. identity function, and treat them as if they are roots.

� Fixed Prefix Stemming: This approach is a pseudo stemming technique.

In this method, words are simply truncated and first-5 characters of each

word is treated as its root. Words with less than 5 characters are not

reduced at all. Can et al. [7] experimentally show that first-5 give the best

performance in Turkish.

2.1.2 Eliminating Stop Words

Stop words are the words that are too common in documents and could have

some side effect during the evaluation and similarity measures. Therefore, they

are filtered out prior to processing documents to avoid their side effects and to

shrink the documents. There is no standard stop word list for Turkish; thus, we

construct our own by taking the most frequent words in our collection, which

contains 180 words as in Table 2.1.

2.1.3 Term Weighting

Inverted document frequency (IDF) is a widely used word weighting technique

in information retrieval. It measures the general importance of a word in a

corpus. As can be seen in Equation 2.1 it is obtained for a word by dividing the

total number of documents by number of documents that contain the word, then

quotient’s logarithm is taken.

CHAPTER 2. BACKGROUND AND RELATED WORK 7

Table 2.1: 180 Stop Words Automatically Generated From BilCol-2005

acaba, altı, ama, ancak, artık, asla, aslında, az, bana, bazen, bazı, bazıları, bazısı, belki, ben
beni, benim, beş, bile, bir, birçoğu, birçok, birçokları, biri, birisi, birkaç, birkaçı, birşey, birşeyi
biz, bize, bizi, bizim, böyle, böylece, bu, buna, bunda, bundan, bunu, bunun, burada, bütün
çoğu, çoğuna, çoğunu, çok, çünkü, da, daha, de, değil, demek, diğer, diğeri, diğerleri, diye
dokuz, dolayı, dört, elbette, fakat, falan, felan, filan, gene, gibi, hala, hangi, hangisi, hani
hatta, hem, henüz, hep, hepsi, hepsine, hepsini, her, herkes, herkese, herkesi, hiç, hiçbiri
hiçbirine, hiçbirini, için, içinde, iki, ile, ise, işte, kaç, kadar, kendi, kendine, kendini, ki, kim
kime, kimi, kimin, kimisi, madem, mı, mi, mu, mü, nasıl, ne, neden, nedir, nerde, nerede
nereden, nereye, nesi, neyse, niçin, niye, on, ona, ondan, onlar, onlara, onlardan, onların, onu
onun, orada, oysa, oysaki, öbürü, ön, önce, ötürü, öyle, rağmen, sana, sekiz, sen, senden, seni
senin, siz, sizden, size, sizi, sizin, son, sonra, şayet, şey, şeyden, şeye, şeyi, şeyler, şimdi, şöyle
şu, şuna, şunda, şundan, şunlar, şunu, şunun, tabi, tamam, tüm, tümü, üç, üzere, var, ve, ya
yahut, yani, yedi, yerine, yine, yoksa, zaten, zira

IDF (w) = log(
|D|

|{di ∈ D : w ∈ di}|
) (2.1)

where D is the set of documents, di is a document from D and w is a word.

In the simplest form, term frequency (TF) is taken as term appearance count

divided by total term count for a document (Equation 2.2).

TF (w, d) =
|{ti ∈ d : ti = w}|

|d|
(2.2)

where d is document, ti is a term in d and w is a word.

As an example, consider a document collection D containing |D| =

10000 documents in total. Let dA and dC be two documents that contain

|dA| = 100 and |dB| = 200 words, respectively. According to the equations,

IDF(w)=log(10000/100)=2, TF(w,dA)=5/100=0.05 and TF(w,dB)=20/200=0.1.

Although dC contains dA, term weight of w would be different for them if TF-IDF

would be used, which would degrade the quality of our containment similarity

measure given in Equation 3.1.

CHAPTER 2. BACKGROUND AND RELATED WORK 8

Table 2.2: A Sample Contingency Table For Two Annotators (A and B) on 100
Documents

A A
Containment No Containment

B Containment 40 10
B No Containment 20 30

2.1.4 Cohen’s Kappa Measure

Cohen’s Kappa (κ) is a statistical measure of inter-annotator agreement for cate-

gorical data [16]. κ is more effective than only taking the agreements into account

since it also considers agreements that are occurred by chance. It is calculated as

κ =
P (a)− P (c)

1− P (c)
(2.3)

where P (a) represents probability of agreement and P (c) represents probability of

agreement by chance between annotators. P (a) is a measured value after annota-

tions. P (c) is calculated by using the observed data to determine each annotator’s

randomly selecting each category. During the test collection preparation, annota-

tors are asked to determine whether shown document pair is containment or not.

Therefore, we have 2 categories. Let A and B two annotators that are assigned

to classify 100 document pairs. Assume their annotation results are tabulated as

in Table 2.2. Then, both annotators agreed on 40 containment cases and 30 no

containment cases. Thus, P (a) = 30+40
100

= 0.7. A marked a pair as containment

with 60% probability. B marked a pair as containment with 50% probability.

Their random agreement probability on containment is 0.6 × 0.5 = 0.3. Their

random agreement probability on no containment is 0.4 × 0.5 = 0.2. In total,

P (c) = 0.3 + 0.2 = 0.5. Applying the equation,

κ =
P (a)− P (c)

1− P (c)
=

0.7− 0.5

1− 0.5
= 0.4 (2.4)

gives us a κ value of 0.4 implying fair agreement between annotators.

CHAPTER 2. BACKGROUND AND RELATED WORK 9

2.2 Related Work

In near-duplicate detection similarity measurement plays an important role [17].

By using similarity, two documents are defined as duplicates if their similarity or

resemblance [4] exceeds a certain threshold value. Such approaches are applied

to identify roughly the same documents, which have the same content except for

slight modifications [2]. In comparisons, factors other than similarity may also

play a role. Conrad and Schriber [10] after consulting librarians deem that two

documents are duplicates if they have 80% overlap and 20 variations in length.

