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ABSTRACT 

 

DESIGN OF ROBUST GUARANTEED COST OBSERVER-BASED 

CONTROLLER FOR LINEAR UNCERTAIN SYSTEMS 

 

 In this thesis, robust guaranteed cost observer-based state feedback controller design problem 

has been investigated for a linear uncertain system with norm-bounded uncertainty parameters, 

which has been important for several systems. This is employed by Lyapunov stability theorem 

that the criteria of robust stabilization are proposed within the framework of linear matrix 

inequalities (LMI). The feasibility problem of the stabilization criteria with memoryless 

feedback is solved easily using the technique of cone complementary minimization algorithm.  

Also, the stability criteria of output feedback is convex in the shape of linear matrix inequalities. 

Moreover, minimization of guaranteed cost was obtained via cone complementary algorithm.  

This thesis also proposes the design of the guaranteed cost of observer-based proportional 

derivative state feedback controller for linear nominal systems. The minimization of the 

performance index is satisfied to get a feasible solution than the proposed observer-based 

controller for the linear nominal system. 

 Finally, numeric examples have been presented to illustrate the stabilization that introduced 

approach provides considerable improvement. 

Keywords: Robust control, Lyapunov stability theorem, guaranteed cost control, observer-

based design, PD feedback  
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ÖZET 

 

DOĞRUSAL BELİRSİZ SİSTEMLER İÇİN GÖZETLEYİCİ TABANLI 

DAYANIKLI GARANTİLİ MALİYET DENETLEYİCİ TASARIMI 

Bu tezde, birçok sistem için önemli olan doğrusal belirsiz sistemler için gözetleyici tabanlı 

dayanıklı garantili maliyet denetleyici tasarımı incelendi. Lyapunov kararlılık teoremi, önerilen 

dayanıklı kararlılığın kriteri ile doğrusal matris eşitsizlik (LMI) çerçevesinde uygulandı. 

Hafızasız geri beslemeli ile kararlılık kriterinin geçerlilik problemi koni tamamlamalı 

minimizasyon algoritmasının uygulanmasıyla kolayca çözüm elde edildi. Ayrıca, doğrusal 

matris eşitsizlik bakımından geri beslemeli sonuç kararlılık kriteri dışbükeydir. Buna ek olarak 

garantili maliyet minimizasyonu koni tamamlamalı minimizasyon algoritması aracılıyla elde 

edildi. 

Bu tez ayrıca doğrusal sistemler için garanti maliyet gözetleyici esaslı orantısal türev geri 

beslemeli kontrolör dizaynını sunmaktadır. Önerilen doğrusal sistem gözetleyici esaslı 

tasarımına göre performans indeks minimizasyon sonucu daha olumlu sonuç elde edilmiştir. 

Sonuç olarak nümerik örnekler sunulmuş olup, tanımlanan kararlılık yaklaşımının önemli bir 

gelişme gösterdiği sonucu elde edilmiştir. 

Anahtar kelimeler: Dayanıklı kontrol, Lyapunov kararlılık teoremi, garantili maliyet kontrol, 

gözetleyici esaslı tasarım, PD geri besleme 

 

 

  



vii 

 

TABLE OF CONTENTS  
 

 
ABSTRACT ............................................................................................................................... v 

ÖZET ......................................................................................................................................... vi 

TABLE OF CONTENTS ......................................................................................................... vii 

LIST OF FIGURES ................................................................................................................. viii 

LIST OF SYMBOLS / ABBREVIATIONS ............................................................................. ix 

1. INTRODUCTION .............................................................................................................. 1 

1.1 Literature Reviews ............................................................................................................ 2 

2. PRELIMINARIES and PROBLEM STATEMENT ........................................................... 4 

2.1 Lyapunov Stability Theory ............................................................................................... 4 

2.2 Problem Statement ............................................................................................................ 6 

3. DESIGN of GUARANTEED COST OBERVER-BASED STATE FEEDBACK 

CONTROLLER  

3.1 Design of Robust Guaranteed Cost Observer-Based State Feedback Controller for 

Nominal Linear System .......................................................................................................... 8 

3.2 Design of Robust Guaranteed Cost Observed-Based State Feedback Controller for 

Linear Uncertain System ...................................................................................................... 12 

4. DESIGN of OBSERVER-BASED PD STATE FEEDBACK CONTROLLER .............. 17 

4.1 Design of Observer-Based PD State Feedback Controller for Nominal Linear System 17 

4.2 Design of Guaranteed Cost Observer-Based State Feedback PD Controller for Nominal 

Linear System ....................................................................................................................... 20 

5. NUMERICAL EXAMPLES ................................................................................................ 23 

6.CONCLUSION ..................................................................................................................... 30 

APPENDIX A ....................................................................................................................... 31 

1.1 Nominal Linear System ............................................................................................. 31 

1.2 Simulation Codes for Nominal Linear System .......................................................... 36 

1.3 Linear Uncertain System ........................................................................................... 37 

1.4 Simulation Codes for Linear Uncertain System ........................................................ 43 

APPENDIX B ....................................................................................................................... 45 

APPENDIX C ....................................................................................................................... 49 

REFERENCES ......................................................................................................................... 53 

 



viii 

 

LIST OF FIGURES  
 

Figure 1–    Observer design state feedback block diagram ....................................................... 7 

Figure 2 –   Control law for the nominal system ...................................................................... 24 

Figure 3 –   A state feedback observer design variable of x1 for the nominal system ............. 24 

Figure 4  –  A state feedback observer design variable of x2 for the nominal system ............. 25 

Figure 5 –   Control law for an uncertain system ..................................................................... 26 

Figure 6 –   A state feedback observer design variable of x1 for an uncertain system ............ 26 

Figure 7 –   A state feedback observer design variable of x2 for uncertain system ................. 27 

Figure 8 –   Control law for a nominal system ......................................................................... 28 

Figure 9 –   A PD state feedback observer design variable of x1 for uncertain system ........... 29 

Figure 10 – A PD state feedback observer design variable of x2 for uncertain system ........... 29 

Figure 11–  Block diagram of a state feedback observer design variables for the nominal 

system ....................................................................................................................................... 37 

Figure 12 – Block diagram of a state feedback observer design variables for linear uncertain 

system ....................................................................................................................................... 44 

Figure 13 – Block diagram of a PD state feedback observer design variables for linear 

uncertain system. ...................................................................................................................... 52 

 

file:///C:/Users/yılmazseryar/Desktop/thesis/THESİSSS.docx%23_Toc512277506


ix 

 

LIST OF SYMBOLS / ABBREVIATIONS 

 

LMI           Linear Matrix Inequalities 

Diag           Diagonal Square Matrix  

Tr                Trace  



1 

 

1. INTRODUCTION 

 

The robust controller has drawn attention for linear uncertain systems since last decades 

because the purpose of the robust controller design is good steady-state and error modeling. 

One of the best application to obtain a feasible solution for uncertain models is Lyapunov 

stability theorem within the framework of linear matrix inequalities (LMIs). The Lyapunov 

design has been a significant improvement for linear uncertain systems. The aim of the 

Lyapunov stability theory is that the system’s energy is dissipating, then the system reaches to 

equilibrium point which means the system will be stabilized for abundant systems. The basic 

idea has been showed several works to get a feasible solution in LMIs for linear uncertain 

systems. 

The guaranteed cost controller for uncertain modeling has been a hot topic to remark in recent 

years. The purpose of design a guaranteed cost controller is that closed-loop system obtains 

stability with an upper bound parameter. We investigated that the design of the guaranteed cost 

robust observer-based state feedback controller design problem for a linear uncertain system 

with norm-bounded uncertainties, which has been a significant influenced on several dynamics 

of systems. This is applied by the approach of Lyapunov stability theorem that the criteria of 

robust stabilization are presented within the framework of linear matrix inequalities (LMI) via 

Schur complement [8]. The feasibility problem of the stabilization criteria with observer-based 

state feedback controller is solved easily due to the technique of cone complementary 

minimization algorithm [9].  Moreover, the output feedback stability criteria is convex within 

the shape of the linear matrix inequalities. Also, minimization of guaranteed cost has obtained 

via cone complementary algorithm.  

We designed the stabilization of the observer-based PD state feedback controller to obtain a 

feasible solution for linear nominal systems. Then, we extended the findings that add the 

guaranteed cost function to minimize the performance index. Its purpose is that we compare the 

results both observer-based controller in linear nominal systems and observer-based PD state 

feedback for linear nominal modeling. 

In this paper, a robust stability is analyzed with guaranteed cost observer-based controller for 

linear uncertain systems. Moreover, the guaranteed cost of observer-based proportion derivate 

state feedback controller has been studied because of the Lyapunov stability theorem. The 
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criteria of stabilization are formulated within the context of LMIs. It is demonstrated the 

minimization guaranteed cost in terms of cone complementary theory. Finally, numerical 

examples which are both nominal and uncertain parameters have been illustrated proposed 

stabilization that introduced approach provides considerable improvement with an observer-

based controller. The algorithm of the feasible solution and block diagrams is shown in 

Appendix A and B respectively. The last example, its contains results which are the design of 

an observer-based PD feedback controller for linear nominal systems. The feasible solution and 

block diagrams are illustrated with algorithm 1 and Lemma 3 in Appendix C. 

1.1 Literature Reviews 

All dynamical systems are related not only in physical but also in engineering area with the 

subject of uncertainties that are not well-known exactly because of the modeling errors. Robust 

controllers which apply to determine stability criteria for the linear uncertain system have 

gained considerably attention since last decades. A Riccati Matrix approach has been applied 

in [1] with the conception of quadratic guaranteed cost control for linear uncertain systems so 

as to control the robust controller with a guaranteed cost regard to the upper bounding by initial 

condition. A Lyapunov approach was introduced in [2] to improve the guaranteed cost 

controllers that lead to stability both in the time domain and in the frequency domain. 

Recently, it has aroused a lot of interest in reducing abundant problems through optimization 

involving linear matrix inequality in [4]. Linear matrix inequality (LMI) approach has been 

proposed in [3] for the design of robust control that supports the minimization of guaranteed 

cost for linear uncertain systems with convex optimization within the framework of LMI 

conditions. A robust guaranteed cost controller system has been introduced for the linear 

uncertain time-delay system in [4] which guarantees to minimize upper bound of the cost with 

a convex optimization.  

The design of the optimal guaranteed cost has been received in [5] for a class of linear time-

delay system with norm-bounded uncertainties. A guaranteed cost is obtained via LMI. The 

design of robust control for the nonlinear uncertain system is obtained because of the fact that 

employing a guaranteed cost approach has been introduced in [6] LMIs optimization with off-

the-shelf algorithms. 

 The condition for a guaranteed cost in [7] state feedback controller is converted within the 

framework of LMI conditions depend on the Lyapunov stability theorem for the linear uncertain 

systems and the guaranteed cost has been minimized. The problem of the decentralized robust 
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guaranteed cost control has confirmed to minimize the performance index is given in approach 

of LMI conditions for linear uncertain systems [11]. A sufficient condition with the guaranteed 

cost controllers is proposed within the framework of LMIs. As long as this condition is found 

to be a feasible solution, the state feedback control law gain matrices can be obtained by means 

of convex optimization [12]. 

An observer design controller is useful to apply many the state of dynamic systems. Thus, a 

robust observer-based control is satisfied than a state feedback controller [13-17]. The problem 

of dynamic output observer-based state feedback controller is proposed for nonlinear delay 

systems. It has been provided to stabilize via LMIs approach [18]. 

Design of the observer-based controller for linear uncertain time-delay systems [19] has been 

minimized the optimal guaranteed cost by a framework of LMI approach. 

There have been more researches about the PD state feedback to stabilize the dynamic of the 

system. Thus, the use of PD controller has been essential for achieving the control systems and 

the development of system performance [20-24]. It is considered that guaranteed cost is 

formulated to utilize to get minimization of the norm of gain controller [20]. Moreover, this 

paper proposed the PD feedback controller for the linear uncertain systems [24]. It has been 

illustrated to make the small gain controller. 

The extended observer- based PD controller are useful for the stabilization of spacecraft [25]. 

It is obtained to succeed better control effect. 
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2. PRELIMINARIES and PROBLEM STATEMENT 

 

2.1 Lyapunov Stability Theory  

The Russian mathematician A. M. Lyapunov studied the problem of stability of dynamical 

systems around 1890. When he proposed significant works we call today Lyapunov Theory. 

There are two methods of which the second method has found extensive application in the study 

of the stability of control systems [8], [26]. 

