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ABSTRACT

TRACKING AND REGULATION CONTROL OF A

TWO-DEGREE-OF-FREEDOM ROBOT ARM

Samet Güler

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Arif Bülent Özgüler

August, 2012

In this thesis, servomechanism synthesis for a two-degree-of-freedom (2-DOF)

serial chain revolute-revolute joint robot arm that achieves internal stability, ref-

erence signal tracking, and torque disturbance regulation is considered. We first

derive the dynamic equations of the robot arm with Euler-Lagrange method by ig-

noring the effects of friction. Then, using system identification methods, we derive

a plant model based on data obtained from a real system through experiments.

We then employ PD and PID controllers along with the gravity compensation

method to stabilize the system using the passivity properties. Alternatively, we

linearize the system model and examine the performance of the same controllers.

A linear controller is synthesized by invoking the internal model principle and

is directly applied to the nonlinear plant model. The proposed fifth order linear

controllers at each channel of the robot arm suffices to achieve not only tracking

of step, ramp, and sinusoidal signals at one frequency, but also regulation of step,

ramp, and sinusoidal disturbances. It is shown via simulations that, even though

the plant model is nonlinear, the synthesized linear controller performs better

than the commonly used PID controllers.

Keywords: Dynamic Modeling, System Identification, Passivity-based Control,

Servomechanism Synthesis, Internal Model Principle.
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ÖZET

İKİ SERBESTİ DERECELİ BİR ROBOTUN TAKİP VE

REGÜLASYON KONTROLÜ

Samet Güler

Elektrik ve Elektronik Mühendisliği Bölümü, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Arif Bülent Özgüler

Ağustos, 2012

Bu tezde, iki serbesti dereceli seri sıra döner-döner eklemli bir robot kolu için

iç kararlılık, referans sinyali takibi ve tork bozucu etki regülasyonunu sağlayan

servomekanizma sentezi tartışılmıştır. Öncelikle sürtünme etkilerini ihmal ed-

erek Euler-Lagrange yöntemi ile robotun dinamik denklemlerini türetiyoruz.

Daha sonra, sistem tanılama yöntemlerini kullanarak, deneylerle gerçek sistem-

den elde edilen verilere dayalı bir tesis modeli türetiyoruz. Akabinde pasiflik

özelliklerini kullanarak sistemi stabilize etmek için yerçekimi telafi yöntemi ile

birlikte PD ve PID kontrolörleri kullanıyoruz. Alternatif olarak, sistem modelini

doğrusallaştırıyor ve aynı kontrolörlerin performansını inceliyoruz. İç kararlılık

prensibine başvurarak doğrusal bir kontrolör tasarlanmış ve doğrusal olmayan

tesis modeline direk olarak uygulanmıştır. Robotun her kanalında önerilen

beşinci derece doğrusal kontrolörler sadece basamak, rampa ve bir frekansta

sinüzoidal sinyallerin takibini sağlamakla kalmamış, aynı zamanda basamak,

rampa ve sinüzoidal bozucu etkilerin regülasyonunu da sağlamışlardır. Tesis

modeli doğrusal olmasa da, sentezlenen doğrusal kontrolörün PID kontrolörlerden

daha iyi performans verdiği simülasyonlarla gösterilmiştir.

Anahtar sözcükler : Dinamik Modelleme, Sistem Tanılama, Pasiflik-temelli Kon-

trol, Servomekanizma Sentezi, İç Model Prensibi.
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Chapter 1

INTRODUCTION

In most control applications, mathematical models of plants need to be derived

to achieve desired control specifications efficiently. This is also valid for robotic

applications that has led to another area called modeling. Though in some in-

dustrial applications, where relatively simple controllers are used, it is enough

to control robots satisfactorily, control issue becomes more challenging in, for

instance, military applications. That makes the modeling issue an important

prerequisite for the control design.

In the literature, there are many examples of modeling of several types of

robots for control purposes, [9], [27]. Many of these are in systems of equations

that contain highly nonlinear terms because of the coupling effect between joints.

This effect, seen on the robots having at least two degree-of-freedom (DOF),

produces nonlinear terms called coriolis and centrifugal forces, [9], [24]. These

terms make the dynamic equations of robots very complex to work with for the

aim of controller synthesis.

In analytic modeling of robot manipulators one derives the dynamic equations

from well-known methods such as Euler-LaGrange (EL) Method, Newton-Euler

(NE) Method, Generalized d’Alembert’s (GD) Method, etc. These methods use

the physical laws to obtain the equations of motion of the manipulator. Although

EL Method gives more detailed equation system that depends on the physical
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parameters of the links (such as the link lengths, inertias, masses, etc.) and is

systematic, it results in very complicated dynamics structure for the robots which

have more than two degree-of-freedom. Yet, it can be used for control applica-

tions so long as the resulting dynamic equations are appropriately simplified, [9].

EL equations are also suitable for simulation purposes. NE algorithm uses two

recursions (forward and backward recursions) to derive the dynamic equations

instead of using kinematic structure of the system. Since this method uses vector

formulations and recursive structure, it is simpler in comparison to EL method

for the robots having at most two degree-of-freedom.

An alternative to analytical modeling techniques is to use system identifica-

tion methods. The idea behind such methods is to think of the system as a black

box and then identify the parameters of a model through some experiments on the

real system. Being based on the experimental data, this method gives more accu-

rate system model for a specific system than the analytic modeling approaches.

In addition, since data taken from systems may vary in different conditions (for

instance environmental conditions), the resulting model may also vary from ex-

periment to experiment. For such methods, [19] and [28] are good references in

which the authors give a very detailed background about the subject.

In this work, a two degree-of-freedom serial chain Revolute-Revolute (RR)

joint robot arm is modeled via both of the two basic methods described above.

Using the first method (EL method), we get a general dynamic model for the robot

arm which is related with the physical structures of the system, while with the

second method (identification), the robot arm setup is analysed through real time

experiments. As expected, the first model gives a more general equation system

which can be adjusted to the real system by slightly changing the parameters

while the second method produces a specific system model and does not allow

us to correlate the resulting equations with physical properties of the system.

When modeling the system by EL method, we ignore friction, resonances, and

time delay that would occur from some physical properties of the system.

Afterwards, servomechanism syntheses that achieve tracking, torque distur-

bance rejection, and (internal) stability is considered with appropriate controller
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structures. Here, by the term disturbance rejection we mean regulation of torque

disturbances at steady-state. Although for linear, time-invariant systems the dis-

turbance rejection problem is well-understood and in most of the cases perfect

rejection can be achieved, it is comparatively harder and not well-posed in non-

linear systems. Yet, there has been many attempts to develop techniques for

disturbance rejection in nonlinear systems and many controller structures and

techniques exist in the literature, [9], [21], [26], [27], [4], [5], [20].

One way to control a robot arm is to use Computed Torque Controllers, [21],

which amounts to taking the inverse of the nonlinear dynamics and use this

inverse as an input so that the overall nonlinear system becomes a decoupled

linear error dynamics system which comprises a double integrator for each link

(see Fig. 1.1). Then, a linear controller (generally PID) is synthesized and added

to the inverse dynamics along with the second derivative of the desired position

signal to achieve the reference tracking. The reference position signal fed to the

plant directly actually meaning that the tracking objective is guaranteed for any

command signal types. Nevertheless, this method is not suitable for disturbance

regulation objective since it requires other sophisticated methods (like adaptive,

robust, neural, etc..) to be used. We do not apply further this method through

this work, owing to the fact that we seek for linear controller structures that

do not feedback nonlinearities (other than that of gravity) and thus are not so

sensitive to parameter variations.

Figure 1.1: Computed Torque Controller Structure

Passivity of nonlinear systems is studied by Willems, [32], who also gave
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the definition of dissipativeness. Hill and Moylan, [14], inspired by the work of

Willems, suggested the use of energy as Lyapunov function for a class of non-

linear systems when analysing stability. These were actually a milestone for

passivity-based stability analyses of nonlinear systems used along with some spe-

cial feedback controllers. Motivated by these works, Byrnes, Isidori, and Weiss,

[4], [5], [3], [17], have contributed to passivity-based control of nonlinear systems.

The idea behind this control technique is to search for a stored energy function

H such that

H(0) = 0, H(x) > 0 ∀x 6= 0, Ḣ(x) ≤ g(u(t), y(t)) (1.1)

with u and y being the input and output of the nonlinear system and g(.) being a

function unique to structure of the plant model, [14]. If the function g is uTy, then

this condition turns into a passivity condition. Passivity property of the closed-

loop systems can also be preserved by employing special feedback controllers. For

instance, in Fig. 1.2, where P satisfies (1.1), if a controller which has a positive

definite matrix is used in place of the controller C, passivity of the closed loop

system is preserved.

