DESIGN OF ROBUST GUARANTEED COST OBSERVER-BASED CONTROLLER
FOR LINEAR UNCERTAIN SYSTEMS

by

Yilmaz Seryar Arikusu

Submitted to the Institute of Graduate Studies in
Science and Engineering in partial fulfillment of
the requirements for the degree of
Master of Science
in

Electrical and Electronics Engineering

Bilgi University

2018



iii
‘DESIGN OF ROBUST GUARANTEED COST OBSERVER-BASED
CONTROLLER FOR LINEAR UNCERTAIN SYSTEMS
DOGRUSAL BELIRSIiZ SISTEMLER ICIN GOZETLEYICI

TABANLI DAYANIKLI GARANTILI MALIYET DENETLEYICI TASARIMI

Ogrenci Adi1 Soyadi Yilmaz Seryar Arikugu

Ogrenci Numaras1 115815015

Tez Damigmani : Prof.Dr.M.N.Alpaslan Parlakgi.
Istanbul Bilgi Universitesi

Jiiri Uyeleri : Dr.Ogretim Uyesi Yesim Oniz

Istanbul Bilgi Universitesi

Fy /
Prof Dr.Elbrus Caferov Z[Zé .. .... ; ... (Imza)

[stanbul Teknik Universitesi

Tezin Onaylandig1 Tarih :  ....04/06/2018.......cccccerennirnnnes

Toplam Sayfa Sayisi: N . S

Anahtar Kelimeler (Tiirkge) Anahtar Kelimeler (Ingilizce)
1) Dayanakl kontrol 1) Robust control

2) Lyapunov kararlilik teoremi 2) Lyapunov stability theorem
3) Garantili maliyet kontrol 3) Guaranteed cost control

4) Gozetleyici esash tasarim 4) Observer-based design

5) PD geri besleme 5) PD feedback



ACKNOWLEDGEMENT

I would like to thank my supervisor Prof. Dr. M. N. Alpaslan for suggesting the topic of this
work and encouragement about this research.

I would also like to thank my family from my deep heart for their love, patience and suggesting.



ABSTRACT

DESIGN OF ROBUST GUARANTEED COST OBSERVER-BASED
CONTROLLER FOR LINEAR UNCERTAIN SYSTEMS

In this thesis, robust guaranteed cost observer-based state feedback controller design problem
has been investigated for a linear uncertain system with norm-bounded uncertainty parameters,
which has been important for several systems. This is employed by Lyapunov stability theorem
that the criteria of robust stabilization are proposed within the framework of linear matrix
inequalities (LMI). The feasibility problem of the stabilization criteria with memoryless
feedback is solved easily using the technique of cone complementary minimization algorithm.
Also, the stability criteria of output feedback is convex in the shape of linear matrix inequalities.

Moreover, minimization of guaranteed cost was obtained via cone complementary algorithm.

This thesis also proposes the design of the guaranteed cost of observer-based proportional
derivative state feedback controller for linear nominal systems. The minimization of the
performance index is satisfied to get a feasible solution than the proposed observer-based

controller for the linear nominal system.

Finally, numeric examples have been presented to illustrate the stabilization that introduced

approach provides considerable improvement.

Keywords: Robust control, Lyapunov stability theorem, guaranteed cost control, observer-
based design, PD feedback



Vi

OZET

DOGRUSAL BELIRSIiZ SISTEMLER ICIN GOZETLEYiCi TABANLI
DAYANIKLI GARANTILI MALIYET DENETLEYIiCi TASARIMI

Bu tezde, birgok sistem i¢in 6nemli olan dogrusal belirsiz sistemler i¢in gozetleyici tabanli
dayanikli garantili maliyet denetleyici tasarimi incelendi. Lyapunov kararlilik teoremi, 6nerilen
dayanikli kararliligin kriteri ile dogrusal matris esitsizlik (LMI) ¢ergevesinde uygulandi.
Hafizasiz geri beslemeli ile kararlilik kriterinin gegerlilik problemi koni tamamlamali
minimizasyon algoritmasinin uygulanmasiyla kolayca ¢oziim elde edildi. Ayrica, dogrusal
matris esitsizlik bakimindan geri beslemeli sonug kararlilik kriteri digbiikeydir. Buna ek olarak

garantili maliyet minimizasyonu koni tamamlamali minimizasyon algoritmasi araciliyla elde

edildi.

Bu tez ayrica dogrusal sistemler icin garanti maliyet gozetleyici esasli orantisal tiirev geri
beslemeli kontrolér dizaymini sunmaktadir. Onerilen dogrusal sistem gdzetleyici esaslh

tasarimina gore performans indeks minimizasyon sonucu daha olumlu sonug elde edilmistir.

Sonug olarak niimerik 6rnekler sunulmus olup, tanimlanan kararlilik yaklagiminin 6énemli bir

gelisme gosterdigi sonucu elde edilmistir.

Anahtar kelimeler: Dayanikli kontrol, Lyapunov kararlilik teoremi, garantili maliyet kontrol,

gozetleyici esasl tasarim, PD geri besleme



vii

TABLE OF CONTENTS
ABSTRACT ..ottt ettt ettt b et et b et et e st e ke st e st et e et e e R e be s b e n e benre e ane it Y
OZET .ttt ettt ettt bttt sttt vi
TABLE OF CONTENTS ...ttt ettt e e e e et e e e an e e annneeanea e Vil
LIST OF FIGURES. ... ..ottt st e e e et e e e e e e nnae e e nneeas viil
LIST OF SYMBOLS / ABBREVIATIONS ......oooiiiieee et IX
1. INTRODUCTION ...ttt e et e et e e abe e e enae e e e naeeannes 1
1.1 LItErature REVIBWS. .....cviiiitiiiisiieiieie ettt bbbttt bbb e e e 2
2. PRELIMINARIES and PROBLEM STATEMENT ......ccooiiiiiiireice e 4
2.1 LyapunoVv Stability TREOIY ......c.ecii ittt 4
2.2 ProbIem StAtEMENT..........cviiiieie ettt 6

3. DESIGN of GUARANTEED COST OBERVER-BASED STATE FEEDBACK
CONTROLLER

3.1 Design of Robust Guaranteed Cost Observer-Based State Feedback Controller for

NOMINAL LINEAI SYSTEIM ...ttt bbbt 8

3.2 Design of Robust Guaranteed Cost Observed-Based State Feedback Controller for

Linear UNCErtaiN SYSIEM .......cuiiiiiiieitiiti ittt sb et 12
4. DESIGN of OBSERVER-BASED PD STATE FEEDBACK CONTROLLER............... 17

4.1 Design of Observer-Based PD State Feedback Controller for Nominal Linear System 17
4.2 Design of Guaranteed Cost Observer-Based State Feedback PD Controller for Nominal

LINEAT SYSTEIM ...ttt bbbttt ettt b bt nr e 20
5. NUMERICAL EXAMPLES ..ottt 23
B.CONCLUSION ...ttt bbbttt bbbttt b ettt be s 30
APPENDIX Aottt ekt bttt b n e 31
1.1 Nominal LiNear SYSIEIM ........ccviiiiiiiiiic sttt sra s 31
1.2 Simulation Codes for Nominal Linear SYStemM ..........ccccoviririiiniinene e, 36
1.3 Linear UNCEertain SYSIEM .......ccuoiiiiiiiieiiiiieiisieeie ettt 37
1.4 Simulation Codes for Linear Uncertain SYStEM ...........covvvvririinienene s, 43
APPENDIX B ...ttt 45
APPENDIX €.ttt ettt ettt b e enas 49

REFERENCES ... 53



viii

LIST OF FIGURES

Figure 1- Observer design state feedback block diagram...........c.ccecvvvieiiiineniiniiiccee, 7
Figure 2 — Control law for the NOMINal SYStEM .........cciiiiiiiiiiiie e 24
Figure 3— A state feedback observer design variable of x1 for the nominal system............. 24
Figure 4 — A state feedback observer design variable of x2 for the nominal system............. 25
Figure 5 — Control law for an UNCertain SYStEM ..........coooiiiiiiiiniiieee e 26
Figure 6 — A state feedback observer design variable of x1 for an uncertain system............ 26
Figure 7 — A state feedback observer design variable of x2 for uncertain system................. 27
Figure 8 — Control law for a Nnominal SYSteM .........ccooiiiiiiiiiiieee e 28
Figure 9 — A PD state feedback observer design variable of x1 for uncertain system........... 29
Figure 10 — A PD state feedback observer design variable of x2 for uncertain system........... 29
Figure 11— Block diagram of a state feedback observer design variables for the nominal
V] (=] 10 PP PRTRUPRTRPPPRN 37
Figure 12 — Block diagram of a state feedback observer design variables for linear uncertain
V] L] 10 ST UPRRUPRTRPPIN 44

Figure 13 — Block diagram of a PD state feedback observer design variables for linear
UNCEITAIN SYSTEML. ..ttt ettt et e et e et e ebe et e e seeabeenbeaneesreeseeeseesbeeteaneesreennennes 52


file:///C:/Users/yılmazseryar/Desktop/thesis/THESİSSS.docx%23_Toc512277506

LIST OF SYMBOLS / ABBREVIATIONS

LMI Linear Matrix Inequalities
Diag Diagonal Square Matrix

Tr Trace



1.