The positive definite function is described as the following term,  

𝑉 𝑅𝑛 → 𝑅   

a function ∀𝑥 ∈ 𝑅𝑛 for 𝑉(𝑥) ≥ 0  

and   𝑉(𝑥) = 0 ⟺ 𝑥 = 0 so it is positive-definite. 

The negative definite function is defined as 

A function  𝑉 𝑅𝑛 → 𝑅  is negative definite functions  

𝑉(𝑥) ≤ 0  for all x  

𝑉(𝑥) = 0 if and only if 𝑥 = 0 all sublevel set of V is bounded  

The positive semidefinite function is described, 

If   

                                        ∀𝑥 ∈ 𝑅𝑛  𝑉(𝑥) ≥ 0 

𝑉(𝑥) =  0 where 𝑥 ≠ 0 Thus, this function is positive semidefinite 

This function is negative semidefinite is given by  

if 

                                        𝑉(𝑥) ≤ 0 ∀𝑥 ∈ 𝑅𝑛 

𝑉(𝑥) =  0 where 𝑥 ≠ 0 

                                     𝑥̇ = 𝐴𝑥 ;     𝑥(𝑡) = 𝑥0                                                                         (2.1)                                       

The positive definite Lyapunov function is selected as  

                                     𝑉 = 𝑥𝑇(𝑡)𝑃𝑥(𝑡)                                                                                                       (2.2) 
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It is the nominal linear system of equations which is stable if there exists positive definite-

matrix P such as  

                                          𝐴𝑇𝑃 + 𝑃𝐴 < 0                                                                               (2.3)                                                                     

 where 𝑃 > 0   

Hence, this system is asymptotically stable. 

Proof 

                                             𝑥̇ = 𝐴𝑥                                                                                      (2.4)                                     

                                            𝑥̇𝑇 = 𝑥𝑇𝐴𝑇                                                                                       (2.5)                                                

                                            𝑉 = 𝑥𝑇(𝑡)𝑃𝑥(𝑡)                                                                                   (2.6)                                                              

Derive an equation 

                                           𝑉 =
𝑑

𝑑𝑡
[𝑥𝑇(𝑡)𝑃𝑥(𝑡)]                                                                                (2.7)                                                      

 We get, 

                                          𝑉̇(𝑥) = 𝑥̇𝑇𝑃𝑥 + 𝑥𝑇𝑃𝑥̇                                                                        (2.8)                                                         

 Substituting in (2.5) into (2. 8), we get  

                                           𝑥𝑇𝐴𝑇𝑃𝑥 + 𝑥𝑇𝑃𝐴𝑥                                                                      (2.9)                                                                          

                                          𝑥𝑇[𝐴𝑇𝑃 + 𝑃𝐴]𝑥 < 0                                                                   (2.10)                                            

                                           𝐴𝑇𝑃 + 𝑃𝐴 < 0                                                                                 (2.11)                                             

Hence, the nominal linear system is proved.  

Indeed, it is selected 𝑄 = 𝑄𝑇  >  0 which is symmetric positive definite matrix we get, 

                                        𝐴𝑇𝑃 + 𝑃𝐴 = −𝑄                                                                              (2.12)                                                            

for the matrix P which is guaranteed to be a positive-definite  matrix 

The aim of this theorem is that there is a constantly decreasing decisive positive function goes 

to zero. 𝑉̇(𝑥) must be a negative matrix 



6 

 

Namely, with ever initial condition 𝑡 → ∞ for  𝑥(𝑡) → 0 . 

We cannot say that the system is unstable when the above condition is not satisfied. Maybe, we 

select other Lyapunov function 𝑉(𝑥) that may provide a feasible solution. However, 𝑉̇(𝑥) is 

found positive definite matrix or positive semidefinite matrix we can say that this system is 

unstable. 

 

2.2 Problem Statement 

Considering a class of linear uncertain system is described 

                      𝑥̇(𝑡) = [𝐴 + ∆𝐴(𝑡)]𝑥(𝑡) + [𝐵 + ∆𝐵(𝑡)]𝑥(𝑡)𝑢(𝑡)                                                  (2.13)                                                                      

                      𝑦(𝑡) = 𝐶𝑥(𝑡)                                                                                                                             (2.14)                                                                       

  where , 𝑥(𝑡)  ∈  𝑅𝑛 is the state vector, 𝑢(𝑡) ∈ 𝑅𝑚𝑥𝑝 is the control input, 𝑦(𝑡)  ∈  𝑅𝑛𝑥𝑝 is 

output vector, 𝐴 ∈  𝑅𝑛𝑥𝑛  and  B ∈  Rnxm are constant system matrixes, 𝐶 ∈  𝑅𝑝𝑥𝑛 is the 

constant output matrix and ∆𝐴(𝑡)  ∆𝐵(𝑡) represent the uncertainty matrix which are considered 

to be of following form 

                      [∆𝐴(𝑡) ∆𝐵(𝑡)]  =  𝐷𝐹(𝑡)[𝐸𝑎 𝐸𝑏]                                                                      (2.15)                                                                                                      

where 𝐷, 𝐸𝑎 , 𝐸𝑏 are unknown constant matrices with relevant dimensions and F(t) is uncertain 

matrix with Lebesgue measurable elements satisfying 

                                𝐹𝑇(𝑡)𝐹(𝑡) ≤ 𝐼                                                                                         (2.16)                                                                      

A quadratic performance index for a linear system is introduced as follows 

                  𝐽 =
1

2
∫ [𝑥𝑇(𝑡)𝑆𝑥(𝑡) + 𝑢𝑇(𝑡)𝑅𝑢(𝑡)

∞

0
]𝑑𝑡                                                                               (2.17)                                                                                         

where the S and R are positive-definite real symmetrical matrixes to be stated properly. 

Consider the system (2.13) with performance index (2.17) and observer-based control law 

(2.18) satisfies to a feasible solution where 𝑃 > 0.Thus, this system is stable. 

We assume that a state feedback controller is introduced by using state estimate of 𝑥 

                                 𝑢(𝑡) = 𝐾𝑥̂(𝑡)                                                                                               (2.18)                                                                                       

where K ∈ Rnxn is the control gain matrix and 𝑥̂(𝑡)  is the estimate of 𝑥(𝑡) governed by the 

following  
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                            𝑥̇̂(𝑡) = 𝐴𝑥̂(𝑡) + 𝐵𝑢(𝑡) + 𝐿[(𝑦(𝑡) − 𝑦̂(𝑡)]                                                            (2.19)                                                                                                           

where 𝐿 ∈ 𝑅𝑛𝑥𝑝 is the observer feedback matrix [26] 

Hence, the error dynamics is obtained as observer dynamics 

                             𝑒̇(𝑡) = (𝐴 − 𝐿𝐶) 𝑒(𝑡)                                                                                  (2.20)                                                                                                      

where 

                              𝑒(𝑡) = 𝑥(𝑡) − 𝑥̂(𝑡)                                                                                    (2.21)                                                         

                              𝑦(𝑡) = 𝐶𝑥(𝑡)  and 

                              𝑦̂(𝑡) = 𝐶𝑥̂(𝑡)                                                                                              (2.22) 

Substituting (2.22), (2.21), (2.20) into (2.19) we obtain the following term  

                𝑥̇̂(𝑡) = 𝐴𝑥̂(𝑡) + 𝐵𝐾𝑥̂(𝑡) + 𝐿(𝐶𝑥(𝑡) − 𝐶𝑥̂(𝑡))                                                                  (2.23) 

 We can rewrite the following term  

                  (
𝑥̇
𝑥̇̂
) = (

𝐴 𝐵𝐾
𝐿𝐶 𝐴 + 𝐵𝐾 − 𝐿𝐶

) (
𝑥
𝑥̂
)                                                                              (2.24) 

The observer design dynamic system is obtained depending on the error dynamics. Our purpose 

select L so as to e(t) → 0 as t → ∞. Therefore, it is supposed that this system is equivalent to 

stability in (2.24). 
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Figure 1– Observer design state feedback block diagram  
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3. DESIGN of ROBUST GUARANTEED COST OBSERVER-BASED 
STATE FEEDBACK CONTROLLER 

 

We investigated the guaranteed cost observer-based state feedback controller for nominal linear 

system and linear uncertain system in this section. 

3.1 Design of Robust Guaranteed Cost Observer-Based State Feedback Controller for 

Nominal Linear System 
 

The nominal system is that there consists of no uncertainty parameters described in (3.1). 

Namely, ∆𝐴(𝑡) = 0 and ∆𝐵(𝑡) = 0 

                                   𝑥̇(𝑡) = [𝐴 + ∆𝐴(𝑡)]𝑥(𝑡) + [𝐵 + ∆𝐵(𝑡)]𝑥(𝑡)𝑢(𝑡)                                         (3.1)                       

The following lemma 1 is demonstrated the result of design guaranteed cost observer-based 

controller for the nominal linear system  

Lemma 1  

Given real and symmetric positive definite matrices 𝑅 and 𝑆, if there exist real and symmetric 

positive definite matrices X, Q ,matrices Y, W and positive scalar 𝛼 all with convenient 

dimensions satisfying, 

                              Ʃ =

[
 
 
 
 
Ʃ11 0 𝑌𝑇 𝑋 −𝐵𝑌
∗  Ʃ22 0 0 0

∗ ∗ −2𝑅−1 0 −𝑌
∗ ∗ ∗ −2𝑆−1 0
∗ ∗ ∗ ∗ −𝑋𝑍𝑋]

 
 
 
 

< 0                                             (3.2a)                                    

                                          [𝛼 + 0.5𝑒𝑇(0)𝑄𝑒(0) 𝑥𝑇(0)
∗ −2𝑋

] < 0                                                 (3.2b) 

where   Ʃ11 = 𝐴𝑋 + 𝑋𝐴𝑇 +  𝐵𝑌 + 𝑌𝑇𝐵𝑇, Ʃ22 =  𝑄𝐴 + 𝐴𝑇𝑄 − 𝑊𝐶 − 𝐶𝑇 𝑊𝑇 + 𝑍  

then, a stabilizing observer-based state feedback controller gain is obtained as 𝐾 = 𝑌𝑋−1. 

Proof 

We select the Lyapunov function for the nominal system in the following form  

                                                𝑉(𝑥(𝑡), 𝑡) = 𝑥𝑇(𝑡)𝑃𝑥(𝑡)+𝑒𝑇(𝑡)𝑄𝑒(𝑡)                                        (3.3)                                                          



9 

 

P and Q are positive symmetric matrixes or positive semidefinite matrixes and we can also add 

guaranteed cost function described (2.17) we obtain, 

                                          𝑉̇(𝑥(𝑡), 𝑡) +
1

2
𝑥𝑇𝑆𝑥 +

1

2
 𝑢𝑇(𝑡)𝑅𝑢(𝑡)                                           (3.4)                                         

Substituting control law defined (2.18) into (3.4) allows calculating 

                            2𝑥𝑇(𝑡)𝑃𝑥̇(𝑡) + 2𝑒𝑇(𝑡)𝑄𝑒̇(𝑡) + 
1

2
𝑥𝑇𝑆𝑥 +

1

2
𝑥̂𝑇(𝑡)𝐾𝑇𝑅𝐾𝑥̂(𝑡)                           (3.5)       

To substitute 𝑥̂(𝑡) = 𝑥(𝑡) − 𝑒(𝑡), the equation in (3.5) is rewritten taking into consideration 

(3.1), (2.20)   we get,   

                           2𝑥𝑇(𝑡)𝑃[ 𝐴𝑥(𝑡) − 𝐵𝐾𝑒(𝑡) + 𝐵𝐾𝑥(𝑡)] + 2𝑒𝑇(𝑡) 𝑄(𝐴 − 𝐿𝐶) 𝑒(𝑡) +
1

2
𝑥𝑇𝑆𝑥 +

                                         
1

2
𝑥̂𝑇(𝑡)𝐾𝑇𝑅𝐾𝑥̂(𝑡) =  χ𝑇(𝑡)𝜓 χ(𝑡)                                                        (3.6)        

where                                                      

χ = [𝑥𝑇 𝑒𝑇]𝑇 

We get a bilinear matrix inequality (BMI) as the following term        

                                        𝜓 =

[
 
 
 
 
 
 

𝑃𝐴 + 𝐴𝑇𝑃
+ 𝑃𝐵𝐾 + 𝐾𝑇𝐵𝑇 𝑃

+   
1

2
   𝑆

−𝑃𝐵𝐾 −
1

2
𝐾𝑇𝑅𝐾

∗    

 𝑄𝐴 + 𝐴𝑇𝑄

−𝑊𝐶 − 𝐶𝑇 𝑊𝑇

+ 
1

2
  𝐾𝑇𝑅𝐾 ]