Figure 1.2: Passivity of Closed-Loop System

An alternative control method is the direct approach of linearizing the model

and employing a linear controller. This method may usually fail because lin-

earization, in most cases, drops the coriolis and centrifugal terms, and produces
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an oversimplified approximate model, [2]. Linearization is hence hardly consid-

ered in the control of robot arms. In addition, since the resulting system model is

derived for a zone around an equilibrium point, its region of validity is limited. On

the other hand, in some practical applications the coriolis and centrifugal terms

can be neglected and the robot arm can be thought of as n channel decoupled

system, [21]. Moreover, by estimating the gravity related forces at each joint,

they can be eliminated with gravity compensation, which amounts to adding the

gravity-related terms to the output of the linear controller, [23].

We synthesize controllers for the plant model under consideration by two dif-

ferent methods. The first controller follows from the passivity based approach,

which captures the nonlinear structure of the plant, but imposes restrictions.

The second controller is a linear controller based on the internal model principle

applied to a linearized model. In both of the cases, we first define and compen-

sate the gravity related terms through gravity compensation method, but do not

compensate for the coriolis and centrifugal terms.

This work is organized as follows; in Chapter 2 dynamic model of a 2-DOF

RR robot arm is derived by EL method and the resulting model is validated by

system identification method via experiments on the real system. In derivation

of the dynamic equations thorugh EL method we apply the most widely used

procedure described in [9] by ignoring the effects of friction, flexibility, and time

delay. The real-time experiments are performed on the robotic set-up and a

linear model is derived for the robot arm under consideration by eliminating the

nonlinear effects. Comparison of the two models and the reasons why differences

occur between these models are also considered in this chapter.

Some background about passivity-based control is given and in lights of these

definitions, the storage function for the robot arm is derived in Chapter 3. Using

this function as a Lyapunov function candidate, stability analysis of the robot

arm with proportional, PD, and PID controllers along with the gravity compen-

sation are examined. Since reference position tracking and disturbance regulation

analyses for mechanical systems can be tough with passivity based approaches,

we just look for the stabilization property of the overall system in this chapter.
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The objectives that the controller is supposed to achieve are given and a

linear controller is synthesized by evoking the internal model principle for the

linearized robot model in Chapter 4. Since we linearize the plant around the

natural equilibrium point, the coriolis and centrifugal terms does not show up

in the linearized model. Then, the linear controller is synthesized for the double

integrator plant to control the position vector of the system. Chapter 5 gives

the responses of the controllers synthesized in the earlier chapters via simulation

results and the last chapter is on conclusions.
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Chapter 2

DYNAMIC MODELING OF A

2-DOF ROBOT ARM

In this thesis, we focus on a special type of two degree-of-freedom (2-DOF) robot

manipulators. There are many different types of 2-DOF manipulators such as in

Figures 2.1 and 2.2.

Figure 2.1: Examples of Two Degree-of-Freedom Robot Arms
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The manipulator under consideration for this work is a serial-chain revolute-

revolute (RR) joint arm and can be represented as in Fig. 2.2 which can be

thought to be the first two links of PUMA 560 robot arm, [24].

Figure 2.2: Two Degree-of-Freedom Robot Arm to be Analyzed

In this chapter, the dynamic equations of the 2-DOF robot arm like in Fig. 2.2

is derived first with EL method. Then, the system model of the experimen-

tal setup is identified by system identification methods. Since the real system

contains friction in its gears, we first find the friction model and estimate the

parameter values of this model and then derive the linear model. Afterwards, the

resulting systems of equations of these two methods are compared.
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2.1 Dynamic Modeling with Euler-Lagrange

Method

We assume that the links in Fig. 2.2 are rigid, and each link has the shape of a

rectangular prism. The edge lengths are denoted for the first link as a, b, c, and

for the second link as w, t, k. The first link is to be rotated about its z axis (z0)

which is perpendicular to the horizontal surface (the world) and the second link

is to be rotated about its z axis (z1) which is perpendicular to z0.

We use the EL method as described in [9] and convert the form of the dynamic

equations to another form for control purposes using the formulations in [21].

The robot manipulator is taken as ideal, which means that effects of friction and

backlash at the motor gears are ignored. Also, time delays, such as from torque

command to the output that may result due to the long distances between the

motor gear and sensors etc.., are ignored.

Dynamic equations derived from EL method are generally in the form of

M(q)q̈ + N̂(q, q̇) +G(q) = u

which after the conversion described in [21] becomes

M(q)q̈+N(q, q̇)q̇+G(q) = u (2.1)

where q ∈ R
n is the generalized coordinates of the system. The matrix M(q) ∈

R
n×n called the inertia matrix and is symmetric, positive definite, and contains

inertia-related terms; N̂(q, q̇) ∈ R
n and N(q, q̇) ∈ R

n×n contains the terms

that come from coriolis and centrifugal forces which are nonlinear in general,

G(q) ∈ R
n is composed of terms arising from the potential energy of the system,

and u ∈ R
n is the input vector. We work with the dynamic equations in the form

of (2.1) throughout this work.

The notation for various parameters used in this section are given in Table 2.1.

We first define the kinematic structure and some important parameters of the

9



Table 2.1: Notation
m1 Mass of the first link
m2 Mass of the second link
d1 Length of the first link
d2 Length of the second link
J1 Inertia matrix of the first link
J2 Inertia matrix of the second link
g Gravitational constant
θ, ψ Generalized coordinates
φ Unbalance angle

system that is needed to derive the dynamic equations. The inertia tensors are

I1 =




I1xx I1xy I1xz

I1yx I1yy I1yz

I1zx I1zy I1zz


 , I2 =




I2xx I2xy I2xz

I2yx I2yy I2yz

I2zx I2zy I2zz


 .

where

I1xy = I1yz = I1xz = I2xy = I2yz = I2xz = 0;

due to symmetry and

I1xx =
m1

12
(b2 + 4c2), I1yy =

m1

12
(a2 + 4c2), I1zz =

m1

12
(a2 + b2);

I2xx =
m2

12
(t2 + k2), I1yy =

m2

12
(w2 + k2), I2zz =

m2

12
(t2 + w2).

The inertia matrices are

J1 =




J1xx 0 0 0

0 J1yy 0 0

0 0 J1zz J1z

0 0 J1z m1



, J2 =




J2xx 0 0 J2x

0 J2yy 0 J2y

0 0 J2zz 0

J2x J2y 0 m2



.

where

Jixx =
−Iixx + Iiyy + Iizz

2
, Jiyy =

−Iiyy + Iixx + Iizz
2

,

Jizz =
−Iizz + Iixx + Iiyy

2
, i = 1, 2,

Jix = mix̄i, Jiy = miȳi, Jiz = miz̄i

10



with x̄i, ȳi, z̄i, i = 1, 2, being the terms related with the locations of the center

of masses and the coordinate frames of the links. J1z, J2x, and J2y parameters

show up due to the mismatch between the center of gravity and the coordinate

axes. For the first joint, as long as this mismatch is along the z axis, it is expected

that J1z term does not show up in dynamic equations, hence does not influence

the motion of the system. But, when it comes to the second joint, even a small

mismatch between the coordinate frame and the location of center of gravity of

the second link may cause unbalance effect remarkably. Thus, we expect that

this term will appear in the dynamic equations.

The Denavit-Hartenberg convention, [9], of the manipulator is

Table 2.2: DH Convention of the Manipulator
Jointi θi αi ai di

1 θ 90 0 d1

2 ψ 0
d2
2

0

so that the transformation matrices are

A1
0 =




cos(θ) 0 sin(θ) 0

sin(θ) − cos(θ) 0 0

0 1 0 d1

0 0 0 1



; A2

1 =




cos(ψ) − sin(ψ) 0
d2
2
cos(ψ)

sin(ψ) cos(ψ) 0
d2
2
sin(ψ)

0 0 1 0

0 0 0 1



.

Up to now, the kinematic structure of the robot arm is derived. Using this

kinematic structure, we derive the dynamic equations for the robot arm in Fig.2.2

evoking the procedure in [9] and in [21]. This method gets the kinematic structure

as the input and outputs the parameters of the dynamic equations with respect

to the Lagrangian algorithm. The resulting dynamic equations are in the form

of (2.1), n = 2 dimensional and shows all the coupling effects in a compact form.

The resulting dynamic equations of the whole system is found as

[
M11 0

0 M22

][
θ̈

ψ̈

]
+

[
N11 N12

N21 N22

][
θ̇

ψ̇

]
+

[
G1

G2

]
=

[
τ1

τ2

]
(2.2)
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with

M11 = ζ + γ cos2 (ψ)− p sin(2ψ),

M22 = η,

N11 = −
1

2
[ γ sin(2ψ) + 2p cos(2ψ)]ψ̇,

N12 = −
1

2
[ γ sin(2ψ) + 2p cos(2ψ)]θ̇,

N21 =
1

2
[ γ sin(2ψ) + 2p cos(2ψ)]θ̇,

N22 = 0,

G1 = 0,

G2 = A cos(ψ + φ).