Similarity measures may use all words in documents in calculation. Instead

of using each word, a sequence of them, shingles, may be used. In shingling

approaches, if two documents have significant number of shingles in common, then

they are considered as similar (near-duplicate). Well-known shingling techniques

include for example COPS [2] and DSC (Digital Syntactic Clustering) [4]. COPS

uses the sentences (or small units) to generate hash codes and stores them in a

table to see if a document contains a sentence. Wang and Chang propose using

the sequence of sentence lengths for near-duplicate detection and they evaluated

different configurations of sentence-level and word-level algorithms [21].

Shingling and similarity approaches suffer from efficiency issues. As a result a

new strategy emerged which is based on hashing of the whole document. I-Match

[9] is a commonly known approach that uses this strategy. It filters terms based

on collection statistics (idf values). Charikars Simhash [8] method is based on

the idea of creating a hash by using document features (words, bigram, trigrams,

etc.). It compares bit differences of these signatures to decide if two documents

are near-duplicate or not. Yang and Callan [22] use clustering concepts for ef-

ficiency. While clustering documents they use additional information extracted

from documents and structural relationships among document pairs. Deng and

Rafiei [11] propose a new algorithm and data structure for eliminating duplicates

in streaming environment. Their algorithm is based on the idea that SBF evicts

the stale information to create space for more recent documents.

Hajishirzi et al. [13] propose an adaptable method for near duplicate detection

CHAPTER 2. BACKGROUND AND RELATED WORK 10

by representing documents as real valued sparse k-gram vectors, where weights

are learnt to optimize a similarity function. Zhang et al. [23] address the partial-

duplicate detection problem by doing sentence level near-duplicate detection and

sequence matching. Their algorithm generates a signature for each sentence

and sentences that have the same signature are considered as near-duplicates.

Theobald et al. [19] propose SpotSigs algorithm that combines stopword an-

tecedents with short chains of adjacent content terms to create signatures. Monos-

tori et al. [18] propose a new algorithm based on suffix tree structure to detect

false matches caused by usage of hash functions. They also achieve to save the

required information in a directed acyclic graph, which is less space consuming

than suffix tree.

Chapter 3

CoDet Algorithm

CoDet is a novel sentence-based containment detection algorithm [20]. In this

chapter, we first introduce containment similarity concept, which is the basis

of similarity scoring in CoDet. Then, by using containment similarity concept,

the way of similarity calculation is shown. We also illustrate the process of the

algorithm on a running example and give pseudo code to make it clear. At the

end, complexity analysis of the proposed algorithm is done in two extreme cases.

3.1 Containment Similarity Concept

CoDet is a novel sentence-based containment detection algorithm. It requires

similarity measurements between document pairs. Unlike to its fingerprinting

based alternatives, it also detects similar parts of document pairs. CoDet employs

a new similarity measure called containment similarity (CS). It measures to what

extent a document dA is contained by another document dC , which is defined as

CS(dC , dA) =
∑

si∈SC

∑
sj∈SA

cs(si, sj), (3.1)

where SA and SC denote the set of sentences in dA and dC , respectively. The

function cs(si,sj) indicates containment similarity between sentences si and sj,

11

CHAPTER 3. CODET ALGORITHM 12

which is calculated as

cs(si, sj) =

lenf(si,sj)∑
k=1

k × idf(wf(si,sj),k), (3.2)

where f(si, sj) denotes the word sequence representing the longest word prefix

match of the sentences si and sj, lent is the length of the word sequence t, and wt,k

stands for the kth word in the word sequence t. For example, let s1 be ”John is

happy.” and s2 be ”John is sad.” Then f(s1, s2) is a word sequence < John, is >,

lenf(s1,s2) is 2 and wf(s1,s2),1 is John.

As can be seen in Equation 3.2, containment similarity between two sentences

grows significantly as their word prefix match gets longer. The containment

similarity of a document to itself is referred to as self-containment similarity

(SCS) and is shown in equation 3.3. Note that if dC contains dA, then CS(dC ,dA)

may be greater than SCS(dA) since dC may have extra similarities in sentences

that does not belong to dA.

SCS(dA) = CS(dA, dA) =
∑

si∈SA

∑
sj∈SA

cs(si, sj), (3.3)

3.2 Containment Similarity Calculation

For efficient calculation of containment similarities, we utilize a prefix tree like

data structure called corpus tree. The corpus tree begins with a virtual root node

which contains a pointer list storing the locations of the children nodes in the

next level. In addition to pointer list, nodes other than the root contain a label

and a document list. The label represents the nodes term and the document list

contains visiting document ids.

Let dA denote a document with a set of sentences SA = {s1, s2 . . . sn}. Pro-

cessing of dA involves processing all of its sentences. Insertion of si (1 ≤ i ≤ n) to

the corpus tree is performed as follows. First, words of si are sorted according to

their idf values in descending order. Let < w1, w2 . . . wm > denote the sequence

CHAPTER 3. CODET ALGORITHM 13

Figure 3.1: Insertion of three documents dA:“NASDAQ starts day with an
increase. Shares gain 2%.”, dB: “NASDAQ starts the day with a de-
crease. Shares lose 2%.”, and dC : “Shares lose 2%.”. For the sake of clar-
ity, words of sentences are not sorted according to their idf values. (Varol,
E. Can, F., Aykanat, C., Kaya, O. “CoDet: Sentence-based Containment
Detection in News Corpora”, ACM CIKM ’11 Conf., ©2011 ACM, Inc.
http://dx.doi.org/10.1145/2063576.2063887. Reprinted by permission.)

of words in si after sorting. These words are inserted into the corpus tree starting

from the virtual root node. If the root has a child chw1 with label w1, then simi-

larity values of dA with all documents in chw1 ’s visitor list are increased according

to Equation 3.2. Otherwise, a new child node chw1 with label w1 is created and

added to the root’s pointer list. In the next step, we apply the same operation on

chw1 as we did the root, and insert the following word w2 of si similarly. The in-

sertion of si finishes after all of its words are processed. The remaining sentences

of dA are handled in the same manner. The same is performed on the remaining

sentences of dA.

