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ABSTRACT

3D DYNAMIC MODELING OF A SPHERICAL
WHEELED SELF-BALANCING MOBILE ROBOT

Ali Nail INAL
M.S. in Electrical and Electronics Engineering
Supervisor: Prof. Dr. Omer MORGUL
August 2012

In recent years, dynamically stable platforms that move on spherical wheels, also
known as BallBots, gained popularity in the robotics literature as an alternative
locomotion method to statically stable wheeled mobile robots. In contrast to
wheeled platforms which do not have to explicitly be concerned about their bal-
ance, BallBot platforms must be informed about their dynamics and actively try
to maintain balance. Up until now, such platforms have been approximated by
simple planar models, with extensions to three dimensions through the combi-
nation of decoupled models in orthogonal sagittal planes. However, even though
capturing certain aspects of the robot’s motion is possible with such decoupled
models, they cannot represent inherently spatial aspects of motion such as yaw

rotation or coupled inertial effects due to the motion of the rigid body.

In this thesis, we introduce a novel, fully-coupled 3D model for such spherical
wheeled balancing platforms. We show that our novel model captures impor-
tant spatial aspects of motion that have previously not been captured by planar

models. Moreover, our new model provides a better basis for controllers that

1ii



are informed by more expressive system dynamics. In order to establish the ex-
pressivity and accuracy of this new model, we present simulation studies in dy-
namically rich situations. We use circular paths to reveal the advantages of the
new model for fast maneuvers. Additionally, we introduce new inverse-dynamics
controllers for a better attitude control and investigate within simulations the
capability of sustaining dynamic behaviors. We study the relation between cir-
cular motions in attitude angles and associated motions in positional variables

for BallBot locomotion.

Keywords: Dynamic Modeling, Balancing Mobile Robots, Underactuated Sys-

tems, Dynamic System Control, Attitude Control
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OZET

KURESEL TEKERLEKLI KENDINI DENGELEYEN BIR
ROBOTUN UC BOYUTLU MODELLENMESI

Ali Nail INAL
Elektrik ve Elektronik Miihendisligi Bolumi Yiiksek Lisans
Tez Yéneticisi: Prof. Dr. Omer MORGUL
Agustos 2012

Son yillarda kiiresel tekerlekler tizerinde hareket eden dinamik dengeli platform-
lar, bir bagka deyisle BallBotlar, robotik literatiiriinde statik dengeli tekerlekli
mobil robotlara alternatif olarak popiilarite kazanmistir. Ozellikle dengeleriyle il-
gilenmeye ihtiya¢ duymayan tekerlekli platformlara nazaran BallBot daima kendi
dinamiklerinden haberdar olup, aktif olarak dengesini saglamak zorundadir.
Su ana kadar bu tarz platformlara basit diizlemsel modellerle yaklagilmigtir.
U¢ boyutlu diizleme gecmek icin birbirinden ayristirilmig dik modeller oksal
diizlemler iizerinde kombine olarak kullanilir. Her ne kadar bu tiir modellerle
robotun hareketinin belirli yonlerini yakalamak miimkiin olsa da, sapma agist
doniigleri dontigleri veya sert cisim hareketlerine bagh bagil ataletsel etkiler gibi

hareketin dogasindan kaynaklanan uzaysal ¢zelliklerini temsil edemezler.

Tezde, kiiresel tekerlekler iizerinde hareket eden dinamik dengeli platform-
lar icin tamamen bagil 3 boyutlu yeni bir model ileri siirtildii. Yeni modelin,
hareketin diizlemsel model tarafindan yakalanamamig onemli uzaysal yonlerini
yakaladigi gosterildi. Dahasi, yeni model kontrolorler i¢in, daha etkili sistem di-
namikleri tarafindan daha iyi bilgilendirilmig bir temel saglamaktadir. Yeni mod-

elin dogrulugunu saptamak icin, dinamik agidan zengin simulasyon caligmalari



sunuldu. Yeni modelin hizli manevralardaki avantajlarini gostermek icin dairesel
yollar kullanildi. Bunlara ek olarak, daha iyi davranig kontrolii i¢in yeni ters-
dinamik kontrolorleri tanitildi, ve dinamik hareketleri devam ettirebilme yetenek-
leri simulasyonlarla incelendi. Dairesel hareketlerdeki tavir acisi ile pozisyon
degiskenlerinde buna baglh olugsan hareket arasindaki iligski BallBot hareketliligi

acisindan incelendi.

Anahtar Kelimeler: Dinamik Modelleme, Kendini Dengeleyen Hareketli Robot-
lar, Gereginden Az Tahrikli Sistemler, Dinamik Sistem Kontrolii, Davranig Kont-

rolil
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Chapter 1

INTRODUCTION

Robust, efficient and controllable land-based mobility is a difficult but important
challenge for the robotics community. In order to solve this, many options with
different morphologies are introduced including wheeled [2], tracked [3], legged
[4, 5] and even leaping [6] designs. Some of these are inspired from nature, and
biological models, and the remaining designs are purely engineering solutions,
like spherical robots,[7]. A new alternative is added to the aforementioned robot
platform designs which can actively balance on ”spherical wheels” [8, 9], and
named as BallBot platforms. BallBots combine the advantages of wheeled sys-
tems, for their continuous contact with the ground, with bipedal morphologies,
for their desirable features, such as their compatibility with human environments
[10]. Although these platforms combined such advantages they are far more com-
plex than wheeled systems. The operation of the BallBot is inherently dynamical,

and hence these robots cannot be controlled through simpler kinematic methods.



1.1 Motivation and Existing Work

Although the principles behind the BallBot morphology is partially shared by
planar balancing systems, such as the Segway, the omnidirectional mobility of
the Ballbot is one of its most important and novel aspects, helping increase its
popularity in robotic society recently. From the first proposed actuation idea for
such systems, the Inverse Mouseball Drive (IMD) design [8, 11], to later versions
that used omnidirectional wheel contact with the sphere for better control af-
fordance and reduced friction [9, 12], all Ballbots are based on the same motion
principle: The manipulation of the spherical wheel through rollers attached to
the actuators on the body, resulting in a nonholonomic!, underactuated motion.
Despite the fact that there is substantial research on the BallBot platform, ac-
curate control of associated dynamics for fast maneuvers and highly dynamical
motions remains to be a challenging problem. Initial studies focused on motion
on linear paths, which can be reduced to a 2D model in a sagittal plane. In the
literature, PI controllers on the ball velocity and an LQR controller as an outer
loop for the linearized system were often used to control body attitude [8, 11].
The decoupled combination of two of these planar models in two orthogonal di-
rections of the horizontal plane formed the basis for controlling the system, an
approach we refer to as a 2.5D model in this thesis. Recent extensions of this
approach uses more sophisticated control methods for both the stabilization of
body attitude degrees of freedom and the design of optimal attitude trajectories
to travel along desired robot paths [1, 14] but does not extend on the expres-
sivity of the model itself. Additionally, inertial disturbances and adding loads
on the robot body brings further problems related with decoupled models [15].
Such situations reveal that this model may not be suitable for dealing with dy-

namic situations. Even though using these behavioral primitives as a basis more

1For a definition of nonholonomy in a robotic sense, see e.g. [13]



complex trajectories can be obtained through planning [16], the accuracy and

expressivity of underlying mathematical models has not progressed much.

The fact remains that highly dynamic and fast maneuvers are the capabilities
that distinguish these platforms from traditional alternatives. However, decou-
pled planar models, namely 2.5D models, are bound to lose their accuracy under
such conditions. Moreover, such maneuvers involve large accelerations, forcing
the body to deviate from vertical axis, and hence creating significant yaw rota-
tion and coupled inertial effects. In order to support such challenging behaviors,

more realistic mathematical models for BallBot systems are needed.

1.2 Contributions

In this thesis, we introduce a novel, three-dimensional model for BallBot plat-
forms. Our new model can capture aspects of the BallBot’s motion that 2.5D
models cannot. After deriving the equations of motions for our models, we use
them as basis for a simulated model of the platform. In addition, we describe
novel inverse-dynamics controllers for accurate control of body attitude based on
our model as well. In order to illustrate the performance of these model-based
controllers, we use circular body attitude trajectories that result in dynamic

movements of the platform.

Simulation results that we presented show the ability of our model to capture
natural yaw dynamics of this morphology. Such dynamics arise from the rolling
constraint between the ground and the ball, and cannot be captured by 2.5D
models. Once again, through simulations, we present a characterization of how
circular trajectories in the body attitude space result in circular trajectories
in positional robot coordinates. As a consequence, the potential utility of the
3D model for motion planning and execution with BallBot platforms is also

illustrated.



