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I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Kostyantyn Zheltukhin

Approved for the Graduate School of Engineering and

Science:

Prof. Dr. Levent Onural
Director of the Graduate School

ii



ABSTRACT

RECURSION OPERATORS AND CLASSIFICATION
OF INTEGRABLE NONLINEAR EQUATIONS

Ergün Bilen

M.S. in Mathematics

Supervisor: Prof. Dr. Metin Gürses

September, 2012

Recursion operators, if they exist, of nonlinear partial differential equations map

symmetries to symmetries of these equations. It is this property that the inte-

grable nonlinear partial differential equations possess infinitely many symmetries.

In this work we studied two other properties of recursion operators. We shall use

the recursion operators as Lax operators in the Gelfand-Dikii formalism and to

classify certain integrable equations.

Keywords: symmetries, Gelfand-Dikii formalism, recursion operator, classifica-

tion.
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ÖZET

ADIM SİMETRİ OPERATÖRLERİ VE İNTEGRE
EDİLEBİLİR LİNEER OLMAYAN DENKLEMLERİN

SINIFLANDIRILMASI

Ergün Bilen

Matematik, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Metin Gürses

Eylül, 2012

Lineer olmayan kısmi diferansiyel denklemlerin, eğer varsa, simetri adım op-

eratörlerı denklemin simetrilerini simetrilerine gönderirler. Bu yüzden integre

edilebilir lineer olmayan kısmi diferansiyel denklemler sonsuz simetriye sahiptir-

ler. Bu tezde simetri adım operatörlerinin diğer iki özelliğini çalıştık. Simetri

adım operatörlerini Gelfand-Dikii formülasyonunda Lax operatörü olarak ve in-

tegre edilebilir denklemleri sınıflandırmak için kullandık.

Anahtar sözcükler : simetriler, Gelfand-Dikii formülasyonları, simetri adım op-

eratörü, sınıflandırma.
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Chapter 1

Introduction

A symmetry group of differential equation produces solutions from a known so-

lution. That is, if G is a symmetry group of some system of differential equations

and if f is a solution to the system then for every g ∈ G, g.f is also a solution to

this system. To deduce a given group of transformations is a symmetry group of

the system we use the infinitesimal generators of the group actions and they are

vector fields over the space X×U , where X is the space of independent variables

and U is the space of dependent variables.

Using symmetry conditions for group of transformations we define recursion op-

erator which is first introduced by Olver in 1977 [10]. In chapter 2, we study the

symmetries of differential equations and recursion operators. We consider the

evolutionary type of equations

ut = F (x, u, ux, uxx, ...., un). (1.1)

An operator R is the recursion operator of (1.1) if the following is satisfied

Rt = [F ∗, R], (1.2)

where F ∗ is the Frechet derivative of (1.1). For example, the operator

R = D2
x + 4u+ 2uxD

−1
x (1.3)

1



CHAPTER 1. INTRODUCTION 2

is the recursion operator of the KdV equation

ut = uxxx + 6uux.

where F ∗ = D3
x + 6uDx + 6ux.

Here in this chapter, we introduce the concept of pseudo-differential operator.

In chapter 3, we study Gel’fand-Dikii Formalisms which make use of pseudo dif-

ferential algebra. Operators of pseudo-differential algebra are defined as follows.

[1]

Definition 1.0.1. A pseudo-differential operator of order n is a infinite series

L =
n∑

i=−∞

Pi[u]Di
x, (1.4)

where Pi[u] is a differentiable function and the operator D−1x is the formal inverse

of Dx (i.e, Dx.D
−1
x = D−1x .Dx = 1).

We will consider equations of the form which were introduced by Peter D. Lax in

1968. [11]

Lt = [A,L], (1.5)

where commutator [A,L] is defined as

[A,L] = A.L− L.A.

Equation (1.5) is called Lax equation and the operators L and A are called Lax

pair. From Lax equations we can get evolution equations for suitable A and L.

Pseudo-differential algebra uses the Lax operators of type

L = Dm
x + um−2(x, t)D

m−2
x + ...+ u1(x, t)Dx + u0,

where um−2, um−3, ... , u1, u0 are functions of x and t. Next we consider the
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fractional powers of L and the hierarchy

Ltn = [An, L] where An = (L
n
N )≥k, (1.6)

where n is a positive integer n = 0, 1, 2... and N is the order of L, (L
n
N )≥k is the

differential operator with powers ≥ k. The case k = 0 was first introduced by

Gelfand in 1976 [7] and the cases k = 1, 2 were introduced by Kuperschmidt in

1988. [8]

The operator L = D2
x + u with A = (L

3
2 )≥0 gives KdV equation in (1.6) and the

Lax pair L = D2
x + 2uDx , A = (L

3
2 )≥1 gives the MKdV equation [4]

ut =
1

4
uxxx −

3

2
u2ux.

Moreover, in section 3.2, we analyze the form of L in Lax hierarchy so that (1.6)

is consistent for all n ≥ 1. Blaszak [4] found that (1.6) is consistent if and only

if k is either 0, 1 or 2 and he provided the forms of L for each case

L = cmD
m
x + cm−1D

m−1
x + ...+ u0 + u−1D

−1
x + ..., k = 0

L = cmD
m
x + um−1D

m−1
x + ...+ u0 + u−1D

−1
x + ..., k = 1

L = umD
m
x + um−1D

m−1
x + ...+ u0 + u−1D

−1
x + ..., k = 2

where cm and cm−1 are functions which do not depend on variable t.

In chapter 4, we present a method to find Recursion operator of (1.1) if its Lax

representation (1.6) is given. This method was introduced by Gürses, Karasu and

Sokolov in 1999 citeon construction.We use the equation

Ltn+m = L.Ltn + [Rn, L], (1.7)

which is called the recursion relation and the term Rn is called the remainder and

it is defined as Rn = (L.(L
n
m )−)+ and ord(Rn) ≤ m − 1. The cases where L is

a differential operator and L is a pseudo-differential operator are considered and
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in each case the formula to find recursion operator is given in [2]. For example,

using (1.7) and the Lax pair

L = D2
x + u with A = (L

3
2 )≥0

we find that KdV equation admits the recursion operator (1.3).

Recursion operators are also Lax operators because they satisfy the equation

Rt = [F ∗, R]. (1.8)

In chapter 5, we discuss the case when the recursion operator is a Lax operator

in Gelfand-Dikii formalism. We can use it in Gelfand-Dikii formalism if

F ∗ = (R
n
m )≥k, (1.9)

is satisfied for some k = 0, 1, 2. Furthermore, the adjoint operators should satisfy

the condition

(F ∗)+ = −((R+)
n
m )≥k, (1.10)

for some k = 0, 1, 2. We check (1.9) and (1.10) for the recursion operators of

the KdV, MKdV, Harry Dym and Burgers’ equations. We show that recursion

operators of KdV and MKdV satisfy these conditions but recursion operators

of Harry Dym and Burgers’ fail to satisfy conditions (1.9) or (1.10). Recursion

operators should also produce themselves as recursion operators since they satisfy

the Lax equation (1.8). This property will be used for the purpose of classification

of certain PDEs.

In section 5.3, we consider the 2nd order recursion operators of the type

L = D2
x + α + βD−1x (1.11)

where α and β are some functions of (x, t), using the Lax equation the Lax

equation

Ltn = [L,A] where A = (L
3
2 )+,
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we find α and β must satisfy the following conditions

β =
1

2
αx and αt = αxxx +

3

2
ααx.

Hence we deduce that α satisfies the KdV eqation.

Secondly, since β = 1
2
αx the pseudo differential operator (1.11) is itself a recursion

operator and also the Lax operator.

There are certain ways of classifying the hierarchies of evolution equations utn =

Rn(0), utn = Rn(ux) or utn = Rn(c) where c is a nonzero constant and R is

the recursion operator of the evolution equation, ut1 = R(0), ut1 = R(ux) or

ut1 = R(c) respectively. In chapter 6, we classifying 2nd order partial differential

equations of the type ut = R(0) with recursion operator of the first degree with

coefficients depend at most 2nd order derivatives. Similar classification was done

before.[5] We find all equations of the type

ut = β(u, ux, uxx)

with the recursion operators of the form

R = γDx + α + βD−1x (ρ),

where γ, α and ρ are all functions of u, ux and uxx. We use (1.2) to find the

formulas for γ, α, β and ρ and we assume ρ 6= 0 to get evolution equation directly

from recursion operator. By solving necessary equations we obtain 3 conditions,

i. βuxxuxx 6= 0,

ii. βuxx 6= 0 but βuxxuxx = 0,

iii. βuxx = 0.

Neither case i nor case iii produces any class of equations because in each case

we find ρ = 0. However, case ii produces evolution equations of the type

ut = c(u)uxx −
1

2
c(u)uu

2
x +

c(u)c(u)uu
c(u)u

u2x +
c4
c2
c(u)ux, (1.12)
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which admits recursion operators of the type

R = 2c2c(u)
1
2Dx + 2c4c(u)

1
2 + (2c2

c(u)
1
2 c(u)uu
c(u)u

− c2
c(u)u

c(u)
1
2

)ux + utD
−1
x (

c2c(u)u

c(u)
3
2

).

Diffusion equation

ut = u2uxx with R = uDx + u2uxxD
−1
x (

1

u2
),

and nonlinear diffusion equations

ut = Dx(
ux
u2

) with R =
1

u
Dx − 2

ux
u2

+ (
2u2x
u3
− uxx

u2
)D−1x

are in this class with c(u) = u2, c2 = 1
2

, c4 = 0 and c(u) = 1
u2

, c2 = 1
2

, c4 = 0,

respectively.

In the Appendix, a list of integrable nonlinear partial differential equations with

their recursion operators are given.



Chapter 2

Symmetries and Recursion

Operators

In this chapter we review the symmetries of partial differential equations and

their recursion operators. The main reference on this subject is the book of P.

Olver [1].

2.1 Symmetry Groups and Infinitesimal Gener-

ators

Consider a system of differential equations,

4k(x, u
(n)) = 0, k = 1, ..., l, (2.1)

which depend on the indenpendent variables x = (x1, ..., xp) ∈ X and the deriva-

tives of dependent variables u = (u1, ..., uq) ∈ U with respect to x up to order

n. The space X × Un, which has independent variables and the derivatives of

the dependent variables up to order n as coordinates is called the n-th order jet

space. The functions 4(x, u(n)) = (41(x, u
(n)), ...,4l(x, u

(n))) are smooth maps

7
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from X × Un to R`. Hence we have,

4 : X × Un → R`. (2.2)

Definition 2.1.1. A symmetry group of the system (2.1) is defined to be a local

group of transformations G acting on X × U which transforms solutions of the

system to other solutions of the same system. That is, if f is a solution to (2.1)

then for every g ∈ G g.f is also a solution to (2.1).

Rather than studying group actions, it is more easier to study with infinites-

imal generators of group actions. Infinitesimal generators are vector fields that

act on the space X × U . By using them we can easily check whether a group of

transformation is a symmetry group of a system of differential equations or not.

Example 2.1.2. Consider the rotation group SO(2) acting on X × U

θ(x, u) = (x cos θ − u sin θ, x sin θ + u cos θ), (2.3)

infinitesimal generator of this group is

v = −u ∂
∂x

+ x
∂

∂u
. (2.4)

Definition 2.1.3. Let v be infinitesimal generator of a one-parameter group G.

Then n-th prolongation of v is defined as the infinitesimal generator of the corre-

sponding n-th prolongation of the one parameter group G and denoted by pr(n)v.

Theorem 2.1.4. [1] Let

v =

p∑
i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

φα(x, u)
∂

∂uα
(2.5)

be a vector field. Then the n-th prolongation of v is

pr(n)v = v +

q∑
α=1

∑
J

φJα(x, un)
∂

∂uαJ
, (2.6)

that acts on the jet space X × Un and the second sum is over all indices J =
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(j1, ..., jk) with 1 ≤ jk ≤ p, 1 ≤ k ≤ n and we have the formula for each φJα,

φJα(x, u(n)) = Dj(φα −
p∑
i=1

ξiuαi ) +

p∑
i=1

ξiuαJ,i, (2.7)

where uαi =
∂uα

∂xi
and uαJ,i =

∂uαJ
∂xi

.

