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ABSTRACT

PAIRING IN CHARGED-NEUTRAL FERMION
MIXTURES UNDER AN ARTIFICIAL MAGNETIC

FIELD

Fatma Nur Ünal

M.S. in Physics

Supervisor: Assoc. Prof. Dr. Mehmet Özgür Oktel

August, 2012

Bose-Einstein condensations (BEC), pairing behaviour, vortex formations in su-

perconductivity and superfluidity are just a few examples of fascinating features

of ultracold gases. In this thesis, we study charged-neutral cold atom mixtures

which are obtained by placing a neutral mixture under an artificial magnetic

field coupling only one of the components. We begin with two distinguishable

(charged-neutral) particles on a ring trap. Charged particle gains angular mo-

mentum due to a magnetic field along the axis of the ring and we see that there

is a big angular momentum transfer to neutral particle in orders of h̄. This work

is set forth to guide us in the many body problem of vortex transformation in

charged-neutral superfluid mixtures. In the main part of the thesis, we examine

charged-neutral fermion mixtures. Thanks to artificial magnetic fields, Cooper

pairs whose only one component coupling to magnetic field can be created now.

We calculate the gap equation for this system and solve for the critical temper-

ature. We show that critical temperature decreases for the increasing magnetic

field.

Keywords: Pairing, superconductivity, charged-neutral mixture, artificial mag-

netic field, pairing susceptibility, gap equation.
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ÖZET

YAPAY MANYETİK ALAN ALTINDA
YÜKLÜ-YÜKSÜZ KARIS. IMLARDA ES.LENME

Fatma Nur Ünal

Fizik, Yüksek Lisans

Tez Yöneticisi: Doc.. Dr. Mehmet Özgür Oktel

Ağustos, 2012

As.ırı-soğuk gazların etkileyici pek c.ok özelliğine Bose-Einstein yoğunlas.ması

(BEY), es.lenme davranıs.ı, süperiletken ve süperakıs.kanlardaki girdap olus.umu

örnek verilebilir. Biz bu tezde nötr bir karıs.ımı biles.enlerinden yalnızca

biriyle c.iftlenen yapay bir manyetik alanın etkisinde bırakarak elde edilebilen

yüklü-nötr karıs.ımları inceledik. C. alıs.mamıza halka bir kapan üzerindeki

iki tane ayırt edilebilir (yüklü-nötr) parc.acıkla bas.ladık. Yüklü parc.acık

halkanın ekseni yönündeki manyetik alan yüzünden ac.ısal momentum kazanırken,

nötr parc.acığa da yüksek miktarlarda ac.ısal momentum transferi olduğunu

gözlemledik. Bu hesaplamanın temel amacı c.ok parc.acık problemimizde, yüklü-

nötr süperakıs.kan karıs.ımlardaki girdap transferi, bize yol göstermesidir. Tezin

esas bölümünde, yüklü-nötr fermiyon karıs.ımları inceledik. Yapay manyetik alan-

lar sayesinde, sadece tek bir biles.eni manyetik alanla c.iftlenen Cooper c.iftleri artık

yaratılabiliyor. Bu sistem ic.in aralık denklemini yazıp, kritik sıcaklık değerini

hesapladık. Kritik sıcaklığın artan manyetik alana kars.ı düs.tüğünü gösterdik.

Anahtar sözcükler : Süperiletkenlik, yüklü-nötr karıs.ımlar, yapay manyetik alan,

es.lenme duyarlılığı, aralık denklemi.
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has been always ready for brain-storming on physics, technology and science. I

want to thank him for being really helpful and kind to me. I should also add my

thanks to my colleagues and friends Ege Özgün, Ays.e Yes.il, Togay Amirahmedov
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Chapter 1

Introduction

1.1 Ultracold Atoms

Observing quantum mechanics directly in laboratories is not that easy since most

of the time it deals with systems in atomic levels. However, cooling the atoms

down to near absolute zero brings the fascinating macroscopic quantum effects

[1–5] to light by revealing Bose-Einstein Condensation (BEC). Particles in a BEC

occupy the lowest state in large numbers and move much more slower due to the

low temperatures [6, 7]. They start coherently acting more like waves which is

evidently resulting in a convenient choice to study quantum mechanical effects

in macroscopic scales. In other words, in this ultracold systems, there is no

temperature fluctuations and no impurities, hence, high degree of control on this

systems makes them proper quantum laboratory to examine few or many body

phenomena.

A condensate state of atomic gases is first predicted in 1925 by Einstein and

observed in 1995 at NIST-JILA laboratory [8]. This new state stands out by

combining interests of several fields like atomic, condense matter, statistical and

nuclear physics. Besides, achievements in ultracold atoms did not remain limited

with boson, instead, more exotic phenomena have come out such as: fermion

1



CHAPTER 1. INTRODUCTION 2

superfluidity [1], BEC of photons [9], Feshbach resonance [6] and even some ap-

plications in nuclear physics and astrophysics. As a recent success, we are served

up with artificial magnetic fields.

1.2 Artificial Magnetic Fields

Ultracold atoms provide the abundant environment to observe pure many-body

phenomena. Nevertheless, neutrality of the condensates constrains the search of

effects originating from magnetic field, such as fractional quantum Hall effect [10]

This obstacle is tried to be overcome first by rotating the condensate and using the

resemblance between Lorentz and Coriolis force [11,12]. However, because of the

physical limitation of rotating the systems, high magnetic fields are disallowed

for this method. Spielman et al. developed a method to optically induce an

effective magnetic field [13] and immediately drew attention by enabling unlimited

strength of magnetic fields.

In quantum mechanics, potentials are more important rather than fields like

in classical mechanics. Vector potential is entering the Hamiltonian in the form

of H = 1
2m

( h̄
i
∇⃗ − qA⃗)2, so, the crucial part to have the effect of a magnetic

field is qA⃗ together. Spielman et al. achieve this by using a spatially dependent

Hamiltonian which results in an artificial magnetic field due to B⃗ = ∇⃗× A⃗. They

first dress the internal (spin) states by two counter propagating laser beams with

different momentum, then apply a spatially varying Zeeman shift. Observation

of vortices in the condensate proves the presence of an effective magnetic field.

Therefore, they obtain an optically synthesized magnetic field as a result of the

position dependent light-matter coupling and spare us from the trouble of rotating

the system. This procedure is delicately dependent on the internal degrees of

freedom, so simply, it is almost impossible to create one that is coupling to both

components of a neutral mixture.
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1.3 Charged-Neutral Mixtures

In this thesis, we examine charged-neutral mixtures which is becoming more and

more important after the discovery of synthetic magnetic fields. Under an artifi-

cial magnetic field coupling to only one of the components of a neutral mixture (of

particles, superfluids, condensates, etc...), we effectively attain a charged-neutral

mixture. They allow the study of more exotic regimes of particle interactions

than the neutral cold atom systems offer.

Initially, in the 2nd chapter of this thesis, we consider a charged-neutral two-

particle mixture. We put them on a ring trap and introduce a short-range delta

function interaction between them. Charged particle ( or superfluid in many

body case to be mentioned at the end of the chapter ) gains angular momentum

by coupling to magnetic field and drags the neutral one due to the interaction.

To calculate this angular momentum transfer to the neutral particle, we first set

the Hamiltonian and solve for the wave function by applying standard boundary

conditions. In addition, we discuss the application of the results of the two-

particle problem to many body case.