 
 
 
 
 
 

                               (3.7) 

With L = Q−1𝑊 . In order to guarantee (3.2) to be less than zero, we need to be satisfying 

                                                                     𝜓 < 0                                                                           (3.8) 

If we apply Schur complement [8] to the BMI Then, we get an equivalent LMI 

 

                            𝜓 =

[
 
 
 
 
 
 

 𝑃𝐴 + 𝐴𝑇𝑃
+ 𝑃𝐵𝐾 + 𝐾𝑇𝐵𝑇 𝑃 

+   
1

2
 𝑆

−𝑃𝐵𝐾 𝐾𝑇

∗
 𝑄𝐴 + 𝐴𝑇𝑄

−𝑊𝐶 − 𝐶𝑇  𝑊𝑇
−𝐾𝑇

∗ ∗ −2𝑅−1]
 
 
 
 
 
 

                                         (3.9) 
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To represent 𝐾𝑋 = 𝑌 where 𝑋 = 𝑃−1 we implement a congruent transformation via pre-and 

post-multiplying (3.9) with 𝑑𝑖𝑎𝑔 {𝑋, 𝐼, 𝐼}  to obtain 

 

                         

[
 
 
 
 
 
 

 𝐴𝑋 + 𝑋𝐴𝑇

+ 𝐵𝑌 + 𝑌𝑇𝐵𝑇

+  
1

2
   𝑋𝑆𝑋

−𝐵𝑌𝑋−1 𝑌𝑇

∗  
 𝑄𝐴 + 𝐴𝑇𝑄

−𝑊𝐶 − 𝐶𝑇  𝑊𝑇
−𝑋−1𝑌𝑇

∗ ∗ −2𝑅−1 ]
 
 
 
 
 
 

 < 0                                           (3.10)                                                                                                     

After we applied Schur complement [8] in (3.10) we get, 

            Ω =  

[
 
 
 
 
 

 𝐴𝑋 + 𝑋𝐴𝑇

+ 𝐵𝑌 + 𝑌𝑇𝐵𝑇     −𝐵𝑌𝑋−1 𝑌𝑇 𝑋

∗
 𝑄𝐴 + 𝐴𝑇𝑄

−𝑊𝐶 − 𝐶𝑇 𝑊𝑇
−𝑋−1𝑌𝑇 0

∗ ∗ −2𝑅−1 0
∗ ∗ ∗ −2𝑆−1]

 
 
 
 
 

 <  0                    (3.11)      

 

Let us reexpress Ω in the following form 

                                                                          Ω = Ω0 + Ω1
𝑇+Ω1                                                  (3.12)                                                                       

where        

            Ω0 =

[
 
 
 
 
 

 𝐴𝑋 + 𝑋𝐴𝑇

+ 𝐵𝑌 + 𝑌𝑇𝐵𝑇 0 𝑌𝑇 𝑋

∗
 𝑄𝐴 + 𝐴𝑇𝑄

−𝑊𝐶 − 𝐶𝑇  𝑊𝑇
0 0

∗ ∗ −2𝑅−1 0
∗ ∗ ∗ −2𝑆−1]

 
 
 
 
 

 

and                                                                                                                                                                            

    Ω1 = [

0 −𝐵𝑌𝑋−1 0 0
0 0 0 0
0 −𝑌𝑋−1 0 0
0 0 0 0

] 

Now we shall rewrite  Ω1 

                                                                   Ω1 = [

−𝐵𝑌
0

−𝑌
0

]𝑋−1[0 𝐼 0 0]                                         (3.13)                                                       

                                                                 =Ԥ𝑇 𝑋−1Ɵ                                            
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 where  

              Ԥ = [𝑌𝑇𝐵𝑇 0 −𝑌𝑇 0] 

Ɵ = [0 𝐼 0 0] 

Substituting Ω1   in (3.13) into (3.12) and applying the well-known bounding inequality, we get 

                                            

                                                    Ω = Ω0 + Ԥ𝑇 𝑋−1Ɵ + Ɵ𝑇  𝑋−1 Ԥ    

                                                   ≤ Ω0 + (ԤT X−1) Z−1 (X−1Ԥ) + ƟTZƟ                              (3.14)                              

Applying Schur complement [8], we acquire inequality in (3.2). Therefore, this completes the 

proof. On the contrary, we realize that the equation in (3.14) is not in the form of convex LMI 

due to the nonlinear term which is −𝑋𝑍𝑋. Thus, we now propose an iterative algorithm to get 

a feasible solution set (3.2). 

Let us select a real symmetric and positive definite matrix  𝑀𝑇 = 𝑀 > 0 such that 

                                                          −𝑋𝑍𝑋 < −𝑀                                                                                         (3.15)                   

After applying Schur complement, we get where 𝑍 > 0 

                                                (𝑀
−1 𝑋−1

∗ 𝑍
)  ≥ 0                                                               (3.16) 

Next, we present some new variables 𝑀−1 = 𝑁,𝑋−1 = 𝑇 . We obtain a feasible solution due to   

employing cone complementary technique [9] that provides the following nonlinear parameter 

minimization within the framework of LMI conditions. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑡𝑟(𝑀𝑁 + 𝑋𝑇) [10]. 

(
𝑀 𝐼
∗ 𝑁

) >  0                   (
𝑋 𝐼
∗ 𝑇

) >  0         (
𝑁 𝑇
∗ 𝑍

)  >  0   and 

                          Ʃ =  

[
 
 
 
 
Ʃ11 0 𝑌𝑇 𝑋 −𝐵𝑌
∗  Ʃ22 0 0 0

∗ ∗ −2𝑅−1 0 −𝑌
∗ ∗ ∗ −2𝑆−1 0
∗ ∗ ∗ ∗ −𝑀 ]

 
 
 
 

<  0                                                  (3.17)                                          

Next, the findings in the following terms (3.18) demonstrated the robust observer-based 

stabilization criteria for the linear uncertain system. 
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If there exist real and symmetric positive definite matrices P, Q and matrices Y, W all with 

convenient dimensions (3.17) and positive scalar 𝛼  it will satisfy as the following form  

                                          [𝛼 + 0.5𝑒𝑇(0)𝑄𝑒(0) 𝑥𝑇(0)
∗ −2𝑋

] < 0                                                   (3.18)                          

If we now consider nominal linear system we shall show that performance index (2.17) has 

been upper bound as the following equivalent 

𝑉(𝑥(0))  =
1

2
𝑥𝑇(0)𝑃𝑥(0)+

1

2
𝑒𝑇(0)𝑄𝑒(0) 

                             ≤ 
1

2
𝜆𝑚𝑖𝑛𝑃 ∥ 𝑥(𝑜) ∥2+  

1

2
𝜆𝑚𝑖𝑛(𝑄)  ∥ 𝑒(𝑜) ∥2 = 𝐽∗                                 (3.19)                                        

 In order to minimize the guaranteed cost in (2.17), we introduce a positive scalar α such that 

                                           
1

2
𝑥𝑇(0)𝑃𝑥(0)+

1

2
𝑒𝑇(0)𝑄𝑒(0) ≤ −𝛼                                               (3.20)                                                      

We represent 𝑋 = 𝑃−1, implying that 

                                     𝛼 +
1

2
𝑥𝑇(0)𝑋−1𝑥(0)+

1

2
𝑒𝑇(0)𝑄𝑒(0) ≤ 0                                        (3.21)                                      

                                           

                                         [α + 0.5eT(0)Qe(0) xT(0)
∗ −2X

] < 0                                             (3.22)                                            

 

LMI of (3.22) can be obtained because of Schur complement. The performance index will have 

minimized upper bound once α is the smallest. This completes the proof based on that can be 

solved using the cone complementary approach outlined following Lemma 1. Thus, the 

minimization of the guaranteed cost is satisfied. 

 

 

 

3.2 Design of Robust Guaranteed Cost Observed-Based State Feedback Controller for 

Linear Uncertain System 
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Consider linear uncertain system described as in (3.23), in (3.24) and in (3.25) respectively.  

                 𝑥̇(𝑡) = [𝐴 + ∆𝐴(𝑡)]𝑥(𝑡) + [𝐵 + ∆𝐵(𝑡)]𝑥(𝑡)𝑢(𝑡)                                                          (3.23) 

where   

                     [∆𝐴(𝑡) ∆𝐵(𝑡)]  =  𝐷𝐹(𝑡)[𝐸𝑎 𝐸𝑏]                                                                                        (3.24) 

                            𝐹𝑇(𝑡)𝐹(𝑡) ≤ 𝐼                                                                                                                       (3.25)                                    

These equation (3.23), (3.24), (3.25) are described in section 2.2 completely. Next, the 

following theorem 1 is illustrated to propose approach of Lyapunov stability theorem. 

Theorem 1 

 Given real and symmetric positive definite matrices 𝑅 and 𝑆, if there exist real and symmetric 

positive definite matrices P, Q and matrices Y, W all with suitable dimensions and positive 

scalar 𝛼, 𝜀1and 𝜀2 are introduced satisfying, 

           𝜑 =

[
 
 
 
 
 
 
 
𝜑11 0 𝑌𝑇 𝑋 −𝐵𝑌 𝑋𝐸𝑎

𝑇 0
∗  𝜑22 0 0 0 0 𝑄𝐷

∗ ∗ −2𝑅−1 0 −𝑌 0 0
∗ ∗ ∗ −2𝑆−1 0 0 0

∗ ∗ ∗ ∗ −𝑀 𝑌𝑇𝐸𝑏
𝑇 0

∗ ∗ ∗ ∗ ∗  𝜀1𝐼 0
∗ ∗ ∗ ∗ ∗ ∗ 𝜀2𝐼]

 
 
 
 
 
 
 

< 0                                   (3.26)                                                     

                                          [𝛼 + 0.5𝑒𝑇(0)𝑄𝑒(0) 𝑥𝑇(0)
∗ −2𝑋

] < 0                                                 (3.27) 

where  𝜑11 = 𝐴𝑋 + 𝑋𝐴𝑇 +  𝐵𝑌 + 𝑌𝑇𝐵𝑇 + 𝜀1𝐷𝐷𝑇,  𝜑22 = 𝑄𝐴 + 𝐴𝑇𝑄 + −𝑊𝐶 − 𝐶𝑇 𝑊𝑇 +

𝑍 + 𝜀2𝐸𝑎
𝑇𝐸𝑎 

Then, a robust stabilizing controller gain is obtained as 𝐾 = 𝑌𝑋−1. 

Proof 

If we now consider the norm-bounded uncertainty in (3.24) then, we replace A, B with 𝐴 +

𝐷𝐹(𝑡)𝐸𝑎 and 𝐵 + 𝐷𝐹(𝑡)𝐸𝑏 respectively to get   
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        Ʃ𝑢 =

[
 
 
 
 
Ʃ𝑢(1,1) 0 𝑌𝑇 𝑋 Ʃ𝑢(1,5)

∗ Ʃ𝑢(2,2) 0 0 0

∗ ∗ −2𝑅−1 0 −𝑌
∗ ∗ ∗ −2𝑆−1 0
∗ ∗ ∗ ∗ −𝑋𝑍𝑋 ]

 
 
 
 

< 0                                                (3.28) 

where  Ʃu(1,1) = AX + XAT +  DF(t)𝐸𝑎X + (DF(t)𝐸𝑎X)T +  BY + YTBT +  DF(t)𝐸𝑏X +

(DF(t)𝐸𝑏X)T, Ʃ𝑢(1,5)  = −𝐵𝑌 − 𝐷𝐹(𝑡)𝐸𝑏𝑌  

    Ʃ𝑢(2,2) = 𝑄𝐴 + 𝐴𝑇𝑄 +  𝑄𝐷𝐹(𝑡)𝐸𝑎𝑋 + 𝑄(𝐷𝐹(𝑡)𝐸𝑎𝑋)𝑇 − 𝑊𝐶 − 𝐶𝑇 𝑊𝑇 + 𝑍  

                  = χ𝑇(𝑡)Ʃ𝑢 χ(𝑡)      

where     χ = [𝑥𝑇  𝑒𝑇]𝑇  

We rewrite in (3.28) as follows 

           Ʃ𝑢 = Ʃ𝑢0 + Ʃ𝑢1
𝑇 + Ʃ𝑢1                                                                                                                         (3.29)     

Ʃ𝑢0 is a linear part, and  Ʃ𝑢1 is the nonlinear part of the equivalent   

 

    Ʃ𝑢1 =

[
 
 
 