Example 2.1.5. If we compute the 2nd prolongation of the infinitesimal gener-

ator of the SO(2) in Example (2.1.2) we get

pr(2)v = −u ∂
∂x

+ x
∂

∂u
+ (1 + u2x)

∂

∂ux
+ (3uxuxx)

∂

∂uxx
.

Now we state a theorem that gives a condition for a group to be a symmetry

group of a system.

Theorem 2.1.6. [1] Suppose

4k(x, u
(n)) = 0, k = 1, ..., l (2.8)

is a system of differential equations. Then G is a symmetry group of the system

if G is a local group of transformations acting over X × U and

pr(n)v[4k(x, u
(n))] = 0, k = 1, ..., l whenever 4(x, u(n)) = 0 (2.9)

for every infinitesimal generator v of G.

We can use theorem (2.1.5) to find symmetry groups of a given system. Firstly,

using (2.9), we can find infinitesimal generators of group actions and then we find

the corresponding symmetry groups of the system. The set of all infinitesimal

symmetries of the system also forms a Lie algebra of vector fields over X × U .

Now we give examples of symmetry groups of KdV and heat equations, see [1].

Here we use the notation ∂x instead of
∂

∂x
.

Example 2.1.7. KdV equation ut + uxxx + uux = 0 has 4 symmetry groups with



CHAPTER 2. SYMMETRIES AND RECURSION OPERATORS 10

infinitesimal generators,

v1 = ∂x space translation,

v2 = ∂t time translation,

v3 = t∂x + ∂u Galilean boost,

v4 = x∂x + 3t∂t − 2u∂u scaling,

and the corresponding group actions are

G1 : (x, t, u)→ (x+ ε, t, u),

G2 : (x, t, u)→ (x, t+ ε, u),

G3 : (x, t, u)→ (x+ εt, t, u+ ε),

G4 : (x, t, u)→ (eεx, e3εt, e−2εu).

Example 2.1.8. Heat equation ut = uxx has 7 symmetry groups with infinitesimal

generators,

v1 = ∂x,

v2 = ∂t,

v3 = u∂u,

v4 = x∂x + 2t∂t,

v5 = 2t∂x − xu∂u,

v6 = 4tx∂x + 4t2∂t − (x2 + 2t)u∂u,

v7 = α(x, t)∂u,

where α is any solution to the heat equation and the corresponding group actions
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are

G1 : (x, t, u)→ (x+ ε, t, u),

G2 : (x, t, u)→ (x, t+ ε, u),

G3 : (x, t, u)→ (x, t, eεu),

G4 : (x, t, u)→ (eεx, e2εt, u),

G5 : (x, t, u)→
(
x+ 2εt, t, u exp

{
− εx− ε2t

})
,

G6 : (x, t, u)→

(
x

1− 4εt
,

t

1− 4εt
, u
√

1− 4εt exp

{
−εx2

1− 4εt

})
,

G7 : (x, t, u)→ (x, t, u+ εα(x, t)).

2.2 Generalized Symmetries

In the previous section, symmetries(infinitesimal generators of group actions) is

defined in the space X × U , that is

v =

p∑
i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

φα(x, u)
∂

∂uα
, (2.10)

and ξ and φ are functions of x, u.

In this section, we will consider more general case of this symmetries. ξ and

φ will also depend on derivatives of u. We denote the space of smooth functions

P (x, un) by A and the functions in A are called differential functions. We will use

the notation P [u] = P (x, un). Also, the space of `-tuples of differential functions

P [u] = (P1[u], ..., Pl[u]) where each Pj ∈ A will be denoted by A`. Now we define

what a generalized vector field is. [1]

Definition 2.2.1. An expression of the form

v =

p∑
i=1

ξi[u]
∂

∂xi
+

q∑
α=1

φα[u]
∂

∂uα
(2.11)

is called a generalized vector field.
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Definition 2.2.2. A generalized vector field v is a generalized infinitesimal sym-

metry of a system of differential equations,

4k[u] = 4k(x, u
(n)) = 0, k = 1, ..., l, (2.12)

if and only if

prv[4k] = 0, k = 1, ..., l (2.13)

for every smooth solution u of (2.12).

Definition 2.2.3. Let Q[u] = (Q1[u], ..., Qq[u]) ∈ Aq be a q-tuple of differential

functions. An evolutionary vector field is a generalized vector field of the form

v =

q∑
α=1

Qα[u]
∂

∂uα
, (2.14)

and Q is called its characteristic.

For every generalized vector field of the form (2.11) we have an evolutionary

representative vQ, where its characteristic Q is defined by (2.14) and it is given

by the formula

Qα = φα −
p∑
i=1

ξiuαi , α = 1, ..., q, (2.15)

where uαi =
∂uα

∂xi
.

Corollary 2.2.4. A generalized vector field v is a symmetry of a system of dif-

ferential equations if and only if its evolutionary representative vQ is a symmetry.

Computation of evolutionary symmetries of a given system of differential equa-

tions is more than the method in section (2.1). However, it is almost impossible

to find all evolutionary symmetries because it is not easy to find all higher order

evolutionary symmetries.

For example, for the heat equation the symmetry ux∂u is evolutionary repre-

sentative of the space translational symmetry generator −∂x. Similarly, Galilean

generator −2t∂x + xu∂u has evolutionary representative (2tux + xu)∂u.
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Example 2.2.5. Burgers’ equation ut = uxx + u2x has 6 second order generalized

symmetries and characteristic of their evolutionary representatives are given by

Q0 = 1,

Q1 = ux,

Q2 = tux +
1

2
x,

Q3 = uxx + u2x,

Q4 = t(uxx + u2x) +
1

2
xux,

Q5 = t2(uxx + u2x) + xtux + (
1

2
t+

1

4
x2)

From now on we will consider differential equations of type

∂u

∂t
= P [u], (2.16)

and they are called evolution equations. The differential functions P [u] in (2.16)

are only functions of x and derivatives of u with respect to x.

Definition 2.2.6. Let vQ and vR be evolutionary vector fields. Then their Lie

bracket is defined as

[vQ, vR] = vS, (2.17)

where vS is also an evolutionary vector field with characteristic

S = prvQ(R)− prvR(Q). (2.18)

Proposition 2.2.7. An evolutionary vector field vQ is a symmetry of the system

of evolution equations ut = P [u] if and only if

∂vQ
∂t

= [vP , vQ], (2.19)

where
∂vQ
∂t

is the evolutionary vector field with characteristic
∂Q

∂t
.
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2.3 Pseudo-Differential Algebra

Pseudo differential algebra is very useful tool to study the symmetries of partial

differential equations, to use the Gelfand-Dikii formalism and to construct the

recursion operators. The main reference we used is [3] to review this subject.

Definition 2.3.1. A differential operator of order n is a finite sum

D =
n∑
i=0

Pi[u]Di
x, (2.20)

where the coefficients Pi[u] are differentiable functions.

To multiply two differential operators we have the following equation,

Di
x.D

j
x = Di+j

x , (2.21)

where i, j ≥ 0

For the operator Dx, derivational property is given by the Leibniz rule

Dx.Q = Qx +QDx, (2.22)

where Q is a differentiable function.

Definition 2.3.2. A pseudo-differential operator of order n is a infinite series

D =
n∑

i=−∞

Pi[u]Di
x, (2.23)

where Pi[u] is a differentiable function and the operator D−1x is the formal inverse

of Dx (Dx.D
−1
x = D−1x .Dx = 1).

Corollary 2.3.3. We have the following formula for the operator D−1x ,

D−1x .Q =
∞∑
k=0

(−1)kQkD−k−1x . (2.24)
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Proof. If we multiply (2.22) on both left and the right by D−1x , it reduces to

D−1x .Q = QD−1x −D−1x .Q
′
D−1x , (2.25)

where Q
′

= DxQ. If we apply (2.25) to the second term on the right hand side

of (2.25), we get

D−1x .Q = QD−1x −Q
′
D−2x +D−1x .Q

′′
D−2x .

Applying (2.25) to the third term on the right hand side of (2.3) and continuing

this process we find

D−1x .Q = QD−1x −Q
′
D−2x +Q

′′
D−3x − .... =

∞∑
k=0

(−1)kQkD−k−1x . (2.26)

�

The reason why we define pseudo-differential operator is that we want to take

roots of the differential operators. It is not possible to take roots of differential

operators in the set of differential operators but as we will prove we can take

roots of any pseudo-differential operator.

Lemma 2.3.4. Every nonzero pseudo-differential operator of order n > 0 has an

n-th root.

Proof. Let D be a pseudo differential operator such that,

D =
n∑

i=−∞

Pi[u]Di
x , Pn 6= 0.

Then the n-th root of D will be a first order pseudo-differential operator. Let

D′
= D 1

n . Then D′
has the form,

D′
= (Pn)

1
nDx + Q0 + Q−1D

−1
x + ...

if we take the n-th power of D′
, we can compare the coefficients of (D′

)n and D
and we can find Qk for each k = ...,−2,−1, 0 in terms of Pi’s , i = ...,−1, 0, ..., n.
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�

Example 2.3.5. Consider the operator D = D2
x + u which corresponds to the

KdV equation. Then the square root of D is

D
1
2 = Dx +

1

2
uD−1x −

1

4
uxD

−2
x +

1

8
(uxx − u2)D−3x + ...

2.4 Recursion Operators

It is impossible to find all generalized symmetries of system of evolution equations

by using the method in Section (2.2). Hence, in this section we present a new

method to find new symmetries of evolution equations using recursion operators.

Recursion operators provide a method to find infinite hierarchies of generalized

symmetries. On the other hand, it may not be possible to find all symmetries

using recursion operator.

Definition 2.4.1. Let 4 be a system of differential equations. A recursion oper-

ator for 4 is a linear operator R : Aq → Aq in the space of q-tuples of differential

functions that satisfies the following condition, if vQ is an evolutionary symmetry

of 4 then vQ̃ is also a symmetry where Q̃ = RQ.

Hence if we know the recursion operator of a system then we can generate

infinitely many symmetries by applying R to a known symmetry. In other words,

if Q0 is a symmetry of the system then Qn = RnQ0 for n = 1, 2, .., are also a

symmetries of this system and they constitute an infinite family of symmetries of

the system.

Now the question arises : how can we check whether a given differential

operator is a recursion operator of the system? To solve this problem, we define

Frechet derivatives.

Definition 2.4.2. The Frechet derivative of P [u] ∈ Ar is the differential operator

DP : Aq → Ar which is defined as

DP (Q) =
d

dε

∣∣∣∣∣
ε=0

P [u+ εQ[u]] (2.27)
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for any Q ∈ Aq.

Also we can say that DP is a q × r matrix differential operator with entries

(DP )µν =
∑
J

(
∂Pµ
∂uνJ

)
DJ , µ = 1, ..., r, ν = 1, ..., q, (2.28)

where the sum is taken over all multi-indices J .

Proposition 2.4.3. If P ∈ Ar and Q ∈ Aq, then we have

DP (Q) = prvQ(P ). (2.29)

One can obtain from Proposition (2.4.3) that if D4(P ) = 0 then P is a symmetry

of the system

4v[u] = 4v(x, u
(n)) = 0, v = 1, ..., l.

Theorem 2.4.4. Suppose 4[u] = 0 is a system of differential equations. If for

all solutions u of 4, R : Aq → Aq is a linear operator such that

D4.R = R̃.D4, (2.30)

where R̃ : Aq → Aq is a linear differential operator, then R is a recursion operator

for the system.

As a special case of Theorem 2.4.4, we consider evolution equations

4[u] = ut −K[u] = 0.