Here the terms ζ, γ, η, p, and A are defined by

ζ = J1xx + J1zz + J2yy + J2zz,

γ = J2xx − J2yy + J2xd2 +
m2d

2
2

4
,

η =
m2d

2
2

4
+ J2xd2 + J2xx + J2yy,

p =
J2yd2
2

,

A = −m2gr.

In (2.2), the matrix M is diagonal and positive definite and the matrix N

includes all the coupling torque effects. This situation can be interpreted as the

velocity of a link not influencing the other link’s inertia; but, causing nonlinear

coupling torque at the other joint. Also, position of the second link affects the

inertia of the first link. Diagonality of the inertia matrix provides advantages

when taking its inverse.

State-space form of (2.2) is as follows

ẋ = f(x,u), (2.3)

y = h(x)

12



where

x = [θ, θ̇, ψ, ψ̇]T ,

f(x,u) =




f1(x)

f2(x,u)

f3(x)

f4(x,u)



=




θ̇
τ1 −N1 −G1

M11

ψ̇
τ2 −N2 −G2

M22




=




θ̇

τ1 + θ̇ψ̇(γ cos(2ψ) + p sin(2ψ))

ζ + γ cos2(ψ)− p sin(2ψ)

ψ̇

2τ2 − θ̇2(γ cos(2ψ) + p sin(2ψ))− 2A cos(ψ + φ)

2η




with

N1 = N11θ̇ +N12ψ̇,

N2 = N21θ̇ +N22ψ̇.

The output vector h(x) can be chosen as either position, or velocity, or both of

them. For the time being, we choose it as h(x) = x = [θ, θ̇, ψ, ψ̇]T .

2.2 Identification of the Real System

We now apply a system identification method to find the dynamic equations of

motion of the robot arm in Fig. 2.2 based on data obtained from a real system

similar to the one in Fig. 2.2. We ignore the effects of backlash, but do not

neglect effects of motor dynamics, friction, and possible resonance terms since

they naturally exist in the real system.

We think of the system as two coupled links as in Fig. 2.3. We assume that

in one channel, the robot arm model consists of a linear plant model along with

the nonlinear effects: friction, unbalance, and coupling torques.

13



Figure 2.3: Block Diagram of the System for Identification Purpose

In Fig. 2.3, NLf1, NLf2 and NLu represent the nonlinear friction and un-

balance models that generate the friction torques, τ1frc, τ2frc, and the unbalance

torque, τunb, respectively. NLint represents the block that generates the coupling

torques τint1 and τint2. The block Pi, i = 1, 2 stands for the linear portion of

the system after the compensation of these nonlinear terms. τ2app is the applied

torque as output of the controller, and τ2net is the net torque entering to the linear

plant Pi.

Our method is to first eliminate the nonlinear unbalance and friction torques

by adding the estimates of them with the opposite sign to the controller output,

14



then find the input-output relationship of the resulting linear part P . When

applying the tests to a link, the other link is kept stationary so that no coupling

force occur, i.e., τint1 = τint2 = 0. Thus, we do not consider the coupling effect

NLint throughout this section.

At this point, we are not interested in the controller synthesis; but, we need

the use of a controller in order to achieve a suitable behavior of the plant. We

choose a PID controller as the linear controller Ctest for this purpose. Since the

parameters of this controller is not important for the time being, we choose them

so that the controller gives the best observed performance.

We first focus on the elevation link and use “constant velocity test” to find

the unbalance and friction torques existing in the elevation link. We move the

link at a constant speed by employing a tuned PID controller Ctest2. The total

torque required to move the elevation link at constant speed should be zero by the

following well-known equation which roughly describes the equation of motion of

single-link robot arms

J2ψ̈ = τ2net

with J2 and ψ̈ being the inertia and the acceleration of the elevation link, respec-

tively. As the main idea of this test we use the fact that τ2net = 0 provided the

velocity of the link (ψ̇) is constant. If the constant velocity experiment is done

twice, one for positive velocity (elevation link moves upward) and one for negative

velocity (elevation link moves downward), then by the following equations

τunb =
τ2app+ + τ2app−

2
, τ2frc =

τ2app+ − τ2app−
2

the unbalance and friction torques are determined. As an example, a result of

one test is shown in Fig. 2.4.

In Fig. 2.4, we see that the unbalance torque has a shape of a cosine wave

with respect to position. We fit a cosine signal for this term as

τunb = A cos(ψ + φ).

So, the nonlinear block NLu can be depicted as in Fig. 2.5.
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Figure 2.4: A constant velocity test result

The friction torque can be approximately taken as constant such that

τfrc2 = σ2 sgn(ψ̇).

where the parameter σ2 is the Coulomb friction coefficient for this axis. The

nonlinear block NLf2 can be depicted as in Fig. 2.6.

Compensation of the friction and unbalance terms can be achieved by adding

them with the same magnitude but the opposite sign to the applied torque τ2app so

that τ2app = τ2net as represented in Fig. 2.3. After elimination of these nonlinear

terms, we apply some specific signals as the signal τ2app to find out the internal

structure of the linear plant P2. For this purpose, the most commonly used signals

are step and sinusoid. Applying sinusoid signals of various frequencies, we would

be able to identify the frequency response of the linear plant P2. We pass the

16



Figure 2.5: Unbalance Generating System NLu

Figure 2.6: Friction Generating System for the Elevation Link NLf2

applied sinusoidal torque signal through a band-pass filter to get rid of the high-

frequency noise and the error signal difference between the signals τ2frc and τ̂2frc

and between τunb and τ̂unb. At the same time, we pass the output signal through

a band-pass filter as in Fig. 2.7.

The transfer function P2(s) is found by dividing the filtered output signal

ỹk(t) by the filtered input signal ũk(t).

H(jωk) = |
Bk

Ak

|ejϑk

The resultant function H(jωk) is shown in Fig. 2.8.

Looking at this response we can comment on some characteristics of the plant

17



Figure 2.7: Filtering of Input and Output Signals of the Linear Plant P

P2. First of all, from torque input to velocity output there is an integrator as

a dominant term. Secondly, at high frequencies, there is a resonance as a result

of the flexibility of link materials that can be modeled as a combination of two

resonant and one anti-resonant terms. Additionally, the best fit found through

error optimization is shown along with the response of the system. Here, the

linear block P2 is represented by the following transfer function as the red curve

in the Bode plot

P2(s) =
Kelv

s
R0(s) e

−Tds, R0(s) = Rres1(s)Ranti−res(s)Rres2(s)

Ranti−res(s) =
s2 + 2ζawas+ w2

a

w2
a

, Rresi(s) =
w2

i

s2 + 2ζiwis+ w2
i

, i = 1, 2

with Td, wa, ζa, ζi, and wi, i = 1, 2 being constants found through optimization

for finding the best fit. The constant Kelv is the gain of the plant and the time

delay e−Tds may come from the motor dynamics or other effects in the robot arm.

The terms Rresi, i = 1, 2 and Ranti−res are the resonance and anti-resonance

terms respectively.

The same procedure is applied for the traverse axis and the response in Fig. 2.3

is obtained. We intuitively know that there does not exist any unbalance term

for this axis, yet we should take care of the friction term. By the same procedure

as for the elevation axis, the friction model is determined as

τfrc1 = σ1 sgn(θ̇).
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Figure 2.8: Frequency Response of the Linear Plant P2 with Its Best Fit for the
Elevation Axis

Implementing the same filtering approach to find the frequency response of the

system gives the response in Fig. 2.9. It is easy to see that there is an integrator

with a gain as in the case of the elevation axis. But, for this link, resonance at

high frequencies is more dominant. In the equation (2.2), we see that inertia of

the traverse axis is affected from the position of the second link. In the above

experiment, the position of the second link is kept stationary while moving the

traverse axis. So, it is seen as a frequency response of pure integrator until the

frequencies at which resonance appears. Moreover, there is a jump around the

frequency ω = 102 rad/s, which we assume to occur due to noise influences during

tests.

Consequently, by system identification method, the robot arm model of
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Figure 2.9: Frequency Response of the Linear Plant P1 with Its Best Fit for the
Traverse Axis

Fig. 2.3 obtained is as follows:

Elevation Axis:

NLf2 : τfrc2 = σ2 sgn(ψ̇), (2.4)

NLu : τunb = A cos(ψ + φ),

P2 : P2(s) =
Kelv

s
R0elv

(s) e−Tds.

Traverse Axis:

NLf1 : τfrc1 = σ1 sgn(θ̇),

P1 : P1(s) =
Ktra

s
R0tra(s) e

−Tds.
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where the parameters are as defined above. After the compensation of nonlin-

ear terms (friction and unbalance) and without considering resonances and time

delays, the linear model is found from torque input to velocity output as

P(s) =



Ktra

s
0

0
Kelv

s


 .