1.3 Organization of the Thesis

In the first part of the thesis, we start with the introduction and an analysis of
existing planar BallBot models, followed by an overview of existing application
of this in Chapter 2. In Chapter 3, we introduce our new three dimensional
model for the BallBot platform. In Section 3.1, we give a brief introduction to
quaternions and introduce necessary notation for the thesis. Subsequently, with
the initial analysis of the model, in Section 3.2, we also present different variations
of the model for the alternative actuation mechanisms. After introducing the
simulation environment in Section 3.3, we describe initial simulations to compare

the new model with the planar model.

In Chapter 4, we first introduce different controllers for regulating system
behavior. After presenting a simple PD controller for the new 3D BallBot model,
in Section 4.1.2 and Section 4.1.3, we present the new attitude controller based on
an Inverse Dynamics approach, better illustrating the potential of the new model
on dynamic trajectories. Then, in Section 4.2 we discuss and denote the effects
of underactuation, and introduce a circular attitude angle profile to show the
capabilities of the new model at the beginning of the Section 4.3. In subsequent
sections, we investigate the performances of different controllers on variations of
the 3D model with detailed simulations for circular trajectories. We study the
yaw dynamics of our new model in Section 4.3.4 and the relations between the
external variables and the circular profile variables from the simulation results

in Section 4.3.5.

Finally, in Chapter 5, we conclude the thesis with a review of our work, and

summarize the related open research topics.



Chapter 2

BACKGROUND: THE
PLANAR BALLBOT MODEL

This chapter introduces necessary background for the BallBot as well as a sum-

mary of existing models and methods for control.

2.1 The Planar BallBot Model

The first model intended for the control and analysis of the BallBot platform
was the simplified two dimensional model. Even though the system is capable of
omnidirectional motion, this simplified model reduces the BallBot to the two di-
mensional planar systems on median planes in order to develop simple but stable
controllers. This way, the analysis was simplified and the analytic complexity of
controllers were decreased. Most importantly, the nonholonomic constraints as-
sociated with ground contact were reduced to holonomic ones, further simplifying

the associated derivations!.

'Holonomy of the 2D model will be discussed in Section 2.3



Figure 2.1: 2D BallBot model on the sagittal plane

As shown in Figure 2.1, the planar BallBot model on the sagittal plane con-
sists of a rigid robot body attached to the center of a rigid rolling ball with an
actuated rotary joint. The distance between centers of mass of the body and the
ball is fixed at [. Three frames of reference are defined, an inertial world frame
W, the body frame B located at the center of mass of the body, and ball frame
R located at the center of mass of the ball. The angle between the y-axis of W
and the vertical body axis in B is defined to be ¢. The angle 6 is defined between
the vertical axis of R and the vertical body axis of B. In other words 0 is defined
such that ¢ + @ is the angle between the y-axis of YW, and the vertical axis of R.
The position of the center of mass of the body in W is denoted with (x, y;) and

the position of the center of mass of the ball in W is denoted with (z,,y,).

Despite the disadvantageous constraints associated with this simple 2D
model, such as its inability to model yawing behavior, it has been by far the
most popular model in the literature for studying BallBot platforms and the

stability of associated controllers.



Table 2.1: Parameters and Variables For the Free-Body Analysis of the Planar
BallBot Model in Figure 2.2

’ Planar Ballbot Model Parameters ‘

my | Mass of the body

my, Mass of the ball

1, Inertia of the body

I, Inertia of the ball

Gravity Constant

l The distance between center of mass of the body and center of R
r, The radius of the spherical ball

] Planar Ballbot Model Variables ‘

xp,yp | Position of the body in x and y axes respectively in W
x.,y- | Position of the ball in x and y axes respectively in W
Zp,Up | Linear velocity of the body in x and y axes respectively in W
2y, | Linear velocity of the ball in x and y axes respectively in W
Zp,yp | Linear acceleration of the body in x and y axes respectively in W
Z,,Jr | Linear acceleration of the ball in x and y axes respectively in W
¢ Angle between the vertical axis of B and vertical axis (y axis)
of inertial frame W
Angle between the vertical axis of R and the vertical axis of B
Angular velocity of the body with respect to W
Angular velocity of the ball with respect to body
Angular acceleration of the body with respect to W
Angular acceleration of the ball with respect to body
T Input torque actuated around center of the ball in W
F,F, | Force applied to the body from ball
F; | Force applied to the ball from the ground in x axis reverse
to the motion
F, n | Normal force applied to the ball from ground

SoTR SN AP SEN .Y

2.2 Basic Structure and Parameters

Even though there are many possible methods for deriving the dynamics of the
2D planar model, such as the Lagrangian formulation [11], we prefer to use free-
body analysis on the simplified 2D model in order to better expose physical
meanings of the constraints. Figure 2.2 illustrates a free-body decomposition of
the system together with various forces and accelerations involved. Table 2.1

summarizes the parameters and state variables of the model.



Figure 2.2: Free Body Analysis of 2D BallBot model on the sagittal plane

Choosing the generalized coordinate vector for the model to be s := [¢, 6], we

define the state of the system as
. . T
X 1= [¢ 0 ¢ e] ) (2.1)
The first two equations for 2D model dynamics can be obtained through
Newton’s second law on the body for each x and y axes of the W as

mbib = Fx, (22)

mbgjb = Fy — Mpg - (23)
A similar derivation on the ball yields

m,i, = —F, — F, (2.4)

MYy = —Fy —myg+Fy N . (2.5)
Torque balance on the rotational motion of the body results in the equation
L =—1+ F,lsing +Fylcoso . (2.6)

Since the body forces acting on the ball are applied to its center of mass, the

rotational motion of the ball is captured by the equation

L(O+¢)=T1—Fr,. (2.7)



In addition to these rigid body dynamics equations, the system has additional
constraints as stated in [8]. The planar BallBot model assumes that there is no
slip between the ball and the ground. Moreover, it is assumed that motion in
the two median planes (median sagittal plane and median coronal plane) are

decoupled and the equations of motion in these two planes are identical.

Planar Constraint 1: The planar model assumes that there is no-slip between
the ball and the ground. Thus, the motion is pure rolling (see [7]) with the

associated constraint equation taking the form
T, = _(‘9 + Qg)I‘T . (28)

Taking the derivative of (2.8), the linear acceleration equation for the no-

slip constraint is obtained as
iy =—(0 4 )r, . (2.9)

Moreover, since simplified model assumes that the motion of the ball is
pure rolling, there should be no ball motion along the y axis of W. For

this reason, we consider a second equation for the no-slip constraint with

Yr=0. (2.10)

Planar Constraint 2: In the 2D model, the ball center of mass must coincide
with the joint location on the robot body. Due to the rigid body assump-
tion, the distance between the center of mass of the ball and the center of
mass of the body must hence remain constant at [ and at the same angle
relative to the body frame. In other words, the rotary joint constraint can

be formulated in terms of the positions of the ball and the body as

xp + [ sin T,
’ 7l . (2.11)

Yp — lcos¢ Yr



Once we take the second derivative of (2.11), the linear acceleration equa-
tion for the rotary body-ball joint constraint can be written for both x and

y axes in W as

& + ¢l cos p — Plsing = &, (2.12)

Uiy + dlsin ¢ + ¢?lcos ¢ = i, . (2.13)

At this point, using the no-slip expression (2.9) in (2.12) we obtain
@y = —(0 + d)r, — Pl cos ¢ + ¢*lsin ¢ . (2.14)
Similarly for the y-axis, by using the no-slip expression (2.10) in (2.13) we obtain
Gy = —Plsin g — ¢*lcos ¢ . (2.15)
For the ball force equation along the x-axis, we may reduce the equations by
using (2.2) and (2.4) in (2.7) to yield
L6 = 7+ (myiey + myiy)r, — 1,6 . (2.16)

Moreover, after adding (2.9) and (2.14), the first equation takes its final form in

terms of only ¢ and € and their derivatives, taking the form

(I + (my + my)r2)0 = 7 — O(I + (my + mp)r2 + myr,l cos @)

+¢*mpr,lsin g . (2.17)

Similar to the derivation of (2.17), we use (2.4),(2.5), (2.14) and (2.15) in

(2.6) to obtain the second component in the equations of motion as

(I + mpl®)p = —7 + mypglsin ¢ — myfr,l cos ot — mbgigrrl cos @ . (2.18)

10



As a result, combining (2.17) and (2.18), the equations of motion for the 2D

BallBot model can be finalized as

a a+ccoso| |0 0 —¢csing| |0 0 T
LT iy = )
ccosp b+ccosop| |o 0 0 0] —mygl sin ¢ -7
S “ S~ N ~ N~ —
D(s) 5 C(q,$) 5 G(s)
(2.19)

where, a := (I, + (m, + my)r?), b:= (I, + myl?), and ¢ := myr, L.