Then we have D4 = Dt−DK . Also, in this case we have R̃ = R and the condition

(2.30) is equivalent to

Rt = [DK , R]. (2.31)

The equality (2.31) has the form of a Lax equation but in most cases recursion

operators are not usual operators appearing in Lax pairs. In Chapter 5, we will

concentrate on the usage of recursion operators as Lax operators.
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Example 2.4.5. The operator

R = D2
x + 4u+ 2uxD

−1
x , (2.32)

is a recursion operator for the KdV equation

ut = uxxx + 6uux. (2.33)

Proof. We will check the condition (2.31). First we find the Frechet derivative of

K[u] = uxxx + uux

DK = D3
x + uDx + ux, (2.34)

then we find the required commutator as

[DK , R] =
2

3
(uxxx + uux) +

1

3
(uxxxx + uuxx + u2x)D

−1
x , (2.35)

which is consistent with the condition (2.31).

Hence we can use this recursion operator to find more symmetries of KdV

equation. We begin with the space translational symmetry which corresponds to

characteristic Q0 = ux, we find

Q1 = RQ0 = uxxx + uux, (2.36)

which corresponds to the characteristic of time translational symmetry. Next we

obtain

Q2 = RQ1 = uxxxxx +
5

3
uuxxx +

10

3
uxuxx +

5

6
u2ux, (2.37)

by continuing this process one can find infinite number of symmetries of the KdV

equation.

In the following chapters, instead of DF we will use the notation F ∗ for Frechet

derivative of differential function F . That is,

Rt = [F ∗, R] (2.38)
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will be the condition for R to be a recursion operator of evolution equation

ut = F [u].



Chapter 3

Gel’fand-Dikii Formalism

Using the pseudo-differential algebra in Gel’fand-Dikii formalism, given the Lax

representation, we are able to obtain classes of nonlinear partial differential equa-

tions. It was recently shown that recursion operators can also be constructed by

the use of this formalism.

3.1 Lax Representations

Let L be a differential operator of order m and A be a differential operator having

coefficients, which are functions of x and t. Consider the Lax representation of

the form.

Lt = [A,L], (3.1)

where commutator [A,L] is defined as

[A,L] = A.L− L.A.

Let

L = Dm
x + um−2(x, t)D

m−2
x + ...+ u1(x, t)Dx + u0, (3.2)

20
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consider L
1
m and its fraction L

n
m , where n ∈ Z and n 6= am. Let

L
n
m =

n∑
i=−∞

viD
i
x = (L

n
m )+ + (L

n
m )−,

where

(L
n
m )+ =

n∑
i=0

viD
i
x and (L

n
m )− =

−1∑
i=−∞

viD
i
x.

Since [L,L
n
m ] = 0, we have

[L, (L
n
m )+] = −[L, (L

n
m )−]. (3.3)

The left hand side of (3.3) is a differential operator of order ≤ n + m − 1, but

the right hand side is series of order ≤ m − 1. Therefore, there are n number

of terms canceling each other and that gives us system of evolution equations

for ui(x, t)’s for i = 0, 1, ...,m − 2. To have a hierarchy of nonlinear system of

differential equations at (3.3), define [2]

An := (L
n
m )+, (3.4)

and consider

Ltn = [An, L]. (3.5)

As an example for Lax pairs of form, we will give the following (3.5)

Example 3.1.1. KdV equation has the following two Lax representations. [2]

i. L = D2 + u, A = (L
3
2 )+,

ii. L = (D2 + u)D−1x , A = (L3)+.

Firstly, we will show each of these lax pairs gives the KdV equation

i) L = D2 + u, A = (L
3
2 )+

We have

Lt = [A,L], (3.6)

and

L
1
2 = Dx +

1

2
uD−1x −

1

4
uxD

−2
x + ...
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A = D3
x +

1

2
uDx +

3

4
ux, (3.7)

using (3.6) and (3.7) we find

[A,L] =
1

4
uxxx +

3

2
uux,

and so we have

ut =
1

4
uxxx +

3

2
uux,

which is the KdV equation.

ii) L = (D2 + u)D−1x , A = (L3)+

We have

Lt = [A,L], (3.8)

and

A = D3
x + 3uDx + 3ux, (3.9)

using (3.8) and (3.9) we find

[A,L] = (uxxx + 6uux)D
−1
x ,

and so we have,

ut = uxxx + 6uux,

which is the KdV equation.

3.2 Consistent Lax Hierarchies

Consider the Lax equations for n = 1, 2, ...

Ltn = [An, L] where An = (L
n
N )≥k, (3.10)
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what type of Lax operator can be used in (3.10) to obtain a consistent evolution

equation? Let us consider the Lax operators in the following general form

L = uND
N
x + uN−1D

N−1
x + ...+ u0 + u−1D

−1
x + ... (3.11)

where uk’s are functions of x and t.

Firstly to obtain a consistent Lax equation, order of the right hand side of the Lax

equation (3.10) should not exceed the order of L, which is N . Since [L,L
n
N ] = 0

we have

[L, (L
n
N )≥k] = −[L, (L

n
N )<k], (3.12)

where (L
n
N )<k = ak−1D

k−1
x + ak−2D

k−2
x + ....

Now let’s look at the equation,

Ltn = −[L, (L
n
N )<k] = [uND

N
x + ..., ak−1D

k−1
x ], (3.13)

the right hand side of (3.13) has order at most N+k−2 but the left hand side has

order N . Therefore, the cases k = 0, 1, 2 can produce consistent Lax hierarchies.

Hence there are 3 consistent Lax hierarchies that satisfy the Lax equation,

Ltn = [An, L] where An = (L
n
N )≥k k = 0, 1, 2. (3.14)

For each k = 0, 1, 2 we have some restrictions on the form of the Lax operator L

so that (3.14) is consistent.

To have a consistent Lax pair in each case L should be in the following form, [4]

L = cmD
m
x + cm−1D

m−1
x + ...+ u0 + u−1D

−1
x + ..., k = 0 (3.15)

L = cmD
m
x + um−1D

m−1
x + ...+ u0 + u−1D

−1
x + ..., k = 1 (3.16)

L = umD
m
x + um−1D

m−1
x + ...+ u0 + u−1D

−1
x + ..., k = 2 (3.17)
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where cm and cm−1 are functions which do not depend on t.

If number of ui’s are finite, then L should be in the following form, [4]

L = cmD
m
x + cm−1D

m−1
x + ...+ u0, k = 0

L = cmD
m
x + um−1D

m−1
x + ...+ u0 +D−1x (u−1), k = 1

L = umD
m
x + um−1D

m−1
x + ...+ u0 +D−1x (u−1) +D−2x (u−2)k = 2

where cm and cm−1 are functions which do not depend on t.

For the case k = 1 there can be reductions on formula (3.16), and they are given

by [4]

L = cmD
m
x + um−1D

m−1
x + ...+ u1Dx + u0,

L = cmD
m
x + um−1D

m−1
x + ...+ u1Dx + λ,

where λ is a constant parameter.

For the case k = 2 there can be reductions on formula (3.17), and they are given

by, [4]

L = umD
m
x + um−1D

m−1
x + ...+ u1Dx + u0 +D−1x (u−1),

L = umD
m
x + um−1D

m−1
x + ...+ u1Dx + u0,

L = umD
m
x + um−1D

m−1
x + ...+ u1Dx + (λ1 + λ2x),

L = umD
m
x + um−1D

m−1
x + ...+ (λ1 + λ2x)Dx + λ3,

where λ1, λ2 and λ3 are constant parameters. As an example for each case, [4]

i. k = 0, L = D2
x + u, A = (L

3
2 )>0 gives KdV equation

ii. k = 1, L = D2
x + 2uDx, A = (L

3
2 )>1 gives MKdV equation

iii. k = 2, L = u2D2
x, A = (L

3
2 )>2 gives Harry Dym equation

In the previous section we derived KdV equation which corresponds to the case

k = 0. Now we will derive MKdV and Harry-Dym equations which correspond

to the cases k = 1 and k = 2, respectively.

MKdV equation

Let

L = D2
x + 2uDxi (3.18)

Lt = [A,L] where A = (L
3
2 )≥1. (3.19)
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We find

L
1
2 = Dx + u− 1

2
(ux + u2)D−1x + ...

and

A = D3
x + 3uD2

x +
3

2
(ux + u2)Dx.

Then we find

[A,L] = (
1

2
uxxx − 3u2ux)Dx = 2utDx.

Hence we get the MKdv equation,

ut =
1

4
uxxx −

3

2
u2ux.

Harry-Dym Equation

We have the Lax operator

L = w2D2
x,

and

Lt = [A,L] where A = (L
3
2 )≥2, (3.20)

we find

L
1
2 = wDx −

1

2
wx + ...

and

A = w3D3
x +

3

2
w2wxD

2
x, (3.21)

by using (3.21) in (3.20), we find

[A,L] =
1

2
w4wxxxD

2
x = 2wwt,

hence we get

wt =
1

2
w3wxxx.

which is Harry-Dym eqaution.

Now we will derive some system of differential equations, [4]

1) Boussinesq Equation

Consider

L = D3
x + uDx + v,
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and

Lt = [A,L] with A = (L
2
3 )≥0,

we find

A = D2
x +

2

3
u,

and we have (
u

v

)
t

=

(
−uxx + 2vx

−2
3
uxxx + vxx − 2

3
uux

)
(3.22)

using (3.22) we find that u satisfies the Boussinesq equation

utt +
1

3
(uxxx + 4uux)x = 0.

2) Consider

L = D4
x + uD2

x + vDx + w,

and

Lt = [A,L] with A = (L
2
4 )≥0,

we find,

A = D2
x +

1

2
u,

and we have 
u

v

w


t

=


−2uxx + 2vx

−2uxxx + vxx + 2wx − uux
−1

2
uxxxx + wxx − 1

2
uuxx − 1

2
uxv

 .

3) Consider

L = Dx + u+D−1x v, (3.23)

and

Lt = [A,L] with A = (L2)≥1,

we find,

A = D2
x + 2uDx,
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and we have (
u

v

)
t

=

(
uxx + 2vx + 2uux

−vxx + 2(uv)x

)
.

In (3.23) if we choose v = 0, then we get Burgers’ equation

ut = uxx + 2uux,

with the following Lax pair

L = Dx + u with A = (L2)≥1.

4) Consider

L = D2
x + uDx + v +D−1x w, (3.24)

and

Lt = [A,L] with A = (L
3
2 )≥1,

we find,

A = D3
x +

3

2
uD2

x +
3

8
(2ux + u2 + 4v)Dx,

and we have
u

v

w


t

=


1
4
uxxx + 3

2
vxx + 3wx − 3

8
u2ux + 3

2
(uv)x

vxxx + 3
2
u(v)xx + 6uxvx + 3

2
uxw + 3uwx + 3

2
vvx + 3

8
u2vx

wxxx − 3
2
u(w)xx − 9

4
uxwx − 3

4
uxxw + 3

2
(vw)x + 3

8
(u2w)x

 .

(3.25)

If we consider the cases w = v = 0 in (3.24) ,the system (3.25) reduces to MKdV

equation

ut =
1

4
uxxx −

3

8
u2ux.

5) Consider

L = uDx + v +D−1x w +D−1x z, (3.26)

and

Lt = [A,L] with A = (L2)≥2,
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we find,

A = u2D2
x,

and we have 
u

v

w

z


t

=


u2uxx + 2u2vx

u2vxx2u(uw)x

−(u2w)xx + 2(u2z)x

−(u2z)xx

 .

If we choose z = 0 in (3.26), then we have the following reduction,
u

v

w


t

=


u2uxx + 2u2vx

u2vxx + 2u(uw)x

−(u2w)xx

 ,

if z = w = 0 (
u

v

)
t

=

(
u2uxx + 2u2vx

u2vxx

)
,

if z = w = 0 and v = λx, we get the partial differential equations,

ut = u2uxx + 2λu2,

where λ is a constant.