INTRODUCTION

The robust controller has drawn attention for linear uncertain systems since last decades
because the purpose of the robust controller design is good steady-state and error modeling.
One of the best application to obtain a feasible solution for uncertain models is Lyapunov
stability theorem within the framework of linear matrix inequalities (LMIs). The Lyapunov
design has been a significant improvement for linear uncertain systems. The aim of the
Lyapunov stability theory is that the system’s energy is dissipating, then the system reaches to
equilibrium point which means the system will be stabilized for abundant systems. The basic
idea has been showed several works to get a feasible solution in LMIs for linear uncertain

systems.

The guaranteed cost controller for uncertain modeling has been a hot topic to remark in recent
years. The purpose of design a guaranteed cost controller is that closed-loop system obtains
stability with an upper bound parameter. We investigated that the design of the guaranteed cost
robust observer-based state feedback controller design problem for a linear uncertain system
with norm-bounded uncertainties, which has been a significant influenced on several dynamics
of systems. This is applied by the approach of Lyapunov stability theorem that the criteria of
robust stabilization are presented within the framework of linear matrix inequalities (LMI) via
Schur complement [8]. The feasibility problem of the stabilization criteria with observer-based
state feedback controller is solved easily due to the technique of cone complementary
minimization algorithm [9]. Moreover, the output feedback stability criteria is convex within
the shape of the linear matrix inequalities. Also, minimization of guaranteed cost has obtained

via cone complementary algorithm.

We designed the stabilization of the observer-based PD state feedback controller to obtain a
feasible solution for linear nominal systems. Then, we extended the findings that add the
guaranteed cost function to minimize the performance index. Its purpose is that we compare the
results both observer-based controller in linear nominal systems and observer-based PD state

feedback for linear nominal modeling.

In this paper, a robust stability is analyzed with guaranteed cost observer-based controller for
linear uncertain systems. Moreover, the guaranteed cost of observer-based proportion derivate

state feedback controller has been studied because of the Lyapunov stability theorem. The



criteria of stabilization are formulated within the context of LMIs. It is demonstrated the
minimization guaranteed cost in terms of cone complementary theory. Finally, numerical
examples which are both nominal and uncertain parameters have been illustrated proposed
stabilization that introduced approach provides considerable improvement with an observer-
based controller. The algorithm of the feasible solution and block diagrams is shown in
Appendix A and B respectively. The last example, its contains results which are the design of
an observer-based PD feedback controller for linear nominal systems. The feasible solution and

block diagrams are illustrated with algorithm 1 and Lemma 3 in Appendix C.

1.1 Literature Reviews

All dynamical systems are related not only in physical but also in engineering area with the
subject of uncertainties that are not well-known exactly because of the modeling errors. Robust
controllers which apply to determine stability criteria for the linear uncertain system have
gained considerably attention since last decades. A Riccati Matrix approach has been applied
in [1] with the conception of quadratic guaranteed cost control for linear uncertain systems so
as to control the robust controller with a guaranteed cost regard to the upper bounding by initial
condition. A Lyapunov approach was introduced in [2] to improve the guaranteed cost

controllers that lead to stability both in the time domain and in the frequency domain.

Recently, it has aroused a lot of interest in reducing abundant problems through optimization
involving linear matrix inequality in [4]. Linear matrix inequality (LMI) approach has been
proposed in [3] for the design of robust control that supports the minimization of guaranteed
cost for linear uncertain systems with convex optimization within the framework of LMI
conditions. A robust guaranteed cost controller system has been introduced for the linear
uncertain time-delay system in [4] which guarantees to minimize upper bound of the cost with

a convex optimization.

The design of the optimal guaranteed cost has been received in [5] for a class of linear time-
delay system with norm-bounded uncertainties. A guaranteed cost is obtained via LMI. The
design of robust control for the nonlinear uncertain system is obtained because of the fact that
employing a guaranteed cost approach has been introduced in [6] LMIs optimization with off-

the-shelf algorithms.

The condition for a guaranteed cost in [7] state feedback controller is converted within the
framework of LMI conditions depend on the Lyapunov stability theorem for the linear uncertain

systems and the guaranteed cost has been minimized. The problem of the decentralized robust



guaranteed cost control has confirmed to minimize the performance index is given in approach
of LMI conditions for linear uncertain systems [11]. A sufficient condition with the guaranteed
cost controllers is proposed within the framework of LMIs. As long as this condition is found
to be a feasible solution, the state feedback control law gain matrices can be obtained by means
of convex optimization [12].

An observer design controller is useful to apply many the state of dynamic systems. Thus, a
robust observer-based control is satisfied than a state feedback controller [13-17]. The problem
of dynamic output observer-based state feedback controller is proposed for nonlinear delay

systems. It has been provided to stabilize via LMIs approach [18].

Design of the observer-based controller for linear uncertain time-delay systems [19] has been

minimized the optimal guaranteed cost by a framework of LMI approach.

There have been more researches about the PD state feedback to stabilize the dynamic of the
system. Thus, the use of PD controller has been essential for achieving the control systems and
the development of system performance [20-24]. It is considered that guaranteed cost is
formulated to utilize to get minimization of the norm of gain controller [20]. Moreover, this
paper proposed the PD feedback controller for the linear uncertain systems [24]. It has been

illustrated to make the small gain controller.

The extended observer- based PD controller are useful for the stabilization of spacecraft [25].
It is obtained to succeed better control effect.



2. PRELIMINARIES and PROBLEM STATEMENT

2.1 Lyapunov Stability Theory

The Russian mathematician A. M. Lyapunov studied the problem of stability of dynamical
systems around 1890. When he proposed significant works we call today Lyapunov Theory.
There are two methods of which the second method has found extensive application in the study
of the stability of control systems [8], [26].

The positive definite function is described as the following term,

VR™ >R

a function vx € R™* forV(x) = 0

and V(x) =0 < x = 0so itis positive-definite.

The negative definite function is defined as

A function ¥V R™ — R is negative definite functions

V(x) <0 forall x

V(x) = 0 if and only if x = 0 all sublevel set of V is bounded
The positive semidefinite function is described,

If
Vx€ER" V(x) =0

V(x) = 0 where x # 0 Thus, this function is positive semidefinite
This function is negative semidefinite is given by
if
V(x) <0Vx €R"
V(x) = Owherex #0
x=Ax; x(t) =x, (2.1)
The positive definite Lyapunov function is selected as

V =xT(t)Px(t) (2.2)



It is the nominal linear system of equations which is stable if there exists positive definite-

matrix P such as
ATP+PA<O
where P > 0
Hence, this system is asymptotically stable.
Proof
x = Ax
xT = xTAT
V = xT(t)Px(t)
Derive an equation
V= ©Px(©)]
We get,
V(x) = xTPx + x"Px
Substituting in (2.5) into (2. 8), we get
xTATPx + xTPAx
xT[ATP + PAlx <0
ATP+PA <0

Hence, the nominal linear system is proved.

Indeed, it is selected Q = QT > 0 which is symmetric positive definite matrix we get,

ATP + PA=—Q

for the matrix P which is guaranteed to be a positive-definite matrix

(2.3)

(2.4)
(2.5)

(2.6)

2.7)

(2.8)

(2.9)
(2.10)

(2.11)

(2.12)

The aim of this theorem is that there is a constantly decreasing decisive positive function goes

to zero. V(x) must be a negative matrix



Namely, with ever initial condition t — oo for x(t) - 0.

We cannot say that the system is unstable when the above condition is not satisfied. Maybe, we
select other Lyapunov function V(x) that may provide a feasible solution. However, V (x) is
found positive definite matrix or positive semidefinite matrix we can say that this system is

unstable.

2.2 Problem Statement

Considering a class of linear uncertain system is described
x(t) =[A+ AA(t)]x(t) + [B + AB(t)]x(t)u(t) (2.13)

y(t) = Cx(t) (2.14)

where , x(t) € R™ is the state vector, u(t) € R™*P is the control input, y(t) € R™P? is
output vector, A € R™" and B € R™™ are constant system matrixes, C € RP*" is the
constant output matrix and AA(t) AB(t) represent the uncertainty matrix which are considered

to be of following form
[AA(t) AB(t)] = DF(t)[E, Ep] (2.15)

where D, E, , E;, are unknown constant matrices with relevant dimensions and F(t) is uncertain

matrix with Lebesgue measurable elements satisfying
FT(OF(@) <I (2.16)
A quadratic performance index for a linear system is introduced as follows

J =[x (©)Sx(1) + uT (HRu(b)]dt (2.17)

where the S and R are positive-definite real symmetrical matrixes to be stated properly.
Consider the system (2.13) with performance index (2.17) and observer-based control law

(2.18) satisfies to a feasible solution where P > 0.Thus, this system is stable.
We assume that a state feedback controller is introduced by using state estimate of x
u(t) = Kx(t) (2.18)

where K € R™" is the control gain matrix and X(t) is the estimate of x(t) governed by the

following



2(t) = AZ(t) + Bu(t) + L[y (1) — 9(©)] (2.19)
where L € R™P is the observer feedback matrix [26]
Hence, the error dynamics is obtained as observer dynamics
é(t) = (A—LC) e(t) (2.20)
where
e(t) = x(t) —x(t) (2.21)
y(t) = Cx(t) and
y(t) = Cx(t) (2.22)
Substituting (2.22), (2.21), (2.20) into (2.19) we obtain the following term
x(t) = A%(t) + BKx(t) + L(Cx(t) — Cx(t)) (2.23)

We can rewrite the following term

(;ﬁ) - (LAC A+ ;If _ LC) (;) (2.24)

The observer design dynamic system is obtained depending on the error dynamics. Our purpose
select L so as to e(z) — 0 as t — oo. Therefore, it is supposed that this system is equivalent to
stability in (2.24).

