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ABSTRACT

SIGNAL REPRESENTATION AND RECOVERY
UNDER MEASUREMENT CONSTRAINTS

Ayça Özçelikkale Hünerli

Ph.D. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Haldun M. Özaktaş

September, 2012

We are concerned with a family of signal representation and recovery prob-

lems under various measurement restrictions. We focus on finding performance

bounds for these problems where the aim is to reconstruct a signal from its di-

rect or indirect measurements. One of our main goals is to understand the effect

of different forms of finiteness in the sampling process, such as finite number of

samples or finite amplitude accuracy, on the recovery performance. In the first

part of the thesis, we use a measurement device model in which each device has a

cost that depends on the amplitude accuracy of the device: the cost of a measure-

ment device is primarily determined by the number of amplitude levels that the

device can reliably distinguish; devices with higher numbers of distinguishable

levels have higher costs. We also assume that there is a limited cost budget so

that it is not possible to make a high amplitude resolution measurement at every

point. We investigate the optimal allocation of cost budget to the measurement

devices so as to minimize estimation error. In contrast to common practice which

often treats sampling and quantization separately, we have explicitly focused on

the interplay between limited spatial resolution and limited amplitude accuracy.

We show that in certain cases, sampling at rates different than the Nyquist rate

is more efficient. We find the optimal sampling rates, and the resulting optimal

error-cost trade-off curves. In the second part of the thesis, we formulate a set of

measurement problems with the aim of reaching a better understanding of the re-

lationship between geometry of statistical dependence in measurement space and

total uncertainty of the signal. These problems are investigated in a mean-square

error setting under the assumption of Gaussian signals. An important aspect of

our formulation is our focus on the linear unitary transformation that relates the

canonical signal domain and the measurement domain. We consider measure-

ment set-ups in which a random or a fixed subset of the signal components in

the measurement space are erased. We investigate the error performance, both
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in the average, and also in terms of guarantees that hold with high probability,

as a function of system parameters. Our investigation also reveals a possible re-

lationship between the concept of coherence of random fields as defined in optics,

and the concept of coherence of bases as defined in compressive sensing, through

the fractional Fourier transform. We also consider an extension of our discussions

to stationary Gaussian sources. We find explicit expressions for the mean-square

error for equidistant sampling, and comment on the decay of error introduced by

using finite-length representations instead of infinite-length representations.

Keywords: inverse problems, estimation, signal representation, signal recovery,

sampling, spatial resolution, amplitude resolution, coherence, compressive sens-

ing, discrete Fourier transform (DFT), fractional Fourier transform, mixing, wave-

propagation, optical information processing.



ÖZET

ÖLÇÜM KISITLARI ALTINDA İŞARET TEMSİLİ VE

GERİ KAZANIMI

Ayça Özçelikkale Hünerli

Elektrik ve Elektronik Mühendisliği, Doktora

Tez Yöneticisi: Prof. Dr. Haldun M. Özaktaş

Eylül, 2012

Çeşitli ölçüm kısıtları altında işaret temsili ve geri kazanımı problemleri

ile ilgileniyoruz. İşaretlerin doğrudan, ya da dolaylı ölçümlerinden geri

kazanılmasının amaçlandığı bu problemler için performans sınırlarını bulmak

üstüne yoğunlaşıyoruz. Temel amaçlarımızdan biri sonlu sayıda ölçüm alınması

ya da genlik ölçüm hassasiyetinin sonlu olması gibi farklı sonluluk biçimlerinin

geri kazanım performansına etkisini anlamaktır. Tezin ilk kısmında, her cihazın

sağladığı ölçüm hassasiyetine bağlı bir maliyetle ilişkilendirildiği bir ölçüm ci-

hazı modeli kullanıyoruz: bir ölçüm cihazının maliyeti esas olarak ayırt ede-

bildiği genlik seviyesi sayısı tarafından belirlenir; daha yüksek hassasiyete sahip

cihazların maliyetleri daha yüksektir. Ayrıca her noktada yüksek hassasiyetle

ölçüm yapmamızı olanaksız kılan bir maliyet bütçemiz olduğunu varsayıyoruz.

İşaretin en iyi şekilde kestirilebilmesi için bütçenin ölçüm cihazlarına en iyi şekilde

nasıl bölüştürülmesi gerektiğini araştırıyoruz. Örnekleme ve nicemlemeyi ayrı

ayrı ele alan yaygın uygulamanın aksine, uzaydaki ve genlikteki çözünürlüklerin

arasındaki etkileşime özellikle yoğunlaşıyoruz. Nyquist hızından farklı hızlarda

örnekleme yapmanın bazı durumlarda daha etkili olduğunu gösteriyoruz. Eniyi

örnekleme hızlarını, ve sonuçta ortaya çıkan hata-maliyet ödünleşim eğrilerini

buluyoruz. Tezin ikinci kısmında, ölçüm uzayındaki istatiksel bağımlılığın ge-

ometrisi ile işaretin toplam belirsizliği arasındaki ilişkiyi daha iyi anlamayı

amaçlayan bir grup ölçüm problemi kuruyoruz. Bu problemleri bilinmeyen

sinyalin Gauss istatistiklere sahip olduğu varsayımı altında ortalama karesel hata

ölçütü çerçevesinde inceliyoruz. Kurduğumuz çerçevenin önemli özelliklerinden

biri sinyal uzayı ile ölçüm uzayını ilişkilendiren birimcil dönüşüme yoğunlaşmış

olmamızdır. Sinyalin bileşenlerinden rasgele seçilmiş ya da sabit bir kısmının

ölçüm uzayından silindiği ölçüm senaryolarını ele alıyoruz. Hata performansını,
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sistem parametreleri cinsinden, hem ortalama hata hem de yüksek olasılıkla tu-

tan performans garantileri cinsinden araştırıyoruz. Çalışmamız kesirli Fourier

dönüşümü yoluyla, optikte tanımlanmış olan bir rasgele surecin uyumluluk dere-

cesi kavramı ile sıkıştırmalı algılama alanında tanımlanmış olan bir dönüşümün

uyumluluk derecesi kavramları arasındaki muhtemel ilişkiyi de ortaya çıkarıyor.

Tartışmalarımızın durağan Gauss kaynaklara genişletilmesini de ele alıyoruz.

Eşit aralıklı örnekleme icin ortalama karesel hatanın açık ifadesini buluyoruz,

ve işaretin temsilinde sonsuz uzunlukta betimlemeler yerine sonlu uzunlukta

betimlemenin kullanılması ile ortaya çıkan hatanın azalışı konusunda yorumlar

yapıyoruz.

Anahtar sözcükler : ters problemler, kestirim, işaret temsili, işaret geri kazanımı,

örnekleme, uzamsal çözünürlük, genlikteki çözünürlük, uyumluluk, sıkıştırmalı

algılama, kesirli Fourier dönüşümü, ayrık Fourier dönüşümü (DFT), karıştırma,

dalga yayılımı, optik bilgi işleme.
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able feedback on my research and their guidance. I would like to thank As-
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Chapter 1

Introduction

The problems addressed in this thesis are centered around sampling and repre-

sentation of signals under various restrictions. We focus on finding performance

bounds for a class of signal representation or recovery problems where one wants

to reconstruct a signal from its direct or indirect measurements. One of our main

aims is to understand the effect of different forms of finiteness in the sampling

process, such as finite number of measurements or finite amplitude accuracy in

measurements, on the recovery performance.

1.1 Motivation and Overview

We will now discuss some issues related to sampling of signals that have moti-

vated us to formulate the problems considered in this thesis. When a signal is to

be represented with its samples, the Shannon-Nyquist sampling theorem is often

used as a guideline. The theorem states that a band-limited signal with maxi-

mum frequency B/2 Hertz can be recovered from its equidistant samples taken

1/B apart [1, Ch. 7]. In practice, signals may not be exactly band-limited, but

rather effectively band-limited in the sense that the signal energy beyond a cer-

tain frequency is negligible. In such cases, the effective bandwidth is often used to

determine a sampling interval. Another practical constraint is the impossibility

1



of taking an infinite number of samples. Thus, it is common to determine an

effective spatial extent L in the sense that the signal energy is negligible outside

this extent, and use only the samples that fall in this effective spatial extent.

This approach leaves us with a finite number LB of samples. This approach may

not always be the most appropriate manner in which to use the Shannon-Nyquist

sampling theorem; there may be cases where one can do better by incorporating

other available information. In particular, consider the practical scenario where

the field is to be represented with a finite number of finite accuracy samples. Use

of the conventional approach in this scenario raises a number of issues. For one

thing, the concept of effective bandwidth and effective spatial extent is intrin-

sically ambiguous, in that there is some arbitrariness in deciding beyond what

point the signal may be assumed negligible. This approach also completely ig-

nores the fact that the samples will have limited amplitude accuracy. When we

are required to represent the signal with a prespecified number of bits, the sam-

pling interval dictated by the conventional sampling theorem may not be optimal.

For instance, depending on the circumstances, it may be preferable to work with

a larger sampling interval and a higher number of amplitude levels. In order to

find the optimal values of these parameters, we must abandon the conventional

approach and jointly optimize over the sampling interval and amplitude accura-

cies. Even when the amplitude accuracies are so high that we can assume the

sample values to be nearly exact, the conventional sampling theorem may still not

predict the optimal sampling interval if we are required to represent the signal

with a given finite number of samples (especially when that number is relatively

small).

Motivated by these observations, we have formulated a set of signal recovery

problems under various restrictions. We now provide a brief overview of these

problems.

Firstly, we investigate the effect of restriction of the total number of samples

to be finite while representing a random field using its samples. Here we assume

that the amplitude accuracies are so high that the sample values can be assumed

to be exact. In Chapter 2, we pose this problem as an optimal sampling problem

where, for a given number of samples, we seek the optimal sampling interval in
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order to represent the field with as low error as possible. We obtain the optimum

sampling intervals and the resulting trade-offs between the number of samples and

the representation error. We deal with questions such as “What is the minimum

error that can be achieved with a given number of samples?”, and “How sensitive

is the error to the sampling interval?” [2].

In Chapter 3, we focus on the effect of limited amplitude accuracy of the mea-

surements in signal recovery. Here we work with a limited amplitude accuracy

measurement device model which was proposed in [3–6]. Here each device has a

cost that depends on the amplitude accuracy the device provides. The cost of a

measurement device is primarily determined by the number of amplitude levels

that the device can reliably distinguish; devices with higher numbers of distin-

guishable levels have higher costs. We also assume that there is a limited cost

budget so that it is not possible to make a high amplitude resolution measurement

at every point. We investigate the optimal allocation of cost budget to the mea-

surement devices so as to minimize estimation error. Our investigation reveals

trade-off curves between the estimation error and the cost budget. This problem

differs from standard estimation problems in that we are allowed to “design” the

noise levels of the measurement devices subject to the cost constraint. Incorpo-

ration of limited amplitude accuracy into our framework through cost constraints

reveals an opportunity to make a systematic study. Another important aspect of

the formulation here is the cost function we use: while this kind of cost function

may come as natural in the context of communication costs, we believe it has not

been used to model the cost of measurement devices until [3–6].

We extend the cost budget approach presented in a discrete framework in

Chapter 3, to a continuous framework in Chapters 4-5. Here we deal with sig-

nals which are functions of continuous independent variables. We consider two

main sampling strategies: i) uniform sampling with uniform cost allocation ii)

non-uniform sampling with non-uniform cost allocation. In the first of these we

consider an equidistant sampling approach, where each sample is taken with the

same amplitude accuracy. We seek the optimal number of samples, and sampling

interval under a given cost budget in order to recover the signal with as low error

as possible. Our investigation illustrates how the sampling interval should be
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optimally chosen when the samples are of limited amplitude accuracy, in order to

achieve best error values possible. We illustrate that in certain cases sampling at

rates different than the Nyquist rate is more efficient [7,8]. In the second formu-

lation, which is studied in Chapter 5, we consider a very general scenario where

the number, locations and accuracies of the samples are optimization variables.

Here the sample locations can be freely chosen, and need not be equally spaced

from each other. Furthermore, the measurement accuracy of each sample can

vary from sample to sample. Thus this general non-uniform case represents max-

imum flexibilty in choosing the sampling strategy. We seek the optimal values of

the number, locations and accuracies in order to achieve the lowest error values

possible under a cost budget. Our investigation illustrates how one can exploit

the better optimization opportunity provided by the flexibility of choosing these

variables freely, and obtain tighter optimization of the error-cost curves.

An important future of all the above work is the non-stationary signal model.

A broad class of physical signals may be better represented with non-stationary

models rather than stationary models, which has resulted in increasing interest

in these models [9]. Although some aspects of the sampling of non-stationary

fields are understood, such as the sampling theorem of [10], our understanding

of non-stationary fields falls short of our understanding of stationary fields. One

of our goals is to contribute to a better understanding of the trade-offs in the

representation of non-stationary random fields.

We study an application of the cost budget approach developed in previous

chapters to super-resolution problems in Chapter 6. In a typical super-resolution

problem, multiple images with poor spatial resolution are used to reconstruct an

image of the same scene with higher spatial resolution [11]. Here we study the

effect of limited amplitude resolution (pixel depth) in this problem. In standard

super-resolution problems, the researchers mostly focus on increasing resolution

in space, whereas in our study both resolution in space and resolution in am-

plitude are substantial parameters of the framework. We study the trade-off

between the pixel depth and spatial resolution of low resolution images in order

to obtain the best visual quality in the reconstructed high resolution image. The

proposed framework reveals great flexibility in terms of pixel depth and number
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of low resolution images in super-resolution problem, and demonstrates that it

is possible to obtain target visual qualities with different measurement scenarios

including images with different amplitude and spatial resolutions [12].

During the above studies, the following two intuitive concepts have been of

central importance to our investigations: i) total uncertainty of the signal, ii)

geometry of statistical dependence (spread of signal uncertainty) in measurement

space. We note that the concepts that are traditionally used in the signal process-

ing and information theory literatures as measures of dependency or uncertainty

of signals (such as the degree of freedom, or the entropy) mostly refer to the

first of these, which is defined independent of the coordinate system in which

the signal is to be measured. As an example one may consider the Gaussian

case: the entropy solely depends on the eigenvalue spectrum of the covariance

matrix, hence making the concept blind to the coordinate system the signal will

be measured.

Our study of the measurement problems described above suggests that al-

though the optimal measurement strategies and signal recovery performance de-

pends substantially on the first of these parameters (total uncertainty of the

signal); the second of these concepts (geometry of statistical dependence in mea-

surement space) also plays an important role in the measurement problem. In a

measurement scenario, one would typically expect that the optimal measurement

strategy (the optimal number, locations, and accuracies of the measurements) de-

pends on how the total uncertainty of the signal source is spread in the measure-

ment domain. For instance, consider these two cases i) most of the uncertainty

of the signal is carried by a few components in the measurement domain, ii) the

signal uncertainty is somewhat uniformly spread in the measurement domain so

that every component in the measurement domain gives some information about

the others. For the first of these, one would intuitively expect that the strategy of

measuring only these few components with high accuracies will perform well. On

the other hand, for the second case, one would expect that measuring a higher

number of components with lower accuracies may give better results. Moreover,

for the first case one would expect the measurement performance to substantially

depend on the locations of the measurements compared to the second case; in
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the first case it would be important to particularly measure the components that

carry most of the uncertainty, whereas in the second case measurements will be,

informally speaking, interchangeable.

As illustrated above, the total uncertainty of the signal as quantified by in-

formation theoretic measures such as entropy and the geometry of spread of this

uncertainty in measurement domain, reflect different aspects of the statistical de-

pendence in a signal. In the second part of this thesis, we have formulated various

problems investigating different aspects of this relationship. This line of study

also relates to the compressive sensing paradigm, where measurement of sparse

signals is considered [13, 14]. The signals that can be represented with a few

coefficients after passing through a suitable transform, such as wavelet or Fourier

are called sparse. It has been shown that such signals can be recovered from a

few randomly located measurements if they are measured after passing through

a suitable transform [13, 14]. Contrary to the deterministic signal models com-

monly employed in compressive sensing, here we work in a stochastic framework

based on the Gaussian vector model and minimum mean square error (MMSE)

estimation; and investigate the spread of eigenvalue distribution of the covariance

matrix as a measure of sparsity. We assume that the covariance matrix of the

signal; hence, location of support of the signal is known during estimation.

We first relate the properties of the transformation that relates the canonical

signal domain and the measurement domain with the total correlatedness of the

field in Chapter 7. In particular, we investigate the relationship between the

following two concepts: degree of coherence of a random field as defined in optics

and coherence of bases as defined in compressive sensing. Coherence is a concept

of central importance in the theory of partially coherent light, which is a well-

established area of optics; see for example [15, 16] and the references therein.

Coherence is a measure of the overall correlatedness of a random field [15, 16].

One says that a random field is highly coherent when its values at different

points are highly correlated with each other. Hence intuitively, when a field

is highly coherent, one will need fewer samples to have good signal recovery

guarantees. Compressive sensing problems heavily make use of the notion of

coherence of bases, for example [13, 14, 17]. The coherence of two bases, say the
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intrinsic orthogonal signal domain ψ, and the orthogonal measurement system φ is

measured with µ = maxi,j |Uij|, U = φψ providing a measure of how concentrated

the columns of U are. When µ is small, one says the mutual coherence is small.

As the coherence gets smaller, fewer samples are required to provide good signal

recovery guarantees. In Chapter 7, we illustrate that these two concepts, named

exactly the same, but attributes of different things (bases and random fields),

important in different areas (compressive sensing and statistical optics), and yet

enabling similar type of conclusions (good signal recovery performance) are in

fact connected. We also develop an estimation based framework to quantify

coherence of random fields; and show that what this concept quantifies is not

just a repetition of what more traditional concepts like the degree of freedom or

the entropy does. We also study the fractional Fourier transform (FRT) in this

setting. The FRT is the fractional operator power of the Fourier transform with

fractional order a [18]. When a = 0, the FRT matrix reduces to the identity, and

when a = 1 it reduces to the ordinary DFT matrix. We demonstrate how FRT

can be used to generate both bases or statistics for fields with varying degrees of

coherence; by changing the order of FRT from 0 to 1, it is possible to generate

bases and statistics for fields with varying degree of coherence.

Our work in Chapter 7 can be interpreted as an investigation of basis depen-

dency of MMSE under random sampling. In Chapter 8, we study this problem

from an alternative perspective. We consider the transmission of a Gaussian vec-

tor source over a multi-dimensional Gaussian channel where a random or a fixed

subset of the channel outputs are erased. We consider the setup where the only

encoding operation allowed is a linear unitary transformation on the source. For

such a setup, we investigate the MMSE performance, both in the average and also

in terms of guarantees that hold with high probability, as a function of system

parameters. Necessary conditions for optimal unitary encoders are established,

and explicit solutions for a class of settings are presented. Although there are ob-

servations (including evidence provided by the compressed sensing community)

that may suggest the result that the discrete Fourier transform (DFT) matrix

may be indeed an optimum unitary transformation for any eigenvalue distribu-

tion, we provide a counterexample. Finally, we consider equidistant sampling of
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circularly wide-sense stationary (c.w.s.s.) signals, and present an upper bound

that summarizes the effect of the sampling rate and the eigenvalue distribution.

We have presented our findings here in [19, 20].

In Chapter 9, we continue our investigation of dependence in random fields

with stationary Gaussian sources defined on Z = {. . . ,−1, 0, 1, . . .}. We formu-

late various problems related to the finite-length representations and sampling of

these signals. Our framework here is again based on our vision of understanding

the effect of different forms of finiteness in representation of signals, and mea-

sures of dependence in random fields, in particular spread of uncertainty. We

first consider the decay rates for the error between finite dimensional represen-

tations and infinite dimensional representations. Here our approach is based on

the notion of mixing which is concerned with dependence in asymptotical sense,

that is the dependence between two points of a random process as the distance

between these two points increases [21]. Based on this concept, we investigate the

decay rates of error introduced by using a finite number of samples instead of an

infinite number of samples in representation of these signals. We then consider

the MMSE estimation of a stationary Gaussian source from its noisy samples. We

first show that for stationary sources, for the purpose of calculating the MMSE

based on equidistant samples, asymptotically circulant matrices can be used in-

stead of original covariance matrices, which are Toeplitz. This result suggests

that circularly wide-sense stationary signals in finite dimensions are more than

an analogy for stationary signals in infinite dimensions: there is an operational

relationship between these two signal models. Then, we consider the MMSE as-

sociated with estimation of a stationary Gaussian source on Z+ = {0, 1, . . .} from

its equidistant samples on Z+. Using the previous result, we give the explicit ex-

pression for the MMSE in terms of power spectral density, which explicitly shows

how the signal and noise spectral densities contribute to the error.
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1.2 Background

The representation and recovery problems considered in this thesis can be related

to works in a broad range of fields, including optics, estimation and sampling

theory, and information theory. This section provides a brief review of related

works in these areas.

One of our main motivations is to contribute to better understanding of in-

formation theoretical relationships in propagating wave-fields. The problems dis-

cussed in this thesis shed light to different aspects of problems arising in this

context. We will first present a review of representative studies in this area. We

will then discuss the literature in the general area of distributed estimation, where

problems that can be related to our cost budget approach, with different moti-

vations or methods, are considered. Finally, we will review some related work

focusing on sampling and finite representations of random fields.

The linear wave equation is of fundamental importance in many areas of

science and engineering. It governs the propagation of electromagnetic, optical,

acoustic, and other kinds of fields. Although information relationships for wave-

fields have been studied in all of these contexts, a substantial amount of work

have been done in the context of optics.

One of the most widely used concepts in this area is the concept of degree

of freedom (DOF). The terminology of the degree of freedom of a system has

been discussed typically with reference to the number of spots in the input of

an optical system that can be distinguished in the output of the optical system.

This number of spots is called the number of resolvable spots. A resolvable spot

can be interpreted to be a communication channel from the input plane of the

system to the output plane. Hence the degree of freedom of a system is essentially

the number of channels one can use to communicate using this optical system.

Reference [22] is an early work that has been important for formulation of this

approach, where a Gaussian spot is suggested as the best form for a spot due

to its minimum uncertainty property. In this work, it is further suggested that

these effectively Gaussian spots can be used to approximate the input field to
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analyse different optical systems. In [23, 24], the author derives the conclusion

that an image formed by a finite pupil has finite degrees of freedom using the

sampling theorem; and investigates practical limitations related to the DOF using

the theory of the prolate spheroidal functions. In [25], the concepts of DOF

and space-bandwidth product are compared, and DOF is concluded to be the

fundamental invariant for optical systems. Reference [26] proposes a method for

obtaining spatial super resolution by sacrificing of temporal resolution, based on

the framework in [25]. Various works have investigated the DOF associated with

various particular optical systems or set-ups, such as [27–30].

Reference [31] is a particularly important work which discusses the DOF in a

stochastic framework, and proposes a DOF definition based on the coherent mode

decomposition of the covariance function. [32] discusses the degree of freedom

associated with a transform that can be described by a finite convolution operator

in the context of its invertibility, and proposes a measure of ill-conditioning in the

presence of noise. Some works have focused on studying different aspects of the

space-bandwidth product, such as its proper definition [33], its applications to

super-resolution [34], or its generalization to linear canonical transform domains

[35]. Super-resolution in optics with special emphasis on the concept of space-

bandwidth product is studied in detail in [36].

In [37], MacKay introduces an informal discussion of the concepts of structural

and metrical information, which has found application in [3,22,38,39]. Mac Kay’s

informal discussions can be interpreted as a claim that the degree of freedom is

intrinsically related to structural information. It is argued that a signal can be

approximated as a sum of the structural elements, whose number is given by the

degree of freedom of the signal family. This work also introduces the concept of

metrical information, which is defined as a measure of amplitude accuracy. It

is argued that total information in the signal is given by the sum of metrical

information and structural information. It is interesting to note that how this

argument resembles how the rate-distortion function for a correlated Gaussian

vector is found: the minimum number of bits required to represent such a signal

under a given distortion is found by using finite accuracy components in the

canonical domain (the domain the components are independent) [40, Ch.13]. Here
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the concept of metrical information can be said to correspond to finite accuracy

in each of these components, and the concept of structural information can be

associated with the concept of canonical domain, and the number of components

used in the representation (effective degree of freedom).

References [41–43] adopt a particularly interesting approach to understand the

limits of information transfer by optical fields:“communication modes expansion”.

The properties of these type of expansions and applications of them to different

optical systems have been studied in many works, such as [44,45]. This approach

is based on appropriately defining so called “communication modes” between

two volumes in space. One of these volumes is the volume which contains the

scatter, and the other one is the receiving volume in which we want to generate

waves. Then these works investigate the number of orthogonal functions that

can be generated in the receiving volume as a result of scattering a wave from

the scattering volume. The strength of connection between these two volumes is

written as a sum of coupling strengths between the modes in scattering volume

and the modes in receiving volume. This framework may be interpreted in the

light of singular value decomposition of the linear optical system that relates the

wave-fields between these two volumes, where communication modes correspond

to the left and right singular vectors, and coupling strengths correspond to the

eigenvalues. Such an approach brings a novel way to look at diffraction of optical

fields based on the connection strengths between two volumes.

A number of works utilizing information theoretic concepts such entropy or

channel capacity in different contexts have appeared. [46] studies the information

relationships for imaging in the presence of noise with particular emphasis on

relating the information theoretical definitions of entropy and mutual information,

to intuitive descriptions of information based on physical models. Using the

capacity expression for the Gaussian channel, which only depends on the signal-

to-noise ratio, and ignoring the possible statistical dependency among pixels,

[47] discusses information capacities of two-dimensional optical low-pass channels.

[48] adopts a similar approach where the capacity definition is the same, but

uses the degree of freedom associated with the system rather than the individual

pixels at the input/output image planes. [49,50], explicitly utilizes the idea of an
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error threshold, within which the signals are considered to be indistinguishable,

in order to asses the information transfer capacity of waves. Under Gaussian

signal assumption, [51] discusses the entropy of partially coherent light and its

relationship between concepts that are traditionally used in optics to describe

light fields, such as degree of polarization and coherence. The concept of entropy

has also been studied in the context of acoustical waves [52,53].

References [54] and [55] provide a general overview of the relationship be-

tween optics and information theory. To study optical systems from a communi-

cations perspective, these texts provide introductory material on a wide range of

fields, including information theory, diffraction theory and signal analysis. The

relationship between the concept of entropy in thermodynamics and entropy in

information theory is thoroughly discussed. A discussion on the information pro-

vided by observations based on the wave nature of light and quantum theory is

also presented. Several applications in the area of optical information processing

including image restoration, wavelet transforms, pattern recognition, computing

with optics and fiber-optic communications are also covered.

While utilizing information theoretic concepts in the study of propagating

wave-fields, researchers do not always use concepts and terms exactly as they

are traditionally used in the information theory literature. For example, in the

context of information theory, entropy is defined as a measure of uncertainty of a

random variable and is determined by the probability distribution function of the

random source [56, Ch. 2], whereas this is not always how this concept is utilized in

some works in optics. For instance, in some works the expression for the entropy

of a discrete random vector in terms of its probability mass function is used to

provide a measure for the spread of a set quantities one is interested in, such as

the spread of eigenvalues associated with the coherent mode decomposition of a

source [57,58]. Other examples include References [59,60], where the normalized

point spread function is treated like a probability distribution function and the

entropy is used to calculate the spread of this function providing a measure for

its effective area [59], and normalized intensity distribution is used to define the

spot size of a laser beam [60].
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Some researchers have focused on computational issues, where the aim is to

process the signals without losing any significant information, as well as by using

as little computational resources as possible, such as [61–64]. Other works have

adopted a sampling theory approach [65–68]. Reference [69] provides a review of

many approaches used in information optics, including the approaches based on

the sampling theory and the concept of DOF. An overview of the history of the

subject with special emphasis on research which leads to practical progress can

be found in [70, 71].

Historically, the approaches used to study information relationships in prop-

agating wave-fields have commonly been based on scalar and paraxial approxi-

mations, or limited to investigating particular systems. Recently, a number of

works have extended these approaches by either working with electromagnetic

field models or more general system models which consider arbitrary volumes or

regions in space. An example is the line of work developed in [41–43], which

studies the communication between two volumes in space, and provides a very

general framework as discussed above. Among these, with its electromagnetic

field model and the extensions to space-variant systems it provides, [43] may be

said to provide the most general perspective. Other works which make use of an

electromagnetic field model include [49, 72–78]. Among these works, some have

put particular emphasis to the restrictions imposed by antennas [74, 78]. For in-

stance, based on a model that takes into account the spatial constraints put by

antennas, [74] finds the degrees of freedom associated with a multiple antenna

system where the degrees of freedom associated with the time-frequency domain

and the spatial angular domain are treated in a unified manner. Unlike this ap-

proach, some works prefer to overlook the possible restrictions imposed by the

receiving elements, and focus on the limitations imposed by the physical process.

An example is [75], which is concerned with the degree of freedom of the system

associated with communication with wave-fields where these wave-fields are to be

observed in a bounded region in space. Reference [79] is another example where

a framework independent of a particular transmismitter-receiver model is consid-

ered. This work considers the communication between two volumes in space as

in [42], and may be interpreted as a generalization of this work to include the
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scenario where a scatterer may be present between these two volumes.

We now discuss the relationship of our cost budget framework with some ear-

lier works which also involve estimation of desired quantities from measurements

made from multiple sensors transmitting their observations to a decision centre.

These works mostly adopt a communications perspective.

The cost constrainted measurements problem we have considered can also be

interpreted in the framework of distributed estimation where there are uncoop-

erative sensors transmitting their observations to a decision/fusion center. Such

scenarios are quite popular and can be encountered in wireless sensor networks,

one of the emerging technologies of recent years, or distributed robotics systems

where the agents can only communicate to the fusion center. In a centralized

sensor network, sensors with power, complexity and communication constraints

sense a physical field and communicate their observations to the fusion/decision

center, where the main aim is to reconstruct the field as accurately as possible.

In this area, the design of sensor and fusion center strategies is intensively stud-

ied under various constraints. A number of works approach this problem as a

quantizer design problem where the design of the optimum quantizers to be used

by sensors is considered [80–82]. The performance of different distributed esti-

mation systems are evaluated with various approaches, such as estimation of a

parameter under a total sum rate constraint by focusing on quantizer bit rate

allocation among sensors [83]. A particularly interesting work is the work in [84],

where the measurement of one variable through multiple sensors is considered,

and estimation performance is analysed under various performance criteria. Here

estimation of a scalar variable (or a series of independent and identically dis-

tributed variables when time variation is also taken into account) is considered.

Among these various scenarios, the one that addresses the problem of finding

the optimal power allocation to sensor links to minimize estimation error, can

be related to our optimal allocation problem. We note that, contrary to this

work which considers estimation of a scalar quantity, in our framework desired

quantities are modelled as functions of space where each measurement device has

access to a field value only at a particular location. In this respect, we believe

that our formulation models the problem of optimal estimation of a physical field
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from multiple measurements in a more realistic way. Moreover, with our model

it is possible to systematically study the effect of coherence of the field on the

results, which is a concept of central importance in optics.

A related problem, the distributed source coding problem arises in the frame-

work of multiterminal source coding where the problem is formulated from a

coding perspective. In the distributed source coding problem the aim is to de-

termine the best coding strategy when there are uncooperative encoders coding

their correlated observations and transmitting the coded versions to a centralized

decoder where the observations are jointly decoded. The scheme of uncooperative

encoders observing correlated sources was studied in [85] with two encoders and

perfect reconstruction constraint. The rate-distortion function for such a scheme

when only one of the sources is to be decoded is provided in [86]. A more explicit

treatment of the continuous alphabet case is studied in [87]. The distributed

source coding problem is widely studied under many constraints [88–91]. This

field continues to be a popular area, where the explicit solutions are known only

for a few cases; for instance the admissible rate region for two encoder quadratic

Gaussian source coding problem is recently provided in [92].

Interpreting the measurement devices as encoders, and assuming the measure-

ment device locations are fixed, we see that in both problems there is a distributed

sensing scheme where correlated observations are separately processed and trans-

mitted to a decision center where the messages are used to estimate the unknown

variables. Moreover in both problems, the best strategies are determined a priori

in a centralized manner, i.e. the coding strategies are based on the knowledge

of statistics of what would be available to the all devices, but the encoders act

without knowing what is available to the others at a particular instance of cod-

ing. Although these problems are closely connected, we now point out some

distinctions. In a typical distributed source coding problem, the encoders have

the freedom to observe the realizations of variables as long as they need, and they

may do arbitrarily complex operations on their observations, whereas the mea-

surement devices are restricted to observe only one realization of the variable to

be measured and the message, (the reading of the device output) is restricted by

the nature of the actual measurement devices. In source coding scheme there is
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no cost related to the accuracy of measuring the variable, but there is a communi-

cation cost, namely the finite rate related to the transmission of the observations

to the decision center. To the contrary, in the measurement problem the cost is

related to the accuracy of the measurements and the result of measurements are

assumed to be perfectly transmitted to the decoder without any rate restriction.

Hence, if the measurement problem is to be considered in a distributed source

coding framework, it can be cast as a remote source coding problem where the

encoders are constrained to have a policy of amplify and forward, with the cost

of resolving power used as a dual for the communication cost.

In our cost-constrained measurement framework, what the measurement de-

vices observe, are not necessarily the variables to be estimated. The fact suggests

a connection with the problem of remote/noisy source coding. A simple exam-

ple for this type of problems is provided in [93, p. 80]. This problem is studied

by many authors, for instance [94, 95]. The constraints under which separability

principles are applicable in remote source coding problems are also investigated,

for instance [96–98]. A related problem, called the Centralized Executive Officer

problem is formulated in [99,100]. In this framework one is interested in estimat-

ing a data sequence which one cannot directly observe. The estimation is done

based on the outputs of encoders that observe independently corrupted versions

of the data sequence and encodes them uncooperatively. Each of these encoders

must use noiseless but rate-constrained channels to transmit their observations to

the centralized officer. Under a sum-rate constraint, one investigates the trade-

off between the sum rate and the estimation error. An important special case of

this problem is the so called quadratic Gaussian case, where a Gaussian signal

is observed through Gaussian noise and the distortion metric is the mean-square

error [100, 101].

The finite accuracy measurements problem is also closely related to analog-

to-digital (A/D) conversion problems, where efficient representation of analog

sources with finite number of bits is considered. Although in the measurement

problem framework the sensors are not necessarily digital devices, they have finite

resolving power which in fact corresponds to a finite number of meaningful bits in

the readings of the measurement devices. Trade-offs similar to the ones considered
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in this thesis can also be studied in A/D conversion framework, such as in [102]

where the dependence of accuracy of oversampled analog-to-digital conversion on

the sampling interval and bit rate is investigated or as in [103], which focuses

on the trade-offs between sampling rate and accuracy of the measurements for

recovery of a band-limited signal.

To sum up, a number of works studying estimation of desired quantities from

multiple measurements share some of the important features of our formulation,

or formulate their problems in a context related to ours: The cost function we

have proposed in [3–6] has been used to formulate various constrained measure-

ment problems in [104, 105]. In [106, 107], problems related to wave propagation

are studied with a statistical signal processing approach. The problem of finding

optimal space and frequency coverage of samples for minimum bit representation

of random fields is considered in [108] in a framework based on Shannon interpo-

lation formula. Optimal quantizer design has been studied under communication

constraints; for instance [109, 110]. A problem of sensor selection is considered

in [111] as an estimation problem, and under given sensor performance and costs

in [112] as a detection problem. The tradeoff between performance and total bit

rate with a special emphasis on quantizer bit rates is studied in [82,83], where the

estimation of a single parameter is considered. Trade-offs similar to our cost-error

trade-offs are also studied in A/D conversion framework [102]. Although various

aspects of the problem of sensing of physical fields with sensors is intensively

studied by many authors as distributed estimation and distributed source coding

problems, much of this work has loose connections with the underlying physical

phenomena. There seems to be a disciplinary boundary between these works

and the works that adopt a physical sciences point of view. A notable exception

is the line of work developed in [113, 114], where the measurement of random

acoustic fields is studied from an information-theoretic perspective with special

emphasis on the power spectral density properties of these fields. Further work

to bridge these two approaches will help us better understand the information

theoretic relationships in physical fields and their measurement from a broader

perspective.
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Several aspects of sampling of random processes are studied by many re-

searchers. Here we provide a brief overview of results that are pertinent to our

work. A fundamental result in this area states that Shannon-Nyquist sampling

theorem which is generally expressed for deterministic signals can be generalized

to wide-sense stationary (w.s.s.) signals: A band-limited w.s.s. signal can be

reconstructed in the mean-square sense from its equally-spaced samples taken at

Nyquist rate [115]. In [116] a generalization of this result where possibly multi-

band signals are considered is provided. Generalizations of this result where

the samples differ from ordinary Nyquist samples are also considered: [117, 118]

shows at most how much the sample points may be shifted before the error

free recovery becomes impossible. A formal treatment of this subject with a

broad view may be found in [118]. [119,120] offer conditions under which of these

generalizations (such as deletion of finitely many samples) error-free recovery is

possible. An average sampling theorem for band-limited random signals is pre-

sented in [121]. In [122], the mean-square error of approximating a possibly

non-bandlimited w.s.s. signal using sampling expansion is considered. [123, 124]

focuses on a prediction framework where only the past samples are taken into

account while estimating the signal. In [125], signal reconstruction with polyno-

mial interpolators and Poisson sampling is studied. [10] further generalizes the

Shannon-Nyquist sampling theorem to non-stationary random fields; [126] clari-

fies the conditions in [10]. [127,128] consider problems related to the sampling of

varying classes of non-stationary signals. Finite-length truncations in representa-

tion of random signals are studied in signal processing community under various

formulations. In [129], the truncation error associated with the sampling expan-

sion is studied. [130] focuses on the convergence behaviour of the sampling series.

In [131, 132] the difference between the infinite horizon and finite horizon causal

MMSE estimators (the estimator based on the last N values) are considered.
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Chapter 2

Representation and Recovery

using Finite Numbers of Samples

In this chapter, we investigate the effect of restriction of the total number of

samples to be finite while representing a random field using its samples. Here,

we assume that the amplitude accuracies are so high that the sample values

can be assumed to be exact. In Chapter 3, we will abandon this simplification,

and consider a framework where the effect of limited amplitude accuracies of the

samples are also taken into account.

We may summarize our general framework as follows: We consider equidistant

sampling of non-stationary signals with finite energy. We are allowed to take

only a finite number of samples. For a given number of samples, we seek the

optimal sampling interval in order to represent the field with as low error as

possible. We obtain the optimum sampling intervals and the resulting trade-

offs between the number of samples and the representation error. We present

results for varying noise levels and for sources with varying numbers of degrees

of freedom. We discuss the dependence of the optimum sampling interval on the

problem parameters. We also investigate the sensitivity of the error to the chosen

sampling interval.

A crucial aspect of our formulation is the restriction of the total number of
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samples to be finite. Although several aspects of the sampling of random fields are

well understood (mostly for stationary fields and also for non-stationary fields),

most studies deal with the case where the number of samples per unit time is

finite (and the total number of samples are infinite).

In Section 2.1, we present the mathematical model of the problem considered

in this chapter. The signal model we use in our experiments, the Gaussian-

Schell model, is discussed in Section 2.2. In Section 2.3 we present the numerical

experiments. We conclude in Section 2.5.

2.1 Problem Formulation

In the specific measurement scenario under consideration in this chapter, a signal

corrupted by noise is sampled to provide a representation of the signal with finite

number of samples. More precisely, the sampled signal is of the form

g(x) = f(x) + n(x), (2.1)

where x ∈ R, f : R → C is the unknown proper Gaussian random field (random

process), n : R → C is the proper Gaussian random field denoting the inherent

noise, and g : R → C is the proper Gaussian random field to be sampled in order

to estimate f(x). We assume that f(x) and n(x) are statistically independent

zero-mean random fields. We consider all signals and estimators in the bounded

region −∞ < xL ≤ x ≤ xH <∞. Let D = [xL, xH ] and D2 = [xL, xH ]× [xL, xH ].

Let Kf (x1, x2) = E [f(x1)f
∗(x2)], and Kn(x1, x2) = E [n(x1)n

∗(x2)] denote the co-

variance functions of f(x) and n(x), respectively. Here ∗ denotes complex conju-

gation. We assume that f(x) is a finite energy random field,
∫∞
−∞Kf (x, x)dx <∞,

and Kn(x, x), x ∈ D is bounded.

M samples of g(x) are taken equidistantly with the sampling interval ∆x at

x = ξ1, . . . , ξM ∈ R, with ∆x = ξi+1 − ξi, i = 1, ...,M − 1. Hence we have gi ∈ C

observed according to the model gi = g(ξi), for i = 1, . . . ,M . By putting the

sampled values in vector form, we obtain g = [g(ξ1), . . . , g(ξM)]T. Let Kg =

E [gg†] be the covariance matrix of g, † denotes the conjugate transpose.
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The vector g provides a representation of the random field f(x). We do

not have access to the true field f(x) but we can find f̂(x | g), the minimum

mean-square error (MMSE) estimate of f(x) given g. For a given maximum

allowed number of sampling points Mb, our objective is to choose the location of

the samples (ξ1, . . . , ξM ∈ R, M ≤ Mb), so that the MMSE between f(x) and

f̂(x | g) is minimum.

This problem can be stated as one of determining

ε(Mb) = min
∆x, x0

E
[∫

D
‖f(x) − f̂(x | g)‖2dx

]
, (2.2)

subject to M ≤ Mb. Here the samples are taken around the midpoint x0 =

0.5(ξ1 + ξM), which along with ∆x we allow to be optimally chosen.

Noting that the observed values are in vector form, the linear estimator for

(2.2) can be written as [133, Ch. 6]

f̂(x | g) =
M∑

j=1

hj(x)gj (2.3)

= h(x)g (2.4)

where the function h(x) = [h1(x), . . . , hM(x)] satisfies the equation

Kf g(x) = h(x)Kg, (2.5)

where Kf g(x) = E [f(x)g†] = [E [f(x)g∗1], . . . ,E [f(x)g∗M ]] is the cross covariance

between the input field f(x) and the measurement vector g. To determine the

optimal linear estimator, one should solve (2.5) for h(x).

The error expression can be written more explicitly as follows

ε = E [
∫

D
‖f(x) − h(x)g)‖2dx] (2.6)

=
∫

D
E [‖f(x) − h(x)g)‖2]dx (2.7)

=
∫

D
(Kf(x, x) − 2Kf g(x)h(x)† + h(x)Kgh(x)†)dx (2.8)

=
∫

D
(Kf(x, x) −Kf g(x)h(x)†)dx. (2.9)
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Before leaving this section, we would like to comment on the error introduced

by estimating f(x) only in the bounded region D. Let us make the following

definitions: Let f̂(x | g) be shortly denoted as f̂(x). Let us define f̂D(x) as

f̂D(x) = f̂(x) for x ∈ D and f̂D(x) = 0 for x /∈ D. Then, the error of representing

f(x) with f̂D(x) can be expressed as

E [
∫ ∞

−∞
‖f(x) − f̂D(x)‖2dx]

= E [
∫

x∈D
‖f(x) − f̂D(x)‖2dx] + E [

∫

x/∈D
‖f(x) − f̂D(x)‖2dx] (2.10)

= E [
∫

x∈D
‖f(x) − f̂D(x)‖2dx] + E [

∫

x/∈D
‖f(x)‖2dx] (2.11)

= ε(Mb) +
∫

x/∈D
Kf(x, x)dx (2.12)

Hence (2.12) states that the error of representing a field on the entire line can be

expressed as the sum of two terms; the first term expressing the approximation

error in this bounded region, and the second term expressing the error due to

neglecting the function outside this bounded region (the energy of the field outside

region D). Since the field is finite-energy, the second term can be made arbitrarily

close to zero by taking a large enough regionD and ε(CB) becomes a good measure

of representation performance over the entire space.

2.2 Random Field Model

In our experiments we use a parametric non-stationary signal model known as

the Gaussian-Schell model (GSM). This is a random field model widely used in

the study of random optical fields with various generalizations and applications.

GSM beams have been investigated with emphasis on different aspects such as

their coherent mode decomposition [134, 135], or their imaging and propagation

properties [136–144].

GSM fields are a special case of Schell model sources. A Schell model source

is characterized by the covariance function

K(x1, x2) = I(x1)
0.5I(x2)

0.5ν(x1 − x2), (2.13)
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where I(x) is called the intensity function and ν(x1 − x2) is called the complex

degree of spatial coherence in the optics literature. For a Gaussian-Schell model,

both of these functions are Gaussian shaped

I(x) = Af exp(− x2

2σ2
I

) (2.14)

ν(x1 − x2) = exp(−(x1 − x2)
2

2σ2
ν

) (2.15)

where Af > 0 is an amplitude coefficient and σI > 0 and σν > 0 determine

the width of the intensity profile and the width of the complex degree of spatial

coherence, respectively. We note that as a result of the Gaussian shaped intensity

profile; as we move away from the x = 0, the variances of the random variables

decay according to a Gaussian function. We also note that ν(x1 − x2) is simply

the correlation coefficient function which may be defined as ν(x1 −x2) = ρf(x1 −
x2) =

Kf (x1,x2)

Kf (x1,x1)0.5Kf (x2,x2)0.5 . Hence, as a result of the Gaussian shaped complex

degree of spatial coherence function, the correlation coefficient between two points

decays according to a Gaussian function as the distance between these two points

increases.

In a more general form, one also includes a phase term in the covariance

function. As our signal model, we consider this more general form where GSM

source is characterized by the covariance function

Kf (x1, x2) = Af exp

(
−x

2
1 + x2

2

4σ2
I

)
exp

(
−(x1 − x2)

2

2σ2
ν

)
exp

(
− jk

2R
(x2

1 − x2
2)

)

(2.16)

Here Af > 0, j =
√
−1. The parameters σI > 0 and σf > 0 determine the width

of the intensity profile and the width of the complex degree of spatial coherence,

respectively. R represents the wave-front curvature.

This covariance function may be represented in the form

Kf(x1, x2) =
∞∑

k=0

λkφk(x1)φ
∗
k(x2) (2.17)

where λk are the eigenvalues and φk(x) are the orthonormal eigenfunctions of the

integral equation
∫
Kf(x1, x2)φk(x1)dx1 = λkφk(x2) [134, 135]. Here we assume
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that the eigenvalues are indexed in decreasing order as λ0 ≥ λ1 . . . λk ≤ λk+1, . . .,

k ∈ Z+. In signal processing, this representation is known as the Karhunen-

Loève expansion [145]. In statistical optics it is referred to as the coherent mode

decomposition, where every eigenfunction is considered to correspond to one fully

coherent (fully correlated) mode.

The eigenfunctions φk(x) for GSM sources are Hermite polynomials, whose

exact form may be found in [135]. Since the eigenvalue distribution will play

a crucial role in our investigations we will discuss them in detail. The ra-

tio of the largest eigenvalue λn to the lowest eigenvalue λ0 is given by λn

λ0
=

(
1

β2+1+β[(β/2)2+1]0.5

)n
where β is defined as [135]

β =
σν
σI
. (2.18)

β may be considered as a measure of the degree of (global) coherence of the

field [15, 135]. Here β may be considered as a measure of the number of signifi-

cant eigenvalues, hence the effective number of degrees of freedom (DOF) of the

source. The effective DOF of a family of signals may be defined as the effective

number of uncorrelated random variables needed to characterize a random signal

from that family. The concept of the number of degrees of freedom is central

to several works, such as [24, 25, 69, 74, 75]. It is known that the random vari-

ables that provide the best characterization of the source under the mean-square

error criterion are the random variables with variances given by the eigenvalues

associated with the Karhunen-Loève expansion. Hence the spread of eigenvalues

can be used to define the DOF of the signals. One can say that the DOF is

lower when the eigenvalue distribution is more concentrated, and that the DOF

is higher when the eigenvalue distribution is more uniformly spread. This def-

inition may be made more precise, for instance by defining the effective DOF

D(δ) as the smallest number satisfying
∑D
i=1 λi ≥ δ ε0, where δ ∈ (0, 1] and

ε0 =
∫∞
−∞Kf (x, x)dx =

∑
k≥0 λk < ∞. Returning to the Gaussian-Schell model

and β’s relationship to the degree of coherence of the field we recall the follow-

ing [15, 135]: As β increases, the eigenvalues decay faster, so that the effective

number of modes required to represent the field decreases and the field is said to

be more coherent. In contrast, as β decreases, the eigenvalues decay slower, so

that the effective number of modes required to represent the field increases and
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the field is said to be more incoherent.

Various aspects of the propagation of the Gaussian-Schell model beams

through optical systems have been well studied; see, for instance [15, 136–138,

140,143]. A fundamental result in this area that we will make use of is the follow-

ing: Say we have an optical system that may be represented by an ABCD matrix

(ray-transfer matrix). When a Gaussian-Schell model beam passes through such

an optical system, the output is again a Gaussian-Schell model beam with new

parameters σ′
I , σ

′
ν , and R′

out [136, 137]. It is known that the ratio β = σ′
ν/σ

′
I

doesn’t change as the field passes through such systems [136,137,146]. Hence σ′
ν

is given simply by σ′
ν = β σ′

I .

To make it easier for the reader to visualize the propagation of the Gaussian-

Schell beams, we now review how the beam parameters change in the case of

free-space propagation. Let the field parameters associated with a GSM field

that has propagated a distance of z be denoted by σI(z) and R(z). A convenient

parameter in expressing the new beam parameters is the Rayleigh distance zR.

As with deterministic Gaussian beams, zR can be interpreted as the distance the

field can propagate before it begins to diverge significantly. For GSM beams, zR

dependens on σI and β, and is given by the following expression:

zR(β, σI) = kσ2
I (

1

β2
+

1

4
)−0.5 (2.19)

where k is the wave-number [138,140]. The new beam parameters for a field after

propagation over a distance z can be expressed as follows [136,137]:

σI(z) = σI(1 +
z2

z2
R

)0.5, (2.20)

and

R(z) = z(1 +
z2
R

z2
). (2.21)

Comparing these with the corresponding formulas for deterministic Gaussian

beams, (for instance [147, Chap. 3]), we observe that the expressions relating

σI(z) and R(z) to zR have the same form. These expressions depend on the

degree of coherence of the field through zR, which depends on β.

Before leaving this section, we would like to make a few remarks about the

existence of the expansion in (2.17) for the GSM source. We note that, in general,
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sources defined on the infinite line do not have expansions with discrete eigenvalue

spectrum. To obtain such an expansion, one usually considers the source on a

compact region (which in our case corresponds to a bounded region). Then the

existence of such a representation is guaranteed by Mercer’s Theorem, see for

example [148, Ch.7]. In [135], an expansion with discrete eigenvalue spectrum

is investigated for the GSM source on the infinite line without discussing the

existence of such a decomposition in detail. Nevertheless, we here note that such

an expansion is possible for the GSM source due to [149, Thm. 1]. This result

states that along with continuity, having
∫∞
−∞Kf (x, x)dx <∞ and Kf(x, x) → 0

as |x| → ∞ is sufficient to ensure such a representation. We note that both of

these conditions are plausible in a physical context: the first one is equivalent

to the finite energy assumption and the second one requires the intensity of the

field to vanish as |x| increases, properties one commonly expects from physically

realizable fields. As can be seen from (2.16), the covariance function of a GSM

source satisfies these properties. Hence an expansion with a discrete eigenvalue

spectrum as in (2.17) is possible for GSM sources.

2.3 Trade-off curves for GSM fields are invari-

ant under propagation through first-order

optical systems

We now consider the problem of sampling the output of a first-order optical sys-

tem in order to represent the input optical field. Such systems are also referred to

as ABCD systems or quadratic-phase systems [150]. Mathematically represented

by linear canonical transforms [18], these systems encompass arbitrary concatena-

tions of lenses, mirrors and sections of free space, as well as quadratic graded-index

media. Here we assume that the parameters A,B,C,D of the ABCD matrix are

real with AD −BC = 1.

In the next section, we will consider a given number of samples and find the

minimum possible representation error for that budget. Varying the bit budget,
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we will obtain trade-off curves between the error and the number of samples (for

instance, look forward to Fig. 4.1 for an example). Here we are concerned with

how first-order optical systems change these trade-off curves; in other words, does

it make any difference if we represent the signal with samples of the output of

such a system, rather than with samples of the input itself? A more general

version of this problem, where the samples are of limited accuracy are treated in

Section 4.2. To avoid unnecessary repetitions, here we will only review the main

results, and postpone the detailed discussions and the proof until Section 4.2.

We first observe that there is no system noise n(x), for GSM fields, the trade-

off curves are invariant for different σI values. Our second and main observation is

the following: the trade-off curves are invariant under passage through arbitrary

ABCD systems; that is, the error versus cost trade-offs for the estimation of the

input of an optical system based on the samples of the input field are the same

as those based on the samples of the output field. In other words, the samples

of the output field are as good as the samples of the input field. Moreover, the

optimum sampling strategy at the output can be easily found by scaling the

optimum sampling strategy at the input. When there is system noise n(x), we

observe that the trade-off curves are invariant for different σI values and the

optimum sampling points can be found by scaling.

2.4 Trade-offs between Error and Number of

Samples

We now investigate the trade-off between the error and the number of samples,

and the optimum sampling intervals associated with different sampling scenarios.

In our experiments, we choose to work with the equivalent parameters σI and

β, instead of σI and σν . Under fixed β, this choice has the advantage of allowing

the results for a given σI value to be found by using the results for another σI

value, by appropriately scaling the coordinate space. Hence in our experiments
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Figure 2.1: Correlation coefficient as a function of distance, β variable.

we fix σI = 1 without loss of generality.

To obtain covariance functions corresponding to random fields with varying

DOF, we use different β values: β = 1/16, 1/4, 1, 4. As stated in Section 2.2,

σν = βσI determines the width of the correlation function, which is a Gaussian

function. We present the correlation function ρ(τ) for these values of β in Fig. 2.1.

We choose the noise model similar to the signal model, but with a flat intensity

distribution: In(x) = An, νn(x1 − x2) = exp(− (x1−x2)2

2σ2
ν,n

), where σν,n = βnσI ,

βn = 1/32. We consider different noise levels parameterized according to the

signal-to-noise ratio, defined as the ratio of the peak signal and noise levels:

SNR =
Af

An
. We consider the values SNR = 0.1, 1, 10, ∞ to cover a wide range

of situations.