Fig. 3.1 shows how the corpus tree grows with the sentence insertions. In

Fig. 3.1-I, dA’s sentences “NASDAQ starts day with an increase.”and “Shares

gain 2%.”are inserted to the corpus tree starting from the virtual root, which is

indicated by a dark circle. Since the tree is initially empty, while inserting the

CHAPTER 3. CODET ALGORITHM 14

first sentence all nodes with labels < nasdaq, starts, day, with, an, increase >

are created. Similarly, insertion of the second sentence creates nodes with la-

bels < shares, gain, 2% >. In Fig. 3.1-II, during the insertion of the sen-

tence “NASDAQ starts day with a decrease.”previously created nodes with labels

< nasdaq, starts, day, with > are visited and updated. Also, two nodes with la-

bels < a, decrease > are created. Insertion of the sentence “Shares lose 2%.”visits

the node with label shares and creates two nodes with labels < lose, 2% >.

Thus, similarity value of dA and dB is increased by summation of each revisited

node’s impact value, which is calculated by multiplication of node’s depth and idf

value of its label. For example, the contribution of the node with label starts is

2× log(3
2
) + 1 because its depth is 2 and word starts appears in 2 of 3 documents

(in the experiments, the idf values are obtained from a large reference collec-

tion). The final structure of the corpus tree after the insertion of dC is shown in

Fig. 3.1-III.

To decide whether a document dA is contained by another document dC ,

CoDet uses CS(dA, dC) as well as SCS(dA) values in Equation 3.1. If CS(dA,dC)
SCS(dA)

exceeds the equivalency threshold level (ETL) parameter, then dC is said to con-

tain dA. In the experiments, different ETL values are tested.

Algorithm 1 Parsing and Preprocessing Operations

Require: Document set D = {d1, d2 . . . dN}
1: for each document di ∈ D do
2: Parse di and split into sentences
3: Si ← set of sentences in di
4: scs[di]← CalculateOwnScore(di)
5: for each sentence sj ∈ Si do
6: Split sj into words
7: W ← set of words in sj
8: Sort W with respect to idf values of words
9: InsertToCorpusTree(virtualRootNode, i,W, 0)

10: end for
11: end for

Algorithm 1 displays the parsing of a document and preprocessing operations

on sentences just before their insertion into the corpus tree. These operations in-

clude splitting document into sentences, calculation of self containment similarity

CHAPTER 3. CODET ALGORITHM 15

score (scs), splitting sentences into words, sorting words of a sentence according

to idf values, and triggering InsertToCorpusTree function with virtual root node,

document id (i), set of words of a sentence, and depth, whose value is zero since

we start insertion operation from the root of the corpus tree. Note that the given

algorithm seems to require a set of document; yet, only a few slight changes

are needed to make it compatible with the online version of the problem where

instead of a pile, documents come one by one.

Algorithm 2 InsertToCorpusTree(A node from the corpus tree node, integer
document id i, A sentence from di sentence, integer depth)

1: if node is active then
2: node.visitorDocuments← node.visitorDocuments ∪ i
3: if node.documentCount > document list size limit then
4: Deactivate node
5: else
6: if depth > depth threshold then
7: return
8: end if
9: if depth 6= 0 then

10: for Each document dj ∈ node.visitorDocuments do
11: IncreaseSimilarity(di, dj, node.word, depth)
12: end for
13: end if
14: end if
15: end if
16: if sentence’s end is reached then
17: return
18: end if
19: nextWord← next word of sentence
20: if node has no child with label nextWord then
21: Generate a child to node with label nextWord
22: end if
23: InsertToCorpusTree(node.next(nextWord), i, sentence, depth + 1)

Algorithm 2 shows how a document is inserted to the corpus tree in detail.

In the experiments, we sometimes decide to deactivate nodes that are visited by

too many documents since their effects on similarity measurement is negligible.

For this reason, deactivation improves efficiency without degrading the effective-

ness considerably. If the processing node is active the number of the processing

CHAPTER 3. CODET ALGORITHM 16

document is added to its visitor list. Then, similarity values between the process-

ing document and previous visitor documents are increased by IncreaseSimilarity

function. If their similarity exceeds a threshold, it means a containment is de-

tected and it is saved immediately. Details about similarity increase can be found

in Algorithm 3. When the algorithm reaches to the last word of the processing

sentence or depth threshold is exceeded, the process ends. Otherwise it continues

with the next node. If the node does not exist, it is generated right before the

next call.

Algorithm 3 IncreaseSimilarity(Document di, Document dj, Word word, Inte-
ger depth)

1: if depth scoring is used then
2: improvement← word.idfV alue× depthdepthscorepower

3: else
4: improvement← word.idfV alue
5: end if
6: thresholdi ← ETL× scs[di]
7: thresholdj ← ETL× scs[dj]
8: cs[di][dj]← cs[di][dj] + improvement
9: cs[dj][di]← cs[dj][di] + improvement

10: if cs[di][dj] > thresholdi then
11: Containersdi ← Containersdi ∪ dj
12: end if
13: if cs[dj][di] > thresholdj then
14: Containersdj ← Containersdj ∪ di
15: end if

3.3 Complexity Analysis

In this section, we discuss the performance of CoDet in two different extreme

cases. For each scenario, let N denote the number of documents and let c denote

the average number of words per document, like most of the previous works, it is

considered as constant.

CHAPTER 3. CODET ALGORITHM 17

3.3.1 First Scenario: One Content, N Documents

In this case, each document has the same content; therefore, corpus tree contains

exactly c nodes. Each node contains N integers in its visitor list. As a result,

the memory requirement of the corpus tree is O(N) but due to pairwise contain-

ment similarity increase operations, the algorithm takes O(N2) time and space

since calculated similarity values are also saved. It is actually the worst case for

CoDet. In order to decrease the running time and memory requirement, when

two documents are labelled as near-duplicate one of them can be removed from

the corpus tree since these documents would be contained by the same documents

and containers can be found by only holding one of them in the corpus tree.