= 5 c 4y.>
— 5|

N

(— ck—F =

Figure 1- Observer design state feedback block diagram



3. DESIGN of ROBUST GUARANTEED COST OBSERVER-BASED
STATE FEEDBACK CONTROLLER

We investigated the guaranteed cost observer-based state feedback controller for nominal linear
system and linear uncertain system in this section.
3.1 Design of Robust Guaranteed Cost Observer-Based State Feedback Controller for

Nominal Linear System

The nominal system is that there consists of no uncertainty parameters described in (3.1).
Namely, AA(t) = 0and AB(t) =0

x(t) =[A+ AA()]x(t) + [B + AB(t)]x(t)u(t) (3.1)

The following lemma 1 is demonstrated the result of design guaranteed cost observer-based

controller for the nominal linear system
Lemma 1l

Given real and symmetric positive definite matrices R and S, if there exist real and symmetric
positive definite matrices X, Q ,matrices Y, W and positive scalar « all with convenient

dimensions satisfying,

X1 0 vr X —BY
[ * PP 0 0 0 ]
T=s« « 2R 0 —-y |<0 (3.22)
[ * * * -2571 0
[a +0.5¢"(0)Qe(0) ng)() <0 (3.2b)
N _

where 2;, =AX + XAT4+ BY + Y™BT, %,, = QA+ ATQ-WC—-C"TWT +Z

then, a stabilizing observer-based state feedback controller gain is obtained as K = YX 1.
Proof

We select the Lyapunov function for the nominal system in the following form

V(x(t),t) = xT(£)Px(t)+eT (t)Qe(t) (3.3)



P and Q are positive symmetric matrixes or positive semidefinite matrixes and we can also add

guaranteed cost function described (2.17) we obtain,
V((e), ) +5x7Sx + 2 uT ()Ru(t) (3.4)
Substituting control law defined (2.18) into (3.4) allows calculating
2xT (£)Px(t) + 2T (£)Qe(t) + 5x7Sx + 2T ()KTRKZ(t) (3.5)

To substitute x(t) = x(t) — e(t), the equation in (3.5) is rewritten taking into consideration
(3.1), (2.20) we gQet,

2xT(£)P[ Ax(t) — BKe(t) + BKx(t)] + 27 (t) Q(A — LC) e(t) +;x"Sx +
~2T(OKTRKR() = X" (DY x(t) (3.6)
where
x =[x eT]"

We get a bilinear matrix inequality (BMI) as the following term

PA+ ATP
+PBK + K'BTP _pprx —1KkTRK
1 2
+ - S
_ 2
* -wc-cTwrT
+ = KTRK

With L = QW . In order to guarantee (3.2) to be less than zero, we need to be satisfying

Y <0 (3.8)
If we apply Schur complement [8] to the BMI Then, we get an equivalent LMI

PA+ ATP
+PBK+1KTBTP —PBK KT
)
p=| T (39)
. QA +ATQ r
-wc-cTwrT
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To represent KX =Y where X = P~ we implement a congruent transformation via pre-and

post-multiplying (3.9) with diag {X, I, I} to obtain

AX + XAT
+ BY + YTRT —BYX 1 YT
1
- XSX
RS ) <0 (3.10)
* QA + A Q —X_1YT
—-wc-cTwrT
* * —2R~1 1
After we applied Schur complement [8] in (3.10) we get,
T
AX + X4 —BYX~! YT X
+BY+ Y'B
T
Q= ¥ QA+40Q — _x-1y7 o |<o0 (3.11)
-wc-cTwrT
* * —2R1 0
* * * —2871
Let us reexpress £ in the following form
Q=0Q,+0,"+0, (3.12)
where
T
+BY+ Y'B
A+ ATQ
Q, = . ¢ 0
0 —wC—-CcTwT
* * —2R71 0
* * % —26-1
and
0 —-BYX™' 0 0
q, =0 0 00
0 -YX 0 0
0 0 0 0
Now we shall rewrite Q,
—BY
Q, = _OY X0 I 0 0] (3.13)
0
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where
O=[y"™T o0 -vT o]
O=[0 I 0 0]

Substituting Q; in (3.13) into (3.12) and applying the well-known bounding inequality, we get

O=0,+07xe+07T X111
<Q,+@TXHZ (XM +67z6 (3.14)

Applying Schur complement [8], we acquire inequality in (3.2). Therefore, this completes the
proof. On the contrary, we realize that the equation in (3.14) is not in the form of convex LMI
due to the nonlinear term which is —XZX. Thus, we now propose an iterative algorithm to get

a feasible solution set (3.2).
Let us select a real symmetric and positive definite matrix MT = M > 0 such that
—XZX < —M (3.15)

After applying Schur complement, we get where Z > 0

M Xz_l) >0 (3.16)

Next, we present some new variables M~ = N, X~1 = T . We obtain a feasible solution due to
employing cone complementary technique [9] that provides the following nonlinear parameter

minimization within the framework of LMI conditions.

Minimize tr(MN + XT) [10].

M I X 1 N T
(7 N)>o ( T)>o ( Z)>o and
T 0 Y7 X -BY]
x X, 0 0 0 |
L= « « —2R71 0 vy I<O (3.17)
l * * * 257t 0 J
* * * * —M

Next, the findings in the following terms (3.18) demonstrated the robust observer-based

stabilization criteria for the linear uncertain system.
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If there exist real and symmetric positive definite matrices P, Q and matrices Y, W all with

convenient dimensions (3.17) and positive scalar a it will satisfy as the following form

a+ 0.5eT*(0)Qe(0) x_Tg)() <0 (3.18)

If we now consider nominal linear system we shall show that performance index (2.17) has

been upper bound as the following equivalent

Vx(0) =33 (O)Px(0)+57(0)Qe(0)

< %AminP Il x(0) 1>+ %Amin(Q) le(o) I>=]J* (3.19)

In order to minimize the guaranteed cost in (2.17), we introduce a positive scalar a such that
1.7 1.7
X (0)Px(0)+;e (0)Qe(0) < —«a (3.20)

We represent X = P~1, implying that

a +x7(0)Xx(0)+5e"(0)Qe(0) < 0 (3.21)
[a +0.5e7(0)Qe(0) x"(M)] (3.22)
. —2X

LMI of (3.22) can be obtained because of Schur complement. The performance index will have
minimized upper bound once « is the smallest. This completes the proof based on that can be
solved using the cone complementary approach outlined following Lemma 1. Thus, the

minimization of the guaranteed cost is satisfied.

3.2 Design of Robust Guaranteed Cost Observed-Based State Feedback Controller for
Linear Uncertain System
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Consider linear uncertain system described as in (3.23), in (3.24) and in (3.25) respectively.

x(t) =[A+ AA()]x(t) + [B + AB(t)]x(t)u(t) (3.23)

where
[AA(t) AB(t)] = DF(O)[E, Ep] (3.24)
FT(OF(@) <1 (3.25)

These equation (3.23), (3.24), (3.25) are described in section 2.2 completely. Next, the

following theorem 1 is illustrated to propose approach of Lyapunov stability theorem.
Theorem 1

Given real and symmetric positive definite matrices R and S, if there exist real and symmetric
positive definite matrices P, Q and matrices Y, W all with suitable dimensions and positive

scalar a, e;and &, are introduced satisfying,

(@1 O < g -BY XE,© 0
* [y 0 0 0 0 QD
* * —2R71 0 -Y 0 0
Q= * * * -2t 0 0 0(<0 (3.26)
* * * * —-M YTEbT 0
* * * * * 51] 0
[ * * * * * * &l ]
a + 0.5e7(0)Qe(0) ng)() <0 (3.27)
* -

where @, = AX + XAT + BY + YTBT + & DDT, ¢,, =QA+ATQ+-WC—-CTWT +
7+ &E,"E,

Then, a robust stabilizing controller gain is obtained as K = YX 1.
Proof

If we now consider the norm-bounded uncertainty in (3.24) then, we replace A, B with A +

DF(t)E, and B + DF(t)E, respectively to get
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z, (1,1 0 YT X 2.(1,5
[ * 2.02,2) 0 0 0 ]
Zu =| ] «  —2RT 0 Y |< 0 (3.28)
* * * —2871 0
l * * * —XZX

where %,(1,1) = AX + XAT + DF()E,X + (DF)E,X)T + BY + Y'BT + DF(t)E,X +
(DF()E,X)T, 2,(1,5) = —BY — DF(t)E,Y

2,(22) =QA+ ATQ + QDF(t)E,X + Q(DF()E,X)T —WC - CTWT +Z
= x"(OZy x(®)
where x = [xT eT]T
We rewrite in (3.28) as follows
Sy = o + Zu’ 2 (3.29)