If the resonance terms (R0(s)) and time delays are ignored, then linear portion

of this system can be described by an integrator with a gain. This model is also

the one found in Chapter 4.1 by linearizing the system (2.2) in which the links are

thought of as exactly rigid; i.e., flexibility is ignored. For this reason, (2.2) does

not contain any flexibility term that would produce resonance effect. Similarly,

since time delay is not considered in analytic modeling, (2.2) does not contain

any delay term. On the other hand, the terms that are due to the coupling effect

in (2.2) does not show up in (2.4), since they are not identified with this method.
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Chapter 3

PASSIVITY BASED CONTROL

OF THE 2-DOF ROBOT ARM

3.1 Preliminaries

Let a nonlinear plant P be represented by

ẋ = f(x,u),

y = h(x) (3.1)

where x ∈ R
n is the state vector, u, y ∈ R

m are the input and output vectors

of the plant, respectively. The function f ∈ C1(Rn × R
m,Rn), f(0, 0) = 0, and

h ∈ C1(Rn,Rm) with h(0) = 0. The set Ca(.), where a ≥ 1, consists of all a times

continuously differentiable functions.

Some introductory definitions are given at this point concerning passivity and

stability concepts. For detailed descriptions we refer to [4], [16], and [30].

Definition 3.1.1 ([15]). Assume that we have a storage function H ∈ C1(Rn,R+)

such that H(0) = 0, H(x) > 0 for x 6= 0. The system P as in (3.1) with the

storage function H is passive if the following condition is satisfied

Ḣ(x) =
∂H(x)

∂x
(f(x,u)) ≤ 〈y,u〉. (3.2)
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If the inequality sign is replaced by equality sign, then the system is lossless. H

is called proper if H(x) → ∞ whenever ‖x‖ → ∞.

Note that the left hand side in 3.2 is the derivative of H along the trajectory

x(t).

Definition 3.1.2 ([4]). P with the storage function H is called a strictly output

passive system if there exists a positive definite function Q ∈ (Rn,R) such that

Ḣ ≤ 〈y, u〉 −

∫ t

0

Q(x(s)) ds.

We consider the closed-loop system T shown in Fig. 3.1, composed of the

plant P as in (3.5) and a linear, time-invariant (LTI) controller C. Since we are

interested only in stabilization issue for the time being, we take r = 0.

Figure 3.1: Closed-Loop System T for Passivity-based Stabilization

For the closed-loop system T with a passive plant P, if a proportional positive

definite gain K = KT > kI, k > 0 is used as the controller, then the closed-loop

system becomes strictly-output passive, [17], i.e.,

u = −Ky, Ḣ ≤ −k‖y‖2. (3.3)

For the following definitions x∗ = 0 is taken as the equilibrium point of (3.1)

so that f(x∗, 0) = 0.
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Definition 3.1.3. The equilibrium point x∗ = 0 is said to be stable if there exists

δ(ǫ, t0) > 0 for any ǫ > 0 such that ‖x(t0)‖ ≤ δ ⇒ ‖x(t)‖ ≤ ǫ ∀t > t0.

Definition 3.1.4. The equilibrium point x∗ = 0 is said to be asymptotically

stable if it is stable and for some δ(t0), ‖x(t0)‖ ≤ δ ⇒ ‖x(t)‖ → 0. It is called

globally asymptotically stable if it is stable and ‖x(t)‖ → 0 ∀x(t0) ∈ R
n.

Theorem 3.1.1 (LaSalle’s Invariance Theorem). Let H : R
n → R be a differ-

entiable function. Assume that for some c > 0, the set

Ωc = {x ∈ R
n |H(x) ≤ c}

is bounded and H(x) ≥ c1 for some c1 for x ∈ Ωc. Assume also that Ḣ(x) ≤ 0

for x ∈ Ωc. Define the set S as

S = {x ∈ Ωc | Ḣ(x) = 0}

and let M be the largest invariant set in S (a set M ⊂ R
n is called invariant if

x(0) ∈M ⇒ x(t) ∈M ∀t ≥ 0). Then, x(0) ∈ Ωc implies that x(t) moves toward

and remains inside the set M at steady-state.

Theorem 3.1.2. Let H be a differentiable locally positive definite function and

that Ḣ ≤ 0, for some ‖x‖ ≤ r, r > 0. Define the set S as in Theorem 3.1.1, i.e.,

S = {‖x‖ ≤ r | Ḣ(x) = 0}.

If the only possible solution which lies entirely in S is x(t) = 0, then x∗ = 0 is

asymptotically stable.

Definition 3.1.5 ([18]). P is said to be zero-state detectable if u(t) = y(t) =

0 ∀t ≥ 0 implies that lim
t→∞

x(t) = 0 for all x(0).

Note that for linear, time-invariant systems zero-state detectability is equiv-

alent to “detectability” since the state vector is in the kernel of the observability

matrix of the system.

Proposition 3.1.1 ([30]). Let the plant P in (3.1) be zero-state detectable and

have a storage function H satisfying H(0) = 0 and H(x) > 0 for x 6= 0. Con-

sider the closed-loop system T in Fig. 3.1 with r = 0 and with the proportional

controller C: K = KT > kI, k > 0. Then, T is asymptotically stable. If H is

proper, then T is globally asymptotically stable.
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Proof. For the proof we refer to [30].

3.2 Passivity and Stability Analysis of the 2-

DOF Robot Arm

3.2.1 Storage Function and Its Relation with Stability

Storage function represents the stored energy in a system and is closely related

to the stability of the system, [4], [14], [16], [20]. Using the storage function as

Lyapunov function and relating it with the power supplied to the plant, some

stability properties of the plant (and of the closed-loop system in some cases) can

be inferred.

For physical systems it is very common to choose the storage function as the

mechanical energy stored in the system. For the system (2.2), denoting q = [θ ψ]T

as the generalized coordinates and V as the potential energy, the storage function

can be taken as

H(x) =
1

2
〈M(q)q̇, q̇〉+ V (q) (3.4)

=
1

2
[θ̇ ψ̇]

[
ζ + γ cos2(ψ)− p sin(2ψ) 0

0 η

][
θ̇

ψ̇

]
+

1

2
m1gc

+m2g(c− r sin(ψ + φ))

=
1

2
[(ζ + γ cos2(ψ)− p sin(2ψ))θ̇2 + ηψ̇2] + (

1

2
m1 +m2)gc+ A sin(ψ + φ)

where the parameters are as in Chapter 2. Here, the term
1

2
〈M(q)q̇, q̇〉 can be

thought of as the kinetic energy so that H(x) represents the mechanical energy.

Thanks to the diagonal shape of the inertia matrixM(q), there is no cross product

of θ̇ and ψ̇ in H . It can be easily checked that H(0) = 0 and H(x) > 0 ∀x 6= 0

since c > r and g > 0. So, (3.4) can be used as a storage function for the plant
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(2.2). Taking the first derivative we get

Ḣ(x) =
∂H

∂x
ẋ

= [(ζ + γ cos2(ψ)− p sin(2ψ))]θ̇θ̈ −
1

2
[γ sin(2ψ) + 2p cos(2ψ)]θ̇2ψ̇

+ ηψ̇ψ̈ + A cos(ψ + φ)ψ̇

On the other hand, if the inner product of the input and output of the system

is computed (this inner product can be interpreted as the power supplied to the

plant)

〈q̇,u〉 =
[
θ̇ ψ̇

]

[(ζ + γ cos2(ψ)− p sin(2ψ))]θ̈ − [γ sin(2ψ) + 2p cos(2ψ)]θ̇ψ̇

1

2
[γ sin(2ψ) + 2p cos(2ψ)]θ̇2 + ηψ̈ + A cos(ψ + φ)




= [(ζ + γ cos2(ψ)− p sin(2ψ))]θ̇θ̈ −
1

2
[γ sin(2ψ) + 2p cos(2ψ)]θ̇2ψ̇

+ ηψ̇ψ̈ + A cos(ψ + φ)ψ̇.

So, Ḣ(x) = 〈q̇,u〉 meaning that the change of the energy stored in the system at

any instant equals to the power supplied at that instant. Hence, the plant under

consideration can be treated as a passive system provided its output is taken

as the velocity vector q̇, with respect to Definition 3.1.1 and [25]. Furthermore,

the equality sign means that the plant is actually lossless or energy preserving

according to Definition 3.1.1.

We assume that the position of the second link, ψ, is measurable all the

time and the gravity term (G(q) = [0 G2]
T ) is compensated through gravity

compensation method as in Fig. 3.2.