3.3.2 Second Scenario: N Different Contents, N Docu-

ments

In this case, each document has totally different content. Thus, corpus tree con-

tains Nc nodes (one node for each term). Each node contains only one document

id in its visitor list since each node is visited by exactly one document. Hence,

asymptotically the memory requirement of the corpus tree is O(N) and the algo-

rithm takes O(N) time.

The first scenario is the worst case for CoDet, where the algorithm performs non-

linearly. The second one is the best case for CoDet and the algorithm runs in

linear time. In practice the algorithm behaves as if it is linear because average

number of near-duplicate per document is significantly smaller than N. For exam-

ple, the number of near-duplicates per page follows a power-law distribution [14].

Also CoDet is especially suitable for streaming news since with a time window

concept, which removes old documents from the corpus tree, it does not grow too

much.

Chapter 4

Experimental Setup

For hashing purposes, the SHA1 [9] algorithm, which produces a 160-bit message

digest, is used in all methods. As seen in Table 4.1, even a small change in the

input (in the example, it is just one character) results in a substantially different

hash value. In order to make a fair evaluation, parameters of each algorithm are

optimized to give the best results for efficiency. We performed the experiments

on a machine with quad 2.1Ghz six-core AMD Opteron processors with six 128

KB L1, 512 KB L2, and one 6MB L3 cache. It has 128 GB memory and operating

system Debian Linux v5.0.5.

4.1 Algorithms in Comparison

We used four algorithms to compare their effectiveness and efficiency with CoDet.

These algorithms are DSC, Full Fingerprinting, I-Match, SimHash. Number of

Table 4.1: SHA-1 Hash Function

Input Hash Value
The quick brown fox jumps over the lazy dog 2fd4e1c67a2d28fced849ee1bb76e7391b93eb12
The quick brown fox jumps over the lazy cog de9f2c7fd25e1b3afad3e85a0bd17d9b100db4b3

18

CHAPTER 4. EXPERIMENTAL SETUP 19

used words to create fingerprints and shingles in the algorithms are optimized

empirically. Our dataset consists of news documents so they are generally small

sized. Therefore, the optimal values of the parameters are also small.

4.1.1 DSC

DSC [4] is a shingling based method for detecting near-duplicates. Its working

procedure is as follows. Each document is tokenized into words and each three

overlapping substrings of four consecutive words are hashed to create fingerprints.

Each of these fingerprints is called as shingle. Let S(dA) and S(dC) represent all

the shingles of document dA and dC respectively. To measure the similarity

between dA and dC , Jaccard similarity between S(dA) and S(dC) is used. Broder

called this as resemblance of documents which is shown by r(dA, dC) = S(dA)∩S(dC)
S(dA)∪S(dC)

.

In our experiments, if a document dC contains 60% of dA’s shingles, then,

dC ⊇ dA.

4.1.2 Full Fingerprinting (FFP)

For each document, all substrings of size four are hashed. If document dC contains

60% of dA’s hash values, then dC ⊇ dA.

The main difference between FFP and DSC is that FFP creates shingles for

every substring of size four in a document; however, DSC creates shingles for

only three overlapping substring of size four. Because of this, DSC requires less

processing time than FFP, whose runtime is O(N2) where N is the number of

documents. As expected, Effectiveness of DSC is worse than FFP.

4.1.3 I-Match

I-Match is designed to detect duplicates in a large scale of document collections.

The algorithm does not rely on simple parsing, it also uses collection statistics to

CHAPTER 4. EXPERIMENTAL SETUP 20

identify which terms are worth to be used in comparison. ignores first two words

with the highest idf values. After that, ten words with the highest idf values are

used to create a fingerprint for each document. When a pair of documents has the

same fingerprint, the pair is marked as containment.[9] First two words with the

highest idf values are ignored since they are likely to be misspellings. Words with

low idf values are not taken into account since they are usually common words

in language and they do not represent the document at all. The running time

of I-Match is O(NlogN) in the worst case, where N is the number of documents

and each document has the same content. In general, it works in linear time.

4.1.4 SimHash

SimHash is another fingerprinting based approach. Unlike to classical hash func-

tions, in which a small change in the input results in a totally different output,

SimHash is designed to give similar outputs for similar inputs. First two words

with the highest idf values are ignored. Then, each unique term of a document

is hashed. We use a vector v, whose size is equal to the hash value bit count,

to determine the final SimHash [8] values. For each term t, the ith element of

vector v is updated as follows: If the ith bit of the hash value of t is zero, then

it is decreased by the idf of w. It is increased by the idf otherwise. The calcu-

lation of the SimHash values is shown in Table 4.2. Finally, if the ith element of

v is positive, the ith bit of the SimHash value is set to one; otherwise it is set

to zero. When a pair of documents’ SimHash values has a Hamming distance

less than three, then the pair is considered as containment. Construction of the

SimHash values is done in linear time; however, calculation of bit differences is

time consuming operation.

CHAPTER 4. EXPERIMENTAL SETUP 21

Table 4.2: SimHash Value Calculation for document d:“NASDAQ starts day with
an increase.”. For the sake of clarity, hash values are 4 bits long.

Word Hash Weight 1st Bit 2nd Bit 3rd Bit 4th Bit
Nasdaq 1100 0.10 0.10 0.10 -0.10 -0.10
starts 1011 0.04 0.04 -0.04 0.04 0.04
day 0100 0.03 -0.03 0.03 -0.03 -0.03
with 1111 0.02 0.02 0.02 0.02 0.02
an 1000 0.01 0.01 -0.01 -0.01 -0.01
increase 0110 0.06 -0.06 0.06 0.06 -0.06
Sum 0.08 0.16 -0.02 -0.14
SimHash Value 1 1 0 0

4.2 Test Collection Preparation

There is no gold-standard test collection for containment detection in news cor-

pora; therefore, we prepared a test dataset from the Turkish TDT (Topic De-

tection and Tracking) news collection (BilCol-2005) [6] which contains 209,305

streaming (time-ordered) news articles obtained from five different Turkish web

news sources. The statistics about the whole collection is provided in Table 7

For efficiency measurement, we used all documents of BilCol-2005. For effec-

tiveness measurement, we used the first 5,000 documents. It is practically impos-

sible to provide human assessment for each document pair in this sub-collection.