Secondly, we treat charged-neutral fermion mixtures, this time by examining

the pairing behaviour of fermions in the case of mixtures. For this reason, we first

cover the microscopic theory of superconductivity in chapter 3 with a brief sum-

mary of type-II superconductors where high field superconductivity (achievable

by artificial magnetic fields) is expected to important. And then in chapter 4, we

define our fermion problem as ↓ spin particles coupling to the magnetic field while

↑ spin particles not. At the beginning, to balance the densities of the ↑ and ↓ spin

particles, which are going to form Cooper pairs, we study chemical potentials of

them. Then by defining the Hamiltonian, we start calculating the gap equation

for this system. We are particularly interested in critical temperature Tc, hence,

we use the pairing susceptibility method explained in the section 3.2.4 to come up

directly with the gap equation at Tc. We first start solving it analytically as much

as possible and complement with a numerical code to achieve the dependency of

Tc on magnetic field.
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Finally in chapter 5, we summarize our results of the two-particle problem

and its applications to further many-body problem. Then, we present our fermion

problem, the procedure we have followed to obtain and solve the gap equation

and our results. We conclude with a brief description of our future plans.



Chapter 2

Two-Particle Problem

We study two neutral particles on a ring trap under an artificial magnetic field

along the axis of the ring which is coupling only one of the particles and eventually

resulting in a charged-neutral mixture. The charged particle is expected to gain

angular momentum due to the magnetic field. The question is when we put a

short-range delta function interaction between them whether the charged particle

drags the neutral one and if so in which amounts. Throughout this chapter, we

calculate the amount of this angular momentum transfer.

2.1 Analytic Calculation

2.1.1 Hamiltonian

We first write down the Hamiltonian describing the system with same mass for

both particles and ϕ1, ϕ2 as angles of respective particles on a (−π, π) symmetric

ring of radius R.[
1

2mR2

( h̄
i
∇⃗1 − qA⃗R

)2

− h̄2

2mR2
∇⃗2 + V (ϕ1, ϕ2)

]
Ψ(ϕ1, ϕ2) = EΨ(ϕ1, ϕ2) (2.1)

First part is representing the standard Aharonov-Bohm effect [14] for a particle

with charge q under a vector potential A⃗. Radius of the ring is fixed so the

5



CHAPTER 2. TWO-PARTICLE PROBLEM 6

problem reduces to 1D. Interaction potential is initially defined as attractive,

V (ϕ1, ϕ2) = −uδ(θ) for relative angle θ = ϕ1 − ϕ2, but it could be smoothly

extended to cover repulsive interaction for negative values of u.

− h̄2

2mR2

[
∇2

1 +∇2
2 − 2i

qRA⃗

h̄
∇⃗1 −

(qRA⃗

h̄

)2
]
Ψ(ϕ1, θ)−EΨ(ϕ1, θ) = uδ(θ)Ψ(ϕ1, θ)

(2.2)

We propose a solution in the form of Ψ(ϕ1, θ) = eiLϕ1f(θ). This wave function is

incorporating the total angular momentum conservation which is related with the

first particle and an additional part arising from the coupling between particles.

Initial statem1,m2 couples intom1+m2 = L andm1−m2. Such a form represents

the properties of the system besides simplifies the hamiltonian. For dimensionless

energies Ẽ = 2mR2

h̄2 E, Ũ = 2mR2

h̄2 u and β = qRA⃗
h̄

as flux quantum, the Hamiltonian

is

eiLϕ1

[
2
∂2f

∂θ2
+ 2iL

∂f

∂θ
− L2f − 2iβ

(
∂f

∂θ
+ iLf

)
+ (Ẽ − β2)f

]
= 0 (2.3)

2f̈ + 2i(L− β)ḟ + (Ẽ − (L− β)2)f = 0 (2.4)

f(θ) =

{
f1(θ) = Aeλ+θ +Beλ−θ ,−π < θ < 0

f2(θ) = Ceλ+θ +Deλ−θ , 0 < θ < π
(2.5)

for λ± = iβ−L
2

± ∆
2
where ∆ =

√
(β − L)2 − 2Ẽ. β and L always appear together

in equations. Increasing L by 1 while decreasing β by 1 gives rise to the same

state as before. This behaviour can be easily seen in Fig. 2.2, but before coming

that we have to solve for constants by applying boundary conditions.

2.1.1.1 Boundary conditions

There are four boundary conditions: continuity of f(θ) at 0 and (−π, π), con-

tinuity of derivative of f(θ) at (−π, π) and discontinuity of it at 0, which are

respectively

A+B = C +D (2.6)

Ae−λ+π +Be−λ−π = Ceλ+π +Deλ−π (2.7)

Aλ+e
−λ+π +B λ−e

−λ−π = C λ+e
λ+π +Dλ−e

λ−π (2.8)

∆(C − A) = − Ũ

2
(A+B) (2.9)
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We solve for B,C and D in terms of A which is left to be determined by normal-

ization.

B = A
2∆(1− e−2λ+π)− Ũ

Ũ
(2.10)

C = Ae−2λ+π (2.11)

D = A
2∆(1− e−2λ+π)− Ũe−2λ+π

Ũ
(2.12)

By solving boundary conditions, we obtain a relation between interaction poten-

tial and energy of the system.

Ũ = 2∆

(
coth∆π − cos (β − L)π

sinh∆π

)
(2.13)

It would be better to arrange Eq. (2.13) in reverse direction, but it has a nice

and compact form in this way , so we leave it as it is. This equation tells us that

Ẽ must be smaller than (β−L)2

2
(real ∆ solutions) for the system to be in bound

state. And the system excites to an upper (n+ 1)th state at Ẽ = (β−L)2

2
+ (n+1)2

2

where we observe Feshbach resonance (dashed lines in Fig. 2.1) [15]. While the

interaction is taken to the infinity, it suddenly swaps to minus infinity and the

system jumps to the upper state.
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2nd Excited

3rd Excited

Figure 2.1: Energy levels vs. interaction potential, for L = 0 and β = 0.2 .
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It should be remembered that we define interaction potential as attractive

for positive Ũ. And as can be seen in Fig. 2.1, there is antisymmetry between

attractive and repulsive potentials.
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=2

L
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L
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=−2

L
total

=3

L
total

=−3

Figure 2.2: Energy levels vs. flux, for Ũ = 0.1 .

We mentioned (β − L) dependency before, Fig. 2.2 demonstrates this be-

haviour. For example, if the system remains in ground state through flux quan-

tum from −1.5 to 1.5, total angular momentum takes values of −1, 0 and 1 (this

change in Ltot by integer numbers reminds vortices). We also examine the many

body correspondence of this system. We take a charged-neutral superfluid mix-

ture under an artificial magnetic field and search for vortex transfer from charged

superfluid to neutral one due to superfluid drag. This two-particle results and

Fig. 2.2 lead us in many body problem to find the points where the vortex transfer

might be present and to estimate the integration strength needed for it.

2.1.2 Angular momentum transfer

Due to the interaction of particles, the neutral one begins to gain angular mo-

mentum, too. To achieve an equation for this angular momentum transfer, we
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first normalize the wave function to find out last constant A, then calculate the

average angular momentum of the neutral particle. <Ln> is calculated as below

in the bound state that is real ∆ solution.

<Ln>bound
= −β

2
+

π∆α sin βπ

2π((α− 1)e∆π − α cos βπ) + 2
∆
sinh∆π

(2.14)

for α = 2∆
Ũ
.

Here, we again assume total angular momentum to be zero, therefore Eq. (2.14)

itself is for the ground state, but it can be smoothly extended to cover other L

values by replacing β with (β−L). For excited states, we calculate <Ln>scat by

taking ∆ imaginary,

<Ln>scat=−β

2
+
∆π

2

sin βπ sin∆π

π(1− cos βπ cos∆π)− 2
∆
sin∆π sinπ β−∆

2
sinπ β+∆

2

(2.15)

These results are represented in Fig. 2.3. As expected in ground state when

−20 −15 −10 −5 0 5 10 15 20
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Interaction Potential, Ũ

<
 L

n
 >

 

 

1st Excited

2nd Excited

3rd Excited

4th Excited

Ground State

Figure 2.3: Angular momentum of the neutral particle vs. interaction potential,
for L = 0 and β = 0.2 .

particles do not interact, < Ln >= 0. However, in excited states since L = 0,
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the neutral particle possesses non-zero angular momentum which is remarkable

because in bound state regime for small interactions angular momentum transfer

is in order of h̄.