For simplicity in presentation, in our simulations we focus on ∆x and set the

less interesting x0 = 0. We choose the intervalD equal to [xL, xH ] = [−5σI ,+5σI ].

With this choice of D, most of the energy of the signal falls inside the interval and

the error arising from the fact that only signal values in the regionD are estimated

is very small (≤ 10−10), so that the second term in (2.12) can be ignored.
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To compute the error expressions and optimize over the parameters of the

representation strategy, we discretize the x space with the spacing ∆c. For in-

stance, we approximate the integral in (2.2) as
∑
k∈DN

‖f(k∆c) − f̂(k∆c | g)‖2∆c

where DN ={k : k∆c ∈ D}. The estimates are only calculated at these discrete

points: f̂(k∆c | g)=h(k∆c)g. To determine the estimate functions h(k∆c), we

solve the equation Kf g(k∆c) = h(k∆c)Kg for each k ∈ DN . We would like to

note that the above simple procedure for solving (2.5) for h(x), corresponds to

the following method: we discretize (2.5) and approximate the solutions hi(x)

as h̄i(x) =
∑N
j=1 hji sinc(x − µj) where hji = hi(x = µj). Substitution of the

approximate solution h̄(x) = [h̄1(x), . . . , h̄M(x)] into the right hand side of (2.5)

gives an expression that, in general, is not exactly equal to the left hand side.

We determine the parameters hji by requiring (2.5) to hold exactly at N selected

points νi. Hence (2.5) becomes a system of equations with N ×M unknowns.

To find the optimum sampling intervals, we use a brute force method, where

for a given Mb we calculate the error for varying ∆x, and choose the one providing

the best error value. This simple approach has the advantage of enabling us

to investigate the effect of ∆x on the error, and hence the sensitivity of the

performance to choosing ∆x different from the optimal values. (We note that the

optimization variable ∆x and the discretization variable ∆c are not the same. ∆x

is the sampling interval whose optimal value we seek, whereas ∆c is the discrete

grid spacing we employ in the numerical experiments.)

We report the error as a percentage defined as 100 ε(Mb)/ε0 where ε0 =
∫∞
−∞Kf (x, x)dx = Af

√
2π.

In the following experiments we will investigate the trade-off between the MSE

error ε(Mb) and Mb, the number of measurements we are allowed to make.

Trade-offs -Variable Noise Level: We first investigate the effect of noise level

on the trade-off between ε(Mb) and Mb. Here SNR takes the values SNR =

[0.1, 1, 10, ∞] and two different values of β = [1/16, 1] are considered. Fig. 2.2

and Fig. 2.3 correspond to β = 1/16 (high effective DOF) and β = 1 (low

effective DOF), respectively. As expected, the error decreases with Mb for both

cases. We note that for both of cases, ε(Mb) is very sensitive to increases in Mb
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Figure 2.2: Error vs. number of samples, β = 0.0625, SNR variable.

for smaller Mb. Then it becomes less responsive and eventually saturates. For

each value of Mb, the error decreases as SNR increases, and for higher Mb values

approaches zero as SNR → ∞. We see that when the field has low effective DOF

(Fig. 2.3), we obtain much better trade-off curves for all values of SNR than

Fig. 2.2, which represents the relatively high effective DOF case. For instance for

SNR = ∞, for the high DOF case an error of 20% is obtained when the number of

samples is around 30, whereas for the field with low DOF a smaller error value is

achieved with only 5 samples. This point is further investigated in the upcoming

experiments.

Trade-offs -Variable Effective DOF: We now investigate the effect of the DOF

of the unknown field on the trade-off between Mb and ε(Mb). Here β is varied over

β = [1/16, 1/4, 1, 4] and two different values of SNR = [0.1, ∞] are considered.

Fig. 2.4 and Fig. 2.5 show the results for SNR = ∞ and SNR = 0.1, respectively.

Both of the plots show that for lower values of β (corresponding to higher DOF),

it is more difficult to achieve low values of error within a given number of samples.

But as β increases, the total uncertainty in the field decreases, and it becomes a

lot easier to achieve lower values of error.

In Fig. 2.4, we observe that for all values of β, effectively zero error is obtained
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Figure 2.3: Error vs. number of samples, β = 1, SNR variable.
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Figure 2.4: Error vs. number of samples, SNR = ∞, β variable.
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Figure 2.5: Error vs. number of samples, SNR = 0.1, β variable.

asMb is increased; the field can be represented with effectively 0 error with a finite

number of samples. This is not surprising, since the effective DOFs of the signal

sources under consideration are finite.

Comparing the performances in Fig. 2.4 and Fig. 2.5 for low and high values

of the cost budget, we see that the effect of DOF is more pronounced for different

SNR values for different regions of Mb: for low Mb values, the effect of DOF is

more strong in the high SNR case; for high Mb values, the effect of DOF is more

strong in the low SNR case. For low Mb values, for the high SNR case there is

a drastic performance difference between different values of DOF; for the lower

DOF values it is possible to obtain very low values of error (≈ 0), a far better

performance compared to the higher DOF case. As Mb increases, the difference

in performance for different values of DOF decreases, and effectively zero error

is obtained for all values of DOF. For high Mb values, the effect of DOF is more

pronounced in the low SNR case: the error curves for fields with different DOFs

saturate at different values. When the noise level is high, it is not possible to

wash out the effect of system noise by taking more samples if the fields have high

DOF, hence the curves saturate at relatively high error values. On the other

hand, the effect of noise can be cancelled out if the field has relatively low DOF,
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hence these curves saturate at relatively low values.

Optimum Sampling Intervals: We will now investigate the relationship be-

tween the optimum sampling interval ∆x and the problem parameters Mb, β,

SNR.

In general, the optimum policy under a given number of samples can be infor-

mally interpreted in the light of two driving forces. The first one is to collect as

many effectively uncorrelated samples as possible, so that every sample we have

will provide as much new information as possible about the field. The other one

is to avoid samples with low variances, since a sample with a low variance is worse

than a sample that has higher variance and has the same correlation coefficient

with the field values at other points (so that the amount of uncertainty reduction

for the other field values due to observation of this sample will be the same).

We note that for a GSM source the function that determines the correlation of a

field value at a particular point with the field values at other points is the same

for a field value at any given location (given by ν(x1, x2)), and it is a decreasing

function of the distance between the points. Hence when we take a sample at a

particular point, we also obtain some information about the field values around

that point, but not so much about the field values that are far away. Due to the

GSM source structure, low variance samples have relatively low variance neigh-

bours, and hence the decrease in the uncertainty due to observation of field values

at these points will be relatively low. This further encourages us to avoid samples

with low variances.

Here we investigate the dependence of the optimum sampling interval on β,

SNR and Mb. Fig. 2.6 and Fig. 2.7 give the optimum sampling intervals versus

number of samples for β = 1/16 and β = 1, respectively. We observe that

in general the optimum sampling interval decreases with increasing number of

samples. When the number of samples one is allowed is low, one tries to obtain

as much independent information as possible by choosing the samples apart. As

Mb increases and we are allowed to use more samples, one can afford to choose the

samples closer so that field values that were considered to give enough information

about each other in the former case can be also observed and lower values of error
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Figure 2.6: Optimum sampling interval vs number of samples, β = 1/16, SNR
variable.

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Samples

 

 

SNR = 0.1

SNR = 1

SNR = 10

SNR = ∞

∆
x

Figure 2.7: Optimum sampling interval vs number of samples, β = 1, SNR
variable.
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can be obtained.

For a given β and Mb, the sampling interval increases with increasing SNR.

As SNR increases, observing the field at a particular point allows one to estimate

the value of the field at this point and its neighbours better. Therefore, to ensure

that each sample provides new information, one should increase the sampling

interval.

Comparing Fig. 2.6 and Fig. 2.7, we observe that the optimum sampling

intervals are smaller for the high DOF case (Fig. 2.6). As DOF increases, that

is, the number of uncorrelated random variables required to effectively represent

the field increases, and also given the GSM correlation structure, the field value

at each point becomes less correlated with its neighbouring points. Hence the

reduction in the uncertainty of the field values at the neighbours of a given point

due to the observation of the field at a this point is smaller. This, together

with the fact that the variances of field values decrease as the samples are placed

further away from x = 0 point, encourages us to take samples more closely, so

that all the effectively uncorrelated samples with high variances can be collected.

Sensitivity of Performance to the Sampling Intervals: We will now discuss

the sensitivity of the performance to the sampling interval. For this purpose

we look at the error versus sampling interval curves and observe how much the

error deviates from its optimum value as the sampling interval deviates from the

optimum sampling interval.

Fig. 2.8, Fig. 2.9, Fig. 2.10 and Fig. 2.11 present the error versus sampling

interval curves for β = 1, SNR = 0.1, and β = 1, SNR = 10, and β = 1/16,

SNR = 10, and β = 1/16, SNR = 0.1, respectively. We note that in all figures, as

M increases, data for fewer numbers of sampling points are plotted. This is due

to the fact that we only allow the samples to be taken in the bounded domain

D, and as M increases, larger sampling intervals become impermissible.

We observe that in all of these figures, for a given M the error first decreases

as we increase the sampling interval, and after reaching the optimum sampling

interval it starts to increase again. This behaviour may be interpreted in view
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Figure 2.8: Error vs. sampling interval, β = 1, SNR = 0.1, number of samples
variable.
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Figure 2.9: Error vs. sampling interval, β = 1, SNR = 10, number of samples
variable.
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Figure 2.10: Error vs. sampling interval, β = 1/16, SNR = 10, number of samples
variable.
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Figure 2.11: Error vs. sampling interval, β = 1/16, SNR = 0.1, number of
samples variable.
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of the following observation: We expect that the optimum policy will be the

one that takes as many uncorrelated samples with high variances as possible. If

we take the samples too close, we acquire random variables close to each other

whose correlation will be relatively strong due to the nature of the GSM model.

Hence the error will be relatively high, since the samples are spent on obtaining

redundant information. On the other hand if we take the samples far apart

from each other, we may be missing some of the random variables that contain

effectively uncorrelated information with the samples we take. Moreover, we may

waste our sample budget on random variables that have relatively low variance

(the ones that are outside the main lobe of the Gaussian intensity function).

Hence the error may again be relatively high.

While commenting on the sensitivity, we focus on the differences in abso-

lute error in different scenarios. We observe that, for a given β and SNR, as

M increases, the achievable error values become more sensitive to the sampling

interval. For instance, in Fig. 2.8 for M = 10, any sampling interval in the range

[0.1 0.25] provides approximately the same error (≈ 60%); whereas for M = 70, a

similar range of sampling intervals around the optimum sampling interval (such

as [0.02 0.15]) produce error values in the range of ≈ 35 − 50%. When we are

allowed a small number of samples, taking samples with a high enough sampling

interval can easily provide effectively uncorrelated samples; avoiding samples with

low variances is not a serious issue that requires sensitive design, choosing the

sampling interval smaller than a given value is enough. Hence any sampling in-

terval between these lower and higher bounds produces effectively the same error

level with the optimum interval. On the other hand, when a larger number of

samples are allowed, one has to design the locations of the samples more carefully

to find the best trade-off between collecting relatively uncorrelated samples and

avoiding samples with low variances.

We observe that when DOF is low, the error may be considered to be more

sensitive to the sampling interval for low SNR values. For instance, for β = 1,

SNR = 10, and M = 10, any sampling interval in the range [0.3 0.6] provide

approximately the same error with the optimal sampling strategy (≈ 5%). On

the other hand, for β = 1, SNR = 0.1, in order to have approximately the same
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error with the optimal strategy (≈ 60%), only sampling intervals in the range

[0.1 0.25] are allowed. We note that the length of [0.1 0.25] is half of the length

of [0.3 0.6]. On the other hand, when DOF is high, the error is more sensitive to

the sampling interval for high SNR values. We remind that in these comparisons

we consider the variation in absolute error for different scenarios. For instance,

for β = 1/16, SNR = 0.1, and Mb = 10, in order to obtain an error that is

not worser than the error obtained with the optimal strategy by more than 5%

percent (≈ 93 − 98%), it is sufficient to use any sampling interval in the range

of [0.01 0.7]. On the other hand for β = 1/16, SNR = 10, in order to obtain

an error that is not worser than the error obtained with the optimal strategy by

more than 5% percent, (≈ 60 − 65%), it is necessary to use a sampling interval

in the range of [0.1 0.2], a significantly smaller range.

Similar comparisons can be made for the other cases as well: When SNR

is high/low, the sensitivity of the error to the sampling interval increases with

increasing/decreasing DOF. All of these results concerning the sensitivity can be

interpreted in the light of the following observation: In general, we observe that

the error becomes more sensitive to our choice of sampling interval when the

effect of different problem parameters on the optimum sampling interval conflict:

One of the problem parameters requires us to take the samples closer to each

other, while the other requires us to take them farther apart. For instance, low

DOF requires us to take the samples apart whereas low SNR requires us to take

the samples closer. Hence for low DOF, as SNR decreases, the error becomes

more sensitive to the sampling interval. Taking a closer look, we observe that

when DOF is low, the field values are highly correlated with each other, and for

high values of SNR the field values to be observed contain low levels of noise.

Hence the samples carry essentially the same information, making the choice of

the sampling interval relatively unimportant. As SNR decreases, a compromise

between the two conflicting forces is required, making this choice more important:

taking samples close enough so that the noise is effectively washed out, and

taking samples sufficiently apart from each other so that each sample brings new
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information.

2.5 Conclusions

We have considered the representation of a finite-energy non-stationary random

field with a finite number of samples. By considering a parametric non-stationary

field model, namely the Gaussian-Schell model, we obtained the trade-offs be-

tween the number of samples and the representation error, for varying noise levels

and for sources with varying degrees of freedom (DOF). We have discussed the

optimum sampling intervals, and their dependence on the problem parameters.

We have observed that increases in either of (i) the number of allowed samples,

(ii) DOF, or (iii) the noise level, results in a decrease in the optimum sampling

interval. We have also investigated the sensitivity of the error to the chosen sam-

pling interval. We have observed that the error is more sensitive to sampling

interval when (i) the number of allowed samples is high, (ii) DOF is high and the

noise level is low, or (iii) DOF is low and the noise level is high.
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Chapter 3

Representation and Recovery

using Limited Accuracy

Measurements

In Chapter 2, we have investigated the effect of restriction of the total number

of samples to be finite while reconstructing a random field using its samples.

We have assumed that the amplitude accuracies are so high that the sample

values can be assumed to be exact. For a given number of samples, we have

sought the optimal sampling interval in order to represent the field with as low

error as possible. In this chapter, we focus on the effect of limited amplitude

accuracy of the measurements. Our framework is as follows: We aim to optimally

measure an accessible signal, in order to estimate a signal which is not directly

accessible. We consider a measurement device model where each device has a

cost depending on the number of amplitude levels that the device can reliably

distinguish. We also assume that there is a cost budget so that it is not possible to

make a high amplitude resolution measurement at every point. We investigate the

optimal allocation of cost budget to the measurement devices so as to minimize

estimation error. This problem differs from standard estimation problems in

that we are allowed to “design” the number and noise levels of the measurement

devices subject to the cost constraint. We present the trade-off curves between
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the best achievable estimation error and the cost budget. In this chapter, we will

consider this problem in a discrete framework. In Chapter 4, we will formulate

this problem within a continuous framework.

The problem addressed in this chapter was motivated mostly by problems

related to measurement of propagating wave-fields. We are concerned with the

problem of estimating the values of a wave-field in a certain region from measure-

ments of its values at another region. We consider a very general measurement

scenario: Let us consider a wave-field propagating through a system characterized

by a linear input-output relationship. We wish to recover the input wave field

as economically as possible from noisy measurements of the output field. We are

concerned with accuracy both in the sense of spatial resolution and in the sense

of the amplitude resolution. We are also concerned with the cost of performing

the measurements and the trade-offs between the total cost and estimation accu-

racy. The cost of a measurement device is primarily determined by the number

of amplitude levels that the device can reliably distinguish; devices with higher

numbers of distinguishable levels have higher costs. We also assume that there

is a limited cost budget so that it is not possible to make a high amplitude res-

olution measurement at every point. For a given cost budget, we would like to

know how to best make the measurements so as to minimize the estimation error,

or vice versa, leading to a trade-off. In particular, we are interested in questions

such as how many measurements we should make, how the sensitivity of each de-

tector should be chosen, and so forth, in order to obtain the best trade-off. These

questions are not merely of interest for practical purposes but can also lead to

a better understanding of the information relationships inherent in propagating

wave-fields.

While our primary motivation and numerical examples come from wave prop-

agation problems, we emphasize that our formulation is also valid for other mea-

surement problems where similar cost-budget models are applicable, and the ob-

served variables are related to the unknown variables through a linear relation.

One such example is the Wiener filtering problem which is a basic problem in sig-

nal processing with many practical applications. Another example arises in data

communications, where a transmitted signal may suffer intersymbol interference
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as it passes through a medium, and the equalization problem is to estimate the

transmitted signal from the received signal. These problems are of the same

general structure as the one we are considering. In digital implemention of such

estimators, the usual approach is to work with constant accuracy over all sam-

ples of the observation. Our framework introduces great flexibility in terms of the

number, positions, and accuracies of these samples. This not only allows better

optimization, but also allows us to observe a number of interesting trade-offs and

relationships.

The measurement strategy problem we formulate and solve in this chapter

arises in a diversity of physical contexts. We are concerned with measurement

and estimation of spatially (or temporally) distributed fields modeled as random

vectors. An important aspect of our formulation is that it allows sensors with

different performances and costs in the model. While the kind of cost function

we use may come as natural in the context of communication costs, we believe

it has never been used to model the cost of measurement devices. The optimal

measurement problem we define differs from standard estimation problems in

that we are allowed to “design” the number and noise levels of the measurement

devices subject to a total cost constraint. Our main results are presented in the

form of trade-off curves between the estimation error and the total cost. We

discuss the effects of signal-to-noise ratio (SNR), and the degree of coherence

on these trade-offs in wave-propagation problems. The degree of coherence is a

measure of the amount of correlation among different points of a random wave-

field. We are not aware of previous discussion of the effect of degree of coherence

in these types of problems. Our conclusions not only yield practical strategies for

designing optimal measurement systems under cost constraints, but also provide

interesting insights into the nature of information theoretic relationships in wave-

fields.

In Section 3.1 of the chapter, we present the mathematical model of the mea-

surement problem discussed above. A fundamental concept in our formulation,

the cost of a measurement, is discussed in Section 3.2. Some special cases of our

formulation are presented in Section 3.3. In Section 3.4 we propose an iterative

algorithm and provide numerical results. We conclude in Section 3.5.
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3.1 Problem Formulation

In the specific measurement scenario under consideration in this chapter, noisy

measurements are made at the output of a linear system, in order to estimate the

input of the system. We study a discrete version of this problem by assuming

that the space variable is discretized to a fixed finite set of points. The follow-

ing development was first proposed in [3–5]. The system we consider may be

represented by a matrix equation

g = Hf + n, (3.1)

where f ∈ R
N is the unknown input random vector, n ∈ R

M is the random

vector denoting the inherent system noise, and g ∈ RM is the output of the

linear system. We assume that f and n are statistically independent zero-mean

random vectors. Here H is a M × N matrix denoting the linear system. We

put no restrictions on the system matrix H. For instance, in wave propagation

applications, the locations of the measurements and the locations of the unknown

field values may be quite distant from each other, e.g., we may wish to estimate

the field at the outer edges of a region with measurements made in the center.

Measurements are made at the output of the linear system to obtain the

measurement vector s ∈ RM according to the measurement model

s = g + m, (3.2)

where m denotes the measurement noise. We assume that m is independent of f

and n. Further, we assume that the components of m are indepedent, zero-mean

random variables, but not necessarily identically distributed. So, the variance

σ2
mi

of each component of m, indexed by i = 1, . . . ,M , may be different.Here n is

an intrinsic part of the relation between g and f which we have no control over,

whereas m is the noise associated with the measurement devices we use and thus

depends on the choices we make.

In the following formulation, we assume the knowledge of only second-order

statistics of the underlying random variables. We let Kf , Kn , Km, and Ks

denote the covariance matrices of f , n, m, and s, respectively. Note that Ks =
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Figure 3.1: Measurement and estimation systems model block diagram.

HKfH
T + Kn + Km. Note also that since we assume that m has independent

components, Km = diag(σ2
m1
, . . . , σ2

mM
).

We assume that the cost associated with measuring the ith component of g

is Ci = (1/2) log
(
σ2
si
/σ2

mi

)
, where σ2

si
denotes the variance of si. The units of Ci

are bits. Smaller measurement noise levels result in higher costs whereas larger

measurement noise levels allow lower costs. The plausibility of this form for the

cost function is discussed in Section 3.2. The cost of measuring g is defined as
M∑
i=1

Ci, the sum of the costs of measuring all of its components.

The objective is to minimize the mean-square error (MSE) between f and

f̂(s), the estimate of f given s. We consider only linear minimum mean-square

error (LMMSE) estimators, and f̂(s) denotes the LMMSE estimator. Hence the

estimate may be written as f̂(s) = Bs where B is an N by M matrix. A block

diagram illustrating this problem is given in Fig. 3.1.

The problem can be stated as follows: Given the covariance matrices Kf ∈
RN×N , Kn ∈ RM×M , and a system matrix H ∈ RM×N, determine

ε(CB) , min
Km

E{‖f − f̂(s)‖2} (3.3)

= min
Km

min
B

E
{
tr
[
(f − Bs)(f − Bs)T

]}
(3.4)

subject to
M∑

i=1

1

2
log

(
σ2
si

σ2
mi

)
≤ CB. (3.5)

where Km = diag(σ2
m1
, . . . , σ2

mM
) is the covariance of m, E denotes expectation

with respect to f , n, and m, ‖ · ‖ denotes Euclidean norm, and tr denotes the

trace operator.CB is the total cost budget; the sum of the cost of all detectors is

not allowed to exceed CB. We go from (3.3) to (3.4) by writing E{‖f − f̂(s)‖2} =
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E{‖f − Bs)‖2} = E{
N∑
i=1

(f − Bs)2
i } = E{tr[(f −Bs)(f − Bs)T]}. We let σ2

mi
∈

R ∪ {∞}, and use min instead of inf in (3.3).

We note that for a given Km, the minimization over B in (3.4) is a standard

LMMSE problem with solution B = KfH
TK−1

s . This standard solution may be

arrived at using the orthogonality condition E
{
(f −Bs) sT

}
= 0 ∈ RN×M , where

E
{
f sT

}
= KfH

T. Hence we obtain:

ε(CB) = min
Km

tr
(
Kf − KfH

TK−1
s HKf

)
, (3.6)

subject to (3.5). In other words, our aim is to minimize the estimation error by

allocating a given measurement cost budget optimally over the M components

of (4.2). This is equivalent to optimally adjusting the measurement noise level

for each component, realizing that with a given budget, we cannot measure all

components as highly accurately as we wish. Although not explicitly stated, the

number of components we actually measure is also an optimization variable. If

as the result of our optimization we find that Ci ≈ 0 for certain components,

this means that measuring those components do not usefully contribute to the

estimation and therefore need not be measured in the first place.

As seen above, this problem differs from a standard LMMSE estimation prob-

lem in that the covariance Km of the measurement noise is subject to optimiza-

tion. We are allowed to “design” the noise levels of the measurement devices

subject to a total cost constraint so as to minimize the overall estimation error.

To the best of our knowledge this problem is novel.

We would like to note that this minimization problem defined by the objec-

tive in (3.6) and the constraint in (3.5) is not convex. The inequality constraints

given by (3.5) (and the hidden constraint that Km is positive-semidefinite) define

convex constraints with respect to the variable Km, yet the objective function

is not a convex function. For convenience, let us consider the vector of noise

level variances as the optimization variable instead of the matrix Km. Let us

denote this vector with km, where km = [σ2
m1
, . . . , σ2

mM
] = [km1, . . . , kmM ]. Hence

Km can be also written as Km = diag(km). We first observe that the fact

that σ2
mi

≥ 0 defines a convex constraint on the optimization variable km. Now
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consider the constraint given in (3.5): a(km) =
∑M
i=1

1
2
log(1 +

σ2
gi

kmi
) − CB ≤ 0.

The convexity of this constraint may be seen, for instance by taking the second

derivative of a(km) and checking whether the Hessian is positive-semidefinite,

that is whether ∇2a(km) � 0 [151, Ch. 3]. Here this is indeed the case:

∇2a(km) = diag(
σ2

gi
(σ2

gi
+2kmi)

km
2
i (σ2

gi
+kmi)2

) � 0. The fact that the objective function is con-

cave over km can be seen as follows: Let Ke = (Kf −KfH
TK−1

s HKf). Then the

objective function in (3.6) is given by tr(Ke). We note that Ke is the Schur com-

plement of Ks in K = [Ks Ksf ;Kfs Kf ], where Kfs = KfH
†. Schur complement

is matrix concave in K ≻ 0, for example see [151, Exercise 3.58]. Since trace is a

linear operator, tr(Ke) is concave in K. Since K is an affine mapping of km, and

composition with an affine mapping preserves concavity [151, Sec. 3.2.2], tr(Ke)

is concave in km.

Our formulation can be easily generalized to allow repeated measurements

(more than one measurement of any gi is allowed); however repeated measure-

ments always yield higher error for a given cost budget hence including them

in the model does not provide a better performance. This point is discussed in

Section 3.3.0.2.

3.2 Cost Function

We will now discuss the cost of a measurement device. The cost function discussed

here were first proposed in [3–6]. What we refer to as a measurement device is an

instrument which can measure the value of a scalar physical quantity over some

range with some resolution in amplitude. The cost of a measurement device

is primarily determined by the number of amplitude levels that the device can

reliably distinguish, a notion which is sometimes referred to as its dynamic range

(although the term is sometimes also used to refer to an interval). We will assume

that the ranges of measurement devices can be chosen freely to match any interval,

and that this has no effect on the cost of the measurements provided the number

of resolvable levels remains the same (similar to scaling the range of a multimeter).

For a given linear system, the ranges of the measurement devices depend only on
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the given covariances. Therefore, they need to be changed only if the covariances

change. Given the variances of g and m in the measurement process s = g +m,

the number of distinguishable levels can be quantified as

ρ = ̺
σs
σm

= ̺

√√√√
(

1 +
σ2
g

σ2
m

)
, (3.7)

where ̺ > 0 is a constant that depends on how reliably the levels need to be

distinguished. In using this expression we are following the same rationale used

to define the number of distinguishable signal levels at the receiver of an additive

noise channel, which is due to Hartley [152], and further discussed in [153, 154].

The square-root in the expression keeps the number of levels invariant under

scaling of the signals by any constant. Clearly, in the limit of very noisy mea-

surements, ̺ should be 1; therefore we set ̺ = 1 henceforth.

We now list some properties that any plausible cost function must possess:

1. C(ρ) must be a non-negative, monotonically increasing function of ρ, with

C(1) = 0 since a device with one measurement level gives no useful infor-

mation.

2. For any integer L ≥ 1, we must have LC(ρ) ≥ C(ρL). This is because a

measurement device with ρ levels can be used L times in succession with

range adjustments between measurements, to distinguish ρL levels. (We

also note that this property may be expressed in a more general form as
∑L
i=1C(ρi) ≥ C(

∏L
i=1 ρi).)

A function possessing these properties is the logarithm function; therefore we

propose

C(ρ) = log ρ =
1

2
log

(
σ2
s

σ2
m

)
=

1

2
log

(
1 +

σ2
g

σ2
m

)
(3.8)

as the cost of carrying out a measurement s = g +m.

The proposed cost function has the same form as Shannon’s formula for the

capacity of a Gaussian noise channel. This does not come as a surprise since
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a measurement process s = g + m is analogous to sending a message g across

a communication channel that adds a noise term m to it. On the other hand,

the notion of adjusting the range while keeping the number of resolvable lev-

els constant has no direct counterpart in the communication setting; hence, the

measurement and communication problems are not identical problems. We be-

lieve such a cost function has never been used to model the cost of measurement

devices.

We now discuss the proposed cost of a measurement device from a buyer-

seller perspective. In the communication problem, the amount of information

delivered to the receiver is measured by the mutual information I(s; g) = h(s) −
h(m) between the transmitted and received signals. I(s; g) is also an attractive

candidate for the cost function in the measurement scenario since the value of a

measurement would be quantified most fairly by how many bits of information

it actually conveys on the average about the measured quantity. On the other

hand, there is a practical difficulty in charging a fee I(s; g) as it depends on

the actual probability distribution p(g) of the measured quantity. It is logical

that the measurement device manufacturer will try to sell its device at the price

maxp(g) I(s; g) where the maximum is calculated subject to a power constraint

E[g2] ≤ σ2
g . The would-be equipment purchaser on the other hand will not be

willing to pay more than minp(m) maxp(g) I(s; g) since s/he is only assured that

E[m2] ≤ σ2
m. Shannon [153] shows that this minmax problem is solved by the

Gaussian densities for both p(g) and p(m) and the resulting minmax value is the

expression C(ρ) given in (3.8). Thus, the cost function we propose has a satisfying

economic interpretation: the seller of the equipment assumes that the purchaser

will make the best use of the equipment while the purchaser assumes that the

equipment will give the worst type of measurement noise (which is Gaussian) for

the given level of resolution.

Since Gaussian error is an acceptable model for many types of measurement

devices, the cost function that we use makes sense in a wide range of contexts.

For problems where measurement noise is known to follow a different distribution,

the cost function can be modified accordingly.
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Finally we explore the relationship of the measurement problem to rate-

distortion theory. It is clear from Fig. 3.1 that, by the data-processing theo-

rem [155], we have the following relationship regarding the mutual information

of the related random vectors: I(f ; f̂) ≤ I(g; s); i.e., the estimate f̂ can only pro-

vide as much information about f as the measurement devices extract from the

observable g. In turn, by standard arguments, we have I(g; s) ≤ ∑M
i=1 I(gi; si).

The cost function 1
2
log(1+σ2

gi
/σ2

mi
) that we use upper-bounds I(gi; si) whenever

the measurement noise is Gaussian with a given variance σ2
mi

and the variance of

the measured quantity is fixed as σ2
gi
. Thus for Gaussian measurement noise, we

have I(f ; f̂) ≤ CB where CB is the total measurement budget.

The goal of measurements is the minimization of the MSE ε(CB) = E [d(f , f̂)]

within a budget CB where d denotes ‖f − f̂‖2. From a rate-distortion theory

viewpoint, interpreting d as a distortion measure, this is similar to minimizing

the average distortion in the reconstruction of f from a representation f̂ subject

to a rate constraint I(f ; f̂) ≤ CB. This viewpoint immediately gives the bound

ε(CB) ≥ D(CB) where D(CB) is the distortion-rate function applicable to this

situation.

In the rate-distortion framework one is given complete freedom in forming the

reconstruction vectors f̂ subject only to a rate constraint, which in measurement

terminology would mean the ability to apply arbitrary transformations on the ob-

servable g before performing a measurement (so as to carry out the measurement

in the most favorable coordinate system), and not being constrained to linear

measurements or linear estimators. Thus, the measurement problem can be seen

as a deviation from the rate-distortion problem in which the formation of the

reconstruction vector is restricted by various constraints.
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3.3 Special Cases

3.3.0.1 Two-input two-output case

We now consider the special case of the problem where the input and the output

signals are 2 by 1 vectors, that is N = 2, M = 2. The main contribution of

studying this case will be to reveal the following interesting properties of the

cost-error trade-off curves that hold some values of problem parameters: i) the

optimal error-cost trade-off curves may follow different curves for different cost

budget values, forming a piece-wise trade-off curve ii) as cost budget increases,

it may be best to use a device with a small number of distinguishable levels at a

point where a more accurate device were used when the cost budget were smaller.

In particular, we will illustrate that when the variables to be measured are highly

correlated; it is better to use all the cost budget on measuring only one of the

components for low values of budget, and start measuring both them only after

the cost budget becomes sufficiently large.

We will start by making some general observations on the optimization prob-

lem at hand. Let us first express the problem with an alternative but equivalent

formulation. We define the following variables αi = 1
σ2

mi

, i = 1, . . . ,M . Then the

cost constraint can be expressed as a0(α) =
∑M
i=1 0.5 log(1 + αikgii) − CB < 0,

where α = [α1, . . . , αM ]T. The non-negativeness of the variances σ2
mi

can be ex-

pressed with following conditions: ai(α) = −αi ≤ 0, i = 1, . . . ,M . Hence the

optimization problem at hand can be expressed as

min
α∈RM

e(α) (3.9)

such that

a(α) ≤ 0 (3.10)

where e(α) = tr
(
Kf −KfH

T(HKfH
† + Kn + diag(1/αi))

−1
HKf

)
, and a(α) =

[a0(α), . . . , aM(α)]T. Here the inequalities between vectors denote component-

wise comparisons. Let J denote the set of indices of the active constraints,

i.e. the constraints that satisfy the inequality constraints with equality. Let

{∇ai(α)|i ∈ J } denote the set of gradients of active constraints.
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We recall the following definition:

Definition 3.3.1. [156, Defn.12.4] Given the point α and the associated active

constraint set J , it is said that the linear independence constraint qualification

(LICQ) holds if the set of active constraint gradients {∇ai(α)|i ∈ J } is linearly

independent.

We now make the following observation: For the minimization problem at

hand, LICQ holds at any feasible point. This may be proved by enumerating the

different cases for the active constraint sets, and investigating the linear inde-

pendence of these: i) When the cost constraint is inactive, linear independence

of {∇ai(α)|i ∈ J } is trivial, since each element in this set, ∇ai(α) is a vector

with only one nonzero component at ith location. ii) When the cost constraint is

active, and none of the nonnegativess constraints are active, we require ∇a0(α)

be different from zero. This is satisfied since σ2
si
> 0 iii) When cost constraint

is active, and some of the nonnegativess constraints are active, (but not all of

them), linear independence of {∇ai(α)|i ∈ J } follows from αi <∞ and σ2
si
> 0.

iv) When cost constraint is active, and all of the nonnegativess constraints are

active, we have αi = 0, ∀i. This case is not meaningful unless CB = 0, which in

turn is not an meaningful cost budget value.

We now state the necessary conditions for local optimality at point α at

which LICQ holds. Suppose ᾱ is a local minimizer at which LICQ holds. Then

∃ ū ∈ Rm such that [156, Thm 12.1]

∇e(ᾱ) + ∇a(ᾱ)ū = 0 (3.11)

ū ≥ 0̄ (3.12)

a(ᾱ)≤ 0 (3.13)

ūTa(ᾱ) = 0 (3.14)

These are the Karush-Kuhn-Tucker (KKT) Conditions for a problem with no

equality constraints.

Since for the problem at hand LICQ holds at every feasible point, KKT con-

ditions should be satisfied for any local optima, hence any global optima. Hence
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the feasible points at which KKT conditions are satisfied are candidates for global

optima. Thus to find the optimum one can follow the following procedure: first

find the set points that satisfy the KKT conditions, find the associated objection

function values, and choose the one with the best objective function value as the

global optimum. Although this enumeration approach may not be feasible for

large M , it is tractable for N = M = 2, and yields to important insights about

the structure of the problem.

In the rest of this development, we will consider the case N = M = 2, Kn = 0,

and H is the identity matrix. Here Kf can be expressed as follows

Kf =



 kf 11 kf 12

kf 21 kf 22



 (3.15)

where kf 12 = kf 21.

We will now enumerate the possible cases regarding the active and inactive

constraints.

Cost Constraint is Inactive, i.e. not all the allowed budget is spent: No such

feasible point can be a candidate for the global optima, since by using more of

the cost budget, one can improve the objective function, i.e. achieve smaller error

values. Hence, in this case it is not necessary to study the active constraints sets.

Nevertheless, here we present them for the sake of completeness.

(i) J = ∅: u = [0, 0, 0]T ≥ 0. There is no solution for α.

(ii) J = {1}: α1 = 0, u = [0, u2, 0]T ≥ 0. There is no solution for α.

(iii) J = {2}: α2 = 0, u = [0, 0, u3]
T ≥ 0. There is no solution for α.

(iv) J = {1, 2}: α2 = 0, α1 = 0, u = [0, u2, u3]
T ≥ 0. Here a0 = 0 trivially,

this case is not meaningful unless CB = 0.

Cost Constraint is Active, i.e. all the cost budget is spent on the measurement

points:
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(v) J = {0, 1, 2} : α2 = 0, α1 = 0, u = [u1, u2, u3]
T ≥ 0. Here a0 = 0

trivially, this case is not meaningful unless CB = 0, which in turn is not an

meaningful cost budget value.

(vi) J = {0}, i.e. both measurements are done using all the allowed budget:

u = [u1, 0, 0]T ≥ 0.

(vii) J = {0, 1}, i.e. only the second component is measured using all the allowed

budget: α1 = 0, u = [u1, u2, 0]T ≥ 0. Such a feasible point α = [0, α2]
T

exist if there exist a u such that u = [u1, u2, 0]T ≥ 0 satisfying the following

equations

∇e(ᾱ) + ∇a0(ᾱ)u1 + ∇a1(ᾱ)u2 = 0 (3.16)

ui ≥ 0 (3.17)

α = [0,
(22CB − 1)

kf 22

]T (3.18)

such α vectors will be candidates for local optima.

(viii) J = {0, 2}, i.e. only the first component is measured using all the allowed

budget Here α2 = 0, u = [u1, 0, u3]
T ≥ 0. This case is similar to the

previous case where only the second component is measured. The conditions

for such a feasible point to exist can be obtained by rewritting (3.16)-(3.18)

with a change of indices.

It is possible to find the conditions imposed on the problem parameters by the

requirement that the system of equations and inequalities in (3.16)-(3.18) have a

solution. But the resulting equations are algebraically involved, and are not in a

form that is open to direct interpretation. Hence here we will first make a few

remarks on the nature of these solutions, and then consider the special case where

kf 11 = kf 22 = 1. The conditions in (3.16)-(3.18) yield a second order concave

polynomial in L = 22CB − 1 ≥ 0, whose value is required to be non-negative

to satisfy (3.17). For it is to be possible to satisfy these equations with some

cost budget values, the maximum root of this polynomial should be positive so

that for some cost budget values this polynomial can produce positive values.

This requirement gives the conditions on Kf so that we can have “measuring
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Figure 3.2: Error vs. cost budget, kf 11 = kf 22 = 1, kf 12 = 0.9.

only one component type” candidates for the local optima. For the polynomial

evaluated with a particular value of the cost budget to produce a positive value,

the associated L value should be between the roots of the polynomial. This

requirement gives the condition on the cost budget.

We now study the special case where kf 11 = kf 22 = 1. If |kf12| < 1√
3
≈ 0.58,

regardless of the allowed cost, it is better to measure both of the components.

The optimum αi’s are given by α1 = α2 = 1 + exp(CB). Here Item (vii) or

Item (viii) do not provide candidates for global optimum, hence regardless of the

allowed cost, we measure both of the components. If |kf 12| > 1√
3
, measuring only

one of the components with all the cost budget at hand is the globally optimum

scheme, if the cost budget satisfies the following equation

CB ≤ 0.5 log(
3kf

2
12 − 1

(1 − kf
2
12)

2
+ 1). (3.19)

This threshold is found by solving (3.16)-(3.18). Now the cases described in

Items (vii) and (viii) provide candidates for global optimum. Comparing the

objective function values provided by the solution of these equations with the one

in Item (vi) reveals that measuring only one of the components is the globally

optimum scheme for such cost budget values.

To sum up, while measuring a random vector with two components having
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the same variance, the optimal measurement strategies are found as follows: if

the random signal is relatively uncorrelated (the correlation coefficient between

two components is less than 1√
3
), for all cost budget values, measuring both

of the components with the same number of distinguishable levels is optimal

for all cost budget values. If the unknown signal is relatively correlated (the

correlation coefficient is larger than 1√
3
), measuring only one component or both

of the component can be optimal depending on the cost budget available: for

relatively low cost budget values (cost budget values smaller than the bound

given (3.19).), measuring only one the components with all the cost budget at

hand is optimal. Here any of the components can be measured. On the other

hand, if the cost budget is larger than this threshold value, measuring both of

the components with equal cost allocation is optimal. Considering the optimal

cost allocations for different cost budget values around the treshold in (3.19) we

make the following observation: Depending on the problem parameters, it may

be necessary to use a measurement device with less number of distinguishable

levels at a point where previously a more precise measurement device is assigned.

We now illustrate the piece-wise error-cost curve with an example. Let kf 12 =

0.9. By Eqn. 3.19, for CB . 2.67 bits, it is better to spend all the cost budget

on only one component. For larger cost budget values, measuring both of the

components is more better. Fig. 3.2 presents the resulting the cost-error trade-off

curve, where the error is reported as a percentage defined as 100 ε(CB)/ tr (Kf).

The curve illustrates the piece-wise behaviour of the cost-error trade-off with the

joint point at CB ≈ 2.67 bits.

Finally, we would like to note that when the error-cost curves are piece-wise,

the region formed by the achievable error and cost budget pairs is not convex.

Nevertheless, one can use the following time sharing approach to achieve the error-

cost pairs that are in the convex hull of this region, but not reachable with the

current setting. Let us choose two cost budget values C1
B and C2

B, where C1
B/ C2

B

is smaller/larger than the bound given in (3.19). For θ ∈ [0, 1] of the total time,

we employ the strategy of measuring only one of the components with the cost

C1
B, and in the remaining 1− θ of the time, we employ the strategy of measuring

both of the components with a total cost of C2
B. Hence, the average cost over
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time will be given by the following expression: CB = θC1
B + (1 − θ)C2

B. Let the

error values achieved with these strategies be e1 and e2, respectively. Hence,

the average error over the total time will be given by the following expression:

e = θ e1+(1−θ)e2. Thus, an average error of e is achieved under a cost budget CB.

By choosing different C1
B and C2

B, and different time sharing ratios θ, one will be

able to achieve the error-cost values in the convex hull of the region. In particular,

by choosing cost budget values relatively close to the threshold in (3.19), one will

able to achieve error-cost values that would not have been achievable if we hadn’t

used the time sharing approach.

3.3.0.2 Repeated Measurements of the Field at a Single Point

As noted, repeated measurements of components of g are always suboptimal in

the sense that doing so results in greater error for given cost. Here we allow

more than one measurement of any component of g and show that this is indeed

the case. We assume that different measurements are statistically independent

conditional on g even if repeated measurements of the same component are in

question. This result was first proved in [3], here we provide a more compact

presentation.

First we consider the simple case in which repeated measurements are made

at a single point gi and the other components of g are not measured. That

is, one is allowed to make Pi measurements on gi indexed by j = 1, . . . , Pi as

sij = gi + mi
j subject to the usual cost constraint. Here the subscript denotes

the index of the component of g where the repeated measurements are made.

Since no other component of g is measured, the total number of measurements

is equal to the number of repeated components Pi, the measurement noise vector

mi = [mi
1, . . . , m

i
Pi

]T ∈ RPi, and the measurement vector si = [si1, . . . , s
i
Pi

]T ∈ RPi.

We consider the problem of estimation of a single component of the input field

fk where k ∈ 1, . . . , N . By studying this case, we wish to see which measurement

strategy is better: (i) to make one high quality measurement by renting the

best device within budget limits, or (ii) to split the budget among multiple lower

quality devices. Simple LMMSE analysis shows that the first alternative is better,
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as we now show.

For any given allocation of noise variances (σ2
m1
, . . . , σ2

mPi
), the Pi measure-

ments yield the LMMSE estimate f̂k(s) = aTs where a ∈ RPi . Here the compo-

nents of a are obtained by solving the orthogonality conditions:

aj =
E [fkgi]

σ2
eq + σ2

gi

σ2
eq

σ2
mj

, (3.20)

where σ2
eq =

(
Pi∑
j=1

1
σ2

mj

)−1

. The associated MSE is

εi = σ2
fk
− E [fkgi]

2

σ2
eq + σ2

gi

. (3.21)

The total measurement cost for this scheme is
∑Pi
j=1

1
2
log

(
1 + σ2

gi
/σ2

mj

)
. We ob-

serve that among all schemes of allocation of noise variances yielding the same

σ2
eq (hence giving the same MSE), the cost is minimized by taking σ2

mj
= σ2

eq for

any one of the indices j and σ2
mj

= ∞ for the others. This corresponds to making

one high quality measurement. Therefore for a given error, the total cost is min-

imized by making one high quality measurement rather than many low quality

ones. The error is a strictly decreasing function of the cost so that we can further

conclude that this is also the strategy minimizing error for given cost.

We note that this result trivially holds when one wants to estimate the whole

field vector f ∈ RN instead of a single component fk of the vector. It also remains

true when other components of g are measured alongside with gi, as can be shown

by noting that the estimation errors for the components of g do not change as

long as σ2
eq is the same, so that the estimator coefficients associated with these

components and therefore the estimation error for f also do not change. Therefore

we conclude that allowing repeated measurements of the same point does not

provide an opportunity for further optimization, since for every measurement

scheme involving more than one measurement of the same component, it is certain

that there is another scheme that yields the same error with a lower cost budget.
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3.3.0.3 Uncorrelated Case

In order to see the relationship of our formulation with the “water-filling” so-

lutions common in certain information-theoretic problems (e.g., [155, Ch.9], [40,

Ch.13]), we consider the special case where N = M , the matrix Kf is diagonal,

Kn = 0, and H is the identity matrix. Hence both the components of f , and the

components of s are uncorrelated.

In this special case we have N separate LMMSE problems tied together by

a total cost constraint. By standard techniques [155, Ch.9], [40, Ch.13], which

are illustrated in [3], the optimal detector variances that minimize the estimation

error can be obtained as follows

σ2
mi

=






νσ2
fi

σ2
fi
−ν if σ2

fi
− ν > 0

∞ if σ2
fi
− ν ≤ 0

(3.22)

where the parameter ν is selected so that the total cost is CB. Notice that for

those components for which there is a non-trivial measurement (σ2
mi

< ∞), we

have 1/σ2
mi

+ 1/σ2
fi

= 1/ν, which is reminiscent of the “water-filling” solutions

referred to above.

3.3.0.4 Accurate Measurements (High Budget) Case

When the uncertainty introduced by the measurements are small with respect to

the range of g, we refer to this case as the accurate measurements case. This is

the case where Ks is near Kg, where Kg = HKfH
T + Kn is the covariance of

g. Hence we may use the first order approximation of the inverse of a positive

definite symmetric matrix to write K−1
s ≈ K−1

g − K−1
g KmK−1

g , and using the

linearity of the trace operator, the MMSE can be written as

tr
(
Kf − KfH

TK−1
g HKf

)
+ tr

(
KfH

TK−1
g KmK−1

g HKf

)
. (3.23)

The error is expressed as the sum of two parts. The first part is independent

of the accuracy of the measurements. For physical phenomena represented by

noninvertible matrices H, this irreducible error remains even if the measurements
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are perfect, and corresponds to the limited information transfer capability of the

physical system. The second additive error component is due to the imperfect

measurements. In this case the estimation error is a linear function of Km, and

the resulting optimization problem is convex. Since the objective and constraint

functions are differentiable and Slater’s condition holds, the Karush-Kuhn-Tucker

(KKT) conditions are necessary and sufficient for optimality [151, Ch.5]. Hence

by solving the KKT conditions, the optimal noise levels can be obtained as [3]

σ2
mi

=
−σ2

gi
+

√
σ4
gi

+
4σ2

gi

νdii

2
, (3.24)

where ν > 0 is a parameter chosen so that the total cost is CB, and dii’s are the

diagonal elements of D = K−1
g HK2

f H
TK−1

g .

3.4 Trade-offs between Error and Cost Budget

First we present the algorithm we employed for solving the optimization problem

(3.6). Our algorithm is based on (3.4) and relies on taking turns in fixing B

and Km and minimizing over the other. For fixed Km, the optimal value of the

linear estimator B that minimizes the error can be analytically written in terms

of Km as B = KfH
T
(
HKfH

T + Kn + Km

)−1
. On the other hand, if we fix B,

the problem is to minimize tr
(
BKmBT

)
over Km subject to (3.5). Since the

differentiability and Slater’s condition hold in this case as well, the optimal noise

levels can be found as

σ2
mi

=
−σ2

gi
+

√
σ4
gi

+
4σ2

gi

ηpii

2
, (3.25)

by solving the KKT conditions. Here η > 0 is a parameter chosen so that the

total cost is CB, and pii’s are the diagonal elements of P = BTB.

The resulting algorithm is summarized as follows (Fig. 3.3): We initialize the

algorithm by setting t = 0 and Km
(t=0) to a random positive-definite diagonal

matrix. At each iteration t, first we fix Km and set B(t+1) = KfH
T
(
K(t)
s

)−1

where K(t)
s = HKfH

T + Kn + K(t)
m , which is the optimum value of B for Km

(t).

Then we fix B and minimize over Km: We obtain K(t+1)
m by solving equation
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solve arg min
Km

E{‖f − Bs‖2}

s.t.
M∑
i=1

Ci ≤ CB

solve arg min
B

E{‖f − Bs‖2}
s.t.

M∑
i=1

Ci ≤ CB

replace

B

replace

Km

Figure 3.3: Block diagram of the algorithm.

(3.24) with pii replaced with ai =
∑M
j=1

(
b
(t+1)
j,i

)2
. For the stopping criterion,

we use the relative error: if ε(CB)/ tr (Kf) does not change by more than 10−4

over 10 consecutive iterations, we stop; otherwise, we increment t and continue.

Since the sequence of error values form a monotonically decreasing sequence and

the error is bounded from below, the sequence of error values produced by this

algorithm is guaranteed to converge to a limit value. In practice, the algorithm

stops typically within 10-150 iterations depending on the problem parameters.

Details on this type of algorithm may be found, for instance in [157].

The problem we formulate and solve in this chapter was motivated by the

physical problem of measuring propagating wave fields at a certain number of

points and estimating the values of the field, possibly at other, distant locations.

Although our formulation can handle very general cases of this problem, in our

numerical examples we will focus on the case where there are two planar or spher-

ical reference surfaces, perpendicular to the axis of propagation and separated by

a certain distance. We assume that all measurement probes are placed uniformly

on one surface and we desire to estimate the field on the other surface. In this case

the measured field is related to the unknown field through a diffraction integral,

a convenient approximation of which is the Fresnel diffraction integral or more

generally a quadratic-phase integral (linear canonical transform) [158, Ch.8], [159,

Ch.2], and [160, 161]. It is well known that these integrals can be expressed in

terms of the fractional Fourier transform (FRT), which provides an elegant and

pure description of these systems [18, Ch.9], [162], and which has found many

applications in signal processing [163–170]. The FRT is the fractional operator

power of the Fourier transform with fractional order a. When a = 0 the FRT
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reduces to the identity operation and when a = 1 it reduces to the ordinary

Fourier transform. Moreover, the transform is index-additive: the a1th transform

of the a2th transform is equal to the a1 + a2th transform. Further information

on the FRT and its computation may be found in [18, 62]. Essentially, the FRT

captures the underlying physics of wave propagation and diffraction phenomena

in its purest form and is therefore suitable for modeling wave propagation for our

present purposes. Thus in our examples we will take the system matrix H to be

the N by N real equivalent of the N/2 by N/2 complex FRT matrix. For the

generation of FRT matrices of different orders, an implementation of the algo-

rithm presented in [171] and in [18, Ch.6] is used; this implementation is available

at [172].

Propagating wave-fields may have different degrees of what is known as co-

herence. Highly coherent fields are those whose values at different points are

highly correlated with each other. Highly incoherent fields are those whose val-

ues at different points are highly uncorrelated. Since we have observed that our

results depend on the degree of coherence of the fields, we will consider several

covariance matrices corresponding to different degrees of coherence (correlation

between their components). It is known that highly coherent fields have covari-

ance matrices whose eigenvalues are highly unevenly distributed. On the other

hand, highly incoherent fields have eigenvalues which are nearly equal to each

other [58]. To obtain covariance matrices with different degrees of coherence, we

will choose the eigenvalues to be normally distributed with standard deviation

equal to N/α pixels. Here the parameter α can also be interpreted as the number

of standard deviations of the Gaussian covered by the N samples. In our experi-

ments α takes the values α = 0.25, 2, 16, 128, 1024, where α = 1024 corresponds

to the case where all but one eigenvalue is negligible, and α = 0.25 corresponds

to the case where all eigenvalues are nearly equal. While α is a convenient pa-

rameter to work with, we note that it should not be seen as a linear measure

of the degree of coherence [58]. To generate the covariance matrices with these

eigenvalues, we use the eigenvalue-eigenvector decomposition of a covariance ma-

trix K = QΛQT, where Λ = diag(ςi). Here the orthogonal matrix Q is obtained

by QR decomposition of a N ×N matrix with i.i.d. zero-mean Gaussian entries.
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For the system noise n, the covariance matrix is generated similarly with α = 4

with a different Q matrix.

Another important parameter used in the experiments is

SNR
∆
=

tr(HKfH
T)

tr (Kn)
=

∑N
i=1 σ

2
fi∑M

i=1 σ
2
ni

, (3.26)

where the second form follows from HTH = I which in turn follows from the

unitarity of the FRT. SNR measures the ratio of signal power to inherent system

noise power, before measurements.

In the following experiments our main purpose will be to investigate the trade-

off between the MSE error ε(CB) and measurement cost budget CB after we have

optimized over all possible allocations of cost over the measurement devices. The

error will be reported as a percentage defined as 100 ε(CB)/ tr (Kf ). The cost

budget CB is measured in bits by taking logarithms to base 2. Unless otherwise

stated all experiments are done with a = 0.5 and N = M = 256.

Effect of noise level on trade-offs: This experiment investigates the effect

of SNR on the trade-off between CB and ε(CB). In this experiment, SNR was

variable, ranging over 0.1, 1, 10, ∞ and two different values of α were considered.

Fig. 3.4 and Fig. 3.5 give the curves for low and high α values, respectively.

We notice that for both of the cases ε(CB) is very sensitive to increases in CB

for smaller CB. Then it becomes less responsive and eventually saturates to the

error value corresponding to zero measurement noise. For each value of cost, the

error decreases as SNR increases, and for higher cost values will approach zero

as SNR → ∞. We see that when the field is more highly coherent (Fig. 3.5),

we obtain much better trade-off curves for all values of SNR than Fig. 3.4 which

represents the highly incoherent extreme. For instance for SNR = ∞, for the

highly incoherent field an error of 10% is obtained at a cost of 400 bits, whereas

for the highly coherent field the same error is achieved at a cost lower than 5 bits.