Our approach to human assessments is similar to the pooling method used in

TREC for the evaluation of IR systems [24]. For the creation of the dataset,

we obtained a number of possible containments by running all five methods (in-

cluding CoDet) with permissive parameters. In this way, methods nominate all

pairs that would normally be chosen with their selective parameters, together

with several additional pairs as containment candidates. Since the methods are

executed with permissive parameters, we expect that most of the real contain-

ments will be added to the test collection. All pairs of documents, which are

marked as containments by any of the methods, are brought to the attention of

human assessors to determine whether they actually are containments. Note that

in order to measure the effectiveness of a new algorithm with this test dataset,

adding human assessments only for containment candidates that are nominated

CHAPTER 4. EXPERIMENTAL SETUP 22

Table 4.3: Information about distribution of stories among news sources in Bil-
Col2005 (Can, F. Kocberler, S., Balcik, E., Kaynak, C., Ocalan, H. C., Uyar, E.
“New event detection and topic tracking in Turkish”, JASIST, Vol. 61:4,©2010
ASIS&T, http://dx.doi.org/10.1002/asi.21264. Reprinted by permission.)

No. of Percent Download Net Avg. No. of
News News of All Amount Amount Words per
Source Stories Stories (MB) (MB) Story
CNN Turk 23,644 11.3 1,008.3 66.8 271
Haber 7 51,908 24.8 3,629.5 107.9 238
Milliyet Gazetesi 72,233 24.8 3,629.5 107.9 238
TRT 72,233 34.5 508.3 122.5 218
Zaman Gazetesi 42,530 20.3 45.3 33.7 97
All together 209,305 100.0 6,129.3 349.2 196*
* Different from the weighted sum of the average word lengths due to rounding error.

solely by this new algorithm to our dataset is sufficient.

By this approach, our dataset includes only true positive (TP) and false posi-

tive (FP) document pairs returned by any of our permissive algorithms. Exclusion

of true negative and false negative pairs do not change the relative effectiveness

rankings of selective algorithms during the test phase; because, if a permissive

algorithm marks a pair as negative (non-containment), then its selective counter-

part should also marks that pair as negative. Therefore, including TN and FN

pairs of permissive algorithms in our dataset would not contribute to the number

of positive pairs (TPs and FPs) returned by any selective algorithm during the

test phase. Hence, using our pruned dataset, precision1 values of the selective

algorithms remain unchanged with respect to precision values they would obtain

in a full dataset having annotations for all possible document pairs. Similarly,

recall2 values of the selective algorithms decrease proportionally (with the same

ratio of total number of containments in the pruned dataset to the total number

of containments in the full dataset, for all algorithms) with respect to recall values

they would obtain in the full dataset.

1Precision (P) = |TP |/(|TP |+ |FP |)
2Recall (R) = |TP |/(|TP |+ |FN |)

CHAPTER 4. EXPERIMENTAL SETUP 23

F
ig

u
re

4.
1:

C
om

p
ar

is
on

S
cr

ee
n

of
N

ew
s

C
on

ta
in

m
en

t
C

on
tr

ol

CHAPTER 4. EXPERIMENTAL SETUP 24

Our pooling process generated 4,727 document pairs nominations. We per-

formed a human-based annotation to obtain a ground truth. The pooled doc-

ument pairs are divided into 20 groups containing about the same number of

nominations. Each document pair is annotated by two assessors. The assessors

are asked if the nominated document pairs are actually containments. In order to

make the comparisons, annotators use a java program called News Containment

Control. In this program, users are first shown the definition of containment:

”if a reader that already read the candidate document, does not gain anything by

reading the processing document, then, candidate document is said to contain pro-

cessing document.”. Subsequently, they start to compare selected pairs by seeing

both processing and candidate document in the same screen. Users are allowed

to save their profile and quit to program and they can continue the evaluation

later. They can also have an option to change their previous answers. A sample

comparison screen can be seen in Fig. 4.1.

The assessors identified 2,875 containment cases. The size of our dataset is

comparable with the annotated test collections reported in related studies [19].

In information retrieval, human assessors may have different opinions about

the relevance of a document to a query. A similar situation arises in our assess-

ments. For example, for the document pair dC = ”XYZ shares increase 10% from

100 to 110.” and dA = ”XYZ shares increase from 100 to 110.”, some assessors

may say that dC and dA are near-duplicates, while some others may claim dC

contains dA, but dA does not contain dC . In such cases, we expect disagreements

among human assessors. In order to validate the reliability of the assessments, we

measured the agreements of the judgements by using the Cohen’s Kappa measure,

and obtained an average agreement rate of 0.73. This indicates substantial agree-

ment [16], which is an important evidence for the reliability of our test dataset.

Furthermore, such conflicts are resolved by an additional assessor.

Chapter 5

Experimental Results

In this chapter, we discuss the effects of well known information retrieval tech-

niques that are applied after document parsing and just before similarity measure.

These techniques are stemming, eliminating stop words, and idf value calculation.

Then, we investigate the impacts of the following parameters on CoDet’s perfor-

mance: Processed Suffix Count (PSC), Depth Threshold (DT), and Word Sorting

(WS). This discussion is followed by efficiency and effectiveness performance of

CoDet with those of four well-known near-duplicate detection algorithms. Effec-

tiveness measurement is done by precision (P), recall (R) and F1
3 score values.

Effectiveness experiments are conducted on the prepared test collection. Effi-

ciency experiment is performed with the whole BilCol-2005.