All results are valid even in resonant interactions and crosschecked by per-

turbative and numerical approaches of Semih Kaya [16]. They exhibit high con-

sistency and guide us in the many body problem. However, for a many body

or single particle problem usually perturbative approaches are used like we do

with Gross-Pitaevskii [6] and Bogolyubov-de Gennes [7] equations. Our analytic

calculations are valid even in the high interaction regime where the others are

not.



Chapter 3

Fermions: Superconductivity

3.1 Superconductivity

Superconductivity is a phenomenon first discovered by H. Kamerlingh Onnes in

1911 [17] with the property of zero electrical resistivity. Soon after, it is also

realized that a superconductor completely expels magnetic field lines [7,18,19] or

bears so called Meissner effect [20] when it is exposed to an external magnetic field.

Indeed superconductors are categorized into two groups due to their magnetic

properties : Type-I and Type-II [21,22].

3.1.1 Type-I superconductors

Type-I superconductors comprise of almost all superconducting elements and

identified by their ejecting magnetic field lines up to a critical value Hc and then

loosing their superconducting properties. We are more interested in second type.

11
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3.1.2 Type-II superconductors

Type-II superconductors respond to magnetic field in an unusual way. They

possess two critical field values Hc1 and Hc2. They display complete Meissner

effect up to Hc1 (see Fig. 3.1). For external field values Hc1 < H0 < Hc2,

they allow magnetic field to penetrate as quantized vortices with supercurrents

circulating non-superconducting cores. Magnetic field inside these vortex cores is

always smaller than the external field H0 and this mixed state is still electrically

superconducting. Finally at H0 = Hc2 superconductivity vanishes. They are

mostly alloys or compounds and high field superconductivity is a phenomenon of

this type.

H

Tc

Hc1

Hc2

Superconducting

          State

Mixed State

Normal

      State

T

Figure 3.1: Critical magnetic field as a function of temperature for type II super-
conductors.

3.2 BCS Theory

Microscopic theory of superconductivity is first established in 1957 by Bardeen,

Cooper, and Schrieffer [23] and soon after by Nikolay Bogolyubov independently

[24] by introducing Bogolyubov transformation [7,18,25]. In BCS theory electrons

with opposite momenta and spin construct a Cooper pair [26] due to an attractive

potential between them no matter how weak and disregarding the source of the
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potential. In superconductivity, this potential is electron-phonon-electron inter-

action. Thus, only electrons around Fermi surface (with phonon energy ∼ h̄ωD)

compose Cooper pairs which are now bosons and can form BEC. Hence, electron

pairs in a superconductor are strongly correlated due to the condensation and

breaking a pair down requires much more energy than usual. This is the origin

of the energy gap in superconductors.

3.2.1 Hamiltonian

Main purpose through this chapter is to construct the building blocks of gap

equation to be able to apply it more complicated cases. We start with deriving

the BCS hamiltonian.

H =
∑
k⃗σ

(ϵk⃗ − µ)a†
k⃗σ
a
k⃗σ

+
g

V

∑
k⃗1k⃗2q⃗

a†
k⃗1↑

a†
k⃗2↓

a
k⃗2−q⃗↓

a
k⃗1+q⃗↑

(3.1)

for σ is ↑ and ↓ and a short-range s-wave interaction is taken as potential. But

we prefer to write the interaction hamiltonian in position space by using Eq.

(3.2), make an approximation that is eventually to reduce the Hamiltonian into

a quadratic form and turn back to momentum space by using inverse transfor-

mation. Such an approach is more suitable for cases when the interaction is well

defined in position space.

a
k⃗σ

=
1√
V

∫ ∞

−∞
d3r Ψ̂σ(r⃗)e

ik⃗.r⃗ (3.2)

Hint =
g

V 3

∫
d3r1

∫
d3r2

∫
d3r3

∫
d3r4 Ψ̂

†
↑(r⃗1) Ψ̂

†
↓(r⃗2) Ψ̂↓(r⃗3) Ψ̂↑(r⃗4).

.
∑
k⃗1k⃗2q⃗

eik⃗1(r⃗4−r⃗1)eik⃗2(r⃗3−r⃗2)eiq⃗(r⃗4−r⃗3) (3.3)

= g

∫ ∞

−∞
d3r Ψ̂†

↑(r⃗) Ψ̂
†
↓(r⃗) Ψ̂↓(r⃗) Ψ̂↑(r⃗) (3.4)

In Eq.(3.3), we convert sums into integral
(∑

k⃗ → V
8π3

∫
d3k

)
, obtain Dirac

Delta functions δ(r⃗4 − r⃗1), δ(r⃗3 − r⃗2), δ(r⃗4 − r⃗3) which are canceling three of the

integrals. Now we are ready to make our main approximation. Up to here,
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we have used single particle operators, but in a superconductor electrons form

pairs. So, we should start to consider pair operators. We define ∆ as average

of a pair-annihilation operator. The single particle operators in Eq. (3.5) have

only opposite spins for now, but the algebra will bring the opposite momentum

restriction autonomously.

∆(r⃗) =< Ψ̂↓(r⃗) Ψ̂↑(r⃗) > (3.5)

These pairs form BEC condensation which means a large fraction at lowest state.

Hence, deviation of a pair operator from its average can be taken really small.

(Ψ̂†
↑ Ψ̂

†
↓ −∆∗).(Ψ̂↓ Ψ̂↑ −∆) ∼= 0

Ψ̂†
↑ Ψ̂

†
↓Ψ̂↓ Ψ̂↑ −∆∗ Ψ̂↓ Ψ̂↑ −∆Ψ̂†

↑ Ψ̂
†
↓ + |∆|2 = 0 (3.6)

We substitute Eq. (3.6) into interaction Hamiltonian and for simplicity take ∆

position independent and real. Afterward, we turn back to momentum space by

following similar steps as before.

Hint = g∆

∫
d3r

(
Ψ̂↓(r⃗) Ψ̂↑(r⃗) + Ψ̂†

↑(r⃗) Ψ̂
†
↓(r⃗)

)
− g|∆|2V (3.7)

= g∆
∑
k⃗1k⃗2

∫
d3r

1

V

(
a
k⃗1↓

a
k⃗2↑

e−ir⃗.(k⃗1+k⃗2) + a†
k⃗2↑

a†
k⃗1↓

eir⃗.(k⃗1+k⃗2)
)
− g|∆|2V (3.8)

= g∆
∑
k⃗

(
a
−k⃗↓

a
k⃗↑

+ a†
k⃗↑
a†
−k⃗↓

)
− g|∆|2V (3.9)

Finally, the hamiltonian is in a quadratic form after approximation, but still

needed to be diagonalized.

H ≈
∞∑
k⃗=0

(
(ϵk⃗ − µ)(a†

k⃗↑
a
k⃗↑

+ a†
−k⃗↓

a
−k⃗↓

) + g∆(a
−k⃗↓

a
k⃗↑

+ a†
k⃗↑
a†
−k⃗↓

)
)
− g|∆|2V

(3.10)

3.2.1.1 Bogolyubov diagonalization

We follow a simple and well-known procedure to diagonalize the hamiltonian and

obtain the final form of BCS hamiltonian. First, new operators are defined,

α
k⃗
= ua

k⃗↑
+ va†

−k⃗↓

β
k⃗
= ua

−k⃗↓
− va†

k⃗↑
. (3.11)
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and after writing down the hamiltonian in terms of these operators α
k⃗
, β

k⃗
, the

coefficient of off-diagonal terms is made to be zero. That provides us with the

condition

tanh 2θk⃗ =
∆

ϵk⃗
, for uk⃗ = cos θk⃗ and vk⃗ = sin θk⃗. (3.12)

At last, inserting u and v gives the desired BCS hamiltonian.