This point is further investigated in the experiment.

Effect of degree of coherence on trade-offs: This experiment investigates the

effect of degree of coherence of the unknown field on the trade-off between CB
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Figure 3.4: Error vs. cost budget for α = 0.25, SNR variable.
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Figure 3.5: Error vs. cost budget for α = 1024, SNR variable.
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Figure 3.6: Error vs. cost budget for SNR = 0.1, α variable.

and ε(CB). Fig. 3.6 and Fig. 3.7 show the results for two different SNR values

(SNR = 0.1 and SNR = ∞), for α = 0.25, 2, 16, 128, 1024. Both of the plots

show that for low values of α corresponding to lower degrees of coherence, it is

more difficult to achieve low values of error within a given budget. But as α

increases, the total uncertainty in the field decreases, and it becomes a lot easier

to achieve lower values of error. In fact, for high values of α and for low values

of budget, the optimal strategy to minimize error turns out to be to measure the

field value at only a few points with more accurate (and costly) measurement

devices, rather than spreading the cost budget among many measurement points.

This observation is further investigated in the upcoming experiments.

It is interesting to note that in all of the numerical examples we have con-

sidered, including the incoherent case, it is possible to reach with an average of

4 bits per component, the same error level that would be achieved with infinite

accuracy (and cost).

Comparing the performances in Fig. 3.6 and Fig. 3.7 for low and high values of

the cost budget, we see that for low budget values the effect of degree of coherence

of the field can be considered more pronounced in the high SNR case, whereas

for high budget values this effect is more pronounced in the low SNR case: For

high values of cost budget, it is always possible to obtain very low values of error
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Figure 3.7: Error vs. cost budget for SNR = ∞, α variable.

(≈ 0) regardless of degree of coherence, when the SNR is high. But when the

SNR is low and the cost budget is high, a substantial performance difference is

observed between the correlated and uncorrelated fields, since it is possible to

effectively cancel the effect of system noise n when the degree of coherence of

the field is high, yielding a better performance. When the budget is small and

the SNR is low, although highly correlated fields lead to better performance, this

improvement is limited by the presence of noise. When the budget is small but

SNR is high, it is possible to obtain very low values of error (≈ 0) when the

field is highly correlated, resulting in a far better performance compared to the

uncorrelated case.

Effect of noise level on the number of effective measurements: This experiment

investigates the effect of SNR on the relationship between the number of effective

measurements Meff and the budget CB. We will consider a measurement at a point

to be effectively made if the cost of the measurement at this point is greater than

p (CB/N) bits. With this choice of threshold, it is guaranteed that the total cost

of the measurements that are effectively made is higher than (1 − p)CB. We use

p = 0.125. Measurements with less cost are very noisy measurements and do not

contribute much either to the quality of the estimate or the total cost, so that it

does not make much difference whether we actually perform them or not.
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For α = 0.25, we see that one has to do measurements at all of the M = 256

measurement points for all values of SNR and for all values of CB. This result

is plausible since the field values are nearly uncorrelated in this case, and each

point can be considered to provide new information.

The case of highly coherent fields is more interesting. Fig. 3.8 shows the

results for α = 1024 with SNR = 0.1, 1, 10,∞. For low values of SNR, the

optimal strategy is to split the budget relatively broadly among the M points.

On the other hand, for high values of SNR, the best strategy is to allocate the

budget to a smaller number of points. To understand this behavior, we observe

that in this experiment the field values are highly correlated, hence the points

measured carry nearly the same information. On the hand the system noise is

highly uncorrelated. Based on these two observations, we can say that measuring

a larger number of points increases the averaging effect and thus suppression of the

system noise. Successively measuring highly correlated variables normally adds

little information [so that one would prefer fewer but more accurate measurements

instead.] However, when there is a lot of noise, the benefits of noise suppression

can outweigh this so that a larger number of measurements are preferred.

Although the curves behave as if the number of effective measurements satu-

rate at an asymptote for high values of cost budget, this is in fact not true and

the number of effective measurements continue to increase as budget increases.

This point is further discussed in the next experiment.

Effect of degree of coherence on the number of effective measurements: This

experiment investigates the effect of degree of coherence of the unknown field

on the relationship between the number of effective measurements Meff and the

budget CB. Fig. 3.9 shows the results for SNR = 0.1, α = 0.25, 2, 16, 128, 1024.

We see that for all values of α, and for low values of cost budget, the best strategy

is to measure more accurately a relatively smaller number of points. But as the

budget increases, the information that can be gained by measuring the field at a

limited number of points with greater and greater accuracy saturates and splitting

the budget over a larger number of measurement points become beneficial. For

low values of α, this shift in strategy takes place at lower values of cost budget.
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Figure 3.8: Effective number of measurements vs. cost budget for α = 1024, SNR
variable.

For a highly coherent field, the measurement of the field value at a particular

point says much more about the field values at other points, and the benefit of

measuring some of the field values with greater accuracy is prevailing.

Comparing this plot with Fig. 3.6 shows that the increase in the number of

effective measurements for higher values of budget is not very meaningful since,

for these budget values the error has almost reached its saturation value, but the

algorithm being blind to this fact, increases the number of effective measurements

to achieve tiny decreases in error. For instance, with α = 1024, the error reaches

a value of almost zero for a cost budget of 200 bits, and beyond this cost budget

any increase in the number of measurements is made for the sake of a very small

performance improvement.

We have also repeated the above experiment made for SNR = 0.1 for other

values of SNR. We have observed that as SNR increases, a similar behavior is

observed: the number of effective measurements again increases with increasing

budget for all values of α. But this time the rate of increase of the number of

effective measurements with increasing budget is smaller. Also, at a given cost

budget, the ratio of the number of effective measurements is larger for different

values of α. Hence the difference in the optimum cost allocation strategies for
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Figure 3.9: Effective number of measurements vs. cost budget for SNR = 0.1, α
variable.

different values of α is more apparent for higher values of SNR.

Comparison to uniform cost allocation strategy: This experiment aims to

demonstrate how applying the optimum cost allocation strategy we have em-

ployed up to this point, improves the trade-off between CB and ε(CB) compared

to a simple uniform cost allocation strategy, where the cost budget is equally

allocated: Ci = CB/M , i = 1, . . . ,M . We expect that use of the optimal cost

allocation will make a bigger difference for more highly coherent fields, since

previous experiment shows that in this case the optimum cost allocation is dras-

tically different from a uniform cost allocation scheme. Furthermore, Fig. 3.4

suggests this effect should be more pronounced when SNR is high. Fig. 3.10 com-

pares the trade-off curves with optimum and uniform cost allocation schemes with

α = 1024, SNR = 0.1, 1, 10,∞. The dashed curves and the straight lines show

the results for the optimum cost allocation scheme and the uniform cost alloca-

tion scheme respectively. As expected, for all values of SNR, the optimum cost

allocation scheme gives significantly better trade-offs compared to the uniform

cost allocation case. For low CB values, as SNR increases, the ratio of percentage

error corresponding to uniform cost allocation to that corresponding to optimum

cost allocation increases, showing that when the degree of coherence is high and

the system noise is small, it is more important to optimize the allocation of the
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Figure 3.10: Error vs. cost budget for α = 1024, SNR variable. The dotted lines
are for optimal cost allocation and the corresponding solid lines are for uniform
cost allocation.

budget to the measurement points.

Effect of making measurements at a smaller number of points: This exper-

iment investigates the effect of making measurements at a smaller number of

points. More specifically, we will examine the dependence of ε(CB) on Ms ≤ M

for a fixed CB. Fig. 3.11 shows the results for a = 0.5,N = M = 256, SNR = ∞,

α = 16 and Ms = 8, 16, 32, 64, 128, 256. The measurement locations were chosen

as uniformly spaced subgrids of the full 256-point grid (i.e. the grid for Ms = 32

was a sub-grid of that for Ms = 64 which was a sub-grid of that for Ms = 128,

etc.). We see that for Ms = 64 and Ms = 128 roughly the same performance with

the Ms = M = 256 case is observed, whereas for other values the performance

degrades with decreasing Ms. This behavior is related to the effective number

of nonzero eigenvalues. For α = 16, the eigenvalues are samples of a Gaussian

with standard deviation 256/16 pixels. Assuming the values of a Gaussian be-

yond its third standard deviation are negligible, the covariance matrix has about

3 × 256/16 = 48 nonzero eigenvalues. Indeed we observe that as long as the

number of measurements Ms is higher than 48, the trade-off curves are similar to

the Ms = M case. But if we restrict ourselves to do measurements at a smaller

number of points such as Ms = 8, 16, 32, a substantial performance degradation
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Figure 3.11: Error vs. cost budget for N = 256, α = 16, SNR = ∞, M variable.

is observed.

3.5 Conclusions

Motivated by problems related to measurement of propagating wave-fields, we for-

mulated the problem of optimally measuring observed variables so as to estimate

unknown variables under a total cost constraint. We proposed a measurement de-

vice model where each device has a cost depending on its resolving power. Based

on this cost function we determine the number of measurement devices and their

accuracies that minimize estimation error for given total cost. We produce trade-

off curves between the error and the cost budget, corresponding to the optimal

measurement strategy. We discuss the effects of SNR, distance of propagation,

and the degree of coherence of the wave-fields on these trade-offs.

Specific hardware may deviate from our hardware-independent cost-budget

model to varying degrees. However, all measurement devices have finite accuracy

and in general their cost is an increasing function of their accuracy. Therefore,

we believe that the nature of the tradeoffs observed and the general conclusions

and insights will remain useful under a wide variety of circumstances.
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We have seen that making measurements with higher quality (and cost) mea-

surement devices, should be preferred over making repeated measurements with

lower cost (and quality) devices. This helps explain why it is better to make a

limited number of high quality measurements when the field is highly coherent.

At the other extreme of coherence, when the fields are uncorrelated, we noted

that the best measurement strategy is a reverse-water filling scheme.

As expected, in our numerical experiments we observe that the estimation

error decreases with increasing cost budget, and reaches zero error when there is

no system noise. Not surprisingly, with increasing system noise levels (decreasing

SNRs), poorer trade-offs are observed. The cost-error trade-off is greatly degraded

by decreasing SNR for relatively incoherent fields, whereas it can be said to be

less sensitive to SNR for coherent fields.

In general, it is possible to obtain better trade-off curves for relatively coherent

fields as compared to relatively incoherent fields for all values of SNR. The

difference can be quite substantial and in the limit of full coherence/incoherence

very large. For instance, for a coherent field, a total cost of a few bits may be

sufficient to obtain a certain error, whereas for an incoherent field one may need

a total cost which is of the order of N times as large as this to achieve the same

error. For relatively incoherent fields the best measurement strategy is to measure

a greater number or most of the field components, whereas for relatively coherent

light it is better to allocate the cost budget among a smaller number of field

components. How small a number also depends on the SNR. It is preferable to

measure a somewhat larger number of components when the SNR is low, but still

many of the field components remain effectively unmeasured. These observations

underline the fact that the degree of coherence (correlation) is a fundamental

parameter that can have a significant effect on the results and therefore should

be taken into consideration in order to ensure general applicability.
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Chapter 4

Joint Optimization of Number of

Samples, Sample Locations and

Measurement Accuracies:

Uniform Case

In Chapter 3, we have introduced a cost budget framework which focuses on the

effect of limited amplitude accuracies of the measurements in signal reconstruc-

tion. There, we have formulated the problem in a discrete framework, whereas

now we will formulate this problem in a continuous framework. We may summa-

rize our approach as follows: we consider the problem of efficient representation

of a finite-energy non-stationary field using a finite number of bits. A finite num-

ber of samples of the field is used for the representation. Each sample is of finite

accuracy; that is, there is a finite number of distinguishable amplitude levels in

each sample. Therefore one can use a finite number of bits to represent each sam-

ple. The total number of bits used for all of the samples constitutes the bit cost

associated with the representation. For a given bit cost budget, we determine the

optimum number, locations and the accuracies of the samples in order to repre-

sent the field with as low error as possible. We consider two different cases under

this framework: i) uniform case: samples are equally spaced and each sample is
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taken with the same cost. In this case, we determine the optimum number and

spacing of the samples. ii) nonuniform case: the more general problem where

the number, locations, and accuracies of the samples can be chosen freely. In

this case, samples need not be equally spaced from each other, and they can be

taken with possibly different accuracies. The first case will be the subject of this

chapter, whereas the second case will be investigated in Chapter 5.

One of the questions we ask here is the following: Given that in practice the

samples will have limited amplitude accuracy, is it possible to achieve lower re-

construction errors by choosing to sample at a rate different than the Nyquist

rate? Although one may expect to compensate for the limited accuracy of the

samples by oversampling, the precise relationships between the sampling parame-

ters and the reconstruction error are not immediately evident. In this chapter we

give quantitative answers to this question by determining the optimal sampling

parameters and the resulting performance bounds for the best achievable error

for a given bit budget.

We now present an overview of this chapter. In Section 4.1, we present our

general mathematical framework. We show the invariance of our cost error trade-

off curves for GSM fields propagating through first order systems in Section 4.2.

In Section 4.3, we present the optimum sampling strategies and the trade-off

curves between the cost and the error. We compare our optimal trade-off curves

with the ones that would be obtained if Shannon-Nyquist sampling theorem was

used as the guideline in Section 4.4. We conclude in Section 4.5.

4.1 Problem Formulation

Let the input field f(x) reside in the z = 0 plane, which is perpendicular to the

optical axis z. Considering only one transverse dimension for simplicity, let f(x)

be a zero-mean finite-energy proper complex Gaussian random field (random

process). f(x) passes through a possibly noisy linear system to produce the
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output g(x)

g(x) = L{f(x)} + n(x), (4.1)

where L{.} denotes the linear optical system, and n(x) is a random field denoting

the system noise. n(x) is modelled as a zero-mean proper complex Gaussian

random field. We assume that the unknown random field f(x) and the system

noise n(x) are statistically independent. We consider all signals and estimators

over some bounded domainD. Let Kf(x1, x2) = E [f(x1)f
∗(x2)] andKn(x1, x2) =

E [n(x1)n
∗(x2)] denote the covariance functions of f(x) and n(x), respectively.

Here ∗ denotes complex conjugation. We assume that f(x) is a finite-energy

random field,
∫∞
−∞Kf(x, x)dx <∞, and Kn(x, x) is bounded.

M finite-accuracy samples of g(x) are taken at the sampling locations x =

ξ1, . . . , ξM ∈ R. The limited amplitude accuracy of the samples is modelled

through an additive noise field

si = g(ξi) +mi, (4.2)

We assume that the mi’s are independent, zero mean, proper complex Gaussian

random variables. We further assume that the mi’s are statistically indepen-

dent of f(x) and n(x). By putting si in vector form, we obtain the vector of

observations s = [s1, . . . , sM ]T.

There is a cost associated with each sample. The cost associated with the ith

sample is given by Csi
= log2(σ

2
si
/σ2

mi
) and is measured in bits. Here σ2

si
= E [|si|2]

and σ2
mi

= E [|mi|2], so that σsi
/σmi

is essentially the ratio of the spread of

the signal to the spread of the uncertainty, which corresponds to the number of

distinguishable levels (dynamic range). Hence the logarithm of this number may

be considered to provide a measure of the number of bits needed to represent

this variable. For a field value at a given location, smaller noise levels (smaller

σ2
mi

) correspond to a sample with higher amplitude accuracy and higher cost. On

the other hand, a larger noise level corresponds to lower amplitude accuracy and

lower cost. Further discussion of this cost function can be found in Section 3.2.

With the vector s at hand, one can construct an estimate of the continuous

field f(x) given s. How well can f(x) be recovered based on s? To make this
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question precise, we can find f̂(x | s): the minimum mean-square error (MMSE)

estimate of f(x) given s. This is the estimate that will minimize the mean-square

error between the original field and the reconstructed field given the observations

s. The error of this estimate will, of course, depend on the number, locations,

and accuracies of the samples. We consider two different problems based on this

general framework: i) equidistant sampling with uniform cost allocation ii) non-

uniform sampling with non-uniform cost allocation. Here we will investigate the

uniform version and the non-uniform version will be investigated in Chapter 5.

Here, the sampling locations x = ξ1, . . . , ξM ∈ D are equidistant with the

spacing ∆x, and the midpoint x0 = 0.5(ξ1 + ξM). The accuracy (hence the cost)

associated with each sample is the same; that is Csi
= Cs1, i = 1, . . . ,M . The

total cost of the representation is then simply CT =
∑M
i=1Csi

= MCs1 = MCs.

For a given CB, our objective is to choose the number of the samples M and the

sampling interval ∆x, while satisfying CT ≤ CB, with the objective of minimizing

the minimum mean-square error between f(x) and f̂(x | s). We note that since

the cost of each sample is assumed to be the same, by choosing the number of

samples we also determine the cost of each sample.

This problem can be stated as one of minimizing

E
[∫

D
‖f(x) − f̂(x | s)‖2dx

]
, (4.3)

over ∆x, x0, and M subject to

CT = MCs ≤ CB. (4.4)

At this point it is worth recalling some of the properties of the MMSE esti-

mation. As noted above, f̂(x | s) is the estimate that minimizes the mean-square

error between f(x) and f̂(x | s) for a given s. The associated mean-square error

E
[∫
D ‖f(x) − f̂(x | s)‖2dx

]
does not depend on the actual value of s, but only

on the joint probability distribution of f(x) and s. Under the current problem

formulation, for a given cost budget CB, this joint probability distribution is deter-

mined by the number of samples M , the sampling interval ∆x, and the midpoint

x0. The formulation above seek the best choices for these design parameters.
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We now provide some details regarding MMSE estimation. The MMSE esti-

mate f̂(x | s) can be written as [133, Ch. 6].

f̂(x | s) =
M∑

j=1

hj(x)sj = h(x)s (4.5)

where h(x) = [h1(x), . . . , hM(x)] We note that, given a set of samples, the set

of functions h(x) are the optimal functions that minimize the mean-square error

between the actual field and the reconstructed field. Here h(x) satisfies the

equation [133, Ch. 6]

Kf s(x)=h(x)Ks, (4.6)

where Kf s(x) = E [f(x)s†] = [E [f(x)s∗1], . . . ,E [f(x)s∗M ]] is the cross covariance

between the input field f(x) and the representation vector s, and Ks =E [ss†] is

the auto-covariance of s. The symbol † denotes complex conjugate transpose. To

determine the optimal linear estimate, one solves this last equation for h(x). The

resulting estimate
∑M
j=1 hj(x)sj can be interpreted as the orthogonal projection

of the unknown random field f(x) onto the subspace generated by the samples

sj, with hj(x) being the projection coefficients. As in (2.7), the error can written

more explicitly as follows

ε =
∫

D
(Kf(x, x) −Kf s(x)h(x)†)dx. (4.7)

Finally, we would like to recall that if D is taken large enough, ε(CB) becomes

a good measure of representation performance for f(x) over the entire space

[Sec. 2.1]. More precisely, we have the following (2.12)

E [
∫ ∞

−∞
‖f(x) − f̂D(x)‖2dx] =

∫

x∈D
E [‖f(x) − f̂D(x)‖2dx] +

∫

x/∈D
Kf (x, x)dx

(4.8)

where f̂(x | s) is shortly denoted as f̂(x). f̂D(x) is defined as f̂D(x) = f̂(x) for

x ∈ D and f̂D(x) = 0 for x /∈ D. Since f(x) is finite energy, second term can be

made arbitrarily close to zero by taking the region D large enough.
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4.2 Trade-off curves for GSM fields are invari-

ant under propagation through first-order

optical systems

We will discuss some invariance results related to the cost-error trade-off curves

for GSM fields propagating through first-order optical systems. These results

generalize the results discussed in Section 2.3, where we have assumed that the

amplitude accuracies of the samples are so high that the sample values can be

assumed to be exact, and commented on the invariance of the trade-off curves

between the number of samples and the error.

We consider the problem of sampling the output of a first-order optical system

in order to represent the input optical field. Such systems encompass arbitrary

concatenations of lenses, mirrors and sections of free space, as well as quadratic

graded-index media [18,150]. In the next section, we will consider a given bit bud-

get and find the minimum possible representation error for that budget. Varying

the bit budget, we will obtain trade-off curves between the error and the cost bud-

get (for instance, look forward to Fig. 4.1 for an example). Here we are concerned

with how first-order optical systems change these trade-off curves. We will show

that for GSM fields, the cost-error curves are invariant under passage through

arbitrary ABCD systems; that is, these systems have no effect on the error versus

cost trade-off curves. Moreover, we show that the optimum sampling strategy at

the output can be easily found by scaling the optimum sampling strategy at the

input. We assume that the parameters A,B,C,D of the ABCD matrix are real

with AD − BC = 1. We first consider the case where there is no system noise

n(x), and then discuss the effects of noise.

Let us express the covariance function associated with a GSM field with pa-

rameters σI , β, R as

KσI , β,R(x1, x2) = Af exp

(
−x

2
1 + x2

2

4σ2
I

)
exp

(
−(x1 − x2)

2

2(βσI)2

)
exp

(
− jk

2R
(x2

1 − x2
2)

)
.

(4.9)
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We note the following scaling property for the R = ∞ case:

Kσ′
I
, β,∞ (−x1, x2) = KσI , β,∞

(
−x1

σI
σ′
I

, x2
σI
σ′
I

)
, (4.10)

which expresses the fact that the covariance function associated with a given σI

can be found by scaling that associated with another σ′
I . The error expression

depends on the joint distribution of the samples s and the field f(x), which in turn

is determined through the covariance functions. Considering the representation

of f(x) in terms of its samples, we also note that for a given set of σmi
, the

cost associated with a set of sampling points remains unchanged if the sampling

points are scaled by σ′
I/σI . Hence we conclude that for the case R = ∞ and L is

the identity, the error does not depend on σI , provided the sampling points are

scaled appropriately. As a result, the cost-error trade-off curves will be the same

for different values of σI , and the optimum sampling strategies will be scaled

versions of each other.

Here we show that the conclusion of the preceding paragraph continues to

remain valid even when R 6= ∞. We will first show that for a given set of

sampling points ξ1, . . . , ξM , and a given covariance matrix Km, the associated

costs and the error for all values of R are the same. This, in fact, stems from

the fact that the curvature term corresponds to uncorrelated phase terms. Let

the covariance function associated with f(x) be KσI , β,∞(x1, x2). Let f̄(x) be the

zero-mean complex proper field with the covariance function

E [f̄(x)f̄ ∗(x)] = KσI , β,R(x1, x2) (4.11)

= KσI , β,∞(x1, x2) exp

(
− jk

2R
(x2

1 − x2
2)

)
(4.12)

= E [f(x)f ∗(x)] exp

(
− jk

2R
(x2

1 − x2
2)

)
. (4.13)

We first observe that the presence of a curvature does not affect the cost

associated with a sample. The cost associated with the ith sample s̄i = f̄(ξi)+mi

is given by Cs̄i
= log2(σ

2
s̄i
/σ2

mi
), where σ2

s̄i
= E [|s̄i|2] = E [|f̄(ξi)|2] + E [|mi|2] =

E [|f(ξi)|2] + E [|mi|2]. Hence the cost of a sample with a given E [|mi|2] = σ2
mi

does not depend on the value of R.
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We now show that the error does not depend on the value of R; that is, for

a given set of sampling locations and a given set of σmi
, the errors associated

with estimating f(x) and f̄(x) are the same. Let us define the vector g as g =

[f(ξ1), . . . , f(ξM)]T, i = 1, . . . ,M . Now, the vector of finite accuracy samples of

f(x) is given by s = g+m, where m = [m1, . . . , mM ]T. Let the M×M covariance

matrix of the finite accuracy samples be denoted by E [ss†] = Ks = Kg + Km,

where the element in the ith row and lth column of Kg is given by KσI , β,∞(ξi, ξl),

i, l = 1, . . . ,M . The cross covariance between f(x) and s is given by the 1 ×M

row vector E [f(x)s†] = d(x), where the lth element is given by KσI , β,∞(x, ξl).

Similarly, we define s̄ = ḡ + m, where ḡ = [f̄(ξ1), . . . , f̄(ξM)]T. Consequently,

we have Ks̄ = Kḡ + Km, where the element in the ith row and lth column is

given by KσI , β, R(ξi, ξl), and E [f̄(x)s̄†] = d̄(x), where the lth element is given by

KσI , β,R(x, ξl). Now, let T = diag(ti), ti = exp(−(jk/2R)ξ2
i )), i = 1, . . . ,M . We

observe that

Ks̄ = Kḡ +Km (4.14)

= TKgT
† + TKmT

† (4.15)

= TKsT
†, (4.16)

where (4.15) follows from the fact that TKmT
† = diag(ti) diag(σ2

mi
) diag(t∗i ) =

diag(σ2
mi

) = Km, since |ti| = | exp(−(jk/2R)ξ2
i ))| = 1. We also observe that

d̄(x) = exp(−(jk/2R)x2))d(x)T †. (4.17)

Now, using these results, we finally show that the error is independent of the

value of R. We consider the error for the field at a given point x. Denoting the

MMSE estimate of f̄(x) given s̄ as ˆ̄f(x|s̄), the associated MMSE can be expressed

as [133, Ch. 6]

E [||f̄(x) − ˆ̄f(x|s̄)||2] = KσI , β, R(x, x) − d̄(x)K−1
s̄s̄ d̄(x)† (4.18)

= KσI , β,∞(x, x) − d(x)K−1
ss d(x)† (4.19)

= E [||f(x) − f̂(x|s)||2] (4.20)

In obtaining (4.19), we used (4.16), (4.17), TT † = I, and | exp(−(jk/2R)ξ2
i ))| = 1,

where I is the M ×M identity matrix. Hence we have shown that the value of

R does not change the error.
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So far we have shown that (i) for R = ∞, the error does not depend on σI ,

provided the sampling points are appropriately scaled; (ii) for a given set of sam-

pling points and σmi
, the associated errors and costs do not depend on R. Thus

we conclude that for a given GSM field with a specified value of β, the cost-error

trade-off curves associated with the problem of estimating a field based on its own

samples do not depend on σI and R. Now, recall that GSM fields remain GSM

fields with the same β, but different σI and R after passing through first-order

optical systems [136, 137, 146]. This, combined with the previous observations,

show that the error associated with estimating the output field by sampling the

output, is the same as the error associated with estimating the input field by

sampling the input (under the same cost).

Finally, we consider the problem of sampling the output of a first-order optical

system in order to estimate the input field. We first recall that the MMSE

is invariant under unitary transformations; that is, the MMSE associated with

estimating f(x) based on a random vector s is the same as the MMSE associated

with estimating L{f(x)}, if L is a unitary transformation. We also recall that

optical systems represented by real A,B,C,D parameters are unitary systems

[173, Ch.9]. Hence for any such system, the MMSE associated with estimating

the input of the optical system and the output of the optical system based on

a given set of samples of the output are the same. Thus, combining this with

the observations of the previous paragraph, we conclude that the error versus

cost trade-offs for the estimation of the input of an optical system based on the

samples of the input field are the same as those based on the samples of the

output field. (The same conclusion also holds for estimating the output based on

the samples of the input or the output.) In other words, finite-accuracy samples

of the output field are as good as finite-accuracy samples of the input field for

the broad class of first-order optical systems.

We now discuss the effect of noise n(x). Our system noise model

is characterized by the following covariance function: Kn(x1 − x2) =

An exp(−(x1 − x2)
2/2σ2

ν,n) with σν,n = βnσI , βn < β. Here we will show that, as

in the noiseless case, when the system L is identity and R = ∞, the error value

does not depend on σI , provided the sampling points are scaled appropriately.
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To show this in the noisy case, we need to show that the associated covariance

functions can be scaled with σI . (i) The scaling property of Kf(x) was already

discussed at the beginning of this subsection. (ii) The noise covariance function

also scales with σI , in a manner similar to (4.10). It follows from (i) and (ii)

that the covariance of the observations also scales with σI . We also note that,

due to statistical independence of f(x) and n(x), the cross covariance of f(x)

and s only depends on the covariance function of f(x), which is known to scale

with σI . Hence all associated covariances have the scaling property. Thus we

can now conclude that the error for a given set of sampling points for a given σI ,

can be found by looking at the error for another σI at a scaled set of sampling

points. We also note that for a given set of σmi
, the cost associated with a set

of sampling points, remains unchanged under appropriate scaling. This implies

that the trade-off curves are invariant for different σI values and the optimum

sampling points can be found by scaling.

4.3 Trade-offs between Error and Cost Budget

In this section, we present trade-off curves between the error and the cost budget,

and the optimum sampling parameters achieving these curves.

Based on the discussion of Section 4.2, we note that in the noiseless case

(SNR = ∞), the presented cost-error trafe-off curves are valid for any ABCD

system with real parameters, AD − BC = 1. The optimum sampling points are

easily found by scaling in proportion to the ratio of input and output σIs. When

SNR 6= ∞, the curves are obtained for the case of L is the identity operator

and R = ∞, and these do not generalize to arbitrary ABCD systems. But the

optimum sampling points for one value of σI can still be found from those for

another by scaling.

To compute the error expressions and optimize over the parameters of the

representation strategy, we discretize the x space with the spacing ∆c as explained

in Section 2.3, where more details can be found. In order to find the optimum
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sampling interval, we use a brute force method, where for a given CB we calculate

the error for varying ∆x and M , and choose the values providing the least error.

We note that the optimization variable ∆x and the discretization variable ∆c are

not the same. ∆x is the sampling interval whose optimal value we seek, whereas

∆c is the discrete grid spacing we employ in the numerical experiments.

In our numerical experiments, we use two different β values: β = 1/8 and

β = 1. We choose βn = 1/32. We consider different noise levels parameterized

through the signal-to-noise ratio, defined as the ratio of the peak signal and noise

levels: SNR = Af/An. We consider the values SNR = 1, 10, ∞ to cover a wide

range of problem instances. For simplicity in presentation, in our simulations we

focus on ∆x and set the less interesting x0 = 0. We choose the interval D equal

to [xL, xH ] = [−5σI ,+5σI ] to ensure that the signal values are safely negligible

outside D. We report the error as a percentage defined as 100 ε(CB)/ε0 where

ε0 =
∫∞
−∞Kf(x, x)dx = Af

√
2π.

We would like to note that error-cost trade-off curves do not depend on the

total energy of the signal. More precisely, when there is no system noise n(x),

the error-cost curves are independent of the constant Af in (4.9). When there is

system noise n(x), the error-cost curves do not depend on the individual values of

Af and An, but only on the ratio SNR = Af/An. These are due to the fact that

the error is reported as a percentage error which scales with Af , and the cost is

independent of the ranges of the signal values, but only depends on the number

of distinguishable levels, that is when Af changes, mi’s can be scaled without

changing the cost.

Fig. 4.1 and Fig. 4.2 present the error vs. bit budget curves for varying SNR for

a relatively incoherent field (β = 1/8) and for a relatively coherent field (β = 1),

respectively. As expected, the error decreases with increasing cost budget in all

cases. We note that ε(CB) is very sensitive to increases in CB for smaller CB.

Then it becomes less responsive and eventually saturates.

We observe that in each of these figures, as the noise level becomes higher, it

becomes more difficult to obtain low values of error. We observe that for both

values of β, when there is no system noise (SNR = ∞), the error goes to zero as
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Figure 4.1: Error vs. cost budget, β = 1/8, SNR variable.
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Figure 4.2: Error vs. cost budget, β = 1, SNR variable.

85



0 100 200 300 400
0

20

40

60

80

100

 

 

0 100 200 300 400

0.25

0.5

0.75

1

1.25
M
∆x/σI

S
am

p
li
n
g

In
te

rv
al
/σ

I

N
u
m

b
er

of
S
am

p
le

s

Cost Budget (bit)

Figure 4.3: Number of samples and optimum sampling interval vs. cost budget,
β = 1/8, SNR = ∞.

we increase the cost. This means that, no matter how small the error tolerance

ε > 0 is specified to be, the continuous finite-energy field can be represented with

a finite number of bits. This observation is discussed in more detail in Section 5.4.

Comparing these figures, we observe that for the relatively incoherent case

(Fig. 4.1), it is more difficult to achieve low values of error for a given bit budget.

But as the field becomes more coherent (Fig. 4.2), the field values at different

locations become more correlated with each other, the total uncertainty in the

field decreases, and it becomes a lot easier to achieve lower values of error.

We now investigate the relationship between the optimum sampling strategies

and the problem parameters CB, SNR, and β. The optimum sampling interval ∆x

and the optimum number of samples M that achieve the errors given in Fig. 4.1

are presented in Figs. 4.3 and 4.4 for SNR = ∞ and SNR = 1. The optimum

sampling interval ∆x and the optimum number of samples M that achieve the

errors given in Fig. 4.2 are presented in Figs. 4.5 and 4.6 for SNR = ∞ and

SNR = 1.

When there is no system noise n(x), the optimum sampling strategies can

be informally interpreted in the light of the competition between the following

driving forces: i) to have as many effectively uncorrelated samples as possible, ii)
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Figure 4.4: Number of samples and optimum sampling interval vs. cost budget,
β = 1/8, SNR = 1.

to have samples whose variances are as high as possible, and iii) to have samples

which are as highly accurate as possible. When there is system noise n(x), each

sample tells less about the value of the field. In order to wash out the effect of

noise, one is often willing to take samples at field locations which are considerably

correlated, and which one would probably not take samples at, had there been

no noise.

We observe that in all cases, in general, as CB increases, the optimum sampling

interval decreases and the number of samples increases: when we have more bits

to spend, we use a higher number of more closely spaced samples. When CB is low,

the optimal strategy is to use a low number of more distantly-spaced samples so

that each sample has a reasonable accuracy and each of them provides effectively

new information about the field. As the allowed cost increases, we can afford more

samples with high enough accuracies and we prefer to use more closely-spaced

samples so that we can get more information about field values we previously had

to neglect when the allowed cost was lower.

Comparing Fig. 4.3 and Fig. 4.4 (or Fig. 4.5 and Fig. 4.6), we observe that as

the noise level increases, the samples should be taken more closer (the sampling

interval decreases). When a sample is noisy, one would expect the information

provided by that sample to be smaller, encouraging us to take more closely spaced

87



0 100 200 300 400
0

20

40

60

80

100

 

 

0 100 200 300 400

0.25

0.5

0.75

1

1.25
M
∆x/σI

S
am

p
li
n
g

In
te

rv
al
/σ

I

N
u
m

b
er

of
S
am

p
le

s

Cost Budget (bit)

Figure 4.5: Number of samples and optimum sampling interval vs. cost budget,
β = 1, SNR = ∞.
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Figure 4.6: Number of samples and optimum sampling interval vs. cost budget,
β = 1, SNR = 1.
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samples so as to compensate for the effects of noise. We also observe that as

the noise level increases, one should take a higher number of samples M . This

observation may seem trivial, since decreasing the sampling interval automatically

increases the number of samples within a certain spatial range. However, we note

that here the range over which samples are taken does not remain constant but

also decreases. (The variances of field values decrease as we move away from the

x = 0 point, so that the field here is highly contaminated by noise. Since samples

taken here are of little value for representing the field, it is reasonable to expect

that it will be better not to take these samples, thereby decreasing the spatial

range the samples are taken over.) However, the decrease in the spatial range is

not as much as to compensate the decrease in the sampling interval, so in the

end the number of samples taken increases.

Comparing Fig. 4.3 and Fig. 4.5, we see that when the field is more coherent,

it is desirable to take a fewer number of samples which are farther apart. When

the field is more coherent, under the GSM correlation structure, the field value

at each point becomes more correlated with field values farther away. Hence

there is a tendency to space the samples well in order to get effectively new

information from each sample. Also, the variances of the field values decrease as

we move further away from the x = 0 point, so we prefer not to waste any of

our bit budget on such samples. As a result, the optimum number of samples is

smaller, which is consistent with the fact that more coherent fields have a lower

number of effective modes (the number of uncorrelated random variables required

to effectively represent the field).

4.4 Comparison with Shannon-Nyquist Sam-

pling Based Approaches

A common approach in sampling signals is to use the Shannon-Nyquist sam-

pling theorem as a guideline. As outlined at the beginning of this chapter, in

this traditional approach, one determines an effective frequency extent B, and

89



0 100 200 300 400
0

20

40

60

80

100

 

 

SNR = 1

SNR = ∞
r = 2

r = 2

r = 3

r = 3

Cost Budget (bit)

E
rr

or
(p

er
ce

n
ta

ge
)

Figure 4.7: Error vs. cost budget, β = 1/8, SNR variable. The dotted lines are
for optimal sampling strategies and the corresponding dashed and solid lines are
for sampling theorem based strategies.

an effective spatial extent L which are used to determine the sampling inter-

val, and the spatial extent the samples will be taken over, respectively. Here

we will compare the error vs. cost budget curve that is obtained following this

traditional approach with the optimal curves obtained with our approach and

shown in Figures 4.1 and 4.2. But first we review how the traditional Shannon-

Nyquist approach applies to random fields. A fundamental result in this area

states that the Shannon-Nyquist sampling theorem can be generalized to wide-

sense stationary (WSS) signals: A band-limited WSS signal can be reconstructed

in the mean-square sense from its equally-spaced samples taken at the Nyquist

rate [115]. [10,126] further generalizes this result to non-stationary random fields:

Let v(x) ∈ R be a finite-energy random field. Let us consider the covariance func-

tion of the Fourier transform of the field defined as Sv(ν1, ν2) = E [V (ν1)V
∗(ν2))],

where V (ν) is the Fourier transform of v(x). If Sv(ν, ν) = 0, for |ν| > B/2, then

the field can be recovered from its samples in the mean-square sense; that is,

E [||v(x) −∑∞
k=−∞ v(k/B) sinc(xB − k)||2] = 0.

We now explicitly work out the conventional sampling approach for GSM
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Figure 4.8: Error vs. cost budget, β = 1, SNR variable. The dotted lines are for
optimal sampling strategies and the corresponding dashed and solid lines are for
sampling theorem based strategies.

fields. The effective spatial extent of the field will be determined by look-

ing at the intensity distribution Kf(x, x) = exp(−x2/2σ2
I ), which has a Gaus-

sian profile with standart deviation σI . Most of the energy of a Gaussian lies

within a few standard deviations so that the effective spatial extent can be taken

as [−r σI , r σI ]; we choose r = 3. The intensity of the Fourier transform of

the field; that is, the diagonal of the covariance function of the Fourier trans-

form of the field also has a Gaussian profile Sf(ν, ν) ∝ exp(−f 2/2σ2
I,F ), where

Sf(ν1, ν2) = E [F (ν1)F
∗(ν2)], where F (ν) is the Fourier transform of f(x), and

σI,F = 1
2π

√
1
β2 + 1

4
/σI (see, for instance [174]). We take the effective frequency

extent as [−r σI,F , r σI,F ], again with r = 3. This implies a sampling interval

of 1/(2rσI,F ). The number of samples is found by dividing the effective spatial

extent to the sampling interval

Ms =
2rσI

1/(2rσI,F )
=

2r2

π

(
1

β2
+

1

4

)0.5

. (4.21)

Hence, for each cost budget value CB, the cost associated with each sample will

be CB/Ms. To ensure a fair comparison with our approach, we again use the

mean-square estimate to estimate the signal from the Nyquist samples.
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We now compare the error vs. bit budget trade-offs obtained with the ap-

proach presented in this chapter, with those obtained by using the traditional

approach described above. We use two different r values; r = 2, and r = 3.

Fig. 4.7 and Fig. 4.8 compare these trade-off curves for β = 1/8 and β = 1, re-

spectively. The dotted curves and the dashed/solid lines show the results for the

optimal sampling scheme and the sampling theorem based schemes respectively.

As expected, for all cases, the optimum sampling strategy gives better trade-offs

compared to the sampling strategies based on the sampling theorem.

We note that when there is no system noise n(x), and if we determine the

effective extents appropriately, we would expect to obtain error values close to

zero for high values of cost budget. We observe that this is indeed the case for

r = 3, but not for r = 2. This suggests that r = 2 is a poor choice for defining the

effective extents, and illustrates the importance of determining effective extents

appropriately.

When r = 3 and there is no system noise, for both relatively low and high

degrees of coherence, the optimal strategy and the traditional strategy differ

by a greater amount for low values of cost budget. This observation may be

interpreted as follows: When the cost budget is low, the relatively high number

of samples dictated by the sampling theorem will result in the samples being

relatively inaccurate, leading to poor performance. (As we have seen earlier, for

low cost values, it is better to use a smaller number of samples with relatively

better accuracy.) As the cost budget increases, the difference between the two

approaches gets smaller, and both strategies achieve error values very close to 0,

as expected. For low values of cost budget, the traditional approach with r = 2

dictates a sampling strategy closer to the optimal one, compared to r = 3, and

gives error values closer to the optimal strategy. Yet, as observed above, it gives

relatively poor error values for higher values of cost budget, and therefore cannot

be considered a good sampling approach for all values of the cost budget.

When the system noise level is high, the difference between the optimal and

traditional strategies is pronounced for almost all values of cost budget. The

sampling theorem assumes that the samples will be noiseless, and therefore cannot
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exploit the opportunity for noise elimination through oversampling. (We observe

that the traditional strategy with r = 2 gives poorer results compared to the

r = 3 case, which may be attributed to the relatively low number of samples

dictated by the former.) We observe that the performance difference between

the traditional approaches and the optimal strategy is more pronounced for the

coherent case. When the field is more coherent, the sampling theorem based

strategy dictates the use of a fewer number of more distantly spaced samples,

compared to the incoherent case. However, in the presence of noise, the optimal

strategy is not that much different for the incoherent and coherent cases, and

dictates that we use a comparably larger number of more closely spaced samples

even when the field is coherent. Therefore, the traditional sampling strategies are

more markedly inferior than the optimum strategy in the coherent case.

4.5 Conclusions

We focused on various trade-offs in the representation of random fields, mainly:

i) the trade-offs between the achievable error and the cost budget, ii) the trade-

offs between the accuracy, spacing, and number of samples. We have derived the

optimal bounds for simultaneously achievable bit cost and error and obtained

the optimal sampling parameters necessary to achieve them. These performance

bounds are not only of interest for better understanding of information rela-

tionships inherent in propagating wave-fields, but can also lead to guidelines in

practical scenarios. We also investigated how these results are affected by the

degree of coherence of the field and the noise level. Furthermore, we observed

how the optimal sampling parameters change with increasing cost budget.

We also considered the case where the signal is represented by samples taken

after the signal passes through a linear system. For the case of Gaussian-Schell

model beams, when there is no noise, we have shown that finite-accuracy samples

of the output field are as good as finite-accuracy samples of the input field, for

the broad class of first-order optical systems. The cost-error trade-off curves

obtained turn out to be the same as those obtained for direct sampling of the
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input, and the optimum sampling points can be found by a simple scaling of the

direct sampling results.
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Chapter 5

Joint Optimization of Number of

Samples, Sample Locations and

Measurement Accuracies:

Non-uniform Case

In this chapter we will again consider representation of a non-stationary field

with a finite number of bits. In Chapter 4, we have focused on the case where

the samples are equidistantly spaced, and each sample is taken with the same

accuracy. In this chapter, we consider the case where the sample locations can be

freely chosen, and need not to be equally spaced from each other. Furthermore,

the measurement accuracy of each sample can very from sample to sample. This

formulation presents a challenging optimization problem: To solve this problem,

one has to find the optimum number of samples, the locations of these samples

which take values in a continuum, and the costs associated with each of these

samples. Thus this general non-uniform case represents maximum flexibilty in

choosing the sampling strategy allowing tighter optimization of error-cost curve.

We now present an overview of this chapter. In Section 5.1, we formulate

and discuss the non-uniform sampling problem. In Section 5.2, we present the
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optimum sampling strategies and the trade-off curves between the cost and the

error. We compare the trade-off curves obtained with the non-uniform approach

of this chapter with the ones that would be obtained if the uniform scheme of the

previous chapter was used in Section 5.3. In Section 5.4, we provide a general

discussion on the representation of random fields using finite numbers of bits. We

conclude in Section 5.5

5.1 Problem Formulation

In this section, we will formulate and discuss the non-uniform sampling problem

described above. The signal and measurement models are the same with those of

Section 4.1 of Chapter 4.

We now formulate the problem we will be considering in this chapter; the

problem of optimal non-uniform sampling with possibly non-uniform cost alloca-

tion. Here, the sampling locations x = ξ1, . . . , ξM ∈ D are free. The accuracy

(hence the cost) associated with each sample can be different; that is Csi
can

have possibly different values. The total cost of the representation is given by

CT =
∑M
i=1Csi

. For a given CB, our objective is to choose the number of the

samples M , the locations ξi, and the costs Csi
while satisfying CT ≤ CB, with

the objective of minimizing the minimum mean-square error between f(x) and

f̂(x | s).

Let ξM = [ξ1, . . . , ξM ]T denote the vector of sampling locations. Let Cs
M =

[Cs1, . . . , CsM
] denote the vector of cost allocations Csi

. The above problem can

be stated as one of minimizing

E
[∫

D
‖f(x) − f̂(x | s)‖2dx

]
(5.1)

over M , ξM and Cs
M subject to

CT =
M∑

i=1

Csi
≤ CB. (5.2)
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We observe that the optimization space for the sampling locations is very large:

we are seeking the best sampling locations over a continuous region of space D.

To overcome this difficulty, we will consider a discretization of the optimization

region D, where instead of the condition ξi ∈ D, we will be considering the

condition ξi ∈ D̄, where D̄ = {x1, . . . , xN} ∈ D is a set of N finely chosen equally

spaced finite number of points inside D. The number of points N must be chosen

large enough to ensure satisfactory optimization: the minimum interval between

the points in D̄ is taken to be sufficiently smaller than the sampling intervals

for the signal f(x) and the noise n(x) dictated by the sampling theorem. We

also note the following property that is related to the cost of a measurement:

measuring a point with repeated measurements is suboptimal (better errror values

are obtained if one high quality measurement is made instead), so including more

points in between two adjacent points in D̄ does not provide an opportunity for

better optimization if the minimum interval between the points in D̄ is sufficiently

small. Hence we will consider the new constraint ξi ∈ D̄ instead of the constraint

ξi ∈ D where i = 1, . . . ,M , and M ≤ N . We will refer to this optimization

problem as Problem P .

We now note that even after this discretization, solution of the optimization

problem remains challenging: In most cases, the number of points in D̄, will be

very large. For instance, optimization with brute force methods will typically

require the following steps to be followed: all values of M lying between 0 N

will be considered; for each one of these values of M , one will try all possible

combinations of the sampling locations in D̄ space, that is ξM ⊂ D̄; and for each

such set of sampling locations, one will optimize over the cost allocations. We

note that even this last optimization which optimizes over the cost allocation for

a particular fixed set of sampling locations is also in itself a difficult optimization

task to be done using brute force methods.

We will now argue that this difficult optimization problem can be, in fact,

solved by solving another equivalent optimization problem. We consider the

following optimization problem where the aim is to minimize

E
[∫

D
‖f(x) − f̂(x | s)‖2dx

]
, (5.3)
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over Cs
N = [Cs1 , . . . , CsN

] such that

CT =
N∑

i=1

Csi
≤ CB (5.4)

where the cost allocation is done over all points in D̄, that is ξN = {x1, . . . , xN}.
We will denote this optimization problem as Problem P̄ . We first observe that

both of these problems have the same objective function, and the cost budget

constraint is in the same form. So what we need to show is that the spaces

defined by the optimization variables, i.e. the optimization spaces, are the same.

These are defined by the number of samples M , the M sampling locations ξM ,

and the cost allocation over M sampling points Cs
M in Problem P ; and the

cost allocation Cs
N over N points in Problem P̄ . Although at first sight these

descriptions seem to refer to different optimization spaces, in fact these spaces

are the same. The crucial point here is to observe that the optimization space of

Problem P̄ includes points where some of the measurements are not made. For

instance let the sample at xi be not measured. Then this point will be described

with σ2
mi

= ∞ and Csi
= 0. Hence, in general, any particular point in the

optimization space of the first problem described by M , ξM , and Cs
M can be

equivalently described by an appropriate cost vector Cs
N . In this longer cost

allocation vector Cs
N , the individual costs Csi

associated with ξM will possibly

have Csi
> 0, and the other samples will necessarily have Csi

= 0. Hence any

point in the optimization space of Problem P is also in the optimization space of

Problem P̄ . Similarly, any point in the optimization of Problem P̄ is also in the

optimization space of Problem P . Thus, we can conclude that solving Problem

P̄ is sufficient for the purpose of solving Problem P . This means the following: i)

the optimum achieved by Problem P cannot be lower than the optimum achieved

by Problem P̄ . ii) any optimum achieved by Problem P̄ can also be achieved

by Problem P . Both of these assertions are consequences of the fact that the

optimization spaces for these two problems are the same.

By putting the problem in the form in Problem P̄ , we now have the chance

to use the numerical approach suggested in Section 3.4. With such a numeric

approach at hand, it is now possible to exploit the chance of better optimization

offered by non-uniform sampling locations and non-uniform cost allocations.
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Figure 5.1: Error vs. cost budget, SNR variable.

In our numerical experiments, in evaluating the integrals in the error expres-

sions and solving for the linear estimators, we will use a simple discretization of

the space D with ∆c intervals, which is explained in detail in Section 2.3. We note

that the discretization of D into D̄ for forming Problem P and this discretization

with ∆c are conceptually different, and they do not necessarily have to be the

same. The first one discretizes the optimization space to make the optimization

problem tractable and the second one offers a numerical method to take the in-

tegrals and solve the estimators. Even if we were to use some other method to

evaluate the integrals, we would still want to discretize the optimization space to

construct Problem P . Nevertheless, for simplicity, we use the same discretization

of D for both of these purposes.

5.2 Trade-offs between Error and Cost Budget

In this section, we present trade-off curves between the error and the cost bud-

get, and the optimum number of samples, sampling locations and measurement

accuracy levels achieving these curves.

Based on the discussion of Section 4.2, we recall that in the noiseless case
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(SNR = ∞), the presented cost-error trafe-off curves are valid for any ABCD

system with real parameters, AD − BC = 1. The optimum sampling points are

easily found by scaling in proportion to the ratio of input and output σIs. As

discussed in Section 4.3, the error-cost trade-off curves do not depend on the total

energy of the signal.

In our experiments, we consider a multiple beam scenario where two statisti-

cally independent GSM beams with the same σI and R, but different β parameters

reside side by side. More precisely, the unknown field has the following covariance

function

Kf (x1, x2) = Kβa,σI ,R(x1 − xa, x2 − xa) +Kβb,σI ,R(x1 − xb, x2 − xb) (5.5)

We choose −xa = xb = 3σI , and βa = 1/8 and βb = 1. We choose βn = 1/32. We

consider different noise levels parameterized through the signal-to-noise ratio,

defined as the ratio of the peak signal and noise levels: SNR = Af/An. We

consider the values SNR = 1, 10, ∞.

We choose the interval D equal to [xL, xH ] = [−6σI ,+6σI ]. We report the

error as a percentage defined as 100 ε(CB)/ε0 where ε0 =
∫∞
−∞Kf(x, x)dx =

2Af
√

2π.

Fig. 5.1 present the error versus bit budget curves for varying SNR. As ex-

pected, the error decreases with increasing cost budget in all cases. We note

that ε(CB) is very sensitive to increases in CB for smaller CB. Then it becomes

less responsive and eventually saturates. We observe that as the noise level be-

comes higher, it becomes more difficult to obtain low values of error. We will

later further discuss these trade-off curves while comparing them with the ones

that would be obtained if the equidistant sampling strategy with uniform cost

allocation were used as the sampling strategy.

We now review the optimum measurement strategies, i.e. the number of

samples, sampling locations and measurement accuracy levels achieving these

error-cost curves. The measurement accuracy levels (i.e. the cost allocations)

that achieve the error-cost values given in Fig. 5.1 are presented in Figs. 5.2

and 5.3 for SNR = ∞ and SNR = 1 for varying cost budget CB. These values are
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Figure 5.2: Cost allocation, SNR = ∞.

chosen from the CB values used for forming the curves in Fig. 5.1, to illustrate a

wide range of situations: C1 = 10, C2 = 20, C3 = 30, C4 = 100, C5 = 250, C6 = 400,

bits.

Since it will play an important role in our discussions, we now briefly discuss

the local coherence structure of the field. The multiple beam structure at hand

can be considered to consist of two regions where in one region (around −3σI)

the field is incoherent, whereas in the rest (around +3σI) coherent. Although the

beams with different β values extend forever, and hence contribute to the coher-

ence structure over the whole space, their contribution is small outside their main

lobes due to comparably small intensity values outside these regions. Assuming

the values of a Gaussian beyond its third standard deviation are negligible, these

incoherent and coherent regions can be assumed to extend from −3σI to 3σI

around the respective beam centers.

As CB increases, the general trend of the cost allocations exhibit the following

behaviour for both high and low SNR cases: the optimal samples become more

closely spaced, the number of effective measurements increases, and the accura-

cies of the samples that are among the effective measurements increases. In other
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Figure 5.3: Cost allocation, SNR = 1.

words, when there are more bits to spend, one uses a higher number of more

closely spaced, more accurate measurements. For a given cost, the general trend

of the optimal cost allocation effectively follows two Gaussian-like curves residing

side by side. We recall that the intensity distribution of the field is given by two

Gaussian curves centred around −3σI and 3σI . The cost allocation is consistent

with this structure. The field values that have higher intensity values are sam-

pled with higher costs (higher measurement accuracies). This may be informally

interpreted as follows: Let us first consider measurement of a single variable. For

a given measurement accuracy (i.e. the cost), the uncertainty reduction due to

observing a random variable with a higher variance is higher compared to observ-

ing a variable with a smaller variance (although the percentage error for any such

variable will be the same). In other words, as depicted in Section 3.3.0.3, if the

values to be measured are uncorrelated with each other, it is better to measure

field values with higher variances using higher costs. Here the field values are not

necessarily uncorrelated, but due to GSM field model the correlation function is

the same for all points (given by (2.15)), and the field at locations that are close

to a field value with high variances also have comparably high variances (due to

Gaussian intensity distribution). These further support the above behaviour of

the optimal cost distribution.
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We now discuss the effect of local coherence structure of the field on the op-

timum measurement strategies. We first discuss the case with no system noise

n(x), and then discuss the effects of noise level. Looking at Fig. 4.3, we observe

that the general trend of the cost allocations reflect the different degrees of co-

herence associated with the beams centred around x = −3σI and x = 3σI . The

beam centred around x = −3σI has a smaller β, hence is more incoherent, and its

main lobe is sampled with a higher number of more closely spaced samples. Com-

paring the total cost budget spent here to the cost budget spent around x = 3σI ,

we observe the following: For low values of cost, a smaller portion of the cost

budget is spent around x = −3σI , whereas for high values of cost budget a larger

portion of the budget is spent here. For instance, for CB = 10 bits, ≈ 0.32 of CB

is spent around x = −3σI , whereas for CB = 400 bits, ≈ 0.8 of CB is spent there.