Chapter 4

A Method to Find Recursion

Operator

In chapter 3, we considered the hierarchy

Ltn = [An, L],

where

An := (L
n
m )+.

By using this hierarchy it is possible to derive recursion operators of evolution

equations. This method was introduced by Gürses, Karasu and Sokolov [2]

Proposition 4.0.1. For any n

An+m = L.An +Rn, (4.1)

where Rn is a differentiable operator and ord(Rn) ≤ m− 1.

Proof.

An+m = (L.L
n
m )+ = (L.[(L

n
m )+ + (L

n
m )−])+,

then

An+m = L.(L
n
m )+ + (L.(L

n
m )−)+ = L.An +Rn,

29
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since (L.(L
n
m )+)+ = L.(L

n
m )+ and Rn = (L.(L

n
m )−)+. Furthermore, ordRn ≤

m− 1 because (L
n
m )− does not have any differential part. �

Corollary 4.0.2. For any n

Ltn+m = L.Ltn + [Rn, L], (4.2)

where Rn is as defined in Proposition (4.0.1).

Proof. From Proposition (4.0.1),

Ltn+m = [An+m, L] = [L.An +Rn, L] = L.[An, L] + [Rn, L] = L.Ltn + [Rn, L]. �

The equation (4.2) is called the recursion relation and Rn is called the remainder.

If we write An+m = (L
n
m .L)+, then we get a new formula

Ltn+m = L.Ltn + [Rn, L], (4.3)

where Rn = ((L
n
m )−L)+ is a differential operator and ord(Rn) ≤ m− 1.

If we equate the coefficients of powers of Dx in (4.2), we can find Rn in terms of

L and Ltn from Di
x for i = 2m − 2, ...,m − 1. For the case i = m − 2, ..., 0 the

comparison of coefficients gives us the relation

u0

u1

.

.

um−2


tn+m

= R



u0

u1

.

.

um−2


tn

(4.4)

where R is the recursion operator. Also the recursion operators for (4.2) and (4.3)

are the same. [2]
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4.1 Symmetric and Skew-Symmetric Reduction

of a Differential Operator

Definition 4.1.1. Let L be a differential operator given by

L =
m∑
i=0

aiD
i
x. (4.5)

Then its adjoint L+ is defined as

L+ =
m∑
i=0

(−Dx)
i.ai. (4.6)

If L+ = L, in which case ord(L) = m must be even, then (3.4) and Proposition

(4.0.1) remains valid, but if L+ = −L then m should be odd and we take

An+2m = (L
n+2m

m )+ = (L2L
n
m )+. (4.7)

In this case we have the following proposition

Proposition 4.1.2. If L+ = −L then

An+2m = L2An +Rn, (4.8)

and we have the recursion relation

Ltn+2m = L2.Ltn + [Rn, L] (4.9)

where Rn = (L2(L
n
m )−)+ and ord(Rn) ≤ 2ord(L)− 1. [2]

Also we can use the following recursion relations instead of (4.9)

Ltn+2m = L.Ltn .L+ [R̂n, L], (4.10)

Ltn+2m = Ltn .L
2 + [R̃n, L]. (4.11)
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If L is a differential operator, recursion operators obtained from (4.9), (4.10)

and (4.11) are same. However, in pseudo-differential case, they are not equivalent.

Let us consider the case L = MD−1, where M is a differential operator and define

L† = DxL
+D−1x . Now we have a lemma that shows how to find recursion operators

in some special cases.

Lemma 4.1.3. Let L† = εL where ε = ±1. Then

Rn = am−1D
m−1
x + ...+ a0, for ε = 1, (4.12)

where Rn is defined by Proposition (4.0.1)

R̂n = a2m−1D
2m−1
x + ...+ a−1D

−1
x , for ε = −1, (4.13)

where R̂n is defined by (4.10). [2]

Now we will derive the recursion operators of some evolution equations from

their Lax representations. Firstly, we will find recursion operator of the KdV

equation by using two different Lax representations. [2]

1. L = D2 + u,

2. L = (D2 + u)D−1x .

1) L = D2
x + u

To find the recursion operator, we use

Ltn+2 = L.Ltn + [Rn, L],

we choose Rn as in Proposition (4.0.1) and we take Rn = anDx + bn. Since

Ltn = utn , we have

utn+2 = (D2
x + u).utn + [anDx + bn, D

2
x + u]. (4.14)
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We compare the coefficients in (4.14)

an =
1

2
D−1x (utn), (4.15)

bn =
3

4
utn , (4.16)

then by using (4.15) and (4.16) in (4.14) we find

utn+2 = (
1

4
D2
x + u+

1

2
uxD

−1
x ).utn ,

which gives us the recursion operator

R = D2
x + 4u+ 2uxD

−1
x .

2) L = Dx + uD−1x

We find

L+ = −Dx −D−1x (u),

and

L† = −L,

Then we have ε = −1 and we will use the recursion relation (4.10) and we will

take Rn as (4.13)

Ltn+2 = L.Ltn .L+ [R̂n, L], (4.17)

with R̂n = anDx + bn + cnD
−1
x . Then we find

an = D−1x (utn),

bn = utn ,

cn = −utnx
− uD−1x (utn),

if we use an, bn and cn in (4.17) , we get

utn+2 = utnxx
+ 4uutn + 2uxD

−1
x (utn),
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Hence we find,

R = D2
x + 4u+ 2uxD

−1
x .

3) We will now find the recursion operator of MKdV equation from its lax rep-

resentation. Recall that Lax operator of MKdV is

L = D2
x + 2uDx.

To find the recursion operator, we use

Ltn+2 = L.Ltn + [Rn, L], (4.18)

with Rn = cnD
2
x + anDx + bn. By replacing Rn into (4.18) we find

cn = D−1x (utn),

an =
3

2
utn −D−1x (uutn) + 2uD−1x (utn),

bn = 0.

Hence we get

2utn+2 =
1

2
utnxx − 2u2utn − 2uxD

−1
x (uutn),

and we find

R = D2
x − 4u2 − 4uxD

−1
x (u).

4) Recursion operator of the Harry-Dym equation from its Lax representation :

L = w2D2
x, (4.19)

we use

Ltn+2 = L.Ltn + [Rn, L], (4.20)

with Rn = dnD
3
x + cnD

2
x + anDx + bn. Using Rn and (4.19) in (4.20) we find

dn = w3D−1x (
wtn
w2

),

cn =
3

2
w2wxD

−1
x (

wtn
w2

) +
3

2
wwtn , (4.21)
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an = −2bnx ,

bnxx = 0,

Hence we can take an = bn = 0. Then, substitutingcn and dn into (4.20)

wtn+2 =
1

2
w3wxxxD

−1
x

(wtn
w2

)
+
(
− 1

2
wwxwtnx +

1

2
wwxxwtn +

1

2
w2wtnxx

)
,

hence we find

R = w2D2
x − wwxDx + wwxx + w3wxxxD

−1
x

( 1

w2

)
,

5) Recursion operator of Sawada-Kotera equation [2] :

ut = u5x + 5uuxxx + 5uxuxx + 5u2ux,

from its Lax representation

L = D3
x + uDx, A = (L

5
3 )+.

We find

L+ = −D3
x − uDx − ux,

and

L† = −L,

Then we have ε = −1 and we will use the recursion relation (4.10) and we will

take Rn as (4.13)

Ltn+6 = L.Ltn .L+ [Rn, L], (4.22)

with Rn = anD
5
x + bnD

4
x + cnD

3
x + dnD

2
x + enDx + fn. Then we find

an =
1

3
D−1x (utn),

bn =
5

3
utn ,

cn =
1

9
(5uD−1x (utn) + 29utnx

),
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dn =
1

9
(5uxD

−1
x (utn) + 14uutn + 26utnxx

),

en =
1

27
(10uxxD

−1
x (utn)− 2D−1x (uxxutn)−D−1x (u2utn) + 5u2D−1x (utn)

+28utnxxx
+ 32uutnx

− 32uxutn),

fn = 0.

Hence we find recursion operator

R = D6
x + 6uD4

x + 9uxD
3
x + 9u2D2

x + 11uxxD
2
x + 10uxxxDx + 12uuxDx

+4u3 + 16uuxx + 6u2x + 5u4x

+uxD
−1
x (2uxx + u2) + utD

−1
x .

6) Recursion operator of the DSIII (Drinfeld-Sokolov III) system [2]

ut = −uxxx + 6uux + 6vx,

vt = 2vxxx − 6uvx.
.

from its Lax representation

L = (D5
x − 2uD3

x − 2D3
xu− 2Dxw − 2wDx)D

−1
x , A = (L

3
4 )+,

where w = v − u2x. We find

L+ = D−1x (D5
x − 2uD3

x − 2D3
xu− 2Dxw − 2wDx),

and

L† = L.

Then applying lemma (4.1.3) with ε = 1 we use the recursion relation (4.2) and

we will take Rn as in (4.12)

Ltn+4 = L.Ltn + [Rn, L], (4.23)
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with Rn = anD
3
x + bnD

2
x + cnDx + dn. By replacing Rn and L into (4.23) we find

an = −D−1x (utn),

bn = −4utn ,

cn =
1

2
(6uD−1x (utn)− 11utn,x − 2D−1x (uutn)− 2D−1x (vtn)),

dnx =
1

2
(6uxxD

−1
x (utn) + 10uxutn − 5utn,xxx + 4uutn,x − 6vtn,x).

Hence we get the equation (
utn+4

vtn+4

)
= R

(
utn

vtn

)

with the recursion operator

R =

(
R11 R12

R21 R22

)
, (4.24)

where

R11 = D4
x − 8uD2

x − 8u2x + 16v − 12uxDx + 16u2 + (12uux − 2u3x + 12vx)D
−1
x

+ 4uxD
−1
x u,

R12 = 10D2
x + 8u+ 4uxD

−1
x ,

R21 = 12v2x + 10vxDx + (4v3x − 12uvx)D
−1
x + 4vxD

−1
x u,

R22 = −4D4
x + 16uD2

x + 8uxDx + 16v + 4vxD
−1
x .

(4.25)

7) Recursion operator of Boussinesq System. [2], Boussinesq equation

utt = −1

3
(u4x + 2(u2)xx),

can be represented by the system

ut = vx,

vt = −1
3
(uxxx + 8uux).

.
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Its Lax representation is given by

L = D3
x + 2uDx + ux + v, A = (L

2
3 )+,

We use recursion relation (4.2) and we will take Rn as in (4.0.1)

Ltn+3 = L.Ltn + [Rn, L], (4.26)

with Rn = anD
2
x + bnDx + cn. By replacing Rn and L into (4.26) we find

an =
2

3
D−1x (utn),

bn =
1

3
(5utn +D−1x (vtn)),

cn =
1

9
(6vtn + 8uD−1x (utn) + 10utn,x),

dnx =
1

2
(6uxxD

−1
x (utn) + 10uxutn − 5utn,xxx + 4uutn,x − 6vtn,x).

Hence we obtain the recursion operator

R =

(
R11 R12

R21 R22

)
, (4.27)

where

R11 = 3v + 2vxD
−1
x ,

R12 = D2
x + 2u+ uxD

−1
x ,

R21 = −(1
3
D4
x + 10

3
uD2

x + 5uxDx + 3uxx + 16
3
u2 + (2

3
uxxx + 16

3
uux)D

−1
x ),

R22 = 3v + vxD
−1
x .



Chapter 5

Recursion Operators in

Gelfand-Dikii Formalism

5.1 Recursion Operators as Lax Operators in

Gelfand-Dikii Formalism

Let

ut = F (u, ux, uxx, ...), (5.1)

be an integrable nonlinear partial differential equation where u is a function of x

and t. Then we know that if

Rt = [F ∗, R] (5.2)

is satisfied then R is the recursion operator of (5.1). Hence, recursion operators

are also Lax operators of the evolutionary type partial differential equations.