5.1 Impacts of IR Techniques

These tecnhniques are proven to have positive impact on near-duplicate detection.

Therefore, we do not test them on algorithms in comparison. In the experiments

of these other algorithms, these techniques are all applied. Nevertheless, we would

like to observe their effects on CoDet’s performance separately. Hence, we test

both their enabled and disabled cases in CoDet runs.

3F1 = 2PR/(P + R)

25

CHAPTER 5. EXPERIMENTAL RESULTS 26

5.1.1 Stemming

In information retrieval, stemming is the process of reducing words to their stem,

which is their root form. Can et al. [7] state that stemming has a significant effect

on information retrieval in Turkish but CoDet and other algorithms used in this

research do not make any semantic analysis; hence, we consider two cases: no

stemming and first-5, 5-prefix characters of each word. No stemming case is not

considered for the other algorithms since its effectiveness is already proven. We

would like to observe the effect of stemming on CoDet’s performance so both no

stemming and first-5 methods are tested for CoDet. When all the other parame-

ters are optimized, no stemming gives F1 score of 0.74 while first-5 improves F1

score to 0.76.

5.1.2 Eliminating stop words

Stop words are the words, which are filtered out prior to processing documents.

In the experiments, we use our own stop word list by taking the most frequent

words in our collection, which contains 180 words and can be seen in Table 2.1.

As expected, elimination of stop words does not affect the effectiveness. Without

elimination, again F1 score of 0.76 is achieved since stop words have almost 0

idf value implying that they are in fact ignored by CoDet even if they are not

eliminated. Interestingly, elimination of stop words does not influence efficiency

considerably, as it decreases corpus tree size by 1% only. In our opinion, this is

caused by depththresholding and wordsorting. Since we sort words of a sentence

with respect to their idf values and we only use the first six words, stop words

are not processed at all because it is difficult for them to be in the first six.

5.1.3 IDF Value Calculation

Inverted document frequency (idf) measures to what extent general importance

of a word in a corpus. As can be seen in Equation 2.1 it is obtained for a word by

dividing the total number of documents by number of documents that contain the

CHAPTER 5. EXPERIMENTAL RESULTS 27

word, then quotient’s logarithm is taken. In the simplest form, term frequency

(tf) is taken as term appearance count divided by total term count for a document

(Equation 2.2). In the experiments, it is found that idf gives better results than

tf and tf-idf. CoDet does not make use of tf values since container documents

may be substantially longer than contained ones; thus, they have higher term

counts and this changes tf values. Due to the structure of our similarity measure,

we want each word t to have the same impact value for documents containing w.

Idf values are attained on last 25% of our dataset. By this way, we make sure

that effectiveness experiments that are conducted on first 5000 documents do not

gain any unfair advantage.

5.2 Impacts of Parameters

5.2.1 Processed Suffix Count (PSC)

PSC determines how many suffixes of each sentence are inserted to the corpus

tree. If the PSC is 3, the processed suffixes for ”NASDAQ starts day with

an increase.” are the sentence itself, < starts, day, with, an, increase > and <

day, with, an, increase >. Raising PSC increases space requirement but does

not change the effectiveness as shown in Fig. 5.1. Different PSC values result in

close F1 scores.

5.2.2 Depth Threshold (DT)

DT determines how many words of a sentence are processed. If DT is 3,

then the processed words for ”NASDAQ starts day with an increase.” are

< nasdaq, starts, day >. Fig. 5.2 and 5.3 show the effect of DT on F1 score.

Sorting words of a sentence by idf values places representative words close to the

virtual root. Thus, results are better for small DT values when words sorting is

enabled. It avoids the noise effect of insignificant words in similarity calculations.

CHAPTER 5. EXPERIMENTAL RESULTS 28

Figure 5.1: Effect of Processed Suffix Count (PSC) (Varol, E. Can,
F., Aykanat, C., Kaya, O. “CoDet: Sentence-based Containment De-
tection in News Corpora”, ACM CIKM ’11 Conf., ©2011 ACM, Inc.
http://dx.doi.org/10.1145/2063576.2063887. Reprinted by permission.)

In the experiments, DT value of 5 gives the best result; also smaller DT values

yield a similar performance. Hence, instead of having the corpus tree structure,

an algorithm that considers only a few most significant words from each sentence

can improve efficiency without sacrificing effectiveness significantly.

5.2.3 Word Sorting (WS)

Sorting words in sentences by idf values causes important words to be located

close to the virtual root. Since most sentences start with common words, by

using word sorting, we avoid many redundant similarity calculations. In the

CHAPTER 5. EXPERIMENTAL RESULTS 29

Figure 5.2: Effect of Depth Threshold (DT): Word Sorting (WS) is on (Varol,
E. Can, F., Aykanat, C., Kaya, O. “CoDet: Sentence-based Containment
Detection in News Corpora”, ACM CIKM ’11 Conf., ©2011 ACM, Inc.
http://dx.doi.org/10.1145/2063576.2063887. Reprinted by permission.)

experiments, enabling words sorting decreases average number of calculated sim-

ilarity values per document from 341 to 3.53. Additionally, enabling word sorting

decreases the noise effect of the common words and produces better results as

seen in Fig. 5.2 and Fig. 5.3.