This may be informally interpreted as follows: The beam centred around 3σI has

a smaller β, hence the field is more coherent. Hence the uncertainty reduction

due to taking a sample around 3σI with a given accuracy is higher than taking

a similar sample around −3σI . Thus, when the cost budget is low, one prefers

to take samples there. As cost budget increases, the possible error reduction due

to observing those field values decrease. The uncertainty reduction that can be

obtained by observing relatively incoherent samples becomes higher compared to

that which can be obtained by observing more samples from the coherent side.

(One may look at the cost-error trade-off curves for beams with varying β values

given in Figs. 4.1 - 4.2 in the previous chapter to have a general idea about the size

of the gap between the achievable error values for different β values.) Hence one

starts to spend larger portions of the cost budget on the incoherent side as cost

budget increases. This increase is so large that for high values of cost budget, a

larger portion of the cost budget is spent around −3σI compared to what is spent

around +3σI . This is consistent with the fact that for these values of cost, the

error associated with estimating the beam with β = 1, which is centred around

−3σI will become very low, and hence one prefers to spend the cost budget on

the beam around 3σI which has not yet achieved such error values.

Comparing Fig. 5.2 and Fig. 5.3, we observe that as the system noise level

103



increases, a higher number of more closely spaced samples with lower accura-

cies should be taken to compensate for the effects of noise. The change in the

measurement strategy with increasing system noise level is more dramatic for

the coherent beam centred around 3σI , where a much fewer number of relatively

spaced samples were used when there was no noise. We note that the cost al-

locations exhibit some fluctuations, stronger for the low SNR case, but in effect

present for both noise levels. For instance, we observe that it is possible that a

sample taken with high accuracy when the cost budget is low, would be taken

with lower accuracy when the cost budget increases, and another sample very

close to this first one would be taken with higher accuracy to compensate. This

non-uniform behaviour suggests that it may be possible to achieve error values

close to optimal values with more than one measurement strategy. We now com-

pare the portion of the cost budget spent around −3σI to the one spent around

3σI when the noise level is high. Here again one starts with spending more cost

on the coherent side, and increases the cost budget spent on the incoherent side

as cost budget increases. For instance, for CB = 10 bits, ≈ 0.16 of the total cost

budget is spent around x = −3σI . Comparing this with the high SNR case, we

observe that the portion of the total cost budget spent here is much lower when

SNR is low. When SNR is low, one tries to compensate for the effects of noise

by taking a higher number of more closely spaced samples. If the field is more

coherent, one can reduce the effect of noise more easily, and achieve error values

more close to the ones achieved in the noiseless case. On the other hand, if the

field is less coherent, it is more difficult to reduce the effect of noise due to un-

correlated field structure. The fact that the field is more locally coherent around

3σI and the above driving forces encourage us to spend even a larger portion of

the total cost budget around there, compared to high SNR case. As cost budget

increases, the portions of the cost budget spent around −3σI increase, but this

increase is small compared to the increase for high SNR case. As a result, even

for high values of cost budget, the portion of the total cost budget spent here is

not very high. For instance, for SNR = 1 and CB = 400 bits, ≈ 0.56 of the total

cost budget is spent around −3σI , whereas for SNR = ∞, this number is ≈ 0.8.
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5.3 Comparison with Uniform Measurement

Strategy

In this chapter, we have considered a very general measurement scenario, where

the sample locations can be freely chosen, and the measurement accuracy of

each sample can vary from sample to sample. In the previous chapter, we have

discussed a more simple approach where the samples are equidistantly spaced,

and each sample is taken with the same accuracy. Here we will compare the

error versus cost budget curves that are obtained following this simple approach

of the previous chapter with the curves obtained with the non-uniform approach

considered in this chapter and shown in Figure 5.1. Our discussion will illustrate

the performance improvement that can be gained by exploiting the flexibility

offered by the non-uniform version.

Fig. 5.4 compares these trade-off curves for varying noise levels. The dot-

ted curves and the solid lines show the results for the non-uniform measurement

strategy and the uniform measurement strategy, respectively. We note that these

comparisons are done after optimization of both of the measurement strategies,

hence between the optimal cost-error trade-off curves. For both of the measure-

ment strategies, the error-cost curves show the optimal trade-offs between the

error and the cost budget; that is, each curve presents the best achievable error

for the given cost budget under the given measurement strategy.

As expected, for all cases, the non-uniform measurement strategy of this chap-

ter give better trade-offs compared to the uniform measurement strategy. The

uniform measurement strategy of the previous chapter requires us to take equally

spaced samples with uniform cost allocation, hence does not provide any room

for the optimization procedure to take into account the space-varying local coher-

ence structure of the field. Although there may be many ways that the coherence

structure can change in space, the field considered in this experiment provides

a simple example where the local coherence effectively varies from one region in

space to another region in space: in one region (around −3σI) the field is inco-

herent, whereas in the rest (around 3σI) is coherent. As illustrated in Figs. 5.2
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Figure 5.4: Error versus Cost budget CB, varying SNR. The dotted lines are for
non-uniform case and the corresponding solid lines are for the uniform case.

and 5.3 the general non-uniform strategy successfully adopts to this change in

the local coherence, whereas the uniform measurement strategy cannot, resulting

in worse trade-offs.

We observe that for both noise levels, the performance difference between

the uniform and the non-uniform strategies are more pronounced for relatively

low and moderate cost budget values. For these cost budget values, it is more

important to use the limited resources in the best way possible as in the case

of non-uniform sampling, without constraining the samples to be equidistantly

spaced or to be taken with the same accuracy levels as in the uniform version.

Hence the difference is larger. But as the available cost budget further increases,

one can take even higher numbers of more and more accurate and closely spaced

samples, making the selection of the sampling interval and measurement accura-

cies less important. As a result, the performance difference becomes comparably

small for high values of the cost budget.

We also observe that the performance difference between the uniform and the

non-uniform measurement strategies is more pronounced when there is no system

noise. This behaviour may be informally interpreted as follows: In our setting,

the main factor that creates the performance difference between the uniform and
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the non-uniform versions is the difference in the local coherence structure of the

field. On the other hand, as the noise level increases, the effect of the coherence

properties of the noise on the optimum sampling strategies become stronger.

Since the coherence of the system noise process is space-invariant, the optimal

sampling strategies become alike for the coherent and incoherent parts of the

field, resulting in a smaller performance loss due to the use of uniform sampling

strategy.

5.4 Discussion

In Sections 4.3 and 5.2, we illustrated that, given an arbitrarily small but non-zero

error tolerance, it is possible to represent a finite-energy random field with a finite

number of bits without exceeding that error tolerance. At first glance, this may

appear as a surprising observation. After all, the random field in question takes

continuous amplitude values in continuous and unbounded space, and attempting

to use a finite numbers of bits to represent such a field is a severe restriction: such

finite representations usually involve a finite number of samples each quantized

to a finite number of levels. Therefore here we further discuss this from different

perspectives.

First, consider the very simple case of a single sample of the field. Let us

assume this sample can assume values between Alow and Ahigh and we have agreed

to represent this value with an error tolerance of ∆A. Then, it follows that there

will be ∼ (Ahigh − Alow)/∆A distinguisable levels which can then be represented

by ∼ log2(Ahigh −Alow)/∆A bits.

Now let us return to the field f(x). We may think of the finite-energy condi-

tion as a limitation on how large the amplitude values of the field can be. On the

other hand, the specified error tolerance can be considered to determine the mini-

mum separation of two signals such that they are still considered distinguishable.

The finite-energy condition restricts the signal to reside within a hypersphere of

specific radius, whereas the error tolerance defines a certain volume within which
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signals are considered indistinguishable. Roughly speaking, the number of distin-

guishable signals is given by the volume of the hypershere divided by the volume

defined by the finite error tolerance. Since this number is finite, the signal can

be represented by a finite number of bits.

We now take a somewhat more mathematical, closer look at this issue. In

each step of our argument, we introduce a limitation, a form of “finiteness,” in

the representation of the field (such as limiting the fields to a bounded region),

and argue that the error introduced by each of these limitations can be made

arbitrarily small. This way, we aim to illustrate how different forms of “finiteness”

contribute to the overall picture. Our approach is based on the coherent-mode

decomposition. We also note that it is more common to discuss concepts related

to “finiteness” in a deterministic setting, and in connection with band-limited

approximations, rather than the stochastic setting and approximations based on

covariance functions we employ.

Let us consider a finite-energy zero-mean random field that will be approxi-

mated using a finite number of bits. For the sake of convenience, let us assume

that the random field takes real values. Let us first focus on the error introduced

by the limitation of representing the signal in a bounded region D instead of the

infinite line. As stated in (4.8), the total error of such an approximation can be

expressed as the sum of two terms: one is the approximation error on D, and the

other one is the energy outside D. The energy outside D can be made arbitrarily

small by taking D large enough. This is the first form of “finiteness” introduced

in the representation of the signal.

We now focus on the approximation error on D. The question is whether it is

possible to make the approximation error arbitrarily close to zero; that is, whether

it is possible to represent the field in a bounded region with a finite number of

bits. The answer is not obvious since we are dealing with a field taking continuous

amplitude values on a bounded but still continuous space. To give an affirmative

answer, we will rely on the existence of the Karhunen-Loéve expansion of the
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covariance function of the unknown field with a discrete eigenvalue spectrum as

Kf(x1, x2) =
∞∑

k=0

λkφk(x1)φ
∗
k(x2), (5.6)

where λ0 ≥ λ1 . . . λk ≥ λk+1, . . . are the eigenvalues and φk(x) are the orthonormal

eigenfunctions, k ∈ Z+. This is the so called coherent-mode decomposition of the

random optical field. Here each λi and φi pair is considered to correspond to one

fully coherent mode. Existence of such an expansion for covariance functions on a

bounded region is guaranteed by Mercer’s Theorem; see for example [148, Ch.7].

Therefore, the signals can be decomposed as

f(x) =
∞∑

k=1

zkφk(x), x ∈ D (5.7)

where the random variables zk are zero-mean random variables with E [|zk|2] = λk.

Hence a continuous field on the bounded region can be represented with an infinite

but at least denumerable number of variables, namely the random variables zk,

k ∈ Z+. Here it is also known that
∫
DKf (x1, x2)dx =

∑∞
k=0 λk [148, Ch.7]. Since

Kf(x1, x2) is finite-energy, the left hand side of this equation (the energy on the

region D), is also finite. Hence the right hand side is also finite and we should

have λk → 0 as k → ∞. Now, let us consider the truncation error

E [
∫

D
‖f(x) −

N∑

k=1

zkφk(x)‖2dx] = E [
∫

D
‖

∞∑

k=1

zkφk(x) −
N∑

k=1

zkφk(x)‖2dx] (5.8)

= E [
∫

D
‖

∞∑

k=N+1

zkφk(x)‖2dx] (5.9)

=
∞∑

k=N+1

E [|zk|2] (5.10)

=
∞∑

k=N+1

λk (5.11)

Thus by choosing larger and larger but still finite values of N , we can bring the

truncation error below any finite value, no matter how small. This observation

shows that finite-energy random fields can be represented by a finite number of

variables (z1, . . . , zN) for any given non-zero error tolerance.

Finally, we would like to argue that it is possible to represent the field not only

with a finite number of variables, but also with a finite number of bits. Here the
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question is whether it is possible to represent the finite-variance random variables

z1, . . . , zN with a finite number of bits, to meet a given arbitrarily small non-zero

error tolerance. The answer is affirmative and a classical result in information

theory (rate-distortion theory [40, Ch.13]). Although one would need an infinite

number of bits to represent a continuous number perfectly (with zero error), it is

possible to represent such a number with a finite number of bits with an arbitrarily

small but non-zero error. With this last step, we conclude our argument showing

that finite-energy random fields can be represented by a finite number of bits

with an arbitrarily small non-zero error tolerance.

In the first step of the argument of this section, we argued that the error intro-

duced by limiting the signal to a bounded region can be made small. Actually, this

step can be dispensed with altogether since finite-energy fields have Karhunen-

Loéve expansions on the infinite line with a discrete eigenvalue spectrum (and

hence coherent-mode decompositions with denumerable modes). Indeed, in the

literature authors sometimes write the coherent-mode decomposition of an op-

tical field in the form of a summation without explicit reference to a bounded

domain or any detailed discussion of the existence of such an expansion on the

infinite line. Here we would like to point out that this practice is supported

by mathematical results: [149, Thm. 1] states that along with continuity, having
∫∞
−∞Kf (x, x)dx <∞ and Kf(x, x) → 0 as |x| → ∞ is sufficient to ensure such a

representation. We note that both of these conditions are plausible in a physical

context: the first one is equivalent to the finite-energy assumption and the second

one requires the intensity of the field to vanish as |x| increases, properties one

commonly expects from physically realizable fields.

5.5 Conclusions

We have focused on the trade-offs between the achievable error and the cost

budget in order to represent a random field with as small a number of bits as

possible. Contrary to Chapter 4, where equidistant sampling with uniform cost
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allocation is considered, here we have addressed the problem of optimal non-

uniform sampling with non-uniform cost allocation. In this general case, the

sample locations can be freely chosen, and need not to be equally spaced from

each other. Furthermore, the measurement accuracy of each sample can very

from sample to sample. We have obtained the optimal number of samples, the

sampling locations, and the measurement accuracies, and derived the optimal

bounds for simultaneously achievable bit cost and error. Our results illustrate

that in certain cases, it is possible to reach tighter cost-error trade-off curves with

this general approach. We have observed how the local coherence structure of the

field affects the optimum measurement strategies and how the optimal sampling

parameters change with increasing cost budget. We have also investigated how

all these results are affected by the noise level.
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Chapter 6

Super-Resolution Using Multiple

Limited Accuracy Images

In this chapter, we will study an application of the cost constrained measurement

framework proposed in the previous chapters to super-resolution problems. In a

typical super-resolution problem, multiple images with poor spatial resolution are

used to reconstruct an image of the same scene with higher spatial resolution [11].

Here we study the effect of limited amplitude resolution (pixel depth) in this prob-

lem. The problem we address differs from standard super-resolution problems in

that in our framework amplitude resolution is considered as important as spa-

tial resolution. In standard super-resolution problems, researchers mostly focus

on increasing resolution in space, whereas in our study both resolution in space

and resolution in amplitude are substantial parameters of the framework. We

study the trade-off between the pixel depth and spatial resolution of low resolu-

tion (LR) images in order to obtain the best visual quality in the reconstructed

high resolution (HR) image. The proposed framework reveals great flexibility

in terms of pixel depth and number of LR images in super-resolution problem,

and demonstrates that it is possible to obtain target visual qualities with differ-

ent measurement scenarios including images with different amplitude and spatial

resolutions.
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Many applications in image processing will benefit from such a study, for in-

stance applications requiring converting available low resolution content to high

definition television (HDTV). This subject is not merely of interest for practi-

cal purposes but can also lead to a better understanding of the effect of pixel

depth in super-resolution problem. We are concerned with questions such as “To

obtain a target resolution, which is better, a high number of coarsely quantized

images or a low number of densely quantized images?” or “What is the range

of admissible pixel depths at a particular spatial resolution to obtain an image

with a target spatial resolution with a target visual quality?”. Admitting great

flexibility in terms of number and accuracies of the LR images, our framework

is similar to other constrained signal acquisition scenarios such as compressed

sensing paradigm.

The framework we have presented here can be useful in the area of high dy-

namic range (HDR) imaging, which is concerned with images with pixel depths

greater than the conventional 8-bit pixel depth. A substantial amount of research

in this area focuses on reconstruction approaches which processes multiple shots

of the same scene captured at different exposures, such as [175, 176]. Each of

these shots are taken with low dynamic range, and then processed to reconstruct

a high dynamic range image. This approach can be interpreted as an analogy

of the standard super-resolution problem. In standard super-resolution problem,

multiple shots of the same scene with varying camera motions are used. Each

of these shots have low spatial resolution, and then processed to reconstruct

an image with high spatial resolution. Hence the above HDR approach does

what common super-resolution approaches do in spatial domain, in amplitude

domain. In a practical scenario, what one would desire is to combine both of

these approaches, that is to increase the resolution both in spatial and amplitude

domain. The achievable limits of such a scenario will be of interest for both prac-

tical scenarios and understanding the information relationships in such problems.

Although our framework has some limitations from the point of view of such a

broad and ambitious goal, it still can be considered a step into understanding

some aspects of these relationships. In particular, our approach illustrates, un-

der our metric of visual quality, the effect of limited amplitude resolution in the

113



problem of increasing spatial resolution.

We emphasize that since both resolution in space and resolution in amplitude

are variables in our framework, the term low/high resolution image is, in fact,

ambiguous. Nevertheless, we use these terms to refer to images with low/high

spatial resolution to be consistent with the literature.

6.1 Measurement Model

L low resolution images are obtained from a high resolution image x according

to the model:

yk = DkHkFk x + vk, k = 1, . . . , L (6.1)

where yk’s are LR images, vk‘s denote the system noise, Dk represents the decima-

tion operator, Hk represents the camera blur, Fk represents the motion operator,

L is the number of available LR images. vk’s are independent of each other, and

the components of each vk are i.i.d. All images are rearranged in lexicographic

order. Here x is of size N1N2, and yk’s are of size N̄1 N̄2, where N1 = r1N̄1, and

N2 = r2N̄2.

We assume that we only have access to quantized LR images;

y
byk
k = Qbyk

(yk), k = 1, . . . , L (6.2)

where Qbyk
is the uniform quantizer with 2byk levels. In general, byk

may be

different for different LR images. Here, for simplicity, we assume that all LR

images are quantized with the same number of bits, i.e. byk
= by.

We describe the spatial resolution of each LR image yk relative to the spatial

resolution of target high resolution image x̂, and it is given by 1/(r1 r2). The

number of LR images may be thought as a part of spatial resolution, as well

as a parameter associated with resolution in time when considered in a spatio-

temporal framework. The resolution in amplitude associated with an image I is

described by the number of bits used to represent pixel values bI , which is the

pixel depth.
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(a) (b) (c)

Figure 6.1: Samples from the image set used in the experiments.

We associate a cost with a particular representation of a scene: cost of a

quantized image is given by the total number of bits needed to represent this

particular representation, i.e. number of pixels in the image × number of bits

used to represent each pixel value. For example the representation cost of the

HR image x is Cx = N1 ×N2 × bx, and similarly the representation cost of a LR

image y
by
k whose pixel values are quantized with by bits is C

y
by
k

= N̄1 × N̄2 × by.

The total representation cost of L low resolution images is L× C
y

by
k

.

The cost parameter provides a way of expressing the combined effect of the

resolution in space, resolution in amplitude, and number of LR images for a given

image acquisition scenario (given set of LR images) with a single number. We

note that the actual number of bits needed to effectively store or transmit the

images may be quite different from C. Our notion of cost should be considered

as a part of acquisition rather than the coding of information.

The ratio of the total representation cost of L low resolution images to the

representation cost of the target HR image x̂ is a useful parameter and is given

by

Cr =
L× N̄1 × N̄2 × by
N1 ×N2 × bx̂

=
L× by

r1 × r2 × bx̂
. (6.3)

C may be seen as a measure of information in a particular representation of scene.

Hence it may be argued that if Cr < 1, there is not as much as information in the

LR images as in the target HR image, and the problem is underdetermined in the

sense of number of bits available. In a typical image, the values of different pixels

are neither independent, nor necessarily identically and uniformly distributed.

Yet C provides an upper bound, and still may be useful in interpretation of the

results. We finally note that in a typical super-resolution problem effective bit
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depths of the HR image, and the LR images and achievable bit depths for the

target HR image may take different but related values, which puts constraints on

the values Cr can take.

6.2 Methodology

To study the trade-off between amplitude resolution and spatial resolution within

the given framework, we will consider different image acquisition scenarios and

compare their success in generating HR images with a particular super-resolution

method.

As super-resolution method, we use the norm approximation method recently

proposed in [177]. We note that one could use other image reconstruction methods

as well. Although the specifics of these methods may differ, we believe that the

nature of the tradeoffs observed and the general conclusions and insights that will

be presented in this chapter will remain useful with a wide variety of methods.

In [177], the reconstructed image x̂ is given as the following

x̂ = arg min
x

{
L∑

k=1

‖yk −DkHkFk x‖1 + λ
P∑

l=−P

P∑

m=−P
α|m|+|l|‖x − Smh S

l
vx‖1

}
,

where operators Smh and Slv shift x by m and l pixels in the horizontal and vertical

directions, respectively. We have used α = 0.6, and P = 2, which are one of the

typical values used in [177]. Here λ > 0 is a scalar parameter used to control the

amount of regularization. The method used to determine λ is explained in each

experiment.

Structural similarity (SSIM) index [178] and peak signal to noise ratio (PSNR)

are used as the quality metrics to report the success of different image acquisition

scenarios. SSIM index between two images x̂ and x are given as the mean of

SSIM over aligned image patches, where the SSIM between image patches from

x̂ and x is given as

SSIM =
(2µxµx̂ + C1) (2 σxx̂ + C2)

(µ2
x + µ2

x̂ + C1) (σ2
x + σ2

x̂ + C2)
. (6.4)
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Figure 6.2: SSIM versus the number (L) and pixel depth (by) of LR images,
upsampling factor r variable

Here µx, σx and σxx̂ denote the local estimates of the mean, variance and cross

correlation respectively. We have used the implementation offered by [178], and

reported SSIM over a dynamic range of 1 using C1 and C2 as (0.01)2 and (0.03)2

in accordance with [178].

Finally we give some of the parameters used in the experiments: The upsam-

pling factors in two dimensions are assumed to be the same, i.e. r1 = r2 = r.

Camera point spread function (p.s.f.) is assumed be 3× 3 Gaussian filter. Gaus-

sian noise with a standard deviation of 0.02 is used to simulate the system noise.

Camera p.s.f. and motion vectors are assumed to be known in the reconstruction.

6.3 Experimental Results

We will now study the relationship between resolution in amplitude and resolution

in space in super-resolution scenarios by examining the success of different image

acquisition set-ups. This study will also reveal the trade-off between the quality

(SSIM of the reconstructed images) and cost (the representation costs of LR im-

ages) under the experiment parameters used. We use Cr = (L× by)/(r2 × bx).

Exp. 1: This experiment investigates the case where HR image is assumed to be
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Figure 6.3: SSIM versus the number (L) and pixel depth (by) of LR images (a)
SSIM versus the number of LR images for r = 2 with varying pixel depth by (b)
SSIM versus pixel depth for r = 2 with varying L.
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(e)

Figure 6.5: (a) HR image, (b) bi-cubic interpolation of 1 LR image with 12 bit
quantization, Images reconstructed from (c) 6 LR images with 8 bit quantization
(P1) (d) 12 LR images with 4 bit quantization (P2) (e) 4 LR images with 12 bit
quantization (P3).

known in the reconstruction process and optimum λ to obtain the best SSIM is

searched heuristically. This experiment serves the purpose of providing a bench-

mark for the best performance possible with the reconstruction method used. For

this experiment the 12-bit grayscale image, shown in Fig. 6.1(a) is used. This

image includes a fair amount of edges as well as textured, and smooth regions.

We consider the image acquisition strategies with pixel depths by ∈ {1, . . . , 12}
and the number of LR images L ∈ {1, . . . , 4 r2} with upsampling factors r = 2, 3.

Figs. 6.2, and 6.3 present the SSIM for different image acquisition scenarios.

The associated trade-offs between SSIM and Cr are presented in Fig. 6.4. We

see that it is possible to obtain a given SSIM performance with different image

acquisition strategies, and possibly different costs. In Fig. 6.4, the boundary of

the achievable SSIM-Cr region shows that SSIM is very sensitive to increases in

Cr for smaller values of Cr. Then it becomes less responsive, and eventually

saturates at an asymptote for high values of Cr. We also note that in all of the

measurement scenarios considered in this experiment, for a given pixel depth, if

the total number of pixels available are the same for varying upsampling factors,

SSIM values turn out to be very close. This also shows that under the image
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(a) (b) (c)

Figure 6.6: (a) LR image with 4 bit quantization (r = 2) (b) bi-cubic interpolation
(c) after noise removal

acquisition set-ups considered in this experiment, resolution in amplitude, not

resolution in space (upsampling factor), is the key factor determining the quality

of reconstructed images. This trend is strongly related to the size of camera

p.s.f., the size of details in the images as well as the upsampling factors used in

the experiment.

We observe that in general for a given pixel depth, SSIM increases as the

number of available LR images increases (see for instance Fig. 6.3(a)). We also see

that for a given number of available LR images, SSIM increases with increasing

pixel depth (see for instance Fig. 6.3(b)). For low values of pixel depth, the

information lost due to poor resolution in amplitude can be hardly recovered by

acquiring more LR images, resulting in very close SSIM values for all values of

L. The increase in SSIM with increasing L is lower for low values of pixel depth

compared to high values. As pixel depth increases the number of available images

becomes more important in determining the SSIM level that can be reached with

a particular pixel depth. However for all values of pixel depth, the increase in

SSIM with increasing L gradually becomes lower as L increases.

We now take a closer look on the following data points with r = 2: 6 LR

images with 8-bit pixel depth (P1), 12 LR images with 4-bit pixel depth (P2),

and 4 LR images with 12-bit pixel depth (P3). The costs of these acquisition

schemes are the same, so it is reasonable to use them to compare the following

different sampling strategies: a high number of images with a coarse resolution

in amplitude (P2), a low number of images with a dense resolution in amplitude

(P3), and the strategy in between (P1).

120



Figure 6.7: Region 1 (Left), Region 2 (Middle), Region 3 (Right): Patches from
the images presented in Fig. 6.5

The actual HR image, and reconstructed images for P1, P2 and P3 are shown

in Fig. 6.5(a), Fig. 6.5(c), Fig. 6.5(d), and Fig. 6.5(e) respectively. The regions

indicated in Fig. 6.5(a) are shown in Fig. 6.7 with the corresponding SSIM and

PSNR values in Table 6.1.

We observe that there are quantization artifacts all over the image recon-

structed from the set-up in P2 (Fig. 6.5(d)). Some image details on textured

regions are lost, and there are fake borders in smooth regions, which are partic-

ularly apparent in the sky region and on the building. After the noise removal,

the low pixel depth of LR images causes banding in these regions, in which there

is actually a smooth gray level transition. We note that these boundary effects

are a result of successful noise removal. To illustrate this point, the LR image

and bi-cubic interpolation of one LR image is shown in Fig. 6.6. We observe

that with this naive approach the noise removal smoothes the edges and results

in a blurred image. For P3 (Fig. 6.5(e)), we observe that although most of the

image details are successfully reconstructed, the image is noisy. In this case the

number of available LR images is relatively low, hence they may not be suffi-

cient to successfully remove noise without blurring. The noisy behaviour of the

image suggests that using such a high pixel depth is a waste of resources, since

the image pixels are already corrupted with a noise whose level is much higher

than the quantization interval, and these bits could have been used to acquire

more LR images. We note that by adjusting the parameter λ, it may be possible
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Table 6.1: SSIM and PSNR (dB) values for the image patches extracted from the
image shown in Fig. 6.5(a) with different image acquisition scenarios correspond-
ing to P1, P2, and P3

P1 P2 P3

image 0.9135- 31.30 0.8540 - 29.33 0.8904 - 29.95

region 1 0.9629 - 43.48 0.8712 - 32.95 0.9300 - 40.88

region 2 0.9340 - 37.23 0.9015 - 33.14 0.9187 - 36.40

region 3 0.7879 - 27.86 0.7668 - 27.98 0.7610 - 27.19

to obtain a smoother but blurred image. We also note that if the system noise

had been lower, the number of LR images at hand could have been sufficient to

construct a less noisy image without blur. Finally, Fig. 6.5(c) (P1) presents the

image reconstructed from the 6 images with 8-bit pixel depth. Among the three

measurement strategies, this strategy is the one that gets the highest scores from

both of the quality metrics, SSIM and PSNR. We see that there is still some noise

in this image, but there are no quantization artifacts similar to the ones present

in Fig. 6.5(d).

Exp. 2: In this experiment, we investigate the trade-off when another image

with similar characteristics is used to select λ values: The image patch shown in

Fig. 6.1(b) which is extracted from an outdoor image is used to learn the opti-

mum λ for different image acquisition schemes. We run the experiments for the

first 20 8-bit images in scene categories “CALsuburb” and “MITinsidecity” from

the database introduced in [179] (examples shown in Fig. 6.1(c)) and report the

mean SSIM values across each image category. We consider the image acquisi-

tion strategies with pixel depths by ∈ {1, . . . , 8} and the number of LR images

L ∈ {1, r2, 2 r2, 3 r2, 4 r2} with upsampling factors r = 2, 3.

Fig. 6.8 shows the trade off between SSIM and Cr. We observe that the nature

of these plots are similar to the trade-off curve presented in Fig. 6.4, in which

HR image is used to select the best λ is to obtain the best performance. The

SSIM values that may be reached with the image acquisition scenarios under

consideration does not change significantly. We may conclude that it is possible

to reach the benchmark’s performance without knowing the HR image in advance,
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Figure 6.8: SSIM versus Cr: upsampling factor variable, image patch shown
in Fig. 6.1(b) is used to select λ. (a) database: “CALsuburban” (b) database:
“MITinsidecity”

which is the case for a typical super-resolution application.

6.4 Conclusions

We have studied on understanding the relationship between resolution in am-

plitude and resolution in space in super-resolution problem. Unlike most previ-

ous work, amplitude resolution was considered as important part of the super-

resolution problem as spatial resolution. We have studied the success of different

measurement set-ups where the resolution in amplitude (pixel depth), resolution

in space (upsampling factor) and the number of LR images are variable. Our

study has revealed great flexibility in terms of spatial-amplitude resolutions in

super-resolution problem. We have seen that it is possible to reach target visual

qualities with different measurement scenarios including varying number of im-

ages with different amplitude and spatial resolutions. Our results illustrate how

coarsely the images with low spatial resolution could be quantized in order to

obtain images with high spatial resolution with good visual qualities. We believe

that there is a great deal of exciting work to be done to understand the relation-

ship between resolution in amplitude and resolution in space in super-resolution

problem.
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Part II

Coherence, Unitary

Transformations, MMSE, and

Gaussian Signals
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Chapter 7

Coherence of Bases and

Coherence of Random Fields:

A Unifying Perspective

Beginning with this chapter, we will discuss a family of problems that aim to pro-

vide insight into the correlation structure of random fields. This investigation will

help us to explore the relationship between the estimation error and the geometry

of statistical dependence in the measurement domain. In these investigations, the

unitary transformation that connects the canonical signal space and the measure-

ment space will play an important role. In this chapter, our investigation will

be based on two concepts: coherence of bases as defined in compressive sensing

and degree of coherence of a random field as defined in optics. One of the main

aims of this chapter is to point out the possible relationship between these two

seemingly different concepts.

Compressive sensing problems heavily make use of the notion of coherence

of bases, for example [13, 14, 17]. The coherence of two bases, say the intrinsic

signal domain ψ, and the orthogonal measurement system φ is measured with

µ = maxi,j |Uij |, U = φψ providing a measure of how concentrated the columns

of U are. When µ is small, one says the mutual coherence is small. As the
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coherence gets smaller, fewer samples are required to provide good signal recovery

guarantees.

Theory of partially coherent light is a well-established area of optics, see for

example [15, 16] and the references therein. Coherence is the central concept,

which describes the overall correlatedness of a random field. One says that a

random field is highly coherent when its values at different points are highly

correlated with each other. Hence intuitively when a field is highly coherent,

one will need fewer samples to have good signal recovery guarantees. (Please see

Section 7.2 for a clarification of the naming of extreme points,i.e. full incoherence

and full coherence, in compressive sensing framework and in optics.)

Thus we are faced with two concepts: named exactly the same, but attributes

of different things (bases and random fields), important in different areas (com-

pressive sensing and statistical optics), and yet enabling similar type of conclu-

sions (good signal recovery performance). One of the main contributions of this

study is to explore the relationship between these concepts, and demonstrate that

the similarities are more than a coincidence.

In optics, precise quantification of coherence depends on the context: one

may talk about notions like coherence length or area; or one may use the co-

variance matrix itself as a whole. Here we develop an alternative estimation

based framework to quantify this qualitative concept, different from the tradi-

tional approaches in optics. To do so, we make the additional observation that

the estimation error of a field reconstructed from its samples, in essence, should

be related to the correlation between its values at different points: when the val-

ues of a field at different points are highly correlated with each other, one will

need fewer samples to estimate it with low values of error. Hence the estimation

error of a field from its samples may be used as a measure of corrrelatedness of a

random field, hence the coherence of it. In this chapter we propose an estimation

error based framework to develop this intuition and quantify coherence. Such a

study is not appealing just because of the importance of coherence concept in

optics, but also because of its potential to provide a novel perspective in signal

modelling and inverse problems in the field of statistical signal processing.
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Since coherence is argued to be a measure of overall correlatedness of the field,

one may wonder its relationship with more traditional concepts which measure

the total uncertainty of a random source, such as the degree of freedom or the

entropy. Our study reveals insights on these relationships; most importantly

contrary to what one may suspect, we argue that what coherence quantifies is

not just a repetition of what the entropy or the degree of freedom does.

Our study also proposes fractional Fourier transform (FRT) as an intuitively

appealing and systematic way to generate bases with varying degree of coherence:

by changing the order of the FRT from 0 to 1, it is possible to generate bases

whose coherence ranges from most coherent to most incoherent. Moreover, we

show that by using these different bases with different FRT orders, it is possible

to generate statistics for fields with varying degree of coherence. Hence we also

propose the FRT as a systematic way of generating the statistics for fields with

varying degree of coherence. This observation also illustrates how definition of

coherence of bases in compressive sampling can be used to generate statistical

signal models so that the associated fields have varying degrees of correlatedness

(coherence).

7.1 Preliminaries

7.1.1 Signal model

We model our signals as zero-mean proper Gaussian vectors. The statistical

properties of such a Gaussian random vector x is characterized by its covariance

matrix Kx = E [xx†] � 0. We include the positive-semidefinite matrices except

the zero matrix (all entries are zero) in our model. The covariance matrix can

be studied through its singular value decomposition: Kx = UΛxU
† , where U

is a N × N unitary matrix, and Λx = diag(λ1, . . . , λN) is the diagonal matrix

of eigenvalues, where the eigenvalues are indexed in decreasing order as λ1 ≥
λ2, . . . ,≥ λN . Here † denotes complex conjugate transpose. Throughout the

chapter we assume that the signal dimension N , and tr (Kx) = P <∞ is fixed.
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In the field of information theory, entropy is a concept proposed to quantify the

uncertainty of a random source. The differential entropy of the above Gaussian

source is given by h(x) = log((2πe)N |Kx|) bits, where |.| denotes the determinant.

Hence it is characterized by the eigenvalues

h(x) ∝ log(|Kx|) =
N∑

i

log(λi). (7.1)

We note that among the sources with a given covariance matrix, Gaussian sources

have the highest entropy [180, Lemma 2], [56, Thm. 9.6.5]. Hence, in this sense,

our signal model can be considered to represent the worst case scenario.

Let D(δ) be the smallest number satisfying
∑D
i=1 λi ≥ δP , where δ ∈ (0, 1].

Hence for δ sufficiently close to one, D(δ) can be considered as the effective rank

of the covariance matrix and also the effective number of “degrees of freedom”

(DOF) of the signal family. For δ close to one, we drop the dependence on δ and

use the term effective DOF and the notation D to represent D(δ).

7.1.2 Coherence as a descriptor of bases

Consider the following decomposition of the matrix U = φψ. In compressive

sensing framework, the coherence of two bases, the intrinsic orthogonal signal

domain ψ, and the orthogonal measurement system φ is measured with µ =

maxi,j |Uij | providing a measure of how concentrated the columns of U are (One

mostly uses µ =
√
N maxi,j |Uij| in compressive sensing, here we drop

√
N , since

it is merely a scaling).

If a row of U is such that all the entries of the row vanish except one, then µ

gets its maximal value: 1. If all entries have equal magnitude, µ gets its minimal

value: 1/
√
N . We note that the identity matrix and the DFT matrix are two

matrices that are examples of these two extremes.

We observe that the FRT provides an intuitively appealing interpolation be-

tween identity matrix and the DFT matrix. The FRT is the fractional operator

power of the Fourier transform with fractional order a [18]. When a = 0, the
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FRT matrix reduces to the identity, and when a = 1 it reduces to the ordinary

DFT matrix. All FRT matrices are unitary matrices. In the coming sections, we

demonstrate that the FRT also provides a satisfying interpolation between the

incoherent and coherent limits.

As noted above, the coherence is formally defined between two bases. In

this chapter, we sometimes talk about coherence of U , implying coherence of the

orthogonal transforms φ and ψ forming U , or the coherence of U and the standard

basis I (which is in fact a special case of the former with φ = I, and ψ = U),

depending on the context.

7.1.3 Coherence as a descriptor of random fields

We now identify the limits of full coherence and incoherence of a random field

based on its covariance matrix.

7.1.3.1 Full Incoherence

We say that a field is fully incoherent when any two distinct samples of the field

is uncorrelated. Hence the covariance matrix of a fully incoherent random field

should be diagonal. (In fact under our Gaussian assumption, the field values at

different locations are also independent.)

Let tr (Kx) = P <∞. For a diagonal matrix to be a valid covariance matrix,

as long as the power constraint is satisfied the only requirement is that diagonal

entries should be nonnegative or positive (corresponding to positive-semidefinite

and positive-definite matrices, respectively.) These diagonal values are also the

eigenvalues of this matrix. Hence by (7.1) an incoherent field may have varying

values for the entropy (hence uncertainty as measured in information theory).

Furthermore, any such diagonal matrix can be the eigenvalue matrix of another

covariance matrix and these are the only valid eigenvalue distributions a covari-

ance matrix can have. Hence the total uncertainty of a totally incoherent field

(as measured with entropy) not only may have varying values, but also these are
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the only possible values.

At first sight the following reasoning may seem plausible to some: One may

think correlatedness as a measure of uncertainty in a signal; for instance when the

values of a field at different points are not correlated with each other, the total

uncertainty in the source should be high. Hence concept of coherence should be

another way to characterize what concepts such as the entropy or the degree of

freedom, traditionally associated with uncertainty, characterize. As the argument

in the above paragraph shows this is not the case; a fully incoherent field can have

all possible entropy and D(δ) values a covariance matrix may have.

7.1.3.2 Full Coherence

It is reasonable to say that in the fully coherent case, the field values at all points

should be fully correlated with the values of the field at all the other points, i.e.

the correlation coefficient should have its maximum value, for any pair of points

of the field [16]. That is,

Cx(i, j) =
Kx(i, j)√

Kx(i, i)Kx(j, j)
= 1, i, j = 1, . . . , N (7.2)

assuming Kx(i, i) > 0, Kx(j, j) > 0. Hence

C = AKAT, (7.3)

where A = diag([1/
√
Kx(1, 1), . . . , 1/

√
Kx(N,N)]). As a result rank{C} =

rank{AKxA
T} = rank{Kx}, since A is invertible. We also know that rank{C} =

1 (since for example all rows are multiplies of one row). Hence rank{Kx} = 1.

Hence in the fully coherent case the covariance matrix should be of rank one.

In this case there will be only one independent variable, and all the components

of the Gaussian vector will be scaled versions of this one independent variable.

We now discuss whether we should include matrices with Kx(j, j) = 0 for

some 1 ≤ j ≤ N while characterizing the fully coherent case. Our answer is

negative, and we impose the following additional condition for describing the
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fully coherent case: none of the diagonal entries should be zero, i.e. variances of

all of the components should be nonzero. In this way, any one of the field values

is just an invertible scaling of any other field value. Hence knowing the value of

the field value at any point is equivalent to knowing the value of the field at any

other point, and hence at all the other points of the space.

Let us consider what happens when this condition is not imposed: Suppose

that we have a rank one covariance matrix with one diagonal entry zero, such as

Kx = uu† =




1/2 0 1/2

0 0 0

1/2 0 1/2


 (7.4)

where u = [1/
√

2, 0, 1/
√

2]†. Hence the values of f1, and f3 do not depend on f2,

and similarly the value of f2 (which is 0 with probability 1) does not depend on

the other two. These random variables are statistically independent. We don’t

want to call such a field fully coherent.

This condition also prevents the following misleading interpretation in the

case of diagonal matrices: Any diagonal matrix with only one nonzero diagonal

value will also be rank one. One may try to argue that this field is coherent,

since the components are in fact just scaled versions of one variable (the ones

with variance 0 are scaled with 0). Hence such a field is called both incoherent

(since diagonal) and coherent (since rank 1). The additional nonzero diagonal

condition prevents this confusion.

To sum up, we say that a field is fully coherent, when the covariance matrix

is rank one and variance of the none of the components is zero, i.e. Kx = Puu†,

u ∈ CN |ui| > 0, ||u||2 = 1.

7.2 A General Discussion of Coherence Mea-

sures

Motivation: Given that two coherence definitions are attributes of different things
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(bases and random fields), one may be tempted to disregard the fact that both

concepts are named the same as a mere coincidence. We now state the main

observations that motivated us to investigate whether these concepts are related

beyond a similarity in name:

We have observed that both of these concepts, coherence of random fields

and bases, are associated with similar type of conclusions; both of them may

be used to express conditions for good signal recovery: as the coherence of a

basis gets smaller, fewer samples are required to provide good signal recovery

guarantees; when a field is highly coherent, its values at different points will be

highly correlated with each other and intuitively one will need fewer samples to

have good signal recovery guarantees.

Another related observation is the following: As stated in [181], in compressive

sensing the good bases are the ones where ”each measurement picks up a little

information about each component.” The coherence of two bases (measurement

and signal basis) is a measure of this property. Intuitively speaking, if each

measurement picks up a little information about each component, the variables

that are measured should be highly correlated; hence the total correlatedness or

in other words coherence of the random field should be larger. In other words

as the bases transforming the signal from its canonical domain to measurement

domain become better as measured by coherence of the bases, the resulting field

should become more correlated.

These two observations suggest that there may be a fundamental relationship

between the concepts of coherence of bases and coherence of random fields. Our

study addresses this problem.

Our Approach: We now give a brief overview of our approach to the problem

of quantification of coherence of random fields. In optics, precise quantification

of coherence depends on the context: one may talk about notions like coherence

length or area; or one may use the covariance matrix itself as a whole. Contrary to

various approaches for quantification of coherence in general, the characterization

of the extreme cases, full incoherence and full coherence is well-understood. Here

we would like to propose a scalar measure based on the covariance matrix of the
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random field, which is consistent with the characterization of the extreme cases,

full incoherence and full coherence, as presented in Section 7.1.3. We develop our

measures in a estimation framework. Our measure depends on both eigenvalues

and eigenvectors of the covariance matrix, compared to approaches focuses on

the eigenvalues [182, 183].

When a field is highly coherent, it is understood that its values at different

points are highly correlated with each other. Here we make the additional obser-

vation that the estimation error of a field reconstructed from its samples is related

to the correlation between its values at different points: when the values of a field

at different points are highly correlated with each other, one will need fewer sam-

ples to estimate it with low values of error. Similarly, when the values of the

field are uncorrelated with each other, one will need higher number of samples.

Hence the estimation error of a field from its samples may be used as a measure

of corrrelatedness of a random field, hence the coherence of it. Hence in this

chapter we propose an estimation error based framework to quantify coherence.

This framework is developped in Section 7.3.

Naming of Extreme Cases in Different Contexts: We note that the naming of

incoherent and coherent limits in the contexts of bases and random fields may be

confusing at first. We now clarify this issue.

A point that may cause confusion is the fact that different limits are associated

with good performance. For bases, incoherent bases are associated with good

performance, whereas for fields coherent fields are so. In compressive sensing,

when the coherence of two bases is smaller, (hence incoherent) fewer samples

are required to provide good performance guarantees. On the other hand, when

we are talking about coherence of random fields, intuitively it is when a field is

highly coherent, hence its values at different points are highly correlated with

each other, one will need fewer samples to have good performance guarantees.

Another related point that may cause confusion is the fact that the same

unitary transform is associated with different extremes: when U = I, it is called

a coherent base (with a slight abuse of terminology as noted in Section 7.1.2).

On the other hand, U = I is the unitary transform in the s.v.d. of a covariance
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matrix associated with an incoherent field.

We note that both of these choices of naming are meaningful in their respective

contexts. For the case of random fields, when the values of the field at different

points are correlated with each other, the field is called coherent. In the case of

coherence of bases, the situation is much clear when we consider the measurement

system matrix φ and the signal canonical domain matrix ψ. µ may be represented

as µ(U) = µ(φψ) = maxi,j |Uij | = maxi,j | < φi, ψj > |, where φi are rows of φ and

ψi are columns of ψ. . Hence µ can be said to give ‘ the largest correlation between

rows of φ and columns ψ’ [184]. Hence if elements of φ and ψ are correlated, µ

is high [184]. As a result, when the elements of these two bases are ‘correlated’,

the bases are called coherent.

In this chapter, we choose not to rename any of these coherence concepts

and remain consistent with the associated fields of research. We hope that the

meaning will be clear from the context.

7.3 MMSE based Coherence Measures for Ran-

dom Fields

In Section 7.2, we have related the coherence of a random field and the estimation

error associated with the random field when reconstructed from its samples, and

propose to use this relationship to quantify coherence. Here we develop this

framework.

We present a framework where degree of coherence is single parameter which

describes the estimation performance of a family of measurement systems. To this

end, we choose a family of tractable, meaningful set of measurement systems. We

choose the MMSE as the performance criterion. We ask ourselves the following

question ”Is there a single parameter so that the estimation performance of this

set is characterized?”.

We note that there may be various approaches to characterize the estimation
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performance over a set of measurement systems. Here we base our approach on

the expected performance over the given measurement strategy set S.

We consider the following measurement scenario

y = Hsx, (7.5)

where x ∈ CN is the unknown input proper complex Gaussian random vector,

and y ∈ CM is the measurement vector. Hs is the M ×N measurement matrix.

We consider the following measurement strategies:

i) Random Scalar Channel (So): H = eTi , i = 1, . . . , N with probability 1
N

.

ii) ‘All But One’ Channel (Sa): H = {I \ eTi }, i = 1, . . . , N with probability 1
N

.

Here {I \ eTi } denotes the matrix formed by deleting the ith row of the identity

matrix.

iii) Bernoulli Sampling Channel (Sb(p)):) H = diag(δi), where δi are i.i.d.

Bernoulli random variables with probability of success p.

iv) Equidistant Sampling (Su(∆N)): Every 1 out of ∆N samples are taken;

H ∈ RM×N is the sampling matrix formed by taking every 1 out of ∆N rows

of the identity matrix. The first sample is taken at one of the first ∆N samples

with equal probability.

We note that all of these measurement strategies have an intuitive appeal for

characterizing the overall correlatedness of a field: Random scalar channel quan-

tifies -in terms of the MMSE- on average how much the field value at a location

tells about the field values at all the other points. ‘All but one’ channel quantifies

on average how much uncertainty is left at particular point on the field when

all the other values are known. In Bernoulli sampling channel, the field value

at each point contribute to the estimation with the same probability. It is also

satisfying to note that for performance guarantees that hold with high proba-

bility this Bernoulli sampling model and the uniform random sampling model,

where measurement locations chosen uniformly from the set of all subsets of pN

is equivalent [20,185–187]. The equidistant sampling strategy is a standard sam-

pling strategy, for which through randomization of the location of the first sample,

we achieve an averaging effect over different points in space.
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We now propose some MMSE based coherence measures based on these mea-

surement strategies. We first define a set of intermediate variables, which we

denote by c′, which may have different values corresponding to the incoherent

and coherent limits. Then, we finalize the definition by appropriate scaling of the

measure so that the resulting measure c ∈ [0, 1], and c = 0, and c = 1 for the

fully incoherent case, and the fully coherent case respectively.

For notational convenience, let average error over the statistics of the signal

X be expressed as follows

ε = EX [||x− E [x|y]||2] (7.6)

Hence EHs,X [||x − E [x|y]||2] = EHs[ε], where EHs denotes the expectation over

the sampling strategy Ss, s = o, a, b, u.

We consider the following family of definitions

c′s =
EHs,X [||x− E [x|y]||2]

tr(Kx)
=

EHs [ε]

tr(Kx)
, (7.7)

where s = o, a, b, u. We note that by definition 0 ≤ EHs[ε] ≤ tr(Kx), hence

c′s ∈ [0, 1].

Another related measure may be based on the following observation: It is

appealing to consider the number of measurements that should be done in order

to achieve a certain level of performance as a measure of coherence. As the

required number of measurements increase, one would like to say the field becomes

more incoherent. For instance to have zero error, for a fully incoherent field

with variances strictly greater than zero, one would need to measure all of the

components. On the other hand, it is sufficient to have one measurement at

any location in the coherent case. To have a measure that is not dependent on

the locations of the measurements of a given strategy, we consider the Bernoulli

sampling channel, and the following definition

cbt = inf
p∈[0,1]

p, (7.8)

such that
EHe,X [||x− E [x|y]||2]

tr(Kx)
≤ R, (7.9)
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where 0 < R < 1 is the threshold parameter, which may be interpreted as

the desired level of estimation performance. We note that 0 ≤ ε
tr(Kx)

≤ 1 by

definition. Furthermore, since in Bernoulli sampling strategy, with probability

(1 − p)N , none of the components of the vector is measured, the expected error

EHe [ε] will always greater than zero. Hence R = 0 is not a meaningful parameter.

On the other hand for R = 1, all p values are admissable, (even p = 0 case, i.e.

doing no measurements) hence cbt = 0.

We note that such a definition will not be meaningful for the random scalar

and ‘all but one’ channels, since they do not have such a parameter to minimize

over. For the equidistant sampling case, a similar minimization over ∆N can be

thought, which by definition can only take a finite number of values because of

the discrete nature of ∆N .

We finalize the coherence definitions by scaling them as follows

cs =
cs,inc − c′s
cs,inc − cs,coh

, (7.10)

where s = o, a, b, u, bt. Here cs,inc, and cs,coh are the c′s values for the incoherent

field, and the coherent field respectively. These values are discussed at the end

of this section.

After scaling, all of the definitions satisfy c ∈ [0, 1], and c = 0, and c = 1 for

the fully incoherent case, and the fully coherent case respectively. All of these

individual definitions, and the associated family of definitions parametrized by p,

∆N or R (whenever applicable) provide possibly different interpolations between

these two extremes. This point is further discussed in Section 7.4.

Before leaving this section, we give the expressions for the MMSE estima-

tor and associated error: Under a given measurement matrix H , by standard

arguments the MMSE estimate is given by E [x|y] = x̂ = KxyK
+
y y, where

Kxy = E[xy†] = KxH
†, Ky = E[yy†] = HKxH

†, and + denotes the Moore-

Penrose pseudo-inverse [188, Ch.2]. The associated MMSE can be expressed as

follows [188, Ch.2]

EX [||x− E [x|y]||2] = tr(Kx −KxyK
−1
y K†

xy). (7.11)
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Full Incoherence: We now find the cs,inc values for different measurement

strategies. In this case the covariance matrix is diagonal. By (7.11) for the

random scalar channel, the measure for the incoherent field can be expressed as

follows

co,inc =
1
N

∑N
i=1(tr(Kx) − σ2

xi
)

tr(Kx)
=
N − 1

N
. (7.12)

For the ‘all but one’ channel, the measure for the incoherent field can be expressed

as follows

co,inc =
1
N

∑N
i=1(σ

2
xi

)

tr(Kx)
=

1

N
. (7.13)

For the Bernoulli sampling strategy with probability of success p,the measure for

the incoherent field can be expressed as follows

cb,inc =
E [
∑N
i=1(1 − δi)(σ

2
xi

)]

tr(Kx)
= 1 − p (7.14)

For equidistant sampling, the measure for the incoherent field can be expressed

as follows

cu,inc =
1

∆N

∑∆N
i=1 (tr(Kx) −

∑N/∆N−1
k=0 σ2

xk∆N+i)

tr(Kx)
(7.15)

=
∆N − 1

∆N
. (7.16)

For c′bt, by (7.9) and (7.14) we have the following condition to be satisfied, 1−p ≤
R, hence ĉ′et,inc = 1−R. We note that each of the measures satisfy the requirement

that the coherence value reported does not depend on the exact statistics of the

field as long as the field is incoherent (diagonal covariance matrix).

Full Coherence: Assume that we have a fully coherent field, i.e. a field with

a rank one covariance matrix with nonzero variances. Then by measuring one of

the components, it is possible to have the estimation error zero, i.e. EX [||x −
E [x|y]||2] = 0. As a result for a field with such covariance matrix, c′o,coh = 0,

c′a,coh = 0 and c′u,coh = 0, since in these sampling strategies averages are taken

over realizations where in at least one of them, one measurement is guaranteed

to be done. For the Bernoulli sampling strategy, with probability (1− p)N , none

of the measurements are done, hence the error can be expressed as follows

EHe[ε] = (1 − p)N tr(Kx) + (1 − (1 − p)N) 0 (7.17)

= (1 − p)N tr(Kx). (7.18)
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Hence c′b,coh = (1−p)N . For c′bt, by (7.9) and (7.18) we have the following condition

to be satisfied, (1− p)N ≤ R, hence c′et,coh = 1−R1/N . Since 0 < R < 1, c′et,inc <

c′et,coh for N > 1. We note that each of the measures satisfy the requirement that

the coherence value reported does not depend on the exact statistics of the field

as long as the field is coherent.

7.4 Coherence of Bases and Coherence Mea-

sures for Fields

We now investigate the relationships between coherence of bases and coherence of

random fields. We first investigate the coherence of the FRT matrices of different

orders according to the coherence definition proposed in the compressive sensing.

For the generation of the FRT matrices, an implementation of the algorithm

presented in [171] and in [18] is used; this implementation is available at [172].