If the initial linear velocities of the ball and the body are identical and
nonzero, and no external disturbances are present, this model will continue to
move indefinitely without any dissipation. However, the real BallBot in such sit-
uations generally comes to a complete stop since inevitable damping is present
in the system. For this reason, we will find it useful to incorporate a friction
term into the equations of motion to model this behaviour and make the model
more realistic. We accomplish this with a viscous damping constant D, between

the ball and the ground, modifying (2.17) as
ab + ¢la+ ccos ) — ¢*csing = 7 — D0 . (2.20)

As a result, by using (2.20) and (2.18), we obtain the following dissipative equa-

tions of motion for the 2D BallBot model as
a a+ ccos ¢ 0 0 —d)csind) 0 0 7 —D,0
N ST = )
ccosp b+ccoso| [o 0 0 10} —mygl sin ¢ -7

(2.21)
where, a, b and ¢ are as defined before.

As mentioned in the beginning of this section, the 2D model can be analyzed
using a variety of methods. In earlier work, such as [1], [11], the Lagrangian
method was used to obtain the same equations of motion as (2.19). Since this
result also means that the system is integrable, as discussed in [14], the 2D planar
model is a holonomic system. However, this result is not realistic since we know
that the real BallBot system should be nonholonomic, similar to the example of

spherical rolling ball [17]. This point will be discussed further in Section 2.3.
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2.3 The Decoupled 2.5D BallBot Model

Even though the BallBot is capable of omnidirectional mobility, the 2D planar
model is limited to linear trajectories in 3D space. Thus, in order to model
BallBot motion on spatial trajectories, a "2.5D” model is generally used. The
2.5D model consists of combining two decoupled 2D planar model on the median
sagittal planes of BallBot. This model is often assumed in the literature to be
sufficiently accurate for representing basic, slow motions of the system. Not sur-
prisingly, this is correct and satisfactory for linear, or almost linear trajectories.
However, for faster nonlinear trajectories, it is likely to result in problems with

predictive accuracy.

In this context, the first drawback of the 2.5D model is its inability to rep-
resent the natural yaw dynamics of the BallBot. Moreover, the 2.5D model will
most likely be insufficient for fast and dynamic maneuvers, which are precisely
maneuvers for which the BallBot was designed and conceptualized for. Addition-
ally, since 2.5D model cannot represent yaw dynamics, predicting orientation of
the actuation mechanism with respect to the ball, or the ball with respect to the
ground is not possible within this model. This makes the modeling of interac-
tions between such components difficult, and when we need to understand the
BallBot behaviors such interaction models are very important. For the design
of sufficiently accurate behavioral controllers, a mathematical model that can
easily utilize the effects of such interactions would be essential. As it is the main
purpose of the mobile robot platforms, thinking about the effects of adding any
extensions to BallBot is important. If any extensions like arms [15] or asymmet-
ric loads are added to the BallBot, the 2.5D model would become less accurate.
Therefore, the availability of a fully coupled 3D model is a necessity for accurate

behavioral controllers and practical use of the platform.
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With these motivations, the development of a fully coupled 3D model for
BallBot that is capable of accurately capturing all aspects of BallBot dynamics

becomes necessary and will be presented in the following chapters.
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Chapter 3

THE COUPLED 3D BALLBOT
MODEL

As we observed in Section 2.3, controlling BallBot by using planar 2D models has
some disadvantages, particularly for fast maneuvers and nonplanar motion. In
order to overcome these issues, we will develop a fully coupled 3D model, which
naturally incorporates body yaw dynamics as well as the behavior of nonholo-

nomic ball rolling.

It is well known that rigid body rotations can be represented by using different
coordinatizations such as Euler angles [18],[19], rotation matrices [20], [21] etc.
(see [22] for a comparison and problems with representations of spatial rotation).
In our work, we will use unit quaternions to represent rigid body rotations since
they have the advantage of lower complexity, are free of singularities like the
gimbal lock!, and can easily be transformed into rotation matrices. In Section 3.1,
we describe introductory background on quaternions that is used throughout the

thesis. For more information, see e.g. [23],[24], [25],(26].

1See [23].
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3.1 Quaternions: An Introduction

Simplistically, quaternions can be thought of as vectors in R*. Unit quaternions
are quaternions with unit norm, namely Euclidian four-dimensional vectors of
unit length. Consequently, unit quaternions can also be thought of as points
on a unit hypersphere embedded in four dimensions, and have three degrees of

freedom [23].

Unit quaternions have the property of capturing all of the geometry, topology
and group structure of three dimensional rotations in the simplest possible way.
They provide advantages in the complexity of computations compared to both
Euler angles and rotation matrices, which are generally used alternatives for rep-
resenting spatial rotations [27]. Quaternions do not suffer from singularities such
as the gimbal lock, which is a particularly troublesome problem for Euler an-
gles. They also allow efficient interpolation of orientation frames [26]. Moreover,
quaternions can easily be transformed into rotation matrices, even though the
reverse transformation is ambiguous and admits two possible unit quaternions.
For all these reasons, we will find it best to represent 3D orientations by using

unit quaternions in this thesis.

More formally, a unit quaternion ¢ is defined as

T
q:= [% G 4 Q:s} where g5 +gi+ g3 +q5=1. (3.1)

A quaternion can also be decomposed into a constant ¢y and a three dimen-

T
sional vector v = [Q1 0 q3] . Real numbers can be represented as quaternions?

T
as being the scalar part,such as [QO 00 0] . Similarly, vectors in 3D can also

3

T
be represented as quaternions® without scalars, like [0 QG QS] or (0,v).

2Quaternions with only scalar part are not unit quaternions unless their norm is 1.
3Similar to the scalar counterpart, unless unit vectors represented as quaternion, mentioned

representation do not results with unit quaternions
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Now consider the quaternions p and ¢ defined as

T

T
q-= [QO a1 Q2 (J3] » P= [po D1 P2 ps} (3.2)

Quaternion addition is similar to vector addition, consisting of adding individual

coordinates, defined as

T
¢+p= [p0+QO pLta pat g p3+q3] : (33)
Conjugation of a quaternion is defined as
T
¢ = [QO -1 —Q —Q3] ‘ (3.4)

Note that the conjugation of a quaternion is also used to define the “inverse”
of the quaternion scaled with the norm of that quaternion, i.e. ¢~! := ¢*/|q||-

Thus for unit quaternions, the conjugate and inverse are the same with ¢* := ¢~

A multiplication operation o for two quaternions p and ¢ is defined as

Poqo — P191 — P2q2 — P343

P19o + Poq1 + P2g3 — P3q2
poq:= (3.5)

P2Go + Poq2 + P3q1 — P1q3

| P390 + Pods + P1G2 — P21
Note that quaternion multiplication is not commutative but associative. The
equation given by (3.5) can conveniently be transformed into a matrix multipli-
cation by defining the matrices P and @, which are orthogonal* and associated

with quaternions p and ¢ as

Po —P1 —P2 —DP3 o —q1 —¢2 —G3
pP1r Po —P3 D2 q1 4o g3 —q2
P:= Q = (3.6)
P2 D3 Po —M G2 —43 Qo q1
b3 —pP2 D1 DPo g3 42 —q1 Qo

By using (3.5) and (3.6), it trivially follows that quaternion multiplication can

be represented as

pogq:=Pg=Qp.

(3.7)

4Note that for the quaternions without scalar parts these matrices are skew-symmetric.
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Note, also, that for unit quaternions we have

qoq l=pop*=e, (3.8)
where e := [1 0 0 0]7 is the multiplicative identity, also called the scalar unit

quaternion.

Both quaternion multiplication matrices have a particular structure which is

helpful to understand quaternion multiplication, given by

T
p—|" P (3.9)
p Ispo+ 8
T
q —q
Q=" : (3.10)
a —Q,+ 1390

where 2, denotes the skew-symmetric matrix representing vector cross product
in matrix form for v as the first vector, namely a x b = €Q,b. For a vector

T
a= [Ch ay a3} , ), takes the form

0 —das a9
Qa = as 0 —ay| - (311)
—as aq 0

Finally, rotation matrices can be defined as a function of a unit quaternion ¢,
which we denote with R(q)°. As mentioned before, any three dimensional vector
can have a quaternion form, which we denote in this thesis with underlined vector

symbols as
T

V=10 vy vy ws| - (312)

3.2 Basic Model Structure and Parameters

The new 3D BallBot model we introduce is shown in Figure 3.1 with various

parameters in Tables 3.1 and 3.2. Similar to the 2D case, this model consists of

For more information about the derivation of R(q), please refer to [28].
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Table 3.1: Parameters For the Free-Body Analysis of the 3D BallBot Model

’ 3D BallBot Model Coordinate Frames ‘

W | Inertial world frame
B | Body frame located at the center of mass of the robot body
R | Ball frame located at the center of mass of the rolling ball

’ 3D BallBot Model Parameters

mp | Mass of the body
m, | Mass of the ball
I, | Inertia matrix of the body in B
I Inertia matrix of the ball in R
g Gravity Constant
g, | Gravity Constant in vector form g, = [0,0, —g]* in W
[ The distance between center of mass of the body and center of R
r, | The radius of the spherical ball
py5 | The position vector pointing from ball COM to body COM in B
dp | The position vector pointing from ball COM to body COM in W
r,, | The position vector pointing from ball COM to ground in W
D, | Viscous damping constant between the ball and the ground
D, | Viscous damping constant in matrix form as D, , = diag|—D,,, —D,, 0]

two rigid bodies connected with a spherical joint. The main body of the BallBot
is a rigid body with mass m; and inertia matrix I. It is connected to the center
of the roller body, a spherical ball with mass m,, inertia matrix I,, and radius
r,., through a spherical joint®, actuated with a command torque vector 7. The
directions in which 7 is applied are constant in B, the body frame located at the
center of mass of the robot body and oriented in stationary alignment with the
body. In addition to B, we define W as an inertial world frame and R as the ball
frame located at the center of the rolling ball. Note that the distance between
R and B is fixed at [. Thus the position of the COM of the roller in B is always
constant as [0,0, —{]7. The position of the COM for the body and the ball in W
are represented with p, and p,, respectively. The ground contact point for the
ball in W is denoted with p.. Quaternion orientations for the body and the ball

are qp and q,., respectively.