H=
∑
k⃗=0

{√
(ϵk⃗ −µ)2 + g2∆2

(
α†
k⃗
α
k⃗
+β†

k⃗
β
k⃗

)
+(ϵk⃗−µ)−

√
(ϵk⃗ −µ)2 + g2∆2

}
−g∆2V

(3.13)

From Eq. (3.13), one can say that to obtain the lowest energy -ground state

energy at absolute zero- first part in the BCS hamiltonian should be zero. α
k⃗
is

quasi-particle operator and α†
k⃗
α
k⃗
counts the number of quasi-particle excitations

which is zero at zero temperature. Same argument goes for β
k⃗
too. In other

words,

α†
k⃗
α
k⃗
|BSCgroundstate⟩ = 0

β†
k⃗
β
k⃗
|BSCgroundstate⟩ = 0 at T = 0. (3.14)

In the light of these knowledge we can now start to derive gap equation.

3.2.2 Gap equation

BCS hamiltonian is defined in terms of quasi-particle operators. So, to be able to

take the average of the pair-annihilation operator between BCS states, we should

first switch to momentum space in Eq. (3.5) and then express a
k⃗↑
, a

−k⃗↓
in terms

of quasi-particle operators.

∆ = < Ψ̂↓(r⃗) Ψ̂↑(r⃗) >=
1

V

∑
k⃗

< (uβ
k⃗
+ vα†

k⃗
).(uα

k⃗
− vβ†

k⃗
) >

=
1

V

∑
k⃗

< u2 β
k⃗
α
k⃗︸︷︷︸

0

−uv β
k⃗
β†
k⃗
+ uv α†

k⃗
α
k⃗
− v2 α†

k⃗
β†
k⃗︸︷︷︸

0

> (3.15)

The first and last terms are zero for all temperatures. < α†
k⃗
α
k⃗
>= nk⃗ and

< β
k⃗
β†
k⃗
>=< 1−β†

k⃗
β
k⃗
>= 1−nk⃗. At zero temperature nk⃗ = 0 and by using Eqs.
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(3.12) gap equation at zero temperature is obtained as

∆0 =
1

V

∑
k⃗

−uk⃗vk⃗ =
−1

2V

∑
k⃗

sin(2θk⃗) = − g

2V

∑
k⃗

∆0√
(ϵk⃗ − µ)2 + g2∆2

0

. (3.16)

∆ is usually canceled out from both sides by taken as constant. To conserve

self-consistency of this equation g must be negative which is ending up with the

result attractive potentials with any strength can create a gap in energy.

For finite temperatures, we should introduce the Fermi distribution function

f(Ek⃗) of BCS Hamiltonian for nk⃗ , where Ek⃗ =
√
(ϵk⃗ − µ)2 + g2∆2. By keeping

constant ∆ assumption, we achieve the gap equation as follows,

1 = − g

2V

∑
k⃗

1√
(ϵk⃗ − µ)2 + g2∆2

(
1− 2f(Ek⃗)

)
= − g

2V

∑
k⃗

1√
(ϵk⃗ − µ)2 + g2∆2

(
1− 2

1

eβEk⃗ + 1

)
1 = − g

2V

∑
k⃗

1√
(ϵk⃗ − µ)2 + g2∆2

tanh
(β
2

√
(ϵk⃗ − µ)2 + g2∆2

)
. (3.17)

3.2.3 Zero-temperature gap & Critical temperature

To solve for ∆0 in Eq. (3.16), we first convert the sum into an integral over energy

with integral limits h̄ωD around the Fermi surface, because only the electrons in

this region can interact via phonons in the superconductor. Then, the integral is

shifted to ϵ− µ. Moreover, the denominator makes a sharp peak and the square

root in the numerator is smooth with respect to it, so taken out of the integral.

Thus, the constant in front of the integral can be represented in terms of the

density of states at Fermi surface at absolute zero, n(0).

1 =− g

2V

∑
k⃗

1√
(ϵk⃗ − µ)2 + g2∆2

0

= − g

8π2

(2m
h̄2

) 3
2

∫ µ+h̄ω
D

µ−h̄ω
D

dϵ

√
ϵ√

(ϵ− µ)2 + g2∆2
0

=− g

2
n(0)

∫ +h̄ω
D

−h̄ω
D

dϵ
1√

ϵ2 + g2∆2
0

= − g n(0) arcsinh
( h̄ω

D

|g∆|

)
(3.18)
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Here, we say Fermi energy is much more greater than the interaction that one

particle feels, ϵF ≫ −gn(0), to obtain the final form of the zero temperature gap.

|g|∆0 =
h̄ω

D

sinh
(
− 1

g n(0)

) ≈ 2h̄ω
D
e−

1
|g|n(0) (3.19)

Second result we can gather from the gap equation is the critical temperature.

∆ is expected to be really small around Tc, hence, we put ∆ = 0 in Eq. (3.17) and

solve for temperature. Similar procedure as above is followed, the only difference

now is an additional ‘tanh’ term in the integrand.

1 = −g n(0)

∫ h̄ω
D

0

dϵ
1

ϵ
tanh

( ϵ

2kBTc

)
(3.20)

We make a change of variables, x → ϵ
kBTc

, then apply integration by parts.

1 = −g n(0)

(
lnx tanh

x

2

∣∣∣ h̄ω
D

kBTc

0
− 1

2

∫ h̄ω
D

kBTc

0

dx
lnx

cosh2 x
2

)
≈ −g n(0)

(
ln

h̄ω
D

kBTc

+ ln
4

π
+ γ

)
(3.21)

Integration is taken in the limit x ≫ 1, thus, the integrand suppresses quickly

because of the ‘cosh2’ in the denominator and can be extended from zero to

infinity. After arranging constants to give Tc its ultimate form, for γ ≈ 0.577 as

Euler-Mascheroni constant,

kBTc =
2

π
eγ h̄ω

D
e−

1
|g|n(0) ≈ 1.13 h̄ω

D
e−

1
|g|n(0) (3.22)

kBTc ≈ 0.57 |g|∆0 (3.23)

This result is displaying a universal ratio between the critical temperature and

the zero-temperature gap independent of the species, besides, experimentally

checked and approved. Energy gap is demonstrated as a function of tempera-

ture in Fig. 3.2.
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∆

Tc

∆
0

T

Figure 3.2: Temperature dependence of the energy gap.

3.2.4 Pairing susceptibility

A simplest Hamiltonian is used to derive the standard gap equation, Eq. (3.17).

Therefore, putting ∆=0 easily leads us an equation to solve for Tc. Unfortunately,

this is not that straightforward for more complicated Hamiltonians. Hence, one

does better follow another perturbative approach [27] such that starting with the

fact ∆ is really small around Tc (see Fig. 3.2), we can open free energy in Taylor

series [28] with respect to ∆.

F = F0 + α2|∆|2 +O(|∆|4) (3.24)

Here, ∆ is the order parameter in Ginzburg-Landau (GL) theory and according

to this theory, free energy can be written as a function of the order parameter.

Moreover, in normal state ∆ = 0, where, after a second-order phase transition,

in superconducting state ∆ is non-zero (for a deeper discussion of GL theory

see [7,29]). The parameter α is called ‘pairing susceptibility ’ and odd-order terms

are absent since particles are created/annihilated as pairs, in other words, they

will automatically become zero. The argument follows that if putting a gap ∆ to

the system, Eq. (3.10), provides lower free energy, then system tends to pairing.