Fractional Fourier Transform and Coherence of Bases as Measured in Com-

pressive Sensing Framework: We now consider the coherence of two bases as de-

fined by compressive sensing framework µ = maxi,j |Uij| and the FRT. As noted

earlier the identity matrix and the DFT matrix are examples of the extreme

points of bases, most coherent and incoherent respectively. In this experiment we

investigate whether the FRT, which provides an interpolation between the iden-

tity operator and Fourier transform, provides a satisfying interpolation between

coherent and incoherent limits as measured by this measure.

In Fig. 7.1, the horizontal axis is the order of the N × N FRT matrix. The

vertical axis is the scaled coherence µ̄

µ̄ =
µ− 1

1 − 1/
√
N
, (7.19)

where µ̄ ∈ [0, 1]. We observe that despite some minor fluctuations, the FRT pro-

vides a satisfying interpolation between the incoherent and coherent limits of uni-

tary transforms with respect to coherence measure used in compressive sensing.

We see that as N becomes larger, the interpolation becomes more satisfactory,
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Figure 7.1: Coherence vs. order of the fractional Fourier matrix, N variable.

i.e. there are less fluctuations.

Coherence of Bases and MMSE based Coherence Measures for Fields:Here we

investigate the coherence of random fields associated with different covariance

matrices. To generate the covariance matrices used in the experiments, we con-

sider the singular value decomposition of the covariance matrix: Kx = UΛxU
†

, where Λx = diag(λ1, . . . , λN) is the diagonal matrix of eigenvalues, and U is a

N ×N unitary matrix. In a given experiment, we fix the eigenvalue distribution

Λx, and look at the coherence of the field as we change the unitary basis U . As

unitary matrices, we use the FRT matrices. To obtain different unitary matrices,

we change the order a of the FRT matrix. Since the eigenvalue distribution is

fixed, the entropy and hence the total uncertainty of the source is fixed. As a

result, as we change U , what we change is not the total uncertainty of the field,

but its distribution among the components of the signal. In Section 7.4, we have

illustrated that the FRT order can be considered as a rough measure of coherence

of bases. Hence in the upcoming development the FRT order (the horizontal axis

in the plots) can be also interpreted as a measure of coherence of bases.

To obtain covariance matrices with different effective ranks, we choose the

eigenvalue distribution as follows: Let δ ∈ [0, 1] be close to one. Let first D of

the eigenvalues be δP
D

, and others (1−δ)P
N−D . As noted in Section 7.1.1, here the
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parameter D can be interpreted as the effective rank of the covariance matrix

for δ sufficiently close to one. We set δ = 1 − ǫ, where ǫ = 10−5. In our

experiments, D takes the values D = αN , where α ∈ (0, 1] takes the values

α = [1/16, 8/16, 15/16]. In our experiments, we set the signal dimension as

N = 128, and tr (Kx) = N .

In the following experiments, we illustrate how different MMSE based defini-

tions quantify total correlatedness of a random field. We consider the sampling

strategies, random scalar channel (So), all but one channel (Sa), Bernoulli sam-

pling channel (Sb) and equidistant sampling (Su) and associated definitions as

introduced in Section 7.3.

In our plots, we report error as the percentage MMSE defined as ε̄ ∈ [0, 100],

ε̄ = 100 ε
tr(Kx)

. We choose p of the Sb as p = D/N , where D is the effective rank

of the covariance matrix (and also effective DOF of the field). For Su, we take D

samples and distribute the samples over the range of 1 to N in an evenly fashion

(as much as D and N values permit). In the case of Bernoulli sampling strategies,

Sb, we simulate the expectation over the sampling strategy by taking average over

Ns = 200 realizations. For ct, we consider the p values (1/N) × [1, 2, . . . , N ] in

our simulations, and choose the best p value from this set.

Low Effective DOF: Let α = 1/16, hence the effective DOF D = αN =

(1/16)×128 = 8. In Fig. 7.2, and Fig. 7.3, we plot the MMSE and the associated

measures of coherence, respectively. Since it is instructive to see the both plots

together, we present both of them although they carry similar information.

We observe that for each sampling strategy, general trend of the MMSE per-

formance is consistent with FRT order; the MMSE, in general, decreases as the

order of the FRT increases from 0 to 1, i.e. as the unitary transform changes

from the identity matrix to the DFT matrix. Since as illustrated in Section 7.4,

the FRT order can be considered as a rough measure of coherence of bases, we

conclude that MMSE performance is, in general, consistent with coherence defini-

tion of compressive sensing; as the bases become more incoherent, better MMSE

values are obtained for all sampling strategies considered in this experiment.

Moreover, as the order of the FRT increases, the coherence values increases from
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Figure 7.2: Error vs. order of the fractional Fourier matrix, α = 1/16, sampling
strategy variable.

0 to their saturation values, that is the random fields become more coherent;

the FRT provides an interpolation between the incoherent random to coherent

random field.

Although the general trend of decreasing MMSE with increasing FRT order is

similar for all sampling strategies, the FRT order they saturate and the saturation

values are different. As a result we observe that for a given FRT order, the coher-

ence values provided by different measures strongly depend on the measurement

strategy the coherence measure is based on.

We observe that for all measures, coherence values act as concave-like func-

tions of the order of the FRT. Moreover, for both scalar channel (So) and all

but one channel (Sa), the general trend of the error performance is similar; the

error saturates at low values of FRT order a, although the saturation values are

different. As a result the coherence measures associated with these measurement

strategies also show similar behaviour with different saturating values. We also

observe that although the exact coherence values provided by cu, cb, ct are pos-

sibly different; their general behaviour is quite similar; the range of coherence

values reported by these measures and the ways they interpolate in between are
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Figure 7.3: Coherence vs. order of the fractional Fourier matrix, α = 1/16,
coherence measures variable.

not very different.

We observe that the MMSE performance (and associated coherence measures)

for Bernoulli sampling and equidistant sampling channel depend significantly on

the FRT order (hence coherence of U measured in compressive sensing). For in-

stance for equidistant sampling strategy (Su), as the FRT order a changes from

a = 0 to a = 0.6, the percentage error changes from ǭ ≈ 100 to ǭ ≈ 0. We

also note that ct, which effectively reports the minimum possible success rate

of the sampling strategy to achieve a target performance show a similar strong

dependency. These strong dependencies on the FRT order motivates the follow-

ing conclusion: the importance of the coordinate system the measurements done

should not be overlooked while quantifying the uncertainty of a signal in estima-

tion framework; in this experiment the eigenvalue distribution of the covariance

matrix is fixed, hence the total uncertainty of the associated random field as mea-

sured with entropy (or effective DOF) does not change. On the other hand, for

some of the measurement strategies very different estimation performances are

obtained as U is changed.

Moderate Effective DOF: Let α = 1/2, hence the effective DOF D = αN =
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Figure 7.4: Coherence vs. order of the fractional Fourier matrix, α = 1/2, coher-
ence measures variable.

(1/2) × 128 = 64. In Fig. 7.4, we plot the associated measures of coherence. We

observe that co, ca saturate quite early, and provide very different coherence val-

ues. For almost all FRT values, for random scalar channel, coherence is reported

as co ≈ 0, and for all but one channel ca ≈ 1. On the other hand, similar to the

low effective DOF case cb and cu behave quite similarly; their ranges and the way

they interpolate in between is not much different from each other. We observe

that contrary to low DOF case, this time ct behaves different from these two, and

saturates at a significantly different value. These observations are discussed in

the experiments for the high effective DOF case, and Section 7.5.

High Effective DOF Let α = 15/16, hence the effective DOF D = αN =

(15/16)×128 = 120. In Fig. 7.5, we plot the associated measures of coherence.An

intriguing property of this coherence plot is the fact for ca and ct there is a

strong dependency on the order of the FRT, whereas for the other measures this

dependency has vanished. Here ca shows a strong dependency on the FRT order,

and contrary to previous cases (low, and moderate DOF) it does not saturate at

very low values of the FRT order; hence distinguishing between different the FRT

orders (up to a ≈ 0.6).
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Figure 7.5: Coherence vs. order of the fractional Fourier matrix, α = 15/16,
coherence measures variable.

Looking at Fig. 7.3, Fig. 7.4 and Fig. 7.5 together, we observe that ct turns

out to be the measure that exhibits the strongest dependency on the order of the

FRT, [hence coherence of bases] in the sense that it reports different coherence

values for a high range of the FRT orders for a fixed DOF value, and do so for

all the DOF levels considered in the experiments, i.e. low, moderate, high.

Effect of Matching of the Eigenvalues and the Columns of the Basis: We

now illustrate the effect of matching of the eigenvalues and the columns of the

basis on the results. In the previous experiments, the D largest eigenvalues

were set to be the first D eigenvalues where the FRT basis vectors are indexed as

described in [171] and in [18], which is consistent with the standard representation

of the DFT matrix when a = 1. We now change the locations of the D largest

eigenvalues, and compare the results with the previous case.

Let α = 1/16, hence the effective DOF D = αN = (1/16) × 128 = 8. As in

the previous cases, the D largest eigenvalues have the value δP
D

and the remaining

has the value (1−δ)P
N−D with δ = 1 − ǫ, ǫ = 10−5, P = N . Contrary to the previous

cases, we choose the locations of the D largest eigenvalues randomly, which are

[26, 35, 55, 64, 81, 88, 90, 119] in this experiment. In Fig. 7.6, we plot the MMSE
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Figure 7.6: Error vs. order of fractional Fourier matrix, α = 1/16, random
eigenvalue locations, sampling strategy variable.

of varying measurement strategies. We compare these results with Fig. 7.2. We

observe that the general behaviour of the MMSE are similar in these two experi-

ments. In particular, the error values associated with random scalar channel and

the all but one channel are effectively the same. On the other hand, although

the general trend of decreasing error with increasing FRT order is the same with

Fig. 7.2, the values that the FRT orders that the error of some of the sample

strategies, Sb, Su, St, saturate are quite different. Another interesting point is

the unexpected behaviour under Su when the FRT order is a = 1, i.e. the unitary

transform is the DFT: although as the FRT order increases, the error in general

decreases, when the transform becomes exactly equal to the DFT, the error in-

creases. In the light of all these observations, we conclude that in general for

Sb, Su, St the performance of measurement strategies depend on the matching of

the eigenvalues and the columns of the basis, determining the unitary transform

and the eigenvalue distribution is not sufficient to uniquely determine the error

performance. This issue and the relatively robust behaviour of So and Sa in this

experiment are interesting points to investigate in the future.
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Comparison with Measures in Literature: We now investigate the relation-

ship between the FRT order and different coherence definitions presented in [58]

in a statistical optics framework. These definitions are based on the following

normalized matrix

Cx(i, j) =
Kx(i, j)√

Kx(i, i)Kx(j, j)
, i, j = 1, . . . , N (7.20)

assuming Kx(i, i) > 0, Kx(j, j) > 0. Otherwise if i = j, Cx(i, j) = 1, if i 6=
j, Cx(i, j) = 0. The diagonal elements of Cx are all 1. We note that this is

the matrix of correlation coefficients, where Cx(i, j) is the correlation coefficient

between xi and xj . Let the eigenvalues of Cx be denoted as λ̄i, i = 1, . . . , N . We

consider the following definitions [58],

c′a =
1

N

N∑

i=1

(λ̄i − λ̄0
i )

2, (7.21)

c′b = −
N∑

i=1

λ̄i
N

log(
λ̄i
N

), (7.22)

where λ̄0
i = tr(Cx)

N
is the average of the eigenvalues. These definitions are nor-

malized according to (7.10), so that the normalized definitions ca, cb ∈ [0, 1].

These measures provide an interpolation between the most incoherent and co-

herent cases, corresponding to 0 and 1 respectively. If one were to apply these

definitions to the eigenvalues of the covariance matrix before the normalization,

and the above definitions would be independent of the basis U associated with

the covariance matrix, and would have been providing alternative ways to quan-

tify the spread of these eigenvalues. As we have discussed earlier, a coherence

definition should not be solely depending on eigenvalues. The normalization here

makes the measure U dependent.

Let α = 1/16. Fig. 7.7 presents the coherence of the field measured by these

metrics and the FRT order. We see that with both definitions, the coherence of

the field first increase, then decrease as the FRT order increases from 0 to 1. Hence

in general, for a given eigenvalue distribution, the FRT provides a poor interpo-

lation between the incoherent and coherent limits (of a random field) according

to coherence definitions in [58]. Hence the coherence of the bases measured by
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Figure 7.7: Coherence of random field vs. order of the fractional Fourier matrix.

compressive sensing and the coherence of the resulting fields measured by the

definitions proposed in [58] are not consistent.

As noted in Section 7.2, one may expect the otherwise. As coherence of

the base decreases, we would expect the total correlatedness of the associated

field would increase. Although the coherence of the bases shows a general trend

of decrease as the order of the FRT increases, the definitions proposed in [58]

first increase but then decrease. We note that here the issue is not about the

numbers 0 or 1 associated with the extreme points (hence behaviour of increas-

ing/decreasing), but about behaving consistently; constantly showing the same

type of behaviour (increasing or decreasing, not both) as the order of the FRT,

for example, increases.

Taking a closer look, we make the following observations: The definitions

in [58] are designed to wash out the effect of the different power distributions

among components of a field; measures are calculated after scaling the power of

all components so that all of components have equal power, as shown in (7.20).

The definitions quantify the spread of eigenvalues of these normalized matri-

ces. The main motivation behind this normalization is the desire to capture the
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correlation structure without taking into account the power distributions. For

instance for the incoherent case, this idea turns out to be very useful, for all

diagonal covariance matrices with nonzero diagonal values, the coherence mea-

sures report 0. It is also satisfying to know that whenever the powers of all

components are nonzero, the rank of the covariance matrix is preserved by this

normalization, since in this case C = AKAT, A = diag([1/σx1
, . . . , 1/σxN

]) , and

rank{C} = rank{AKAT} = rank{K}. Hence a rank 1 covariance matrix with

nonzero diagonal remains rank 1 after this normalization; coherent fields are

reported as coherent as one would desire. On the other hand, in general the rela-

tionship between the spread of the eigenvalues of this normalized matrix and the

correlation is not clear except these extreme cases. Moreover, this normalization

causes some fields associated with different covariance matrices to be reported

to have the same coherence value; although whether they should have the same

coherence value is questionable. For instance, for a given ρ, the following family

of covariance matrices have the same degree of coherence regardless of the value

of the constant B

Kx(B) =




B 0 0

0 1 ρ

0 ρ 1


 . (7.23)

On the other hand, these definitions are motivated by statistical optics problems.

In statistical optics, coherence is also associated with the concept of fringe visi-

bility, which is a measure of visibility/contrast of interference pattern when two

random waves are combined. Most of the time one associates coherence with

both of these concepts, fringe visibility and total correlation of the random field,

without making the distinction and the relationship between these concepts clear.

We have seen that above definitions are not satisfactory for providing a measure

for total correlation of the field. Whether they provide a satisfying measure for

fringe visibility is an interesting point to investigate in the future.
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7.5 Discussion

Coherence of a Random Field and Singular Value Decomposition of the Covari-

ance Matrix:

We now discuss the relationship between coherence of a random field and the

s.v.d. of the covariance matrix associated with the field. The s.v.d. of a covariance

matrix Kx = UΛxU
† has two components: unitary transform U , and the diagonal

matrix of the eigenvalues Λx = diag(λ1, . . . , λN). We note that the extreme cases

of coherence of the random field are (effectively) solely characterized by different

components of this decomposition. Fully incoherent case is solely characterized

by the unitary transform; all eigenvalue distributions are allowed as long as the

unitary transform is identity (or more generally U = diag(Uii), |Uii| = 1). On the

other hand, the fully coherent case is (effectively) characterized by the eigenvalue

distribution; all unitary transforms (if they satisfy |Uii| > 0) are allowed, as long

as only one eigenvalue is nonzero.

It is intriguing to investigate what happens in between: how the unitary

transform and the eigenvalues interact to determine the total correlatedness of

a field. In such a study, it will be educating to study the effect of one while

keeping the other constant. We note that under Gaussian assumption, the entropy

(hence the uncertainty of the source) is solely characterized by the eigenvalue

decomposition. When one fixes the eigenvalue distribution, and varies the unitary

transform, one fixes the total uncertainty in the source and only varies how this

total uncertainty is spread out through the components of the field. When one

fixes the unitary transform, and varies the eigenvalue distribution, the way the

uncertainty can be distributed among the components of the signal is fixed, and

the total uncertainty varies as dictated by the eigenvalues.

To study these cases, one will need a systematic way to generate eigenvalue

distributions representing varying degree of total uncertainty, and a systematic

way of generating unitary transforms with varying degrees of power of corre-

lating/mixing the variables it is applied to. It is relatively easier to think of

alternative systematic ways to generate such eigenvalue distributions. We also
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have the advantage of a ground truth: it will be possible to quantify the uncer-

tainty these eigenvalue distributions characterize by notions like entropy or DOF.

On the other hand, for the problem of characterizing the unitary transforms ac-

cording to their correlating power, the situation is not that much clear. In one

extreme, we have the identity like transforms (U = diag(Uii), |Uii| = 1) which

do not correlate the variables it is applied to at all. It is not clear which trans-

form resides in the other extreme, or whether it is eigenvalue distribution specific.

Here the idea of coherence of bases used in the compressive sensing provided a

possible way to do so. In this chapter we have studied the relationship between

this notion, coherence of bases, and the average estimation error of a field which

we consider a measure of correlatedness of a field. Still whether notions that

provides more suitable characterization of unitary transforms for our purposes is

an open problem.

We note that a related issue here is the fact that fixing the eigenvalue distri-

bution and the unitary transform does not fully determine the covariance matrix.

The ordering of the eigenvalues and columns of the unitary transform, or in other

words, matching of the eigenvalues to the columns of U is also important, and

may have an important effect on the total correlatedness of the field.

Coherence and Entropy:

The total uncertainty as measured with entropy in information theory is given

by solely the eigenvalue decomposition under our Gaussian assumption. Similarly

the bare concept of DOF is characterized by the eigenvalue decomposition. These

concepts are designed to quantify the total uncertainty in the signal as number of

bits (entropy) or the total number of independent components (DOF). In these

frameworks, the assumption is that one can transform the signal before trying to

represent it.

On the other hand in understanding the concept of coherence, it is impor-

tant to also consider the spread of this uncertainty in the basis the signal is

observed. As demonstrated before the unitary transform of the covariance ma-

trix is very important. Here we would like to comment on the importance of

the eigenvalue distribution. How much total uncertainty can be spread in the
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measurement domain is closely related to how much uncertainty there is in the

signal (eigenvalues). For example, the source has the highest entropy (highest

total uncertainty) when all eigenvalues are equal. In that case, no matter what

U is, the source is always incoherent resulting in Kx ∝ I. On the other hand,

when the covariance matrix is rank one, this spread of uncertainty can have many

forms. All the uncertainty can be in one component, resulting in a matrix for

example like Kx = diag([1, 0 . . . 0]). Or the uncertainty may be spread out in

all of the components, for example Kx is proportional to matrix of all ones (all

entries are one).

7.6 Conclusions

Our work have emphasized a concept that is a measure of dependence, of central

importance in statistical optics, but overlooked in signal processing community.

We have illustrated that this concept provides a fresh perspective to our under-

standing of the uncertainty of a signal. Although connected with more traditional

concepts like the entropy and the degree of freedom, what this concept quantifies

is not just a repetition of what these concepts do. We have also proposed a family

of definitions to quantify coherence of random fields in an estimation framework.

These definitions are consistent with our qualitative understanding of coherence,

and provided a new perspective to our understanding of coherence, hence cor-

relatedness of a field. Through a Gaussian signal model, we have bridged this

concept with the concept of coherence in compressive sampling. We have inves-

tigated the relationship between these two concepts and proposed the fractional

Fourier Transform as a systematic method of generating both bases or statistics

for fields with varying degrees of coherence.
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Chapter 8

Basis Dependency of MMSE

Performance for Random

Sampling

In Chapter 7, we have pointed out a possible relationship between the concept of

coherence of random fields as defined in optics, and the concept of coherence of

bases as defined in compressive sensing, through the fractional Fourier transform.

This investigation helped us to explore the relationship between the estimation

error and the geometry of the spread of the uncertainty in the measurement do-

main. In this chapter, we study this relationship from an alternative perspective.

We consider measurement set-ups where a random or a fixed subset of the

signal components in the measurement space are erased. We investigate the error

performance, both in the average, and also in terms of guarantees that hold with

high probability, as a function of system parameters. The unitary transformation

that connects the canonical signal domain and the measurement space will play

a crucial role throughout this investigation. Contrary to Chapter 7, here we do

not restrict the unitary transformation to be a fractional Fourier transform.

We consider the following noisy measurement system

y = Hx+ n, (8.1)
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where x ∈ CN is the unknown input proper complex Gaussian random vector,

n ∈ CM is the proper complex Gaussian vector denoting the measurement noise,

and y ∈ CM is the measurement vector. H is the M ×N measurement matrix.

We assume that x and n are statistically independent zero-mean random vec-

tors with covariance matrices Kx = E [xx†], and Kn = E [nn†], respectively. We

assume that the components of n are independent and identically distributed

(i.i.d.) with E [nini†] = σ2
n > 0, hence Kn = σ2

nIM ≻ 0, where IM is the M ×M

identity matrix. Let Kx = UΛxU
† � 0 be the singular value decomposition of

Kx, where U is a N × N unitary matrix, and Λx = diag(λ1, . . . , λN). Here †
denotes complex conjugate transpose. When needed, we emphasize the random

variables the expectations are taken with respect to; we denote the expectation

with respect to the random measurement matrix by EH [.], and the expectation

with respect to random signals involved (including x and n) by ES[.]. In all

of the problems we assume that the receiver has access to channel realization

information.

We now formulate the problems that will be studied in this chapter. Firstly,

we will consider equidistant sampling of circularly wide-sense stationary (c.w.s.s.)

signals, which may be interpreted as a natural model to represent wide-sense

stationary signals in finite dimension.

PROBLEM P1 (Estimation Error of Equidistant Sampling of Circularly Wide-

Sense Stationary (c.w.s.s.) Signals): Here the covariance matrix is circulant by

assumption, and hence the unitary transform U is fixed and is given by the DFT

matrix. We will ask the following questions: “What is the MMSE error associated

with equidistant sampling for a c.w.s.s. signal? What is its relationship with the

eigenvalue distribution and the rate of sampling?”

This set-up will serve as a benchmark for estimation performance. We will

compare the error bounds provided by the high probability results for more gen-

eral signal models with the error associated with this scheme. We believe that

our results here may also be of independent interest, so we state and prove them

explicitly.
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PROBLEM P2 (Error Bounds For Random Sampling/Support): Here we

focus on the case where nonzero eigenvalues all have equal magnitude. Are there

any nontrivial lower bounds (i.e. bounds close to 1) on

P(ES[||x− E [x|y]||2] < fP2(Λx, U, σ
2
n)) (8.2)

for some function fP2, where fP2 denotes a sufficiently small error level given

tr (Kx), and σ2
n. In particular, when there is no noise, we will be investigating

the probability that the error is zero.

PROBLEM P3 (Error Bounds For Random Projections under a General

Eigenvalue Distribution): Let x ∈ RN and y ∈ RM . Are there any nontrivial

lower bounds (i.e. bounds close to 1) on

P(ES[||x− E [x|y]||2] < fP3(Λx, U, σ
2
n)) (8.3)

for some function fP3 under the scenario of sampling with random projections

(entries of H are i.i.d. Gaussian) with fixed eigenvalue distribution? How does

the Λx and H affect the performance? Here fP3 denotes a sufficiently small error

level given tr (Kx) and σ2
n.

In our investigations, we will see that among the unitary matrices, the DFT

matrix (or other unitary matrices satisfying uij = 1, i, j = 1, . . . , N) will provide

the best performance guarantees, in the sense that fixing the bound on the proba-

bility of error, they will require the least number of measurements to have certain

error bounds or fixing the bound on the probability of error, it will be possible to

obtain tighter error bounds with a given number of measurements. We note that

in all these results the performance criterion is of the type “performance guaran-

tees that hold with high probability”, but not average, with respect to the random

sampling matrix H . (MMSE is of course an average, but it is an average over

signals, i.e. the result of expectation of the type ES(.).) An intriguing question

is to investigate the average performance over H . We pay particular attention to

the case where U is given by the DFT matrix, since the best guarantees in the

previous high probability results are obtained for this matrix.

PROBLEM P4 (Best Unitary Encoder For Random Channels): Let UN be

the set of N × N unitary matrices: {U ∈ CN : U †U = IN}. We consider the
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following minimization problem

inf
U∈UN

EH,S[||x− E [x|y]||2], (8.4)

where the expectation with respect to H is over admissible random measurement

strategies: random scalar Gaussian channel (only one of the components is mea-

sured each time) or Gaussian erasure channel (each component of the unknown

vector is erased independently and with equal probability).

We note that in the context of Problem 3 it is not meaningful to seek for the

best orthonormal U (i.e. U ∈ RN×N : U †U = IN ) encoder. This is because the

entries of H are i.i.d. Gaussian, and such a random matrix H is left and right

‘rotationally invariant’: For any orthonormal matrix U , the random matrices UH ,

HU and H have the same distribution. See [Lemma 5, [180]].

We note that the dependence of signal uncertainty in the signal basis has been

considered in different contexts in the information theory literature. The concepts

that are traditionally used in the information theory literature as measures of de-

pendency or uncertainty in signals (such as the degree of freedom, or the entropy)

are mostly defined independent of the coordinate system in which the signal is to

be measured. As an example one may consider the Gaussian case: the entropy

solely depends on the eigenvalue spectrum of the covariance matrix, hence mak-

ing the concept blind to the coordinate system in which the signal lies in. On the

other hand, the approach of applying coordinate transformations to orthogonal-

ize signal components takes place in many signal reconstruction and information

theory problems. For example the rate-distortion function for a Gaussian ran-

dom vector is obtained by applying an uncorrelating transform to the source, or

approaches such as the Karhunen-Loéve expansion are used extensively. Also,

the compressive sensing community heavily makes use of the notion of coherence

of bases, see for example [13,14,17]. The coherence of two bases, say the intrinsic

signal domain ψ, and the orthogonal measurement system φ is measured with

µ = maxi,j |uij|, U = φψ providing a measure of how concentrated the columns of

U are. When µ is small, one says the mutual coherence is small. As the coherence

gets smaller, fewer samples are required to provide good performance guarantees.
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The total uncertainty in the signal as quantified by information theoretic

measures such as entropy (or eigenvalues) and the spread of this uncertainty

(basis) reflect different aspects of the dependence in a signal. The estimation

problems we will consider may be seen as an investigation of the relationship

between the MMSE and these two measures.

In the following, we provide a brief overview of the related literature. An im-

portant model in this chapter is the Gaussian erasure channel, where each com-

ponent of the unknown vector is erased independently and with equal probability,

and the transmitted components are observed through Gaussian noise. This type

of model may be used to formulate various types of transmission with low reli-

ability scenarios, for example Gaussian channel with impulsive noise [189, 190].

This measurement model is also related to the measurement model considered

in the compressive sensing framework, where the measurement scenario where

each component is erased independently and with equal probability is of central

importance [185, 186]. Our work also contributes to the understanding of the

MMSE performance of such measurement schemes under noise.

The problem of optimization of precoders or input covariance matrices is for-

mulated in literature under different performance criteria: When the channel is

not random, [191] considers a related trace minimization problem, and [192] a de-

terminant maximization problem, which correspond to optimization of the MMSE

and mutual information performance respectively in our formulation. [193], [194]

formulates the problem with the criterion of mutual information, whereas [195]

focuses on the MMSE, and [196] on determinant of the mean-square error ma-

trix. [197, 198] presents a general framework based on Schur-convexity. In these

works the channel is known at the transmitter, hence it is possible to shape the

input according to the channel. When the channel is a Rayleigh or Rician fading

channel, [199] investigates the best linear encoding problem without restricting

the encoder to be unitary. [180] focuses on the problem of maximizing the mu-

tual information for a Rayleigh fading channel. [189], [190] consider the erasure

channel as in our setting, but with the aim of maximizing the ergodic capacity.

In Problems P2 and P3, we investigate how the results in random matrix
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theory mostly presented in compressive sampling framework can be used to find

bounds on the MMSE associated with the described measurement scenarios. We

note that there are studies that consider the MMSE in compressive sensing frame-

work such as [200,201], which focus on the scenario where receiver does not know

the location of the signal support. In our case we assume that the receiver has

full knowledge of the signal covariance matrix.

Preliminaries and Notation: In the following, we present a few definitions and

notations that will be used throughout the chapter. Let tr (Kx) = P . Let D(δ)

be the smallest number satisfying
∑D
i=1 λi ≥ δP , where δ ∈ (0, 1]. Hence for δ

close to one, D(δ) can be considered as an effective rank of the covariance matrix

and also the effective number of “degrees of freedom” (DOF) of the signal family.

For δ close to one, we drop the dependence on δ and use the term effective DOF

to represent D(δ). A closely related concept is the (effective) bandwidth. We

use the term “bandwidth” for the DOF of a signal whose canonical domain is

the Fourier domain, i.e. whose unitary transform is given by the discrete Fourier

Transform (DFT) matrix.

Let
√
−1 = j. The entries of an N × N DFT matrix are given by

utk = 1√
N
ej

2π
N
tk, where 0 ≤ t , k ≤ N − 1. We note that the DFT matrix

is the diagonalizing unitary transform for all circulant matrices [202]. In gen-

eral, a circulant matrix is determined by its first row and defined by the rela-

tionship Ctk = C0modN (k−t), where rows and columns are indexed by t and k,

0 ≤ t , k ≤ N − 1, respectively.

The transpose, complex conjugate and complex conjugate transpose of a ma-

trix A is denoted by AT, A∗ and A†, respectively. The eigenvalues of a matrix A

are denoted in decreasing order as λ1(A) ≥ λ2(A), . . . ,≥ λN(A).

We now review the expressions for MMSE estimation. Under a given measure-

ment matrix H , by standard arguments the MMSE estimate is given by E [x|y] =

x̂ = KxyKy
−1y, where Kxy = E[xy†] = KxH

†, and Ky = E[yy†] = HKxH
† +Kn.
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We note that since Kn ≻ 0, we have Ky ≻ 0, and hence K−1
y exists. The associ-

ated MMSE can be expressed as [188, Ch2]

ES[||x− E [x|y]||2] = tr(Kx −KxyK
−1
y K†

xy) (8.5)

= tr(Kx −KxH
†(HKxH

† +Kn)
−1HKx) (8.6)

= tr(UΛxU
† − UΛxU

†H†(HUΛxU
†H† +Kn)

−1HUΛxU
†)

(8.7)

Let B = {i : λi > 0}, and let UB denote the N ×|B| matrix formed by taking the

columns of U indexed by B. Similarly, let Λx,B denote the |B| × |B| matrix by

taking the columns and rows of Λx indexed by B in the respective order. We note

that U †
BUB = I|B|, whereas the equality UBU

†
B = IN is not true unless |B| = N .

Also note that Λx,B is always invertible. The singular value decomposition of Kx

can be written as Kx = UΛxU
† = UBΛx,BU

†
B. Hence the error may be rewritten

as

ES[||x− E [x|y]||2]
= tr(UBΛx,BU

†
B − UBΛx,BU

†
BH

†(HUBΛx,BU
†
BH

† +Kn)
−1HUBΛx,BU

†
B) (8.8)

= tr(Λx,B − Λx,BU
†
BH

†(HUBΛx,BU
†
BH

† +Kn)
−1HUBΛx,B) (8.9)

= tr ((Λ−1
x,B +

1

σ2
n

U †
BH

†HUB)−1) (8.10)

where (8.9) follows from the identity tr(UBMU †
B) = tr(MU †

BUB) = tr(M) with

an arbitrary matrix M with consistent dimensions. Here (8.10) follows from the

fact that Λx,B and Kn are nonsingular and the Sheerman-Morrison-Woodbury

identity, which has the following form for our case (see for example [203] and the

references therein)

K1 −K1A
†(AK1A

† +K2)
−1AK1 = (K−1

1 + A†K−1
2 A)−1, (8.11)

where K1 and K2 are nonsingular.

Here is a brief summary of the rest of the chapter: In Section 8.1, we consider

equidistant sampling of a circularly wide-sense stationary signal. We give the

explicit expression for the MMSE, and show that two times the total power out-

side a properly chosen set of indices (a set of indices which do not overlap when
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shifted by an amount determined by the sampling rate) provides an upper bound

for the MMSE. In Section 8.2, we illustrate how some recent results in matrix

theory mostly presented in the compressive sampling framework can be used to

find performance guarantees for the MMSE estimation that hold with high prob-

ability. In Section 8.3, we illustrate how the spread of the eigenvalue distribution

and the measurement scheme contribute to obtain performance guarantees that

hold with high probability for the case of sampling matrix with i.i.d. Gaussian

entries. In Section 8.4, we consider random erasure channels and formulate the

problem of finding the most favorable unitary transform under average perfor-

mance. We investigate the convexity properties of this optimization problem,

and obtain conditions of optimality through variational equalities. We identify

special cases where the discrete Fourier Transform (DFT)-like unitary transforms

turn out to be the best coordinate transforms (possibly along with other unitary

transforms). Although there are many observations (including evidence provided

by the compressed sensing community) that may suggest the idea that the DFT

matrix may be indeed an optimum unitary matrix for any eigenvalue distribution,

we provide a counterexample. We conclude in Section 8.5.

8.1 Equidistant Sampling of Circularly Wide-

Sense Stationary Random Vectors

We now consider the MMSE associated with equidistant sampling of an impor-

tant class of signals: circularly wide-sense stationary (c.w.s.s.) signals, which

is a way for modelling wide-sense stationary signals in finite dimension. Let

x = [xt, t ∈ I = 0, . . . , N − 1] be a zero-mean, proper, c.w.s.s. Gaussian ran-

dom vector. We note that the covariance matrix of a c.w.s.s. signal is always

circulant, so the eigenvectors of the covariance matrix is given by the columns

of the DFT matrix utk = 1√
N
ej

2π
N
tk, where 0 ≤ t , k ≤ N − 1 [202]. Hence in

this section we fix the unitary transform to be the DFT matrix. We denote the

associated eigenvalues with λk, 0 ≤ k ≤ N−1 instead of indexing the eigenvalues

in decreasing/increasing order.
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In this section, we first consider the noiseless deterministic sampling strategy

where every 1 out of ∆N samples are taken. We let M = N
∆N

∈ Z, and as-

sume that the first component is always measured, for convenience. Hence our

measurements are in the form

y = Hx, (8.12)

where H ∈ RM×N is the sampling matrix formed by taking the rows of the identity

matrix corresponding to the observed variables.

We now present our main result in this section; an explicit expression and an

upper bound for the mean-square error associated with the above set-up.

Lemma 8.1.1. Let the model and the sampling strategy be as described above.

Then the MMSE of estimating x from these equidistant samples can be expressed

as

E[||x− E[x|y]||2] =
∑

k∈J0

(
∆N−1∑

i=0

λiM+k −
∆N−1∑

i=0

λ2
iM+k∑∆N−1

l=0 λlM+k

), (8.13)

where J0 = {k :
∑∆N−1
l=0 λlM+k 6= 0, 0 ≤ k ≤M − 1} ⊆ {0, . . . ,M − 1}.

In particular, choose a set of indices J ⊆ {0, 1, . . . , N −1} with |J | = M such

that

jM + k ∈ J ⇒ iM + k /∈ J ∀i, j, 0 ≤ i, j ≤ ∆N − 1, i 6= j (8.14)

with 0 ≤ k ≤M −1. Let PJ =
∑
i∈J λi. Then the MMSE is upper bounded by the

total power in the remaining eigenvalues

E[||x− E[x|y]||2] ≤ 2(P − PJ). (8.15)

In particular, if there is such a set J so that PJ = P , the MMSE will be zero.

Remark 8.1.1. The set J essentially consists of the indices which do not overlap

when shifted by M .

Remark 8.1.2. We note that the choice of the set J is not unique, and each

choice of the set of indices may provide a different upper bound. To obtain the
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lowest possible upper bound, one should consider the set with the largest total

power.

Remark 8.1.3. If there exists such a set J that has the most of power, i.e.

PJ = δP , δ ∈ (0, 1], with δ close to 1, then 2(P − PJ) = 2(1 − δ)P is small and

the signal can be estimated with low values of error. In particular, if such a set

has all the power, i.e. P = PJ , the error will be zero. A conventional aliasing

free set J may be the set of indices of the band of a band-pass signal with band

smaller than M . It is important to note that there may exist other sets J with

P = PJ , hence the signal may be aliasing free even if the signal is not bandlimited

(low-pass, high-pass etc) in the conventional sense.

Proof: Proof is given in Section A.1 of the Appendix.

We observe that the bandwidth W (or the DOF) turn out to be good predic-

tors of estimation error for this case. On the other hand, the differential entropy

of an effectively W-bandlimited Gaussian vector can be very small even if the

bandwidth is close to N , hence may not provide any useful information with

regards to estimation performance.

We also give the explicit error expression for the noisy case. Here the obser-

vations are in the following form

y = Hx+ n, (8.16)

where x and n are statistically independent random vectors, and the components

of n are i.i.d. zero mean with E [nini†] = σ2
n > 0, hence Kn = σ2

nIN ≻ 0, where

IM is the M ×M identity matrix.

Lemma 8.1.2. The MMSE of estimating x from the equidistant noisy samples

as described above is given by the following expression

E[||x− E[x|y]||2] =
M−1∑

k=0

(
∆N−1∑

i=0

λiM+k −
∆N−1∑

i=0

λ2
iM+k∑∆N−1

l=0 (λlM+k + σ2
n)

) (8.17)

Proof: We first note that here Kxy = KxH
†, as in the noiseless case. We also

note that here, Ky is given by Ky = HKxH
† + Kn. Now the result is obtained
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by retracing the steps of the proof of Lemma 8.1.1, which is given in Section A.1,

with Ky replaced by the above expression, that is Ky = HKxH
† +Kn.

A particularly important special case is the error associated with the estima-

tion of a band-pass signal:

Corollary 8.1.1. Let tr(Kx) = P . Let the eigenvalues be given as λi = P
D
, if 0 ≤

i ≤ D − 1, and λi = 0, if D ≤ i ≤ N − 1. If M ≥ D, then the error can be

expressed as follows

E[||x− E[x|y]||2] =
1

1 + 1
σ2

n

P
D
M
N

P (8.18)

We note that this expression is of the form 1
1+SNR

P , where SNR = 1
σ2

n

P
D
M
N

. This

expression will serve as a benchmark in the subsequent sections.

We now compare our error expression with the following results where the

signals defined on R are considered: In [122], mean-square error of approximating

a possibly non-bandlimited wide-sense stationary (w.s.s.) signal using sampling

expansion is considered and a uniform upper bound in terms of power outside

the bandwidth of approximation is derived. Here we are interested in the average

error over all points of the N dimensional vector. Our method of approximation

of the signal is possibly different, since we use the MMSE estimator. As a result

our bound also makes use of the shape of the eigenvalue distribution. [116] states

that a w.s.s. signal is determined linearly by its samples if some set of frequencies

containing all of the power of the process is disjoint from each of its translates

where the amount of translate is determined by the sampling rate. Here for

circularly w.s.s. we show a similar result: if there is a set J that consists of

indices which do not overlap when shifted by M , and has all the power, the error

will be zero. In fact, we show a more general result for our set-up: we give the

explicit error expression and show that two times the power outside this set J

provides an upper bound for the error, hence putting a bound on the error even

if it is not exactly zero.
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8.2 Random Sampling/Support at a Fixed Mea-

surement Domain - Error Bounds That

Hold with High Probability

In this section we focus on MMSE bounds that hold with high probability. We

assume that nonzero eigenvalues are equal, i.e. Λx,B = P
|B|I|B|, where |B| ≤ N .

We are interested in the MMSE estimation performance of two set-ups: i) sam-

pling of a signal with fixed support at randomly chosen measurement locations;

ii) sampling of a signal with random support at fixed measurement locations. We

investigate bounds on the MMSE depending on the support size or the number of

measurements. We illustrate how the results in matrix theory mostly presented

in compressive sampling framework can provide error bounds for these scenarios.

We note that there are studies that consider the MMSE in compressive sensing

framework such as [200,201], which focus on the scenario where receiver does not

know the location of the signal support. In our case we assume that the receiver

has full knowledge of signal covariance matrix.

We again consider the set-up in (8.1). The sampling operation can be modelled

with aM×N H matrix, whose rows are taken from the identity matrix as dictated

by the sampling operation. We let UMB = HUB be the M × |B| submatrix of U

formed by taking |B| columns and M rows as dictated by B and H , respectively.

The MMSE can be written as (8.10)

E [||x− E [x|y]||2] = tr ((Λ−1
x,B +

1

σ2
n

U †
BH

†HUB)−1) (8.19)

=
|B|∑

i=1

1

λi(
|B|
P
IB + 1

σ2
n
U †
MBUMB)

(8.20)

=
|B|∑

i=1

1
|B|
P

+ 1
σ2

n
λi(UMB

†UMB)
. (8.21)

We see that the estimation error is determined by the eigenvalues of the matrix

U †
MBUMB. We note that many results in compressive sampling framework make

use of the bounds on the eigenvalues of this matrix. We now use some of these

results to bound the MMSE performance in different sampling scenarios. We note
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that different bounds found in the literature can be used, we pick some of the

bounds from the literature to make the constants explicit.

Lemma 8.2.1. Let U be an N×N unitary matrix with
√
N maxk,j |uk,j| = µ(U).

Let the signal have fixed support B on the signal domain. Let the sampling lo-

cations be chosen uniformly at random from the set of all subsets of the given

size M . Let noisy measurements with noise power σ2
n be done at these M loca-

tions. Then for sufficiently large M(µ), the error is bounded from above with high

probability:

ε <
1

1 + 1
σ2

n

0.5M
N

P
|B|
P (8.22)

More precisely, if

M ≥ |B|µ2(U) max(C1 log |B|, C2 log(3/δ)) (8.23)

for some positive constants C1 and C2, then

P(ε ≥ 1

1 + 1
σ2

n

0.5M
N

P
|B|
P ) ≤ δ. (8.24)

In particular, when the measurements are noiseless, the error is zero with proba-

bility at least 1 − δ.

Proof: We first note that ‖UMB
†UMB − I‖ < c implies 1 − c <

λi(UMB
†UMB) < 1 + c. Consider Theorem 1.2 of [13]. Suppose that M and

|B| satisfies (8.23). Now looking at Theorem 1.2, and noting the scaling of the

matrix U †U = NI in [13] , we see that P (0.5M
N
< λi(UMB

†UMB) < 1.5M
N

) ≥ 1−δ.
By (8.21) the result follows.

For the noiseless measurements case, let Aσ2
n

be the event {ε < σ2
n

|B|
σ2

n
|B|
P

+ 0.5M
N

}
Hence

lim
σ2

n→0
P(Aσ2

n
) = lim

σ2
n→0

E [1A
σ2

n
] (8.25)

= E [ lim
σ2

n→0
1A

σ2
n
] (8.26)

= P(ε = 0) (8.27)

where we have used Dominated Convergence Theorem to change the order of the

expectation and the limit. By (8.24) P(Aσ2
n
) ≥ 1−δ, hence P(ε = 0) ≥ 1−δ. We
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also note that in the noiseless case, it is enough to have λmin(U
†
MBUMB) bounded

away from zero to have zero error with high probability, the exact value of the

bound is not important.

We note that when other parameters are fixed, as maxk,j |uk,j| gets smaller,

fewer number of samples are required. Since
√

1/N ≤ maxk,j |uk,j| ≤ 1 ,

the unitary transforms that provide the best guarantees are the ones satisfy-

ing |uk,j| =
√

1/N , k, j = 1, . . . , N . We note that for any such unitary transform,

the covariance matrix has constant diagonal with (Kx)ii = P/N regardless of

the eigenvalue distribution. Hence with any measurement scheme with M noise-

less measurements, the reduction in the uncertainty is guaranteed to be at least

proportional to the number of measurements, i.e. the error satisfies ε ≤ P − M
N
P .

We would like to recall that the unitary transform associated with c.w.s.s.

signals is the DFT matrix, which satisfies the condition |uk,j| =
√

1/N . Hence

Lemma 8.2.1 is also applicable to these signals. Hence among signals with a

covariance matrix with a given rectangular eigenvalue spread, c.w.s.s. signals

are among the ones that can be estimated with low values of error with high

probability with a given number of randomly located measurements.

We now consider a signal sampled at fixed locations with random support

uniformly chosen from the set of supports with a given size. We note that in

this case the results, such as Theorem 12 of [17] or Theorem 2 of [204] (and

the references therein) that explores the bounds on the eigenvalues of random

submatrices obtained by uniform column sampling can be used for bounding

the estimation error. We assume that the receiver has access to the support

set information. In the following we assume the field is real, i.e. x ∈ RN and

y ∈ RM . The s.v.d. of Kx is given as Kx = UΛxU
†, where U is orthonormal,

i.e. U ∈ RN×N , U †U = IN . We note that normalized Hadamard matrices satisfy

|ui,j|2 = 1
N

and orthonormal as required in the lemma. For the proper complex

Gaussian case the argument is similar, and Theorem 12 of [17] can be used.

Lemma 8.2.2. Let U be a N × N orthonormal matrix such that |ui,j|2 = 1
N

.

Let the M locations at the measurement domain be fixed, and let H be the M ×N
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diagonal matrix. Let µ be defined by

µ =
N

M
max
j 6=k

|(HU)†j(HU)k|, (8.28)

where (HU)j denotes the jth column of HU . Let the support of the signal be

chosen uniformly from the set of all subsets of the given size |B| ≤ N . Then for

sufficiently small |B|, the error is bounded from above with high probability

ε <
1

1 + (1 − r) 1
σ2

n

M
N

P
|B|

P (8.29)

where r ∈ (0, 1). More precisely, let α ≥ 1, and assume that µ ≤ r/(2(1 +

α) logN) and |B| ≤ ( r2

4(1+α) exp(1)2
)( N

(N/M)||HU ||2 logN
). Then

P(ε ≥ 1

1 + (1 − r) 1
σ2

n

M
N

P
|B|

P ) ≤ 216N−α (8.30)

In particular, when the measurements are noiseless, the error is zero with proba-

bility at least 1 − 216N−α.

Proof: We note that X =
√
N/MHU has unit norm columns and µ given

in (8.28) is the coherence of X as defined by equation [1.3] of [204]. We also

note that HU is full rank, that is rank of HU is equal to largest possible value

i.e. M , since U is orthogonal. We also note that ||X|| = ||
√
N/MHU || =√

N/M ||HU ||. Hence we can use Theorem 3.1 of [204] to bound the singular

values of
√
N/MHUB. As in the proof of the previous lemma, the result follows

from (8.21). The noiseless case follows similar to the previous lemma. Again it

it is enough to have λmin(U
†
MBUMB) bounded away from zero to have zero error

with high probability. �

We note that the conclusions derived in this section are based on high proba-

bility results for the norm of a matrix restricted to random set of coordinates. We

note that for the purposes of such results, the uniform random sampling model

and the Bernoulli sampling model where each component is taken independently

and with equal probability is equivalent [185–187]. For instance, the derivation of

Theorem 1.2 of [13], the main step of Lemma 8.2.1, is in fact based on a Bernoulli
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sampling model. Hence the high probability results presented there also hold for

Gaussian erasure channel of Section 8.4 (with possibly different parameters).

We now compare these error bounds found in this section with the error

associated with equidistant sampling of a low pass circularly wide-sense stationary

(c.w.s.s.) source. The equidistant sampling of a general c.w.s.s. source is studied

in Section 8.1. Let us consider the special case where x is a band pass signal

with λ0 = · · · = λ|B|−1 = P/|B|, λ|B| = . . . = λN−1 = 0. If M ≥ |B|, the error

associated with this scheme can be expressed as follows (8.13):

E [||x− E [x|y]||2] =
1

1 + P
|B|

1
σ2

n

M
N

P. (8.31)

Comparing (8.22) and (8.29), with this expression, we observe the following:

All of these expressions are of the same general form, 1
1+c SNR

P , where SNR ,
P
|B|

1
σ2

n

M
N

. Here 0 ≤ c ≤ 1 takes different values for different cases. We also

note that in (8.22), the choice of c = 0.5, which is the constant chosen for the

eigenvalue bounds in [13], is for convenience. It could have been chosen differently

by choosing a different probability δ in (8.24), similar to the parameterization

through r in [204], which is seen here in (8.30) and the conditions there. We

also observe that SNR takes its maximum value with c = 1 for the deterministic

equidistant sampling strategy corresponding to the minimum error value among

these expressions. In the other cases c takes possibly smaller values, resulting

in larger error expressions. One can choose larger c values in these expressions,

but then the probability these error bounds hold decreases, that is better error

bounds can be obtained at the expense of lower degrees of guarantees that these

results will hold.

8.3 Random Projections - Error Bounds That

Hold With High Probability

In this section we consider the measurement strategy where M random projec-

tions of the signal are taken, the measurement system matrix H is a M × N ,
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M ≤ N matrix with Gaussian i.i.d. entries. In this section we assume that the

field is real. We also assume that Λx is positive-definite.

We note that the matrix theory result used in this section is novel, and pro-

vides fundamental insights into problem of estimation of signals with small effec-

tive number of degrees of freedom. In the previous section we have used some

results in compressive sensing literature that are directly applicable only when

the signals are known to be exactly sparse (some of the eigenvalues of Kx are

exactly equal to zero.) In this section we assume a more general eigenvalue dis-

tribution. Our result enables us draw conclusions when some of the eigenvalues

are not exactly zero, but small. The method of proof provides us a way to see

the effects of the effective number of degree of freedom of the signal (Λx) and the

incoherence of measurement domain (HU), separately.

Before stating our result, we now make some observations on the related

results in random matrix theory. Consider the submatrices formed by restricting

a matrix K to random set of its rows, or columns; R1K or KR2 where R1 and

R2 denote the restrictions to rows and columns respectively. The main tool for

finding bounds on the eigenvalues of these submatrices is finding a bound on

E ||R1K − E [R1K]|| or E ||KR†
2 − E [KR†

2]|| [17, 204, 205]. We have found this

approach unsuitable to our problem in which the matrix we are investigating

Λ−1
x + (HU)†(HU) constitutes of two matrices: a deterministic diagonal matrix

with possibly different entries on the diagonal and a random restriction. Hence

we adopt another method: the approach of decomposing the unit sphere into

compressible and incompressible vectors as proposed by M. Rudelson and R.

Vershynin [206].

We note that when the eigenvalues of Kx have rectangular spread (the sig-

nal is exactly sparse), using the method in Lemma 8.2.1 and for example using

Proposition 2.5 of [206], (which is due to [207]), one can prove that it is possible to

achieve low values of MMSE with high probability also for random projections.

Here we focus on the case where Λx ≻ 0 to see the effects of other eigenvalue

spreads. We also note that the general methodology in this section can be ex-

tended to the case where H has complex entries. In this case the channel will be
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a Rayleigh fading channel.

We consider the general measurement set-up in (8.1) where y = Hx+n, with

Kn = σ2
nI, Kx ≻ 0, and assume the field is real, i.e. x ∈ RN and n ∈ RM . The

s.v.d. of Kx is given as Kx = UΛxU
†, where U ∈ R

N×N is orthonormal and

Λ = diag(λi) with
∑
i λi = P , λ1 ≥ λ2, . . . ,≥ λN .

Theorem 8.3.1. Let H be a M ×N , M ≤ N , M = βN matrix with Gaussian

i.i.d. entries with variances σ2
H at least 1. Let D(δ) be the smallest number

satisfying
∑D
i=1 λi ≥ δP , where δ ∈ (0, 1]. Assume that D(δ) + M ≤ N , and

λi < Cλ
P
N

, i = D + 1, . . . , N . Then there exist C, C1, T , T1 that depend on P
σ2

n
,

σ2
H , Cλ, β such that if D(δ) < T , and M > T1 the error will satisfy

P(E[||x− E[x|y]||2] ≥ (1 − δ)P +
1

C

D

N
P ) ≤ e−C1N (8.32)

Remark 8.3.1. As we will see in the proof, eigenvalue distribution plays a key

role in obtaining stronger bounds: In particular, when the eigenvalue distribution

is spread out, the theorem cannot provide bounds for low values of error. As the

distribution becomes less spread out, stronger bounds are obtained. We discuss

this point in Remark A.2.1, Remark A.2.2, and Remark A.2.3. Effect of noise

level is discussed in Remark A.2.4. A special case of problem studied at the end

of Section A.2 of the Appendix illustrates these points.

Proof: Let the eigenvalues of a matrix A be denoted in decreasing order as

λ1(A) ≥ λ2(A), . . . ,≥ λN(A). We note that by [Lemma 5 , [180]], H and HU

have the same probability distribution. Hence we can consider H instead of HU

in our arguments. The error can be expressed as follows (8.10)

E [||x− E [x|y]||2]

= tr ((Λ−1
x +

1

σ2
n

H†H)−1) (8.33)

=
N∑

i=1

1

λi(Λ−1
x + 1

σ2
n
H†H)

(8.34)

=
N−D∑

i=1

1

λi(Λ−1
x + 1

σ2
n
H†H)

+
N∑

i=N−D+1

1

λi(Λ−1
x + 1

σ2
n
H†H)

(8.35)
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≤
N−D∑

i=1

1

λi(Λ−1
x )

+
N∑

i=N−D+1

1

λi(Λ−1
x + 1

σ2
n
H†H)

(8.36)

≤
N−D∑

i=1

λN−i+1(Λx) +D
1

λmin(Λ−1
x + 1

σ2
n
H†H)

(8.37)

=
N∑

i=D+1

λi(Λx) +D
1

λmin(Λ−1
x + 1

σ2
n
H†H)

(8.38)

where the first inequality follows from case (a) of the following result.

Lemma 8.3.1. [4.3.3, 4.3.6, [208]] Let A1, A2 ∈ CN×N be Hermitian matrices.

(a) Let A2 be positive semi-definite. Then λi(A1 + A2) ≥ λi(A1), i = 1, . . . , N.

(b) Let rank of A2 be at most M , 3M ≤ N . Then λi+M(A1 + A2) ≤ λi(A1),

i = 1, . . . , N −M.

Hence the error may be bounded as follows

E [||x− E [x|y]||2] ≤(1 − δ)P +D
1

λmin(Λ−1
x + 1

σ2
n
H†H)

(8.39)

The smallest eigenvalue of Λ−1
x + 1

σ2
n
H†H is sufficiently away from zero with

high probability as noted in the following lemma:

Lemma 8.3.2. Let H be a M ×N , M ≤ N matrix with Gaussian i.i.d. entries.