6See Section 1.1 for a discussion of different actuation mechanisms for this joint.
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Table 3.2: Variables For the Free-Body Analysis of the 3D BallBot Model

3D BallBot Model Variables

Ty

Tr,z
Th,z
Tb,IM D
Py, Pr

Pc
b, qr

Pb, Pb

Pr, Pr
Pb7 Pr
Pbapr

Wp, Wy
Wp, Wr

Lb’ Lr
Lba f—‘r

Uu 7Ud7
U, Urup

MuaMd
M., Minp

NuaNd
Ny ,Nrmp

Fy

Input torque actuated around center of the ball defined in W
Input torque actuated around center of the ball defined in B

Compensator torque actuated around center of the ball defined
in W,compensating for ball yaw constraint

Compensator torque actuated around center of the ball defined
in W,compensating for IMD constraint

Input torque of IMD model actuated around center of the ball
defined in B, for the pitch and roll axes

Position vector of the center of mass of the body and in
W respectively

Position vector of the ground contact point of the ball in W

Quaternion representation of orientation for the body and ball
respectively

Linear velocity and acceleration vector of the body in
W respectively

Linear velocity and acceleration vector of ball in W respectively
Linear Momentum vector of the body and ball in W respectively

First derivative of linear momentum vector of the body and
the ball in W respectively

Angular velocity and acceleration vector of the body in
W respectively

Angular velocity and acceleration vector of the ball in
W respectively

Angular Momentum vector of the body and ball in W respectively

First derivative of angular momentum vector of the body and
ball in W respectively

State vector of 3D model
First derivative of state vector of 3D model

Unknown vectors that contains unknown accelerations and
constraints of their models respectively

Unknown matrices for the equations of motion
of their models respectively

Constant vectors for the equations of motion
of their models respectively

Constraint force vector applied to the body by ball in W

Constraint force vector applied to the ball from the ground in W
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Figure 3.1: Coupled 3D BallBot model

Unlike the 2D model, the no-slip constraint for the 3D model cannot be
reduced to a holonomic constraint. Consequently, direct use of the Lagrangian
method for deriving the equations of motion is slightly more complex. Moreover,
the incorporation of more complex surface interaction and friction models within
such a derivation would be more problematic. Consequently, we prefer to use free-
body diagram to obtain the equations of motion. This way, the reason behind

various constraints added through the analysis can also be seen more clearly.

To begin the free-body analysis, we define the unconstrained state of the
system as the position, orientation, linear and angular momenta of both the
body and the ball, yielding

T
X=1pp Py ¢ Ly pr Pr q L - (3.13)
In addition to the positions py, p, and orientations qp, q,, the linear and angular
momenta in VW, P and L respectively, are also included in the state vector for

both the body and the ball.
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Figure 3.2: Free Body Analysis of 3D BallBot model

First two of the rigid body dynamic equations for the unconstrained model
result from the application of the Newton’s second law to each body for positional

coordinates, taking the general form
P=F+[0,0,—mg|”. (3.14)

For the robot body, the linear force equation reads as

Py, = mybp = mug., + F, (3.15)
where, we define the gravity vector g, := [0,0, —g]*. Similarly, the force balance
equations for the ball is

m;Pr = M, g + F, — Fy . (3.16)

The moment balance for the body yields the equation
]:b =T+ (—db) X Fb s (317)

where 7 is the torque input and dj is the position vector of the body” with respect

to the attachment point of the body and ball in W.

Similarly, the moment balance equation for the ball takes the form

Ly = -7+ (r,) x F, | (3.18)

"Constraint 1 is used in (3.21) as Ppody,contact — Pbody,cM = Pr — Pp = —dp.
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where r,, is the position of the ball ground contact point with respect to its

center, always remaining constant with r,, := [0,0, —r,]7 in W.

The relation between body angular velocity and angular momentum [29] gives

us the relation between angular acceleration and angular moment as
W = —I, ' Qu, Ly + T, 'Ly, (3.19)
The same relation can also be given for the ball as

we = L'y L, + L7 'L, . (3.20)

3.2.1 Basic BallBot Model without Yaw Constraints

Similar to the planar BallBot model, the unconstrained 3D BallBot model has

two additional constraints that complement the free rigid body dynamics.

Constraint 1: As before, the position of the COM of the roller must coincide

with the ball-body joint. More formally, we should have

&:&—l-qbopbﬁoqz , (321)

where py = [0,0,{]” is the position vector pointing from ball COM to

body COM in B. Using this equation®, we obtain

P = Pr + (a0 Prs © ). (3.22)
.. L. « o e
:&+§(ﬂoqbowoqb+qbopb_ﬁoqb0ﬂ) (3.23)
1 1 1
+Zﬂo&odb—{—§&odbo%*+zdboﬂ*o&* . (3.24)

8Note that d, = qp o py.5 © q; by definition.
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For quaternion representation of vectors, we can use (3.9) and (3.10) to

derive the following simplifications

voq+qov' = Pq+ Quq (3.25)
0 —vT 0 vT
= q+ q (3.26)
v -v Q
0 0
=2 q . (3.27)
0 Q,

Using (3.27), we obtain

. . 0 01><3
Pb = Pr + dy
03><]. Qv'vb
11 0 O
+5 o (wpody+dyowy), (3.28)
2
O3><1 wa
0 0 0 0 0 O
_ & X 1x3 db X 1x3 1x3 db, (329>
_03><]. Qv'vb_ _03><]. wa O3><1 wa
0 0 0 0
— B+ Rl PR PE g, (3.30)
_03><1 Qv'vb_ _03><1 QWbQWb

Thus, the body and ball attachment constraint simplifies to
l.jb - 131' + dev.vb = wawadb . (331)
|

Constraint 2: Similar to the planar model, the 3D model also assumes that
the ball undergoes pure rolling motion. In other words, there is a no-slip

constraint between the ball and the ground, which can be formulated as
pr=Q. W, . (3.32)

By taking the derivative of this constraint, we obtain the constraint equa-

tion to be used in solving for the unknown forces and accelerations as

Br = Q,, W, . (3.33)
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For further details on the derivation of this constraint equation, see [30].

In order to obtain the equations of motion for the 3D BallBot, we must solve
for the unknown forces and accelerations in the system. We start by defining
a vector of unknown quantities, U,,, containing unknown accelerations and con-
straints of the system as

T

U, = [pb I, W, P, I, w, F, F,| . (3.34)

Here, F, and F, are constraint forces applied by the ball to the body, and by

the ground to the ball, respectively. Wy and Ww,, are the angular accelerations

of the body and the ball in W, respectively. The equations we presented in the

previous section are all linear in the quantities collected in U,. Consequently,

we can form a linear system of equations as a function of the unknown vector,
taking the form

M, U, =N,, (3.35)

where M,,, is a multiplier matrix capturing the system of equations introduced

above and N, is the associated constant vector.

Assuming that M, is invertible, which is always true for the BallBot mechan-
ical system in the absence of problematic model components such as Coulomb
friction, the solution for the U, vector can be calculated as U, = M, 'N,.. At
this point, using the derived equations of rigid body dynamics (3.15)-(3.20), and
first constraint (3.31), and second constraint (3.33), we can rewrite the equations

of motion in the form given by (3.34).