X,01s a linear part, and X, is the nonlinear part of the equivalent

[Zu1(1,1) 0 0 0 —-DF(t)EpY
x $,1(22) 0 0 0
L= * * 0 0 0 <0 (3.30)
* * * 0 0
* * * ok 0

where  £,,(1,1) = DF()EX + (DF()E,X)T + +DF(0)E,X + (DF(DEX)T 2,1(2,2) =
QDF()E,X + Q(DF()E,X)T

We rewrite X, in the following term as the

Ly = l_lulT X! 01 + l_LuZT X! 02 (3-31)

where
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D
]
M= 01,6, =(EX 0 0 0 —EY)

0

0
0
QD\

M=| 0 | ,6,,=0 E, 0 0 0) (3.32)

0
0

Hence, using the well-known bounding -inequality allows to rewrite (3.28) as follows
L= l-lulT X1 Ou1 + l-luZT X1 Ouz

< Tyt My Ml+e710," 0+ 6 My Ty + & 04" Oy
(3.33)

Then, applying Schur Complement [8] one obtains (3.26)

If we now, consider nominal linear system we shall show that performance index (2.17) has

been upper bound as the following equivalent

V() =53 (O)Px(0)+5¢"(0)Qe(0)
< ~AminP 1 x(0) 1%+ 2 Amin(Q) Il e(0) I? =J* (3.34)
Minimizing the guaranteed cost in (2.17), we introduce a positive scalar a such that
~x7(0)Px(0)+e7(0)Qe(0) < —a (3.35)

To represent X = P~1, implying that

a +x7(0)X 1x(0)+5 e (0)Qe(0) < 0 (3.36)
[a + 0.5eT*(0)Qe(0) ng())() <0 (3.37)



16

Then, we apply Schur complement [8] we get in (3.27). The performance index will have
minimized upper bound where a is the smallest. This completes the proof. The feasibility
problem of theorem 1 can be solved by using the cone complementary technique [9-10] as well
as linear nominal model. The results in the following theorem 1 illustrated the robust observer-
based stabilization criteria for the linear uncertain system. Thus, the aim of the minimization of

guaranteed cost is satisfied.
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4. DESIGN of OBSERVER-BASED PD STATE FEEDBACK
CONTROLLER

In this section, we divided into two parts. Firstly, we investigated the stability of observer-
based PD state feedback controller for nominal system in the first part. Second part, we search
the guaranteed cost minimization depending on observer-based PD state feedback controller

for linear nominal system.
4.1 Design of Observer-Based PD State Feedback Controller for Nominal Linear System

We consider a class of nominal linear observer-based PD state feedback controller is described

as well as in (3.1). However, the difference is that control law is described as the following term
u(t) = K,2(t) + Kx(t) 4.1)

Next, the following lemma 2 is showed to analyze design of the observer-based PD state

feedback control.

Lemma 2

If there exist real and symmetric positive definite matrices X, Q and matrix Y with appropriate

dimensions satisfying,

511 512 _BY
E == * EZZ O < 0 (4.2)
* *x  —XZX

where 5., = AX + XAT + BK,X + (BK,X)' — AY"B" — BYA" — BY"K,B" — BK,"YB"
81,=—BK,—(A—LC) 8= QA-LO)+(A-LC)"Q+Z

Next, a stabilizing observer-based PD state feedback controller gain is described as

Kq = YX™1, K, is selected fixed as well as observer-based control gain for the linear nominal

system.
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Proof
State space system is described as
x(t) = Ax(t) + Bu(t) (4.3)
We can select a Lyapunov function as the following term
V(x(t),t) = xT(£)Px(t)+eT (t)Qe(t) (4.4)
P and Q must be positive real symmetric matrixes so we can derive in (4.4), we obtain as
V(x(t),t) = 2xT()Px(t) + 2eT(£)Qé(t) (4.5)
Substituting (4.1), (4.3) into (4.5) we get the following term to allow to calculate
2x"P(I — BKy) " (A + BK,)x + 2e"Q(A— LC)e = x"T'x (4.6)
Assuming that (I — BKy) is nonsingular.
where
x = (I — BK;) '[Ax(t) + BKyx(t) — BK,e(t) + BK4(A — LC)],
e(t) =x(t)—x(t) and x = [xT eT]"

We get the following term as

P(I — BK;)™*(A + BK,) —P(I — BKy)™'BK,
I'=14(4+BK,)T(I — BK;)™* —PU —BKy)™'BK4(A— LC)
. Q(A—LC) + (A—LCO)TQ

We need to satisfy (4.7) to be less than 0

r<o (4.7)

Multiplying via pre (I — BK;)X and post X(I — BK;)T with diag {X,I} where P~1 = X and
K; = YX 1 we get,
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AX + XAT + BK,X+(BK,X)" —BKp
- 14 —
—AYTBT — BYAT — BY"K,B" — BK,"YB" BYX=(A—L1C) <0 (48)
. Q(A—LC) + (A— LCYTQ

A=

Let redefine A in the following term

A=Ay + AT+ (4.9)
where
AX + XAT + BK,X+(BK,X)" _BK, — (A~ LC)
Ao =|_AYTBT — BYA" — BY"K,B" — BK,"YBT (4 - LC) + (4 — LC)TQ
*
and

_[0 —-Byxt
o [0 0 ]
Let us rewrite A, as

A, = [_gy]x—l[o 11=1" x"'0 (4.10)

where

M=[-y"BT o]",6=[0 1I]

Following procedures are used to apply the well-known norm bounding inequalities, we obtain
A=A+IT X 0+ 0T X711
<A+ T X HZz1(x"M) +67z6 (4.11)

After applying Schur complement [8] to get in (4.2). We realize the equation is not convex as
well as observer-state feedback controller. Thus, an iterative algorithm is considered to obtain

a feasible solution.

We can select matrix S which is positive definite and real symmetric matrix ST = S >0 as

for the following term

—XZX < =S (4.12)
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Applying Schur complement to denote some new variables S~ = M, X! =] we obtain a
feasible solution due to employing cone complementary technique [9] that provides the
minimization of nonlinear parameters within the framework of LMI conditions in the following

as described

Minimize tr(SM + X]J) [10].

Z x M * ]
Eyy By —BY
* * S

According to the cone complementary technique, we get in (4.13) because of the fact that Kd is
found whereas Kp is selected fixed. All results on observer-based PD feedback controller are

satisfied for linear nominal systems.

4.2 Design of Guaranteed Cost Observer-Based State Feedback PD Controller for
Nominal Linear System

In this part, we searched the minimization of guaranteed cost observer-based PD state feedback
controller for the nominal linear system. The process of the state space PD feedback controller
which is described in (4.1) is taken fixed variables in order to get a feasible solution to Lemma
3.

Lemma 3

Given real and symmetric positive definite matrices R and S, if there exist real and symmetric
positive definite matrices X, Q and the observer-based PD control law is chosen with fixed K,

and K, obtained from Lemma 2 satisfying,

[P W2 W3 XK, X ]

[ + w,, 0 0 0 |
Y = * * _ZR—l 0 0 < 0 (414)
* * * —2R71 0

* * * * —2871
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where
W, = (I — BKy) Y(A+ BK,)X + X(A+ BK,)"(I — BK;)T
W, = —( — BKy)™'BK, — (I - BK;)"'BK,4(A — LC)
W3 = —X(A + BK,)"(I - BK;) TK,"

¥, =Q(A—LC)+ (A—LC)TQ + 0.5K,"RK, + 0.5(A — LC)TK,;"RK4(A — LC) +
0.5(A—LC)K;"BT(I — BK;) " TK,"RK4(I — BK;) 'BK4(A — LC)

Proof
We consider the system in (4.3) and select Lyapunov function in the following term
V(x(t),t) = xT (t)Px(t)+eT (t)Qe(t) (4.15)

If P and Q are positive symmetric matrixes and we add the guaranteed cost function described
in (2.17) into (4.15) we obtain,

V() ) +5x7Sx + 2 ul (H)Ru(t) (4.16)
We rewrite (4.16) as

2xT ()Px(t) + 2T (£)Qe(t) + 5 x7Sx + 5 uT (HRu(t) (4.17)
Substituting (4.1) into (4.17), we obtain as

2xT (O)Px(t) + 2e7 ()Qe(t) + x7Sx + S [KpR(t) + KaR (DI R[K 2 (E) + Ky2(8)] =

X" (O® x(t) (4.18)
where

x = (I — BKg)"'[Ax(t) + BK,x(t) — BKye(t) — BK4(A — LC)e(t)]

e(t) =x(t) —x(t) ,e(t) = (A—LC) e(t),and x = [xT eT]T

Bilinear matrix inequality (BMI) is obtained in (4.19).
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o=[ 8]

where,

®y; = P(I — BKy)"Y(A + BK,) + +(A + BK,)"(I — BK;)""P + 0.5K,"RK,
+0.5(A + BK,)"(I — BKy)TK,"RK4(I — BK4)"*(A + BK,) + 0.5S

®1, = —P(I — BKy) 'BK,—P(I — BK;) 'BK4(A — LC)

W3 = QA—LC)+ (A—LC)TQ + 0.5(4 — LC)TK,"RK (A — LC)
+0.5(A — LC)TK,"BT(I — BK,)""K;"RK4(I — BK,) "'BK4(A — LC)
+ 0.5K,"RK,