Assume that the assumptions of Theorem 8.3.1 holds. Then with the conditions

stated in Theorem 8.3.1, the eigenvalues of Λ−1
x + 1

σ2
n
H†H are bounded from below

as follows:

P( inf
x∈SN−1

x†Λ−1
x x+

1

σ2
n

x†H†Hx ≤ C
N

P
) ≤ e−C1N . (8.40)

Here SN−1 denotes the unit sphere where x ∈ SN−1 if x ∈ RN , and ||x|| = 1.

The proof of this lemma is given in Section A.2 of the Appendix.

We now know that P(λmin(Λ
−1
x + 1

σ2
n
H†H) > C N

P
) ≥ 1 − e−C1N , and hence

P( 1
λmin(Λ−1

x + 1

σ2
n
H†H)

< 1
C
P
N

) ≥ 1−e−C1N . Together with the error bound in (8.39),

we have P(E [||X − E [X|Y ]||2] < (1 − δ)P + 1
C
D
N
P ) ≥ 1 − e−C1N , and the result

follows. �
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8.4 On Average Performance of Random Scalar

Gaussian Channel and Gaussian Erasure

Channel

In this section, we consider two closely related random channel structures, and

focus on the average MMSE performance. We assume that the receiver knows the

channel information, whereas the transmitter only knows the channel probability

distribution.

We consider the following measurement strategies: a) (Random Scalar Gaus-

sian Channel:) H = eTi , i = 1, . . . , N with probability 1
N

, where ei ∈ RN is the

ith unit vector. We denote this sampling strategy with Ss. b) (Gaussian Era-

sure Channel) H = diag(δi), where δi are i.i.d. Bernoulli random variables with

probability of success p ∈ [0, 1]. We denote this sampling strategy with Sb.

We are interested in the following problem:

PROBLEM P4 (Best Unitary Encoder For Random Channels): LetKx denote

the covariance matrix of x. Let Kx = UΛxU
† be the singular value decomposition

of Kx, where U is N ×N unitary matrix, and Λx = diag(λ1, . . . , λN). We fix the

eigenvalue distribution with Λx = diag(λi) � 0, where
∑
i λi = P < ∞. Let UN

be the set of N ×N unitary matrices: {U ∈ CN : U †U = I}.

We consider the following minimization problem

inf
U∈UN

EH,S[||x− E [x|y]||2], (8.41)

where the expectation with respect to H is over admissible measurement strate-

gies Ss or Sb. Hence we want to determine the best unitary encoder for the

random scalar Gaussian channel or Gaussian erasure channel.

We note that [189] and [190] consider the erasure channel model (Sb in our

notation) with the aim of maximizing the ergodic capacity. Their formulations

let the transmitter also shape the eigenvalue distribution of the source, whereas
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ours does not.

We note that our problem formulation is equivalent to following unitary en-

coding problem infU∈UN EH,S[||w−E [w|y]||2], where Kw = Λx, y = HUw+n. We

also note that by solving the Problem P1 for the measurement scheme in (8.1),

one also obtains the solution for the generalized the set-up y = HV x+n, where V

is any unitary matrix: Let Uo denote an optimal unitary matrix for the scheme in

(8.1). Then V †Uo ∈ UN is an optimal unitary matrix for the generalized set-up.

8.4.1 First order conditions for optimality

Let the possible sampling schemes be indexed by the variable k, where 1 ≤ k ≤ N

for Ss, and 1 ≤ k ≤ 2N for Sb. Let Hk be the corresponding sampling matrix.

Let pk be the probability of the kth sampling scheme.

We can express the objective function as (8.10)

EH,S[||x− E [x|y]||2] = EH [tr ((Λ−1
x,B +

1

σ2
n

U †
BH

†HUB)−1)] (8.42)

=
∑

k

pk tr ((Λ−1
x,B +

1

σ2
n

U †
BH

†
kHkUB)−1) (8.43)

We note that the objective function is a continuous function of UB. We also

note that the feasible set defined by {UB ∈ CN×|B| : U †
BUB = I|B|} is a closed and

bounded subset of C
n, hence compact. Hence the minimum is attained since we

are minimizing a continuous function over a compact set (but the optimum UB

is not necessarily unique).

We note that in general, the feasible region is not a convex set. To see this,

let U1, U2 ∈ UN and θ ∈ [0, 1]. In general θU1 + (1 − θ)U2 /∈ UN. For instance let

N = 1, U1 = 1, U2 = −1, θU1 + (1 − θ)U2 = 2θ − 1 /∈ U
1, ∀ θ ∈ [0, 1]. Even if

the unitary matrix constraint is relaxed, we observe that the objective function is

in general neither a convex or a concave function of the matrix UB. To see this,

one can check the second derivative to see if ∇2
UB
f(UB) � 0 or ∇2

UB
f(UB) � 0,

where f(UB) =
∑
k pk tr ((Λ−1

x,B + 1
σ2

n
U †
BH

†
kHkUB)−1) . For example, let N = 1,
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U ∈ R, σ2
n = 1, λ > 0, and p > 0 for Sb. Then f(U) =

∑
k pk

1

λ−1+U†H†
k
HkU

can be

written as f(U) = (1 − q)λ + q 1
λ−1+U†U

, where q ∈ (0, 1] is the probability that

the one possible measurement is done, and 1− q is the probability it is not done.

Hence q = 1 for Ss, and q = p for Sb. Hence ∇2
Uf(U) = q 2 3U2−λ−1

(λ−1+U2)3
, whose sign

changes depending on λ, and U . Hence neither ∇2
Uf(U) � 0 nor ∇2

Uf(U) � 0

holds for all U ∈ R.

In general, the objective function depends only on UB, not U . If UB satifying

U †
BUB = I|B|, with |B| < N is an optimal solution, then unitary matrices satisfy-

ing U †U can be formed by adding column(s) to UB without changing the value of

the objective function. Hence any such unitary matrix U will also be an optimal

solution. Therefore it is sufficient to consider the constraint {UB : U †
BUB = I|B|},

instead of the condition {U : U †U = IN}, while optimizing the objective func-

tion. We also note that if UB is an optimal solution, exp(jθ)UB is also an optimal

solution, where 0 ≤ θ ≤ 2π.

Let ui be the ith column of UB. We can write the unitary matrix constraint

as follows:

u†iuk =






1, if i = k,

0, if i 6= k.
(8.44)

with i = 1, . . . , |B|, k = 1, . . . , |B|. Since u†iuk = 0, iff u†kui = 0, it is sufficient to

consider k ≤ i. Hence this constraint may be rewritten as

eTi (U †
BUB − I|B|)ek = 0, i = 1, . . . , |B|, k = 1, . . . , i, (8.45)

where ei ∈ R|B| is the ith unit vector.

We now consider the first order conditions for optimality. We note that we

are optimizing a real valued function of a complex valued matrix UB ∈ CN×|B|.

Let UB,R = ℜ{UB} ∈ RN×|B|, and UB,I = ℑ{UB} ∈ RN×|B| denote the real and

imaginary parts of the complex matrix UB, so that UB = UB,R + jUB,I . One

may address this optimization problem by considering the objective function as

a mapping from these two real components UB,R and UB,I instead of the complex

valued UB. In the following development, we consider this real framework along

with the complex framework.

174



Let ŨB =



 UB,R

UB,I



 ∈ R2N×|B|. Let us first consider the set of constraint

gradients, and investigate conditions for constraint qualification.

Lemma 8.4.1. The constraints can be expressed as

eTi (UT
B,RUB,R + UT

B,IUB,I)ek = eTi I|B|ek, (i, k) ∈ γ (8.46)

eTi (UT
B,RUB,I − UT

B,IUB,R)ek = 0, (i, k) ∈ γ̄ (8.47)

where γ = {(i, k)|i = 1, . . . , |B|, k = 1, . . . , i}, and γ̄ = {(i, k)|i = 1, . . . , |B|, k =

1, . . . , i− 1}. The set of constraint gradients with respect to ŨB is given by







 UB,R(eie

T
k + eke

T
i )

UB,I(eie
T
k + eke

T
i )


 |(i, k) ∈ γ





⋃






 UB,I(−eieTk + eke

T
i )

UB,R(eie
T
k − eke

T
i )


 |(i, k) ∈ γ̄






(8.48)

The elements of this set are linearly independent for any matrix UB satisying

U †
BUB = IB.

Proof: Proof is given in Section A.3 of the Appendix.

Since the constraint gradients are linearly independent for any matrix UB

satisying U †
BUB = IB, the linear independence constraint qualification (LICQ)

holds for any feasible UB [156, Defn.12.4]. Therefore, the first order condition

L̃(ŨB, ν, υ) = 0 together with the condition U †
BUB = IB is necessary for opti-

mality [156, Thm 12.1], where L̃(ŨB, ν, υ) is the Lagrangian for some Lagrangian

multiplier vectors ν, and υ. We use the notation L̃ instead of L to emphasize the

function is seen as a mapping from ŨB instead of UB.

We note that the unitary matrix constraint in (8.45) can be also expressed as

eTi (U †
BUB − I|B|)ek = 0, (i, k) ∈ γ̄ (8.49)

eTk (U †
BUB − I|B|)ek = 0, k ∈ {1, . . . , B} (8.50)

We note that in general, eTi (U †
BUB)ek = u†iuk ∈ C , for i 6= k and eTk (U †

BUB)ek =

u†kuk ∈ R. Hence (8.49) and (8.50) expresses the complex and real valued con-

straints, respectively.
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Now we can express the Lagrangian as follows [please see Section A.4 of the

Appendix for a discussion]

L̃(ŨB, ν, υ) =
∑

k

pk tr ((Λ−1
x,B +

1

σ2
n

U †
BH

†
kHkUB)−1)

+
∑

(i,k)∈γ̄
νi,ke

T
i (U †

BUB − I|B|)ek +
∑

(i,k)∈γ̄
ν∗i,ke

T
i (UT

BU
∗
B − I|B|)ek

+
|B|∑

k=1

υke
T
k (U †

BUB − I|B|)ek (8.51)

where νi,k ∈ C, (i, k) ∈ γ̄ and υk ∈ R, k ∈ {1, . . . , N} are Lagrange multipliers.

Let us define L(UB, ν, υ) = L̃(ŨB, ν, υ), the Lagrangian seen as a mapping

from UB, instead of ŨB. Now we consider finding the stationary points for the

Lagrangian, i.e. the first order condition ∇
ŨB
L̃(UB, ν, υ) = 0. We note that this

condition is equivalent to ∇UB
L(UB, ν, υ) = 0 [209,210]. We can express this last

condition explicitly as

∑

k

pk(Λ
−1
x,B +

1

σ2
n

U †
BH

†
kHkUB)−2U †

BH
†
kHk

=
∑

(i,k)∈γ̄
νi,keke

T
i U

†
B +

∑

(i,k)∈γ̄
ν∗i,keie

T
kU

†
B +

|B|∑

k=1

υkeke
T
kU

†
B, (8.52)

where we absorbed any constants into Lagrange multipliers. In derivation of these

expressions, we have used the chain rule, the rules for differentials of products,

and the identity d tr(X−1) = − tr(X−2dX), see for example [210]. In particular,

d(tr (eTkU
T
BU

∗
Bei)) = d(tr (eTi U

†
BUBek)) (8.53)

= tr (eTi U
†
BdUBek + eTi d(U

†
B)UBek) (8.54)

= tr (eke
T
i U

†
BdUB + (dU∗

B)TUBeke
T
i ) (8.55)

= tr (eke
T
i U

†
BdUB + eie

T
kU

T
BdU

∗
B). (8.56)

d(tr (Λ−1
x +

1

σ2
n

U †
BH

†
kHkUB)−1)

= − tr((Λ−1
x +

1

σ2
n

U †
BH

†
kHkUB)−2d(U †

BH
†
kHkUB)) (8.57)

= − tr((Λ−1
x +

1

σ2
n

U †
BH

†
kHkUB)−2(U †

BH
†
kHkdUB + d(U †

B)H†
kHkUB)). (8.58)
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Remark 8.4.1. For random scalar Gaussian channel, we can analytically show

that these conditions are satisfied by the DFT matrix and the identity matrix.

It is not surprising that both the DFT matrix and the identity matrix satisfy

these equations, since this optimality condition is the same for both minimizing

and maximizing the objective function. We show that the DFT matrix is indeed

one of the possibly many optimizers for the case where the values of the nonzero

eigenvalues are equal in Lemma 8.4.2. The minimizing property of the identity

matrix in the noiseless case is investigated in Lemma 8.4.3.

For Gaussian erasure channel, we show that the observations presented in

compressive sensing literature implies that the MMSE is small with high prob-

ability for the DFT matrix (see Section 8.2). Although these observations and

the other special cases presented in Section 8.4.2 may suggest the result that the

DFT matrix may be an optimum solution for the general case, we show that this

is not the case by presenting a counterexample where another unitary matrix not

satisfying |uij|2 = 1/N outperforms the DFT [Lemma 8.4.6].

8.4.2 Special cases

In this section, we consider some related special cases. For random scalar Gaus-

sian channel, we will show that when the nonzero eigenvalues are equal any

covariance matrix (with the given eigenvalues) having a constant diagonal is an

optimum solution [Lemma 8.4.2]. This includes Toeplitz covariance matrices or

covariance matrices with any unitary transform satisfying |uij|2 = 1/N . We note

that the DFT matrix satisfies |uij|2 = 1/N condition, and always produces cir-

culant covariance matrices. We will also show that for both channel structures,

for the noiseless case (under some conditions) regardless of the entropy or the

degree of freedom of a signal, the worst coordinate transformation is the same,

and given by the identity matrix [Lemma 8.4.3].

For Gaussian erasure channel, we will show that when only one of the eigenval-

ues is nonzero (i.e. rank of the covariance matrix is one), any unitary transform

satisfying |uij|2 = 1/N is an optimizer [Lemma 8.4.4]. We will also show that
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under the relaxed condition tr(K−1
x ) = R, the best covariance matrix is circulant,

hence the best unitary transform is the DFT matrix [Lemma 8.4.5]. Furthermore

in Section 8.2, we show that the observations presented in compressive sensing lit-

erature implies that the MMSE is small with high probability when |uij|2 = 1/N .

Although all these observations may suggest the idea that the DFT matrix may

be an optimum solution in the general case, we will show that this is not the

case by presenting a counterexample where another unitary matrix not satisfying

|uij|2 = 1/N outperforms the DFT matrix [Lemma 8.4.6].

Before moving on, we note the following relationship between the eigenvalue

distribution and the MMSE. Let H ∈ R
M×N be a given sampling matrix which

formed by taking 1 ≤ 3M ≤ N rows from the identity matrix. Assume that

Λx ≻ 0. Let the eigenvalues of a matrix A be denoted in decreasing order as

λ1(A) ≥ λ2(A), . . . ,≥ λN(A). The MMSE can be expressed as (8.10)

E [||x− E [x|y]||2] = tr ((Λ−1
x +

1

σ2
n

U †H†HU)−1) (8.59)

=
N∑

i=1

1

λi(Λ−1
x + 1

σ2
n
U †H†HU)

(8.60)

=
N∑

i=M+1

1

λi(Λ−1
x + 1

σ2
n
U †H†HU)

+
M∑

i=1

1

λi(Λ−1
x + 1

σ2
n
U †H†HU)

(8.61)

≥
N∑

i=M+1

1

λi−M(Λ−1
x )

+
M∑

i=1

1

λi(Λ−1
x + 1

σ2
n
U †H†HU)

, (8.62)

. ≥
N∑

i=M+1

1

λi−M(Λ−1
x )

+
M∑

i=1

1
1

λN−i+1(Λx)
+ 1

σ2
n

, (8.63)

=
N∑

i=M+1

λN−i+M+1(Λx) +
N∑

i=N−M+i

1
1

λi(Λx)
+ 1

σ2
n

, (8.64)

=
N∑

i=M+1

λi(Λx) +
N∑

i=N−M+1

1
1

λi(Λx)
+ 1

σ2
n

, (8.65)

where we have used case (b) of Lemma 8.3.1 in (8.62), and the fact that λi(Λ
−1
x +

1
σ2U

†H†HU) ≤ λi(Λ
−1
x ) + 1

σ2λ1(U
†H†HU) = λi(Λ

−1
x ) + 1

σ2 in (8.63).

This lower bound is consistent with our intuition: If the eigenvalues are well-

spread, that is D(δ) is large in comparison to N for δ close to 1, the error cannot
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be made small without large number of measurements.

The first term in (8.65) may be obtained by the following intuitively appeal-

ing alternative argument: The energy compaction property of Karhunen-Loève

expansion guarantees that the best representation of this signal with M variables

in mean-square error sense is obtained by first decorrelating the signal with U †

and then using the random variables that correspond to the highest M eigenval-

ues. The mean-square error of such a representation is given by the sum of the

remaining eigenvalues, i.e.
∑N
i=M+1 λi(Λx). Here we make measurements before

decorrelating the signal, and each component is measured with noise. Hence the

error of our measurement scheme is lower bounded by the error of the optimum

scheme, which is exactly the first term in (8.65). The second term is the MMSE

associated with the measurement scheme where M independent variables with

variances given by the M smallest eigenvalues of Λx are observed through i.i.d

noise.

Lemma 8.4.2. Let tr(Kx) = P . Assume that the nonzero eigenvalues are equal,

i.e. Λx,B = P
|B|IB. Let Kn = σ2

nI. Then the minimum average error for random

scalar Gaussian channel (H = eTi , i = 1, . . . , n with probability 1
N

) is

P − P

|B| +
1

1 + P
N

1
σ2

n

P

|B| , (8.66)

which is achieved by covariance matrices with constant diagonal. In particular,

covariance matrices whose unitary transform is the DFT matrix satisfy this.

Proof: Note that if none of the eigenvalues are zero, Kx = I regardless of

the unitary transform, hence the objective function value does not depend on it.)

The objective function may be expressed as (8.43)

EH,S[||x− E [x|y]||2] =
N∑

k=1

1

N
tr (

|B|
P
IB +

1

σ2
n

U †
BH

†
kHkUB)−1 (8.67)

=
P

|B|
N∑

k=1

1

N
(|B| − 1 + (1 +

P

|B|
1

σ2
n

HkUBU
†
BH

†
k)

−1) (8.68)

=
P

|B|(|B| − 1) +
N∑

k=1

P

|B|
1

N
(1 +

P

|B|
1

σ2
n

e†kUBU
†
Bek)

−1,

(8.69)
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where in (8.68) we have used Lemma 2 of [199]. We now consider the minimization

of the following function

N∑

k=1

(1 +
P

|B|
1

σ2
n

e†kUBU
†
Bek)

−1 =
N∑

k=1

1

1 + P
|B|

1
σ2

n

|B|
P
zk

(8.70)

=
N∑

k=1

1

1 + 1
σ2

n
zk
, (8.71)

where (UBU
†
B)kk = |B|

P
(Kx)kk = |B|

P
zk with zk = (Kx)kk. Here zk ≥ 0 and

∑
k zk = P , since tr (Kx) = P . We note that the goal is the minimization of a

convex function over a convex region. Since the objective and constraint functions

are differentiable and Slater’s condition is satisfied, we consider the Karush-Kuhn-

Tucker (KKT) conditions which are necessary and sufficient for optimality [151]:

∇z(
N∑

k=1

1

1 + 1
σ2

n
zk

+ µ(
N∑

k=1

zk) −
N∑

k=1

νkzk) = 0 (8.72)

where µ, ν are Lagrange multipliers with νi ≥ 0, and νizi = 0, for i = 1, . . . , N |.
Solving for the KKT conditions and investigating the set of active constraints for

the best objective function value reveals that best zi is given by zi = P/N . We

observe that this condition is equivalent to require that the covariance matrix

has constant diagonal. This condition can be always satisfied; for example with

a Toeplitz covariance matrix or with any unitary transform satisfying |uij|2 =

1/N . We note that the DFT matrix satisfies |uij|2 = 1/N condition, and always

produces circulant covariance matrices.

Lemma 8.4.3. We now consider the random scalar channel without noise, and

consider the following maximization problem which searches for the worst coordi-

nate system for a signal to lie in: Let x ∈ C
N be a zero-mean proper Gaussian

random vector. Let Λx = diag(λi), with tr (Λx) = P be given.

sup
U∈UN

E[
N∑

t=1

[(xt − E[xt|y])2]], (8.73)

where

y = xi with probability
1

N
, i = 1, . . . , N (8.74)

Kx = UΛxU
†. (8.75)
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The solution to this problem is as follows: The maximum value of the objective

function is N−1
N
P . U = I achieves this maximum value.

Remark 8.4.2. We emphasize that this result does not depend on the eigenvalue

spectrum Λx.

Remark 8.4.3. We note that when some of the eigenvalues of the covariance

matrix are identically zero, the eigenvectors corresponding to the zero eigenvalues

can be chosen freely (of course as long as the resulting transform U is unitary).

Proof: The objective function may be written as

E [
N∑

t=1

[||xt − E [xt|y]||2]] =
1

N

N∑

i=1

N∑

t=1

E [||xt − E [xt|xi]||2]] (8.76)

=
1

N

N∑

i=1

N∑

t=1

(1 − ρ2
i,t)σ

2
xt

(8.77)

where ρi,t =
E [xtx

†
i ]

(E [||xt||2]E [ ||xi||2])1/2 is the correlation coefficient between xt and xi,

assuming σ2
xt

= E [||xt||2] > 0, σ2
xi
> 0. (Otherwise one may set ρi,t = 1 if i = t,

and ρi,t = 0 if i 6= j.) Now we observe that σ2
t ≥ 0, and 0 ≤ |ρi,t|2 ≤ 1. Hence the

maximum value of this function is given by ρi,t = 0, ∀ t, i s.t. t 6= i. We observe

that any diagonal unitary matrix U = diag(uii), |uii| = 1 (and also any Ū = UΠ,

where Π is a permutation matrix) achieves this maximum value. In particular,

the identity transform U = IN is an optimal solution.

We note that a similar result hold for Bernoulli sampling scheme: Let y = Hx.

supU∈UN EH,S[||x − E [x|y]||2], where the expectation with respect to H is over

admissible measurement strategies Sb is (1− p) tr (Kx), which is achieved by any

UΠ, U = diag(uii), |uii| = 1, Π is a permutation matrix.

Lemma 8.4.4. Suppose |B| = 1, i.e. λk = P > 0, and λj = 0, j 6= k, j ∈
1, . . . , N . Let the channel be the Gaussian erasure channel, i.e. y = Hx+n, where

H = diag(δi), where δi are i.i.d. Bernoulli random variables, and Kn = σ2
nIN .

Then the minimum error is given by

E[
1

1
P

+ 1
σ2

n

1
N

∑N
i=1 δi

], (8.78)
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where this optimum is achieved by any unitary matrix with entries of kth column

satisfying |uik|2 = 1/N , i = 1, . . . , N .

Proof: Let v = [v1, . . . , vn]
T, vi = |uki|2, i = 1, . . . , N , where T denotes

transpose. We note the following

E [tr (
1

P
+

1

σ2
n

U †
BH

†HUB)−1] = E [
1

1
P

+ 1
σ2

n

∑N
i=1 δi|uki|2

] (8.79)

= E [
1

1
P

+ 1
σ2

n

∑N
i=1 δivi

]. (8.80)

The proof uses an argument in the proof of [180, Thm. 1], which is also used

in [199]. Let Πi ∈ RN×N denote the permutation matrix indexed by i = 1, . . . , N !.

We note that a feasible vector v satisfies
∑N
i=1 vi = 1, vi ≥ 0, which forms a

convex set. We observe that for any such v, weighted sum of all permutations

of v, v̄ = 1
N !

∑N !
i=1 Πiv = ( 1

N

∑N
i=1 vi)[1, . . . , 1]T = [ 1

N
, . . . , 1

N
]T ∈ RN is a constant

vector and also feasible. We note that g(v) = E [ 1
1

P
+ 1

σ2
n

∑
i
δivi

] is a convex function

of v over the feasible set. Hence g(v) ≥ g(v̄) = g([1/N, . . . , 1/N ]) for all v, and v̄ is

the optimum solution. Since there exists a unitary matrix satisfying |uik|2 = 1/N

for any given k (such as any unitary matrix whose kth column is any column of

the DFT matrix), the claim is proved.

Lemma 8.4.5. Let K−1
x ≻ 0. Instead of fixing the eigenvalue distribution, let

us consider the relaxed constraint tr(K−1
x ) = R. Let Kn ≻ 0. Let the channel be

the Gaussian erasure channel, i.e. y = Hx+ n, H = diag(δi), where δi are i.i.d.

Bernoulli random variables with probability of success p. Then

arg min
K−1

x

EH,S[||x− E[x|y]||2] = arg min
K−1

x

EH [(tr(K−1
x +

1

σ2
n

H†K−1
n H)−1] (8.81)

is a circulant matrix.

Proof: The proof uses an argument in the proof of [190, Thm. 12], [189]. Let

Π be the following permutation matrix,

Π =




0 1 · · · 0

0 0 1 0 · · ·
...

. . .
...

1 · · · 0 0




. (8.82)
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We observe that Π and Πl (lth power of Π) are unitary matrices. We form

the following matrix K̄−1
x = 1

N

∑N−1
l=0 ΠlK−1

x (Πl)†, which also satisfies the power

constraint tr (K̄−1
x ) = R. We note that since K−1

x ≻ 0, so is K̄−1
x ≻ 0, hence K̄−1

x

is well-defined.

E [(tr(
1

N

N−1∑

l=0

ΠlK−1
x (Πl)† +

1

σ2
n

H†K−1
n H)−1]

≤ 1

N

N−1∑

l=0

E [tr(ΠlK−1
x (Πl)† +

1

σ2
n

H†K−1
n H)−1] (8.83)

=
1

N

N−1∑

l=0

E [tr(Πl(K−1
x +

1

σ2
n

(Πl)†H†K−1
n HΠl)(Πl)†)−1] (8.84)

=
1

N

N−1∑

l=0

E [tr(K−1
x +

1

σ2
n

(Πl)†H†K−1
n HΠl)−1] (8.85)

=
1

N

N−1∑

l=0

E [tr(K−1
x +

1

σ2
n

H†K−1
n H)−1] (8.86)

= E [tr(K−1
x +

1

σ2
n

H†K−1
n H)−1] (8.87)

We note that tr((M +K−1
n )−1) is a convex function of M over the set M ≻ 0,

since tr(M−1) is a convex function (see for example [151, Exercise 3.18]), and

composition with an affine mapping preserves convexity [151, Sec. 3.2.2]. Hence

the first inequality follows from Jensen’s Inequality. (8.85) is due to the fact that

Πls are unitary and trace is invariant under unitary transforms. (8.86) follow from

the fact that HΠl has the same distribution with H . Hence we have shown that

K̄−1
x provides a lower bound for arbitrary K−1

x satisfying the power constraint.

Since K̄−1
x is circulant and also satisfies the power constraint tr (K̄−1

x ) = R, the

optimum K−1
x should be circulant.

We note that we cannot follow the same argument for the constraint tr(Kx) =

P , since the objective function is concave inKx over the set Kx ≻ 0. This fact was

proved for a slightly different setting in Section 3.1, here we repeat the argument

for convenience: E [||x− E [x|y]||2] = tr (Ke), where Ke = Kx −KxyK
−1
y K†

xy. We

note that Ke is the Schur complement of Ky in K = [Ky Kyx;Kxy Kx], where

Ky = HKxH
†+Kn, Kxy = KxH

†. Schur complement is matrix concave inK ≻ 0,

for example see [151, Exercise 3.58]. Since trace is a linear operator, tr(Ke) is

concave in K. Since K is an affine mapping of Kx, and composition with an
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affine mapping preserves concavity [151, Sec. 3.2.2], tr(Ke) is concave in Kx.

Lemma 8.4.6. The DFT matrix is, in general, not an optimizer of Problem P4

for Gaussian erasure channel.

Proof: We provide a counterexample to prove the claim of the lemma: An

example where a unitary matrix not satisfying |uij|2 = 1/N outperforms the DFT

matrix. Let N = 3. Let Λx = diag(1/6, 2/6, 3/6), and Kn = I. Let U be

U0 =




1/
√

2 0 1/
√

2

0 1 0

−1/
√

2 0 1/
√

2


 (8.88)

Hence Kx becomes

Kx =




1/3 0 1/6

0 1/3 0

1/6 0 1/3


 (8.89)

We write the average error as a sum conditioned on the number of measurements

as J(U) =
∑3
M=0 p

M(1 − p)3−MeM (U), where eM denotes the total error of all

cases where M measurements are done. Let e(U) = [e0(U), e1(U), e2(U), e3(U)].

The calculations reveal that e(U0) = [1, 65/24, 409/168, 61/84] whereas e(F ) =

[1, 65/24, 465/191, 61/84], where F is the DFT matrix. We see that all the en-

tries are the same with the DFT case, except e2(U0) < e2(F ), where e2(U0) =

409/168 ≈ 2.434524 and e2(F ) = 465/191 ≈ 2.434555. Hence U0 outperforms

the DFT matrix.

We note that our argument covers any unitary matrix that is formed by chang-

ing the order of the columns of the DFT matrix, i.e. any matching of the given

eigenvalues and the columns of the DFT matrix: U0 provides better performance

than anyKx formed by using the given eigenvalues and any unitary matrix formed

with columns from the DFT matrix. The reported error values hold for all such

Kx.
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8.4.3 Rate-distortion bound

We note that by combining the rate distortion theorem and the converse to

the channel coding theorem, one can see that the rate-distortion function lower

bounds the channel capacity for a given channel structure [211]. We now show

that this rate-distortion bound is not achievable with the channel structure we

have.

We consider the scalar real channel: y = auα+n, where a = 1 with probability

p, and a = 0 with probability 1 − p. Let uα = x. Let α, and n be independent

zero mean Gaussian random variables. When needed, we emphasize the random

variables the expectations are taken with respect to; we denote the expectation

with respect to the random channel gain by E a[.], and the expectation with

respect to random signals involved (including x and n) by E s[.] Assuming the

knowledge of realization of a at the receiver, but not at the transmitter, the

capacity of this channel with power constraint Px <∞ is given by

C̄ = max
Es[x2]≤Px

E a[I(x; y)] (8.90)

= max
Es[x2]≤Px

[pI(uα + n; x) + (1 − p)I(0; x)] (8.91)

= p 0.5 log(1 +
Px
σ2
n

). (8.92)

Here we have used the fact that the capacity of an additive Gaussian channel

with noise variance σ2
n and power constraint Px is 0.5 log(1 + Px

σ2
n
).

The rate-distortion function of a Gaussian random variable with variance σ2
α

is given as

R(D) = min
fα̂|α,E [(α−α̂)2]≤D

I(α; α̂) = max{0.5 log(
σ2
α

D
), 0}. (8.93)

We note that by the converse to the channel coding theorem, for a given channel

structure with capacity C, we have R(D) ≤ C, which providesD(C) ≤ E [(α−α̂)2]
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[211]. Hence

E a,s[(α− α̂)2] = pEα[(α− α̂)2|a = 1] + (1 − p) Eα[(α− α̂)2|a = 0] (8.94)

≥ pD(R) + (1 − p)D(R) (8.95)

= σ2
α 2−2R (8.96)

≥ σ2
α 2

−p log(1+ Px
σ2

n
)

(8.97)

= σ2
α (

σ2
n

σ2
n + Px

)p (8.98)

where we have used the fact that C(a) ≥ R(D) for each realization of the channel,

hence C̄ = pC(a = 1) + (1 − p)C(a = 0) ≥ pR(D) + (1 − p)R(D) = R(D). On

the other hand the average error of this system with Gaussian input α, σ2
αu

2 =

σ2
x = Px is

E a,s[(α− α̂)2] = (1 − p)σ2
α + p(σ2

α −
σ2
αu

2σ2
α

Px + σ2
n

) (8.99)

= (1 − p)σ2
α + p

σ2
α σ

2
n

Px + σ2
n

(8.100)

We observe that (8.100) is strictly larger than the bound in (8.98) for 0 <

p < 1, σ2
α > 0. (This follows from the fact that f(x) = bx, b 6= 0, 1 is a strictly

convex function so that f((1− p)x1 + px2) < (1− p)f(x1)+ pf(x2) for 0 < p < 1,

x1 6= x2. Hence with b = σ2
n

σ2
n+Px

, 0 < Px < ∞, x1 = 0, x2 = 1, the inequality

follows.)

8.5 Discussion and Conclusions

We have considered the transmission of a Gaussian vector source over a multi-

dimensional Gaussian channel where a random or a fixed subset of the channel

outputs are erased. The unitary transformation that connects the canonical sig-

nal domain and the measurement space played a crucial role in our investigation.

Under the assumption the estimator knows the channel realization, we have in-

vestigated the MMSE performance both in average and in terms of guarantees

that hold with high probability as a function of system parameters.
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In addition to providing insights into the importance of unitary transforma-

tion in transmission of signals through Gaussian erasure channels, our work also

contributed to our understanding of the relationship between the MMSE and the

total uncertainty in the signal as quantified by information theoretic measures

such as entropy (eigenvalues) and the spread of this uncertainty (basis). We

believe that through this relationship our work here also sheds light on how to

properly characterize the concept of “coherence”, and complements our work in

Chapter 7.

In Section 8.1, we have considered circularly wide-sense stationary signals,

which is a natural way to model wide-sense stationary signals in finite dimension.

In this section the covariance matrix was circulant by assumption, hence the

unitary transform was fixed and given by the DFT matrix. In this part, we have

focused on equidistant sampling and gave the explicit expression for the MMSE.

We have also shown that two times the total power outside a properly chosen

set of indices (a set of indices which do not overlap when shifted by an amount

determined by the sampling rate) provides an upper bound for the MMSE. We

have observed that the notion of such a set of indices generalizes the conventional

sense of bandlimited signals. Our results showed that the error will be zero if

there is such a set of indices that contains all of the power even if the signal

is not band-limited (low-pass, high-pass) in the conventional sense. We have

also noted that the results of Section 8.2 are applicable to c.w.s.s. signals. For

instance, when these signals have a flat nonzero eigenvalue spectrum, they can be

estimated with zero MMSE with high probability with a given number of noiseless

measurements whose locations are chosen uniformly random.

In Section 8.2 and Section 8.3, we have illustrated how some recent results in

matrix theory mostly presented in compressive sampling framework can be used to

find performance bounds for the MMSE estimation. In this part we have provided

performance guarantees that hold with high probability. We have considered

three set-ups: i) sampling of a signal with fixed support at uniformly random

chosen measurement locations at a fixed domain; ii) sampling of a signal with

uniformly random support at fixed measurement locations at a fixed measurement

domain; iii) random projections (random channel matrix with i.i.d. Gaussian
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entries) where the eigenvalue distribution of the covariance matrix is arbitrary.

For the first two cases, we have investigated bounds on the MMSE depending on

the support size and the number of measurements. For the third case, we have

illustrated the interplay between the amount of information in the signal, and the

spread of this information in the measurement domain for providing performance

guarantees.

We now make a few remarks on our MMSE based sparse signal recovery ap-

proach and computational constraints. In a standard compressive sensing prob-

lem, for finding the unknown signal a l1 minimization problem can be formu-

lated [185, 186]. Efficient methods for the solution of such problems is known,

for instance the linear programming approach of [212]. In our formulation, we

solve for the MMSE estimator whose direct implementation requires inversion of

a matrix, which is a computationally heavy operation. Nevertheless we observe

the following: the mean-square error is a convex function of the estimator matrix

B, where E [x|y] = By, (for instance see (3.4)), so that an approximate numerical

solution may be found by using convex programming methods. Hence, there may

exist some room for improvement in implementation of the MMSE approach.

Whether the approximate solutions provided by these methods will perform well,

or these algorithms (together with the implementation of the multiplication op-

eration By) can be customized to be as efficient as the approaches in compressive

sensing literature are interesting research directions to pursue in the future.

In Section 8.4, we have focused on the average performance. We have consid-

ered two channel structures: i) random Gaussian scalar channel where only one

measurement is done through Gaussian noise and ii) Gaussian erasure channel

where measurements are done through parallel Gaussian channels with a given

channel erasure probability. Under these channel structures, we have formulated

the problem of finding the most favorable unitary transform under average perfor-

mance criterion. We have investigated the convexity properties of this optimiza-

tion problem, and obtain conditions of optimality through variational equalities.

We were not able to solve this problem in its full setting, but we have solved

some related special cases. Among these we have identified special cases where

DFT-like unitary transforms (unitary transforms with |uij|2 = 1
N

) turn out to
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be the best coordinate transforms, possibly along with other unitary transforms.

Although these observations and the observations of Section 8.2 (which are based

on compressive sensing results) may suggest the idea that the DFT matrix may

be indeed an optimum unitary matrix for any eigenvalue distribution, we have

provided a counterexample.
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Chapter 9

Sampling and Finite Dimensional

Representations of Stationary

Gaussian Processes

One of the main motivations of the work in Chapter 7 and Chapter 8 were

to provide insight into statistical dependence in random fields; in particular

geometric properties of the spread of uncertainty. The problems studied in

these chapters were formulated in a finite dimensional framework. In this chap-

ter, we continue our investigation with stationary Gaussian sources defined on

Z = {. . . ,−1, 0, 1, . . .}. We formulate various problems related to the finite-

length representations and sampling of these signals, which will shed light on

different aspects of statistical dependence in random fields.

We first consider the decay rates for the error between finite dimensional

representations and infinite dimensional representations. Here our approach is

based on the notion of mixing which is concerned with dependence in asymp-

totical sense, that is the dependence between two points of a random process

as the distance between these two points increases. The concept of mixing is

proposed as a measure of dependence for random processes with many variants,

see for example [21] and the references therein. There is a vast literature on the
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notion of mixing in the fields of information theory and applied mathematics, but

this notion does not seem to have been utilized in signal processing community.

Providing several alternative ways to quantify dependence in random processes,

this family of notions may provide new perspectives in signal processing problems

where one needs to quantify the dependence in a signal family. Our work consti-

tutes an example for these potential directions of research. In Section 9.1, based

on this concept, we investigate the difference between using finite window and

infinite window length representations of a random process. We show that for

exponentially mixing sequences, for different representations and estimators, the

error difference between using a finite-length representation and infinite-length

representation is upper bounded by an exponentially decreasing function of the

finite window length.

We then consider the MMSE estimation of a stationary Gaussian source from

its noisy samples. In Section 9.2.2, we first show that for stationary sources for the

purpose of calculating the MMSE based on equidistant samples, asymptotically

circulant matrices can be used instead of original covariance matrices, which

are Toeplitz. This result suggests that circularly wide-sense stationary signals

in finite dimensions are more than an analogy for stationary signals in infinite

dimensions: there is an operational relationship between these two signal models.

To show convergence of the error expressions in this section, we make use of our

results in Section 9.1 regarding finite-length representations. In Section 9.2.3, we

consider the MMSE associated with estimation of a stationary Gaussian source

on Z+ from its equidistant samples on Z+. Using the previous result, we give

the explicit expression for the MMSE in terms of power spectral density. An

important aspect of our framework is the fact that we consider the sampling

of the source on the half infinite line Z+ instead of the infinite line Z. This

framework makes direct usage of stationary arguments difficult, and makes the

arguments more challenging.

In Section 9.1, we consider decay rates of error for finite-length truncations

based on the notion of mixing. In Section 9.2 we focus on the problem of the

MMSE estimation of a stationary Gaussian source from its noisy samples, and

the sequences of finite dimensional models therein. We conclude in Section 9.3.
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9.1 Finite-length Representations

Let {Xt} be a real valued zero-mean stationary Gaussian random process defined

on I = Z. We use rx(t1− t2) = E [Xt1Xt2 ] to denote the auto-covariance function.

We assume that rx ∈ l1(Z), i.e. the auto-correlation function is absolutely-

summable.

We assume that {Xt} has a moving average representation

Xt =
∞∑

k=0

ckWt−k, ∀t (9.1)

where Wt’s are i.i.d real valued zero-mean Gaussian random variables with vari-

ance σ2
w <∞. Here {ck} ∈ l2. We note that the infinite summation is guaranteed

to be mean-square convergent to some limit with σXt <∞, which can be proven

using for example [213, Sec. 7.11, pr.11].

We further assume that {Xt} may be represented as an autoregressive process

as follows:

Xt =
∞∑

k=1

akXt−k +Wt, ∀t (9.2)

Here ak ∈ R are not t dependent. We assume that {ak} is absolutely summable,

{ak} ∈ l1, so that with σXt−k
< ∞, k > 0, E [|∑∞

k=1 akXt−k|] < ∞, and Xt has

finite variance.

We assume that the source is exponentially mixing; the decay of statistical

dependence between Xt1 and Xt2 upper bounded by an exponential function as

|t1 − t2| increases. Of course, here one needs to make the notion of statistical

dependence clear. We present a precise definition of exponentially mixing source

in Definition 9.1.1.

We now take a brief look at the problems we investigate in this section. We

will be interested in decay rates of errors introduced by the following different

truncations:
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• {X̃t} the N-truncated representation of {Xt}

X̃t =
N∑

k=1

akXt−k +Wt, ∀t (9.3)

• { ˜̃Xt} the finite-length estimator associated with causal MMSE estimation

of {Xt} from its equidistant samples

˜̃Xt =
⌊N/τ⌋∑

k=1

bkXt−τk, ∀t (9.4)

where bk are the optimal coefficients for the MMSE estimation. Here the

samples which fall within the length N window preceding Xt contribute to

the estimation.

• { ˆ̃Xt} the finite-length estimator associated with acausal MMSE estimation

of {Xt} from its equidistant samples

ˆ̃Xt =
⌊N/τ⌋∑

k=−⌊N/τ⌋
dkXt−τk, ∀t (9.5)

where dk are the optimal coefficients for the MMSE estimation. Here the

samples which fall within the length 2N + 1 window around Xt contribute

to the estimation.

We also comment on the decay of the mutual information between the current

value of the random process and the remaining values of the random process, given

the values of the process in a finite window of length N .

We now give some technical details about the existence of the above repre-

sentations. {Xt} has a nonnegative measure Fx on (−π, π] called the spectral

measure such that rx(τ) =
∫ π
−π expjτθ dFx(θ). The derivative of F with respect to

θ is called the spectral density and denoted by fx(θ). We note that the Gaussian

stationary process admits the causal representation in (9.1) if and only if the

spectral measure Fx(θ) is absolutely continuous and the spectral density fx(θ)

satisfies the following condition [214, pg. 112]

∫ π

−π
log fx(θ)dθ > −∞. (9.6)
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The conditions on the spectral density for the process to have infinite order au-

toregressive representation can be found in [215, Ch.7].

The integrability condition in (9.6) guarantees that the process is non-

deterministic, the process cannot be determined from its past values [132, Ch

10.6]. We also note that this assumption implies fx,inf = ess inf fx > 0. It is

worth emphasizing that this means the process {Xt} cannot be band-limited or

similar (multi-pass. etc). Note that we have rx ∈ l1(Z), so we also have the

following: fx,sup = ess sup fx <∞.

We now provide a brief overview of our results in this section:

(i) The exponentially mixing sequence has exponentially decaying AR model

coefficients.

(ii) The error associated with the truncation of the AR model coefficients is

exponentially decreasing with the window length N .

(iii) We consider an equidistant sampling scenario, where the signal is to be

estimated from its samples taken equidistantly. The difference between the

best estimator for the finite window and the best estimator for infinite hori-

zon decays exponentially. These results are true for both causal estimation

and non-causal estimation.

(iv) We also show that given the past values of the process in a finite window

of length N , the decay of mutual information between the current value of

the random process and the remaining values of the random process decays

exponentially with the window length.

The results presented in Item (ii) and Item (iii) can be related to the following

findings in the literature: In [131,132], the difference between the infinite horizon

and finite horizon causal estimators (the estimator based on the last N values) is

found to decay at least exponentially, f(.) > 0. In [131,132], no assumptions are

explicitly made on the mixing behaviour; [131] assumes particular forms for the

spectral density. We approach the problem with methods different from [131,132]
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and we obtain the following results which were not shown in these works: In these

works the best causal estimators are considered, here we consider the truncation

of the AR coefficients (Item (ii)), which may be considered as suboptimal causal

estimator coefficients. With Item (iii), we consider MMSE estimators based on

the equidistant samples in a window of length N . In [131,132] all samples within

a finite-length causal window are considered. Our work mentioned in Item (iii)

generalizes this to equidistant samples in the finite window and covers the former

case where all samples in the window are used in the estimation.

We now introduce some further notation. Let Z+ = {0, 1, . . .} denote the set of

non-negative integers. The transpose, complex conjugate and complex conjugate

transpose of a matrix A is denoted by AT, A∗ and A†, respectively.

9.1.1 Mixing rate and decay of the causal autoregressive

representation coefficients

In this section, we will relate the decay of the autoregressive representation coef-

ficients of a stationary Gaussian source to its mixing rate. Consider the following

autoregressive representation of the source

Xt =
∞∑

k=1

akXt−k +Wt, ∀t. (9.7)

We first review the definition of mixing:

Definition 9.1.1. For a stationary source {Xt} the strong or α-mixing coeffi-

cient is defined as follows

α(τ) = sup
A∈Fk

−∞, B∈F∞
k+τ

, k∈Z

|P (A ∩ B) − P (A)P (B)|, (9.8)

where F t2
t1 is the following sigma-field

F t2
t1

= σ(Xt, t1 ≤ t ≤ t2, t ∈ Z) (9.9)

We will say the process is exponentially mixing if α(τ) ≤ ce−γτ for some γ > 0,

and some constant 0 < c <∞.
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Our main result in this subsection is the following:

Theorem 9.1.1. For an exponentially mixing sequence {Xt}, the AR coefficients

ak in (9.7) decays at least exponentially

α(τ) ≤ ce−γτ ⇒ |ak| ≤ c2e
−µk, µ < γ. (9.10)

Proof: We first relate the mixing coefficient to the correlation coefficients

associated with {Xt}.

Lemma 9.1.1. For a stationary Gaussian process exponentially mixing with

coefficient γ, decay of correlation function |rx(τ)| is also upper-bounded exponen-

tially with the same coefficient, i.e.

α(τ) ≤ ce−γτ ⇒ |rx(τ)| ≤ c1e
−γ|τ |. (9.11)

Proof is given in Section B.1.

We now relate the correlation coefficients and the autoregressive representa-

tion coefficients. Multiplying both sides of (9.7) with Xt−l, l ≥ 0 and taking

expectations yield the following expression

E [XtXt−l] = E [
∞∑

k=1

akXt−kXt−l] + E [WtXt−l] (9.12)

=
∞∑

k=1

akE [Xt−kXt−l] + E [WtXt−l] (9.13)

Here (9.13) can be justified as in the proof of Lemma 9.1.3, given in Appendix B.2.

We note that if l = 0, E [WtXt−l] = σ2
w, and if l > 0, E [WtXt−l] = 0.

Hence we have the following semi-infinite system of equations




r0 r1 r2 . . .

r1 r0 r1

r2
. . .

...

· · · . . .







1

−a1

−a2

...




=




σ2
w

0
...

0
...




(9.14)
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We can write this system of equations as

Ta = b (9.15)

where T is the infinite Toeplitz matrix with T = [Tkl]
∞
k,l=0, Tkl = rx(k − l),

k, l ∈ Z+, a = [1,−a1,−a2, . . .] and b = [σ2
w, 0, . . . , 0].

We note that eigenvalues of finite sections of T satisfy fx,inf ≤ λ(TN ) ≤ fx,sup,

see for example [202, Lemma 4.1]. The solution of this system may be found by

the following

âN = lim
N→∞

T−1
N bN (9.16)

= lim
N→∞

σ2
w[T−1

N ]k0, (9.17)

Here [T−1
N ]k0, k ∈ ZN denotes the first column of T−1

N . We note that off diagonal

decay properties of T−1 imply decay properties ak: for instance if off diagonal

elements of T−1 were exponentially decaying, ak would be at least exponentially

decaying.

To relate the correlation function to the off-diagonal decay of T−1, we use the

following result, which relates the off-diagonal decay properties of T−1 to that of

T . We note here that the original result is due to [216], this is the form reported

in [217].

Definition 9.1.2. [216] Let A : l2(F) → l2(F) be an invertible matrix, where

F = Z,Z+ or {0, . . . , N−1}. A belongs to the space Eγ, γ > 0 if |Akl| ≤ ce−γ|k−l|,

for some constant 0 < c <∞.

Lemma 9.1.2. [216] Let A : l2(F) → l2(F) be an invertible matrix, where

F = Z,Z+ or {0, . . . , N − 1}. If A ∈ Eγ, then A−1 ∈ Eγi
for some γi < γ.

We now complete our argument: Since decay of |rx(τ)| is upper-bounded

exponentially, the covariance matrix T has exponential off-diagonal decay, i.e.

T ∈ Eγ . By Lemma 9.1.2, T−1 also has exponential off-diagonal decay, i.e.

T−1 ∈ Eµ, µ < γ. Now by (9.17), |ak| is also exponentially decaying

α(τ) ≤ ce−γτ ⇒ |ak| ≤ c2e
−µk, µ < γ. (9.18)

197



�

We note that the result of [216] regarding the decay type preservation in

inverses (here stated as Lemma 9.1.2) also includes the polynomial type decays.

Hence our arguments can be also used to derive conclusions for the polynomial

type mixing case, which we skip here for the simplicity of presentation.

9.1.2 Mixing rate and decay of the truncation error in

finite-length autoregressive representation

In this section we consider the following truncation of the AR representation

coefficients

X̃t =
N∑

k=1

akXt−k +Wt ∀t. (9.19)

A measure of goodness of this representation will be the mean-square error be-

tween the truncated representation and the infinite-length representation, which

may be written as follows

E [||Xt − X̃t||2] = E [||
∞∑

k=N+1

akXt−k||2] (9.20)

We will show that this error is upper bounded by an exponentially decreasing

function of N without t dependence, i.e. decay of the error introduced by the

truncation is at least exponential.

We first note the following result:

Lemma 9.1.3.

E[||
∞∑

k=N+1

akXt−k||2] =
∞∑

k=N+1

∞∑

l=N+1

akalrk−l. (9.21)

The proof is given in Appendix B.2.

We also have the following result:
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Lemma 9.1.4. |∑∞
k=N+1

∑∞
l=N+1 akalrk−l| <∞, since rx ∈ l1(Z), and {ak} ∈ l1.

The proof is given in Appendix B.3.

We now note that (B.6) can be rewritten as

lim
L→∞

L∑

k=N+1

L∑

l=N+1

akalrk−l = lim
L→∞

ā†LTLāL (9.22)

where the length L > N vector āL is defined as

āL = [0, . . . , 0, aN + 1, . . . , ai, . . . aL] (9.23)

whose first N + 1 components are zero.

Our main result in this section is the following:

Theorem 9.1.2. The approximation error for an exponentially mixing sequence

with rate γ decays exponentially with some rate 2ν where ν > 0 is strictly smaller

than the mixing rate, ν < γ

E[||Xt − X̃t||2] ≤ c̄e−2νN . (9.24)

Proof:
L∑

k=N+1

L∑

l=N+1

akalrk−l = ā†RLā = ||T 1/2
L ā||2 (9.25)

≤ ||T 1/2
L ||2 ||ā||2 (9.26)

= λmax(TL) ||ā||2 (9.27)

≤ fx,sup

L∑

i=N+1

|ai|2 (9.28)

≤ c fx,sup

L∑

i=N+1

e−2νi (9.29)

≤ c fx,sup
e−2ν(N+1) − e−2ν(L+1)

1 − e−2ν
(9.30)

(9.28) follows from the fact that σmax(TL) ≤ fx,sup <∞, where fx,sup = ess sup f

[202], [132]. (9.29) follows from the fact that AR coefficients decay exponentially,

i.e. Theorem 9.1.1. We finally take the limit L → ∞, and absorb all constants

into some constant c̄ <∞. �
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9.1.3 Mixing rate and decay of the truncation error in

finite-length MMSE Estimation

In this section, we investigate the decay of the truncation error introduced by us-

ing finite-length windows in acausal and causal MMSE estimation of a stationary

Gaussian source from its samples and show that this decay is at least exponential.

Finite section method – doubly infinite system: With a doubly infinite system

of equations we associate the below finite section method. Consider the infinite

dimensional system of equations given by the following equation:

Tz = d (9.31)

Let PN be the projection onto the 2N + 1 dimensional space as follows:

PNd = [. . . , 0, d−N , . . . , d+N , 0, . . . ] (9.32)

Let the associated finite dimensional section of (9.31) be defined by the following

expressions:

TN = PNT (PN)T dN = PNd, (9.33)

Let zN be the solution of the resulting finite dimensional system of equations:

TNz
N = dN (9.34)

Finite section method – semi-infinite system: Similarly for a semi-infinite sys-

tem we associate a similar finite section method where, now, PN is the projection

onto the N dimensional space as follows:

PNd = [d1, . . . , dN , 0, . . .] (9.35)

We note that the above projections may be interpreted as mappings to Z /

Z+ , or 2N + 1 / N finite dimensional spaces. The inverses (ex. T−1
N ) and such

are considered in the finite dimensional spaces.

We note that eigenvalues of finite sections of a Toeplitz matrix T satisfy

fx,inf ≤ λ(TN ) ≤ fx,sup, see for example [202, Lemma 4.1]. We also note that the
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eigenvalues of the principal sub-matrices of TN (the matrices obtained by taking

a certain set of columns and rows from TN) are also in the range [fx,inf , fx,sup],

since the eigenvalues of principal sub-matrices of a Hermitian matrix are bounded

by eigenvalues of the original matrix [148, Theorem 4.3.15].

Theorem 9.1.3. [217, Thm. 3.1] Let Tz = d be given, where Ti,j = ri−j is

Hermitian positive definite doubly infinite Toeplitz matrix and let zN = T−1
N dN be

the finite section solution. If there exist constants c, c′ such that

|rk| ≤ c exp(−γ|k|) and |dk| ≤ c′ exp(γ|k|) γ > 0, (9.36)

then there exists a γ1 with 0 < γ1 < γ, and a constant c′′ depending only on γ1

and condition number of T such that

||z − zN || ≤ c′′ exp(−γ1N) (9.37)

This result is also correct for semi-infinite-Toeplitz matrices [217, Remark 3.2] .