5.2.4 Depth Score Power (DSP)

Idf value is not the only factor used in calculating impact values of nodes on

similarity. The contribution of depth on the impact value is also tested. The

motivation behind is that if depth of a node n is high, it means that documents

in its visitor list are already contained by visitor list of nodes on the path from

CHAPTER 5. EXPERIMENTAL RESULTS 30

Figure 5.3: Effect of Depth Threshold (DT): Word Sorting (WS) is off
(Varol, E. Can, F., Aykanat, C., Kaya, O. “CoDet: Sentence-based Contain-
ment Detection in News Corpora”, ACM CIKM ’11 Conf., ©2011 ACM, Inc.
http://dx.doi.org/10.1145/2063576.2063887. Reprinted by permission.)

virtualrootnode to n. Additionally, if word sorting is enabled, terms with low idf

values do not have any considerable impact even if they are in common between

two sentences. Depth scoring would give them an opportunity to affect if they are

in the bottom part of the corpus tree. In the experiments, only values between

0 and 3 are tested for DSP since we do not see any room for improvement after

3. Taking DSP as zero means that no effect of depth and results are worse than

the others. There is no much difference between 1 and 2. When DSP is 3, the

depth factor starts to show a sign of domination and causes to a degradation in

quality. Detailed results can be found in Table 5.1

CHAPTER 5. EXPERIMENTAL RESULTS 31

Table 5.1: Effect of Depth Score Power (DSP)

DSP Precision Recall F1 Measure
0 0.60 0.62 0.61
1 0.75 0.76 0.76
2 0.76 0.75 0.76
3 0.55 0.53 0.54

Table 5.2: Effectiveness Comparison

Algorithm Precision Recall F1 Measure
FFP 0.82 0.88 0.85
CoDet 0.75 0.76 0.76
I-Match 0.72 0.33 0.45
SimHash 0.53 0.30 0.39
DSC 0.22 0.45 0.30

5.3 Comparing with the Other Algorithms

The efficiency results are given in Fig. 5.4. As the number of documents increase,

execution time of full fingerprinting increases non-linearly. It calculates similarity

values for each document pair that has at least one substring in common. Hence,

its running time is O(N2) where N is the number of documents. CoDet performs

as the third best algorithm in time efficiency since the corpus tree accesses impose

many random memory accesses, which disturb cache coherency. Additionally,

if two documents visits at least one node in common; then, a similarity value

is calculated for them. Therefore, average number of containment count per

document is an important statistic for the performance of CoDet. Our results

show that I-Match, SimHash and CoDet are scalable to large collections.

Table 5.2 shows the effectiveness results. The best performance with a value

of 0.85 F1 score is observed with FFP since it calculates text overlaps between

document pairs having a common substring. Therefore, without making any

semantic analysis, it is difficult to outperform FFP in terms of effectiveness with

a time-linear algorithm. CoDet finds text overlaps by only using important words

of sentences and is the second best in terms of effectiveness with an F1 score of

CHAPTER 5. EXPERIMENTAL RESULTS 32

Figure 5.4: Efficiency Comparison: Execution Time vs. Document Count
(Varol, E. Can, F., Aykanat, C., Kaya, O. “CoDet: Sentence-based Contain-
ment Detection in News Corpora”, ACM CIKM ’11 Conf., ©2011 ACM, Inc.
http://dx.doi.org/10.1145/2063576.2063887. Reprinted by permission.)

0.76. I-Match, SimHash, and DSC perform poorly with respective F1 scores of

0.45, 0.39, and 0.30. FFP is not a feasible choice for large collections due to its

time complexity; thus, CoDet is a preferable algorithm for containment detection

in most text corpora.

Chapter 6

Future Work

There are several future research directions for our work. Some possibilities are

listed in the following.

� In news reporting, the most important information is generally placed at

the beginning of the text. For improving the effectiveness of CoDet we may

use a term weighting approach which assigns higher weights to terms which

are closer to the beginning of the document.

� In our implementation of CoDet we did not utilize metadata; e.g. news cat-

egory or news title. Utilizing metadata can improve effectiveness. However,

it requires a new dataset since our existing dataset does not provide such

metadata.

� In the offline usage of CoDet for a general corpus, we can lexicographically

sort the sentences of the documents. By this way we can process similar

sentences simultaneously. This can substantially improve the efficiency due

to the locality of memory references during insertions to the corpus tree,

since we expect to traverse the same nodes in the tree for similar sentences.

� CoDet can be combined with other methods having complementary features

to improve its effectiveness by maintaining a practical efficiency.

33

CHAPTER 6. FUTURE WORK 34

� In the experiments, we used idf value depth of the processing node for term

weighting. Rather than this, we only check the effect of tf value. Different

term weighting approach may improve the result quality.

� CoDet can be used in the web environment. In such collections it is highly

parallelizable after dividing documents into sub-categories. After catego-

rization, we expect containment pairs to appear in the same group; there-

fore, each category can be processed independently. Additionally, without

categorization, it can still be easily parallelized by letting each different

machine to store a part of the corpus tree. As alphabetical partition can

be used for this purpose, more balanced partitions can yield better perfor-

mance.

� We would like to integrate our new containment detection algorihtm to

Bilkent News Portal [5]. When multiple news sources is used for a system,

near-duplicate detection has to be done since almost the same content ar-

rives more than once from different news sources that are fed from the same

news agencies.

� There may be some noise in especially auto-crawled text documents. For

example, sometimes news documents have advertisements in our collection.

The same advertisement can be found in many documents. Therefore, if

two documents share only one or two complete sentences, these are most

likely to be advertisements. CoDet is a sentence-based algorithm so it can

be used for spam and advertisement filtering.

� Containment detection can be employed for plagiarism detection with some

minor modifications. We already finish implementation and conduct some

experiments and it is seen that the initial results are promising.

Chapter 7

Conclusions

Containment detection is an important problem which has its potential uses in

many different areas such as preventing redundant information to news readers

and detecting plagiarism. In this work we investigate this problem, which is a

more generalized version of the near-duplicate detection problem. We introduce

a new approach named CoDet. It simply processes documents sentence by sen-

tence and inserts each sentence into the corpus tree word by word. In the corpus

tree, each node contains a list of previously visitor documents. When a new doc-

ument reaches to a node, its similarity values with previously visitor documents

are increased. When similarity value of a document pair exceeds a threshold de-

pending on the content of the document, the situation marked as containment.

We also compare CoDet’s performance with four other well-known methods(DSC,

full fingerprinting, I-Match, and SimHash). In order to make a fair evaluation,

these algorithms are adapted to containment detection. The corpus we worked

on (BilCol-2005) consisted of 209,305 streaming (time-ordered) news articles ob-

tained from five different Turkish web news sources. For efficiency measurement,

we used all documents of BilCol-2005. For effectiveness measurement, we used

the first 5,000 documents of it. With the help of pooling approach and human

assessment, we construct a ground truth for this small corpus.