 
Ʃ𝑢1(1,1) 0 0 0 −𝐷𝐹(𝑡)𝐸𝑏𝑌

∗ Ʃ𝑢1(2,2) 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0 ]

 
 
 
 

< 0                                                             (3.30) 

 

where  Ʃ𝑢1(1,1) = 𝐷𝐹(𝑡)𝐸𝑎𝑋 + (𝐷𝐹(𝑡)𝐸𝑎𝑋)𝑇 + +𝐷𝐹(𝑡)𝐸𝑏𝑋 + (𝐷𝐹(𝑡)𝐸𝑏𝑋)𝑇,Ʃ𝑢1(2,2) =

 𝑄𝐷𝐹(𝑡)𝐸𝑎𝑋 + 𝑄(𝐷𝐹(𝑡)𝐸𝑎𝑋)𝑇 

 

We rewrite Ʃ𝑢1 in the following term as the  

          Ʃ𝑢1 = Ԥ𝑢1
𝑇 𝑋−1 𝜃𝑢1 + Ԥ𝑢2

𝑇 𝑋−1 𝜃𝑢2                                                                                 (3.31) 

 

where 
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                      Ԥ𝑢1 =

(

 
 

𝐷
0
0
0
0)

 
 

,  𝜃𝑢1 = (𝐸𝑎𝑋 0 0 0 −𝐸𝑏𝑌) 

                        Ԥ𝑢2 =

(

 
 

0
𝑄𝐷
0
0
0 )

 
 

  , 𝜃𝑢2 = (0 𝐸𝑎 0 0 0)                                               (3.32)            

Hence, using the well-known bounding -inequality allows to rewrite (3.28) as follows 

 Ʃ𝑢1 = Ԥ𝑢1
𝑇 𝑋−1 𝜃𝑢1 + Ԥ𝑢2

𝑇 𝑋−1 𝜃𝑢2 

   ≤  Ʃ𝑢0 + 𝜀1 Ԥ𝑢1
𝑇 Ԥ1 + 𝜀1

−1 𝜃𝑢1
𝑇 𝜃𝑢1 + 𝜀2

−1Ԥ𝑢2
𝑇Ԥ𝑢2 + 𝜀2 𝜃𝑢2

𝑇 𝜃𝑢2                                                                                           

                                                                                                                                             (3.33) 

Then, applying Schur Complement [8] one obtains (3.26) 

If we now, consider nominal linear system we shall show that performance index (2.17) has 

been upper bound as the following equivalent 

𝑉(𝑥(0))  =
1

2
𝑥𝑇(0)𝑃𝑥(0)+

1

2
𝑒𝑇(0)𝑄𝑒(0) 

                             ≤ 
1

2
𝜆𝑚𝑖𝑛𝑃 ∥ 𝑥(𝑜) ∥2+  

1

2
𝜆𝑚𝑖𝑛(𝑄)  ∥ 𝑒(𝑜) ∥2 = 𝐽∗                                 (3.34)                                        

 Minimizing the guaranteed cost in (2.17), we introduce a positive scalar α such that 

                                           
1

2
𝑥𝑇(0)𝑃𝑥(0)+

1

2
𝑒𝑇(0)𝑄𝑒(0) ≤ −𝛼                                               (3.35)                                                      

To represent 𝑋 = 𝑃−1, implying that 

                                     𝛼 +
1

2
𝑥𝑇(0)𝑋−1𝑥(0)+

1

2
𝑒𝑇(0)𝑄𝑒(0) ≤ 0                                        (3.36)                                      

                                           

                                         [α + 0.5eT(0)Qe(0) xT(0)
∗ −2X

] < 0                                             (3.37)       
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Then, we apply Schur complement [8] we get in (3.27). The performance index will have 

minimized upper bound where α is the smallest. This completes the proof. The feasibility 

problem of theorem 1 can be solved by using the cone complementary technique [9-10] as well 

as linear nominal model. The results in the following theorem 1 illustrated the robust observer-

based stabilization criteria for the linear uncertain system. Thus, the aim of the minimization of 

guaranteed cost is satisfied. 
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4. DESIGN of OBSERVER-BASED PD STATE FEEDBACK 
CONTROLLER 

 

In this section, we divided into two parts. Firstly, we investigated the stability of observer-

based PD state feedback controller for nominal system in the first part. Second part, we search 

the guaranteed cost minimization depending on observer-based PD state feedback controller 

for linear nominal system. 

4.1 Design of Observer-Based PD State Feedback Controller for Nominal Linear System 

 

We consider a class of nominal linear observer-based PD state feedback controller is described 

as well as in (3.1). However, the difference is that control law is described as the following term 

                       𝑢(𝑡) = 𝐾𝑝𝑥̂(𝑡) + 𝐾𝑑 𝑥̇̂(𝑡)                                                                                                        (4.1) 

Next, the following lemma 2 is showed to analyze design of the observer-based PD state 

feedback control. 

Lemma 2   

If there exist real and symmetric positive definite matrices X, Q and matrix Y with appropriate 

dimensions satisfying,  

                      𝜩 = [
𝜩11 𝜩12 −𝐵𝑌
∗  𝜩22 0
∗ ∗ −𝑋𝑍𝑋

] < 0                                                                                               (4.2)  

where 𝜩11 = 𝐴𝑋 + 𝑋𝐴𝑇 + 𝐵𝐾𝑝𝑋 + (𝐵𝐾𝑝𝑋)
𝑇

− 𝐴𝑌𝑇𝐵𝑇 − 𝐵𝑌𝐴𝑇 − 𝐵𝑌𝑇𝐾𝑝𝐵𝑇 − 𝐵𝐾𝑝
𝑇𝑌𝐵𝑇 

𝜩12 = −𝐵𝐾𝑝 − (𝐴 − 𝐿𝐶) , 𝜩22 =  𝑄(𝐴 − 𝐿𝐶) + (𝐴 − 𝐿𝐶)𝑇𝑄 + 𝑍  

Next, a stabilizing observer-based PD state feedback controller gain is described as  

𝐾𝑑 =  𝑌𝑋−1, 𝐾𝑝 is selected fixed as well as observer-based control gain for the linear nominal 

system.  
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Proof   

State space system is described as 

                            𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)                                                                               (4.3) 

We can select a Lyapunov function as the following term 

                  𝑉(𝑥(𝑡), 𝑡) = 𝑥𝑇(𝑡)𝑃𝑥(𝑡)+𝑒𝑇(𝑡)𝑄𝑒(𝑡)                                                                                   (4.4) 

P and Q must be positive real symmetric matrixes so we can derive in (4.4), we obtain as  

              𝑉̇(𝑥(𝑡), 𝑡) = 2𝑥𝑇(𝑡)𝑃𝑥̇(𝑡) + 2𝑒𝑇(𝑡)𝑄𝑒̇(𝑡)                                                                                (4.5)                                                              

Substituting (4.1), (4.3) into (4.5) we get the following term to allow to calculate 

 2𝑥𝑇𝑃(𝐼 − 𝐵𝐾𝑑)−1(𝐴 + 𝐵𝐾𝑝)𝑥 + 2𝑒𝑇𝑄(𝐴 − 𝐿𝐶)𝑒 = χ𝑇𝛤χ                                                            (4.6) 

Assuming that (𝐼 − 𝐵𝐾𝑑) is nonsingular. 

where 

 𝑥̇ = (𝐼 − 𝐵𝐾𝑑)−1[𝐴𝑥(𝑡) + 𝐵𝐾𝑝𝑥(𝑡) − 𝐵𝐾𝑝𝑒(𝑡) + 𝐵𝐾𝑑(𝐴 − 𝐿𝐶)],    

  𝑒(𝑡) = 𝑥(𝑡) − 𝑥̂(𝑡)  and  χ = [𝑥𝑇 𝑒𝑇]𝑇  

We get the following term as 

     𝛤 = [
𝑃(𝐼 − 𝐵𝐾𝑑)−1(𝐴 + 𝐵𝐾𝑝)

+(𝐴 + 𝐵𝐾𝑝)𝑇(𝐼 − 𝐵𝐾𝑑)−1

∗

−𝑃(𝐼 − 𝐵𝐾𝑑)−1𝐵𝐾𝑝

−𝑃(𝐼 − 𝐵𝐾𝑑)−1𝐵𝐾𝑑(𝐴 − 𝐿𝐶)

𝑄(𝐴 − 𝐿𝐶) + (𝐴 − 𝐿𝐶)𝑇𝑄

]                                                          

 

We need to satisfy (4.7) to be less than 0 

                             𝛤 < 0                                                                                                                                          (4.7) 

 

Multiplying via pre (𝐼 − 𝐵𝐾𝑑)𝑋 and post 𝑋(𝐼 − 𝐵𝐾𝑑)𝑇 with 𝑑𝑖𝑎𝑔 {𝑋, 𝐼}  where P−1 = X and 

𝐾𝑑 =  𝑌𝑋−1 we get, 
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   𝛬 = [
𝐴𝑋 + 𝑋𝐴𝑇 + 𝐵𝐾𝑝𝑋+(𝐵𝐾𝑝𝑋)

𝑇

−𝐴𝑌𝑇𝐵𝑇 − 𝐵𝑌𝐴𝑇 − 𝐵𝑌𝑇𝐾𝑝𝐵𝑇 − 𝐵𝐾𝑝
𝑇𝑌𝐵𝑇

∗

−𝐵𝐾𝑝

−𝐵𝑌𝑋−1(𝐴 − 𝐿𝐶)

𝑄(𝐴 − 𝐿𝐶) + (𝐴 − 𝐿𝐶)𝑇𝑄

] < 0    (4.8)                                         

 

Let redefine 𝛬 in the following term 

 

                       𝛬 = 𝛬0 + 𝛬1
𝑇+𝛬1                                                                                                                     (4.9) 

 

where 

𝛬0 = [
𝐴𝑋 + 𝑋𝐴𝑇 + 𝐵𝐾𝑝𝑋+(𝐵𝐾𝑝𝑋)

𝑇

−𝐴𝑌𝑇𝐵𝑇 − 𝐵𝑌𝐴𝑇 − 𝐵𝑌𝑇𝐾𝑝𝐵𝑇 − 𝐵𝐾𝑝
𝑇𝑌𝐵𝑇

∗

−𝐵𝐾𝑝 − (𝐴 − 𝐿𝐶)

𝑄(𝐴 − 𝐿𝐶) + (𝐴 − 𝐿𝐶)𝑇𝑄
] 

and 

                                            𝛬1 = [0 −𝐵𝑌 𝑋−1

0 0
]   

 

Let us rewrite 𝛬1 as  

                                           𝛬1 = [
−𝐵𝑌

0
]𝑋−1[0 1] = Ԥ𝑇 𝑋−1Ɵ                                              (4.10)                                        

where  

                                            Ԥ = [−𝑌𝑇𝐵𝑇 0]𝑇, Ɵ = [0 𝐼]                                  

 

 Following procedures are used to apply the well-known norm bounding inequalities, we obtain                  

                                            𝛬 = 𝛬0+Ԥ𝑇 𝑋−1Ɵ + Ɵ𝑇 𝑋−1 Ԥ 

                                                ≤ 𝛬0 + (Ԥ𝑇 𝑋−1) 𝑍−1 (𝑋−1Ԥ) + Ɵ𝑇𝑍Ɵ                                       (4.11) 

 

After applying Schur complement [8] to get in (4.2). We realize the equation is not convex as 

well as observer-state feedback controller. Thus, an iterative algorithm is considered to obtain 

a feasible solution. 

We can select matrix S which is positive definite and real symmetric matrix 𝑆𝑇 =  𝑆 > 0  as 

for the following term 

                                                −𝑋𝑍𝑋 < −𝑆                                                                                       (4.12)                                       
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Applying Schur complement to denote some new variables 𝑆−1 = 𝑀,𝑋−1 = 𝐽  we obtain a 

feasible solution due to employing cone complementary technique [9] that provides the 

minimization of nonlinear parameters within the framework of LMI conditions in the following 

as described 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑡𝑟(𝑆𝑀 + 𝑋𝐽) [10]. 

                          (
𝑀 𝐽
∗ 𝑍

) >  0     ,         (
𝑆 𝐼
∗ 𝑀

) >  0    ,    (
𝑋 𝐼
∗ 𝐽

)  >  0           

                                𝜩 = [
𝜩11 𝜩12 −𝐵𝑌
∗  𝜩22 0
∗ ∗ 𝑆

] < 0                                                                (4.13)                                                                              

 

According to the cone complementary technique, we get in (4.13) because of the fact that Kd is 

found whereas Kp is selected fixed. All results on observer-based PD feedback controller are 

satisfied for linear nominal systems.                                                     

4.2 Design of Guaranteed Cost Observer-Based State Feedback PD Controller for 

Nominal Linear System  

In this part, we searched the minimization of guaranteed cost observer-based PD state feedback 

controller for the nominal linear system. The process of the state space PD feedback controller 

which is described in (4.1) is taken fixed variables in order to get a feasible solution to Lemma 

3. 