The dynamic equations with the gravity compensation are

M(q)q̈ +N(q, q̇)q̇ = û (3.5)

where M(q), N(q, q̇) are as in (2.2) and û = [τ1 τ2]
T . State-space form of (3.5)

is

ẋ = f(x,u), (3.6)

y = h(x)
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Figure 3.2: The plant with gravity compensation

where

f(x,u) =




f1(x)

f2(x,u)

f3(x)

f4(x,u)



=




θ̇
τ1 −N1

M11

ψ̇
τ2 −N2

M22



=




θ̇

τ1 + θ̇ψ̇(γ cos(2ψ) + p sin(2ψ))

ζ + γ cos2(ψ)− p sin(2ψ)

ψ̇

2τ2 − θ̇2(γ cos(2ψ) + p sin(2ψ))

2η




,

h(x) = x = [θ θ̇ ψ ψ̇]T

with

N1 = N11θ̇ +N12ψ̇,

N2 = N21θ̇ +N22ψ̇.

In order to make some deductions about asymptotic stability, zero-state de-

tectability property of the plant should be analyzed. We search for whether the

condition in Definition 3.1.5 is satisfied for the plant (3.6), i.e.,

u(t) =

[
τ1(t)

τ2(t)

]
= 0&y(t) =

[
θ̇(t)

ψ̇(t)

]
= 0 ∀t > t0

?
⇒ lim

t→∞

x(t) = lim
t→∞




θ(t)

θ̇(t)

ψ(t)

ψ̇(t)



= 0.

Both outputs are also states so that the second and fourth elements of the

state vector x (velocities) are zero. However, the first and third elements of the
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state vector (positions) are not zero and satisfy

θ(t) = θ(t0) & ψ(t) = ψ(t0) ∀t ≥ t0.

Note that the state values do not converge to zero at steady-state for all initial

conditions. Because of this fact, we conclude that the plant (3.6) is not zero-state

detectable.

We now examine the behavior of the system (3.6) with different controllers.

In all the analyzes we employ the gravity compensation method as represented in

Fig. 3.2. For the unbalance compensated plant, we propose the storage function

Ĥ as

Ĥ = H − V (q) (3.7)

=
1

2
[(ζ + γ cos2(ψ)− p sin(2ψ))θ̇2 + η ψ̇2].

where H is as in (3.4). It is obvious that Ĥ(0) = 0 and Ĥ(x) > 0 ∀x 6= 0.

3.2.2 Stabilization Through Proportional Feedback with

Gravity Compensation

We now apply a proportional controller to the system (3.6).

Proposition 3.2.1. Let the nonlinear plant P be defined by the dynamic equa-

tions (3.6) and have a storage function Ĥ such that Ĥ(0) = 0 and Ĥ(x) > 0 for

x 6= 0 with the state variables chosen as x =

[
q

q̇

]
(positions and velocities) and

with the output y = q̇.

Consider the closed-loop system T in Fig. 3.1 with r = 0 and a positive def-

inite proportional controller so that the overall feedback controller (combination

of gravity compensation and proportional controller) is

C : u = G(q)−Kq̇

where G(q) = [0 G2]
T is the gravity compensation and K = KT > kI, k > 0.

Then, T is stable and lim
t→∞

x(t) =

[
qc

0

]
where qc is a constant vector.
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Proof. By (3.3),
˙̂
H ≤ −K‖y‖2 ≤ 0 ∀t ≥ 0 where Ĥ is as in (3.7). So, using Ĥ as

a Lyapunov function, we see that T is stable which also implies that there exists

a ρ > 0 such that x(0) ∈ Sρ ⇒ x(t) ∈ Sǫ ∀t ≥ 0 where ǫ > 0. In conformity

with LaSalle Invariance principle, x(t) moves toward the largest invariant set Sinv

in the set S0 = {x ∈ Sǫ|
˙̂
H(x) = 0}. When x ∈ S0, y = 0. Also, it follows from

(3.7) that θ̇ = ψ̇ = 0 implies Ĥ(x) = 0, but, the positions θ and ψ can take any

value in the set S0. This implies that θ and ψ are constants inside both of these

sets. Hence, we conclude that

S0 = Sinv

= {x = [θinv, 0, ψinv, 0] | − π ≤ θinv < π,−π ≤ ψinv < π, Ĥ(x) =
˙̂
H(x) = 0}.

where θinv, ψinv are constants.

The state trajectories of the system (3.6) can be visualized as in Fig. 3.3 when

the conditions of Proposition 3.2.1 hold.

Figure 3.3: State Trajectories for Unbalance Compensated System Under Propor-
tional Controller
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3.2.3 Stabilization Through PD Feedback with Gravity

Compensation

In this section, we give Proposition 3.2.2 which considers the asymptotic stability

of the system (3.5) at the zero equilibrium by PD feedback. This result is similar

to a result in [29].

Following [27], we first note a skew-symmetry property.

Remark 3.2.1. In the plant model (3.5), the matrix

Ṁ− 2N =

[
0 [γ sin(2ψ) + 2p cos(2ψ)]θ̇

[−γ sin(2ψ)− 2p cos(2ψ)]θ̇ 0

]
(3.8)

is skew-symmetric, i.e., 〈Ṁ− 2N, z〉 = 0 for any vector z.

Proposition 3.2.2. Consider Fig. 3.1 in which the plant P is described by the

dynamic equations (3.5) and have a storage function Ĥ such that Ĥ(0) = 0 and

Ĥ(x) > 0 ∀x 6= 0. Then, with the overall feedback controller (combination of

gravity compensation and PD controller)

C : G(q)−Kdq̇−Kpq = u,

where G(q) = [0 G2]
T is the gravity compensation and Kp > rpIn, Kd >

rdIn; rp, rd > 0, the closed-loop system T is globally asymptotically stable.

Proof. The controller together with the equation (3.5) is

u = M(q)q̈ +N(q, q̇)q̇+G(q) (3.9)

0 = M(q)q̈ +N(q, q̇)q̇+Kdq̇+Kpq

Consider the storage function

H̃ = Ĥ +
1

2
qTKpq =

1

2
〈M(q)q̇, q̇〉+

1

2
qTKpq

also satisfying

H̃(0) = 0, H̃(x) > 0 ∀x 6= 0.
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Differentiating H̃ with respect to time and using (3.8) gives

˙̃
H =

˙̂
H +

d

dt
(
1

2
qTKpq)

= q̇T(−Kdq̇−Kpq−N(q, q̇)q̇) +
1

2
q̇TṀ(q)q̇ + q̇TKpq

= −q̇TKdq̇ ≤ 0

The largest invariant set Sinv in

S0 = {x |
˙̃
H = 0}

is given by

Sinv = {x = [0 0 0 0]T}

To see this, note that the only choice for the velocity vector satisfies this condition

is q̇ = 0 and so q̈ = 0. By (3.9), if q̇ = q̈ = 0, then q = 0. So, by the LaSalle

Invariance Principle, x∗ = [0 0 0 0]T is asymptotically stable. Since the set

Sp = {x |H̃ ≤ π} for some π > 0 is compact, H̃ is a proper function. So, according

to Proposition 3.1.1, x∗ = [0 0 0 0]T is globally asymptotically stable.

3.2.4 Stabilization Through PID Feedback with Gravity

Compensation

We now employ a PID controller by imposing some restrictions on its param-

eters to asymptotically stabilize the system (3.5) at the zero equilibrium. The

conditions on the controller parameters are similar to the conditions in [22].

Lemma 3.2.1 ([21]). Let the robot dynamic equations be defined as in (2.1).

Then, the matrix N(q, q̇) satisfies the following equation.

‖N(q, q̇)q̇‖ < κ‖q̇‖2 ∀q, q̇ ∈ R
n

where κ > 0.

Proposition 3.2.3. Consider Fig. 3.1 in which the plant P is described by the

dynamic equations (3.5) and have a storage function Ĥ such that Ĥ(0) = 0 and
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Ĥ(x) > 0 ∀x 6= 0. Consider an overall feedback controller (combination of gravity

compensation and PID controller) such that

C : G(q)−Kdq̇− (Kp +Ki)q−Ki

∫ t

0

q(σ)dσ = u

where G(q) = [0 G2]
T represents the gravity compensation and

1. Kp,Kd,Ki > 0,

2. Kp +Kd − 2M(q) > 0,

3. ‖q(t)‖ < ǫ, ǫ > 0,

4. Kd >M(q) + ǫκ I2

with κ > 0 being as in Lemma 3.2.1. Then, T is locally asymptotically stable.

Proof. The closed-loop system equations with the given controller becomes

0 = M(q)q̈ +N(q, q̇)q̇+Kdq̇+Kpq +Kiz,

ż = q + q̇.

with z being the new state of the closed-loop system. We propose the storage

function for the closed-loop system as

H = Ĥ + qTM(q)q̇+
1

2
qT(Kp +Kd)q +

1

2
zT(Ki)z,

=
1

2
q̇TM(q)q̇+ qTM(q)q̇ +

1

2
qT(Kp +Kd)q+

1

2
zT(Ki)z.

It is obvious that H(0) = 0. In order to show the positive definiteness of this

function, the following inequality can be used, [22].

1

4
q̇TM(q)q̇+ qTM(q)q̇ =

1

4
(q̇T + 2qT)M(q)(q̇T + 2qT)− qTM(q)q

≥ −qTM(q)q.