We need to guarantee the following inequality.
<0 (4.20)

Let us apply congruent transformation via pre and post-multiplying (4.19) with diag{X, I} to
get where X = P71
w- | W) <o
* Wy
Wy, = (I —BKy)"Y(A+ BK,) + (A+BK,)"(I — BK;)™T + X0.5K," RK, X +
X0.5(A + BK,)"(I — BK;)""K;"RK,(I — BK;) (A + BK,)X + 0.5XSX

W, = —(I — BKy) "*BK,—(I — BKy) 'BK4(A — LC)

Wy, = QUA—LC) + (A—LC)TQ + 0.5(A — LC)TK,"RK (A — LC)
+0.5(A — LC)TK,"BT(I — BK,)""K;"RK,(I — BK;) " 'BK4(A — LC)
+ 0.5K,"RK,

Employing Schur complement, we get (4.14). This completes the proof of lemma 3 to get a
feasible solution. We could not apply cone complementary technique since the equation in
(4.14) is convex. In addition, the observer-based PD control law is selected with fixed gain
values to obtain a feasible solution. Moreover, this indicates that the minimization of the

guaranteed cost has been achieved via using the inequality (3.27) from theorem 1.
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5. NUMERICAL EXAMPLES

In this section, three numerical examples are shown due to the application of Lemma 1, Lemma

2, Lemma 3 and Theorem 1.
Example 1

The nominal form of guaranteed cost observer-based state feedback controller [4] is described

as follows
x(t) = Ax(t) + Bu(t)
y() = Cx(®)
where d = [0 %] =[] ].c=11 0

The initial condition is defined such as x_0 = [015]. We can obtain a feasible solution in (3.17)

with the following parameter

9.8525 1.1911

p =
[1.1911 9.4857)

3.2917 —0.7656

= 108
Q 1 —0.7656 0.2493

The upper bound guaranteed cost function is calculated as J* = 6.7075 .It shows the
minimization of the guaranteed cost has been succeeded via theorem 1. The control gain of the
state feedback obtained as K = [—1.7309 —10.1860]. The control law observer-based
controller for the nominal system is illustrated in Figure 2. It follows from Figure 3 and Figure
4 the method of estimating state vectors has been succeeded with a satisfactory form of steady
state accuracy respectively. Based on Lyapunov stability theory, these figures show stability

with an observer-based controller for linear nominal system.
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Figure 3 — A state feedback observer design variable of x1 for the nominal system
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Figure 4 — A state feedback observer design variable of x2 for the nominal system

Example 2

We now consider linear uncertain system defined in (3.23), [4]
: [0 0571, [0 B
with A = [0 1 ],B = [0_5],C =[1 o],

105

D =
0.3

| Ea=1T0.1 0.2], By = 01 F = sin(t)

A feasible solution set is obtained for (3.26) with the following parameter results.

_[42.5610 4.6125 1.7869 —0.3948]

— 7
b= 4.6125 31.5982]’ Q=10 *[ —-0.3948 0.1141

The state feedback gain matrix is found as = [ —2.4085 — 10.5507] , The upper bound of
performance index is achieved as J* = 27.5365.1t specifies the minimization of the guaranteed
cost by theorem 1. The control law observer-based controller for uncertain system is illustrated
in Figure 5. These graphics in Figure 6 and Figure 7 demonstrate that the process of
performance index has been achieved by theorem 1 depend on the Lyapunov stability theorem

within the framework of linear matrix inequalities.
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Figure 5 — Control law for an uncertain system
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Figure 6 — A state feedback observer design variable of x1 for an uncertain system
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Figure 7 — A state feedback observer design variable of x2 for uncertain system
Example 3

We now consider system defined to design guaranteed cost observer-based PD state feedback

controller for nominal systems [4].
x(t) = Ax(t) + Bu(t)

y(@) = Cx(t)

0 05

0 1]’B=[(.)5]’C=[1 0]

where A = [

We get a feasible solution set for (4.14) as the following term,

3.5470 3.9180 0.2465 0.6942

p= [3_918() 5.6958] Q=10%+ [ 0.6942 6.8935

Based on lemma 2 observer-based PD state feedback control gain is obtained when the

observer-based control gain (K,,) is fixed shown as

K

, =[-1.7309 —10.1860],K,; = [ —0.2376 — 0.8788]
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Then, all variables are fixed in lemma 3 to get a feasible solution due to lemma 2. Moreover,
the upper bound of performance index is accomplished as J* = 4.4445. It indicates the
minimization of the guaranteed cost has been achieved by means of theorem 1. It is concluded
that the minimization guaranteed cost value is more satisfied to compare the minimization of
the guaranteed cost observer-based controller for linear nominal system. The control law is
demonstrated in Figure 8. The process of estimating the state vectors has been accomplished
with a satisfactory form of steady state accuracy. It is also demonstrated in Figure 9 and Figure
10 respectively.

Figure 8 — Control law for the nominal system
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Figure 10 — A PD state feedback observer design variable of x2 for the nominal system
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6.CONCLUSION

This study has performed an observer design based on robust control guaranteed cost for the
linear uncertain system by introducing state feedback control law and using the estimated state
from the observer design. This system has been investigated on the basis of employing
Lyapunov stability theorem within the framework of LMIs. LMI conditions are shown to
provide a feasible solution set by using a convex optimization through the cone
complementarity linearization algorithm. Furthermore, this algorithm also employs the
minimization of the guaranteed cost. Moreover, the proposed method has achieved a minimized

performance index not only for nominal systems but also for linear uncertain system.

The design of observer-based PD feedback controller has been studied for nominal systems.
When K,, which is the control gain of observer-based state feedback is selected fixed for the
linear nominal system, K is found in the form of LMI. This feasible solution gives a suboptimal
control action because K, is chosen as a fixed value. Then, the guaranteed cost observer-based
PD state feedback controller has been investigated for linear nominal systems. A feasible
solution is obtained within the framework of linear matrix inequalities. The result indicates that
the minimization of the guaranteed cost has been achieved to compare with design of the

observer-based state feedback controller by approach of theorem1.

We can not investigate design of the guaranteed cost observer-based PD state feedback
controller for the linear uncertain systems. Because the nonlinear parameters are risen up

drastically for the linear uncertain systems.

Consequently, numerical examples have demonstrated that the introduced stabilization method
provides guaranteed cost along with a satisfactory steady state accuracy.
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APPENDIX A

Algorithm 1 is implemented in Matlab languages with lemma 1 for nominal and uncertain
systems.

1.1 Nominal Linear System

File 1

A=[00.5;0 1];

B=[0;0.5];
C=[10];

R=0.5;

S=[10;0 1];
x_0=[1;0.5];
xhat_0=[1;0.5];
e_0=x_0-xhat_0;

[nn,m]=size(B);
[p,nn]=size(C);
K0=zeros(m,nn);
LO=zeros(nn,p);
k=1;

k0=0;
counter=0;
mySTOP=0;
setlmis([])

X=Imivar(1,[nn 1]);
Q=Imivar(1,[nn 1]);
Z=Imivar(1,[nn 1]);
M=Imivar(1,[nn 1));
N=Imivar(1,[nn 1]);
T=Imivar(1,[nn 1]);
Y=Imivar(2,[m nn]);
W=Imivar(2,[nn p]);
alpha=Imivar(1,[1 1]);

Imiterm([1 1 1 X],A,1,'s")
Imiterm([1 1 1 Y],B,1,'s")

Imiterm([113-Y],1,1)
Imiterm([1 1 4 X],1,1)
Imiterm([1 15 Y],-B,1)

Imiterm([1 2 2 Q],1,A,'s")
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Imiterm([1 2 2 W],-1,C,’s")
Imiterm([1 2 2 Z],1,1)

Imiterm([1 3 3 0],-2*inv(R))
Imiterm([1 35 Y],-1,1)
Imiterm([1 4 4 0],-2*inv(S))
Imiterm([1 5 5 M],-1,1)

Imiterm([-2 1 1 M],1,1)
Imiterm([-2 1 2 0],1)
Imiterm([-2 2 2 N],1,1)

Imiterm([-3 1 1 X],1,1)
Imiterm([-31 2 0],1)
Imiterm([-32 2 T],1,1)

Imiterm([-4 1 1 N],1,1)
Imiterm([-4 12 T],1,1)
Imiterm([-4 2 2 Z],1,1)

Imiterm([-5 1 1 alpha],1,1)

Imiterm([6 1 1 alpha],-1,1)
Imiterm([6 1 1 Q],0.5*e_0',e_0)
Imiterm([6 1 2 0],x_0"
Imiterm([6 2 2 X],-2,1)

Imiterm([-7 11 Q],1,1)
LMISY S=getimis;

[copt,xopt]=feasp(LMISYYS);
X=dec2mat(LMISY'S,xopt,X);
Q=dec2mat(LMISYS,xopt,Q);
Z=dec2mat(LMISYS,xopt,Z);
M=dec2mat(LMISY S,xopt,M);
N=dec2mat(LMISYS,xopt,N);
T=dec2mat(LMISYS,xopt, T);
Y=decZmat(LMISYS,xopt,Y);
W=dec2mat(LMISY S, xopt,W);
alpha=dec2mat(LMISY S,xopt,alpha);

evimi=evallmi(LMISYS,xopt);