 

Lemma 3 

Given real and symmetric positive definite matrices 𝑅 and 𝑆, if there exist real and symmetric 

positive definite matrices X, Q and the observer-based PD control law is chosen with fixed 𝐾𝑝 

and 𝐾𝑑 obtained from Lemma 2 satisfying, 

Ѱ =

[
 
 
 
 
Ѱ11 Ѱ12 Ѱ13 −𝑋𝐾𝑝

𝑇 −𝑋

∗ Ѱ22 0 0 0

∗ ∗ −2𝑅−1 0 0
∗ ∗ ∗ −2𝑅−1 0
∗ ∗ ∗ ∗ −2𝑆−1]

 
 
 
 

< 0                                                                  (4.14) 
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where 

 Ѱ11 = (𝐼 − 𝐵𝐾𝑑)−1(𝐴 + 𝐵𝐾𝑝)𝑋 + 𝑋(𝐴 + 𝐵𝐾𝑝)𝑇(𝐼 − 𝐵𝐾𝑑)−𝑇  

Ѱ12 = −(𝐼 − 𝐵𝐾𝑑)−1𝐵𝐾𝑝 − (𝐼 − 𝐵𝐾𝑑)−1𝐵𝐾𝑑(𝐴 − 𝐿𝐶)  

Ѱ13 = −𝑋(𝐴 + 𝐵𝐾𝑝)𝑇(𝐼 − 𝐵𝐾𝑑)−𝑇𝐾𝑑
𝑇  

Ѱ22 = 𝑄(𝐴 − 𝐿𝐶) + (𝐴 − 𝐿𝐶)𝑇𝑄 + 0.5𝐾𝑝
𝑇𝑅𝐾𝑝 + 0.5(𝐴 − 𝐿𝐶)𝑇𝐾𝑑

𝑇𝑅𝐾𝑑(𝐴 − 𝐿𝐶) +

0.5(𝐴 − 𝐿𝐶)𝐾𝑑
𝑇𝐵𝑇(𝐼 − 𝐵𝐾𝑑)−𝑇𝐾𝑑

𝑇𝑅𝐾𝑑(𝐼 − 𝐵𝐾𝑑)−1𝐵𝐾𝑑(𝐴 − 𝐿𝐶)  

Proof 

We consider the system in (4.3) and select Lyapunov function in the following term  

                       𝑉(𝑥(𝑡), 𝑡) = 𝑥𝑇(𝑡)𝑃𝑥(𝑡)+𝑒𝑇(𝑡)𝑄𝑒(𝑡)                                                          (4.15) 

If 𝑃 and Q are positive symmetric matrixes and we add the guaranteed cost function described 

in (2.17) into (4.15) we obtain,  

𝑉̇(𝑥(𝑡), 𝑡) +
1

2
𝑥𝑇𝑆𝑥 +

1

2
 𝑢𝑇(𝑡)𝑅𝑢(𝑡)                                                                                     (4.16)  

We rewrite (4.16) as  

2𝑥𝑇(𝑡)𝑃𝑥̇(𝑡) + 2𝑒𝑇(𝑡)𝑄𝑒̇(𝑡) +
1

2
𝑥𝑇𝑆𝑥 +

1

2
 𝑢𝑇(𝑡)𝑅𝑢(𝑡)                                                   (4.17) 

Substituting (4.1) into (4.17), we obtain as  

         2𝑥𝑇(𝑡)𝑃𝑥̇(𝑡) + 2𝑒𝑇(𝑡)𝑄𝑒̇(𝑡) + 
1

2
𝑥𝑇𝑆𝑥 +

1

2
[𝐾𝑝𝑥̂(𝑡) + 𝐾𝑑 𝑥̇̂(𝑡)]𝑇𝑅[𝐾𝑝𝑥̂(𝑡) + 𝐾𝑑 𝑥̇̂(𝑡)] =

χ𝑇(𝑡)Ϣ χ(𝑡)                                                                                                                        (4.18)                                                                                                                                           

where  

𝑥̇ = (𝐼 − 𝐵𝐾𝑑)−1[𝐴𝑥(𝑡) + 𝐵𝐾𝑝𝑥(𝑡) − 𝐵𝐾𝑝𝑒(𝑡) − 𝐵𝐾𝑑(𝐴 − 𝐿𝐶)𝑒(𝑡)]                                        

𝑒(𝑡) = 𝑥(𝑡) − 𝑥̂(𝑡) ,𝑒̇(𝑡) = (𝐴 − 𝐿𝐶) 𝑒(𝑡), and  χ = [𝑥𝑇  𝑒𝑇]𝑇 

 Bilinear matrix inequality (BMI) is obtained in (4.19).  
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   Ϣ = [
Ϣ11 Ϣ12

∗ Ϣ22
]                                                                                                            (4.19)                             

where, 

 Ϣ11 = 𝑃(𝐼 − 𝐵𝐾𝑑)−1(𝐴 + 𝐵𝐾𝑝) + +(𝐴 + 𝐵𝐾𝑝)𝑇(𝐼 − 𝐵𝐾𝑑)−𝑇𝑃 + 0.5𝐾𝑝
𝑇𝑅𝐾𝑝

+ 0.5(𝐴 + 𝐵𝐾𝑝)𝑇(𝐼 − 𝐵𝐾𝑑)−𝑇𝐾𝑑
𝑇𝑅𝐾𝑑(𝐼 − 𝐵𝐾𝑑)−1(𝐴 + 𝐵𝐾𝑝) + 0.5𝑆 

Ϣ12 = −𝑃(𝐼 − 𝐵𝐾𝑑)−1𝐵𝐾𝑝−𝑃(𝐼 − 𝐵𝐾𝑑)−1𝐵𝐾𝑑(𝐴 − 𝐿𝐶) 

Ϣ22 =  𝑄(𝐴 − 𝐿𝐶) + (𝐴 − 𝐿𝐶)𝑇𝑄 + 0.5(𝐴 − 𝐿𝐶)𝑇𝐾𝑑
𝑇𝑅𝐾𝑑(𝐴 − 𝐿𝐶)

+ 0.5(𝐴 − 𝐿𝐶)𝑇𝐾𝑑
𝑇𝐵𝑇(𝐼 − 𝐵𝐾𝑑)−𝑇𝐾𝑑

𝑇𝑅𝐾𝑑(𝐼 − 𝐵𝐾𝑑)−1𝐵𝐾𝑑(𝐴 − 𝐿𝐶)

+ 0.5𝐾𝑝
𝑇𝑅𝐾𝑝 

We need to guarantee the following inequality.  

                                     Ϣ < 0                                                                                                                           (4.20) 

Let us apply congruent transformation via pre and post-multiplying (4.19) with 𝑑𝑖𝑎𝑔{𝑋, 𝐼}  to 

get where 𝑋 = 𝑃−1  

Ѿ = [
Ѿ11 Ѿ12

∗ Ѿ22

] < 0    

  Ѿ11 = (𝐼 − 𝐵𝐾𝑑)−1(𝐴 + 𝐵𝐾𝑝) + (𝐴 + 𝐵𝐾𝑝)𝑇(𝐼 − 𝐵𝐾𝑑)−𝑇 + 𝑋0.5𝐾𝑝
𝑇𝑅𝐾𝑝𝑋 +

   𝑋0.5(𝐴 + 𝐵𝐾𝑝)𝑇(𝐼 − 𝐵𝐾𝑑)−𝑇𝐾𝑑
𝑇𝑅𝐾𝑑(𝐼 − 𝐵𝐾𝑑)−1(𝐴 + 𝐵𝐾𝑝)𝑋 + 0.5𝑋𝑆𝑋 

Ѿ12 = −(𝐼 − 𝐵𝐾𝑑)−1𝐵𝐾𝑝−(𝐼 − 𝐵𝐾𝑑)−1𝐵𝐾𝑑(𝐴 − 𝐿𝐶) 

      Ѿ22 =  𝑄(𝐴 − 𝐿𝐶) + (𝐴 − 𝐿𝐶)𝑇𝑄 + 0.5(𝐴 − 𝐿𝐶)𝑇𝐾𝑑
𝑇𝑅𝐾𝑑(𝐴 − 𝐿𝐶)

+ 0.5(𝐴 − 𝐿𝐶)𝑇𝐾𝑑
𝑇𝐵𝑇(𝐼 − 𝐵𝐾𝑑)−𝑇𝐾𝑑

𝑇𝑅𝐾𝑑(𝐼 − 𝐵𝐾𝑑)−1𝐵𝐾𝑑(𝐴 − 𝐿𝐶)

+ 0.5𝐾𝑝
𝑇𝑅𝐾𝑝 

Employing Schur complement, we get (4.14). This completes the proof of lemma 3 to get a 

feasible solution. We could not apply cone complementary technique since the equation in 

(4.14) is convex. In addition, the observer-based PD control law is selected with fixed gain 

values to obtain a feasible solution. Moreover, this indicates that the minimization of the 

guaranteed cost has been achieved via using the inequality (3.27) from theorem 1. 
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5. NUMERICAL EXAMPLES 

In this section, three numerical examples are shown due to the application of Lemma 1, Lemma 

2, Lemma 3 and Theorem 1. 

Example 1  

The nominal form of guaranteed cost observer-based state feedback controller [4] is described 

as follows 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 

𝑦(𝑡) =  𝐶 𝑥(𝑡) 

where 𝐴 = [
0 0.5
0 1

],𝐵 = [
0

0.5
] ,.𝐶 = [1 0] 

The initial condition is defined such as 𝑥_0 = [
1

0.5
]. We can obtain a feasible solution in (3.17) 

with the following parameter   

𝑃 = [
9.8525 1.1911
1.1911 9.4857

], 

𝑄 = 108 ∗ [
3.2917 −0.7656

 −0.7656 0.2493
] 

The upper bound guaranteed cost function is calculated as 𝐽∗ = 6.7075 .It shows the 

minimization of the guaranteed cost has been succeeded via theorem 1. The control gain of the 

state feedback obtained as 𝐾 = [−1.7309 −10.1860]. The control law observer-based 

controller for the nominal system is illustrated in Figure 2. It follows from Figure 3 and Figure 

4 the method of estimating state vectors has been succeeded with a satisfactory form of steady 

state accuracy respectively. Based on Lyapunov stability theory, these figures show stability 

with an observer-based controller for linear nominal system. 
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Figure 2 –  Control law for the nominal system 

  

 

Figure 3 –  A state feedback observer design variable of x1 for the nominal system 
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Figure 4  – A state feedback observer design variable of x2 for the nominal system 

 

 

Example 2 

We now consider linear uncertain system defined in (3.23), [4] 

with   𝐴 = [
0 0.5
0 1

], 𝐵 = [
0

0.5
] , 𝐶 = [1 0], 

𝐷 = [
0.5
0.3

], 𝐸𝑎 = [0.1 0.2], 𝐸𝑏 = 0.1 𝐹 = 𝑠𝑖𝑛(𝑡) 

A feasible solution set is obtained for (3.26) with the following parameter results. 

𝑃 = [
 42.5610 4.6125
4.6125 31.5982

],  𝑄 = 107 ∗ [
1.7869  −0.3948

  −0.3948 0.1141
] 

The state feedback gain matrix is found as = [ −2.4085  − 10.5507] , The upper bound of 

performance index is achieved as  𝐽∗ = 27.5365.It specifies the minimization of the guaranteed 

cost by theorem 1. The control law observer-based controller for uncertain system is illustrated 

in Figure 5. These graphics in Figure 6 and Figure 7 demonstrate that the process of 

performance index has been achieved by theorem 1 depend on the Lyapunov stability theorem 

within the framework of linear matrix inequalities.  
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Figure 5 –  Control law for an uncertain system 

                  

 

 

Figure 6 –   A state feedback observer design variable of x1 for an uncertain system 
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Figure 7 –  A state feedback observer design variable of x2 for uncertain system 

Example 3 

We now consider system defined to design guaranteed cost observer-based PD state feedback 

controller for nominal systems [4]. 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 

𝑦(𝑡) =  𝐶 𝑥(𝑡) 

where 𝐴 = [
0 0.5
0 1

],𝐵 = [
0

0.5
] , 𝐶 = [1 0] 

We get a feasible solution set for (4.14) as the following term, 

𝑃 = [
 3.5470 3.9180
3.9180 5.6958

]  , 𝑄 = 108 ∗ [
0.2465  0.6942
  0.6942 6.8935

] 

Based on lemma 2 observer-based PD state feedback control gain is obtained when the 

observer-based control gain (𝐾𝑝) is fixed shown as 

𝐾𝑝 = [−1.7309  − 10.1860] , 𝐾𝑑 = [ −0.2376   − 0.8788] 
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Then, all variables are fixed in lemma 3 to get a feasible solution due to lemma 2. Moreover, 

the upper bound of performance index is accomplished as 𝐽∗ = 4.4445. It indicates the 

minimization of the guaranteed cost has been achieved by means of theorem 1. It is concluded 

that the minimization guaranteed cost value is more satisfied to compare the minimization of 

the guaranteed cost observer-based controller for linear nominal system. The control law is 

demonstrated in Figure 8. The process of estimating the state vectors has been accomplished 

with a satisfactory form of steady state accuracy. It is also demonstrated in Figure 9 and Figure 

10 respectively. 