In this chapter we discuss if we can use recursion operators in Gelfand-Dikii

formalism to derive the evolution equation itself.

Remark 5.1.1. [4] If the Lax equation

Rt = [F ∗, R] (5.3)

39
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is satisfied then the adjoint equation is given by

(R+)t = [−(F ∗)+, R+], (5.4)

where (F ∗)+ and R+ are both adjoint operators.

The consistent Lax operators has the form

Lt = [An, L], An = (L
n
m )≥k, (5.5)

where k is either 0 or 1 or 2. For recursion operators we have F ∗ instead of

(L
n
m )≥k. Hence we have

F ∗ = (R
n
m )≥k, (5.6)

for some k = 0, 1, 2 we can use R in Gelfand-Dikii formalism. Also the adjoint

equation should be consistent, that is we should have

(F ∗)+ = −((R+)
n
m )≥k, (5.7)

for some k = 0, 1, 2.

5.2 Recursion Operators Produce Themselves

Since recursion operators are also Lax operators, we can use them in Proposition

4.0.1 or in Lemma 4.1.3. Hence they should reproduce themselves as recursion

operators. That is, using recursion relation (4.2),

Ltn+m = L.Ltn + [Rn, L] (5.8)

we should find R = L.

Now we will check (5.6) and (5.7) for the recursion operators of KdV, MKdV,

Burgers’ and Harry Dym equations. Firstly, we will list all required operators

and their adjoints and then we will check if (5.6) and (5.7) are satisfied for any
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k = 0, 1, 2 or not. If both of them are satisfied we will conclude that, that recur-

sion operator can be used as Lax operator in Gelfand-Dikii formalism. But if any

of them is not satisfied we will conclude that, that recursion operator cannot be

used as Lax operator in Gelfand-Dikii formalism. Also we will show that recur-

sion operators of these PDEs reproduce themselves.

1) KdV Equation : ut = uxxx + 6uux

Here we list all required operators and their adjoints,

i) R

R = D2
x + 4u+ 2uxD

−1
x ,

F ∗ = D3
x + 6uDx + 6ux,

R
3
2 = D3

x + 6uDx + 6ux + (2uxx + 6u2)D−1x + ...

ii) R+

R+ = D2
x + 4u−D−1x (2ux),

(F ∗)+ = −D3
x − 6uDx,

(R+)
3
2 = D3

x + 6uDx + ..

By using the above list, we see that for the Lax equation,

F ∗ = (R
3
2 )≥0

is satisfied and for the adjoint Lax equation,

(F ∗)+ = −((R+)
3
2 )≥1

is satisfied and both of these Lax equations are consistent. Hence we can use the

recursion operator of KdV in Gelfand-Dikii formalism.

a ) Recursion Operator is the Lax operator, L = R

L = D2
x + 4u+ 2uxD

−1
x ,

Lt = [A,L] and A = (L
3
2 )+. (5.9)

We find

A = D3
x + 6uDx + 6ux,
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If we compare coefficients in (5.9), we find

ut = uxxx + 6uux,

which is KdV equation.

b) Adjoint Lax equation, L = R+

L = D2
x + 4u−D−1x (2ux)

Lt = [A,L] and A = (L
3
2 )≥1i (5.10)

we find

A = D3
x + 6uDx.

If we compare coefficients in (5.10), we find

ut = uxxx + 6uux,

which is KdV equation.

Now if we take the recursion operator of KDV as a Lax operator, we must find

its recursion operator as itself.

c) Recursion Operator Produces Itself, L = R

Recursion operator of KdV is

L = D2
x + 4u+ 2uxD

−1
x

we find

L+ = D2
x + 4u− 2D−1x (ux),

and

L† = L.

Then applying Lemma (4.1.3) with ε = 1 and we use the recursion relation (4.2).

Also we will take Rn as in (4.12)

Ltn+2 = L.Ltn + [Rn, L], Rn = anDx + bn. (5.11)
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Then we find

an = 2D−1x (utn),

bn = 4utn .

If we put an and bn into (5.11), we get

utn+2 = utnxx
+ 4uutn + 2uxD

−1
x (utn).

Then we find

R = D2
x + 4u+ 2uxD

−1
x ,

which is the initial lax operator.

2) MKdV Equation : ut = uxxx − 6u2ux

Here we list all required operators and their adjoints,

i) R

R = D2
x − 4u2 − 4uxD

−1
x (u),

F ∗ = D3
x − 6u2Dx − 12uux,

R
3
2 = D3

x − 6u2Dx − 12uux + (6u4 − 4uuxx + 2u2x)D
−1
x + ...

ii) R+

R+ = D2
x +−4u2 + 4uD−1x (ux),

(F ∗)+ = −D3
x + 6u2Dx,

(R+)
3
2 = D3

x − 6u2Dx − 8uux + ..

By using the above list, we see that for the Lax equation

F ∗ = (R
3
2 )≥0

is satisfied and for the adjoint Lax equation

(F ∗)+ = −((R+)
3
2 )≥1

is satisfied. Both of these Lax equations are consistent. Hence we can use the

recursion operator of MKdV in Gelfand-Dikii formalism.

a ) Recursion Operator is the Lax operator, L = R

L = D2
x − 4u2 − 4uxD

−1
x (u),
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Lt = [A,L] where A = (L
3
2 )+. (5.12)

We find

A = D3
x − 6u2Dx − 12uux. (5.13)

By using (5.12) and (5.13) we find

ut = uxxx − 6u2ux,

which is MKdV equation.

b) Adjoint Lax equation, L = R+

L = D2
x +−4u2 + 4uD−1x (ux),

Lt = [A,L] and A = (L
3
2 )≥1. (5.14)

We find

A = D3
x − 6u2Dx.

If we compare coefficients in (5.14), we find

ut = uxxx − 6u2ux,

which is MKdV equation

c) Recursion Operator Produces Itself, L = R

Recursion operator of MKdV equation is

L = D2
x − 4u2 − 4uxD

−1
x (u),

we find

L+ = D2
x − 4u2 + 4uD−1x (ux),

and

L† = L.
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Then applying Lemma (4.1.3) with ε = 1 we use the recursion relation (4.2) and

we will take Rn as in (4.12)

Ltn+2 = L.Ltn + [Rn, L], (5.15)

with Rn = anDx + bn. By replacing Rn and L into (5.15) we find

an = −4D−1x (uutn),

bn = −8uutn .

Hence we get

utn+2 = 2utnxx − 8u2utn − 8uxD
−1
x (uutn),

this yields to

R = D2
x − 4u2 − 4uxD

−1
x (u).

3) Burgers’ Equation : ut = uxx + 2uux

Here we list all required operators and their adjoints,

i) R

R = Dx + u+ uxD
−1
x ,

F ∗ = D2
x + 2uDx + 2ux,

R2 = D2
x + 2uDx + (3ux + u2) + (2uux + uxx)D

−1
x

ii) R+

R+ = −Dx + u−D−1x (ux),

(F ∗)+ = D2
x − 2uDx,

(R+)2 = D2
x − 2uDx + (ux + u2) + ...

By using the above list, we see that for the Lax equation

F ∗ = (R2)≥k

is not satisfied for any k = 0, 1, 2 and for the adjoint Lax equation

(F ∗)+ = −((R+)2)≥k
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is not satisfied for any k = 0, 1, 2. Hence we cannot use recursion operator of

Burgers’ equation in Gelfand-Dikii formalism as the Lax operator.

There is an interesting situation here. We have (F ∗)+ = ((R+)2)≥1 but for a

consistent Lax representation we should have (F ∗)+ = −((R+)2)≥k for some k.

We will check if this interesting case in adjoint case is consistent or not. Firstly

we show the inconsistency in Lax equation.

a ) Recursion Operator is the Lax operator , L = R

L = Dx + u+ uxD
−1
x ,

Lt = [A,L] and A = (L
3
2 )≥1. (5.16)

We find

A = D2
x + 2uDx..

If we compare coefficients in (5.16), we find

ut = 3uxx + 2uux, (5.17)

but coefficients of D−1x gives

utx = uxxx + 2uuxx + 2u2x,

which is not compatible with (5.17). Also the left hand side of (5.16) include

terms with powers D−2x , D−3x ,... but the right hand side does not have terms with

these powers.

b) Adjoint Lax equation, L = R+

L = −Dx + u−D−1x (ux),

we do not have (F ∗)+ = −((L+)2)≥k for any k but if we take A = ((L+)2)≥1

Lt = [A,L] and A = (L
3
2 )≥1,

we find

ut = −uxx − 2uux,
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which is not Burgers’ equation. Thus, there is a minus difference between adjoint

Lax equation and corresponding Gelfand-Dikii formalism.

c) Recursion Operator Produces Itself, L = R

Recursion operator of Burgers’s equation is

L = Dx + u+ uxD
−1
x ,

Ltn+1 = L.Ltn + [Rn, L], (5.18)

with Rn = anDx + bn. By replacing Rn and L into (5.18) we find

an = D−1x (utn),

bn = utn .

Hence we get

utn+1 = uutn + utnx + uxD
−1
x (utn),

then we find

R = Dx + u+ uxD
−1
x .

4) Harry-Dym Equation : wt = w3wxxx

Here we list all required operators and their adjoints,

i) R

R = w2D2
x − wwxDx + wwxx + w3wxxxD

−1
x ( 1

w2 ),

F ∗ = w3D3
x + 3w2wxxx,

R
3
2 = w3D3

x + (w2wxx − 1
2
ww2

x)Dx + (2w2wxxx − wwxwxx + 1
2
w3
x) + ...

ii) R+

R+ = w2D2
x + 3wwxDx + (3w2

x + 4wwxx)− 1
w2D

−1
x (w3wxxx),

(F ∗)+ = −w3D3
x − 9w2wxD

2
x − (19ww2

x + 9w2wxx)Dx − (18wwxwxx + 6w3
x),

(R+)
3
2 = w3D3

x + 6w2wxD
2
x + (17

2
w2wxx + 10ww2

x)Dx + (7
4
w2wxxx − 49

4
wwxwxx

+ 4w3
x) + ...

By using the above list, we see that for the Lax equation

F ∗ = (R2)≥k
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is not satisfied for any k = 0, 1, 2 and for the adjoint Lax equation

(F ∗)+ = −((R+)2)≥k

is not satisfied for any k = 0, 1, 2. Hence we cannot use recursion operator of

Harry-Dym equation in Gelfand-Dikii formalism as the Lax operator.

Let us show the inconsistency in Lax equation if we take recursion operator

as the Lax operator.

a ) Recursion Operator is the Lax operator, L = R

L = w2D2
x − wwxDx + wwxx + w3wxxxD

−1
x (

1

w2
),

Lt = [A,L] and A = (L
3
2 )≥2. (5.19)

We find

A = w3D3
x.

If we compare coefficients in (5.19), D2
x gives

wt = w3wxxx, (5.20)

which is Harry-Dym equation, but coefficients of Dx gives

−w4wxxxx − 4w3wxwxxx = 5w4wxxxx + 8w3wxwxxx + 3w3wxwxx − 3w3w2
xx,

which is not compatible with (5.20).

5.3 A General Type Lax Operator of Order Two

Now we consider a recursion operator of order two

L = D2
x + α + βD−1x .
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where α and β are function of x and t

a) If L satisfies the Lax equation,

Ltn = [L,A] where A = (L
3
2 )+,

what conditions α and β must satisfy ? First we find

L
1
2 = Dx +

1

2
αD−1x + (

1

2
β − 1

4
αx)D

−2
x + ...

and

A = D3
x +

3

2
αDx + (

3

4
αx +

3

2
β).

We get,

[A,L] = (
1

4
αxxx +

3

2
βxx +

3

2
ααx) + (βxxx +

3

2
βαx +

3

2
αβx)D

−1
x +

+(
3

2
ββx −

3

4
βαxx)D

−2
x + (

3

4
βαxxx −

3

2
ββxx)D

−3
x + ...