We have the following Corollary to Theorem 9.1.3:

Corollary 9.1.1. Let the setting be the same with previous lemma. Then we

have the following:

|dT z − (dN)T zN | ≤ c1 exp(−γ1N) (9.38)

for some constant c1 > 0.

Proof:

|dTz − (dN)TzN | = |dTz − dTzN + dT zN − (dN)T zN | (9.39)

≤ |dT (z − zN )| + |(dT − (dN)T )zN | (9.40)

= |dT (z − zN )| (9.41)

≤ ||d|| ||z − zN || (9.42)

≤ c1 exp(−γ1N) (9.43)

Here we have used |(dT − (dN)T )zN | is zero, since [zN ]k = 0 for |k| > n, and

[(dT − (dN)T )zN ]k = 0 for |k| ≤ n. Since |dk| is exponentially bounded, c1 <∞.
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Let us introduce the following notation to express the MMSE as follows

et(L1, L2) = E [||Xt − E [Xt|Xkτ , kτ ∈ [L1, L2]||2] (9.44)

We also denote the estimators using infinite number of observations as

limL1→−∞ et(L1, L2) = et(−∞, L2), and

limL2→−∞ et(L1, L2) = et(L1,∞), and limL1,L2→−∞ et(L1, L2) = et(−∞,∞).

Our main result in this section is the following:

Theorem 9.1.4. Consider an equidistant sampling scenario, where Xt, t ∈ Z

given, is to be estimated from equidistant samples {Yk} = {Xτk, k ∈ Z}. For an

exponentially mixing sequence with rate γ, the difference in the MMSE introduced

by using the samples within a finite window decays exponentially with rate γ1 > 0,

where γ1 < γ. More precisely, we have the following:

i) et(t− L/2, t+ L/2) − et(−∞,∞) ≤ c′′ exp(−γ1L).

ii) et(t, t+ L) − et(t,∞) ≤ c′′ exp(−γ1L).

iii) et(t− L, t) − et(−∞, t) ≤ c′′ exp(−γ1L).

iv) et(0, L) − et(0,∞) ≤ c′′ exp(−γ1(L− t)), t ∈ [0, L].

c′′ and γ1 take possibly different values for the different cases (i)-(iv).

Proof: We first prove the case (i). The one sided cases (ii)-(iii) are similar to

the case (i), and uses the version of [217, Thm. 3.1] (Theorem 9.1.3 above) for

semi-infinite Toeplitz matrices. Proof of case (iv), which is based on (ii) is given

at the end.

Let {Yk} = {Xτk} be the sampled process. We note that if the Toeplitz

covariance matrix associated with the process {Xt}, KX = T (fx) satisfies

KX = T (fx) ∈ Eγ, then the covariance matrix associated with the process

{Yk} satisfies Ky = T (fy) ∈ Eτγ. The correlation sequence between Xt and

the observations in window centered around t is also exponentially bounded, i.e.

kXtY = E [Xt(. . . , Xlτ , X(l+1)τ , . . .)] ≤ c exp(−γτ), c > 0, where l = min{k, k ∈
Z, lτ ≤ t ≤ (l + 1)τ}.

We recall that the generating function of KX = T (fx) is real and assumed to

have fx,inf > 0. Since rows of KY = T (fy) are obtained by sampling the rows of

KX , the generating function of KY , fy is an aliased form of generating function
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of fx. Hence the generating function of KY is also bounded below fy,min > 0.

Hence Ky is a Hermitian positive-definite matrix.

Let the MMSE estimate for estimating Xt from the observations {Yk, k ∈ Z}
be given as X̂t = bTY . bT can be found by solving the following equation [133,

Ch. 6]

KY b = kTXiY
(9.45)

The associated MMSE is given by the following expression [133, Ch. 6]

et(−∞,∞) = kXt − kXtYK
−1
Y kTXtY (9.46)

Now consider the case where we only use the samples within the L + 1 length

window around time t, that is we are interested in et(−L/2, L/2). Let L̄ =

⌈L/2⌉, where ⌈.⌉ denotes the ceiling function. The coefficients for the finite-

length estimator, that is bL̄, can be found by solving the following equation

KY L̄b
L̄ = (kXtY

L̄)T , (9.47)

As defined through (9.33), KY L̄ and kXtY
L̄ are the size (2L̄+ 1) × (2L̄ + 1) and

1 × (2L̄ + 1) finite sections of KY , and kXtY
L̄ respectively. bL̄ is the solution to

this system of equations with 2L̄+ 1 unknowns.

We observe that since Ky ∈ Eτγ and kXtY = E [Xt(. . . , Xlτ , X(l+1)τ , . . .)] ≤
c exp(−γτ), by Theorem 9.1.3, the norm of the difference between the finite-length

estimator and the infinite-length estimator decays exponentially, ||b − bL̄|| ≤
c′1 exp(−γ1τL̄) ≤ c′′1 exp(−γ1L), c′′1 > 0, γ1 < γ.

The MMSE associated with the finite-length estimation is given by following

expression

et(−L/2, L/2) = kXi
− (kXiY,L̄)K

−1
Y,L̄

(kXiY,L̄)
T (9.48)

The difference between the errors for infinite horizon case and the finite horizon

case is also exponentially bounded as follows

|et(−L/2, L/2) − et(−∞,∞)| = |kTXiY
K−1
Y kXiY − (kXiY,L̄)K

−1
Y,L̄

(kXiY,L̄)
T | (9.49)

≤ c′ exp(−τγ1L̄) (9.50)

≤ c′′ exp(−γ1L) (9.51)
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where the first step follows by Corollary 9.1.1. This proves (i).

We now prove (iv). We define the following for t ∈ [0, L]

e1t = et(t, L) − et(0, L), (9.52)

e2t = et(t,∞) − et(0,∞). (9.53)

Hence we have the following:

et(0, L) − et(0,∞) = et(t, L) − et(t,∞) − (e1t − e2t ) (9.54)

≤ c1 exp(−γ1(L− t)) − (e1t − e2t ) (9.55)

≤ c1 exp(−γ1(L− t)) (9.56)

Here (9.55) follows from part (iii). (9.56) follows from the fact that e1t − e2t ≥ 0;

the uncertainty reduction due to observing the samples before time t given the

observations in the finite window after t (Xkτ , kτ ∈ [t + 1, L], k ∈ Z) is greater

than the uncertainty reduction due to observing the samples before time t given

the observations on the semi-infinite line after time t (Xkτ , kτ ∈ [t+ 1,∞)). �

We now consider Theorem 9.1.3 again. We note that the fact that T is Her-

mitian positive-definite is sufficient for ||zN − z|| go to zero for any d ∈ l2(Z) (or

d ∈ l2(Z+) if T is semi-infinite), see for example the discussion on [217, pg.327].

We note that in that case the expression in Corollary 9.1.1 |dTz − (dN)T zN | is

also guaranteed to go to zero as N → ∞. Theorem 9.1.3, and Corollary 9.1.1

describe how fast the decay is. Hence for any Toeplitz matrix with fmin > 0,

the estimators and the associated errors are guaranteed to converge. The above

theorem specifies how fast this convergence is.

9.1.4 Mixing rate and the mutual Information associated

with the past values of the process

Lemma 9.1.5. Given the values of the process in a finite window of length

N , the mutual information between the current value of the random process and
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the remaining values of the random process decays exponentially with the window

length N for an exponentially mixing sequence

I(Xt;X
t−N−1
−∞ |X t−1

t−N ) ≤ 0.5 log(1 +
c exp(−γ1N)

|et|
), (9.57)

Proof: The mutual information between the observations in the far past

X t−N−1
−∞ = [Xt−N−1, Xt−N−2, . . .] and the current value Xt, given the observations

in the finite-length N window X t−1
t−N = [Xt−1, . . . , Xt−N ] is

I(Xt;X
t−N−1
−∞ |X t−1

t−N) = h(Xt|X t−1
t−N ) − h(Xt|X t−N−1

−∞ , X t−1
t−N) (9.58)

= h(Xt|X t−1
t−N ) − h(Xt|X t−1

−∞) (9.59)

= 0.5 log(|eNt |) − 0.5 log(|et|) (9.60)

= 0.5 log(
|eNt |
|et|

) (9.61)

Here eNt = E [(Xt − E [Xt|X t−1
t−N ])2] and et = E [(Xt − E [Xt|X t−N−1

−∞ ])2]. We note

that et cannot be zero, because the process is non-deterministic.

We note the following relationship

|et||
|eNt |
|et|

− 1| = ||eNt | − |et|| ≤ |et − eNt | ≤ c exp(−γ1N) (9.62)

where the first inequality is due to triangle inequality, and the second inequality

is due to Theorem 9.1.4. Here 0 < γ1 < γ. Hence we arrive at the desired result

I(Xt;X
t−N−1
−∞ |X t−1

t−N ) = 0.5 log(
|eNt |
|et|

) (9.63)

≤ 0.5 log(1 +
c exp(−γ1N)

|et|
). (9.64)

�

9.2 Measurement of Stationary Gaussian Sources

We now consider the problem of estimation of a stationary Gaussian source from

its samples. We will show how the associated estimation error can be calculated
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using a sequence of finite dimensional models. We will also show that these

errors can be calculated using circulant covariance matrices instead of the original

matrices, which are Toeplitz. We will then use this result to find the explicit

expression for the MMSE associated with equidistant sampling of a stationary

source on Z+.

We now present the sampling problem we will consider. Let Z+ = {0, 1, . . .}
denote the set of non-negative integers. Let ΓN denote the following index set

ΓN = {0, . . . , N − 1} ⊂ Z+. Let {Xt} be a real valued zero-mean stationary

Gaussian random process defined on Z. We start observing samples of {Xt} at

t = 0 as dictated by the {0, 1}-valued sampling process {St : t ∈ Z+} under noise.

We obtain the following noisy samples

Yt = StXt + Zt, t ∈ Z+ (9.65)

where {Zt ∈ R : t ∈ Z+} i.i.d. zero-mean Gaussian noise with variance 0 < σ2
z <

∞. We assume that {Zt}, {Xt} are statistically independent. We assume that

{St} is the equidistant sampling process with the sampling interval τ .

We denote the auto-covariance function with rx(t1 − t2) = E [Xt1Xt2 ]. We

assume that rx ∈ l1(Z), i.e. the auto-correlation function is absolutely-summable.

Let fx(θ) be the power spectral density function defined as

fx(θ) =
∞∑

m=−∞
rx(m)e−jθm, θ ∈ [−π, π] (9.66)

with the inverse relation

rx(m) =
1

2π

∫ π

−π
fx(θ)e

jθmdθ, m ∈ Z. (9.67)

Since we have rx ∈ l1(Z), fx(θ) and the inverse relation are well-defined; further-

more, fx(θ) is a continuous function of θ ∈ [−π, π], except at a possibly countable

number of points [202, Sec. 4]. We also note that since {Xt} is a real valued pro-

cess, fx(θ) is an even function. In general, we will again assume that the process

is exponentially mixing. For some special cases that will be pointed out through

the text, we won’t need this assumption. In these cases, the above assumptions

on the auto-correlation function will be needed.
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The MMSE associated with the estimation of Xt from the observations Yl, l ∈
ΓN , ΓN = {0, . . . , N − 1} ⊂ Z+ can be expressed as E [||Xt−E [Xt|Yl, l ∈ ΓN ]||2].
We are interested in the average MMSE associated with estimation of Xt, t ∈ Z+

from the observations in Yt, t ∈ Z+. This error may be expressed as the following:

ε = lim
L→∞

1

L

∑

t∈ΓL

lim
N→∞

E [||Xt − E [Xt|Yl, l ∈ ΓN ]||2] (9.68)

We observe the following:

Lemma 9.2.1. The error expression given in (9.68) has a finite limit.

The proof is given in Section B.4.

We now introduce some notation. [A]k,l denotes the kth row, lth column entry

of the matrix A. In general, a circulant matrix is determined by its first row

and defined by the relationship Ctk = C0modN (k−t), where rows and columns are

indexed by t and k, 0 ≤ t , k ≤ N − 1. We note that the DFT matrix is the

diagonalizing transform for all circulant matrices [202]. Let
√
−1 = j. The entries

of the N×N DFT matrix A are given by Atk = 1√
N
ej

2π
N
tk, where 0 ≤ t , k ≤ N−1.

The transpose, complex conjugate and complex conjugate transpose of a matrix

A is denoted by AT, A∗ and A†, respectively. The eigenvalues of a N ×N matrix

A are shown by λk(A), 0 ≤ k ≤ N − 1.

Let T (fx) denote the semi-infinite Toeplitz matrix associated with the spec-

trum fx(θ). The autocovariance matrix of {Xt : t ∈ Z+} is given by T (fx).

Hence the entries of T (fx) are given by the auto-correlation function [T (fx)]t1,t2 =

Rx(t1 − t2), t1, t2 ∈ Z+. Let xN denote the finite-length truncation of {Xt}, i.e.

xN = [Xt : t ∈ ΓN ] ∈ RN . The auto-covariance matrix of xN is denoted by

KxN = E [xN (xN)T], which is a finite section of the autocorrelation matrix of

{Xt}: KxN = TN(fx). Here TN(fx) denote the N ×N finite section of the matrix

T with the entries [T ]k,l, k, l ∈ ΓN
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9.2.1 Preliminaries

We now review some definitions and key results that will used in the coming

sections. An important ingredient in our study is the exchange of large Toeplitz

and circulant matrices. A thorough review for the relationship between large

Toeplitz matrices and circulant matrices can be found in [132, 202], where some

of the many applications of this relationship in signal processing and information

theory are also presented.

We first recall the following definition from [202].

Definition 9.2.1. [202, Sec. 2.2] The weak norm of a N×N matrix A is defined

by

|A| = (
1

N

N∑

i=1

N∑

i=1

|ai,j|2)1/2 = (
1

N
tr(A†A))1/2. (9.69)

We also recall that the strong norm ‖A‖ is defined by the following:

‖A‖2 = max
k
λk(A

†A). (9.70)

A weak asymptotic equivalence of two sequences of matrices is defined as

follows:

Definition 9.2.2. [202, Sec 2.3] Two sequences of N ×N matrices AN and BN

are “asymptotically equivalent” if

1. AN and BN are uniformly bounded in strong (and hence in weak) norm:

||AN ||, ||BN || ≤M <∞, N=1, 2, . . . ,

2. AN − BN goes to zero in weak norm as N → ∞: limN→∞ |AN − BN | = 0.

Asymptotic equivalence of the two sequences AN and BN will be abbreviated as

AN ∼ BN .

We immediately have the following.
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Lemma 9.2.2. [202, Theorem 2.1] Let AN ∼ BN , and CN ∼ DN . Then (a)

ANCN ∼ BNDN . (b) AN + CN ∼ BN + DN . (c) If ||A−1
N ||, ||B−1

N || ≤ K < ∞,

∀N , then AN
−1 ∼ BN

−1.

We note the following special cases of the Lemma 9.2.2-(a,b). Let the sampling

matrix be defined as H = diag(St), t ∈ Z+. Let HN = diag(St), t ∈ ΓN denote

the N × N finite section of it. Let AN ∼ BN . Then the following holds a)

HNANH
T
N ∼ HNBNH

T
N , b) AN +HT

NHN ∼ BN +HT
NHN .

We note that if AN ∼ BN , then there exist finite numbers m and M such that

m ≤ λi(AN ), λi(BN ) ≤M, i = 0, . . . , N − 1. We also recall the following result

Lemma 9.2.3. [202, Theorem 2.4] If AN ∼ BN with m ≤ λi(AN ), λi(BN ) ≤
M, i = 0, . . . , N − 1, then

lim
N→∞

1

N

N∑

t=0

F (λt(AN )) = lim
N→∞

1

N

N∑

t=0

F (λt(BN )) (9.71)

for an arbitrary function F continuous on [m,M ], provided either of the limits

exits.

The next result states that sequences of Toeplitz and properly defined circu-

lant matrices are asymptotically equivalent.

Lemma 9.2.4. [202, Lemma 4.6] Let TN (fx) be a sequence of Toeplitz matrices

with [TN ]il = rx(i− l), rx ∈ l1(Z). Then

TN(fx) ∼ CN(fx), (9.72)

where CN(fx) is the circulant matrix with the eigenvalues λk(CN(fx)) = fx(
2πk
N

),

k = 0, . . . , N − 1.

Another important result in our derivations will be the following.

Lemma 9.2.5. [202, Theorem 4.2] Let TN(f) be defined as above. Assume that

fx(θ) is real. Then for any function F continuous on [ess inf fx, ess sup fx]

lim
N→∞

1

N

N−1∑

k=0

F (λNk ) =
1

2π

∫ π

−π
F (fx(θ))dθ (9.73)
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where λNk , k = 0, . . . , N − 1 are the eigenvalues of TN (fx).

9.2.2 Finite dimensional models in MMSE estimation of

a stationary source

In this section we discuss finite dimensional models for calculation of error in the

MMSE estimation. We first express the error in terms of errors associated with

a sequence of finite dimensional models.

Lemma 9.2.6. Let {Xt} be an exponentially mixing source. The MMSE can

be found by using a sequence of finite dimensional models with dimension N and

taking the limit as N → ∞. More precisely, we have the following

ε = lim
N→∞

1

N
E[||xN − E[xN |yN ]||2]. (9.74)

where xN = [Xt : t ∈ ΓN ] ∈ RN , and yN = [Yt : t ∈ ΓN ] ∈ RN .

Proof: Let us define the following:

et(0, N) = E [||Xt − E [Xt|Yk, k ∈ ΓN ]||2] (9.75)

et(0,∞) = lim
N→∞

et(0, N) (9.76)

Hence the error defined in (9.68) can be expressed as follows:

ε = lim
L→∞

1

L

L−1∑

t=0

lim
N→∞

et(0, N) (9.77)

= lim
L→∞

1

L

L−1∑

t=0

et(0,∞) − lim
L→∞

1

L

L−1∑

t=0

et(0, L) + lim
L→∞

1

L

L−1∑

t=0

et(0, L) (9.78)

= lim
L→∞

1

L

L−1∑

t=0

(et(0,∞) − et(0, L)) + lim
L→∞

1

L

L−1∑

t=0

et(0, L) (9.79)

= lim
L→∞

1

L

L−1∑

t=0

et(0, L), (9.80)
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where (9.80) follows from the fact that the first term goes to zero since we have

the following:

lim
L→∞

1

L

L−1∑

t=0

(et(0, L) − et(0,∞)) ≤ lim
L→∞

1

L

L−1∑

t=0

c1 exp(−γ1(L− t)) (9.81)

= lim
L→∞

1

L
exp(−γ1L)

1 − exp(γ1L)

1 − exp(γ1)
(9.82)

= 0 (9.83)

where (9.81) follows from case (iv) of Theorem 9.1.4. We note that Theorem 9.1.4

relies on the assumption that the source is mixing.

Hence using (9.80), we can express the error in (9.68) as follows:

ε = lim
N→∞

1

N

N−1∑

t=0

et(0, N) (9.84)

= lim
N→∞

1

N
E [||xN − E [xN |yN ]||2]. (9.85)

�

The MMSE associated with a N dimensional truncation can be expressed in

terms of covariance matrices as follows:

E [||xN − E [xN |yN ]||2]
= tr(KxN −KxNyNK−1

yNK
T
xNyN ) (9.86)

= tr(KxN −KxNHT
N(HNKxNHT

N +KzN )−1HNKxN ) (9.87)

= tr(TN(fx) − TN(fx)H
T
N(HNTN(fx)H

T
N +KzN )−1HNTN (fx)) (9.88)

where (9.88) follows from the fact that Kx,N = TN(fx).

We now introduce some shorthand notation. Let us denote the matrix inside

the trace expression as a function of the covariance matrix as follows

ξ(Kx,N) = ξ(TN(fx)), (9.89)
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Hence (9.87) and (9.88) can be written as tr(ξ(KxN )) and tr(ξ(TN(fx))), respec-

tively. Hence the MMSE we are interested in can be expressed as follows:

ε = lim
N→∞

1

N
E [||xN − E [xN |yN ]||2] (9.90)

= lim
N→∞

1

N
tr(ξ(TN(fx))). (9.91)

We now prove that for the purposes of calculating the MMSE associated with

length N truncations, one can use circulant matrices instead of Toeplitz matrices.

Lemma 9.2.7. The limit of the MMSE’s associated with length N truncations as

N → ∞ can be calculated by using circulant matrices instead of Toeplitz matrices,

that is we have the following:

lim
N→∞

1

N
E[||xN − E[xN |yN ]||2] = lim

N→∞

1

N
tr(ξ(CN(fx))) (9.92)

where CN(fx) is the N × N circulant matrix with the eigenvalues λk(CN(fx)) =

fx(
2πk
N

), k = 0, . . . , N − 1.

Proof: The proof follows from the fact that TN(fx) ∼ CN(fx) [202, Lemma

4.6], and a series of application of properties of asymptotically equivalent matri-

ces. We have the following:

E [||xN − E [xN |yN ]||2]
= tr(TN(fx) − TN(fx)H

T
N(HNTN(fx)H

T
N +KzN )−1HNTN (fx)) (9.93)

= tr(TN(fx)) − tr((HNTN (fx)H
T
N +KzN )−1HNTN(fx)

2HT
N) (9.94)

where the last line follows from the identity tr(AB) = tr(BA) for arbitrary ma-

trices A,B with consistent dimensions.

We have HNTN(fx)H
T
N + KzN ∼ HNCN(fx)H

T
N +KzN by Lemma 9.2.2, and

the fact that TN(fx) ∼ CN(fx). Then the inverses of these matrices are also

asymptotically equivalent since the eigenvalues of both inverses are bounded in

strong norm for all N due to the relation KzN = σ2
zIN . We will then have the

following:

(HNTN(fx)H
T
N +KzN )−1HNT

2
N(fx)H

T
N ∼ (HNCN(fx)H

T
N+KzN )−1HNC

2
N(fx)H

T
N ,

(9.95)
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by the fact that multiplication of asymptotically equivalent matrices create an

asymptotically equivalent sequence of matrices (see for example [202, Thm 2.1]).

Now we can apply [202, Theorem 2.4] (Lemma 9.2.3 in the preceding section)

with F simply as F = λt. Hence the error can be expressed as follows:

lim
N→∞

1

N
E [||xN − E [xN |yN ]||2]

= lim
N→∞

1

N
tr(ξ(TN(fx))) (9.96)

= lim
N→∞

1

N
(tr(TN(fx)) − tr((HNTN(fx)H

T
N +KzN )−1HNTN(fx)

2HT
N)), (9.97)

= lim
N→∞

1

N
(tr(CN(fx)) − tr((HNCN(fx)H

T
N +KzN )−1HNCN(fx)

2HT
N)) (9.98)

= lim
N→∞

1

N
tr(ξ(CN(fx))) (9.99)

�

Theorem 9.2.1. Let {Xt} be an exponentially mixing source. The MMSE for

estimating Xt from the observations Yt = StXt + Zt, t ∈ Z+ with St and Zt as

described before is given by the following expression

ε = lim
L→∞

1

L

L−1∑

t=0

lim
N→∞

E[||Xt − E[Xt|Yl, l ∈ {0, . . . , N − 1}]||2] (9.100)

= lim
N→∞

1

N
tr(ξ(CN(fx))) (9.101)

where CN(fx) is the N × N circulant matrix with the eigenvalues λk(CN(fx)) =

fx(
2πk
N

), k = 0, . . . , N − 1.

Proof: The result follows from Lemma 9.2.6 and Lemma 9.2.7. �

We wish to emphasize that one should be careful while attempting to replace

Toeplitz matrices with associated circulant matrices; the legitimacy of such an

exchange depends crucially on the application. Some discussion along this direc-

tion is presented in [218]. Here we have showed that for the purposes of the noisy

sampling problem at hand, a Toeplitz and a circulant matrix are operationally

equivalent. In Section 9.2.3, we will use this result to find an explicit expression

for the MMSE associated with equidistant sampling.
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Remark 9.2.1. We have shown for the purpose of calculating the MMSE on

Z+, one can assume that the covariance matrix is circulant. Hence the geometric

spread of uncertainty is given by the DFT matrix, which is the diagonalizing

unitary transform for all circulant matrices (see for example [202]). This result

implies that for the purposes of calculating the MMSE for infinite dimensional

stationary sources on Z+ with a given power spectrum , the uncertainty can be

spread in the measurement domain in only one way; the way as dictated by the

DFT matrix.

Remark 9.2.2. If we were concerned with sources over the entire line, i.e. Z,

this result, i.e. one can use the DFT matrix to calculate the MMSE, could have

been natural, since in this case using stationarity of the field, Fourier transform

methods become easily applicable to calculate MMSE for equidistant sampling.

(This approach is illustrated in Section B.5.) The fact that in our case the source

is considered on Z+ makes the result more intriguing.

Remark 9.2.3. We now make an observation related to the finite dimensional

models in stationary signal models. Circularly wide-sense stationary signals are

considered to be a natural way to model wide-sense stationary signals in finite

dimension. In this case, by definition, the covariance matrix is circulant. The

result of this lemma suggest that circularly w.s.s. signals may be more than an

analogy of w.s.s. signals; there is an operational relationship between these two.

The lemma shows that for the purposes of calculating the MMSE one may use

the sequence of associated circulant matrices (hence the c.w.s.s. models) instead

of the original model. In Section 9.2.3, we use this lemma to find the MMSE

associated with the equidistant sampling of a stationary source using the result

for the equidistant sampling of a circularly w.s.s. signal.
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9.2.3 MMSE estimation of a stationary Gaussian source

from its equidistant samples

We now present the MMSE associated with estimation of a stationary Gaussian

Source from its equdistant samples on Z+. We prove the result by the following

method: we first use a finite dimensional model and find the associated error; then

using Theorem 9.2.1, we extend this result to the infinite dimensional source.

We now compare our error result with the following results where the signals

defined on R are considered: In [122], the mean-square error of approximating

a possibly non-bandlimited wide-sense stationary (w.s.s.) signal using sampling

expansion is considered and a uniform upper bound in terms of power outside

the bandwidth of approximation is derived. Here we are interested in the average

error over all points of the sequence on Z+. Our method of approximation of the

signal is possibly different, since we use the MMSE estimator. As a result our

error expression also makes use of the shape of the power spectrum. Another

related result is [116]’s result which states that a w.s.s. signal is determined

linearly by its samples if some set of frequencies containing all of the power of

the process is disjoint from each of its translates where the amount of translate

is determined by the sampling rate. We note that the notion of such a set of

frequencies provides a generalization of the standard band-limitedness (low-pass,

band-pass etc.) concept. Here for a w.s.s. signal defined on Z+, under a set of

conditions, we arrive at the same conclusion: if there is such a set of frequencies,

the signal will be linearly determined from its samples, hence the MMSE will be

zero. Moreover, we provide the MMSE expression for the other cases where the

MMSE is not exactly zero. Our expression shows explicitly how the signal and

noise spectral densities contribute to the error.

Let us recall the equidistant sampling problem. We consider the problem of

estimation of {Xt, t ∈ Z+} from its equidistant noisy samples {Yt, t ∈ Z+}. Let

the samples be taken every τ points, i.e. Yt = StXt +Zt, where St = 1, if t = τk,

k ∈ Z+ otherwise zero. As before, {Zt, t ∈ Z+} is i.i.d. zero-mean Gaussian noise

with variance 0 < σ2
z < ∞. We assume that {Zt}, and {Xt} are statistically

independent.
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Our main result in this section is the following:

Theorem 9.2.2. Consider the MMSE estimation of {Xt, t ∈ Z+} from {Yt, t ∈
Z+} as described above. The estimation error is given by the following expression:

E[ lim
L→∞

1

L

N−1∑

t=0

(Xt − X̂t)
2] = lim

L→∞

1

L

L−1∑

t=0

lim
N→∞

E[||Xt − E[Xt|Yl, l ∈ Γ]||2] (9.102)

=
1

2π

∫ π

−π
(fx(θ) −

1

τ 2

τ−1∑

i=0

(fx(
θ+2πi
τ

))2

1
τ

∑τ−1
l=0 fx(

θ+2πl
τ

) + σ2
z

)dθ.

(9.103)

Proof: This proof is based on a sequence of finite dimensional models. We

use the result for equidistant sampling of a circularly wide-sense stationary sig-

nal defined on the finite interval [0, . . . , N − 1] to find the MMSE associated

with equidistant sampling of a stationary signal on Z+. As pointed out in Re-

mark 9.2.3, Theorem 9.2.1 shows that there is an operational relationship be-

tween these two models: under conditions of the theorem, circulant matrices,

hence circularly w.s.s. models, can be used to evaluate the MMSE associated

with sampling of a stationary processes on Z+.

Let us assume that the conditions of Theorem 9.2.1 hold. Theorem 9.2.1

states that the MMSE can be expressed as follows:

lim
L→∞

1

L

L−1∑

t=0

lim
N→∞

E [||Xt − E [Xt|Yl, l ∈ Γ]||2] = lim
N→∞

1

N
tr(ξ(CN(fx))) (9.104)

where CN(fx) is the N ×N circulant matrix with the eigenvalues λk(CN(fx)) =

fx(
2πk
N

), k = 0, . . . , N − 1. Without loss of generality, we will assume that

M = N/τ ∈ Z, and take the limits accordingly. (Since (9.68) converges, any

subsequence converges to the same limit.) We recall that tr(ξ(CN(fx))) can be

expressed as follows (9.88), (9.89)

tr(CN(fx)) − tr((HNCN(fx)H
T
N +KzN )−1HNCN(fx)

2HT
N)) (9.105)

Here HN is the sampling matrix. We note that the error does not change whether

we consider the measurements that are zero or discard them. In other words, the

error does not change whether HN is interpreted as the N × N matrix with 0

216



rows for the unmeasured components (HN = diag(St), t = 0, . . . , N − 1), or it is

a M ×N matrix formed with only the nonzero rows. For convenience we will use

the latter.

Let us first consider the first term in (9.105) as N → ∞

lim
N→∞

1

N
tr(CN(fx)) = lim

N→∞

1

N

N∑

k=1

λk(CN(fx)) (9.106)

= lim
N→∞

1

N

N∑

k=1

λk(TN(fx)) (9.107)

=
1

2π

∫ π

−π
fx(θ)dθ (9.108)

= rx(0) (9.109)

where in (9.107) we went back to using the asymptotically equivalent Toeplitz

matrix CN(fx) ∼ TN (fx) [202, Theorem 2.4] (Lemma 9.2.3). (9.108) follows

from [202, Theorem 4.2] (Lemma 9.2.5).

To evaluate the second term in (9.105), we use the following facts a) CN/τ (f̄x)+

σ2
zIN/τ = CN/τ (f̄x + fz), where fz(θ) = σ2

z for θ ∈ [−π, π] ; b) HNCN(fx)H
T
N is a

circulant matrix with dimension N/τ ×N/τ and the eigenvalues

λk(HNCN(fx)H
T
N) =

1

τ

τ−1∑

i=0

λiN
τ

+k(CN(fx)), k = 0, . . . , N/τ − 1(9.110)

=
1

τ

τ−1∑

i=0

fx(
2π(iN

τ
+ k)

N
) (9.111)

=
1

τ

τ−1∑

i=0

fx(
2πi

τ
+

2πk

N
) (9.112)

Here (9.110) is based on the fact that equidistant column and row sampling of

the DFT matrix gives another DFT matrix with a smaller dimension (These

eigenvalues are calculated explicitly in (A.12) in Section A.1). (9.111) follows

from the fact that λt(CN(fx)) = fx(
2πt
N

), t ∈ 0, . . . , N − 1.
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We can now express the second term in (9.105) as follows

tr((HNCN(fx)H
T
N + σ2

zIN/τ )
−1HNCN(fx)CN(fx)H

T
N)

= tr(HNCN(fx)H
T
N + σ2

zIN/τ )
−1HNCN(f 2

x)H
T
N) (9.113)

= tr((CN/τ (f̄x) + σ2
zIN/τ )

−1HNCN(f 2
x)H

T
N) (9.114)

= tr((CN/τ (f̄x + σ2
z))

−1CN/τ (f̂x)) (9.115)

= tr((CN/τ ((f̄x + fz))
−1)CN/τ (f̂x)) (9.116)

= tr(CN/τ (
f̂x

f̄x + fz
)) (9.117)

where f̄x = 1
τ

∑τ−1
i=0 fx(

θ+2πi
τ

) and f̂x = 1
τ

∑τ−1
i=0 f

2
x(

θ+2πi
τ

). In (9.114) and (9.115),

we have used the observation (b) and (a) given above, respectively. We have

used the following property of the circulant matrices CN(f1)CN(f2) = CN(f1f2)

in (9.113) and (9.117), and C−1
N (f1) = CN(1/f1) for ess inf f1 > 0 in (9.117) [202,

Lemma 4.5].

Hence as N → ∞ the second term in (9.105) can be expressed as follows

lim
N→∞

1

N
tr(CN/τ (

f̂x
f̄x + σ2

z

)) (9.118)

= lim
N→∞

1

N

M−1∑

t=0

λt(CN/τ (
f̂x

f̄x + σ2
z

)) (9.119)

= lim
M→∞

1

τM

M−1∑

t=0

λt(CN/τ (
f̂x

f̄x + σ2
z

)) (9.120)

=
1

τ 2

τ−1∑

i=0

1

2π

∫ π

−π

(fx(
θ+2πi
τ

))2

1
τ

∑τ−1
l=0 fx(

θ+2πl
τ

) + σ2
z

)dθ. (9.121)

Here, similar to the derivation of (9.108), we have used the fact that CN(fx) ∼
TN(fx), and [202, Theorem 2.4] (Lemma 9.2.3) together with [202, Theorem 4.2]

(Lemma 9.2.5).

We note that both of the expressions in (9.108) and (9.121) are finite. We

putting these into (9.105), together with (9.104), we obtain the expression in

(9.103), as desired. �
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9.2.4 Discussion on autoregressive sources

In this section, we provide an alternative form of Theorem 9.2.1 for stationary

autoregressive sources. Suppose Xt is a stationary Gaussian AR source defined

by

Xt =





−∑∞
k=1 akXt−k +Wt, if t ≥ 0

0, if t < 0
(9.122)

where Wt’s are i.i.d real valued zero-mean Gaussian random variables with vari-

ance σ2
W = 1 with

∑∞
k=0 |ak| < ∞. With the convention a0 = 1, we assume

that the zeros of the polynomial
∑∞
k=0 akz

−k lie inside the unit circle, so that the

process is asymptotically stationary.

We note that although the process is asymptotically stationary, the covariance

matrix of the process is not exactly Toeplitz; due to the initialization at t = 0.

Although we can use the fact that the sequence of the covariance matrices is

asymptotically similar to a sequence of Toeplitz matrices, and use Theorem 9.2.1

directly, we adopt a slightly different approach which highlights some of the in-

trinsic properties of the AR source.

Lemma 9.2.8. The MMSE for estimating Xt from the observations Yt = StXt+

Zt with St and Zt as described above can be expressed as follows:

lim
N→∞

1

N

N−1∑

t=0

1

λt(Cx,N +HT
NHN)

(9.123)

where Cx,N is the circulant matrix with eigenvalues λk(Cx,N) = |a(k2π/N)|2 where

a(θ) =
∑∞
k=0 ake

ikθ.

Proof:

The inverse covariance matrix of this AR Gaussian source is asymptoti-

cally equivalent to a Toeplitz matrix with spectral density |a(θ)|2, i.e. K−1
x,N ∼

T (|a(θ)|2) [202, Thm. 6.2]. We also note that TN(|a(θ)|2) ∼ CN(|a(θ)|2) un-

der the condition
∑∞
k=−∞ |[TN ]0,k| < ∞ [202, Lemma 4.6]. Hence K−1

x,N ∼
CN(|a(θ)|2). By [132, Section 1.13],

∫ π
−π log |a(θ)|2dθ > −∞, hence we must have
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ess inf |a(θ)|2 = m > 0. Thus, the eigenvalues of TN are guaranteed to be away

from zero.

We note that when TN (fx) is non-singular, the error expression can be also

written as

E [||xN − E [xN |yN ]||2] = tr ((T−1
N (fx) +

1

σ2
z

HT
NHN)−1) (9.124)

=
N−1∑

k=0

1

λk(T
−1
N (fx) + 1

σ2
z
HT
NHN )

(9.125)

This follows from the fact that Kx,N and Kx = σ2
zIN are nonsingular and the

Sheerman-Morrison-Woodbury identity, which has the following form for our case

(see for example [203] and the references therein)

K1 −K1A
†(AK1A

† +K2)
−1AK1 = (K−1

1 + A†K−1
2 A)−1, (9.126)

where K1 and K2 are nonsingular. Since eigenvalues of TN(fx) are away from

zero, we can apply [202, Theorem 2.4] to the error expression in (9.125) with

K−1
x,N +HT

NHN ∼ CN(|a(θ)|2) +HT
NHN with F (λt) = 1/λt. �

Discussion On Nonstationary AR Sources: Even when the AR source is

nonstationary, the inverse covariance matrix satisfies K−1
x,N ∼ T (|a(θ)|2). But in

this case, the eigenvalues λt(K
−1
x,N) approach zero [219, 220] . In general we only

know λmin(K
−1
x,N +HT

NHN) ≥ λmin(K
−1
x,N) + λmin(H

T
NHN) = λmin(K

−1
x,N). On the

other hand, the function F (x) = 1/x is discontinuous at x = 0, making direct

application of Theorem 2.4 of [202] impossible.

Nevertheless, some aspects of sampling of non-stationary sources are well-

understood. Consider a causal estimation scenario where a Kalman filter is used.

Let us consider the case of Bernoulli sampling, with success rate p. The estimation

error is unbounded if |λmax(A)|2(1 − p) > 1 [221], where p is the A is q × q state

transition matrix obtained by expressing the finite dimensional AR source as a

vector Markov source. Since the largest eigenvalue of the state transition matrix

provides a measure for boundedness of estimation, it could be associated with

degree of overall correlatedness of the field.
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9.2.5 First order stationary Markov source and Bernoulli

sampling strategy

We now consider a different sampling scheme for measurement of a particular

family of stationary sources: we address the problem of estimating a first or-

der stationary Markov Source on Z+ under Bernoulli sampling scheme. Under

Bernoulli sampling scheme, the value of the random sequence at a point is ob-

served with probability p independent of the other points.

Our signal model can be expressed as follows

Xt = a1Xt−1 +Wt, t ≥ 0 (9.127)

where X−1 = 0, Wt is zero mean i.i.d Gaussian source with variance σ2
w. Let

E [Xt1Xt2 ] = rx(t1 − t2) = a
|k|
1

σ2
w

1−|a1|2 = r|k|, where for notational convenience we

fix σ2
w

1−|a1|2 = 1, and denote a1 with a1 = r.

We consider the following measurement scenario: We sample {Xt} as dictated

by the i.i.d. {0, 1}-valued sampling process {St}, that is we observe Yt formed as

follows:

Yt = StXt, , t ≥ 0 (9.128)

where {St} is a sequence of independent Bernoulli random variables, i.e. St = 1

with probability p, St = 0 with probability 1−p. We assume that {Xt} and {St}
are statistically independent, and the realization of the sampling process {St} is

known at the estimator. Hence the information available to the estimator can

expressed as the following sequence {It, t ∈ Z}, where It = [St, Yt].

Lemma 9.2.9. The estimation error associated with the above model can be

expressed as follows

ε(p, r) = lim
L→∞

E[
1

L

L∑

t=0

[(Xt − E[Xt|It, t ∈ Z])2] (9.129)

= −1 + p− 2p

1 − r2
+ 2pE[

T1

1 − |r|2T1
] (9.130)

= −1 + p− 2p

1 − r2
+ 2p2

∞∑

k=0

r2k

(1 − (1 − p)r2k)2
(9.131)
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where 1 > p > 0, and 1 > |r| > 0. Here T1 is the time of the first success of

Bernoulli sampling that is T1 = min(k > 0 : Sk = 1).

The proof is given in Section B.6.

Corollary 9.2.1. The above error is lower bounded as follows:

ε(p, r) ≥ −1 + p− 2p

1 − r2
+ 2

1

1 − |r|2/p (9.132)

Proof: We observe that f(T1) = T1/(1 − r2T1) is a convex function of T1 ≥ 0.

This can be proven, for instance by using the fact that if the second derivative of a

function defined on a convex domain is non-negative, the function is convex [151,

Sec. 3.1.4]. Hence we have

E [
T1

1 − |r|2T1
] ≥ 1/p

1 − |r|2/p (9.133)

where we have used the fact that E [T1] = 1/p and Jensen’s Inequality [151, Sec.

3.1.8]. The result follows by (9.130).

9.3 Conclusions

In this chapter we have worked on finite-length models and representations of

stationary Gaussian sequences. We have discussed the decay of the error in

finite-length representations/estimation of these sources. We have showed that

for exponentially mixing sequences, for various representations and estimators,

the error difference between using a finite-length representation and an infinite-

length representation is upper bounded by an exponentially decreasing function

of the finite window length. For stationary Gaussian signals, it is known that the

presence of strong mixing may prevent a signal from being precisely bandlimited,

but otherwise puts comparably loose restrictions on the spectral density, hence

the effective bandwidth and the entropy. Nevertheless, the above results shows

that mixing rate is pertinent to the geometric spread of uncertainty in the sig-

nal in the sense that it determines how the error difference between finite and
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infinite-length representations decays. In the second part, we have used the finite

dimensional circularly wide-sense stationary signal model to find MMSE associ-

ated with noisy equidistant sampling of stationary Gaussian source on Z+. Our

expression explicitly shows how the signal and noise spectral densities contribute

to the error.
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Chapter 10

Conclusions

In this thesis, we have studied on a family of signal representation and recovery

problems under various measurement restrictions. In each of the problems formu-

lated, we have focused on different aspects of information transfer in the measure-

ment process. In particular we paid attention to different forms of finiteness, such

as finite number of measurements or finite amplitude accuracy in measurements.

Our work has contributed to better understanding of information theoretic

relationships in physical fields, in particular propagating waves, such as optical

fields. Although these fields are usually represented by functions of continuous

variables, in effect they carry a finite amount of information. This finiteness is

intrinsically related to the finiteness of the energy and the specified non-zero error

tolerance or noise in the system. To quantify how these come into the picture in

recovery of the signal from its measurements, we have set ourselves the goal of

representing the field as efficiently as possible; that is, with as small a number of

samples as possible or as small a number of bits as possible.

We have formulated a family of optimal measurements problems to answer

these questions. In the first one of these, we have focused on the finite number of

samples restriction. We have investigated the optimal sampling interval in order

to represent the field with as low error as possible for a given number of samples.

Here we have focused on the following two trade-offs i) the trade-offs between

224



the achievable error and the number of samples, ii) the trade-off between the

spatial coverage and the frequency coverage of the samples. Our results reveal

how, for a given number of samples, we should choose the space and frequency

coverage. That is, we have illustrated whether it is better to take more closely

spaced samples (with wider frequency coverage but smaller spatial coverage), or

to take more distant samples (with smaller frequency coverage but larger spatial

coverage). One of our contributions is to show that in certain cases, sampling

at rates different than the Nyquist rate is more efficient, and to find the optimal

sampling rates.

Motivated by the fact that we often use digital systems to process informa-

tion, we have also considered the problem of representing a signal with its samples

using as small a number of bits as possible. Formulating and solving this prob-

lem is one of the major contributions of this thesis. Here we focused on various

trade-offs in the representation of random fields, mainly: i) the trade-offs be-

tween the achievable error and the cost budget, ii) the trade-offs between the

accuracy, spacing, and number of samples. In contrast to common practice which

often treats sampling and quantization separately, we have explicitly focused on

the interplay between limited spatial resolution and limited amplitude accuracy.

Under a given cost budget, we have investigated whether it is better to take a

higher number of samples with relatively lower cost per sample (hence with lower

amplitude accuracy), or a lower number of samples with relatively higher cost

per sample (hence with higher amplitude accuracy).

We have considered two versions of the above problem: i) the uniform ver-

sion where the samples are equidistantly spaced, and all the samples are taken

with the same level of measurement accuracy, ii) the non-uniform version where

the sample locations can be freely chosen, and need not be equally spaced from

each other. Furthermore, the measurement accuracy of each sample can vary

from sample to sample. For the first, uniform version, we have found the optimal

number of samples and sampling interval under a given cost budget in order to

recover the field with as low error as possible. We have again illustrated that,

in some cases, sampling at rates different than the Nyquist rate is more efficient,

and found the optimum sampling intervals. We note that although one may
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expect to compensate for the limited accuracy of the samples by oversampling,

the precise relationships between the sampling parameters and the reconstruc-

tion error are not immediately evident. Here we gave quantitative answers to

this question by determining the optimal sampling parameters and the resulting

performance bounds for the best achievable error for a given bit budget. The

second, general, non-uniform version represents maximum flexibility in choosing

the sampling strategy; the number, locations and accuracies are all free variables.

Here we have found the optimal values of these in order to achieve the lowest error

values possible under a cost budget. Here we have illustrated how one can exploit

the better optimization opportunity provided by the flexibility of choosing these

parameters freely, and obtain tighter optimization of the error-cost curves. Our

results illustrate that sampling with this more general scheme provides greater

improvements when the uncertainty of the signal is not spread uniformly in space

(that is, when the uncertainty reduction due to sampling of the field at different

parts of the space are substantially different).

The degree of coherence, which is defined as a measure of total correlatedness

of an optical field, is a concept of central importance in statistical optics. In

all of the above work, this concept played a major role. We have systematically

investigated the effect of coherence, as well as the effect of signal-to-noise ratio

on cost-error trade-offs and optimal cost allocations.

The field at one part of a system is not independent from the field at another

part of the system. In other words, knowledge of the field at one part of the

system gives us a certain degree of information about the field at other parts.

Thus we also considered the case where the signal is represented by samples taken

after the signal passes through a linear system. For the case of Gaussian-Schell

model beams, when there is no noise, we have shown that samples of the output

field are as good as samples of the input field, for the broad class of first-order

optical systems. This class includes arbitrary concatenations of lenses, mirrors

and sections of free space, as well as quadratic graded-index media. We have

shown that the cost-error trade-off curves obtained turn out to be the same as

those obtained for direct sampling of the input, and the optimum sampling points

can be found by a simple scaling of the direct sampling results.
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Although various aspects of the problem of sensing of physical fields have been

widely studied as estimation problems, much of this work has loose connections

with both the underlying physical phenomena and the physical aspects of the

sensors employed. There seems to be a disciplinary boundary between the works

that look at this problem from an estimation or coding point of view and a phys-

ical sciences point of view. By utilizing a cost budget approach to measurement

of these fields, our work has contributed to bridging this gap, and has helped us

to better understand the information theoretic relationships in physical fields and

their measurement from a broader perspective.

We have also considered an application of the above cost based measurement

framework to super-resolution problems; and have studied the effect of limited

amplitude resolution (pixel depth). Unlike most previous work, amplitude resolu-

tion was considered as a just as important aspect of the super-resolution problem

as spatial resolution. The cost budget approach mentioned above made it possi-

ble to study this problem systematically. We have studied the success of different

measurement strategies where the resolution in amplitude (pixel depth), reso-

lution in space (upsampling factor) and the number of low resolution images

are variable. The proposed framework has revealed great flexibility in terms of

spatial-amplitude resolutions in super-resolution problem. We have seen that it

is possible to reach target visual qualities with different measurement scenarios

including varying number of images with different amplitude and spatial resolu-

tions.

Our study of the measurement problems described above suggests that al-

though the optimal measurement strategies and signal recovery performance de-

pends substantially on total uncertainty of the signal, the geometry of the spread

of uncertainty in measurement space also plays an important role in the signal

recovery problem. We note that the concepts that are traditionally used in the

signal processing and information theory literatures as measures of dependency

or uncertainty of signals (such as the degree of freedom or the entropy) mostly

refer to total uncertainty of the signal. In the second part of this thesis, we have

formulated various problems investigating different aspects of the relationship be-

tween total uncertainty of the signal and its spread in the measurement domain,
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and their effects on signal recovery performance. We have considered this prob-

lem in a mean-square error setting under the assumption of Gaussian signals.

This framework makes it possible to approach the problem in terms of second-

order statistics. Entropy, which is a measure of total uncertainty, solely depends

on the eigenvalue spectrum of the covariance matrix; hence the concept is blind

to the coordinate system in which the signal will be measured. The spread of

uncertainty in the measurement domain depends on both the total uncertainty,

and the coordinate system the signal will be measured. This line of study also

relates to the compressive sensing paradigm. Contrary to the deterministic signal

models commonly employed in compressive sensing, here we work in a stochastic

framework based on the Gaussian vector model and minimum mean-square error

(MMSE) estimation; and investigate the spread of the eigenvalue distribution of

the covariance matrix as a measure of sparsity. In our framework, we have as-

sumed that the covariance matrix of the signal, hence location of support of the

signal is known during estimation.

We have first investigated the relationship between the following two con-

cepts: degree of coherence of a random field as defined in optics and coherence

of bases as defined in compressive sensing. Degree of coherence of a basis is a

concept from compressive sensing which provides a ranking of bases. In compres-

sive sensing the good bases are the ones where “each measurement picks up a

little information about each component” [181]. Coherence of bases is a measure

of this property. We have observed that these concepts are named exactly the

same, but attributes of different things (bases and random fields), and yet enable

similar type of conclusions (good signal recovery performance). One of the main

contributions of this study is to explore the relationship between these concepts,

and demonstrate that the similarities are more than a coincidence. Our study

proposes the fractional Fourier transform (FRT) as an intuitively appealing and

systematic way to generate bases with varying degree of coherence: we illustrate

that by changing the order of the FRT from 0 to 1, it is possible to generate

bases whose coherence ranges from most coherent to most incoherent. We have

also developed an estimation based framework to quantify coherence of random
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fields and have illustrated that what this concept quantifies is not just a repeti-

tion of what more traditional concepts like the degree of freedom or the entropy

does. Moreover, we have shown that by using these different bases with different

FRT orders, it is possible to generate statistics for fields with varying degree of

coherence. Hence we also propose the FRT as a systematic way of generating the

statistics for fields with varying degree of coherence.

Our above work can be interpreted as an investigation of basis dependency of

the MMSE under random sampling. We have also studied this problem from an

alternative perspective. We have considered the transmission of a Gaussian vec-

tor source over a multi-dimensional Gaussian channel where a random or a fixed

subset of the channel outputs are erased. We have focused on the setup where the

only encoding operation allowed is a linear unitary transformation on the source.

For such a setup, we have investigated the MMSE performance both in average

and in terms of guarantees that hold with high probability as a function of sys-

tem parameters. For the average error criterion necessary conditions for optimal

unitary encoders are established, and explicit solutions for a class of settings are

presented. Although there are observations (including evidence provided by the

compressed sensing community) that may suggest the result that the discrete

Fourier transform (DFT) matrix may be indeed an optimum unitary transfor-

mation for any eigenvalue distribution, we provide a counterexample. Most of

this work is based on a measurement model where each component is erased in-

dependently and with equal probability. This measurement model is of central

importance in compressive sensing. Our work also contributes to the understand-

ing of the MMSE performance of such measurement schemes under noise. For

guarantees that hold with high probability, we have first considered the case where

the covariance matrix has a flat eigenvalue distribution (nonzero eigenvalues all

have the same value). We have illustrated how the random matrix results in com-

pressive sensing can be directly applied to the MMSE expression to provide error

bounds. Here we have considered both the case that the sampling locations are

random and the eigenvalue distribution is fixed, and the case that the sampling

locations are fixed and the locations of the nonzero eigenvalues are random. For
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a more general eigenvalue distribution, we have used a more complicated argu-

ment to obtain error bounds for measurement through random projections. Here

our main contribution is to illustrate the interplay between the total uncertainty

of the signal (different eigenvalue distributions) and the coordinate space trans-

form that relates the canonical signal domain and the measurement domain to

form error bounds. Finally, we have considered equidistant sampling of circularly

wide-sense stationary (c.w.s.s.) signals, for which the coordinate transformation

between the canonical signal domain and the measurement domain is given by

the DFT. Here we have provided an explicit error expression that shows how the

sampling rate and the eigenvalue distribution contribute to the error.

We have then continued our investigation of dependence in random fields with

stationary Gaussian sources defined on Z. We have formulated a family of prob-

lems related to the finite-length representations and sampling of these signals.

Our framework here is again based on our vision of understanding the effect of

different forms of finiteness in representation of signals, and measures of statisti-

cal dependence in random fields, in particular geometry of spread of uncertainty.

We have first considered the decay rates for the error between finite dimensional

representations and infinite dimensional representations. Our approach is based

on the notion of mixing which is concerned with dependence in asymptotical

sense. There is a vast literature on the notion of mixing in the fields of infor-

mation theory and applied mathematics, but this notion does not seem to have

been utilized in signal processing community. Providing several alternative ways

to quantify dependence in random processes, this family of notions may provide

new perspectives in signal processing problems where one needs to quantify the

dependence in a signal family. Our work constitutes an example for these poten-

tial directions of research. We believe that it will be useful to researchers who

would like to understand in what kind of problems this notion can be utilized. We

have showed that for exponentially mixing sequences, for various representations

and estimators, the error difference between using a finite-length representation

and an infinite-length representation is upper bounded by an exponentially de-

creasing function of the finite window length. For stationary Gaussian signals,

it is known that the presence of strong mixing may prevent a signal from being
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precisely bandlimited, but otherwise puts comparably loose restrictions on the

spectral density, hence the effective bandwidth and the entropy. Nevertheless,

the above results shows that mixing rate is pertinent to the geometric spread

of uncertainty in the signal in the sense that it determines how the error dif-

ference between the finite and infinite-length representations decays. We have

then considered the MMSE estimation of a stationary Gaussian source from its

noisy samples. We have first showed that for stationary sources, for the purpose

of calculating the MMSE based on equidistant samples, asymptotically circulant

matrices can be used instead of original covariance matrices, which are Toeplitz.

This result suggests that circularly wide-sense stationary signals in finite dimen-

sions are more than an analogy for stationary signals in infinite dimensions: there

is an operational relationship between these two signal models. Then, we have

considered the MMSE associated with estimation of a stationary Gaussian source

on Z+ from its equidistant samples on Z+. Using the previous result and our re-

sult on c.w.s.s. signals in our earlier work, we gave the explicit expression for the

MMSE in terms of power spectral density of the source. An important aspect of

our framework is the fact that we consider the sampling of the source on the half

infinite line Z+ instead of the infinite line Z. This framework makes direct usage

of stationary arguments difficult, and makes the arguments more challenging. We

note that contrary to much previous work which considers the Shannon-Nyquist

interpolation formula as the means for the reconstruction of the signal, our per-

formance criterion here is the MMSE, which, by definition, gives the minimum

mean-square error achievable with the given samples. In this sense, our error

expression provides performance limits for estimation of such a source from its

samples. It is also important that our expression is explicit; in the sense that it

does not just state the conditions under which the MMSE will be zero, but also

shows exactly how the sampling rate, and signal and noise spectrums contribute

to the error if these conditions are not met.