Once the unknown vector (3.34) is solved for, the equations of motion for the

3D BallBot system takes the form

T
)’(:[LPb mMpPb %%O% Ly mLTPT M, Pr %&o& Lr] . (3.36)

mp

24



It can be seen from (3.36) that, with 7 as a three dimensional input to the

system, the form of the equations of motion for the 3D unconstrained model is

x = fulz, 7). (3.37)

With the 3D unconstrained model, if the initial linear velocity of the ball
and the body are the same, and if the system is stable without external distur-
bances present, the model will continue to move indefinitely without any energy
dissipation. However, the physical BallBot generally comes to a complete stop
in such situations since there is additional dissipation within the system. This
justifies the need for a friction term to be added to the systems dynamics. In
order to make the system more realistic, and to support the no slip constraint of
the ball-ground interaction, we add viscous damping to the model, between ball

and the ground in both roll and pitch directions.

The vector of unknown quantities does not need to change for adding the

damping term. Consequently, we simply define a new symbol for clarity as

U, :=U,. (3.38)

The only important change occurs in (3.18), which now takes the form
L, — (r,) X F, = =Ry, + Dy ywy (3.39)

where D, , is the damping matrix and is given by

-D, 0 0
Dy,=| 0 -D, 0]- (3.40)
0 0 0

By changing (3.18) to (3.39), the equations of motion keep the same form
x = fq(x, ) but with f; computed based on the system of equations MUy = Ny
computed with the new set of equations. Note that we define the input 7, in B
for both compatibility with physical BallBot platforms and allow integration of

other model components such as actuator friction.
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3.2.2 BallBot Model with Yaw Constraint on Ball

Both unconstrained model and damping model do not deal with a ball-ground
contact model. Thus, behavior of this contact is independent from our 3D model.
When there is any angular yaw velocity on the ball, this yaw velocity is kept inside
model dynamics without affecting the system. Since such a case is not possible to
happen in the real platform, it is reasonable to stop the yaw rotation of the ball.
In order to stop the yaw rotation of the ball, instead of adding another viscous
damping component, we may add a compensator torque 7, , as a constraint in W,
which sets angular yaw velocity of the ball to zero. We introduce the following

constraint to address this problem.

Constraint 3: The vertical component of the ball’s angular velocity must al-

ways be zero. Thus, ball yaw constraint is defined as,

[0 0 1] wy, =0 (3.41)

Based on this constraint and the addition of a compensator torque 7, , to

(3.39), we obtain

. T
L, — (ry) xF, — [0 0 1} Tr. = —Rpp + Dy Wy, . (3.42)

The addition of the new torque component 7, , requires a new vector of un-
knowns for the torque constrained model, defined as

T
U, =P, Ly, W, P, L, W, F, F, 7..| - (3.43)

By changing (3.39) to (3.42), equations of motion keep the same form %X =
fr(z, 1), but with f,. computed based on the new system of equations MyU,; =

Ny. As we add (3.41) to the equations of motion of the system, M, and N, can
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be formed from updated equations of motion, and with the new unknown vector

U, resulting system of equations can be given as
M, U, =N,. (3.44)

Assuming that M, is invertible, as expressed in Section 3.2.1, the solution for

the U, vector can be calculated as U, = M 'N,.

3.2.3 The Inverse Mouse-ball Drive BallBot Model

The last constraint is added to support the first instantiation of BallBot plat-
forms, where the input 7 has only two actuated components in B along the pitch
and roll axes. In other words, we have the input vector 7, ;ap = [Tb:c Thy 0] T.
Since the torque in the yaw axis of B is not actuated with the Inverse Mouseball
Drive (IMD) and is not allowed to slip sideways, the yaw angular velocity of the
body in B is dictated by the yaw angular velocity of the ball in B. We capture

this property of the IMD with the following constraint:

Constraint 4: The relative angular yaw velocity of the body with respect to

ball in B must be zero, as captured by the constraint
[0 0 1] Ry (wy, — w,) = 0. (3.45)

By taking derivative of this equation, we obtain a new constraint on the

set of unknowns for the IMD constrained model as

0= [o 0 1] (R (wy — w,) + RT (% — wy)) (3.46)

- [0 0 1] (= Ry" Quy (Wy — W) + R (Wi — Wi)) . (3.47)
Defining R;,,” := [0 0 1} R{, the IMD constraint equation becomes

RbZTWb — szTWr = RbZTQWb (Wb — Wr) . (348)
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Note, however, that the unactuated torque in the yaw axis of B is still needed
as the compensator torque 7, , for the IMD constraint but becomes an unknown
quantity. When the compensator torque 7, is explicitly shown in (3.42) and

(3.17) respectively, we obtain two new equations for the dynamic model

0 0
Ly — (ro) xF, + Ry |0| 7or — [0] 7o = —RoToraip + Dy yWy (3.49)
1 1
. T
Ly + (dp) X Fy — Ry [O 0 1] Ty,e = BTy, 1M - (3.50)

After adding 7., a new vector of unknown quantities, Usp/p, is defined for

the torque constrained model as

T
Unp = |Py Ly W Pr Lo W Fy F, 7. Tb’z] . (3.51)

By changing (3.42) to (3.49) and (3.17) to (3.50), equations of motion preserve
the same form x = fryp(z, 7 10p) With frap computed from the new system of
equations. Once we add (3.48) to the equations of motion of the system, Mjy/p

and Nyyp can be formed from updated equations as
MivpUrvp = Nrup. (3.52)

Assuming that My, p is invertible, the solution for the Ujy/p vector can be

calculated as Uy p = MI_]\I/[DNIMD'

3.3 Simulation Environment for 3D Models

Our simulations for the following sections and chapters are based on numerical
integration of different forms of the 3D BallBot equations of motion. In each case,
we solve the system of equation for the unknown forces and accelerations U and

then compute the derivative of the system state. We used oded45 of MATLAB
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for numerical integration with relative tolerance of 10> and maximum time step

of 10715 to ensure accuracy.

In order to make sure that the constraints on accelerations defined in Sec-
tion 3.2.1, Section 3.2.2 and Section 3.2.3 do not drift in time due to the numer-
ical integration errors, we periodically reset them to the closest possible state
that satisfies the constraints once every second in simulated time. Moreover, we
normalize quaternions in the state vector to ensure they have unit norm within
each evaluation step to prevent other numerical problems due to ways in which
oded5 computes derivatives of the state. As a result of these countermeasures,

constraint errors never grew beyond 107! in magnitude in our simulations.

Table 3.3: Kinematic and dynamic parameters in MKS units for BallBot simu-
lations, chosen to be compatible with [1]

[me [ B | B [T [m | L [ L] x|
| 51.66 | 12.59 [ 12.48 | 0.66 | 2.44 | 0.018 [ 0.69 | 0.106 |

In all our simulations in subsequent sections, we use the dynamic and kine-
matic parameters given in Table 3.3, which are chosen based on the experimental

BallBot presented in [1].

3.4 Planar 3D Model Trajectories Verified

In theory, the 3D model operating on linear trajectories must reduce to the
2D model on the associated sagittal plane. In this section, we use this fact to
partially verify the correctness of our 3D model. Figure 3.3 illustrates an example
comparison between the body attitude differences of the 2D planar model and
our new 3D model without resetting. As the trajectory chosen for the example is
a linear path, the resulting body attitude trajectories for 2D and 3D models are

the same. This is expected since yaw dynamics are never excited and constitute
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Figure 3.3: The difference in the attitude trajectories of the 2D planar and 3D
BallBot models with an attitude reference trajectory that first accelerates and
then stops the BallBot system

the main difference between the models. The body attitude for both 2D and
3D models are the same. The minor differences in the graph arise when the
controller applies torque input and results in minor numerical differences between

the models.
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Chapter 4

CONTROLLERS AND
SIMULATIONS

We have so far introduced a number of 3D BallBot models with different con-
straints and properties. In subsequent sections, controllers for these models will
be presented, followed by associated simulations using both the 3D model with
ball yaw constraint and 3D model with the IMD constraint to observe differences

in performance and accuracy.

4.1 Control of BallBot Attitude

Regardless of its nonholonomic ball-ground contact constraints, BallBot is an
underactuated system for its motion in V. For this reason, the position and
orientation of the ball cannot be directly controlled with the available control
inputs. Any controller for the motion of the BallBot must control and use body
states to manipulate ball dynamics towards the desired behavior. Section 4.2
elaborates further on this issue. Controllers for the new 3D models in the fol-

lowing sections are proposed under such considerations.
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4.1.1 Pure PD Control

We begin our investigation of possible control strategies with a simple PD con-
troller for BallBot body attitude angles that does not make explicit use of system
dynamics. The structure of this controller is shown in Figure 4.1. Controller con-
stants are tuned manually by considering convergence and stability properties of

system trajectories.

PD Cc_| BallBot X -
Gains Dynamics -
A
Desired Body
Pitch SO Pitch<—————
Desired W Body
Roll + Roll

Figure 4.1: Detailed block diagram for pure PD control of the BallBot

Even though models can approximately follow desired trajectories with this
controller to some extent, the torque requirements and resulting steady state
errors are too high to be practically feasible. The resulting attitude tracking
errors for the actual BallBot may not be suppressible with actuator limitations for
fast maneuvers and highly dynamical motions. The performance of this controller
will be studied in more detail in subsequent sections so we now proceed with the

descriptions of model-based, more accurate and high performance controllers.