= αt + βtD
−1
x . (5.21)

From the coefficients of D−2x in (5.21)

β =
1

2
αx when β 6= 0,

and we have

αt = αxxx +
3

2
ααx.

Hence α satisfies the KdV equation and we get α = u. Also, the rest of (5.21) is

also satisfied.

b) If this pseudo-differential operator has itself as a recursion operator, what

conditions α and β must satisfy ? We have the recursion relation,

Ltn+2 = L.Ltn + [Rn, L],
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with Rn = anDx + bn and Ltn = αtn + βtnD
−1
x . We have

L.Ltn + [Rn, L] = (αtn − 2anx)D2
x + (2αtnx + βtn − anxx − 2bnx)Dx

+(αtnxx + 2βtnx + ααtn + anαx − bnxx)

+(anβx + βanx + βtnxx + αβtn + βαtn)D−1x

+(βbnx + ββtn − βanxx − βαtnx)D−2x + ...

= αtn+2 + βtn+2D
−1
x . (5.22)

If we compare the coefficients of Dn
x in (5.22),

an =
1

2
D−1x (αtn) (D2

x),

bn =
3

4
αtn +

1

2
D−1x (βtn) (Dx),

αtn+2 = αtnxx + 2βtnx + ααtn + anαx − bnxx (D0
x), (5.23)

βtn+2 = anβx + βanx + βtnxx + αβtn + βαtn (D−1x ), (5.24)

βbnx + ββtn − βanxx − βαtnx = 0 (D−2x ). (5.25)

If we put an and bn into (5.25), we get

β =
1

2
αx.

If we insert an, bn and β into (5.23) we find

αtn+2 = αtnxx +
1

2
αxD

−1
x (αtn) + ααtn ,

hence we have

αtn+2 = (D2
x + α +

1

2
αxD

−1
x )αtn .

and we find, α = u. Note that (5.24) is also satisfied.

As a result, recursion operators of nonlinear PDE’s can be used in Gelfand-

Dikii Formalism if they satisfy certain conditions (5.6) and (5.7). That is, if we
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have an evolution equation

ut = F (u, ux, uxx, ...), (5.26)

and

Rt = [F ∗, R]

is satisfied. Hence R is recursion operator of (5.26). Also If

F ∗ = (R
n
m )≥k,

for some k = 0, 1, 2 and

(F ∗)+ = −((R+)
n
m )≥k,

for some k = 0, 1, 2, then we can use this recursion operator in Gelfand-Dikii

formalism. For the examples we considered, recursion operators of KdV and

MKdV equations both satisfies this conditions for some k’s. Hence we can use

them in Gelfand-Dikii formalism.

However, recursion operators of Burgers’ and Harry Dym equations fail to

satisfy these conditions. Hence we cannot use them in Gelfand-Dikii formalism.



Chapter 6

Classification Problem

6.1 Classification of Nonlinear PDEs by the Use

of Recursion Operators

In this chapter, we will classify all evolution equations that have specific type of

recursion operators of order 1. Firstly, we will consider most general case and

then we will go through all sub-cases. Mainly there are two ways of classifying

the hierarchies of evolution equations, by considering the hierarchies utn = Rn(0)

or utn = Rn(ux), where R is the recursion operator of the evolution equation,

ut1 = R(0) or ut1 = R(ux) respectively. The criteria for an operator to be a

recursion operator of a evolution equation was given in (2.38),

Rt = [F ∗, R]. (6.1)

Hence we will use (6.1) to classify evolution equations that admits some specific

type of recursion operators.

52
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6.2 Classification for Burgers’ Type Equations

In this section, we will classify 2nd order partial differential equations of the

type ut = R(0) with recursion operator of the first order. Similar classification

was considered in thesis by Jon Haggblad [5]. We will consider the case when

evolution equation depends on at most 2nd order derivatives and also coefficients

of recursion operator will also depend on at most 2nd order derivatives. We will

consider evolution equations of order two that admits recursion operators of order

one and using (6.1) we will classify them. That is

ut = β(u, ux, uxx),

which have recursion operator of the form

R = γDx + α + βD−1x (ρ),

where γ, α and ρ are all functions of u, ux and uxx. This is the most general

recursion operator of order 1. In this case, to have a hierarchy of evolution

equations and to get evolution equation directly from recursion operator we must

have

ρ 6= 0,

In this case, we have F ∗ = βuxxD
2
x + βuxDx + βu.

Let’s take B = βuxx , E = βux and K = βu. We have

F ∗ = BD2
x + EDx +K.
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First we calculate [F ∗, R] :

[F ∗, R] = (2BDxγ − γDxB)D2
x

+(EDxγ +BD2
xγ + 2BDxα− γDxE)Dx

+(EDxα +BD2
xα + 2BρDxβ + 2BβDxρ− γDxK + βρDx(B))

+βD−1x (Dx(ρE)− βK −D2
x(ρB))

+(βK + EDxβ +BD2
xβ)D−1x (ρ)

= Rt

= DtγDx +Dtα +DtβD
−1
x (ρ) + βD−1x (Dt(ρ)).

Hence we get 5 equations for γ, α, β and ρ :

2BDxγ − γDxB = 0, (6.2)

EDxγ +BD2
xγ + 2BDxα− γDxE = Dtγ, (6.3)

EDxα +BD2
xα + 2BρDxβ +BβDxρ− γDxK + βDx(ρB)) = Dtα, (6.4)

βK + EDxβ +BD2
xβ = Dtβ, (6.5)

Dx(ρE)− βK −D2
x(ρB) = Dtρ. (6.6)

From equation (6.2) we have

2BDxγ − γDxB = 0,

2B(γuux + γuxuxx + γuxxuxxx) = γ(Buux +Buxuxx +Buxxuxxx). (6.7)

We equate the coefficients of uxxx, uxx, ux in (6.7) .

(uxxx)

2Bγuxx = γBuxx =⇒ γ = w(u, ux)B
1
2 .

If we insert γ into equation (6.7), we get

(uxx)

wux = 0 =⇒ γ = w(u)B
1
2 ,
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(ux)

wu = 0 =⇒ γ = wB
1
2 w : constant.

We have,

β = β(u, ux, uxx), α = α(u, ux, uxx),

ρ = ρ(u, ux, uxx),, γ = wB(u, ux, uxx)
1
2 .

Now we look at equation (6.3)

EDxγ +BD2
xγ + 2BDxα− γDxE = Dtγ,

and we compare the coefficients derivatives

(u2xxx)

βuxxγuxxuxx = γuxxβuxxuxx ,

that equals to
1

2
β

1
2
uxxβuxxuxxuxx =

3

4
β
− 1

2
uxxβuxxuxx , (6.8)

βuxx = 0 and βuxxuxx = 0 are solutions to this equation. Hence there are 3 cases,

i. βuxxuxx 6= 0,

ii. βuxx 6= 0 but βuxxuxx = 0,

iii. βuxx = 0.

6.3 Case 1: βuxxuxx 6= 0

By solving the equation (6.8) we find

β =
−4

(c1(u, ux)uxx + c2(u, ux)c1(u, ux)
+ c3(u, ux), (6.9)

and the coefficient of next highest derivative of u gives

(uxxx)

αuxx =
w

2

βuxxuxx

β
1
2
uxxuxx

,
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by using (6.9) in here we find α

α =
2w(c2(u, ux)ux − c1(u, ux)uux)

(c1(u, ux)uxx + c2(u, ux))2
+ c4(u, ux).

But we cannot go further from here and for now we have,

β =
−4

(c1(u, ux)uxx + c2(u, ux)c1(u, ux)
+ c3(u, ux),

α =
2w(c2(u, ux)ux − c1(u, ux)uux)

(c1(u, ux)uxx + c2(u, ux))2
+ c4(u, ux),

γ =
2w

c1(u, ux)uxx + c2(u, ux)
,

ρ = ρ(u, ux, uxx).

To be able to solve all these equations we make some assumptions c1 = 2, c2 = 0,

c4 = 0. Then γ, α, β, ρ reduces to,

γ = w
uxx

, α = 0, β = − 1
uxx

+ c3(u, ux), ρ = ρ(u, ux, uxx)

with B =
1

u2xx
, E = c3(u, ux)ux and K = c3(u, ux)u.

From the rest of the equation (6.3), we get

c3uuxuxuxx + c3uuxx = 0,

and

c3uu = 0.

By solving them we get

c3(u, ux) = c5
u

ux
+ c6(ux) c5 : constant.

Equation (6.6) gives

(uxxxx)

ρ = c7(u, ux)uxx,
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(uxxx)

ρ = c7(ux)uxx,

(uxx)

c5c7(ux)

ux
+ c7uxux

+ c5c7ux = 0. (6.10)

We cannot solve (6.10) but equation (6.4) reduces to

(uxxx)

c7(ux) = 0 =⇒ ρ = 0.

This is a contradiction with the assumption ρ 6= 0 so we move to the next case.

6.4 Case 2: βuxxuxx = 0, βuxx 6= 0

In this case we have

β = c(u, ux)uxx + d(u, ux).

Lemma 6.4.1. If β = c(u, ux)uxx + d(u, ux), then we have ρ = ρ(u).

Proof. We use the equation (6.6)

Dx(ρE)− βK −D2
x(ρB) = Dtρ.

We have, B = c, E = cuxuxx + dux and K = cuuxx + du and we compare the

coefficients of derivatives of u in (6.4),

(uxxxx)

−(ρc)uxx = cρuxx =⇒ ρuxx = 0,

(uxxx)

ρcux = −(cρ)ux =⇒ ρux = 0.

Hence we have ρ = ρ(u). �

In which case we have γ = wc(u, ux)
1
2
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and we start with (6.3)

EDxγ +BD2
xγ + 2BDxα− γDxE = Dtγ,

(uxxx)

αuxx =
wcux

2c
1
2

=⇒ α =
wc(u, ux)ux

2c
1
2

uxx + c1(u, ux),

(u2xx)

−3

4
w
c2ux
c

1
2

+
w

2
c

1
2 cuxux = 0, (6.11)

cux = 0 is a solution to (6.11), but if cux 6= 0 we get,

c(u, ux) =
4

(c3(u)− c2(u)ux)2
,

(uxx)

− 16wc2(u)c3(u)uux
(c3(u)− c2(u)ux)5

+
16wc2(u)c2(u)uu

2
x

(c3(u)− c2(u)ux)5

+
8c1(u, ux)ux

(c3(u)− c2(u)ux)2
+

16wc2(u)uux
(c3(u)− c2(u)ux)4

− 2wd(u, ux)uxux
c3(u)− c2(u)ux

= 0.(6.12)

But we cannot solve (6.12) so we now consider two subcases,

i. cu = 0,

ii. cux = 0.

6.4.1 Case i . cu = 0

In this case, β = c(ux)uxx + d(u, ux), B = c, E = cuxuxx + dux and K = du. Also

γ = wc(ux)
1
2 .

From equation (6.3)

(uxxx)

αuxx =
w

2

cux

c
1
2

=⇒ α =
w

2

c(u, ux)ux

c
1
2

uxx + c1(u, ux),
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(u2xx)

−3

4
w
cu2x
c

1
2

+
w

2
c

1
2 cuxux = 0. (6.13)

By solving (6.13) we get

c(ux) =
4

(c3 − c4ux)2
c3, c4 = constant,

(uxx)
4c1ux

(c3 − c4ux)2
− wduxux
c3 − c4ux

= 0. (6.14)

Solving (6.14) gives

c1 =
w

4
(c3 − c4ux) +

w

4
c4d(u, ux) + c5 c5 = constant, (6.15)

we can drop constant term c5 in (6.15) because in all equations we only have

Dxα. Hence we have

β =
4uxx

c3 − c4ux
+ d(u, ux),

α =
2wcu

(c3 − c4ux)2
uxx +

w

4
(c3 − c4ux)d(u, ux)ux +

wc4
4
d(u, ux).

Now we consider the equation (6.6) and analyze the coefficients of derivatives of

u.