Thus,

α2 < 0 ⇒ energetically favorable, pairing

α2 > 0 ⇒ energetically unfavorable, no pairing

α2 = 0 ⇒ critical point, Tc. (3.25)
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Therefore, to obtain the gap equation at T = Tc, we need to find second order

correction arising from Hint in Eq. (3.10) and make it equal to zero. We use Θ
(2)
n

instead of standard perturbation notation ∆
(2)
n to avoid any confusion with gap

parameter.

Θ(2)
n =

∑
m

m̸=n

| < m|Hint|n > |2

En − Em

(3.26)

However, we study a macro-canonical ensemble at finite temperature, so we

should take thermal average over states n, too. It is better first to have a look at

possible states:

nk⃗↑ n−k⃗↓ Boltzmann factor

|00⟩ 1

|01⟩ e−β(ϵ
k⃗
−µ)

|10⟩ e−β(ϵ
k⃗
−µ)

|11⟩ + e−2β(ϵ
k⃗
−µ)

z =
(
1 + e−β(ϵ

k⃗
−µ)

)2

: Partition Function. (3.27)

Θ(2)
n = g2∆2

∑
m

m̸=n

k⃗

(⟨m|a
−k⃗↓

a
k⃗↑
|n⟩⟨n|a†

k⃗↑
a†
−k⃗↓

|m⟩
En − Em

+
⟨m|a†

k⃗↑
a†
−k⃗↓

|n⟩⟨n|a
−k⃗↓

a
k⃗↑
|m⟩

En − Em

)

There are two more terms in the sum above, but they are automatically zero since

they assign two different values to state |m⟩ at the same time. For first term in

the sum, |m⟩ can only be |00⟩ state following with |n⟩ = |11⟩ and vice versa for

second term.

=g2∆2
∑
k⃗

(⟨00|a
−k⃗↓

a
k⃗↑
|11⟩⟨11|a†

k⃗↑
a†
−k⃗↓

|00⟩
2(ϵk⃗ − µ)

+
⟨11|a†

k⃗↑
a†
−k⃗↓

|00⟩⟨00|a
−k⃗↓

a
k⃗↑
|11⟩

−2(ϵk⃗ − µ)

)
After multiplying with Boltzmann factors of these states, we have

Θ(2) = g2∆2
∑
k⃗

1

z

(
1

2(ϵk⃗ − µ)
e−2β(ϵ

k⃗
−µ) − 1

2(ϵk⃗ − µ)
1

)

Θ(2) = g2∆2
∑
k⃗

1

2(ϵk⃗ − µ)

e−β(ϵ
k⃗
−µ) − 1

e−β(ϵ
k⃗
−µ) + 1

(3.28)
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Furthermore, this is not the only term second order in delta in interaction hamil-

tonian, the last term in Eq. (3.10) should be added, too. Finally by equating

the pairing susceptibility to zero, we come up with the same gap equation at Tc

obtained before.

α2∆
2 =

(
− g2

∑
k⃗

1

2(ϵk⃗ − µ)
tanh

(β
2
(ϵk⃗ − µ)

)
− gV

)
∆2 = 0

1 = − g

2V

∑
k⃗

1

ϵk⃗ − µ
tanh

(βc

2
(ϵk⃗ − µ)

)
(3.29)

Here, we complete the explanation of theoretical background needed to apply our

problem of charged-neutral fermion mixture which is defined in the forthcoming

chapter.



Chapter 4

Fermion Problem

We set a problem of two bosons in chapter 2. Now, we study a similar structure

but for fermions in the light of BCS theory explained in previous chapter. We

consider neutral fermions in a uniform system under an artificial magnetic field

and take ↓ spin particles as coupling to the magnetic field while ↑ spin particles

not. Effectively, we have a charged-neutral mixture to construct Cooper pairs [26]

with each other. Normally, when both components are under effect of a magnetic

field, critical temperature decreases. In this chapter, we examine how this scheme

evolves if only one of the components of Cooper pairs feels the magnetic field.

4.1 Approximation Schemes

4.1.1 Particle densities

In our model, we want to control the numbers of ↑ and ↓ spin particles to be

equal (N↑ = N↓). So, we first need to obtain the relation between the chemical

potentials of the particles by taking into account the magnetic field. Number of

the ↑ spin particles is customary ever since they are not disturbed by the magnetic

21
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field.

N↑ =

∫ ∞

0

dϵ g(ϵ)f(ϵ) =
V

4π2

(
2m

h̄2

)3/2 ∫ ∞

0

dϵ
√
ϵf(ϵ) (4.1)

We can take this integral by means of Sommerfeld approximation [30–32].

4.1.1.1 Sommerfeld approximation

For degenerate Fermi gases, kBT
ϵF

≪ 1, Sommerfeld approximation is a frequently

used method to take integrals involving Fermi distribution function. For integral,

I =

∫ ∞

0

dϵR(ϵ)f(ϵ) (4.2)

the approximation is valid if R(ϵ) is smooth around µ. We can apply integration

by parts;

define P (ϵ) =

∫ ϵ

0

dϵ′R(ϵ′)

I =

∫ ∞

0

dϵ
( ∂

∂ϵ
(P (ϵ)f(ϵ)) + P (ϵ).

−∂f(ϵ)

∂ϵ

)
=

∫ ∞

0

dϵ P (ϵ).
−∂f

∂ϵ
(4.3)

First term gives zero at boundaries. −∂f
∂ϵ

makes a peak at µ, so we open P (ϵ)

in Taylor series around µ because its only important values are around µ [33].

Additionally, the integral can be safely extended to (−∞,∞) since negative con-

tributions are already zero.

I ≈
∫ ∞

−∞
dϵ

(
P (µ) +

∂P

∂ϵ

∣∣∣
µ
(ϵ− µ) +

1

2

∂2P

∂ϵ2

∣∣∣
µ
(ϵ− µ)2 + . . .

)−∂f

∂ϵ

I ≈ −P (µ)f(ϵ)
∣∣∣∞
−∞

+
1

2

∂2P

∂ϵ2

∣∣∣
µ

∫ ∞

−∞
dxx2 βeβx

(eβx + 1)2
+ . . . (4.4)

The integral in the second term is Riemann-Zeta function, ζ(2) = π2

6
[34,35]. The

following terms can be achieved in same fashion. Finally, Sommerfeld expansion

states that,∫ ∞

0

dϵR(ϵ)f(ϵ) =

∫ µ

0

dϵR(ϵ) +
1

β2

π2

6

∂R(ϵ)

∂ϵ

∣∣∣
µ
+O

( 1

(βµ)4

)
(4.5)

Therefore, Eq. (4.1) gives us∫ ∞

0

dϵ
√
ϵf(ϵ) =

∫ µ↑

0

dϵ
√
ϵ+

π2

6

1

β2

1

2
√
µ↑
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where β = 1/(kBT ) is conventional inverse temperature.

N↑ =
V

4π2

(
2m

h̄2

)3/2(
2

3
µ3/2

↑
+

π2

12

1

β2

1
√
µ↑

)
(4.6)

For ↓ spin particles, it is not as straightforward as above since there is de-

generacy in Landau levels [36]. Instead of calculating the density of states, it is

better to write down the particle number in terms of a sum over states to see the

effect of degeneracy explicitly.

N↓ =
∞∑

kxkykzn

f(ϵ) =
LxLyB0q

2πh̄

∞∑
kzn

f(ϵ) (4.7)

Here kx and ky sums give the degeneracy in a Landau level (LxLyB0

h/q
) [37].