As the experimental results demonstrate CoDet is preferable to all these meth-

ods; since it produces considerably better results in a feasible time. It also has

35

CHAPTER 7. CONCLUSIONS 36

desirable features such as time-linear efficiency and scalability, which enriches its

practical value. Our method is versatile, can be improved, and can be extended

to different problem domains such as plagiarism detection.

Bibliography

[1] E. Airio. Word normalization and decompounding in mono-and bilingual ir.

Information Retrieval, 9(3):249–271, 2006.

[2] S. Brin, J. Davis, and H. Garcia-Molina. Copy detection mechanisms for

digital documents. In ACM SIGMOD Conf., pages 398–409, 1995.

[3] A. Broder. On the resemblance and containment of documents. In Proc. of

Compression and Complexity of Sequences, page 21, 1997.

[4] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic clus-

tering of the web. Computer Networks and ISDN Systems, 29(8–13):1157–

1166, 1997.

[5] F. Can, S. Kocberber, O. Baglioglu, S. Kardas, H. Ocalan, and E. Uyar.

Bilkent news portal: a personalizable system with new event detection and

tracking capabilities. In ACM SIGIR Conf, page 885, 2008.

[6] F. Can, S. Kocberber, O. Baglioglu, S. Kardas, H. C. Ocalan, and E. Uyar.

New event detection and topic tracking in Turkish. JASIST, 61(4):802–819,

2010.

[7] F. Can, S. Kocberber, E. Balcik, C. Kaynak, C. Ocalan, and O. M. Vursavas.

Information retrieval on Turkish texts. JASIST, 59(2):407–421, 2008.

[8] M. Charikar. Similarity estimation techniques from rounding algorithms. In

ACM STOC, pages 380–388, 2002.

37

BIBLIOGRAPHY 38

[9] A. Chowdury, O. Frieder, D. Grossman, and M. C. McCabe. Collection

statistics for fast duplicate document detection. ACM TOIS, 20(2):171–191,

2002.

[10] J. G. Conrad and C. P. Schriber. Managing déjà vu: Collection building for

the identification of duplicate documents. JASIST, 57(7):921–923, 2006.

[11] F. Deng and D. Rafiei. Approximately detecting duplicates for streaming

data using stable bloom filters. In ACM SIGMOD Conf., pages 25–36, 2006.

[12] L. Dolamic and J. Savoy. Stemming approaches for east european languages.

Advances in Multilingual and Multimodal Information Retrieval, pages 37–

44, 2008.

[13] H. Hajishirzi, W. Yih, and A. Kolcz. Adaptive near-duplicate detection via

similarity learning. In ACM SIGIR Conf., pages 419–426, 2010.

[14] M. Henzinger. Finding near-duplicate web pages: a large-scale evaluation of

algorithms. In ACM SIGIR Conf., pages 284–291, 2006.

[15] B. Jongejan and H. Dalianis. Automatic training of lemmatization rules that

handle morphological changes in pre-, in-and suffixes alike. In ACL AFNLP

Conf, pages 145–153, 2009.

[16] J. R. Landis and G. G. Koch. The measurement of observer agreement for

categorical data. Biometrics, 33(1):159–174, 1977.

[17] G. S. Manku and A. D. Jain. Detecting near-duplicates for web crawling. In

ACM WWW Conf., pages 141–150, 2007.

[18] K. Monostori, A. B. Zaslavsky, and H. W. Schmidt. Efficiency of data struc-

tures for detecting overlaps in digital documents. In ACSC, pages 140–147,

2001.

[19] M. Theobald, J. Siddharth, and A. Paepcke. Spotsigs: Robust and efficient

near duplicate detection in large web collections. In ACM SIGIR Conf.,

pages 563–570, 2008.

BIBLIOGRAPHY 39

[20] E. Varol, F. Can, C. Aykanat, and O. Kaya. Codet: Sentence-based contain-

ment detection in news corpora. In ACM CIKM Conf., pages 2049–2052,

2011.

[21] J. H. Wang and H. C. Chang. Exploiting sentence-level features for near-

duplicate document detection. In AIRS Conf., pages 205–217, 2009.

[22] H. Yang and H. C. Chang. Near-duplicate detection by instance-level con-

strained clustering. In ACM SIGIR Conf., pages 421–428, 2006.

[23] Q. Zhang, Y. Zhang, H. Yu, and X. Huang. Efficient partial-duplicate de-

tection based on sequence matching. In ACM SIGIR Conf., pages 675–682,

2010.

[24] J. Zobel. How reliable are the results of large-scale information retrieval

experiments. In ACM SIGIR Conf., pages 307–314, 1998.

[25] J. Zobel and Y. Bernstein. The case of the duplicate documents measure-

ment, search, and science. LNCS, 3841:26–39, 2006.

List of Symbols

d, dA, dB , dC Text documents
w A word
IDF(w) Inverse document frequency is a general importance of a word in a collection
TF(w,d) Term frequency of word w in a document d
r(dA,dC) Resemblance of documents
P (Precision) Fraction of retrieved instances that are relevant
R (Recall) Fraction of relevant instances that are retrieved
F1 (F1 Score) A measure of test accuracy considering both P and R
D A document collection containing |D| documents
di A document from D
ti A term
κ Cohen’s Kappa, a statistical measure of inter-annotator agreement
P(a) Probability of agreement
P(c) Probability of agreement by chance
A, B Annotators
si, sj Sentences
SA, SB Sets of sentences
CS(dC ,dA) Containment similarity function on documents
SCS(dA) Self containment similarity function on documents
cs(si,sj) Containment similarity function on sentences
f(si,sj) Longest word prefix match of sentences
lenf(si,sj) Length of longest word prefix match of sentences

wf(si,sj),k kth word of longest word prefix match of sentences

40