 
Figure 8 –  Control law for the nominal system 
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Figure 9 –  A PD state feedback observer design variable of x1 for the nominal system 

  

 

Figure 10 –  A PD state feedback observer design variable of x2 for the nominal system 
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6.CONCLUSION 

This study has performed an observer design based on robust control guaranteed cost for the 

linear uncertain system by introducing state feedback control law and using the estimated state 

from the observer design. This system has been investigated on the basis of employing 

Lyapunov stability theorem within the framework of LMIs. LMI conditions are shown to 

provide a feasible solution set by using a convex optimization through the cone 

complementarity linearization algorithm. Furthermore, this algorithm also employs the 

minimization of the guaranteed cost. Moreover, the proposed method has achieved a minimized 

performance index not only for nominal systems but also for linear uncertain system. 

 The design of observer-based PD feedback controller has been studied for nominal systems. 

When 𝐾𝑝 which is the control gain of observer-based state feedback is selected fixed for the 

linear nominal system, 𝐾𝑑 is found in the form of LMI. This feasible solution gives a suboptimal 

control action because 𝐾𝑝 is chosen as a fixed value. Then, the guaranteed cost observer-based 

PD state feedback controller has been investigated for linear nominal systems. A feasible 

solution is obtained within the framework of linear matrix inequalities. The result indicates that 

the minimization of the guaranteed cost has been achieved to compare with design of the 

observer-based state feedback controller by approach of theorem1.  

We can not investigate design of the guaranteed cost observer-based PD state feedback 

controller for the linear uncertain systems. Because the nonlinear parameters are risen up 

drastically for the linear uncertain systems. 

Consequently, numerical examples have demonstrated that the introduced stabilization method 

provides guaranteed cost along with a satisfactory steady state accuracy. 
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APPENDIX A 

Algorithm 1 is implemented in Matlab languages with lemma 1 for nominal and uncertain 

systems. 

1.1 Nominal Linear System 

File 1 

A=[0 0.5;0 1]; 

B=[0;0.5]; 

C=[1 0]; 

  

R=0.5; 

S=[1 0;0 1];   

x_0=[1;0.5]; 

xhat_0=[1;0.5]; 

e_0=x_0-xhat_0; 

  

[nn,m]=size(B); 

[p,nn]=size(C); 

K0=zeros(m,nn); 

L0=zeros(nn,p); 

k=1; 

k0=0; 

counter=0; 

mySTOP=0; 

setlmis([]) 

  

X=lmivar(1,[nn 1]); 

Q=lmivar(1,[nn 1]); 

Z=lmivar(1,[nn 1]); 

M=lmivar(1,[nn 1]); 

N=lmivar(1,[nn 1]); 

T=lmivar(1,[nn 1]); 

Y=lmivar(2,[m nn]); 

W=lmivar(2,[nn p]); 

alpha=lmivar(1,[1 1]); 

  

lmiterm([1 1 1 X],A,1,'s') 

lmiterm([1 1 1 Y],B,1,'s') 

  

lmiterm([1 1 3 -Y],1,1) 

  

lmiterm([1 1 4 X],1,1) 

lmiterm([1 1 5 Y],-B,1) 

  

 

lmiterm([1 2 2 Q],1,A,'s') 
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lmiterm([1 2 2 W],-1,C,'s') 

lmiterm([1 2 2 Z],1,1) 

  

lmiterm([1 3 3 0],-2*inv(R)) 

  

lmiterm([1 3 5 Y],-1,1) 

  

lmiterm([1 4 4 0],-2*inv(S)) 

  

lmiterm([1 5 5 M],-1,1) 

  

lmiterm([-2 1 1 M],1,1) 

lmiterm([-2 1 2 0],1) 

lmiterm([-2 2 2 N],1,1) 

  

lmiterm([-3 1 1 X],1,1) 

lmiterm([-3 1 2 0],1) 

lmiterm([-3 2 2 T],1,1) 

  

lmiterm([-4 1 1 N],1,1) 

lmiterm([-4 1 2 T],1,1) 

lmiterm([-4 2 2 Z],1,1) 

  

lmiterm([-5 1 1 alpha],1,1) 

  

lmiterm([6 1 1 alpha],-1,1) 

lmiterm([6 1 1 Q],0.5*e_0',e_0) 

lmiterm([6 1 2 0],x_0') 

lmiterm([6 2 2 X],-2,1) 

  

lmiterm([-7 1 1 Q],1,1) 

  

 LMISYS=getlmis; 

  

[copt,xopt]=feasp(LMISYS); 

X=dec2mat(LMISYS,xopt,X); 

Q=dec2mat(LMISYS,xopt,Q); 

Z=dec2mat(LMISYS,xopt,Z); 

M=dec2mat(LMISYS,xopt,M); 

N=dec2mat(LMISYS,xopt,N); 

T=dec2mat(LMISYS,xopt,T); 

Y=dec2mat(LMISYS,xopt,Y); 

W=dec2mat(LMISYS,xopt,W); 

alpha=dec2mat(LMISYS,xopt,alpha);  
 

evlmi=evallmi(LMISYS,xopt); 

  

 

[lhs1,rhs1]=showlmi(evlmi,1); 

[lhs2,rhs2]=showlmi(evlmi,2); 
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[lhs3,rhs3]=showlmi(evlmi,3); 

[lhs4,rhs4]=showlmi(evlmi,4); 

[lhs5,rhs5]=showlmi(evlmi,5); 

[lhs6,rhs6]=showlmi(evlmi,6); 

  

X_0=X; 

Q_0=Q; 

Z_0=Z; 

M_0=M; 

N_0=N; 

T_0=T; 

Y_0=Y; 

W_0=W; 

alpha_0=alpha; 

  

D1=max(eig(lhs1))<0; 

D2=min(eig(rhs2))>0; 

D3=min(eig(rhs3))>0; 

D4=min(eig(rhs4))>0; 

D5=min(eig(rhs5))>0; 

D6=max(eig(lhs1))<0; 

  

myDecision=D1&D2&D3&D4&D5&D6; 

  

save initialData6074 nn m p A B C x_0 e_0 S R k K0 L0 k0 counter mySTOP X_0 Q_0 Z_0 

M_0 N_0 T_0 Y_0 W_0 alpha_0 myDecision 

 

File 2 

load initialData6074; 

  

setlmis([]) 

  

X=lmivar(1,[nn 1]); 

Q=lmivar(1,[nn 1]); 

Z=lmivar(1,[nn 1]); 

M=lmivar(1,[nn 1]); 

N=lmivar(1,[nn 1]); 

T=lmivar(1,[nn 1]); 

Y=lmivar(2,[m nn]); 

W=lmivar(2,[nn p]); 

alpha=lmivar(1,[1 1]); 
  

lmiterm([1 1 1 X],A,1,'s') 

lmiterm([1 1 1 Y],B,1,'s') 

  

 

lmiterm([1 1 3 -Y],1,1) 
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lmiterm([1 1 4 X],1,1) 

  

lmiterm([1 1 5 Y],-B,1) 

  

lmiterm([1 2 2 Q],1,A,'s') 

lmiterm([1 2 2 W],-1,C,'s') 

lmiterm([1 2 2 Z],1,1) 

  

lmiterm([1 3 3 0],-2*inv(R)) 

  

lmiterm([1 3 5 Y],-1,1) 

  

lmiterm([1 4 4 0],-2*inv(S)) 

  

lmiterm([1 5 5 M],-1,1) 

  

lmiterm([-2 1 1 M],1,1) 

lmiterm([-2 1 2 0],1) 

lmiterm([-2 2 2 N],1,1) 

  

lmiterm([-3 1 1 X],1,1) 

lmiterm([-3 1 2 0],1) 

lmiterm([-3 2 2 T],1,1) 

  

lmiterm([-4 1 1 N],1,1) 

lmiterm([-4 1 2 T],1,1) 

lmiterm([-4 2 2 Z],1,1) 

  

lmiterm([-5 1 1 alpha],1,1) 

  

lmiterm([6 1 1 alpha],-1,1) 

lmiterm([6 1 1 Q],0.5*e_0',e_0) 

lmiterm([6 1 2 0],x_0') 

lmiterm([6 2 2 X],-2,1) 

  

  

lmiterm([-7 1 1 Q],1,1) 

  

LMISYS=getlmis; 

  

n=decnbr(LMISYS); 

c=zeros(n,1); 

for j=1:n 

   [Mj,Nj,Xj,Tj,alphaj]=defcx(LMISYS,j,M,N,X,T,alpha); 
 

   c(j)=alphaj+trace(M_0*Nj+N_0*Mj+X_0*Tj+T_0*Xj); 

end 

  

[copt,xopt]=mincx(LMISYS,c); 

X=dec2mat(LMISYS,xopt,X); 
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Q=dec2mat(LMISYS,xopt,Q); 

Z=dec2mat(LMISYS,xopt,Z); 

M=dec2mat(LMISYS,xopt,M); 

N=dec2mat(LMISYS,xopt,N); 

T=dec2mat(LMISYS,xopt,T); 

Y=dec2mat(LMISYS,xopt,Y); 

W=dec2mat(LMISYS,xopt,W); 

alpha=dec2mat(LMISYS,xopt,alpha); 

  

evlmi=evallmi(LMISYS,xopt); 

  

[lhs1,rhs1]=showlmi(evlmi,1); 

[lhs2,rhs2]=showlmi(evlmi,2); 

[lhs3,rhs3]=showlmi(evlmi,3); 

[lhs4,rhs4]=showlmi(evlmi,4); 

[lhs5,rhs5]=showlmi(evlmi,5); 

[lhs6,rhs6]=showlmi(evlmi,6); 

  

X_0=X; 

Q_0=Q; 

Z_0=Z; 

M_0=M; 

N_0=N; 

T_0=T; 

Y_0=Y; 

W_0=W; 

alpha_0=alpha; 

D1=max(eig(lhs1))<0; 

D2=min(eig(rhs2))>0; 

D3=min(eig(rhs3))>0; 

D4=min(eig(rhs4))>0; 

D5=min(eig(rhs5))>0; 

D6=max(eig(lhs1))<0; 

  

myDecision=D1&D2&D3&D4&D5&D6; 

save initialData6074 nn m p A B C x_0 e_0 S R k K0 L0 k0 counter mySTOP X_0 Q_0 Z_0 

M_0 N_0 T_0 Y_0 W_0 alpha_0 myDecision 

File 3 

EX_2_18_10_17_6074 

while 1 

   EX_2_18_10_17_6074_2; 

   if max(real(eig(M_0-X_0*Z_0*X_0)))<=0 && myDecision 

      K0=Y_0*inv(X_0); 

      L0=inv(Q_0)*W_0; 

      k0=k; 

      break;    

end 
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k=k+1; 

   if k>99 

    break; 

   end 

   counter=counter+1; 

   save initialData6074 nn m p A B C x_0 e_0 S R k K0 L0 k0 counter mySTOP X_0 Q_0 Z_0 

M_0 N_0 T_0 Y_0 W_0 alpha_0 myDecision 

end 

1.2  Simulation Codes for Nominal Linear System 

 function y = trying_addmfile_2(myInput) 

x1=myInput(1); 

x2=myInput(2); 

x1hat=myInput(3); 

x2hat=myInput(4); 

   

 x=[x1;x2]; 

   

A=[0 0.5;0 1]; 

B=[0;0.5]; 

C=[1 0]; 

x_0=[1;0.5]; 

xhat_0=[1;0.5] ; 

P=[42.5610    4.6125; 

    4.6125   31.5982]; 

 