N↓ =
LxLyBoq

2πh̄

∞∑
n=0

2

∫ ∞

0

dkz
2π
Lz

1

1 + e−β(h̄ω(n+ 1
2
)+

h̄2k2z
2m

−µ↓ )
(4.8)

ϵ↓ = h̄ω(n+ 1
2
) + h̄2k2z

2m

N↓ =
V

8π2

(
2m

h̄2

) 3
2

h̄ω
∞∑
n=0

∫ ∞

h̄ω(n+ 1
2
)

dϵ↓
1√

ϵ↓ − h̄ω(n+ 1
2
)

1

1 + e−β(ϵ↓−µ↓ )
(4.9)

The last term in the integrand is Fermi-Dirac distribution function, f(ϵ↓). Thus,

we again apply Sommerfeld approximation, Eq. (4.5). But, to be able to apply

it, n should stop somewhere which is the natural upper limit nmax = ⌊µ↓
h̄ω

− 1
2
⌋.

N↓ =
V

8π2

(
2m

h̄2

)3
2

h̄ω
nmax∑
n=0

{
2

√
µ↓ − h̄ω

(
n+

1

2

)
︸ ︷︷ ︸

I

−π2

12

1

β2

(
µ↓ − h̄ω

(
n+

1

2

))3
2

︸ ︷︷ ︸
II

}
(4.10)

To take sums I and II, we should first take a look at Euler-Maclaurin formula

[38–40].

4.1.1.2 Euler-Maclaurin formula

Euler-Maclaurin formula is used to convert integrals into finite sums, and vice

versa, by using integration by parts over and over. It employs Bernoulli numbers
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(bn) and polynomials (Bn(x)) [41];

B0(x) = 1 ,
∂Bn(x)

∂x
= nBn−1(x) , bn = Bn(0) = (−1)nBn(1). (4.11)

For p = 0, and by using B1(0) =−1
2
, B1(1) =

1
2∫ p+1

p

dx f(x)B0(x) =

∫ p+1

p

dx f(x)
∂B1(x)

∂x
=f(x)B1(x)

∣∣∣p+1

p
−
∫ p+1

p

dx
∂f(x)

∂x
B1(x)

=
f(p) + f(p+ 1)

2
−
∫ p+1

p

dx
∂f(x)

∂x
B1(x)

After extending p to cover all integral numbers from 0 to M ,∫ M

0

dx f(x) =
1

2
f(0) +

1

2
f(M) +

M−1∑
p=1

f(p)−
M−1∑
p=0

∫ p+1

p

dx
∂f(x)

∂x
B1(x)

substituting B1(x) =
1
2
∂B2(x)

∂x
and applying one more integration by parts,

=
f(0) + f(M)

2
+

M−1∑
p=1

f(p)−
M−1∑
p=0

(
1

12

∂f

∂x

∣∣∣
p+1

− 1

12

∂f

∂x

∣∣∣
p

)
−

−1

2

∫ p+1

p

dx
∂2f

∂x2
B2(x)∫ M

0

dx f(x) =
f(0) + f(M)

2
+

M−1∑
p=1

f(p)− 1

12

∂f

∂x

∣∣∣
M

+
1

12

∂f

∂x

∣∣∣
0
+ . . . (4.12)

This is the famous Euler-Maclaurin formula, but we will not use it in this form.

Instead, we follow the discussion of Landau and Lifshitz [42] ,that is we are

working in low magnetic field (kBT ≫ γB) regime. Starting with the assumption

that the function f and its derivative attenuate at infinity, we arrange the formula

in such a way,

∞∑
0

f(n+
1

2
) =

∫ ∞

0

dx f(x)−
∫ 1

2

0

dx f(x) +
1

2
f
(1
2

)
− 1

12

∂f

∂x

∣∣∣
1
2

≈
∫ ∞

0

dx f(x)− 1

2
f
(1
2

)
+

∫ 1
2

0

dx
(1
2
− x

)∂f
∂x

∣∣∣
1
2

+
1

2
f
(1
2

)
− 1

12

∂f

∂x

∣∣∣
1
2

∞∑
0

f(n+
1

2
) ≈

∫ ∞

0

dx f(x) +
1

24

∂f

∂x

∣∣∣
1
2

(4.13)

To obtain the final form of Euler-Maclaurin formula, we make the initial integral

start from zero, then open f(x) in the extra integral (second integral in first line)

in Taylor series around 1
2
.
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We now handle Eq. (4.10) by means of Euler-Maclaurin formula Eq. (4.13),

I =

xmax=
µ↓
h̄ω∑

x= 1
2

√
µ↓ − h̄ωx ≈

∫ xmax

0

dx
√
µ↓ − h̄ωx+

1

24

∂

∂x

√
µ↓ − h̄ωx

∣∣∣
x= 1

2

=
2

3
µ3/2

↓
− (h̄ω)2

48

1√
µ↓ − h̄ω

2

(4.14)

II =

xmax=
µ↓
h̄ω∑

x= 1
2

(
µ↓ − h̄ωx

) 3
2

≈
∫ xmax

0

dx

(
µ↓ − h̄ωx

) 3
2

+
1

24

∂

∂x

(
µ↓ − h̄ωx

) 3
2
∣∣∣∣
x= 1

2

=
−2
√
µ↓

+
(h̄ω)2

16

(
µ↓ −

h̄ω

2

)− 5
2

(4.15)

The last term in II is a 4th order approximation, so can be omitted without any

trouble. After putting I and II into Eq.(4.10), ↓ spin particle number is obtained

as follows;

N↓ =
V

4π2

(
2m

h̄2

)3/2(
2

3
µ3/2

↓
− (h̄ω)2

48

1√
µ↓ − h̄ω

2

+
π2

12

1

β2

1
√
µ↓

)
(4.16)

Finally, we can equate the particle numbers to achieve a relation between chemical

potentials of them in zeroth and second order in temperature ,O(T 0) and O(T 2)

respectively.

N↑ = N↓

O(T 0) : µ3/2
↑

≈ µ3/2
↓

− (h̄ω)2

32

1
√
µ↓

(
1 +

h̄ω

4µ↓

)
(4.17)

O(T 2) : µ3/2
↑

+
π2

8β2

1
√
µ↓

≈ µ3/2
↓

− (h̄ω)2

32

1
√
µ↓

(
1 +

h̄ω

4µ↓

)
+

π2

8β2

1
√
µ↓

(4.18)

Here at final step we make another approximation by using λ = h̄ω
µ↓

≪ 1 and

(1 + λ)x ≈ 1 + xλ.

4.1.2 Hamiltonian

Our ultimate purpose is discovering the behaviour of the critical temperature

with respect to magnetic field by constructing the gap equation, thus, we should
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first set the Hamiltonian of the system. Chemical potential relations, Eqs. (4.17)

and (4.18), will be necessary to solve the gap equation properly.

H =
∑
k⃗

(ϵk⃗−µ↑)a
†
k⃗↑
a
k⃗↑
+

∑
kykzn

(ϵkykzn−µ↓)b
†
kn↓bkn↓+g

∫ ∞

−∞
d3r Ψ̂†

↑(r)Ψ̂
†
↓(r)Ψ̂↓(r)Ψ̂↑(r)

(4.19)

To avoid any confusion different letters are used for ↑ and ↓ spin components.

bkn↓ = bkykzn↓ annihilates a down-spin particle at (ky, kz) from nth level with

energy ϵkykzn = h̄ω(n + 1
2
) + h̄2k2z

2m
, where ak⃗↑ annihilates an up-spin particle at

(kx, ky, kz) with energy ϵk⃗ = h̄2

2m
(k2

x + k2
y + k2

z). Further, position space repre-

sentation is used for the interaction hamiltonian (see the section 3.2.1) since our

interaction is well defined in position space. We then turn back eventually from

field operator notation to creation-annihilation operators by inserting,

Ψ̂↑(r) =
1√
V

∑
k⃗

ak⃗↑e
−ik⃗.r⃗ (4.20)

Ψ̂↓(r) =
∑
kykzn

bkn↓ϕkykzn(r) (4.21)

where the wave function of the ↓ spin particles is typically,

ϕkykzn(r) =
1

(πl2)
1
4

1√
2nn!