(uxx)

duxux = 8
ρu

ρ(c3 − c4ux)2
− 8

c4ρuux
ρ(c3 − c4ux)3

. (6.16)

By solving (6.16) we get

d(u, ux) = c5(u)ux + c6(u) +
4c3

c24(c3 − c4ux)
ρ(u)u
ρ(u)

. (6.17)

In (6.17), we suppose ρ(u) 6= 0

(ux)

ρuduxux + duxuρux − ρdu − ρ
4

(c3 − c4ux)2
u2x = ρud, (6.18)

replacing (6.17) into (6.18) we get

4

c24
ρuu + (ρc6)u = 0,
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that reduces to

ρu +
c24
4
c6ρ = c7. (6.19)

To find ρ in (6.19) we make the substitution

ρ = h(u)e−ξ where ξ =
c24
4

∫
c6(u) du,

then we find ρ as,

ρ = e
−
c24
4

∫
c6(u) du

.

(∫
c7e

c24
4

∫
c6(u) du

du+ c8

)
,

Now we have,

γ =
2w

c3 − c4ux
,

β =
4uxx

(c3 − c4ux)2
−c4c6(u)ux
c3 − c4ux

+c5(u)ux+
4c3c7ux

c24(c3 − c4ux)
.

e

c24
4

∫
c6(u) du

∫
c7e

c24
4

∫
c6(u) du

du+ c8

,

α =
2wc4

(c3 − c4ux)2
uxx +

w

4

(
c3c5(u)− (c3 + c4ux)c4c6(u)

c3 − c4ux

+
8c3c7

c4(c3 − c4ux)
.

e

c24
4

∫
c6(u) du

∫
c7e

c24
4

∫
c6(u) du

du+ c8

)
,

ρ = e
−
c24
4

∫
c6(u) du

.

(∫
c7e

c24
4

∫
c6(u) du

du+ c8

)
.

We make the substitution

c6 →
4

c24

c6(u)uu
c6(u)u

.

Then α, β, γ, ρ reduces to,

γ =
2w

c3 − c4ux
,
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β =
4uxx

(c3 − c4ux)2
− 4

c4(c3 − c4ux)
c6(u)uu
c6(u)u

ux+c5(u)ux+
4c3c7c6(u)u

c24(c3 − c4ux)(c7c6(u) + c8)
,

α =
2wc4

(c3 − c4ux)2
uxx+

w

4
(c3c5(u)− 4(c3 + c4ux)

c4(c3 − c4ux)
c6(u)uu
c6(u)u

+
4c3c7c6(u)u

c4(c3 − c4ux)(c7c6(u) + c8)
,

ρ =
c7c6(u) + c8
c6(u)u

.

We look at the equation (6.4) (uxxx)

32ρ

(c3 − c4ux)3
= 0 =⇒ ρ = 0.

This is a contradiction with the assumption ρ 6= 0 and we move to the next case.

6.4.2 Case ii . cux
= 0

In this case, β = c(u)uxx + d(u, ux) B = c(u), E = d(u, ux)ux and K =

c(u, ux)uuxx + d(u, ux)u. Also γ = wc(u)
1
2 .

From equation (6.3)

(uxxx)

2cαuxx = 0 =⇒ α = α(u, ux),

(uxx)

2cαux = wc
1
2duxux =⇒ α =

w

2c
1
2

d(u, ux)ux + c1(u), (6.20)

Now we insert (6.20) into (6.3) and continue with

(ux)

d = −1

2
cuu

2
x +

ccuu
cu

u2x +
4

w

c
3
2

cu
c1uux. (6.21)

In (6.21) we suppose cu 6= 0 and later we will consider the case cu = 0. Hence we

have

γ = wc(u)
1
2 ,

α = −w
2

c(u)u

c(u)
1
2

ux + w
c(u)

1
2 c(u)uu
c(u)u

ux + 2
c(u)c1(u)u
c(u)u

+ c1(u),
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β = c(u)uxx −
1

2
c(u)uu

2
x +

c(u)c(u)uu
c(u)u

u2x +
4

w

c(u)
3
2 c1(u)u
c(u)u

ux,

ρ = ρ(u).

Now we look at the equation (6.6)

(uxx)

−3cuρ+ 2ρ
ccuu
cu
− 2cρu = 0, (6.22)

ρ = 0 is a solution to (6.22) but first we assume ρ 6= 0. Hence we find

ρ =
c2c(u)u

c(u)
3
2

c2 = constant,

the rest of (6.6) is fully satisfied and next we look at the equation (6.4)

(uxxx)

w = 2c2,

(uxx)

−2cc1u + 4
c2

c2u
c1ucuu − 4

c2

cu
c1uu = 0, (6.23)

(6.23) is linear in c1, hence we find

c1(u) = c4c(u)
1
2 + c5 c4, c5 = constant.

Finally we have

γ = 2c2c(u)
1
2 ,

α = −w
2

c(u)u

c(u)
1
2

ux + w
c(u)

1
2 c(u)uu
c(u)u

ux + 2c4c(u)
1
2 + c5,

β = c(u)uxx −
1

2
c(u)uu

2
x +

c(u)c(u)uu
c(u)u

u2x +
c4
c2
c(u)ux,

ρ =
c2c(u)u

c(u)
3
2

.

Hence we get the equation

ut = c(u)uxx −
1

2
c(u)uu

2
x +

c(u)c(u)uu
c(u)u

u2x +
c4
c2
c(u)ux, (6.24)
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with the recursion operator

R = 2c2c(u)
1
2Dx + 2c4c(u)

1
2 +

(
2c2

c(u)
1
2 c(u)uu
c(u)u

− c2
c(u)u

c(u)
1
2

)
ux + utD

−1
x

(c2c(u)u

c(u)
3
2

)
.

6.4.2.1 If cu = 0

In this case, β = cuxx + d(u, ux), B = c, E = d(u, ux)ux and K = d(u, ux)u. Also

γ is a constant since B is constant. From equation (6.3)

2cDxα− γDxdux = 0.

Then we have

2c(αuux + αuxuxx) + αuxxuxxx) = γ(duxuux + duxuxuxx) = 0,

and so

(uxxx)

αuxx = 0 =⇒ α = α(u, ux),

(uxx)

2cαux = γduxux =⇒ α =
γ

2c
d(u, ux)ux + d1(u),

(ux)

2cαu = γduxu =⇒ α =
γ

2c
d(u, ux)ux + d1 d1 : constant. (6.25)

Now we solve equation (6.6), if we replace (6.25) into (6.6) we get

(ρdux)uux + (ρdux)uxuxx − ρdu − cρuuu2x − cρuuxx = ρu(cuxx + d),

and so

(uxx)

ρduxux = 2cρu =⇒ duxux = 2c
ρ(u)u
ρ(u)

, (6.26)
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In (6.26) we assume ρ 6= 0, we have

d(u, ux) = c
ρu
ρ
u2x + c1(u)ux + c2(u), (6.27)

replacing (6.27) into (6.6) again, we get

(ρc2(u))u = 0 =⇒ ρ =
c3

c2(u)
c3 : constant. (6.28)

In (6.28) we assume c2(u) 6= 0, we have

d(u, ux) = −cc2(u)u
c2(u)

u2x + c1(u)ux + c2(u).

Hence we get the following equalities :

γ = constant,

β = cuxx − c
c2(u)u
c2(u)

u2x + c1(u)ux + c2(u),

α = −γ c2(u)u
c2(u)

ux +
γ

2c
c1(u) + c2(u),

ρ =
c3

c2(u)
.

Finally we solve the equation (6.4)

(uxxx)

−cγ c2(u)u
c2(u)

+ 2c
c3

c2(u)
= −cγ c2(u)u

c2(u)
=⇒ c3 = 0 =⇒ ρ = 0,

this is a contradiction because we have assumed ρ 6= 0 at first.

Now we go back to the case, c2(u) = 0. In this case, we have

γ = constant,

β = cuxx + c
ρ(u)u
ρ(u)

u2x + c1(u)ux,
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α = γ
ρ(u)u
ρ(u)

ux +
γ

2c
c1(u) + c2(u),

ρ = ρ(u) 6= 0.

At last we solve the equation (6.4)

(uxxx)

2c2ρ = 0 =⇒ ρ = 0,

which is a contradiction to the assumption ρ 6= 0 and so we analyze the next case.

6.5 Case 3: βuxx = 0

In this case we have β = β(u, ux), B = 0 so the equations (6.2), (6.3), (6.4), (6.5)

and (6.6) reduces to

EDxγ − γDxE = Dtγ, (6.29)

EDxα− γDxK = Dtα, (6.30)

βK + EDxβ = Dtβ, (6.31)

Dx(ρE)− βK = Dtρ. (6.32)

To be able to solve these equations, we assume γ has the form

γ = m(u, ux)uxx + n(u, ux).

Equation (6.29) gives

(u2xx)

2mβuxux = 0,

then m = 0 or βuxux = 0 but in either case we have βuxux = 0. Hence we take

β = c1(u)ux + c2(u),

and continue with equation (6.29). Also to go further we assume

m(u, ux) = m1(u)ux +m2(u),
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and continue to analyze the coefficients of derivatives of u : (uxxu
2
x)

m1c1u = 0, (6.33)

(uxxux)

m1uc2 + 2m1c2u = 0, (6.34)

(6.33) and (6.34) yield to c1u = 0 because m 6= 0

(uxx)

(c2m2)u = 0,

to be able to go further we assume

n(u, ux) = n1(u)ux + n2(u),

and we have

(u3x) : m1c2uu = 0

(u2x) : m2c2uu = 0

(ux) : (n1c2)u = 0

(u0x) : c2n2u = 0

c2 = 0 satisfies all these equations so we have

β = c1ux, (6.35)

and the rest of equation (6.29) is fully satisfied. Also equation (6.30), (6.31)

and (6.32) are also fully satisfied. Actually any operator has the form R =

γDx + α + βD−1x (ρ) is the recursion opearator of the evolution equation (6.35).

If c2 6= 0, by solving the rest we get

β = c1ux + c3u,

and

γ =
c4
u2
uxx +

c5
u
uxx +

c6
u
ux + c7u+ c8.
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Moreover, solving equations (6.30) and (6.32) we get

ρ = −c1ux − c3u,

α = −c1ux − c3u.

Hence we get the evolution equation

ut = c1ux + c3u,

with the recursion operator

R = (
c4
u2
uxx +

c5
u
uxx +

c6
u
ux + c7u+ c8)Dx + (c1ux + c3u) + utD

−1
x (c1ux + c3u).

In [6], there are four partial differential equations that have recursion op-

erators of type

R = γDx + α + βD−1x (ρ).

1) Burgers’ Equation

ut = uxx + 2uux with R = Dx + u+ uxD
−1
x

2)Potential Burgers’ Equation

ut = uxx + u2x with R = Dx + ux

2) Diffusion Equation

ut = u2uxx with R = uDx + u2uxxD
−1
x

( 1

u2

)
4) Nonlinear Diffusion Equation

ut = Dx

(ux
u2

)
with R =

1

u
Dx − 2

ux
u2
−Dx

(ux
u2

)
D−1x
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Diffusion equation and nonlinear diffusion equation can be obtained by the re-

cursion operators of type (6.25).

• Diffusion equation can be obtained by choosing c(u) = u2, c2 =
1

2
and c4 = 0.

• Nonlinear diffusion equation can be obtained by choosing c(u) =
1

u2
, c2 =

1

2
and c4 = 0.

• Potential Burgers’ equation and Burgers’ equation belong to the case ut =

R(ux). But we we did not consider these types of equations.