Then,

H ≥
1

4
q̇TM(q)q̇− qTM(q)q+

1

2
qT(Kp +Kd)q+

1

2
zT(Ki)z

≥
1

4
q̇TM(q)q̇ +

1

2
qT(Kp +Kd − 2M(q))q+

1

2
zT(Ki)z

≥ 0

32



where the last inequality follows from the criterion 2 in the proposition and from

the positive definiteness of the matrices M(q), Kp, Kd, and Ki. Using the

criterion 3 in the proposition, we get

qTN(q, q̇)q̇ < ǫκ‖q̇‖2, κ > 0.

Taking the first derivative of H we get

Ḣ = q̇T(−Kpq−Kdq̇−Kiz−Nq̇) +
1

2
q̇TṀq̇+ q̇TMq̇ + qTṀq̇

+ qT(−Kpq−Kdq̇−Kiz−Nq̇) + q̇T(Kp +Kd)q+ zT(Ki)ż

= q̇T(M−Kd)q̇+ qTNq̇− qTKpq

≤ −q̇T(Kd −M− ǫ κI2)q̇− qTKpq

≤ 0

Now, the largest invariant set Sinv in the set S0 = {x | Ḣ = 0} is found as

Sinv = {x = 0}.

By the LaSalle invariance principle, the closed-loop system T is asymptotically

stable. Since the domain of attraction depends on the parameter ǫ, the equilib-

rium point is locally asymptotically stable.
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Chapter 4

TRACKING AND

DISTURBANCE REGULATION

WITH LINEARIZATION AND

INTERNAL MODEL

PRINCIPLE

In Chapter 3, we have considered velocity control. However, in most of the

cases, it is required to control the position vector of the system, [25]. The most

straightforward method to control a nonlinear system may be to synthesize a

linear controller for a linearized version of the original nonlinear model. The

controller (could be nonlinear) synthesized for linearized model has a chance of

resulting in good stability and performance only if the real system is “close” to

a linear system. Moreover, the synthesized controller would be valid only if the

real system operates close to the region of linearization.

In this chapter, the nonlinear system model obtained in Chapter 2 is first

linearized and then a linear controller is synthesized for this linearized model by

evoking the internal model principle, [8], [7]. Internal model principle primarily
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applies to linear, time-invariant controller synthesis for the purpose of driving

the output of a system asymptotically to a reference input in the presence of

disturbances and states that such tracking and regulation can only be achieved if

the loop (or controller) contains an “internal model” of the reference input signal

and disturbance signal, [7]. The principle loses its generality when applied to

nonlinear systems although, in [1], [11], [13], [12], and in [17], one finds instances

of such applications. As will be shown in Chapter 5, the fact that internal model

principle applies to the robot model considered here can be interpreted to mean

that the 2-DOF, RR robot arm model obtained here is “close to being linear”

with respect to the objectives of internal stability, regulation, and tracking. The

main result of this chapter can also be found in [10].

4.1 Linearization of the System Model

We consider the nonlinear robot arm model described by (3.6). In this equation,

nonlinear effects such as friction, backlash, and time delay are ignored. First

order linearization of (3.6) is obtained as, [31],

ẋ ∼= f(x∗,u∗) +
∂f

∂x
|x=x∗,u=u∗ (x− x∗) +

∂f

∂u
|x=x∗,u=u∗ (u− u∗) + h.o.t (4.1)

h(x) ∼= h(x∗,u∗) +
∂h

∂x
|x=x∗,u=u∗ (x− x∗) +

∂h

∂u
|x=x∗,u=u∗ (u− u∗) + h.o.t

with x∗ = [θ∗ 0 ψ∗ 0]T , u∗ = [0 A cos(ψ∗ + φ)]T being the equilibrium point. We

should emphasize that, x∗ is just an element of the set

Seq = {xeq = [θeq, θ̇eq, ψeq, ψ̇eq]
T | θ̇eq = ψ̇eq = 0}
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which describes all the equilibrium points as long as u∗ is as above. Now, taking

the first derivatives of f and h around (x∗,u∗) gives

∂f1
∂x

|x=x∗,u=u∗ =
∂f1
∂u

|x=x∗,u=u∗ =
[
0 0 0 0

]
,

∂f2
∂x

|x=x∗,u=u∗ =
[
0 0 0 0

]
,

∂f2
∂u

|x=x∗,u=u∗ =

[
1

ζ + γ cos2(ψ∗)− p sin(2ψ∗)
0

]
,

∂f3
∂x

|x=x∗,u=u∗ =
∂f3
∂u

|x=x∗,u=u∗ =
[
0 0 0 0

]
,

∂f4
∂x

|x=x∗,u=u∗ =
[
0 0 (−A sin(ψ∗ + φ)) 0

]
,

∂f4
∂u

|x=x∗,u=u∗ =

[
0
1

η

]
,

∂h

∂x
|x=x∗,u=u∗ =

[
1 0 0 0

0 0 1 0

]
,

∂h

∂x
|x=x∗,u=u∗ = 04×2.

in which 0m×n denotes m× n zero matrix. Hence, (4.1) becomes

d

dt
x = A(x− x∗) +B(u− u∗), (4.2)

y = C(x− x∗) +D(u− u∗),

where

x = [θ θ̇ ψ ψ̇]T , x∗ = [θ∗ 0 ψ∗ 0]T ;

u = [τ1 τ2], u
∗ = [0 τ ∗2 ];

A =




0 1 0 0

0 0 0 0

0 0 0 1

0 0
−A sin(ψ∗ + φ)

η
0



, B =




0 0
1

ζ + γ cos(ψ∗)2 − p sin(2ψ∗)
0

0 0

0
1

η



,

C =

[
1 0 0 0

0 0 1 0

]
, D = 0.

It can easily be seen that, after linearizing the system with respect to x the

unbalance term appears in matrix A in a different form than its original form.
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We use the gravity compensation method to compensate this nonlinear term in

the overall controller and design a linear controller for the resulting linear plant.

This compensation is equivalent to the addition of the vector G(q) of the plant to

the controller output as in Fig. 3.2. The transfer matrix of gravity compensated

and linearized plant is obtained as

P̂(s) =

[
P̂1(s) 0

0 P̂2(s)

]
=



J1
s2

0

0
J2
s2


 (4.3)

The matrices A and B in (4.2) are such that all of the coriolis and centrifugal

terms are eliminated since in the operating point chosen the velocities θ̇ and

ψ̇ are zero. Also, from torque input to position output the system is a simple

double integrator because the unbalance term (G2) is compensated by gravity

compensation as in Fig. 3.2.

4.2 Linear Controller Design for the System

Consider the closed-loop system T given in Fig. 4.1. In this configuration, we

choose the plant P as the robot arm model (3.5). The signal r is a reference

position signal and the output y is the position output of the manipulator. We

add a signal d to the output of the controller C as torque disturbance signal.

In this section, a controller C will be synthesized so that in the closed-loop

system T, internal stability, reference tracking, and disturbance regulation are

achieved. We will focus on PID controllers and internal model based controllers.

4.2.1 Required Internal Model

We now synthesize a linear controller for the linearized plant P̂ of (4.3). This

controller will be combined with the compensation for unbalance and will be used

for the nonlinear plant P in Fig. 4.1. Note that P̂ consists of two channels each of
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Figure 4.1: Closed-Loop System T

which has a double integrator along with a constant gain. Since the two channels

of the plant are decoupled, a diagonal controller C in the form of
pc(s)

qc(s)
at each

channel is to be synthesized for the linear plant P̂ to achieve internal stability,

tracking, and disturbance regulation simultaneously.

Without considering the internal structures, we assume that reference and

disturbance generating systems R and D produce signals that have poles on the

imaginary axis. In one channel, we denote the outputs of these systems as

R(s) =
1

r(s)
, D(s) =

1

d(s)
,

where the polynomials r(s), d(s) are anti-Hurwitz (all roots in the closed right

half plane). Let ∆(s) = ppc + qqc be the characteristic polynomial of the closed-

loop system for one channel. Then, at each channel, the synthesis objectives

are

i. Internal stability: ∆(s) is a Hurwitz polynomial (all roots in the strict left

half complex plane C−),

ii. Tracking: reference-to-output transfer function
q(s)qc(s)

r(s)∆(s)
is stable,

iii. Regulation: disturbance-to-output transfer function
p(s)qc(s)

d(s)∆(s)
is stable.
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The controller C(s) should also be proper (realizable), i.e., degree of the de-

nominator polynomial qc(s) must be greater than or equal to the degree of the

numerator polynomial pc(s).

Let GCD(r, q) denote the monic greatest common divisor and LCM(r, q)

denote the monic least common multiple of two polynomials r and q. Let

l := LCM(
d

GCD(d, p)
,

r

GCD(r, q)
) divides qc. (4.4)

Proposition 4.2.1. Consider the closed loop system T in Fig. 4.1. (a) There

exists a controller C =
pc
qc

that satisfies (i− iii) for the plant P̂ =
p

q
if and only

if (l, p) is coprime. (b) Every controller C =
pc
qc

that satisfies (i− iii) is such that

l divides qc.