Hn

(x− x0

l

)
e−

(x−x0)
2

2l2
e−ikyye−ikzz√

LyLz

(4.22)

for nth order Hermite polynomial Hn(x) , coherent length l =
√

h̄
mω

and guiding

center x0 =
h̄ky
qB0

. To acquire the gap equation, we follow the discussion explained

in previous chapter and define ∆ which is the gap parameter itself as an average

of pair-annihilation operators,

∆(r) =< Ψ̂↓(r)Ψ̂↑(r) > . (4.23)

Now, the main approximation tells that deviation of this pair operator from its

average ∆(r) is to be really small because there is a huge amount of pairs in

condensate. Hence, we say that(
Ψ̂†

↑(r)Ψ̂
†
↓(r)−∆(r)∗

)(
Ψ̂↓(r)Ψ̂↑(r)−∆(r)

)
∼= 0

Ψ̂†
↑(r)Ψ̂

†
↓(r)Ψ̂↓(r)Ψ̂↑(r)−∆(r)∗Ψ̂↓(r)Ψ̂↑(r)−∆(r)Ψ̂†

↑(r)Ψ̂
†
↓(r)+|∆(r)|2=0 (4.24)
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Inserting (4.24) into interaction hamiltonian reduces the total hamiltonian into a

quadratic form.

Hint = g

∫ ∞

−∞
d3r

(
∆(r)∗Ψ̂↓(r)Ψ̂↑(r)︸ ︷︷ ︸

I

+∆(r)Ψ̂†
↑(r)Ψ̂

†
↓(r)︸ ︷︷ ︸

II

− |∆(r)|2︸ ︷︷ ︸
III

)
(4.25)

A position dependent gap satisfying the GL theory can be written as a sum over

lowest Landau levels (LLL). Just at transition point, instead of this sum, it does

not matter which one of these LLL the gap parameter is. So, the simplest form of

the LLL, (which means ky = kz = n = 0 in Eq.(4.22)), would work. H. Zhai and

T.L. Ho explicitly calculated this in their paper [43] and prove that the simplest

form really works. Hence, the gap parameter is taken as ∆(r) = ∆0e
− x2

2l2 . We

study the integral I, II is just hermitian conjugate of it.

I = ∆∗
0

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz e−

−x2

2l2

∑
kykzn

bkn↓
1

(πl2)
1
4

1√
2nn!

Hn

(x− x0

l

)
e−

(x−x0)
2

2l2 .

.
e−ikyye−ikzz√

LyLz

1√
V

∑
k′xk

′
yk

′
z

ak⃗↑ e
−ik′xx e−ik′yy e−ik′zz (4.26)

The dy and dz integrals along with respective exponentials give delta functions

which cancel out k′
y and k′

z sums after being converted into integrals. The only

survival k′
x in second sum can be replaced with −k′

x since the sum still cover

(−∞,∞) and then we can combine them under a single sum over k⃗. Furthermore,

to take the dx integral, we first make a variable change (x → x/l) and then express

the Hermite polynomial in terms of the derivative of its generating function.

I=
∆∗

0

(πl2)
1
4

1√
Lx

∑
k⃗n

bkn↓ a−k⃗↑
1√
2nn!

l

∫ ∞

−∞
dxHn(x− lky) e

− (x−lky)2

2 e−
x2

2 eikxlx

Hn(x− lky) =
∂n

∂tn
e−t2+2t(x−lky)

∣∣∣∣
t→0

I =∆∗
0

(πl2)
1
4

√
Lx

∑
k⃗n

bkn↓ a−k⃗↑
1√
2nn!

e−
l2

4
(k2x−2ikxky+k2y)

∂n

∂tn

(
e−tl(ky−ikx)

)∣∣∣∣
t→0

=∆∗
0

(πl2)
1
4

√
Lx

∑
k⃗n

bkn↓ a−k⃗↑
1√
2nn!

e−
l2

4
(k2x−2ikxky+k2y)

(−l√
2

) (ky − ikx)
n

√
n!

(4.27)
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And the integral II is,

II = ∆0
(πl2)

1
4

√
Lx

∑
k⃗n

a†
−k⃗↑

b†kn↓
1√
2nn!

e−
l2

4
(k2x+2ikxky+k2y)

(−l√
2

) (ky + ikx)
n

√
n!

. (4.28)

III = |∆0|2LxLy

∫ ∞

−∞
dx e−

x2

l2 = |∆0|2LxLy l
√
π (4.29)

Hint = g
(πl2)

1
4

√
Lx

∑
k⃗n

(−l√
2

)n 1√
n!

{
∆∗

0 bkn↓ a−k⃗↑ e
− l2

4
(k2x−2ikxky+k2y) (ky − ikx)

n + h.c.

}
−gLxLy l

√
π|∆0|2 (4.30)

So far as interaction Hamiltonian is obtained, we now continue to calculate the

gap equation in a fashion explained in the section 3.2.4.

4.2 Pairing susceptibility

Perturbation theory states that the second order correction emerging from the

interaction Hamiltonian Eq. (4.30) is,

Θ
(2)
n′ =

∑
x

| < m|Hint|n′ > |2

En′ − Em

. (4.31)

It is better to first write down the Boltzmann factors of possible states:

bkn↓ a−k⃗↑ Boltzmann factor

|00⟩ 1

|01⟩ e−β(ϵ
k⃗
−µ↑ )

|10⟩ e−β(ϵkykzn−µ↓ )

|11⟩ + e−β(ϵ
k⃗
+ϵkykzn−µ)

z =
(
e−β(ϵ

k⃗
−µ↑ ) + 1

)(
e−β(ϵkykzn−µ↓ ) + 1

)
(4.32)

for µ = µ↑ + µ↓ . Interaction Hamiltonian has a form of

Hint =
∑
k⃗n

Ak⃗n bkn↓ a−k⃗↑ + A∗
k⃗n

a†
−k⃗↑

b†kn↓ . (4.33)
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Θ
(2)
n′ =

∑
k⃗n

|Ak⃗n|
2

( ⟨00|bkn↓ a−k⃗↑|11⟩⟨11|a
†
−k⃗↑

b†kn↓|00⟩
(ϵk⃗ − µ↑) + (ϵkykzn − µ↓)

+

+
⟨11|a†

−k⃗↑
b†kn↓|00⟩⟨00|bkn↓ a−k⃗↑|11⟩

−(ϵk⃗ − µ↑)− (ϵkykzn − µ↓)

)
(4.34)

Θ(2) =
∑
k⃗n

|Ak⃗n|
21

z

(
e−β(ϵ

k⃗
+ϵkykzn−µ)

ϵk⃗ + ϵkykzn − µ
− 1

ϵk⃗ + ϵkykzn − µ

)
=

∑
k⃗n

|Ak⃗n|
2 1

ϵk⃗ + ϵkykzn − µ
.

.
− sinh

(
β
2
(ϵk⃗ + ϵkykzn − µ)

)
cosh

(
β
2
(ϵk⃗ + ϵkykzn − µ)

)
+ cosh

(
β
2
(ϵk⃗ − ϵkykzn + µ↓ − µ↑)

) (4.35)

Finally, at critical temperature pairing susceptibility is zero. So, we achieve the

gap equation as follow,

α2|∆0|2 = Θ(2) − gLyLzl
√
π|∆0|2 = 0 (4.36)

4.3 Gap equation

1=− g

V

∑
k⃗n

( l2
2

)n 1

n!
(k2

x + k2
y)

n e−
l2

2
(k2x+k2y)

1

Ek⃗n

sinh(βc

2
Ek⃗n)

cosh(βc

2
Ek⃗n) + cosh(βc

2
εk⃗n)

(4.37)

where Ek⃗n = ϵk⃗ + ϵkykzn − µ,

εk⃗n = ϵk⃗ − ϵkykzn + µ↓ − µ↑ , for µ = µ↑ + µ↓ and βc =
1

kBTc

We now set to work to take these sums. First, we convert the sum over k⃗ into an

integral,
∑

k⃗ →
V
8π3

∫∞
−∞ dk⃗, then switch it to polar coordinates without touching

kz integral, since kx and ky always appear in the form of k2
x + k2

y = k2
r .