[Ihs1,rhs1]=showlmi(evimi,1);
[Ihs2,rhs2]=showlImi(evimi,2);
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[Ihs3,rhs3]=showlmi(evimi,3);
[Ihs4,rhs4]=showlmi(evimi,4);
[1hs5,rhs5]=showlmi(evimi,5);
[Ihs6,rhs6]=showlmi(evimi,6);

s<74zgN
CRTRRT
=<XHdzgN

a_O=alpha;

=

alp

D1=max(eig(lhs1))<0;
D2=min(eig(rhs2))>0;
D3=min(eig(rhs3))>0;
D4=min(eig(rhs4))>0;
D5=min(eig(rhs5))>0;
D6=max(eig(lhs1))<0;

myDecision=D1&D2&D3&D4&D5&D6;

save initialData6074 nnmp AB C x 0e 0 SR k KO LO kO counter mySTOP X 0Q 0Z 0
M ON OT 0Y_0W_O0 alpha 0 myDecision

File 2

load initialData6074;
setimis([])

X=Imivar(1,[nn 1]);
Q=Imivar(1,[nn 1]);
Z=Imivar(1,[nn 1]);
M=Imivar(1,[nn 1]);
N=Imivar(1,[nn 1]);
T=Imivar(1,[nn 1]);
Y=Imivar(2,[m nn));
W=Imivar(2,[nn p]);
alpha=Imivar(1,[1 1]);

Imiterm([1 1 1 X],A,1,'s")
Imiterm([1 1 1 Y],B,1,'s")

Imiterm([113-Y],1,1)
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Imiterm([1 1 4 X],1,1)
Imiterm([1 15 Y],-B,1)
Imiterm([1 2 2 Q],1,A,'s")
Imiterm([1 2 2 W],-1,C,’s")
Imiterm([1 2 2 Z],1,1)
Imiterm([1 3 3 0],-2*inv(R))
Imiterm([1 35 Y],-1,1)
Imiterm([1 4 4 0],-2*inv(S))
Imiterm([1 55 M],-1,1)
Imiterm([-2 1 1 M],1,1)
Imiterm([-2 1 2 0],1)
Imiterm([-2 2 2 N],1,1)
Imiterm([-3 1 1 X],1,1)
Imiterm([-31 2 0],1)
Imiterm([-32 2 T],1,1)
Imiterm([-4 1 1 N],1,1)
Imiterm([-4 12 T],1,1)
Imiterm([-4 2 2 Z],1,1)
Imiterm([-5 1 1 alpha],1,1)
Imiterm([6 1 1 alpha],-1,1)
Imiterm([6 1 1 Q],0.5*¢_0',e_0)
Imiterm([6 1 2 0],x_0")
Imiterm([6 2 2 X],-2,1)
Imiterm([-7 11 Q],1,1)
LMISY S=getimis;
n=decnbr(LMISYS);
c=zeros(n,l);

for j=1:n
[Mj,Nj,X],Tj,alphaj]=defcx(LMISYS,j,M,N, X, T,alpha);

c(j)=alphaj+trace(M_0*Nj+N_0*Mj+X_0*Tj+T_0*Xj);

end

[copt,xopt]=mincx(LMISYS,c);
X=decZmat(LMISY S,xopt,X);
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Q=dec2mat(LMISYS,xopt,Q);
Z=dec2mat(LMISYS,xopt,Z);
M=dec2mat(LMISYS,xopt,M);
N=decZ2mat(LMISYS,xopt,N);
T=dec2mat(LMISYS,xopt,T);
Y=dec2mat(LMISYS,xopt,Y);
W=decZ2mat(LMISYS,xopt,W);
alpha=dec2mat(LMISYS,xopt,alpha);

evimi=evallmi(LMISY S,xopt);

[Ihs1,rhs1]=showlmi(evimi,1);
[Ihs2,rhs2]=showlmi(evimi,2);
[Ihs3,rhs3]=showlmi(evimi,3);
[Ihs4,rhs4]=showlmi(evimi,4);
[Ihs5,rhs5]=showlmi(evimi,5);
[Ihs6,rhs6]=showlmi(evimi,6);

—||Z§N
|

TReT

HzzgN

<
o
T
=<

W_0=W;
alpha_0O=alpha;
D1=max(eig(lhs1))<0;
D2=min(eig(rhs2))>0;
D3=min(eig(rhs3))>0;
D4=min(eig(rhs4))>0;
D5=min(eig(rhs5))>0;
D6=max(eig(lhs1))<0;

myDecision=D1&D2&D3&D4&D5&D6;
save initialData6074 nnmp ABCx 0e 0 SR k KO LO kO counter mySTOP X 0Q 0Z 0
M ON OT 0Y_0W 0 alpha 0 myDecision

File 3

EX_2 18 10 17 6074
while 1
EX_2 18 10 17 _6074_2;
if max(real(eig(M_0-X_0*Z_0*X_0)))<=0 && myDecision
KO=Y_0*inv(X_0);
LO=inv(Q_0)*W_0;
k0=k;
break;
end
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k=k+1;

if k>99

break;

end

counter=counter+1;

save initialData6074 nnmp ABCx_0e 0 S R k KO LO kO counter mySTOP X 0Q 0Z 0
M ON OT_0Y_0W._O0alpha 0 myDecision
end

1.2 Simulation Codes for Nominal Linear System

function y = trying_addmfile_2(myInput)

x1=mylnput(1);
x2=mylnput(2);
x1hat=myInput(3);
x2hat=myInput(4);

x=[x1;x2];

A=[00.5;0 1];

B=[0;0.5];

C=[10];

x_0=[1;0.5];

xhat_0=[1;0.5] ;

P=[42.5610 4.6125;
4.6125 31.5982];

Q=1.0e+07 *[1.7869 -0.3948;
-0.3948 0.1141];
K=[-1.7309 -10.1860];
L=[3.9500;15.6503];
e_0=x_0-xhat_0;

xhat=[x1hat;x2hat];
J=0.5*(x_0"*P*x_0+e_0*Q*e_0);
u= K*xhat;

xdot=A*x+B*u;

y=C*X;

yhat=C*xhat;
xhatdot=A*xhat+B*u+L*(y-yhat);

x1ldot=xdot(1,1);

x2dot=xdot(2,1);
x1hatdot=xhatdot(1,1);
x2hatdot=xhatdot(2,1);

y=[x1dot x2dot x1hatdot x2hatdot J u];
end
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Figure 11— Block diagram of a state feedback observer design variables for the nominal system

1.3 Linear Uncertain System

File 1

A=[00.5;0 1];
B=[0;0.5];
C=[10];
D=[0.5;0.3];
R=0.5;
S=[10;01];
x_0=[1;0.5];
xhat_0=[1;0.5];
e_0=x_0-xhat_0;
Ea=[0.1 0.2];
Eb=0.1;

k=1;
k0=0;

counter=0;
mySTOP=0;
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[nn,m]=size(B);
[p,nn]=size(C);
K0=zeros(m,nn);
LO=zeros(nn,p);
setlmis([])

X=Imivar(1,[nn 1]);
Q=Imivar(1,[nn 1]);
Z=Imivar(1,[nn 1]);
M=Imivar(1,[nn 1)]);
N=Imivar(1,[nn 1]);
T=Imivar(1,[nn 1]);
Y=Imivar(2,[m nn]);
W=Imivar(2,[nn p]);
epsl=Imivar(1,[1,1]);
eps2=Imivar(1,[1,1]);
alpha=Imivar(1,[1 1]);

Imiterm([1 1 1 X],A,1,'s")
Imiterm([1 1 1 Y],B,1,'s")
Imiterm([1 1 1 eps1],D',D)

Imiterm([1 1 3-Y],1,1)
Imiterm([1 1 4 X],1,1)
Imiterm([1 15 Y],-B,1)

Imiterm([1 1 6 X],1,Ea")

Imiterm([1 2 2 Q],1,A,'s")
Imiterm([1 2 2 W],-1,C,’s")
Imiterm([1 2 2 Z],1,1)
Imiterm([1 2 2 eps2],Ea’,Ea)

Imiterm([1 2 7 Q],1,D)

Imiterm([1 3 3 0],-2*inv(R))
Imiterm([1 35 Y],-1,1)

Imiterm([1 4 4 0],-2*inv(S))

Imiterm([1 55 M],-1,1)
Imiterm([1 5 6 -Y],1,Eb")

Imiterm([1 6 6 epsl],-1,1)

Imiterm([1 7 7 eps2],-1,1)
Imiterm([-2 1 1 M],1,1)
Imiterm([-2 1 2 0],1)
Imiterm([-2 2 2 N],1,1)
Imiterm([-31 1 X],1,1)
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Imiterm([-3 1 2 0],1)
Imiterm([-32 2 T],1,1)

Imiterm([-4 1 1 N],1,1)
Imiterm([-4 12 T],1,1)
Imiterm([-4 2 2 Z],1,1)

Imiterm([-5 1 1 alpha],1,1)

Imiterm([6 1 1 alpha],-1,1)
Imiterm([6 1 1 Q],0.5*¢_0',e_0)
Imiterm([6 1 2 0],x_0")
Imiterm([6 2 2 X],-2,1)