In this thesis, we were concerned with signal recovery and representation un-

der various measurement constraints. We have investigated the effect of different

forms of finiteness, such as finite number of samples or finite amplitude accuracy,

on the signal recovery performance. An important concept in our investigations
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was the concept of spread of uncertainty in the measurement space, as opposed

to the total uncertainty in the signal. In our belief, our work provides valuable

insight for understanding different aspects of information transfer in the mea-

surement process. We believe that our results are not only useful for better

understanding of fundamental limits in signal recovery problems, but can also

lead to guidelines in practical scenarios. Our general framework will be useful

in a wide range of situations where inverse problems with similar constraints are

encountered.
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APPENDIX A

A.1 Proof of Lemma 8.1.1

We remind that in this section utk = 1√
N
ej

2π
N
tk, 0 ≤ t , k ≤ N−1 and the associated

eigenvalues are denoted with λk without reindexing them in decreasing/increasing

order. We first assume that Ky = E [yy†] = HKxH
† is non-singular. The gener-

alization to the case where Ky may be nonsingular is presented at the end of the

proof.

The MMSE error for estimating x from y is given by [188, Ch.2]

E [||x− E [x|y]||2] = tr(Kx −KxyK
−1
y K†

xy) (A.1)

= tr(UΛxU
† − UΛxU

†H†(HUΛxU
†H†)−1HUΛxU

†) (A.2)

= tr(Λx − ΛxU
†H†(HUΛxU

†H†)−1HUΛx). (A.3)

We now consider HU ∈ CM×N , and try to understand its structure

(HU)lk =
1√
N
ej

2π
N

(∆Nl)k =
1√
N
ej

2π
M
lk, (A.4)

where 0 ≤ l ≤ N
∆N

− 1, 0 ≤ k ≤ N − 1. We now observe that for a given l,

ej
2π
M
lk is a periodic function of k with period M = N

∆N
. So lth row of HU can be

expressed as

(HU)l: =
1√
N

[ej
2π
M
l[0...N−1]] (A.5)

=
1√
N

[ej
2π
M
l[0...M−1]| . . . |ej 2π

M
l[0...M−1]]. (A.6)
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Let UM denote the M ×M DFT matrix, i.e. (UM)lk = 1√
M
ej

2π
M
lk with 0 ≤ l ≤

M−1, 0 ≤ k ≤M−1. Hence HU is the matrix formed by stacking ∆N M×M
DFT matrices side by side

HU =
1√
∆N

[UM | . . . |UM ]. (A.7)

Now we consider the covariance matrix of the observations Ky = HKxH
† =

HUΛxU
†H†. We first express Λx as a block diagonal matrix as follows

Λx =




λ0 0 · · · 0

0 λ1
...

...
. . .

...

0 · · · 0 λN−1




=




Λ0 0 · · · 0

0 Λ1 ...
...

. . .
...

0 · · · 0 Λ∆N−1




. (A.8)

Hence Λx = diag(Λi
x) with Λi

x = diag(λiM+k) ∈ RM×M , where 0 ≤ i ≤ ∆N − 1,

0 ≤ k ≤ M − 1. We can write Ky as

Ky = HUΛxU
†H† (A.9)

=
1√
∆N

[UM | . . . |UM ] diag(Λi
x)




U †
M
...

U †
M




1√
∆N

(A.10)

=
1

∆N
UM(

∆N−1∑

i=0

Λi
x)U

†
M (A.11)

We note that
∑∆N−1
i=0 Λi

x ∈ RM×M is formed by summing diagonal matrices, hence

also diagonal. Since UM is the M×M DFT matrix, Ky is again a circulant matrix

whose kth eigenvalue is given by

1

∆N

∆N−1∑

i=0

λiM+k. (A.12)

Hence Ky = UMΛyU
†
M is the eigenvalue-eigenvector decomposition of Ky, where

ΛY = 1
∆N

∑∆N−1
i=0 Λi

x = diag(λy,k) with λy,k = 1
∆N

∑∆N−1
i=0 λiM+k, 0 ≤ k ≤M − 1.

We note that there may be aliasing in the eigenvalue spectrum of Ky depending

on the eigenvalue spectrum of Kx and ∆N . We also note that Ky may be aliasing

free even if it is not bandlimited (low-pass, high-pass, etc.) in the conventional
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sense. Now K−1
y can be expressed as

K−1
y = (UMΛyU

†
M)−1 (A.13)

= UM diag(
1

λy,k
)U †

M (A.14)

= UM diag(
∆N

∑∆N−1
i=0 λiM+k

)U †
M . (A.15)

We note that since Ky is assumed to be non-singular, λy,k > 0. We are now

ready to consider the error expression in (A.3). We first consider the second term

tr(ΛxU
†H†K−1

y HUΛx)

tr(
1√
∆N




Λ0
xU

†
M

...

Λ∆N−1
x U †

M


 (UMΛ−1

y U †
M )

1√
∆N

[UMΛ0
x| . . . |UMΛ∆N−1

x ])

=
∆N−1∑

i=0

1

∆N
tr(Λi

xΛ
−1
y Λi

x) (A.16)

=
∆N−1∑

i=0

M−1∑

k=0

λ2
iM+k∑∆N−1

l=0 λlM+k

(A.17)

Hence the MMSE becomes

E [||x− E [x|y]||2] =
N−1∑

t=0

λt −
∆N−1∑

i=0

M−1∑

k=0

λ2
iM+k∑∆N−1

l=0 λlM+k

(A.18)

=
M−1∑

k=0

∆N−1∑

i=0

λiM+k −
∆N−1∑

i=0

M−1∑

k=0

λ2
iM+k∑∆N−1

l=0 λlM+k

(A.19)

=
M−1∑

k=0

(
∆N−1∑

i=0

λiM+k −
∆N−1∑

i=0

λ2
iM+k∑∆N−1

l=0 λlM+k

) (A.20)

We note that we have now expressed the MMSE as the sum of the errors in M

frequency bands. Let us define the error at kth frequency band as

ewk =
∆N−1∑

i=0

λiM+k −
∆N−1∑

i=0

λ2
iM+k∑∆N−1

l=0 λlM+k

, 0 ≤ k ≤M − 1 (A.21)

Example A.1.1. Before moving on, we study a special case: Let ∆N = 2. Then

ewk = λk + λN
2

+k −
λ2
k + λ2

N
2

+k

λk + λN
2

+k

(A.22)

=
2λkλN

2
+k

λk + λN
2

+k

. (A.23)
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Hence 1
ew
k

= 1
2
( 1
λN

2
+k

+ 1
λk

). We note that this is the MMSE error for the following

single output multiple input system

zk =
[

1 1
]


 sk0

sk1



 , (A.24)

where sk ∼ N (0, Ksk), with Ksk = diag(λk, λN
2

+k). Hence the random variables

associated with the frequency components at k, and N
2

+ k act as interference

for estimating the other one. We observe that for estimating x we have N
2

such

channels in parallel.

We may bound ewk as

ewk =
2λkλN

2
+k

λk + λN
2

+k

≤
2λkλN

2
+k

max(λk, λN
2

+k)
(A.25)

= 2 min(λk, λN
2

+k) (A.26)

This bound may be interpreted as follows: Through the scalar channel shown in

(A.24), we would like to learn two random variables sk0 and sk1. The error of this

channel is upper bounded by the error of the scheme where we only estimate the

one with the largest variance, and don’t try to estimate the variable with the small

variance. In that scheme, one first makes an error of min(λk, λN
2

+k), since the

variable with the small variance is ignored. We may lose another min(λk, λN
2

+k),

since this variable acts as additive noise for estimating the variable with the large

variance, and the MMSE error associated with such a channel may be upper

bounded by the variance of the noise.

Now we choose the set of indices J with |J | = N/2 such that k ∈ J ⇔ N
2

+ k /∈
J and J has the most power over all such sets, i.e. k + arg max

k0∈{0,N/2}
λk0+k ∈ J ,

where 0 ≤ k ≤ N/2 − 1. Let PJ =
∑

k∈J
λk.

Hence

E[||x− E[x|y]||2] =
N/2−1∑

k=0

ewk ≤ 2
N/2−1∑

k=0

min(λk, λN
2

+k) = 2(P − PJ). (A.27)

We observe that the error is upper bounded by 2× (the power in the “ignored

band”).
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We now return to the general case. Although it is possible to consider any set

J that satisfies the assumptions stated in (8.14), for notational convenience we

choose the set J = {0, . . . ,M − 1}. Of course in general one would look for the

set J that has most of the power in order to have a better bound on the error.

We now consider

ewk =
∆N−1∑

i=0

λiM+k −
∆N−1∑

i=0

λ2
iM+k∑∆N−1

l=0 λlM+k

, 0 ≤ k ≤M − 1 (A.28)

We note that this is the MMSE of estimating Sk from the output of the

following single output multiple input system

zk =
[

1 · · · 1
]




sk1
...

sk∆N−1


 , (A.29)

where sk ∼ N (0, Ksk), with Ksk as follows

Ksk = diag(σ2
sk
i
) (A.30)

= diag(λk, . . . , λiM+k, . . . , λ(∆N−1)M+k) (A.31)

We define

P k =
∆N−1∑

l=0

λlM+k, 0 ≤ k ≤M − 1 (A.32)

We note that
∑M−1
k=0 P k = P .

We now bound ewk as in the ∆N = 2 example

ewk =
∆N−1∑

i=0

λiM+k −
∆N−1∑

i=0

λ2
iM+k∑∆N−1

l=0 λlM+k

, (A.33)

=
∆N−1∑

i=0

(λiM+k −
λ2
iM+k

P k
), (A.34)

= (λk −
λ2
k

P k
) +

∆N−1∑

i=1

(λiM+k −
λ2
iM+k

P k
), (A.35)

≤ (P k − λk) +
∆N−1∑

i=1

λiM+k (A.36)

= (P k − λk) + P k − λk (A.37)

= 2(P k − λk) (A.38)
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where we’ve used λk − λ2
k

P k = λk(P k−λk)
P k ≤ P k − λk since 0 ≤ λk

P k ≤ 1 and λiM+k −
λ2

iM+k

P k ≤ λiM+k since
λ2

iM+k

P k ≥ 0. This upper bound may interpreted similar to the

Example A.1.1: The error is upper bounded by the error of the scheme where

one estimates the random variable associated with λk, and ignore the others.

The total error is bounded by

E [||x− E [x|y]||2] =
M−1∑

k=0

ewk ≤
M−1∑

k=0

2(P k − λk) (A.39)

= 2(
M−1∑

k=0

P k −
M−1∑

k=0

λk) (A.40)

= 2(P − PJ) (A.41)

Remark A.1.1. We now consider the case where Ky may be singular. In this

case, it is enough to use K+
y instead of K−1

y , where + denotes the Moore-Penrose

pseudo-inverse [188, Ch.2]. Hence the MMSE may be expressed as tr(Kx −
KxyK

+
y K

†
xy). We have K+

y = (UMΛyU
†
M)+ = UMΛ+

y U
†
M = UM diag(λy,k

+)U †
M ,

where λ+
y,k = 0 if λy,k = 0 and λ+

y,k = 1
λy,k

otherwise. Going through calculations

with K+
y instead of K−1

y reveals that the error expression remain essentially the

same

E[||x− E[x|y]||2] =
∑

k∈J0

(
∆N−1∑

i=0

λiM+k −
∆N−1∑

i=0

λ2
iM+k∑∆N−1

l=0 λlM+k

), (A.42)

where J0 = {k :
∑∆N−1
l=0 λlM+k 6= 0, 0 ≤ k ≤ M − 1} ⊆ {0, . . . ,M − 1}. We note

that ∆Nλy,k =
∑∆N−1
l=0 λlM+k = P k.

A.2 Proof of Lemma 8.3.2

Our aim is to show that the smallest eigenvalue of A = Λ−1
x + 1

σ2
n
H†H is bounded

from below with a sufficiently large number with high probability. That is we are

interested in

inf
x∈SN−1

x†Λ−1
x x+

1

σ2
n

x†H†Hx (A.43)
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To lower bound the smallest eigenvalue, we adopt the approach proposed by [206]:

We consider the decomposition of the unit sphere into two sets, compressible

vectors and incompressible vectors. We remind the following definitions from

[206].

Definition A.2.1. [pg.14, [206]] Let |supp(x)| denote the number of elements

in the support of x. Let η, ρ ∈ (0, 1). x ∈ R
N is sparse, if |supp(x)| ≤ ηN .

The set of vectors sparse with a given η is denoted by Sparse(η). x ∈ SN−1 is

compressible, if x is within an Euclidean distance ρ from the set of all sparse

vectors, that is ∃ y ∈ Sparse(η), d(x, y) ≤ ρ. The set of compressible vectors is

denoted by Comp(η, ρ). x ∈ SN−1 is incompressible if it is not compressible. The

set of incompressible vectors is denoted by Incomp(η, ρ).

Lemma A.2.1. [Lemma 3.4, [206]] Let x ∈ Incomp(η, ρ). Then there exists a

set of ψ ⊆ 1, ..., N of cardinality |ψ| ≥ 0.5ρ2ηN such that

ρ
√

(2N)
≤ |xk| ≤

1√
ηN

for all k ∈ ψ (A.44)

We note that the set of compressible and incompressible vectors provide a

decomposition of the unit sphere, i.e. SN−1 = Incomp(η, ρ)
⋃
Comp(η, ρ) [206].

We will show that the first/second term in (A.43) is sufficiently away from zero

for x ∈ Incomp(η, ρ)/ x ∈ Comp(η, ρ) respectively.

As noted in [206]

P( inf
x∈SN−1

x†Ax ≤ C0N)

≤ P( inf
x∈Comp(η,ρ)

x†Ax ≤ C0N) + P( inf
x∈Incomp(η,ρ)

x†Ax ≤ C0N) (A.45)

We also note that

inf
x∈Incomp(η,ρ)

x†Λ−1
x x+ x†

1

σ2
n

H†Hx ≥ inf
x∈Incomp(η,ρ)

x†Λ−1
x x (A.46)

= inf
x∈Incomp(η,ρ)

||Λ−1/2
x x||2 (A.47)
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and

inf
x∈Comp(η,ρ)

x†Λ−1
x x+ x†

1

σ2
n

H†Hx ≥ inf
x∈Comp(η,ρ)

x†
1

σ2
n

H†Hx (A.48)

=
1

σ2
n

( inf
x∈Comp(η,ρ)

||Hx||2) (A.49)

where inequalites are due to the fact that Λ−1
x , H†H are both positive-

semidefinite.

We first consider the following special case of [206, Lemma 3.3]:

Lemma A.2.2. [206, Lemma 3.3] Let H be a M = βN×N random matrix with

i.i.d Gaussian entries with variances at least 1. Then there exist η, ρ, C2, C1 > 0

that does not depend on N such that

P( inf
x∈Comp(η,ρ)

||Hx||2 ≤ C2N) ≤ e−C1N (A.50)

To see the relationship between the number of measurements and the parameters

of the lemma, we take a closer look at the proof of this lemma: We observe that

here H is a M = βN×N matrix, hence [206, Proposition 2.5 ] requires ηN < δ0M

where 0 < δ0 < 0.5 is a parameter of [206, Proposition 2.5 ]. Hence M should

satisfy M > T ′ where T ′ = 1
δ0
ηN .

We now look at infx∈Incomp(η,ρ) ||Λ−1/2
x x||2. We note that none of the entities

in this expression is random. We note the following

inf
x∈Incomp(η,ρ)

||Λ−1/2
x x||2 = inf

x∈Incomp(η,ρ)

N∑

i=1

1

λi
|xi|2 (A.51)

≥
∑

i∈ψ

1

λi

ρ2

2N
, (A.52)

where the inequality is due to Lemma A.2.1. We observe that to have this expres-

sion sufficiently bounded away from zero, the distribution of 1
λi

should be spread

enough.

Different approaches to quantify the spread of the eigenvalue distribution can

be adopted. One may directly quantify the spread of 1
λi

distribution, for example

by requiring [ 1
λ1
, . . . , 1

λN
]/
∑
i

1
λi

∈ Incomp(η̄, ρ̄), where η̄, ρ̄ are new parameters.
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Since it is more desirable to have explicit constraints on the λi distribution itself

instead of constraints on the distribution of 1
λi

, we consider another approach.

Let us assume that λi < Cλ
P
N

, for i ≥ κ|ψ|, where κ ∈ (0, 1), 0 < Cλ < ∞.

Then we have

inf
x∈Incomp(η,ρ)

||Λ−1/2
x x||2 ≥

∑

i∈ψ

1

λi

ρ2

2N
(A.53)

> (|ψ| − κ|ψ|) 1

CλP

ρ2

2
(A.54)

≥ (1 − κ)0.5ρ2ηN
1

CλP

ρ2

2
(A.55)

= (1 − κ)0.25ρ4η
1

CλP
N (A.56)

=
1

P
C3N (A.57)

where we have used |ψ| ≥ 0.5ρ2ηN . Here C3 = (1 − κ)0.25ρ4η 1
Cλ

.

We will now complete the argument to arrive at P(infx∈SN−1 x†Ax ≤
C N
P

) ≤ e−C1N as claimed in the Lemma we are proving, and then dis-

cuss the effect of different eigenvalue distributions, noise level and M on

this result. Let C = P min( 1
σ2

n
C2,

1
P
C3) = min( P

σ2
n
C2, C3). By (A.47)

and (A.57), P(infx∈Incomp(η,ρ) x
†Ax ≤ C N

P
) = 0. By (A.49), Lemma

A.2.2,P(infx∈Comp(η,ρ) x
†Ax ≤ C N

P
) ≤ e−C1N . The result follows by (A.45).

Up to now, we have not considered the admissibility of C to provide guaran-

tees for low values of error. We note that as observed in Remark A.2.1, and Re-

mark A.2.2, the error bound expression in Theorem 8.3.1 cannot provide bounds

for low values of error when the eigenvalue distribution is spread. Hence while

stating the result of Lemma 8.3.2, hence Theorem 8.3.1, we consider the other

case, the case where the eigenvalue distribution is not spread out, as discussed in

Remark A.2.3.

Remark A.2.1. We note that as C = P min( 1
σ2

n
C2,

1
P
C3) = min( P

σ2
n
C2, C3) gets

larger, the lower bound on the eigenvalues of Λ−1
x + 1

σ2
n
H†H gets larger, and the

bound on the MMSE (see for example (8.39)) gets smaller. To have guarantees

for low values of error for a given M , we want to have have C as large as possible.
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For a given number of measurements M , we have a C2 and associated η, ρ, C1.

For a given P and σ2
n, to have guarantees for error levels as low as this C2, P

and σ2
n permit, we should have P

σ2
n
C2 ≤ C3 so that the overall constant is as good

as the one coming from Lemma A.2.2. We note that to have C3 large, Cλ must

be small.

Remark A.2.2. Let us assume that all the eigenvalues are approximately equal,

i.e. |λi − P
N
| ≤ q̄ P

N
, q̄ ∈ [0, 1] where q̄ is close to 0. We have

inf
x∈Incomp(η,ρ)

||Λ−1/2
x x||2 ≥

∑

i∈ψ

1

1 + q̄

N

P

ρ2

2N
(A.58)

≥ 0.5ρ2ηN
1

1 + q̄

1

P

ρ2

2
(A.59)

=
1

1 + q̄
0.25ρ4ηN

1

P
, (A.60)

Hence C3 = 1
1+q̄

0.25ρ4η > 0. In this case (8.39) will not provide guarantees for

low values of error. In fact, with 3M ≤ N the error may be lower bounded as

follows

E[||x− E[x|y]||2] = tr ((Λ−1
x +

1

σ2
n

H†H)−1) (A.61)

=
N∑

i=1

1

λi(Λ−1
x + 1

σ2H†H)
(A.62)

=
N∑

i=M+1

1

λi(Λ−1
x + 1

σ2H†H)
+

M∑

i=1

1

λi(Λ−1
x + 1

σ2H†H)
(A.63)

≥
N∑

i=M+1

1

λi−M(Λx)
+

M∑

i=1

1

λi(Λ−1
x + 1

σ2H†H)
, (A.64)

=
N∑

i=M+1

λN−i+M+1(Λx) +
M∑

i=1

1

λi(Λ−1
x + 1

σ2H†H)
, (A.65)

=
N∑

i=M+1

λi(Λx) +
M∑

i=1

1

λi(Λ−1
x + 1

σ2H†H)
, (A.66)

≥ (1 − q̄)
N −M

N
P +

M∑

i=1

1

λi(Λ−1
x + 1

σ2H†H)
(A.67)

where in (A.64), we have used case (b) of Lemma 8.3.1 and the fact that H†H is

at most rank M. We note that as q̄ gets closer to 0, the first term gets closer to
N−M
N

P .
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Remark A.2.3. Let D(δ) be the smallest number satisfying
∑D
i=1 λi ≥ δP ,

where δ ∈ (0, 1]. Let D(δ) = αN , α ∈ (0, 1]. Let D(δ) be sufficiently small for

δ sufficiently large, more precisely D(δ) = αN < κ|ψ|, κ ∈ (0, 1), λi < Cλ
P
N

,

for i ≥ κ|ψ| with Cλ = q (1−δ)
(1−α)

, with 1 > q > 0. Hence we have λi < q (1−δ)P
(1−α)N

,

i ≥ καN . We observe that other parametes fixed, as admissible α > 0 gets closer

to 0, or δ > 0 gets close to 1, Cλ gets smaller as desired. We note that the

inequality D(δ) < 0.5κρ2ηN = T together with the inequality M > T ′ = 1
δ0
ηN

relates the spread of the eigenvalues to the admissible number of measurements.

Remark A.2.4. We now discuss the effect of noise level. We note that the total

signal power is given by tr(Kx) = P , whereas each measurement is done with noise

whose variance is σ2
n. We want to have C = P min( 1

σ2
n
C2,

1
P
C3) = min( P

σ2
n
C2, C3)

as large as possible. Let us assume that other parameters of the problem are fixed

and focus on the ratio P
σ2

n
. For constant P , as noise level increases, P

σ2
n

decreases.

After some noise level, the minimum will be given by P
σ2

n
C2. Hence the lower

bound on the eigenvalues of Λ−1
x + 1

σ2
n
H†H will get smaller, and the upper bound

on the MMSE will get larger. Hence Theorem 8.3.1 will not provide guarantees

for low values of error for high levels of noise.

Example: We now study a special case to illustrate the nature of error

bounds this result can provide. We assume that we have the following eigenvalue

distribution structure: λi = δ P
D
, if i ∈ D, and λi = (1 − δ) P

N−D , if i /∈ D, where

δ ≈ 1, for a set of indices D ⊂ {1, . . . , N} with D = |D|. Let us assume that

σ2
H = 1/N . We note that this scaling of the variance of the components of H can

be obtained by a simple scaling of the measurement matrix H . Let ηN = vD,

for v > 1. If M ≥ Cγ̄−2(v D ln(N/(v D))) + ln(ǫ−1)) (for a universal constant

C > 0), then with probability at least 1 − ǫ, we have the following (see for

instance [222, Thm. 2.12])

inf
x∈Sparse(η)

||Hx||2 ≥ (1 − γ̄)
M

N
(A.68)

As in the proof of Lemma A.2.2, this result can be extended to compressible

vectors. In particular, we have the following bound

inf
x∈Comp(η,ρ)

||Hx||2 ≥ (1 − γ)
M

N
(A.69)

243



with probability at least 1 − ǫ − ǫ′. Here γ depends on γ̄, ρ and Cs = 1 +√
M/N + t/

√
N , t ≥ 0 and ǫ′ = 2 exp(−0.5t2). Whether γ > 0 is small enough

is determined by the choice of ρ, and the values of these parameters. Smaller

choices of ρ result in better γ values which come at the expense of larger set of

incompressible vectors to deal with. Here Cs and ǫ′ comes from the upper bound

on the singular values of a M × N random matrix with Gaussian i.i.d entries

given in Corollary 5.35 of [223], which can be stated as follows

P ( sup
x∈SN−1

||Hx|| ≥ Cs) ≤ ǫ′. (A.70)

Suppose that ⌈0.5ρ2vD⌉ > D. Now (A.53) can be expressed as follows

inf
x∈Incomp(η,ρ)

||Λ−1/2
x x||2 ≥(0.5ρ2v − 1)D

1

(1 − δ) P
N−D

0.5ρ2

N
(A.71)

Following the same steps in the general proof, we combine (A.69) and (A.71) to

obtain the following bound on the error

E [||x− E [x|y]||2] ≤ (1 − δ)P + max(Ce(1 − δ)P,
1

1
δ

+ (1 − γ) SNR
P ) (A.72)

which holds with probability at least 1 − ǫ− ǫ′. Here we have used the notation

C−1
e = (0.5ρ2v − 1)0.5ρ2N−D

N
, and SNR = 1

σ2
n

P
D
M
N

. Ce will take small values for

large values of v, that is when one uses significantly less sparse signals (signals

with support size ηN) in the proof than the number of significant eigenvalues

associated with the signal (D) resulting in a higher number of measurements

requirement or guarantees that hold with lower probabilities.

Let us take a closer look at this error bound. The first (1 − δ)P term is

the total power in the insignificant eigenvalues (i.e. λi such that i /∈ D). This

term is an upper bound for the error that would have been introduced if we had

preffered not estimating the random variables corresponding to these insignificant

eigenvalues. Since in our setting we are interested in signals with low degree of

freedom, hence δ close to 1, this term is guaranteed to be small. Let us now look

at the term that will come out of the maximum function. When the noise level is

relatively low, the Ce(1 − δ)P term comes out of the max term. This term may

be interpreted as a scaled version of the upper bound on the error due to the

insignificant eigenvalues acting as noise for estimating of the random variables
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corresponding to the significant eigenvalues (i.e. λi such that i ∈ D). Hence

in the case where the noise level is relatively low, the insignificant eigenvalues

become the dominant source of error in estimation. When the noise level is

relatively high, the second argument comes out of the max term. Hence for high

levels of noise, system noise rather than the insignificant eigenvalues becomes

the dominant source of error in the estimation. We note that this term has the

same form with the error expressions in Section 8.2, where the case that the

insignificant eigenvalues are exactly zero were considered. We observe that there

is again a loss of effective signal-to-noise ratio through a multiplicative factor

appearing in front of SNR, compared to the error expression associated with the

deterministic equidistant scenario of Corollary 8.31.

A.3 Proof of Lemma 8.4.1

The left hand side of the unitary matrix constraint in (8.45) may be rewritten as

eTi (U †
BUB − I|B|)ek

= eTi ((UB,R + jUB,I)
†(UB,R + jUB,I) − I|B|)ek (A.73)

= eTi ((UT
B,R − jUT

B,I)(UB,R + jUB,I) − I|B|)ek (A.74)

= eTi (UT
B,RUB,R + UT

B,IUB,I)ek + jeTi (UT
B,RUB,I − UT

B,IUB,R)ek − eTi I|B|ek.

(A.75)

Hence the constraint becomes

eTi (UT
B,RUB,R + UT

B,IUB,I)ek + jeTi (UT
B,RUB,I − UT

B,IUB,R)ek = eTi I|B|ek. (A.76)

By considering the real and imaginary parts of the equality separately, these

constraints may be expressed as

eTi (UT
B,RUB,R + UT

B,IUB,I)ek = eTi I|B|ek, (i, k) ∈ γ (A.77)

eTi (UT
B,RUB,I − UT

B,IUB,R)ek = 0, (i, k) ∈ γ̄ (A.78)

where γ = {(i, k)|i = 1, . . . , |B|, k = 1, . . . , i}, and γ̄ = {(i, k)|i = 1, . . . , |B|, k =

1, . . . , i− 1}. For the i = k case, we only consider the real part of the constraint

since the imaginary part necessarily vanishes, i.e. eTi (U †
BUB)ei = u†iui ∈ R.
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The set of constraint gradients with respect to



 UB,R

UB,I



 can be expressed as







 UB,R(eie
T
k + eke

T
i )

UB,I(eie
T
k + eke

T
i )



 |(i, k) ∈ γ




⋃






 UB,I(−eieTk + eke
T
i )

UB,R(eie
T
k − eke

T
i )



 |(i, k) ∈ γ̄





(A.79)

where we have used the following identities [224]

d(tr(A1X
TA2)) = d(tr(AT

2XA
T
1 )) (A.80)

= tr(AT
2 dXA

T
1 ) (A.81)

= tr(AT
1A

T
2 dX) (A.82)

and

d(tr(XTA2XA1)) = d(tr(XA1X
TA2)) (A.83)

= tr(dXA1X
TA2 +XA1d(X

T)A2) (A.84)

= tr(A1X
TA2dX + d(XT)A2XA1) (A.85)

= tr(A1X
TA2dX + AT

1X
TAT

2 dX) (A.86)

where X is the matrix variable defined on real numbers and A1 and

A2 are constant real matrices. For instance, with UB,R as the variable

d(tr(eTi (UT
B,RUB,R)ek)) = d(tr(UT

B,RUB,Reke
T
i ) = tr((eie

T
k + eke

T
i )UT

B,RdUB,R) with

A1 = eke
T
i , and A2 = IN .

The linear independence of the elements of this set follows from the following

fact: For any matrix UB ∈ CN×B satisfying U †
BUB = I|B|, the matrix ÛB =

 UB,R −UB,I
UB,I UB,R


 ∈ R2N×2B satisfies ÛT

B ÛB = I2|B| [180]. Hence the columns of

ÛB form an orthonormal set of vectors. We observe that the elements of the

constraint gradient set given in (A.79) are matrices with zero entries except at

kthand ith columns, where at these two (or one if i = k) column(s), we have

columns from ÛB. For instance consider


 UB,R(eie

T
k + eke

T
i )

UB,I(eie
T
k + eke

T
i )


 for some (i, k) ∈

γ, and let i 6= k. This is a matrix of zeros except at kth column we have ith

column of ÛB and at ith column we have kth column of ÛB. Now since ÛB has

orthonormal columns, it is not possible to form the values at kth and ith columns
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using other columns of UB, and hence other elements of the set given in (A.79).

Similar arguments hold for all the other elements of the set in (A.79). Hence

the constraint gradients are linearly independent for any matrix UB ∈ CN×B

satisfying U †
BUB = I|B|.

A.4 A note on the Lagrangian in Section 8.4

We now clarify the form of the Lagrangian in (8.51). We note that here we

are concerned with Lagrangian for optimizing a real valued function of a matrix

variable with complex entries under equality constraints. Let f̃0(ŨB) be the

function to be optimized with complex equality constraints f̃i,k(ŨB) = 0 ∈ C

, (i, k) ∈ γ̄, with |γ̄| = N1 = 0.5|B|(|B| − 1) and the real equality constraints

h̃k(ŨB) = 0 ∈ R, k = 1, . . . , N2 = |B|. The N1 complex equality constraints can

be expressed equivalently as 2N1 real equality constraints ℜ{f̃i,k(ŨB)} = 0 ∈ R,

and ℑ{f̃i,k(ŨB)} = 0 ∈ R for (i, k) ∈ γ̄. Then the Lagrangian can be expressed

as

L̃(ŨB, ν, υ)

= f̃0(ŨB) +
∑

(i,k)∈γ̄
νi,k,Rℜ{f̃i,k(ŨB)} +

∑

(i,k)∈γ̄
νi,k,Iℑ{f̃i,k(ŨB)} +

N2∑

k=1

υkh̃k(ŨB)

(A.87)

= f̃0(ŨB) +
∑

(i,k)∈γ̄
ℜ{νi,k{f̃i,k(ŨB)}} +

N2∑

k=1

υkh̃k(ŨB) (A.88)

= f̃0(ŨB) + 0.5
∑

(i,k)∈γ̄
νi,kf̃i,k(ŨB) + 0.5

∑

(i,k)∈γ̄
ν∗i,kf̃

∗
i,k(ŨB) +

N2∑

k=1

υkh̃k(ŨB) (A.89)

where νi,k ∈ C, with ℜ{νi,k} = νi,k,R, ℑ{νi,k} = νi,k,I , and υk ∈
R are Lagrange multipliers. Now (8.51) is obtained with f̃0(ŨB) =
∑
k pk tr ((Λ−1

x,B + 1
σ2

n
U †
BH

†
kHkUB)−1), f̃i,k(ŨB) = eTi (U †

BUB − I|B|)ek, h̃k(ŨB) =

eTk (U †
BUB − I|B|)ek and absorbing any constants into Lagrange multipliers.
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APPENDIX B

B.1 Proof of Lemma 9.1.1

We first give the definition of maximal correlation coefficient.

Definition B.1.1. For a Gaussian stationary zero-mean source {Xt} the max-

imal correlation coefficient is defined as the following:

ρ(τ) = sup
η, ξ

|E[ηξ]|
(E[|η|2]E[|ξ|2])1/2

. (B.1)

Here the random variables η and ξ are finite variance random variables measurable

with respect to Fk
−∞ and F∞

k+τ , k ∈ Z respectively.

The following result relates the α-mixing coefficient and the maximal correla-

tion coefficient.

Lemma B.1.1. [225] For Gaussian processes, the following holds:

α(τ) ≤ ρ(τ) ≤ 2πα(τ). (B.2)

We note that the correlation function r(τ) and the maximal correlation co-

efficient has the following relation r(τ)
r(0)

≤ ρ(τ). Hence by Lemma B.1.1, we have

r(τ) ≤ 2 π r(0)α(τ). We conclude that when the process is exponentially mixing,

decay of |r(τ)| is also upper-bounded exponentially. This proves the claim of

Lemma 9.1.1 as desired.
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B.2 Proof of Lemma 9.1.3

We note the following

E [||
∞∑

k=N+1

akXt−k||2] = E [ lim
K→∞

(
K∑

k=N+1

akXt−k)(
K∑

l=N+1

alXt−l)] (B.3)

= E [ lim
K→∞

K∑

k=N+1

K∑

l=N+1

akalXt−lXt−k] (B.4)

= lim
K→∞

K∑

k=N+1

K∑

l=N+1

akalE [Xt−lXt−k] (B.5)

=
∞∑

k=N+1

∞∑

l=N+1

akalrk−l (B.6)

We now provide the detailed steps for the justification of the step from (B.4)

to (B.5). The relevant assumptions are the following: Xt’s are Gaussian with

E [Xt] = 0, E [X2
t ] = σ2

x <∞, {ak} ∈ l1.

Let us introduce the following notation

fK =
K∑

k=N+1

K∑

l=N+1

akalXt−lXt−k, (B.7)

hK =
K∑

k=0

K∑

l=0

|ak||al||Xt−lXt−k|, (B.8)

g = lim
K→∞

hK = lim
K→∞

K∑

k=0

K∑

l=0

|ak||al||Xt−lXt−k|. (B.9)

We want to prove that E [limK→∞ fK ] = limK→∞ E [fK ], which can be accom-

plished by making the following observations:

Remark 1: |fK | ≤ g

Remark 2: E [g] <∞
Remark 3: The desired result, i.e. E [limK→∞ fk] = limK→∞ E [fK ] follows by

Remark 1 and Remark 2 and the Dominated Convergence Theorem.

We now prove the important steps in the proof:

Proof of Remark 1:
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|fK | = |
K∑

k=N+1

K∑

l=N+1

akalXt−lXt−k| ≤
K∑

k=N+1

K∑

l=N+1

|akalXt−lXt−k| (B.10)

≤
K∑

k=0

K∑

l=0

|akalXt−lXt−k| (B.11)

≤ lim
K→∞

K∑

k=0

K∑

l=0

|akalXt−lXt−k| (B.12)

Proof of Remark 2: We note that 0 ≤ hK ≤ hK+1. Hence by the Monotone

Convergence Theorem we can write E [limK→∞ hK ] = limK→∞ E [hK ]. Thus we

have the following:

E [g] = lim
K→∞

E [hK ] (B.13)

= lim
K→∞

E [
K∑

k=0

K∑

l=0

|ak||al||Xt−lXt−k|] (B.14)

= lim
K→∞

K∑

k=0

K∑

l=0

|ak||al|E [|Xt−lXt−k|] (B.15)

≤ lim
K→∞

K∑

k=0

K∑

l=0

|ak||al|
√

3σ2
x (B.16)

< ∞ (B.17)

where the last strict inequality follows from the fact that al ∈ l1, and σ2
x < ∞.

Here (B.16) follows from the fact that E [|Xt−lXt−k|] ≤
√

3σ2
x, which can be proven

as follows:

E [|Xt−lXt−k|] = E [
√

(Xt−lXt−k)2] (B.18)

≤
√

E [(Xt−lXt−k)2] (B.19)

≤ 1/4

√
E [X4

t−l]E [X4
t−k] (B.20)

= 1/4

√
3(E [X2

t−l])
23(E [X2

t−k])
2 (B.21)

= 1/4

√
9(σ2

x)
4 (B.22)

=
√

3σ2
x (B.23)

Here (B.19) follows from the Jensen’s Inequality, (B.20) follows from the Cauchy–

Schwarz inequality, (B.21) follows from the recursive identities for higher order
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moments of Gaussian random variables, in particular E [X4
t ] = 3(E [X2

t ])
2, where

E [Xt] = 0.

B.3 Proof of Lemma 9.1.4

We now prove |∑∞
k=N+1

∑∞
l=N+1 akalrk−l| <∞, since rx ∈ l1(Z), and {ak} ∈ l1.

i) Consider a fixed k ∈ N. Then rx ∈ l1 ⇒ {r|k−l|} ∈ l1, ∀k ∈ N since we

have the following:

∞∑

l=0

|r|k−l|| =
k∑

l=0

|rk−l| +
∞∑

l=k+1

|rl−k| ≤
k∑

l=0

|rτ | +
∞∑

l=0

|rτ | <∞ (B.24)

ii) Consider a fixed k ∈ N. Then {al} ∈ l1, {rk−l} ∈ l1 ⇒ {alrk−l} ∈ l1, ∀k ∈ N

since we have the following: {al} ∈ l1 ⇒ |al| ≤ |A| <∞ and

∞∑

l=0

|alrk−l| ≤
∞∑

l=0

|A||rk−l| ≤ |A|
∞∑

l=0

|rk−l| <∞ (B.25)

iii)
∑∞
k=N+1

∑∞
l=N+1 |akalrk−l| <∞ since we have the following:

∞∑

k=N+1

∞∑

l=N+1

|akalrk−l| ≤ (
∞∑

k=N+1

|ak|)(
∞∑

l=N+1

|alrk−l|) (B.26)

≤ (
∞∑

k=N+1

|ak|)(sup
k

∞∑

l=N+1

|alrk−l|) (B.27)

< ∞, (B.28)

where supk
∑∞
l=N+1 |alrk−l| ≤ S <∞. We note that by (ii), there exist an S <∞

not dependent on k. The last line follows from al ∈ l1. �

B.4 Proof of Lemma 9.2.1

Here we will prove that the error expression given in (9.68) has a finite limit. We

first introduce some shorthand notation. Let us express the MMSE associated
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with the estimation of Xt from the observations Yl, l ∈ [0, . . . N − 1] as follows:

εt(0, N − 1) = E [||Xt − E [Xt|Yl, l ∈ [0, . . .N − 1]]||2] (B.29)

Hence the MMSE associated with the estimation of Xt based on the observations

over Z+ can be expressed as the following limit:

ε̄t = lim
N→∞

εt(0, N − 1). (B.30)

We note that εt(0, N−1) is always non-negative, and as N increases, the number

of Yl contributing to estimation does not decrease, hence the error do not increase.

Hence the limit exists by an application of the monotone convergence theorem; a

non-increasing bounded sequence has a finite limit.

For equidistant sampling with sampling interval τ , it is convenient to define

the average error over a period, which can be expressed as follows:

εpl (0, N − 1) =
1

τ

(1+l)τ−1∑

t=lτ

εt(0, N − 1) (B.31)

Hence the average MMSE associated with the estimation of Xt in a period based

on the observations over Z+ can be expressed as the following limit:

ε̄pl = lim
N→∞

εpl (0, N − 1). (B.32)

Thus, the error expression in (9.68) can be expressed as follows:

ε = lim
M→∞

1

M

M−1∑

t=0

lim
N→∞

E [||Xt − E [Xt|Yl, l ∈ [0, . . .N − 1]]||2] (B.33)

= lim
L→∞

1

L

L∑

l=0

1

τ

(1+l)τ−1∑

t=lτ

lim
N→∞

εt(0, N − 1) (B.34)

= lim
L→∞

1

L

L−1∑

l=0

ε̄pl . (B.35)

We note that {ε̄pl }, l ∈ Z+ form a non-increasing sequence, which can be
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proved as follows:

ε̄pl = lim
N→∞

εpl (0, N − 1) (B.36)

= lim
N→∞

εpl+1(τ, τ +N − 1) (B.37)

≥ lim
N→∞

εpt+1(0, τ +N − 1) (B.38)

= lim
N→∞

εpl+1(0, N) (B.39)

= ε̄pl+1 (B.40)

Here (B.37) is due to stationarity, (B.38) is due to the fact that possibly increasing

number of observations cannot increase error, and (B.39) is due to the fact that

we take the limit as N → ∞.

We now consider the following error expression (B.35)

ε = lim
L→∞

1

L

L−1∑

l=0

ε̄pl . (B.41)

As noted above {ε̄pl } is a non-increasing sequence. Hence 1
L

∑L−1
l=0 ε̄

p
t , which is the

average of a non-increasing sequence, is also non-increasing. So the limit above is

guaranteed to exist by monotone convergence theorem. Therefore, the expression

for the error given in (9.68) which is the same as (B.41) is guaranteed to converge.

�

B.5 Theorem 9.2.2 for Sampling on Z

Here we provide the proof of counterpart of Theorem 9.2.2 (which is for a source

on Z+) for a source on Z. We base our proof directly on a model on Z, instead of

taking limits of errors associated with a sequence of finite dimensional models.

Let us first define the equidistant sampling problem on Z. We consider the

problem of estimation of stationary zero mean Gaussian source {Xt, t ∈ Z} from

its equidistant noisy samples {Yt, t ∈ Z}. Let the samples be taken every τ points,

i.e. Yk = Xτk, where k ∈ Z. As before, {Zt, t ∈ Z} is i.i.d. zero-mean Gaussian
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noise with variance 0 < σ2
z <∞. We assume that {Zt}, and {Xt} are statistically

independent.

As before let E [XtXt] = rx(k, t) = rx(k − t), E [XtYk] = Rxy(t, k). We note

that since rx ∈ l1, so is Ry(k) = rx(τk) + Rz(τk). The power spectral density of

{Yk}, fy(θ), θ ∈ [−π, π] can be expressed as follows

fy(θ) =
∑

m

ry(m)e−jθm =
1

τ

τ−1∑

l=0

fx(
θ + 2πl

τ
) + σ2

z , (B.42)

where fz(θ) =
∑
m rz(m)e−jθm = σ2

z .

Lemma B.5.1. Consider the MMSE estimation of {Xt, t ∈ Z} from {Yt, t ∈ Z}
as described above. The estimation error is given by the following expression:

E[ lim
L→∞

1

L

N−1∑

t=0

(Xt − X̂t)
2] = lim

L→∞

1

L

L−1∑

t=0

lim
N→∞

E[||Xt − E[Xt|Yl, l ∈ Γ]||2] (B.43)

=
1

2π

∫ π

−π
(fx(θ) −

1

τ 2

τ−1∑

i=0

(fx(
θ+2πi
τ

))2

1
τ

∑τ−1
l=0 fx(

θ+2πl
τ

) + σ2
z

)dθ

(B.44)

where Γ = {0, . . . , N − 1}

Proof: Let the estimator be expressed as follows

X̂t =
∞∑

k=−∞
htkYk. (B.45)

Here htk is the kth coefficient for estimating the process at time t, that is Xt. The

estimator is found by the orthogonality principle, that is the following condition

E [(Xt −
∞∑

k=−∞
htkYk)Ym] = 0, ∀m ∈ Z (B.46)

The orthogonality principle can be expressed as follows

∞∑

k=−∞
htkry(k −m) = rxy(t,m) = rx(t−mτ). (B.47)

We take the discrete time Fourier transform (DTFT) of both sides with the time
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variable m as follows

∑

m

∑

k

htkry(k −m)e−jθm =
∑

m

rx(t−mτ)e−jθm (B.48)

∑

k

htkfy(θ)e
−jθk =

1

τ
e−j

θ
τ

τ−1∑

i=0

e−j
2π
τ
tifx(

θ + 2πi

τ
) (B.49)

Ht(θ)fy(θ) = fxty(θ). (B.50)

Here we have denoted the DTFT of rx(t−mτ) with variable m as follows fxty(θ) =
∑
m rx(t−mτ)e−jθm.

The error at time t is given by the following expression

et = E [(Xt − X̂t)
2] (B.51)

= E [(Xt −
∑

k

htkYk)
2] (B.52)

= E [(Xt −
∑

k

htkYk)Xt] (B.53)

= E [(Xt −
∑

k

htkXkτ )Xt] (B.54)

= rx(0) −
∑

k

htkrx(kτ − t) (B.55)

where we have used orthogonality principle to obtain (B.53), and the fact that

E [ZtXt] = 0 to obtain (B.54).

The average error can be expressed as follows

lim
L→∞

1

2L+ 1

L∑

t=−L
E [(Xt − X̂t)

2] = lim
L→∞

1

2L+ 1

L∑

t=−L
et (B.56)

= lim
M→∞

1

(2M + 1)τ

M∑

m=−M

(m+1)τ−1∑

t=mτ

et (B.57)

=
1

τ

τ−1∑

t=0

et (B.58)

Substituting the expressions for htk and ryx(k − t) results in the following
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expression

1

τ

τ−1∑

t=0

et =
1

τ

τ−1∑

t=0

(rx(0) −
∞∑

k=∞
htkrx(kτ − t)) (B.59)

=
1

τ

τ−1∑

t=0

(
1

2π

∫ π

−π
fx(θ) −

|fxty(θ)|2
fy(θ)

dθ) (B.60)

=
1

2π

∫ π

−π
(fx(θ) −

1

τ

τ−1∑

t=0

|∑τ−1
i=0

1
τ
e−j

2π
τ
tifx(

θ+2πt
τ

))|2
fy(θ)

)dθ (B.61)

=
1

2π

∫ π

−π
fx(θ) −

1

τ

τ−1∑

t=0

|∑τ−1
i=0

1
τ
e−j

2π
τ
tifx(

θ+2πt
τ

))|2
1
τ

∑τ−1
l=0 fx(

θ+2πl
τ

) + σ2
z

)dθ (B.62)

=
1

2π

∫ π

−π
(fx(θ) −

1

τ 2

τ−1∑

t=0

(fx(
θ+2πt
τ

))2

1
τ

∑τ−1
l=0 fx(

θ+2πl
τ

) + σ2
z

)dθ (B.63)

where in (B.62) we have used the following fact fy(θ) = 1
τ

∑τ−1
l=0 fx(

θ+2πl
τ

) + σ2
z .

(B.63) follows from the following equality

1

τ

τ−1∑

t=0

|
τ−1∑

l=0

1

τ
e−j

2π
τ
tlfx(

θ + 2πl

τ
))|2

=
1

τ 3

τ−1∑

t=0

τ−1∑

k=0

τ−1∑

l=0

e−j
2π
τ
t(k−l)fx(

θ + 2πk

τ
)f †
x(
θ + 2πl

τ
) (B.64)

=
1

τ 3

τ−1∑

k=0

τ−1∑

l=0

fx(
θ + 2πk

τ
)f †
x(
θ + 2πl

τ
)
τ−1∑

t=0

e−j
2π
τ
t(k−l) (B.65)

=
1

τ 2

τ−1∑

k=0

f 2
x(
θ + 2πk

τ
) (B.66)

where in (B.66) we have used the following equality

τ−1∑

t=0

e−i
2π
τ

(k−l)t =






τ, if k − l = 0,

0, if k − l 6= 0.
(B.67)

B.6 Proof of Lemma 9.2.9

Let {Tk} denote the sequence of sampling times defined as follows

Tn = min(k > Tn−1 : Sk = 1), (B.68)
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where T0 = 0. We note that if the sampling times were deterministic, by Markov

property we would have the following relationship

E [Xt|It] = E [Xt|XTn, XTn+1
]. (B.69)

Let p > 0. We make the following important observation: The Markov property

can be extended to the Bernoulli sampling scheme by the strong Markov property:

conditioned on Tn < ∞, and XTn , {XTn+t, t ≥ 0} is again a Markov process.

Hence whenever Tn ≤ t ≤ Tn+1 − 1, we again have the following:

E [Xt|It] = E [Xt|XTn, XTn+1
]. (B.70)

Hence our objective function may be expressed as follows:

ε(p, r) = lim
L→∞

E [
1

L

L∑

t=0

[(Xt − E [Xt|It])2] (B.71)

= lim
L→∞

1

L

L∑

m=0

E [
L∑

t=0

[(Xt − E [Xt|It])2]|ML=m]P (ML=m) (B.72)

= lim
L→∞

1

L

L∑

m=1

E [
L∑

t=0

[(Xt − E [Xt|It])2]|ML=m]P (ML=m) (B.73)

= lim
L→∞

1

L

L∑

m=1

E [
m−1∑

n=0

Tn+1−1∑

t=Tn

E [(Xt − E [Xt|XTn , XTn+1
])2]|ML=m]P (ML=m)

(B.74)

= lim
L→∞

1

L

L∑

m=1

E [m
T1−1∑

t=0

E [(Xt − E [Xt|X0, XT1
])2]|ML=m]P (ML=m)

(B.75)

= lim
L→∞

1

L

L∑

m=1

mP (ML=m)(E [
T1−1∑

t=0

[(Xt − E [Xt|X0, XT1
])2]]) (B.76)

= p E [
T1−1∑

t=0

[(Xt − E [Xt|X0, XT1
])2]], (B.77)

where ML is the random variable denoting the number of measurements done

out of L measurements. Here we have adopted the following convention Tn =

min(L,min(k > Tn−1 : Sk = 1)). The argument is as follows: In (B.72), we

have conditioned on disjoint events. In (B.73) we have changed the limits of

summation, since we have limL→∞
1
L
P (ML = 0) = 0 and error for any Xt, is

uniformly bounded, that is E [(Xt − E [Xt|It, t ∈ Z])2] ≤ σ2
Xt

= 1. To obtain
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(B.74), we have used the strong Markov property. In (B.75), we have used fresh

start property. To obtain (B.77), we have used the fact that the mean of a

binomial random variable with probability of succes p and the number of trials

L is pL.

We now note the following :

= E [
T1−1∑

k=0

[(Xk − E [Xk|X0, XT1
])2]|T1 = t1]

= E [
t1−1∑

k=0

(1 − 1

1 − r2t1
(r2k − 2r2t1 + r(2t1−2k)))|T1 = t1] (B.78)

=
t1−1∑

k=0

(1 − 1

1 − r2t1
(r2k − 2r2t1 + r(2t1−2k))), (B.79)

where we have used rx(t1 − t2) = rx(k) = r|k|, and |r| < 1.

Hence using law of iterated expectations, we can write the following:

E [
T1−1∑

k=0

[(Xk − E [Xk|X0, XT1
])2]] = E [

T1−1∑

k=0

(1 − 1

1 − r2T1
(r2k − 2r2T1 + r(2T1−2k)))]

(B.80)

If r = 0, we note that ε(p, r) = 1 − p. If p = 0, ε(p, r) = 1 − p = 1. Now

assuming |r| > 0, p > 0, the error can be expressed as follows:

ε(p, r) = pE [
T1−1∑

k=0

(1 − 1

1 − r2T1
(r2k − 2r2T1 + r(2T1−2k)))] (B.81)

= p(1/p− 1

1 − r2
+ −2/p + 2E [

T1

1 − r2T1
] +

−1

1 − r−2
) (B.82)

= p(−1/p− 1 + r2

1 − r2
+ 2E [

T1

1 − r2T1
]) (B.83)

= −1 + p− 2p

1 − r2
+ 2pE [

T1

1 − r2T1
] (B.84)

While evaluating these expressions, we have used the following:

E [
T1−1∑

k=0

1] = 1/p (B.85)

E [
T1−1∑

k=0

(
1

1 − r2T1
r2k)] = E [

1

1 − r2T1

1 − r2T1

1 − r2
] =

1

1 − r2
(B.86)
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E [
T1−1∑

k=0

1

1 − r2T1
2r2T1] = E [T1

1

1 − r2T1
2r2T1] (B.87)

= E [2T1(−1 +
1

1 − r2T1
)] (B.88)

= −2/p+ E [2T1(
1

1 − r2T1
)] (B.89)

E [
T1−1∑

k=0

(
1

1 − r2T1
(r(2T1−2k)))] = E [

r2T1

1 − r2T1

T1−1∑

k=0

r−2k] =
−1

1 − r−2
(B.90)

We can express the error more explicitly by rewriting the term with expecta-

tion in (B.84) as follows

ε(p, r) = −1 + p− 2p

1 − r2
+ 2pE [

T1

1 − r2T1
] (B.91)

= −1 + p− 2p

1 − r2
+ 2p

∞∑

t1=1

t1
1 − r2t1

(1 − p)(t1−1)p (B.92)

= −1 + p− 2p

1 − r2
+ 2p2

∞∑

k=0

r2k

(1 − (1 − p)r2k)2
(B.93)

To obtain (B.93), we have used the following

E [
T1

1 − r2T1
] =

∞∑

t1=1

t1
1 − r2t1

(1 − p)(t1−1)p (B.94)

=
∞∑

t1=1

t1(1 − p)(t1−1)p(
∞∑

k=0

r2t1k) (B.95)

= p
∞∑

k=0

r2k
∞∑

t1=1

t1(1 − p)(t1−1)(r2k)(t1−1) (B.96)

= p
∞∑

k=0

r2k

(1 − (1 − p)r2k)2
, (B.97)

where we’ve used the following property

∞∑

t1=1

t1a
(t1−1) =

1

(1 − a)2
. (B.98)

Here a = (1 − p)r2k, |a| < 1. �
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