1=− g

8π3

∑
k⃗n

( l2
2

)n 1

n!

∫ ∞

−∞
dkz

∫ 2π

0

dθ

∫ ∞

0

dkr k
2n+1
r e−

l2

2
k2r

1

Ek

sinh(βc

2
Ek)

cosh(βc

2
Ek) + cosh(βc

2
εkn)

(4.38)



CHAPTER 4. FERMION PROBLEM 30

but, now for energies we have,

Ek⃗ =
h̄2

2m
(k2

r + 2k2
z) + h̄ω

(
n+

1

2

)
− µ ,

εk⃗n =
h̄2

2m
k2
r − h̄ω(n+

1

2
) + µ↓ − µ↑ .

We focus on kr integral preferably. It has a nice Gaussian profile and with the

k2n+1
r term they make a sharp peak which is overwhelming the hyperbolic func-

tions. After finding where they make the peak and inserting into hyperbolic

functions directly,

∂

∂kr

(
k2n+1
r e−

l2

2
k2r

)
= 0

k2
r =

2n+ 1

l2

we can take the Gaussian integral easily.∫ ∞

0

dkr k
2n+1
r e−

l2

2
k2r =

1

2

( l2
2

)−n−1

n!

Finally, the gap equation has a more feasible form. It is not diverging anywhere,

but still challenging to solve analytically because of the second cosine hyperbolic

in the denominator which is emerging due to the unbalanced magnetic field on

the system.

1 = − g

4π2

1

l2
1

2

∑
n

∫ ∞

−∞
dkz

1
h̄2k2z
2m

+ h̄ω(n+ 1
2
)− µ

2

.

.
sinh

(
βc(

h̄2k2z
2m

+ h̄ω(n+ 1
2
)− µ

2
)
)

cosh
(
βc(

h̄2k2z
2m

+ h̄ω(n+ 1
2
)− µ

2
)
)
+ cosh

(
βc

µ↓−µ↑
2

) (4.39)

Hereafter, we solve the gap equation numerically. We write a simple code in

MATLAB to take the kz-integral and n-sum and use the predefined function fzero

to find the root of the gap equation which is nothing but the critical temperature.

There is only one crucial point left : How to put the cut-off to the sum and

integral?
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We first make Eq. (4.39) dimensionless with chemical potential µ.

1 = − g̃

4π2

γ

4

∑
n

∫ ∞

−∞
dk̃z

1

k̃2
z + γ(n+ 1

2
)− 1

2

.

.
sinh

(
η(k̃2

z + γ(n+ 1
2
)− 1

2
)
)

cosh
(
η(k̃2

z + γ(n+ 1
2
)− 1

2
)
)
+ cosh

(
η(µ̃↓ − 1

2
)
) (4.40)

where we should input the dimensionless variables; g̃ = g(2m
h̄2 )3/2

√
µ , γ = h̄ω

µ
and

k̃z =
h̄√
2mµ

kz into the code and calculate µ̃↓ =
µ↓
µ
for these values from Eq. (4.18),

then solve for η = µ
kBTc

. To be able to determine the cut-off, we should remember

the energy relations: ϵ̃kykzn = γ(n+ 1
2
)+ k̃2

z for ↓ spin particles and ϵ̃k⃗ = k̃2
r+ k̃2

z for

↑ spins. So, the n-sum naturally stops at nmax =
µ̃↓−k̃2z

γ
− 1

2
. Furthermore, highest

value that kz can take is
√

µ̃↑ =
√

1− µ̃↓ which sets the cut-off to the integral.

In this way, we are able to find the Tc values satisfying the gap equation for

different magnetic field strength. This results demonstrate the non-monotonically

decreasing behaviour of critical temperature for increasing magnetic field, besides

Landau levels entering from the Fermi surface can be clearly seen at γ = 1
2n+1

.

This behaviour arises directly from the ‘γ(n + 1
2
) − 1

2
’ form in the gap equation

Eq. (4.40). Although the kz cut-off is a fair approximation to observe the general

characteristics of the system, there is a lot of numeric noise in these results. For a

more smooth cut-off, we have to follow an approach based on Feshbach resonances

of the system. This is something we will be working on for following months.

Our main result is the gap equation obtained above and it embraces more

information than supposed, but the deal is how to solve it properly, how to read

that information. For now, taking also the kr integral numerically provides us

with more accurate results. Again, we first express the gap equation in terms of

same dimensionless variables before,

1 = − g̃

4π2

∑
n

1

γn

1

n!

∫ ∞

−∞
dk̃z

∫ ∞

0

dk̃r k̃
2n+1
r e−

k̃2r
γ

1

k̃2
r + 2k̃2

z + γ(n+ 1
2
)− 1

.

.
sinh

(
η
2
(k̃2

r + 2k̃2
z + γ(n+ 1

2
)− 1)

)
cosh

(
η
2
(k̃2

r + 2k̃2
z + γ(n+ 1

2
)− 1)

)
+ cosh

(
η
2
(k̃2

r − γ(n+ 1
2
) + 2µ̃↓ − 1)

)
In this form, it is more obvious that k̃r scans the values between 0 →

√
1− µ̃↑ ,

where k̃z takes the values from −
√
1− µ̃↑ − k̃2

r →
√
1− µ̃↑ − k̃2

r . For the n-sum,
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the cut-off is again same nmax =
µ̃↓−k̃2z

γ
− 1

2
. After all, cut-off does not change

the general trend of Tc(h̄ω) which decreases non-monotonically as can be seen in

Fig. 4.1.
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Figure 4.1: Critical temperature vs. magnetic field. Landau levels can be seen
at γ = 1

2n+1
.



Chapter 5

Conclusion and Further Study

In this work, we examined charged-neutral mixtures under a synthetic gauge field.

As a preliminary study, we considered a two-particle problem of charged-neutral

mixtures trapped on a ring with a magnetic field along the axis of the ring. We

defined a short-range Delta function interaction between the particles and made a

complete analytic calculation. We calculated the energy spectrum of the system

and the average angular momentum of the neutral particle. We see that there is

a large amount of angular momentum transfer, in orders of h̄, from the charged

particle to the neutral particle. In addition, by looking the energy spectrum,

we can predict the flux values where vortex transformation might occur if this

system was a charged-neutral superfluid mixture.

In the main chapters, we examined charged-neutral fermion mixtures. It is

known that, transition temperature of a superconductor decreases when it is

placed under a magnetic field. We studied a more exotic regime that is now

accessible with the discovery of artificial magnetic fields and considered a picture

where only one of the components of Cooper pairs feels the magnetic field. We

employed BCS theory for this system and derived the gap equation. This equation

is our main result and contains all the information we seek for. The gap equation

is an equation which normally blows up and needs to be put physical cut-offs

carefully. For the present, we used the chemical potentials of the particles that is

what we essentially controlled in our model. We showed that critical temperature

33
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decreases non-monotonically with increasing magnetic field, and observed the

presence of Landau levels evidently in our results.

From now on, we will try to gain a deeper understanding of our results and fo-

cus on ensuring the cut-offs of our integrals with an approach based on Feshbach

resonance. We will also calculate the transition temperature when both compo-

nents of Cooper pairs coupling to magnetic fields with different strength. This

problem will provide us with a good limit to check our results.
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