Imiterm([-7 11 Q],1,1)

LMISY S=getimis;
[copt,xopt]=feasp(LMISYYS);
X=dec2mat(LMISYS,xopt,X);
Q=dec2mat(LMISYS,xopt,Q);
Z=dec2mat(LMISYS,xopt,Z);
M=dec2mat(LMISYS,xopt,M);
N=dec2mat(LMISYS,xopt,N);
T=dec2mat(LMISYS,xopt, T);
Y=dec2mat(LMISYS,xopt,Y);
W=dec2mat(LMISYS,xopt,W);
alpha=dec2mat(LMISYS,xopt,alpha);
epsl=dec2mat(LMISYS,xopt,epsl);
eps2=dec2mat(LMISY'S,xopt,eps2);

evimi=evallmi(LMISYS,xopt);

[Ihs1,rhs1]=showlmi(evimi,1);
[Ihs2,rhs2]=showlmi(evimi,2);
[Ihs3,rhs3]=showlmi(evimi,3);
[Ihs4,rhs4]=showlmi(evimi,4);
[Ihs5,rhs5]=showlImi(evimi,5);
[Ihs6,rhs6]=showlmi(evimi,6);

-<|—||Z §|N|rOI><
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W_0=W,
alpha_O=alpha;
epsl _O=eps1,
eps2_0=eps2;

D1=max(eig(lhs1))<0;
D2=min(eig(rhs2))>0;
D3=min(eig(rhs3))>0;
D4=min(eig(rhs4))>0;
D5=min(eig(rhs5))>0;
D6=max(eig(lhs1))<0;

myDecision=D1&D2&D3&D4&D5&D6;
save initial1092017 nnmp ABCx 0e 0SR kKO LOKkO counter X 0XQ 0QZ 0ZM_ 0
MNONTOTY 0Y W _0W alpha 0 alpha epsl 0 epsl eps2 0 eps2 myDecision

File 2

load initial1092017 ;
setlmis([])

X=Imivar(1,[nn 1]);
Q=Imivar(1,[nn 1]);
Z=Imivar(1,[nn 1]);
M=Imivar(1,[nn 1]);
N=Imivar(1,[nn 1]);
T=Imivar(1,[nn 1]);
Y=Imivar(2,[m nn]);
W=Imivar(2,[nn p]);
epsl=Imivar(1,[1,1]);
eps2=Imivar(1,[1,1]);
alpha=Imivar(1,[1 1]);

Imiterm([1 1 1 X],A,L,'s)
Imiterm([1 11 Y],B,1,'s")
Imiterm([1 1 1 eps1],D',D)

Imiterm([1 1 3-Y],1,1)
Imiterm([1 1 4 X],1,1)

Imiterm([1 15 Y],-B,1)
Imiterm([1 1 6 X],1,Ea))

Imiterm([1 2 2 Q],1,A,'s")
Imiterm([1 2 2 W],-1,C,'s)
Imiterm([1 2 2 Z],1,1)
Imiterm([1 2 2 eps2],Ea’',Ea)

Imiterm([1 2 7 Q],1,D)
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Imiterm([1 3 3 0],-2*inv(R))
Imiterm([1 35 Y],-1,1)

Imiterm([1 4 4 0],-2*inv(S))

Imiterm([1 55 M],-1,1)
Imiterm([1 5 6 -Y],1,Eb")

Imiterm([1 6 6 eps1],-1,1)

Imiterm([1 7 7 eps2],-1,1)
Imiterm([-2 1 1 M],1,1)
Imiterm([-2 1 2 0],1)
Imiterm([-2 2 2 N],1,1)
Imiterm([-3 1 1 X],1,1)
Imiterm([-3 1 2 0],1)

Imiterm([-32 2 T],1,1)

Imiterm([-4 1 1 N],1,1)
Imiterm([-4 12 T],1,1)
Imiterm([-4 2 2 Z],1,1)

Imiterm([-5 1 1 alpha],1,1)
Imiterm([6 1 1 alpha],-1,1)
Imiterm([6 1 1 Q],0.5*e_0',e_0)

Imiterm([6 1 2 0],x_0")
Imiterm([6 2 2 X],-2,1)

Imiterm([-7 11 Q],1,1)
LMISY S=getimis;

n=decnbr(LMISYYS);
c=zeros(n,l);
for j=1:n

[M],Nj,X],Tj,alphaj]=defcx(LMISYS,},M,N, X, T,alpha);
c(j)=alphaj+trace(M_O0*Nj+N_0*Mj+X_0*Tj+T_0*X));
end

[copt,xopt]=mincx(LMISYS,c);
X=dec2mat(LMISYS,xopt,X);
Q=decZmat(LMISYS,xopt,Q);
Z=dec2mat(LMISYS,xopt,Z);
M=dec2mat(LMISYS,xopt,M);
N=dec2mat(LMISYS,xopt,N);
T=decZmat(LMISYS,xopt,T);
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Y=dec2mat(LMISYS,xopt,Y);
W=dec2mat(LMISY S,xopt,W);
alpha=dec2mat(LMISYS,xopt,alpha);
epsl=dec2mat(LMISY'S,xopt,epsl);
eps2=dec2mat(LMISY'S,xopt,eps2);

evimi=evallmi(LMISYS,xopt);

[Ihs1,rhs1]=showlmi(evimi,1);
[Ihs2,rhs2]=showlmi(evimi,2);
[Ihs3,rhs3]=showlmi(evimi,3);
[Ihs4,rhs4]=showlmi(evimi,4);
[Ihs5,rhs5]=showlmi(evimi,5);
[Ihs6,rhs6]=showlmi(evimi,6);
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alp_ha_O:’aIpha;
epsl_O=epsl,
eps2_0=eps2;

D1=max(eig(lhs1))<0;
D2=min(eig(rhs2))>0;
D3=min(eig(rhs3))>0;
D4=min(eig(rhs4))>0;
D5=min(eig(rhs5))>0;
D6=max(eig(lhs1))<0;

myDecision=D1&D2&D3&D4&D5&D6;

save initial1092017nnmp ABCx 0e 0 SR kKO LO kO counter X 0 XQ 0QZ 0ZM_0

MNONTOTY_O0OY W_0W alpha_0 alpha epsl 0 epsl eps2_0 eps2 myDecision ;
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File 3

EX1 1 11 2017 1;
while 1
EX1 1 11 2017 2;

if max(real(eig(M_0-X_0*Z_0*X_0)))<=0 && myDecision
X_0=X;
Q_0=Q;
KO=Y_0*inv(X_0);
LO=inv(Q_0)*W_0;
Z 0=Z;

W_0=W;
alpha_O=alpha;
epsl O=epsl,;
eps2_0=eps2;
kO=k;

break;
end
k=k+1;
if k>99

break;
end
counter=counter+1;
save initial1092017nnmp ABCx 0e 0SR kKO LOKkO counter X 0XQ 0QZ 0ZM 0
MNONTOTY_ 0Y W_0W alpha_0 alpha epsl 0 epsl eps2_0 eps2 myDecision
en

1.4 Simulation Codes for Linear Uncertain System

function y =uncertain_addmfile(myInput)
x1=mylnput(1);

x2=mylnput(2);

x1hat=myInput(3);

x2hat=myInput(4);

t=mylnput(5);

x=[x1;x2];

A=[00.5;0 1];
B=[0;0.5];
C=[10];
D=[0.5;0.3];
x_0=[1;0];
Ea=[0.1 0.2];
Eb=0.1;
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F=sin(t);
P=[42.5610 4.6125;4.6125 31.5982];

Q=1.0e+07 *[1.7869 -0.3948;-0.3948 0.1141];
dela=D*F*Ea;
delb=D*F*Eb:;

K=[-2.4085 -10.5507];

L= [5.7460;23.4037];

e_0=[0;0];

xhat=[x1hat;x2hat];
J=0.5*(x_0"*P*x_0+e_0*Q*e_0);

u= K*xhat;
xdot=(A+dela)*x+(B+delb)*u;

y=C*X;

yhat=C*xhat;
xhatdot=(A+dela)*xhat+(B+delb)*u+L*(y-yhat);
x1dot=xdot(1,1);

x2dot=xdot(2,1);
x1hatdot=xhatdot(1,1);
x2hatdot=xhatdot(2,1);

y=[x1dot x2dot x1hatdot x2hatdot J u];
end
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Figure 12 — Block diagram of a state feedback observer design variables for linear uncertain
system
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APPENDIX B
Theorem 1 is implemented with observer-based PD state feedback controller for linear nominal
system.