4.1.2 Inverse Dynamics Control Based on the 2.5D Model

As we mentioned in Section 4.1.1, more accurate controllers that are informed
by the dynamics of the system are required to handle inertial effects that be-
come significant at high speeds and dynamic maneuvers. Consequently, we now
describe an inverse dynamic controller based on the 2.5D model to control the
BallBot’s body attitude within a simulated 3D model. We choose 2.5D model,
since most of the current platforms uses 2.5D model for their controllers. This

way, the efficiency of these existing control methods can be characterized.
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In principle, the idea is to use the dynamics of the 2.5D model to compute
a control torque vector that will stabilize a desired attitude angle trajectory.
This controller effectively cancels gravitational and inertial effects on the body

attitude, so that it provides accurate attitude control for the BallBot.

Desired c X
BallBot
Pitch and 'rc‘:"' Dyrl" Dyiam?cs >
Roll ontro
b
PD
Control

Figure 4.2: Block diagram for Inverse Dynamics Control of the BallBot attitude
angles, supported by stabilizing PD feedback.

As illustrated by the structure of this control strategy shown in Figure 4.2, our
main focus for the inverse dynamics controller is cancelling out accelerations on
the body attitude degrees of freedom due to the BallBot dynamics, subsequently
replacing them with Proportional Derivative (PD)feedback. Using this method,
body attitude angles can be stabilized around desired trajectories, generated by

a suitably chosen planner, such as the method described in [16].

We accomplish this cancellation by treating torque control inputs as un-
knowns and introducing additional constraints that force attitude dynamics to be
reduced to simple, second order stable subsystems.We introduced these new con-
straints for the 2D planar model, using the desired angular acceleration of body
attitude angle as the reference angular acceleration for both decoupled axes of

2.5D model. This idea is captured for both sagittal planes by the constraints

(bl = édesired 5 (41)

where 7 is either the pitch or roll degree of freedom. The solution of (2.21) with
(4.1) now gives us the solution for 7 that will accomplish the desired cancellation.

Stable control is obtained by adding PD control onto this solution.
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As a result of this inverse dynamics cancellation, the feedback PD constants
can now be much smaller, decreasing actuator requirements and hence increas-
ing practical feasibility of the controller. The resulting motion should also be
smoother and more robust compared to the pure PD controller of the preceding
section. Nevertheless, as our simulation results will show later, differences be-
tween the 2.5D and 3D models result in nonzero tracking errors, suggesting that
more accurate control should be possible by using the 3D model itself as a basis

for the controller.

4.1.3 Inverse Dynamics Control Based on the 3D Model

As mentioned in the previous section, using the 2.5D model as a basis for control-
ling the 3D model suffers from inaccuracies in tracking desired attitude angles.
Consequently, we now consider using the 3D model directly for inverse dynamics
control. This way, we can more accurately cancel out accelerations of the system

for high speeds and dynamically challenging motions.

Similar to the 2.5D inverse dynamics controller, we begin by considering
torque control inputs as unknowns for both U, in (3.43) for the ball yaw con-

straint model, and Uy p in (3.51) for the IMD constraint model as

T
U = [pb Ly wp P, L, W, F, F, 7., Tb} : (4.2)

T
/]MD = [Pb Lb v'Vb Pr Lr V.Vr Fb Fr Trz Tbz Tb,IMD:| : (43)
Additional constraints necessary to ensure unique solutions for these unknowns

for roll and pitch axes are given by

10 0]. T

xT

Ly : (4.4)
010 T

Y

where 7; and 7 are the outputs of the PD gain control as described in Sec-

tion 4.1.2.
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For ball yaw constraint model, a third additional constraint is needed since
7, has 3 inputs instead of 2 as in 7, ;)rp. The attitude acceleration constraints

for this model hence become

100 7
01 0lLy=|r], (4.5)
00 1 7

where 7} is the yaw output of the PD gain.

Solutions for the controller can then be obtained by solving the augmented
constraint equation U, = (M/)"!N’ for the ball yaw constraint model and
'wup = My p) 'N%,p for the IMD constraint model respectively. Those
equations yield control torques that cancel out dynamics on the body attitude
coordinates effectively, substituting PD feedback instead. This way, there is only
decoupled stabilizing torques left in the equations. We use this controller in sub-
sequent sections to illustrate various features of the 3D model with respect to its

ability to capture interesting behaviors on positional variables.

4.2 Shape Variables vs. External Variables

Configuration variables of BallBot as an underactuated system can be divided
into two groups. Configuration variables that appear in the inertia matrix are
called shape variables, and remaining configuration variables are called exter-
nal variables [31]. It is interesting to note that underactuated systems can be
classified according to whether shape variables fully or partially actuated or un-
actuated. For details on the notion of shape and external variables, please refer

to [32].

In this context, BallBot systems are considered to be shape-accelerated under-
actuated balancing system. For the 2D planar model, the body angle ¢ serves

as the shape variable whereas the ball angle # and the related ball positions
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(x,y,) are external variables [16]. Similar to the 2D planar model, the body
attitude angles become shape variables of the system and cannot be directly
controlled. In general, controllers for underactuated balancing systems gener-
ally aim to track desired trajectories for external variables while protecting bal-
ance. However, since shape-accelerated underactuated balancing systems have
constraints on the accelerations of these external variables depending on the val-
ues of shape variables and their derivatives, using desired shape variables for
tracking is preferable. For this reason, by controlling accelerations of external
variables of BallBot with respect to desired shape variables, we control shape
variables trajectories indirectly on our 3D model. For planning trajectories of
external variables, we investigate the results of these shape variable trajectories

in subsequent sections.

4.3 Tracking Circular Attitude Angle Profiles

Most of our simulations in this thesis focus on circular trajectories in body at-
titude coordinates (with period t.,q. and amplitude A,,,,). These circular tra-
jectories lead BallBot to exhibit dynamically dexterous capabilities, which we
cannot expect from linear paths. Such circular trajectories are important for
locomotion of the BallBot as a base for circular planning, and it is helpful for ex-
citation of yaw motion in 3D models, in particular IMD constraint model. Note
that intuitively, we should expect such circular attitude trajectories to result
in external variables following similarly circular paths for the ball COM as we

mentioned in Section 4.2.

In order to prevent falling and obtain smooth transients, our simulations begin
at t = 0 from an upright body posture with q, = [1,0,0,0]”. Subsequently, the

body attitude is commanded to follow a pattern spiraling out for a duration of
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tsetup tO Teach its periodic circular path until a final time, ¢t = t;,4, is reached,

chosen to be large enough to ensure convergence to steady-state.

10 .
+ Spiral start
€ Circle start
5 R B Pathend
@ . .
o 0
®>\
-5
-10
-10 0

6, (deg)

Figure 4.3: An example simulation with The 3D BallBot model, starting from an
upright posture and spiraling out to a circular attitude trajectory. Left: Body
attitude trajectory, Right: Ball trajectory in W. This example has an attitude
reference with period t.,q. = 5s and amplitude A,,,, = 10deg.

Figure 4.3 illustrates an example for this attitude profile and the resulting
robot motion in W. As it can be seen, external variable trajectories converge
to circular paths as expected. Even though the system is symmetric in median
axes, the center of the circular path in W slightly drifts in the initial stage before
converging to a single circle. This is a result of the initial nonzero velocity due
to the spiraling out pattern and the viscous damping term included in (3.39).
Viscous damping term eliminates the average translational velocity of the system

when attitude trajectories are tracked with accuracy.

4.3.1 Performance Under Pure PD Control

In this section, we use pure PD control for tracking circular attitude angle tra-
jectories and investigate its performance. In Figure 4.4, simulations with the
ball yaw constraint 3D model are shown for an attitude reference with period
teyre = Ds and amplitude A,,,, = 10deg. We chose reasonable torque constants

and obtained acceptable tracking performance. Trajectory tracking errors for
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these simulations do not converge to zero, namely there is steady state error for
pure PD controllers on the model.

Attitude Error(6) vs. Time

1.8}
161 K =500
1al K;=1000
B
5 1.2
(9]
s
s 11
]
S 0.8f
2
< o6}
0.4}
0.2}
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30 35 40

Simulation Time(s)

Figure 4.4: Attitude errors for an example simulation with The 3D ball yaw
constraint BallBot model under pure PD control following a circular attitude

angle trajectory. This example has an attitude reference with period t. . = 5s
and amplitude A,,,, = 10deg, with (K, = 500, K4 = 25) and (K, = 1000,
K4 = 50).