Proof. Let C satisfy (i − iii). Then, by (ii), since ∆ is a Hurwitz polynomial, r

divides qqc so that
r

GCD(r, q)
divides qc. By (iii), d divides pqc so that

d

GCD(d, p)
divides qc. It follows that l divides qc, i.e.,

∆ = qlq̂c + ppc

for some polynomial q̂c such that qc = lq̂c. This proves (b). Since l is an anti-

Hurwitz polynomial, and since every common factor of l and p must be a factor

of ∆, it must be that GCD(l, p) = 1, i.e., l and p are coprime.

Conversely, suppose l and p are coprime which gives that ql and p are coprime.

We show how pc and qc can be constructed so that (i − iii) are simultaneously

satisfied. Let xc and yc be polynomials that satisfy

qlyc + pxc = 1.

Such polynomials exist by coprimeness of (ql, p) and can be constructed, e.g.,

by Euclidean algorithm. Let ∆ be any Hurwitz polynomial of degree 2deg(q) +

deg(l) − 1. By Euclidean division, there exist a remainder polynomial pc and a

quotient polynomial kc such that

xc∆ = qlkc + pc; deg(pc) < deg(ql). (4.5)
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Let

qc := l(yc∆+ pkc).

Note that ∆ = qqc + ppc is a Hurwitz polynomial and (ii) and (iii) are satisfied

since

qqc
r∆

=
ql̂

∆
,

pqc
d∆

=
pl̃

∆

are stable rational functions, where l̂ =
l

GCD(r, q)
and l̃ =

l

GCD(d, p)
. We now

show that C :=
pc
qc

is proper. Since, by (4.5), deg(ppc) < deg(ql) + deg(p) =

deg(qlp) ≤ deg(∆), the equality ∆ = ppc + qqc implies that deg(∆) = deg(qqc),

or, deg(qc) = deg(∆)− deg(q) = deg(ql)− 1. Hence, deg(pc) ≤ deg(qc), i.e., C is

proper.

4.2.2 PD and PID Controllers

It follows by (4.4) that, for the double integrator plant under consideration, PD

and PID controllers would be able to track step and ramp references simultane-

ously and PID would be able to regulate step disturbances; but, both would not

be able to track or regulate any sinusoidal signal. Neither would they be able to

regulate ramp disturbances since the single pole at the origin of such controllers

would not satisfy (4.4).

For instance, if a PID controller is used for C, then in terms of constants

Kd, Kp, Ki, we have

C(s) =
pc
qc

=
Kds

2 +Kps+Ki

s
;

H(s) =
Kds

2 +Kps+Ki

∆(s)
; ∆(s) = s3 + JiKds

2 + JiKps+ JiKi.

where H is the closed loop transfer function and J is the gain of the plant transfer

function. By Routh-Hurwitz criterion, the polynomial ∆(s) is Hurwitz just in case

Ki > 0 and JiKi < KpKd. In Chapter 5, performance of the PID controller is

given via simulations.
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4.2.3 A Linear Higher-Order Controller

In this part, we synthesize a linear controller by applying the rules of internal

model principle for the linearized plant P̂ obtained in Section 4.1. We now select

the reference and the torque disturbance signals as step, ramp, and sinusoidal

signal with known frequency (w0) such that

r(s) = s2(s2 + w2
0), d(s) = s2(s2 + w2

0).

In one channel, we have

P (s) =
p(s)

q(s)
=
Ji
s2
, C(s) =

pc(s)

qc(s)
.

Following the Propositon 4.2.1, we find the controller parameters pc and qc. We

first determine the common factors of the polynomials r and q, and p and d as

GCD(r, q) = s2 and GCD(p, d) = 1, respectively. Then,

l = LCM(
d

GCD(p, d)
,

r

GCD(r, q)
)

= LCM(s2(s2 + w2
0), (s

2 + w2
0))

= s2(s2 + w2
0)

It is easy to see that (l, p) is coprime. So, there exists a controller C that satisfies

(i− iii) with respect to Proposition 4.2.1. qc is such that l divides qc. Then, we

choose the polynomial qc(s) as

qc(s) = s2(s2 + w2
0) q̄c(s)

such that

C(s) =
pc(s)

qc(s)
=

pc(s)

s2(s2 + w2
0) q̄c(s)

(4.6)

for some polynomial pc(s) with the term q̄c(s) to satisfy the internal stability

requirement. In Chapter 5, we will use the pole-placement approach of [6] to

determine suitable q̄c and pc so that ∆(s) = (s+ σ)7 for several values of σ.
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Chapter 5

SIMULATIONS AND RESULTS

In this section, performances of the controllers synthesized in the earlier chapters

are analyzed and compared. In Section 5.1, we focus on stability of the closed-

loop system shown in Fig. 3.1 with the nonlinear plant P of (2.2). In Section 5.2,

the servo problem for the closed-loop system in Fig. 4.1 with the same plant is

considered.

The blocks R and D in Fig. 4.1, the reference and disturbance generating

systems, respectively, will be step, ramp, or sinusoidal signals. Thus, in each

channel,

r(s) =
1

s
, or

1

s2
, or

1

s2 + w2
0

and d(s) =
1

s
, or

1

s2
, or

1

s2 + w2
0

with the constant w0 being the angular frequency of the sinusoidal reference signal

and the sinusoidal torque disturbance signal.

Based on the measurements on the real system, the values of the parameters

of the nonlinear plant model (3.5) are chosen to be

m1 = m2 = 1 kg, (5.1)

a = b = 0.5m, c = d1 = 1m,

t = k = 0.4m, w = d2 = 0.6m,

r = 0.1m
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which gives

ζ = 0.3808 kgm2, γ = 0.0547 kgm2, p = −0.015 kgm2, η = 0.0814 kgm2.

Throughout this chapter, the units are rad for positions, rad/sec for velocities,

and rad/sec2 for accelerations.

5.1 Passivity-Based Controller

We first apply the passivity-based controllers derived in Chapter 3 as the con-

troller C. Here, we use the model (2.2) as the plant and apply the controllers as

in Fig. 3.1. Since we only look for the stabilization property of the controllers,

no reference or disturbance signal is considered in this section.

5.1.1 Proportional Controller with Gravity Compensa-

tion

We use the proportional controller for the system (3.5) with repect to the Propo-

sition 3.2.1. The output of the controller is chosen as velocities (y = [θ̇ ψ̇]T ). The

initial condition for the state vector is chosen randomly as

x0 =




θ(0)

θ̇(0)

ψ(0)

ψ̇(0)



=




0

0.2

0

−0.1




and the proportional gain matrix is taken as K = I2 so that the controller is

C : u = G(q)− q̇

where I2 is 2× 2 identity matrix and G(q) is the term for gravity compensation.

The response of the system is given in Fig. 5.1, which shows that the velocities

of the links approaches to zero, but the position values approaches to constants.
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Figure 5.1: Stabilization property of the proportional controller

5.1.2 PD Controller with Gravity Compensation

If the parameter values for the PD controller of Proposition 3.2.2 are taken as

Kp = Kd = 2I2, then responses are as in Fig. 5.2.

In this simulation, the initial condition for the state vector is chosen ran-

domly as x0 = [0.2 0 − 0.1 0]T , which is an equilibrium point. The controller

G(q)−Kdq̇−Kpq = u drives the state vector to the asymptotically stable equi-

librium point x = 0 as seen in Fig. 5.2.

5.1.3 PID Controller with Gravity Compensation

We now synthesize a PID controller following Proposition 3.2.3. We first need to

choose the PID controller to satisfy the conditions imposed by Proposition 3.2.3.
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Figure 5.2: Stabilization property of the PD controller

The parameter κ is such that

‖N(q, q̇)q̇‖ < κ‖q̇‖2 (5.2)

By (5.1), the norms ‖N(q, q̇)q̇‖ and ‖q̇‖2 are

‖N(q, q̇)q̇‖ =

√
(0.0547 sin(2ψ)− 0.03 cos(2ψ))2(

1

4
θ̇4 + θ̇2ψ̇2),

‖q̇‖2 = θ̇2 + ψ̇2.

We use the inequality

(0.0547 sin(2ψ)− 0.03 cos(2ψ))2 ≤ 0.0072 < 1

to define a boundary on ‖N(q, q̇)q̇‖. We rewrite (5.2) as

(0.0547 sin 2ψ − 0.03 cos 2ψ)2(
1

4
θ̇4 + θ̇2ψ̇2) < κ2(θ̇4 + 2θ̇2ψ̇2 + ψ̇4)
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Then, we can choose κ = 1. The upper and lower bounds for the inertia matrix

is found as

M(q) =

[
0.3808 + 0.0547 cos2(ψ) + 0.015 sin(2ψ) 0

0 0.0814

]

⇒ 0.3658I2 <M(q) < 0.4505I2 (5.3)

Now, using the bound on κ and the inequality (5.3), criterion 4 in Proposi-

tion 3.2.3 can be written as

Kd > (ǫ+ 0.4505)I2.