Chapter 7

Conclusion

We studied symmetries of nonlinear partial differential equations and stated a

criteria for an operator to be a recursion operator of a given nonlinear partial

differential equations. In this thesis, we focused on recursion operators in the

framework of Gel’fand-Dikii Formalism and used the recursion operators classi-

fication of evolution equations. We provided consistent Lax hierarchies and we

presented Lax operators for each consistent case. We studied a method to con-

struct recursion operators of evolution equations from the Gel’fand-Dikii Formal-

ism. Then we find out whether we can use recursion operators as Lax operators in

Gel’fand-Dikii Formalism or not. In some cases, answer is affirmative but in some

cases, answer is negative, because there are certain conditions for both recursion

operator and evolution equation be satisfied.

We stated a classification problem of second order evolution equations that admits

first order recursion operators of specific type, then we found a class of evolution

equations with recursion operators.
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Appendix A

Well Known PDEs and

Recursion Operators

In this Appendix we give some evolution type of nonlinear partial differential

equations with their recursion operators [6]

1) Burgers’ Equation [1]

ut = uxx + 2uux = R(ux)

R = Dx + u+ uxD
−1
x .

2) Potential Burgers’ Equation [1]

ut = uxx + u2x = R1(ux)

R1 = Dx + ux

R2 = tDx + tux + 1
2
x.

3) Diffusion Equation [12]

ut = u2uxx = R(0)

R = uDx + u2uxxD
−1
x (

1

u2
).

4) Nonlinear Diffusion Equation [1]

ut = Dx(
ux
u2

) = R(0)

R = D2
x(

1

u
)D−1x =

1

u
Dx − 2

ux
u2
−Dx(

ux
u2

)D−1x .
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5) KdV Equation [1]

ut = uxxx + 6uux = R(ux)

R = D2
x + 4u+ 2uxD

−1
x .

6) Potential KdV Equation [14]

ut = uxxx + 3u2x = R(ux)

R = D2
x + 4ux − 2D−1x (uxx).

7) Modified KdV Equation [12]

ut = uxxx − 6u2ux = R(ux)

R = D2
x − 4u2 − 4uxD

−1
x (u).

8) Potential Modified KdV Equation [1]

ut = uxxx + 3u3x = R(ux)

R = D2
x + 2u2x − 2uxD

−1
x (uxx).

9) Harry Dym Equation [12]

ut = u3uxxx = R(0)

R = u3D3
x(u)D−1x (

1

u2
) = u2D2

x − uuxDx + uuxx + u3uxxxD
−1
x (

1

u2
).

10) Krichever-Novikov Equation [14]

ut = uxxx −
3

2

u2xx
ux

= R(ux)

R = D2
x − 2

uxx
ux

Dx + (
uxxx
u3x
− 3

u2xx
u4x

)Dx − uxD−1x (α) , α = 3
u3xx
u4x
− 4

uxxuxxx
u3x

+
u4x
u2x

11) Cavalcante-Tenenblat Equation [15]

ut = D2
x(u
− 1

2
x ) + u

3
2
x = R(ux)

R =
1

ux
D2
x −

3uxx
2u2x

Dx − (
1

2

uxxx
u2x

+
3

4

u2xx
u3x
− ux) +

ut
2
D−1x (u

− 3
2

x uxx).

12) Sine-Gordon Equation [1]

uxt = sinu

R = D2
x + u2x − uxD−1x (uxx).

13) Liouville Equation [14]

uxt = eu

R = D2
x − u2x − uxD−1x (uxx).
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14) Klein-Gordon Equation [16], [17]

uxt = αe−2u + βeu

R = D6
x + 6(uxx − u2x)D4

x + 9(uxxx − 2uxuxx)D
3
x

+(5u4x − 22uxuxxx − 13u2xx − 6u2xuxx + 9u4x)D
2
x

+(u5x − 8uxu4x − 15uxxuxxx − 3u2xuxxx − 6uxu
2
xx + 18u3xuxx)Dx

−4uxu5x + 20u3xuxxx − 20uxuxxuxxx + 20u2xu
2
xx − 4u6x

+2uxD
−1
x (u6x + 5uxxu4x + 5u2xxx − 5u2xu4x

−20uxuxxuxxx − 5u3xx + 5u4xuxx)

+2(u5x + 5uxxuxxx − 5u2xuxxx − 5uxu
2
xx + u5x)D

−1
x (uxx).

15) Kupershmidt Equation [9], [18]

ut = u5x + 5uxuxxx + 5u2xx − 5u2uxxx − 20uuxuxx − 5u3x + 5u4ux = R(0)

R = D6
x + 6(ux − u2)D4

x + 15(uxx − 2uux)D
3
x

+(9u4x − 6u2ux − 40uuxx − 31u2x + 14uxxx)D
2
x

+(6u4x − 9u2uxx + 54u3ux − 18uu2x − 6uxu
2
xx − 30uuxxx − 63uxuxx)Dx

+u5x − 12uu4x − 3u2uxxx − 23uxuxxx − 15u2xx

−38uuxuxx + 38u3uxx + 74u2u2x − 4u6

−2uxD
−1
x (u4x + 5u2uxx − 5uu2x + 5uxuxx + u5) + 2utD

−1
x (u).

16) Sawada-Kotera Equation [12], [18]

ut = u5x + 5uuxxx + 5uxuxx + 5u2ux = R(0)

R = D6
x + 6uD4

x + 9uxD
3
x + 9u2D2

x + 11uxxD
2
x + 10uxxxDx + 12uuxDx

+4u3 + 16uuxx + 6u2x + 5u4x + uxD
−1
x (2uxx + u2) + utD

−1
x .

17) Potential Sawada-Kotera Equation [9], [18]

ut = u5x + 5uxuxxx + 5
3
u3x = R(1)

R = D6
x + 6uxD

4
x + 3uxxD

3
x + 8uxxxD

2
x + 9u2xD

2
x

+(2u4x + 3uxxux)Dx + 3u5x + 13uxxxux + 3u2xx + 4u3x

−2uxD
−1
x (u4x + uxxux)− 2D−1x (u6x + 3u4xux + 6uxxxuxx + 2uxxu

2
x).
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18) Kaup-Kupershmidt Equation [9], [18]

ut = u5x + 5uuxxx + 25
2
uxuxx + 5u2ux = R(0)

R = D6
x + 6uD4

x + 18uxD
3
x + (9u2 + 49

2
uxx)D

2
x

+(30uux + 35
2
uxxx)Dx + 4u3 + 41

2
uuxx + 69

4
u2x + 13

2
u4x

1
2
uxD

−1
x (uxx + 2u2) + utD

−1
x .

19) Potential Kaup-Kupershmidt Equation[9], [18]

ut = u5x + 10uxuxxx + 15
2
u2xx + 20

3
u3x = R(1

2
)

R = D6
x + 12uxD

4
x + 24uxxD

3
x + (25uxxx + 36u2x)D

2
x

(10u4x + 48uxuxx)Dx + 3u5x + 21u2xx + 34uxuxxx + 32u3x

−2uxD
−1
x (u4x + 8uxuxx)−D−1x (u6x + 12uxu4x + 24uxxuxxx + 32u2xuxx).

20) Dispersiveless Long Wave System [16], [19](
u

v

)
t

=

(
uxv + uvx

ux + vvx

)
= R

(
ux

vx

)

R =

(
v 2u+ uxD

−1
x

2 v + vxD
−1
x

)
.

21) Diffusion System [12](
u

v

)
t

=

(
uxx + v2

vxx

)
= R

(
ux

vx

)

R =

(
Dx vD−1x

0 Dx

)
.

22) Sine-Gordon Equation in the Laboratory Coordinates [20](
u

v

)
t

=

(
v

uxx − sin(u)

)

R =

(
R11 R12

R21 R22

)
R11 = 4D2

x − 2cos(u) + (ux + v)2 − (ux + v)D−1x (uxx + vx − sin(u)

R12 = Dx + (ux + v)D−1x (ux + v)
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R21 = 4D3
x + (ux + v)2Dx − 4cos(u)Dx + 2uxsin(u) + (uxx + vx)(ux + v)

−(uxx + vx − sin(u))D−1x (uxx + vx − sin(u))

R22 = 4D2
x + (ux + v)2 − 2cos(u) + (uxx + vx − sin(u))D−1x (ux + v).

23) AKNS System [12](
u

v

)
t

=

(
−uxx + 2u2v

vxx − 2v2u

)
= R

(
ux

vx

)

R =

(
−Dx + 2uD−1x (v) 2uD−1x (u)

−2vD−1x (v) Dx − 2vD−1x (u)

)
.

24) Nonlinear Schrdinger Equation [12], [14](
u

v

)
t

=

(
vxx ∓ v(u2 + v2)

−uxx ± u(u2 + v2)

)
= R

(
ux

vx

)

R =

(
∓2vD−1x (u) Dx ∓ 2vD−1x (v)

−Dx ± 2uD−1x (u) ±2uD−1x (v)

)
.

25 Boussinesq System [1](
u

v

)
t

=

(
vx

1
3
uxxx + 8

3
uux

)
= R

(
0

0

)

R =

(
3v + 2vxD

−1
x D2

x + 2u+ uxD
−1
x

R21 3v + vxD
−1
x

)
R21 = 1

3
D4
x + 10

3
uD2

x + 5uxDx + 3uxx + 16
3
u2 + 2vtD

−1
x .

26)Modified Boussinesq System [21](
u

v

)
t

=

(
3vxx + 6uvx

−uxx − 6vvx + 2uux

)
= R

(
0

0

)

R =

(
R11 R12

R21 R22

)
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R11 = 6vD2
x + 9vxDx + 3vxx − 12uxvx − 2utD

−1
x (u)− 6uxD

−1
x (2uv + vx)

R12 = 3D3
x + 6uD2

x + 9uxDx − 3u2Dx − 9v2Dx + 3uxx − 6u3 − 36vvx

−18uv2 − 6utD
−1
x (v) + 6uxD

−1
x (ux − u2 + 3v2)

R21 = −D3
x + 2uD2

x + u2Dx + 3uxDx + 3v2Dx + uxx − 6uv2 − 2u3 + 4uux

−2vtD
−1
x (u)− 6vxD

−1
x (vx + 2uv)

R22 = −6vD2
x − 9vxDx − 12uv2 + 12uxv − 3vxx + 36v3

−6vtD
−1
x (v) + 6vxD

−1
x (ux − u2 + 3v2).

27) The Symmetrically-coupled KdV System [22](
u

v

)
t

=

(
uxxx + vxxx + 6uux + 4uvx + 2uxv

uxxx + vxxx + 6vvx + 4vux + 2vxu

)
= R

(
ux

vx

)

R =

(
D2
x + 4u+ 2uxD

−1
x D2

x + 4u+ 2uxD
−1
x

D2
x + 4v + 2vxD

−1
x D2

x + 4v + 2vxD
−1
x

)
.

28) The Complexly-coupled KdV System [22](
u

v

)
t

=

(
uxxx + 6uux + 6vvx

vxxx + 6uvx + 6vux

)
= R

(
ux

vx

)

R =

(
D2
x + 4u+ 2uxD

−1
x 4v + 2vxD

−1
x

4v + 2vxD
−1
x D2

x + 4u+ 2uxD
−1
x

)
.

29) Coupled Nonlinear Wave System (Ito System) [23], [24], [14](
u

v

)
t

=

(
uxxx + 6uux + 2vvx

2uvx + 2uxv

)
= R

(
ux

vx

)

R =

(
D2
x + 4u+ 2uxD

−1
x 2v

2v + 2vxD
−1
x 0

)
.
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30) Benney System [25], [24]
u

v

w


t

=


vvx + 2Dx(uw)

2ux +Dx(vw)

2vx + 2wwx

 = R


ux

vx

wx



R =


w v 2u+ uxD

−1
x

2 0 v + vxD
−1
x

0 2 w + wxD
−1
x

.

31) Dispersive Water Wave System [24]
u

v

w


t

=


Dx(uw)

−vxx + 2Dx(vw) + uux

wxx − 2v1 + 2wwx

 = R


ux

vx

wx



R =


0 0 u+ uxD

−1
x

u −Dx + w 2v + vxD
−1
x

0 −2 Dx + w + wxD
−1
x

.
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