In order to decrease the attitude error, we can always use controller gains.
Corresponding simulation results for a typical run are shown in Figure 4.5. Even
though the attitude error decreases with respect to the previous simulation, it
still does not converge to zero even for higher, somewhat unrealistic PD con-
stants for real systems with limited actuation capabilities. As a result, using
behavioral components in the attitude controllers would be preferable for the
ball yaw constraint 3D model in order to obtain higher performance controllers

for dynamically challenging motions.

For the IMD constraint model, the PD controller shows a trajectory tracking
performance similar to the performance of ball yaw constraint 3D model with
smaller torque constants. We simulated the IMD constraint model with two
different K, values, for which simulation results are shown in Figure 4.6. Due to

the IMD constraint on input torques, the ball yaw constraint model has slightly
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Figure 4.5: Attitude tracking errors for an example simulation with the 3D
ball yaw constraint model under pure PD control on a circular trajectory. This
example has an attitude reference with period ¢,y = 5s and amplitude A,,q, =
10deg, with (K, = 3000, K, = 60), (K, = 5000, K, = 70), (K, = 10000,
K4 = 100), (K, = 20000, K4 = 150), (K, = 50000, K, = 200), (K, = 100000,
K, = 300), and (K, = 500000, K, = 500).

better tracking for the same values of the K, constant. The yaw axis torque on

the system cannot be actuated for the IMD constraint model.

Additionally, as we expected increasing the input torque constants improve
the tracking performance of the IMD constrained 3D model to some degree as
well. However, even after increasing input torque constants to unreasonably high

values, like in Figure 4.7, attitude error never converges to zero.

For the aforementioned reasons, by adding some behavioral components to
controller with our inverse dynamics controllers, we will investigate the tracking

performance of both models.

4.3.2 Performance Under 2.5D Inverse Dynamics Control

In order to suppress inertial effects on high speeds and dynamic maneuvers, we

introduced the inverse dynamic controller in Section 4.1.2. By using the 2.5D
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Figure 4.6: Attitude tracking errors for example simulations with the 3D IMD
constraint model under pure PD control on a circular trajectory. This example
has an attitude reference with period fyq. = 5s and amplitude A,,,, = 10deg,
with (K, = 300, K; = 15) at left and (K, = 1000, K, = 50) at right.
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Figure 4.7: Attitude tracking errors for example simulations with the 3D IMD
constraint model under pure PD control on a circular trajectory. This example
has an attitude reference with period t.yq. = 5s and amplitude A,,,, = 10deg,
with (K, = 30000, K; = 400), (K, = 100000, K, = 500), and (K, = 500000,
K4 =600) .
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Figure 4.8: Attitude tracking errors for example simulations with the 3D ball yaw
constrained model under 2.5D inverse dynamics control on a circular trajectory.
This example has an attitude reference with period ¢,y = 5s and amplitude
Apmaz = 10deg at left and A,,.. = 15deg at right.

inverse dynamics controller, we achieve a much better and stable performance
compared to pure PD controllers for the yaw constrained 3D BallBot model
in highly dynamic cases. This can be observed from the simulation results in
Figure 4.8. The tracking performance of the controller is naturally affected by
the chosen trajectory, like its amplitude and period. Additionally, in all cases the
attitude error, though bounded, saturates and does not converge to zero, since
the 2.5D model does not exactly provide an inverse dynamics for the 3D ball yaw

constrained model.
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Figure 4.9: Attitude tracking errors for example simulations with the 3D IMD
constraint model under 2.5D inverse dynamics control on a circular trajectory.
This example has an attitude reference with period ¢,y = 5s and amplitude
Apmaz = 10deg at left and A,,.. = 15deg at right.
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Similarly, the 3D IMD constrained BallBot model is also improved with the
2.5D attitude controller. Figure 4.9 shows attitude errors for the simulation of the
model with 2.5D inverse dynamics controller for period t.yq. = 5s and amplitude
Apmae = 10deg and A,,.. = 15deg. The trajectory parameters naturally effect
the tracking performance, and this model also does not converge to zero for any
circular trajectory with the 2.5D inverse dynamics controller since instead of the
exact model we used 2.5D model for the desired attitude profile. Thus, we will
use a better inverse dynamics controller for the system which can give the exact

inverse dynamics of the system.

4.3.3 Performance Under 3D Inverse Dynamics Control

Since all our controllers are used on the 3D models, we expect that using 3D
models in the inverse dynamics controller would improve the performance. Thus,
for each 3D model, we use the inverse dynamics of the model in the controller to

achieve better results.
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Figure 4.10: Attitude tracking errors for example simulations with the 3D ball
yaw constrained model under 3D inverse dynamics control on a circular tra-
jectory. This example has an attitude reference with period t.yqe = 5s and
amplitude A,,.. = 10deg at left and A,,.. = 15deg at right.

Figure 4.10 illustrates the simulation results for 3D ball yaw constrained

BallBot model and 3D inverse dynamics controller, on a circular trajectory with
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period t.ye = 5s and amplitude A,,,; = 10deg and A, = 15deg. The attitude
error of the system converges to zero at the steady state, and the tracking error
at the higher speeds gives better results compared to 2.5D inverse dynamics

controller for the 3D ball yaw constrained model.

Attitude Error(6) vs. Time Attitude Error(8) vs. Time
T T T T T T T T
1 sr
25
0.8

@ @
o 13

=3 > 2r
(7] (7}
=2 L =2
5 0.6 5

] W15k
[} [}
° °
2 2
£ 04 E

< < 4L

02r 05F

0 i i i i i i 0 i i i i i i
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Simulation Time(s) Simulation Time(s)

Figure 4.11: Attitude tracking errors for example simulations with the 3D IMD
constrained model under 3D inverse dynamics control on a circular trajectory.
This example has an attitude reference with period ¢,y = 55 and amplitude
Az = 10deg at left and A,,., = 15deg at right.

For the 3D IMD constrained BallBot model and 3D inverse dynamics con-
troller, Figure 4.11 shows the results of the simulation on a circular trajectory
with period tyq. = 5s and amplitude A,,., = 10deg and A,,,, = 15deg. The
attitude error of the system is not improved as compared to 2.5D inverse dy-
namics controller for the 3D IMD constrained model. On the contrary, a serious
performance loss in the trajectory tracking occurs. The reason is that the PD
controller does not include a feedforward model of the reference trajectory, thus
the poor performance of the controller dominates the steady-state tracking er-
rors. Although including a feedforward term for the attitude reference trajectory
for such a simple circular trajectory would be possible, in general when task-level
trajectory planning on robot position is used to obtain the desired attitude an-
gles, it may not be possible. Thus, we choose not to use a compensation term

for the desired trajectory accelerations.
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Note that, in our simulations, and the examples we used here have speeds
up to 3.5m/s linear ball velocity, which is higher than what has been studied in
the existing literature. Additionally, we expect to have feedback policies for the
external variables, such as ball position, which will increase the robustness of the
system, and eliminate the possible impact of the steady-state attitude tracking
error on the behavior. Applying our model and inverse dynamics controllers to

such high level trajectory planning projects is left as the future work.

4.3.4 Yaw Dynamics

As we mention before, our 3D models has the advantage of the ability to model
any natural yaw dynamics. Similar to the yaw rotation observed when a conic
object is rolling on the ground, the body is expected to rotate in yaw direction,
when the body left the vertical axis, as a result of the nonholonomic rolling
constraints and yaw constraints between body and the ball. However, for slow
motions and linear motions, which are the main focus of the studies in the liter-
ature, such rotations are negligible.

Body Yaw Rate vs amp vs t cycle

Yaw Rate(rad/s)

t (8 5

cycle

Amplitude(deg)

Figure 4.12: Dependence of the yaw rate to the period and amplitude of attitude
angle reference trajectories.
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Figure 4.12 illustrates the relation between BallBot’s yaw angular velocity
and the period and amplitude of the attitude reference trajectory. As it can be
observed there is significant yaw rotation associated with circular motion of the
platform. The yaw motion increases in magnitude as either the period or the
amplitude of the attitude reference trajectory increase. Our 3D model is the first
model capable of including this behavior into dynamics. Though, it can be mea-
sured with inertial sensing and can be compensated with independent feedback
controllers, this inability to model such behaviors in the system dynamics would

cause inaccuracies in the motion planning on the long run.

4.3.5 Characterizing External Variable Trajectories

r curvature vs amp vs t cycle .
vlin vs amp vs t cycle
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Figure 4.13: Dependence of the circular external variable trajectory parameters
to the period and amplitude of the attitude reference trajectory. Left: radius of
the circular path, Right: linear ball velocity along the circular path for 3D ball
yaw constrained model.