The parameter ǫ determines the boundary on the norm ‖q‖ =
√
θ2 + ψ2 with

respect to the criterion 3. Assuming small amplitudes for θ and ψ so that ‖q‖ < 1,

we choose

ǫ = 1, Kd = 2I2.

We now choose the parameter Kp satisfying criterion 2 such that

Kp +Kd > 0.901I2.

By evoking these conditions, we use Kp = Ki = 5I2.

These parameters and the initial condition x0 = [0.2 0 − 0.1 0]T yields the

responses in Fig. 5.3.

The synthesized PID controller hence asymptotically stabilizes the zero equi-

librium of (3.5) for this initial condition. Since we have a restriction on the

position values, we conclude that this point is locally asymptotically stable.

5.2 PID and Internal-Model-Based Linear Con-

trollers

We now consider the servo problem and synthesize PID and internal model based

controllers based on the linearized plant P̂ and test their performance on the
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Figure 5.3: Stabilization property of the PID controller

nonlinear P. For the PID controller synthesized, stability condition is that the

inequalities

Kp, Kd, Ki > 0, JiKi < KpKd

must be satisfied by the parameters Kp, Kd, and Ki.

Choosing the reference and disturbance signals as step, ramp, and sinusoid

signals, a minimal degree IMP based controller is synthesized in Chapter 4 as

(4.6) along with the gravity compensation. We use the pole placement method to

position all zeros of the characteristic equation ∆ the strict left half of the complex

plane, i.e., we locate all zeros at s = −σ such that ∆(s) = (s + σ)7, σ > 0. We

analyze three different cases for the value of σ such that σ = 1, σ = 5, and

σ = 20. In the remaining of this section, we denote the controllers which locate

the characteristic equation’s poles at s = −1, s = −5, and s = −20 as Cσ=1,

Cσ=5, and Cσ=20, respectively.
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The values of Ji, i = 1, 2, are constant at each equilibrium points. Using (4.2)

and (5.1), they are obtained for the zero equilibrium point (x∗,u∗) as

J1 = 2.2962 kgm2, J2 = 12.285 kgm2.

In the following figures, system response to step, ramp, and sinusoidal reference

and/or disturbance signals are shown. Since responses of the two channels are

alike, we present only the response of the second link.

In Fig. 5.4 system response to step position reference under zero disturbance

with PID controller and with the controllers Cσ=1, Cσ=5, and Cσ=20 are given.
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Figure 5.4: Second links response to step position reference

It is seen from the figure that position errors go to zero at steady-state for

each choice of these controllers. This result is expected since the plant has double

integrator besides the integrator in the controllers. In terms of response time, all

these controllers yield good performance. Moving the poles of the characteris-

tic equation ∆ away from the imaginary axis provides better performance. For

instance, Cσ=20 perform better than Cσ=1.

48



To see the efficiency of the IMP based controller in sinusoidal reference signal

tracking, the reference signal r = 0.1 sin(t) rad is given to both of the links under

zero disturbance and the response in Fig. 5.5 is obtained for the second link.

Here, the design frequency w0 in the controller denominator is the same as the

frequency of the reference signal, i.e., w0 = 1.
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Figure 5.5: Second links response to sinusoidal position reference

As expected, PID controller can not track the sinusoidal reference signal.

However, IMP based controllers track the sinusoidal signal efficiently. Since the

first links position changes sinusoidally, coriolis and centrifugal forces occur and

the double integrator structure of the plant is corrupted. So, there exists small

steady-state errors in the second link with IMP based controllers. Although

magnitude of this error is comparatively big when Cσ=1 is used, it is negligible if

Cσ=5 or Cσ=20 is used.

Another important factor that should be taken into consideration when com-

paring performance of controllers is the magnitude of the output of the controller.

In general, it is desired to have a torque output which does not exceed a threshold
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value. Torque outputs for step reference signal is like in Fig. 5.6 (for clearance,

we show the first few seconds since after that time no sharp jump or instability

occurs). It is easily seen that a jump occurs at the start of the simulation. The
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Figure 5.6: Torque output of the second channel under step position reference

magnitude of this jump is very large when Cσ=20 is used. This is expected, but

not a desirable behavior since it would lead to saturations in the motor at the

joints. In contrast, Cσ=1 can be called as a slow controller in terms of torque out-

puts. This jump is also very large for the PID controller because of the derivative

action which causes a sudden large torque output for step references.

For the sinusoidal reference, the torque outputs are like in the Fig. 5.7. Here,

strength of IMP based controllers can be easily seen when comparing to PID

controller, which has big jump at the first few milliseconds.

We now examine the disturbance rejection properties of the controllers by

applying the disturbance as additive torque signal to the controller output as in

Fig. 4.1. The controller is not supposed to achieve tracking a reference signal,

i.e., we take r = 0.
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Figure 5.7: Torque output of the second channel under sinusoidal position refer-
ence

In Fig. 5.8, the second link’s response to step disturbance is given. A constant

torque disturbance signal is added to the output of the controllers at each chan-

nel. Cσ=1 provides poor performance comparing with the others, nevertheless, it

eventually regulates the disturbance. Cσ=5 and Cσ=20 penalizes the disturbance

torque harshly and provides regulation faster than Cσ=1 and PID.

Second links response to ramp and sinusoidal torque disturbances are depicted

in Fig. 5.9 and in Fig. 5.10, respectively. PID controller can not regulate ramp

and sinusoidal torque disturbances. Yet, IMP based controllers are again able

to regulate these disturbances since their denominators contain the poles of the

disturbance signals.

The main observations one can make on the simulation results of this chap-

ter can be summarized as follows. The performance of the PID controllers are

limited to step disturbances and step or ramp reference inputs. IMP based con-

trollers provide good performance for all step, ramp, and sinusoidal signals at
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Figure 5.8: Second links response to step torque disturbance

disturbance or reference inputs. Moreover, placing the poles of the characteristic

equation far away from the origin at the left hand side of complex plane results

in better responses.

52



0 5 10 15 20 25 30 35 40 45 50
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Position error of the second link
(Reference: 0; τ

1dist
=t, τ

2dist
=2t)

Time [s]

[r
ad

ia
n

s]

 

 

PID Controller

IMP based Controller (s=−5)

IMP based Controller (s=−20)

Figure 5.9: Second links response to ramp torque disturbance
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Figure 5.10: Second links response to sinusoidal torque disturbance
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Chapter 6

CONCLUSION

In this thesis, a two-degree-of-freedom serial chain revolute-revolute joint robot

arm is considered. Neglecting some nonlinear terms such as friction and backlash,

dynamic equations of the robot arm are derived for the ideal system using the

well-known Euler-Lagrange method. The resulting dynamic equations (2.2) are

in a format that one finds in the literature and they give insight into the physical

structure of the system. Following a different route and making use of system

identification techniques based on data obtained from experiment results on the

real system, another model for the system is obtained. The two resulting models

agree with each other although they are based on quite different assumptions

made on the underlying nonlinear system.

Dynamic equations of the robot arm encompass some passivity properties that

are useful in nonlinear stability analysis. Utilizing these features, stability and

performance of the robot arm with suitable feedback controllers are studied. The

plant under consideration is not zero-state detectable and has infinitely many

equilibrium points. It has been shown that using the passivity-based approaches,

this plant model is stabilized by employing the most commonly used proportional,

PD, and PID controllers along with the gravity compensation method. Since

tracking and disturbance regulation issues require intricate stability analyses, we

restrict our passivity-based analysis only to stabilization.
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The servo problem is considered by invoking the internal model principle.

Although this controller structure is rarely considered in nonlinear systems, we

apply it on a linearized plant model. This method also leads to pole placement

technique which is used for improving the performance. By using the poles of the

reference and disturbance signals with suitable multiplicities in the controller,

tracking and regulation objectives are achieved for step, ramp, and sinusoidal

signals. Somewhat surprisingly, the designed controllers perform very well on the

nonlinear plant as well. This, we interpret as the robot arm being close to a linear

system after cancelling the nonlinear term due to unbalance.

Our main contributions can be summarized as follows. We control a nonlinear

robot arm with decoupled linear controllers at each channel synthesized for lin-

earized model by invoking the internal model principle. We show that sinusoidal

reference signals can be tracked and sinusoidal disturbances can be regulated

asymptotically with these controllers. We also show how these controllers can be

synthesized.

As a future work, dynamic model of the robot arm can be developed by

considering the nonlinear effects and link flexibilities. Moreover, the results in

Chapter 4 may be extended by directly applying the internal model principle

along with another controllers (like adaptive) to the nonlinear model as in [17].
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