Q=1.0e+07 *[1.7869   -0.3948; 

   -0.3948    0.1141];   

K=[-1.7309  -10.1860]; 

L=[3.9500;15.6503]; 

e_0=x_0-xhat_0; 

 

xhat=[x1hat;x2hat]; 

J=0.5*(x_0'*P*x_0+e_0'*Q*e_0); 

u= K*xhat; 

xdot=A*x+B*u; 

y=C*x; 

yhat=C*xhat; 

xhatdot=A*xhat+B*u+L*(y-yhat); 

  

x1dot=xdot(1,1); 

x2dot=xdot(2,1); 

x1hatdot=xhatdot(1,1); 

x2hatdot=xhatdot(2,1); 

y=[x1dot x2dot x1hatdot x2hatdot J u]; 

end 
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Figure 11– Block diagram of a state feedback observer design variables for the nominal system 

 

 

1.3 Linear Uncertain System 

File 1 

A=[0 0.5;0 1]; 

B=[0;0.5]; 

C=[1 0]; 

D=[0.5;0.3]; 

R=0.5; 

S=[1 0;0 1];   

x_0=[1;0.5]; 

xhat_0=[1;0.5]; 

e_0=x_0-xhat_0; 

Ea=[0.1  0.2]; 

Eb=0.1 ; 

  

k=1; 

  

k0=0; 

  

counter=0; 

 mySTOP=0; 
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[nn,m]=size(B); 

[p,nn]=size(C); 

K0=zeros(m,nn); 

L0=zeros(nn,p); 

setlmis([]) 

  

X=lmivar(1,[nn 1]); 

Q=lmivar(1,[nn 1]); 

Z=lmivar(1,[nn 1]); 

M=lmivar(1,[nn 1]); 

N=lmivar(1,[nn 1]); 

T=lmivar(1,[nn 1]); 

Y=lmivar(2,[m nn]); 

W=lmivar(2,[nn p]); 

eps1=lmivar(1,[1,1]); 

eps2=lmivar(1,[1,1]); 

alpha=lmivar(1,[1 1]); 

  

lmiterm([1 1 1 X],A,1,'s') 

lmiterm([1 1 1 Y],B,1,'s') 

lmiterm([1 1 1 eps1],D',D) 

  

lmiterm([1 1 3 -Y],1,1) 

lmiterm([1 1 4 X],1,1) 

lmiterm([1 1 5 Y],-B,1) 
 

lmiterm([1 1 6 X],1,Ea') 

  

lmiterm([1 2 2 Q],1,A,'s') 

lmiterm([1 2 2 W],-1,C,'s') 

lmiterm([1 2 2 Z],1,1) 

lmiterm([1 2 2 eps2],Ea',Ea) 

  

lmiterm([1 2 7 Q],1,D) 

  

lmiterm([1 3 3 0],-2*inv(R)) 

lmiterm([1 3 5 Y],-1,1) 

 

lmiterm([1 4 4 0],-2*inv(S)) 

  

lmiterm([1 5 5 M],-1,1) 

lmiterm([1 5 6 -Y],1,Eb') 

  

lmiterm([1 6 6 eps1],-1,1) 

  

lmiterm([1 7 7 eps2],-1,1) 

lmiterm([-2 1 1 M],1,1) 

lmiterm([-2 1 2 0],1) 

lmiterm([-2 2 2 N],1,1) 

lmiterm([-3 1 1 X],1,1) 
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lmiterm([-3 1 2 0],1) 

lmiterm([-3 2 2 T],1,1) 

  

lmiterm([-4 1 1 N],1,1) 

lmiterm([-4 1 2 T],1,1) 

lmiterm([-4 2 2 Z],1,1) 

  

lmiterm([-5 1 1 alpha],1,1) 

  

lmiterm([6 1 1 alpha],-1,1) 

lmiterm([6 1 1 Q],0.5*e_0',e_0) 

lmiterm([6 1 2 0],x_0') 

lmiterm([6 2 2 X],-2,1) 

  

  

lmiterm([-7 1 1 Q],1,1) 

  

LMISYS=getlmis; 

[copt,xopt]=feasp(LMISYS); 

X=dec2mat(LMISYS,xopt,X); 

Q=dec2mat(LMISYS,xopt,Q); 

Z=dec2mat(LMISYS,xopt,Z); 

M=dec2mat(LMISYS,xopt,M); 

N=dec2mat(LMISYS,xopt,N); 

T=dec2mat(LMISYS,xopt,T); 

Y=dec2mat(LMISYS,xopt,Y); 

W=dec2mat(LMISYS,xopt,W); 

alpha=dec2mat(LMISYS,xopt,alpha); 

eps1=dec2mat(LMISYS,xopt,eps1); 

eps2=dec2mat(LMISYS,xopt,eps2); 

  

  

evlmi=evallmi(LMISYS,xopt); 

  

[lhs1,rhs1]=showlmi(evlmi,1); 

[lhs2,rhs2]=showlmi(evlmi,2); 

[lhs3,rhs3]=showlmi(evlmi,3); 

[lhs4,rhs4]=showlmi(evlmi,4); 

[lhs5,rhs5]=showlmi(evlmi,5); 

[lhs6,rhs6]=showlmi(evlmi,6); 

  

X_0=X; 

Q_0=Q; 

Z_0=Z; 

M_0=M; 

N_0=N; 

T_0=T; 

Y_0=Y; 
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W_0=W; 

alpha_0=alpha; 

eps1_0=eps1; 

eps2_0=eps2; 

  

D1=max(eig(lhs1))<0; 

D2=min(eig(rhs2))>0; 

D3=min(eig(rhs3))>0; 

D4=min(eig(rhs4))>0; 

D5=min(eig(rhs5))>0; 

D6=max(eig(lhs1))<0; 

  

myDecision=D1&D2&D3&D4&D5&D6; 

save initial1092017 nn m p A B C x_0 e_0 S R k K0 L0 k0 counter X_0 X Q_0 Q Z_0 Z M_0 

M N_0 N T_0 T Y_0 Y W_0 W alpha_0 alpha eps1_0 eps1 eps2_0 eps2 myDecision 

 

 

File 2  

load initial1092017 ; 

  

setlmis([]) 

  

X=lmivar(1,[nn 1]); 

Q=lmivar(1,[nn 1]); 

Z=lmivar(1,[nn 1]); 

M=lmivar(1,[nn 1]); 

N=lmivar(1,[nn 1]); 

T=lmivar(1,[nn 1]); 

Y=lmivar(2,[m nn]); 

W=lmivar(2,[nn p]); 

eps1=lmivar(1,[1,1]); 

eps2=lmivar(1,[1,1]); 

alpha=lmivar(1,[1 1]); 

  

lmiterm([1 1 1 X],A,1,'s') 

lmiterm([1 1 1 Y],B,1,'s') 

lmiterm([1 1 1 eps1],D',D) 

  

lmiterm([1 1 3 -Y],1,1) 

lmiterm([1 1 4 X],1,1) 

  

lmiterm([1 1 5 Y],-B,1) 

lmiterm([1 1 6 X],1,Ea') 

  

lmiterm([1 2 2 Q],1,A,'s') 

lmiterm([1 2 2 W],-1,C,'s') 

lmiterm([1 2 2 Z],1,1) 

lmiterm([1 2 2 eps2],Ea',Ea) 

  

lmiterm([1 2 7 Q],1,D)  
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lmiterm([1 3 3 0],-2*inv(R)) 

lmiterm([1 3 5 Y],-1,1) 

  

lmiterm([1 4 4 0],-2*inv(S)) 

  

lmiterm([1 5 5 M],-1,1) 

lmiterm([1 5 6 -Y],1,Eb') 

  

lmiterm([1 6 6 eps1],-1,1) 

  

lmiterm([1 7 7 eps2],-1,1) 

lmiterm([-2 1 1 M],1,1) 

lmiterm([-2 1 2 0],1) 

lmiterm([-2 2 2 N],1,1) 

lmiterm([-3 1 1 X],1,1) 

lmiterm([-3 1 2 0],1) 
 

lmiterm([-3 2 2 T],1,1) 

  

lmiterm([-4 1 1 N],1,1) 

lmiterm([-4 1 2 T],1,1) 

lmiterm([-4 2 2 Z],1,1) 

  

lmiterm([-5 1 1 alpha],1,1) 

lmiterm([6 1 1 alpha],-1,1) 

lmiterm([6 1 1 Q],0.5*e_0',e_0) 

 

lmiterm([6 1 2 0],x_0') 

lmiterm([6 2 2 X],-2,1) 

  

lmiterm([-7 1 1 Q],1,1) 

  

LMISYS=getlmis; 

  

n=decnbr(LMISYS); 

c=zeros(n,1); 

for j=1:n 

    

[Mj,Nj,Xj,Tj,alphaj]=defcx(LMISYS,j,M,N,X,T,alpha); 

   c(j)=alphaj+trace(M_0*Nj+N_0*Mj+X_0*Tj+T_0*Xj); 

end 

  

[copt,xopt]=mincx(LMISYS,c); 

X=dec2mat(LMISYS,xopt,X); 

Q=dec2mat(LMISYS,xopt,Q); 

Z=dec2mat(LMISYS,xopt,Z); 

M=dec2mat(LMISYS,xopt,M); 

N=dec2mat(LMISYS,xopt,N); 

T=dec2mat(LMISYS,xopt,T); 
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Y=dec2mat(LMISYS,xopt,Y); 

W=dec2mat(LMISYS,xopt,W); 

alpha=dec2mat(LMISYS,xopt,alpha); 

eps1=dec2mat(LMISYS,xopt,eps1); 

eps2=dec2mat(LMISYS,xopt,eps2); 

  

evlmi=evallmi(LMISYS,xopt); 

  

[lhs1,rhs1]=showlmi(evlmi,1); 

[lhs2,rhs2]=showlmi(evlmi,2); 

[lhs3,rhs3]=showlmi(evlmi,3); 

[lhs4,rhs4]=showlmi(evlmi,4); 

[lhs5,rhs5]=showlmi(evlmi,5); 

[lhs6,rhs6]=showlmi(evlmi,6); 
  

X_0=X; 

Q_0=Q; 

Z_0=Z; 

M_0=M; 

N_0=N; 

T_0=T; 

Y_0=Y; 

W_0=W; 

alpha_0=alpha; 

eps1_0=eps1; 

eps2_0=eps2; 

  

D1=max(eig(lhs1))<0; 

D2=min(eig(rhs2))>0; 

D3=min(eig(rhs3))>0; 

D4=min(eig(rhs4))>0; 

D5=min(eig(rhs5))>0; 

D6=max(eig(lhs1))<0; 

  

myDecision=D1&D2&D3&D4&D5&D6;  

save initial1092017 nn m p A B C x_0 e_0 S R k K0 L0 k0 counter X_0 X Q_0 Q Z_0 Z M_0 

M N_0 N T_0 T Y_0 Y W_0 W alpha_0 alpha eps1_0 eps1 eps2_0 eps2 myDecision ; 
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File 3  

EX1_1_11_2017_1; 

  while 1 

  EX1_1_11_2017_2 ; 

   

 if max(real(eig(M_0-X_0*Z_0*X_0)))<=0 && myDecision 

       X_0=X; 

       Q_0=Q; 

       K0=Y_0*inv(X_0); 

       L0=inv(Q_0)*W_0; 

       Z_0=Z; 

       M_0=M; 

       T_0=T; 

       Y_0=Y; 

       W_0=W; 

       alpha_0=alpha; 

       eps1_0=eps1; 

       eps2_0=eps2; 

       k0=k; 

        

       break; 

   end 

   k=k+1; 

   if k>99 

    

break; 

end 

   counter=counter+1; 

   save initial1092017 nn m p A B C x_0 e_0 S R k K0 L0 k0 counter X_0 X Q_0 Q Z_0 Z M_0 

M N_0 N T_0 T Y_0 Y W_0 W alpha_0 alpha eps1_0 eps1 eps2_0 eps2 myDecision 

en 

 

1.4 Simulation Codes for Linear Uncertain System 

function y =uncertain_addmfile(myInput) 

x1=myInput(1); 

x2=myInput(2); 

x1hat=myInput(3); 

x2hat=myInput(4); 

t=myInput(5); 

x=[x1;x2]; 

   

A=[0 0.5;0 1]; 

B=[0;0.5]; 

C=[1 0]; 

D=[0.5;0.3]; 

x_0=[1;0]; 

Ea=[0.1  0.2]; 

Eb=0.1 ; 
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F=sin(t); 

P=[42.5610    4.6125;4.6125   31.5982]; 

  

Q=1.0e+07 *[1.7869   -0.3948;-0.3948    0.1141]; 

dela=D*F*Ea; 

delb=D*F*Eb; 

  

K=[-2.4085  -10.5507]; 

  

L= [5.7460;23.4037]; 

e_0=[0;0]; 

xhat=[x1hat;x2hat]; 

J=0.5*(x_0'*P*x_0+e_0'*Q*e_0);  

u= K*xhat; 

xdot=(A+dela)*x+(B+delb)*u; 

y=C*x; 

yhat=C*xhat; 

xhatdot=(A+dela)*xhat+(B+delb)*u+L*(y-yhat); 

x1dot=xdot(1,1); 

x2dot=xdot(2,1); 

x1hatdot=xhatdot(1,1); 

x2hatdot=xhatdot(2,1); 

y=[x1dot x2dot x1hatdot x2hatdot J u]; 

end 

 

Figure 12 – Block diagram of a state feedback observer design variables for linear uncertain 

system  
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APPENDIX B 
Theorem 1 is implemented with observer-based PD state feedback controller for linear nominal 

system. 