File 1

A=[00.5;0 1];

B=[0;0.5];

Kp =[ -1.7309 -10.1860];
C=[10];

[nn,m]=size(B);
L=[3.95;15.6503];

k=1;

k0=0;

setlmis([])

X=Imivar(1,[nn 1]);
Y=Imivar(2,[m nn]);
Q=Imivar(1,[nn 1]);
S=Imivar(1,[nn 1]);
M=Imivar(1,[nn 1]);
J=Imivar(1,[nn 1]);
Z=Imivar(1,[nn 1]);

Imiterm([1 1 1 X],A,1,'s);
Imiterm([1 1 1 X],B*Kp,1,'s");
Imiterm([1 1 1 -Y],-A,B",'s);
Imiterm([1 1 1 -Y],-B*Kp,B','s");

Imiterm([1 1 2 0],-B*Kp)
Imiterm([1 1 2 0],-A)
Imiterm([1 1 2 0],L*C)

Imiterm([1 1 3 Y],-B,1);
Imiterm([1 2 2 Q],A,1,'s);
Imiterm([1 2 2 Q],-L*C,1,'s");
Imiterm([1 2 2 Z],1,1);

Imiterm([1 3 3 S],-1,1);
Imiterm([-2 1 1 M],1,1);
Imiterm([-2 1 2 J],1,1);
Imiterm([-2 2 2 Z],1,1);
Imiterm([-3 1 1 S],1,1);
Imiterm([-3 1 2 0],1);
Imiterm([-3 2 2 M],1,1);

Imiterm([-4 1 1 X],1,1);
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Imiterm([-4 1 2 0],1);
Imiterm([-4 2 2 J],1,1);

Imiterm([-51 1 Q],1,1);

LMISY S=getimis;
[copt,xopt]=feasp(LMISYYS);

X=dec2mat(LMISY'S,xopt,X);
Y=dec2mat(LMISYS,xopt,Y);
Q=dec2mat(LMISYS,xopt,Q);
Z=dec2mat(LMISYS,xopt,Z);
M=dec2mat(LMISY S,xopt,M);
S=dec2mat(LMISYS,xopt,S);

evimi=evallmi(LMISYS,xopt);
[Ihs1,rhsl]=showlmi(evimi,1);
[Ihs2,rhs2]=showlmi(evimi,2);
[1hs3,rhs3]=showlmi(evimi,3);
[Ihs4,rhs4]=showlmi(evimi,4);
[1hs5,rhs5]=showlmi(evimi,5);

save initialDataObserver PD kpfixed nnmkkOABCLXX 0QQ 0ZZ 0MM 0JJ O
SSO0YY O0OKp

File 2

load initialDataObserver_PD_kdfixed;
setlmis([])

X=Imivar(1,[nn 1]);
Y=Imivar(2,[m nn]);
Q=Imivar(1,[nn 1)]);
S=Imivar(1,[nn 1]);
M=Imivar(1,[nn 1]);
J=Imivar(1,[nn 1]);
Z=Imivar(1,[nn 1]);

Imiterm([1 1 1 X],A1,'s);
Imiterm([1 1 1 X],B*Kp,1,'s");
Imiterm([1 1 1 -Y],-A,B")'s);
Imiterm([1 1 1 -Y],-B*Kp,B','s);
Imiterm([1 1 2 0],-B*Kp)
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Imiterm([1 1 2 0],-A)
Imiterm([1 1 2 0],L*C)
Imiterm([1 1 3 Y],-B,1);
Imiterm([1 2 2 Q],A,1,'s);
Imiterm([1 2 2 Q],-L*C,1,'s);
Imiterm([1 2 2 Z],1,1);
Imiterm([1 3 3 S],-1,1);
Imiterm([-2 1 1 M],1,1);
Imiterm([-2 1 2 J],1,1);
Imiterm([-2 2 2 Z],1,1);
Imiterm([-31 1 S],1,1);
Imiterm([-3 1 2 0],1);
Imiterm([-3 2 2 M],1,1);
Imiterm([-4 1 1 X],1,1);
Imiterm([-4 1 2 0],1);
Imiterm([-4 2 2 J],1,1);
Imiterm([-5 1 1 Q],1,1);
LMISY S=getimis;
n=decnbr(LMISYYS);
c=zeros(n,1);
for j=1:n
[M],J]j,X],Sj]=defcx(LMISYS,j,M,J, X,S);
c(j)=trace(S_0*Mj+M_0*Sj+X_0*Jj+J_0*X]);
end
[copt,xopt]=mincx(LMISYS,c);
X=dec2mat(LMISYS,xopt, X);
Y=dec2mat(LMISYS,xopt,Y);
Q=dec2mat(LMISYS,xopt,Q);
Z=dec2mat(LMISYS,xopt,Z);
M=dec2mat(LMISY S,xopt,M);
S=dec2mat(LMISYS,xopt,S);
J=dec2mat(LMISYS,xopt,J);
evimi=evallmi(LMISYS,xopt);

[Ihs1,rhs1]=showlmi(evimi,1);
[Ihs2,rhs2]=showlmi(evimi,2);
[Ihs3,rhs3]=showlmi(evimi,3);
[Ihs4,rhs4]=showlmi(evimi,4);
[Ihs5,rhs5]=showlImi(evimi,5);

save initialDataObserver_PD_kdfixed nnmkkOABCLXX 0QQ 0ZZ 0MM 01
JOSSOYY_OKp
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File 3

ex_observerkdsolved 5 3 2018

while 1
ex_observedkdsolved 5 3 2018 2;
if max(real(eig(S_0-X_0*Z_0*X_0)))<=0
Kd=Y*inv(X);
k0=k;
break;
end
k=k+1;
if k>99
break;
end
counter=counter+1;
save initialDataObserver PD_kdfixed nnmkkOABCLXX 0QQ 0ZZ 0MM 0JJ O
SSO0YY OKp
end
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APPENDIX C

Robust guaranteed cost observer-based PD state feedback codes applied with algorithm 1 and

lemma 3.

A=[00.5;0 1];
B=[0;0.5];
C=[10];
R=0.5;
S=[10;0 1];

%case3

Kp =[-1.7309 -10.1860];%Kp fixed from nominal system
Kd=[-0.2376 -0.8788];
[nn,m]=size(B);
%L=[-4,8];
L=[3.95;15.6503];

k=1;

k0=0;

x_0=[1;0.5];
xhat_0=[1;0.5];
e_0=x_0-xhat_0;
Ab=(A-L*C);
Ac=inv(1-B*Kd);
Ad=(A+B*Kp);

setlmis([])

X=Imivar(1,[nn 1]);
alpha=Imivar(1,[1 1]);
Q=Imivar(1,[nn 1]);

Imiterm([1 1 1 X],Ac*Ad,1,'s")
Imiterm([1 1 2 X],-Ac*B*Kp,1)

Imiterm([1 1 2 X],-Ac*B*Kd*Ab,1)

Imiterm([1 1 3 X],-1,Ad*Ac*Kd")
Imiterm([1 1 4 X],-1,-Kp")
Imiterm([1 1 5 X],-1,1)

Imiterm([1 2 2 Q],Ab,1,'s")

Imiterm([1 2 2 0],0.5*Ab™*Kd*R*Kd*Ab)

Imiterm([1 2 2 0],0.5*Ab*Kd*B™*Ac*Kd*R*Kd*Ac*B*Kd*Ab)
Imiterm([1 2 2 0],0.5*Kp*R*Kp)

Imiterm([1 3 3 0],-2*inv(R))
Imiterm([1 4 4 0],-2*inv(R))
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Imiterm ([1 55 0],-2*inv(S))
Imiterm([-2 1 1 alpha],1,1)

Imiterm([3 1 1 alpha],-1,1)
Imiterm([3 1 1 Q],0.5*¢_0',e_0)
Imiterm([3 1 2 0],x_0")
Imiterm([3 2 2 X],-2,1)

Imiterm([-4 11 Q],1,1)

LMISY S=getimis;

n=decnbr(LMISYYS);
c=zeros(n,l);

for j=1:n
[alphaj]=defcx(LMISYSS,j,alpha);
c(j)=alphaj;

end

[copt,xopt]=mincx(LMISYS,c);

X=dec2mat(LMISY'S,xopt,X);
Q=dec2mat(LMISYS,xopt,Q);
alpha=dec2mat(LMISYS,xopt,alpha);
evimi=evallmi(LMISYS,xopt);

[Ihs1,rhs1]=showlmi(evimi,1);
[Ihs2,rhs2]=showlmi(evimi,2);
[1hs3,rhs3]=showlmi(evimi,3);

1.1 Simulation Codes

function y = guaranteedcost_pd(mylInput)

x1=myInput(1);
x2=myInput(2);
x1hat=myInput(3);
x2hat=myInput(4);
xlhatdot=mylnput(5);
x2hatdot=myInput(6);

x=[x1;x2];




o1

A=[00.5;0 1];

B=[0;0.5];

C=[10];

x_0=[1;0.5];

xhat_0=[1;0.5] ;
xhatdot=[x1hatdot;x2hatdot];
P=[3.5470 3.9180;3.9180 5.6958];

Q=1.0e+08 *[0.2465 0.6942;0.6942 6.8935];

Kp=[-1.7309 -10.1860];
Kd=[-0.2376 -0.8788];

L=[3.9500;15.6503];
%L=[-4,8];
e_0=x_0-xhat_0;
xhat=[x1hat;x2hat];

J=0.5*(x_0"*P*x_0+e_0"*Q*e_0);
u= Kp*xhat+Kd*xhatdot;

%u= Kp*xhat;

xdot=A*x+B*u;

y=C*x;

yhat=C*xhat;
xhatdot=A*xhat+B*u+L*(y-yhat);

x1dot=xdot(1,1);
x2dot=xdot(2,1);
x1hatdot=xhatdot(1,1);
x2hatdot=xhatdot(2,1);

y=[x1dot x2dot x1hatdot x2hatdot J u];
end
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