Underactuated nature of the BallBot is one of the interesting feature of its
morphology. Due to this fact, ball attitude, that is important for high level tra-
jectory planning, can only be controlled indirectly through attitude angles. Our
assumption, mentioned in Section 4.2, that circular trajectories in attitude angle
space would lead to circular trajectories can be observed in our simulations. To
further understand the relation between shape variables and external variables of

the system, we ran simulations for a range of different attitude angle trajectories,
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for the period t.yqe and the maximum attitude angle A,,,,, and found the cor-
responding radii of the circular reference trajectories. The reference trajectories

for body attitude degrees of freedom hence become the following expression;

0, = Amaz sin(27t /teyare) (4.6)
0, = Aoz OS2t [teyere). (4.7)
r curvature vs amp vs t cycle vlin vs amp vs t cycle

tyoie®) 5 Amplitude(deg) Lyciel®) Amplitude(deg)

Figure 4.14: Dependence of the circular external variable trajectory parameters
to the period and amplitude of the attitude reference trajectory. Left: radius of
the circular path, Right: linear ball velocity along the circular path for 3D IMD
constrained model.

Figure 4.13 and Figure 4.14 illustrates the results of the simulations with
radius and linear velocity as the function of the reference trajectory period and
amplitude, with the ranges A, € [3,15]deg and toyqe € [2,10]s, and A,y €
[1,10]deg and t.yqe € [5,20]s, for 3D ball yaw constrained model and 3D IMD
constrained model, respectively. Radii and linear velocities of the steady-state
external variable trajectories are chosen as the parameterizations of the ball

path in W 1. Note that, radius and linear velocity associated with these external

variables are independent of startup time and initial states.

Additionally, the radius of the steady state can be calculated by the basic
assumption that the system is in the steady state. This way radius can become

a linear function of velocity, with period as the proportion constant. Thus, both

'Radii are calculated by using averaged steady state radius of curvature, for further details

of radius of curvature, see [33]
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linear velocity of the ball and radius become nonlinear functions of period and
amplitude. Using these functions for the radius of period t.yqe = 5.56s5 and
amplitude A,,,, = 12.33deg point, the linear velocity is calculated as 1.838m/s,
and in the Figure 4.13, simulation gives 1.832m/s, and the error in the calculation

is the result of damping, which is neglected.
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Chapter 5

CONCLUSIONS

In this thesis, we proposed an accurate, three dimensional model of the Ball-
Bot platform, which uses rolling on spherical wheels as the means of mobility.
Our model use several constraint equations to capture interactions between the
ground and the ball, and also between the ball and the robot body. Unlike
the earlier modeling attempts that uses decoupled planar approximations as ba-
sis, important aspects of robot motion such as significant yaw rotations can be

captured using our model.

Two different inverse-dynamics controllers are proposed, one based on pla-
nar approximations and 2.5D model, and another one based on our novel 3D
controller. Their capability of sustaining dynamic behaviors such as circular tra-
jectories in the workspace in a robust and stable fashion have been shown through
simulation studies. These studies showed that tracking performance for shape
variables of these controllers are on the acceptable levels. The relation between
circular motions in shape variables and the characterized associated motions in

external variables are investigated.

With these results at hand, as future work, we are ultimately aiming for

dynamically dexterous behavioral controllers and motion planners for the BallBot
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platform, using ideas as given in [34, 35]. In order to provide this, on the contrary
to previous works on the subject, our goal is using dynamic properties of this
system to its full possibilities. For this reason, through experiments, we first will
validate this model. We also plan to work on some possible extensions of this
model by considering more realistic friction models to increase its accuracy. In
this context, we expect that the proposed 3D model and controllers based on this
model will be important for the new possible accurate motion models for external

variables of the system which are otherwise only indirectly controllable.

49



APPENDIX A

Quaternion Derivations

For a point ’a’ at the top of the rigid rod as can be seen in Figure A.1, ap is

the position of the point in body frame coordinates and constant and ay is the

position of the point in world frame(inertial frame) coordinates, and rotation

relation between ay and ap in quaternion coordinate frame is given as follows;

aw =gqoapoq

(A.1)

Quaternion multiplication is g3 = ¢; 0 g2 = f(¢1,¢2). Then, derivative of g3

is;

dt N 8(]1

Thus for ay = g o ag o g*, the following expression holds;

4
dt

ay = s 9f
(go(apo(q))) = 97 %47 90, .
of . 0Of
= — Oq _—
aq 8qg aoq*

Fact 1: (¢*) or (¢*) and (¢)* are equal.

1Since a is a constant point on the rigid body.

20

of .

a—qz 0C (@2 (AQ)
of L arl ..
of o\
90 . o (q) (A.4)




Figure A.1: Spherical Pendulum Model

Proof: Since ¢* = Cq ?, Then;

j= Alirilo Ay and, (A.5)
(%) = Jim g (t+ AAQC; —q'(t) (A.6)
_ AI}HO Cq(t + AAQEQ)j — Cq(t) (A7)

N v (A9
=Cq=(9)" (A.9)

Fact 2: Quaternion conjugation over quaternion multiplication and addition op-

erations are given below for a =boc ,d =0+ ¢;

a*=c"ob" (A.10)

& =b"+c* (A.11)

2as C is a diagonal matrix with elements [1 — 1 — 1 — 1] and the conjugation matrix for

quaternions
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Proof: Transpose of the conventional matrix representation gives us the conju-

gate quaternion’s conventional representation. Namely;

Pr =p* (A.12)

p
Thus we can show that, for a = b o ¢ then

a* = (boc) = (RP.) = PPl =c* o b* (A.13)

and for d = b+ ¢ then

d*=b+c) =(P+P) =P +PT =b" 4 (A.14)

Fact 3: Derivative of multiplication rule is valid for quaternion multiplication.

Proof: For M(p,q) =poq= Pq=Qp

d oM . OM
E(pOQ):a_pOera_qoq (A.15)

Since there is no dependent term in M for both representationa%’ =

Q(derivative of matrix multiplication);

d . .
%(POQ) = Qp+ Pq (A.16)

=poqg+pog (A.17)

Also, since quaternion multiplication has derivative, an alternative method

for proof would be;

q= Alirn0 A and, (A.18)
T— €T
) . t+Azx)oq(t+ Ax) —p(t) oqg(t
poq:AI}JEop( ) o g( i~ ) — p(t) o q(t) (A19)
. p(t+Ax)oq(t + Az) — p(t) o q(t)
= lim
Az—0 Ax
i P AT) 0g(t) = plt + Az) 0 g(t)) (A.20)
Az—0 Az
. p(t+Az)oq(t+ Ax) — p(t+ Ax) o q(t)
= lim
Axz—0 AI‘
+ lim —p(t) 0 q(t) + p(t + Ax) o q(t) (A.21)
Az—0 Az
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and, since quaternion multiplication is distributive over addition, Then;

p(t + Az) o (q(t + Ax) — ¢(1))

Az—0 Az
(p(t + Az) — p(t)) o q(?)
Az—0 Az

=poq+pogq

(A.22)

(A.23)

We may as well write the following expression for derivative of ay,, assuming

a will be constant w.r.t. body frame,?

dCLW d «
WZE(CIOCLBOQ)
0
:qo(aoq*)—}-qo(g{oq*—f—aoq'*)
=¢oaoq +qoaoq"

=qdoqg"oa+aoqo(q"

Then derivative of ay is given as below;

d da d . * - %
Loy Lioaog +goaod)

= joaoq +doao +doao +goaoq

= joaoq +§oaod +joaod +goaoi’
— ——

-~
Qaog*d 2goaog* PyoaCg
Thus, ay equation becomes;

(quac + anq*)(j = a’W - 2q cao q*

1

3Since,the proof of ¢ = 3

calculated for a dynamic COM condition.
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(A.26)

(A.27)
(A.28)

(A.29)

(A.30)
(A.31)

(A.32)

(A.33)

w o ¢q is done only for constant a case, dynamic case should be



To calculate the (A.33)i, ¢ is given as follows;

1
qg= 5Ww 4 4 and, (A.34)
. 1d

Then dy can be computed as the following expression;

. 1. 1 i . ) - 1. 1 Sk
aw = (§wwoq+§wwOQ)oaoq +2joaocg +qoa0(§wwoq+§wwOQ) (A.37)

Using the properties mentioned at equations (A.11) and (A.10), the following
holds;

1 1
dW:(§wwoq+§wwoq)oaoq*—|—2q'oaoq*
1 1
—l—qoao(gq*ow;—f—ﬁq*ow;) (A.38)
1
:§wwoqoaoq*+1wwowwoqoaoq*

1
—l—éwwoqoaoq*ow; (A.39)

1 1
+§qoaoq*ow;“u—|—1qoaoq*owz]ow; (A.40)

Since ay = q o ap o ¢*, then the final expression for the second derivative of

the expression becomes as given in below,

dW:§wwan—i—§aW0w;
1 1
—|—waowwoaw+§wwoawow;+Z—lawow;ow; (A.41)

4Also in body coordinates this becomes ¢ = %q owp

o4
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