File 1 

A=[0 0.5;0 1]; 

B=[0;0.5]; 

Kp =[ -1.7309  -10.1860]; 

C=[1 0]; 

[nn,m]=size(B); 

L=[3.95;15.6503]; 

k=1; 

k0=0; 

  

setlmis([]) 

  

X=lmivar(1,[nn 1]); 

Y=lmivar(2,[m nn]); 

Q=lmivar(1,[nn 1]); 

S=lmivar(1,[nn 1]); 

M=lmivar(1,[nn 1]); 

J=lmivar(1,[nn 1]); 

Z=lmivar(1,[nn 1]); 

  

lmiterm([1 1 1 X],A,1,'s'); 

lmiterm([1 1 1 X],B*Kp,1,'s'); 

lmiterm([1 1 1 -Y],-A,B','s'); 

lmiterm([1 1 1 -Y],-B*Kp,B','s'); 

  

lmiterm([1 1 2 0],-B*Kp) 

lmiterm([1 1 2 0],-A) 

lmiterm([1 1 2 0],L*C) 

  

lmiterm([1 1 3 Y],-B,1); 

lmiterm([1 2 2 Q],A,1,'s'); 

lmiterm([1 2 2 Q],-L*C,1,'s'); 

lmiterm([1 2 2 Z],1,1); 

  

lmiterm([1 3 3 S],-1,1); 

  

lmiterm([-2 1 1 M],1,1); 

lmiterm([-2 1 2 J],1,1); 

lmiterm([-2 2 2 Z],1,1); 

  

lmiterm([-3 1 1 S],1,1); 

lmiterm([-3 1 2 0],1); 

lmiterm([-3 2 2 M],1,1); 

  

lmiterm([-4 1 1 X],1,1); 
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lmiterm([-4 1 2 0],1); 

lmiterm([-4 2 2 J],1,1); 

  

lmiterm([-5 1 1 Q],1,1); 

  

  

LMISYS=getlmis; 

  

[copt,xopt]=feasp(LMISYS); 

  

X=dec2mat(LMISYS,xopt,X); 

Y=dec2mat(LMISYS,xopt,Y); 

Q=dec2mat(LMISYS,xopt,Q); 

Z=dec2mat(LMISYS,xopt,Z); 

M=dec2mat(LMISYS,xopt,M); 

S=dec2mat(LMISYS,xopt,S); 

  

evlmi=evallmi(LMISYS,xopt); 

[lhs1,rhs1]=showlmi(evlmi,1); 

[lhs2,rhs2]=showlmi(evlmi,2); 

[lhs3,rhs3]=showlmi(evlmi,3); 

[lhs4,rhs4]=showlmi(evlmi,4); 

[lhs5,rhs5]=showlmi(evlmi,5); 

  

X_0=X; 

Q_0=Q; 

Z_0=Z; 

M_0=M; 

J_0=J; 

S_0=S; 

Y_0=Y; 

 Kd=Y*inv(X); 

save initialDataObserver_PD_kpfixed  nn m k k0 A B C L X X_0 Q Q_0 Z Z_0 M M_0 J J_0 

S S_0 Y Y_0 Kp 

 

File 2  

load initialDataObserver_PD_kdfixed; 

setlmis([]) 

X=lmivar(1,[nn 1]); 

Y=lmivar(2,[m nn]); 

Q=lmivar(1,[nn 1]); 

S=lmivar(1,[nn 1]); 

M=lmivar(1,[nn 1]); 

J=lmivar(1,[nn 1]); 

Z=lmivar(1,[nn 1]); 

lmiterm([1 1 1 X],A,1,'s'); 

lmiterm([1 1 1 X],B*Kp,1,'s'); 

lmiterm([1 1 1 -Y],-A,B','s'); 

lmiterm([1 1 1 -Y],-B*Kp,B','s'); 

lmiterm([1 1 2 0],-B*Kp) 
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lmiterm([1 1 2 0],-A) 

lmiterm([1 1 2 0],L*C) 

lmiterm([1 1 3 Y],-B,1); 

lmiterm([1 2 2 Q],A,1,'s'); 

lmiterm([1 2 2 Q],-L*C,1,'s'); 

lmiterm([1 2 2 Z],1,1); 

lmiterm([1 3 3 S],-1,1); 

lmiterm([-2 1 1 M],1,1); 

lmiterm([-2 1 2 J],1,1); 

lmiterm([-2 2 2 Z],1,1); 

lmiterm([-3 1 1 S],1,1); 

lmiterm([-3 1 2 0],1); 

lmiterm([-3 2 2 M],1,1); 

lmiterm([-4 1 1 X],1,1); 

lmiterm([-4 1 2 0],1); 

lmiterm([-4 2 2 J],1,1); 

lmiterm([-5 1 1 Q],1,1); 

LMISYS=getlmis; 

n=decnbr(LMISYS); 

c=zeros(n,1); 

for j=1:n 

   [Mj,Jj,Xj,Sj]=defcx(LMISYS,j,M,J,X,S); 

   c(j)=trace(S_0*Mj+M_0*Sj+X_0*Jj+J_0*Xj); 

end 

[copt,xopt]=mincx(LMISYS,c); 

X=dec2mat(LMISYS,xopt,X); 

Y=dec2mat(LMISYS,xopt,Y); 

Q=dec2mat(LMISYS,xopt,Q); 

Z=dec2mat(LMISYS,xopt,Z); 

M=dec2mat(LMISYS,xopt,M); 

S=dec2mat(LMISYS,xopt,S); 

J=dec2mat(LMISYS,xopt,J); 

evlmi=evallmi(LMISYS,xopt); 

 

[lhs1,rhs1]=showlmi(evlmi,1); 

[lhs2,rhs2]=showlmi(evlmi,2); 

[lhs3,rhs3]=showlmi(evlmi,3); 

[lhs4,rhs4]=showlmi(evlmi,4); 

[lhs5,rhs5]=showlmi(evlmi,5); 

X_0=X; 

Q_0=Q; 

Z_0=Z; 

M_0=M; 

J_0=J; 

S_0=S; 

Y_0=Y; 

 save initialDataObserver_PD_kdfixed  nn m k k0 A B C L X X_0 Q Q_0 Z Z_0 M M_0 J 

J_0 S S_0 Y Y_0 Kp 
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File 3 

ex_observerkdsolved_5_3_2018 

  

while 1 

   ex_observedkdsolved_5_3_2018_2; 

   if max(real(eig(S_0-X_0*Z_0*X_0)))<=0  

      Kd=Y*inv(X); 

      k0=k; 

      break; 

   end 

   k=k+1; 

   if k>99 

    break; 

   end 

   counter=counter+1; 

save initialDataObserver_PD_kdfixed  nn m k k0 A B C L X X_0 Q Q_0 Z Z_0 M M_0 J J_0 

S S_0 Y Y_0 Kp 

end 
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APPENDIX C 
 

Robust guaranteed cost observer-based PD state feedback codes applied with algorithm 1 and 

lemma 3. 

 

A=[0 0.5;0 1]; 

B=[0;0.5]; 

C=[1 0]; 

R=0.5; 

S=[1 0;0 1]; 

 

%case3 

Kp =[-1.7309  -10.1860];%Kp fixed from nominal system  

Kd=[-0.2376   -0.8788]; 

[nn,m]=size(B); 

%L=[-4;8]; 

L=[3.95;15.6503]; 

k=1; 

k0=0; 

x_0=[1;0.5]; 

xhat_0=[1;0.5]; 

e_0=x_0-xhat_0; 

Ab=(A-L*C); 

Ac=inv(1-B*Kd); 

Ad=(A+B*Kp); 

  

setlmis([]) 

X=lmivar(1,[nn 1]); 

alpha=lmivar(1,[1 1]); 

Q=lmivar(1,[nn 1]); 

lmiterm([1 1 1 X],Ac*Ad,1,'s') 

lmiterm([1 1 2 X],-Ac*B*Kp,1) 

 

lmiterm([1 1 2 X],-Ac*B*Kd*Ab,1) 

  

lmiterm([1 1 3 X],-1,Ad'*Ac'*Kd') 

lmiterm([1 1 4 X],-1,-Kp') 

lmiterm([1 1 5 X],-1,1) 

  

lmiterm([1 2 2 Q],Ab,1,'s') 

lmiterm([1 2 2 0],0.5*Ab'*Kd'*R*Kd*Ab) 

lmiterm([1 2 2 0],0.5*Ab'*Kd'*B'*Ac'*Kd'*R*Kd*Ac*B*Kd*Ab) 

lmiterm([1 2 2 0],0.5*Kp'*R*Kp) 

  

lmiterm([1 3 3 0],-2*inv(R)) 

lmiterm([1 4 4 0],-2*inv(R)) 
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lmiterm ([1 5 5 0],-2*inv(S)) 

lmiterm([-2 1 1 alpha],1,1) 

  

  

lmiterm([3 1 1 alpha],-1,1) 

lmiterm([3 1 1 Q],0.5*e_0',e_0) 

lmiterm([3 1 2 0],x_0') 

lmiterm([3 2 2 X],-2,1) 

  

  

lmiterm([-4 1 1 Q],1,1) 

  

LMISYS=getlmis; 

  

  

n=decnbr(LMISYS); 

c=zeros(n,1); 

  

for j=1:n 

   [alphaj]=defcx(LMISYS,j,alpha); 

   c(j)=alphaj; 

end 

  

[copt,xopt]=mincx(LMISYS,c); 

  

X=dec2mat(LMISYS,xopt,X); 

Q=dec2mat(LMISYS,xopt,Q); 

alpha=dec2mat(LMISYS,xopt,alpha); 

evlmi=evallmi(LMISYS,xopt); 

  

[lhs1,rhs1]=showlmi(evlmi,1); 

[lhs2,rhs2]=showlmi(evlmi,2); 

[lhs3,rhs3]=showlmi(evlmi,3); 

 

 

 

1.1 Simulation Codes  

 

function y = guaranteedcost_pd(myInput) 

   

  x1=myInput(1); 

  x2=myInput(2); 

  x1hat=myInput(3); 

  x2hat=myInput(4); 

  x1hatdot=myInput(5); 

  x2hatdot=myInput(6); 

   

 x=[x1;x2]; 
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A=[0 0.5;0 1]; 

B=[0;0.5]; 

C=[1 0]; 

x_0=[1;0.5]; 

xhat_0=[1;0.5] ; 

xhatdot=[x1hatdot;x2hatdot]; 

P=[3.5470  3.9180;3.9180 5.6958]; 

  

  

Q=1.0e+08 *[0.2465  0.6942;0.6942 6.8935]; 

    

Kp=[-1.7309  -10.1860]; 

Kd=[-0.2376   -0.8788]; 

  

L= [3.9500;15.6503]; 

%L= [-4;8]; 

e_0=x_0-xhat_0; 

xhat=[x1hat;x2hat]; 

  

  

J=0.5*(x_0'*P*x_0+e_0'*Q*e_0);  

u= Kp*xhat+Kd*xhatdot; 

%u= Kp*xhat; 

xdot=A*x+B*u; 

y=C*x; 

yhat=C*xhat; 

xhatdot=A*xhat+B*u+L*(y-yhat); 

  

x1dot=xdot(1,1); 

x2dot=xdot(2,1); 

x1hatdot=xhatdot(1,1); 

x2hatdot=xhatdot(2,1); 

  y=[x1dot x2dot x1hatdot x2hatdot J u]; 

end 
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Figure 13 – Block diagram of a PD state feedback observer design variables for linear uncertain 

system. 
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