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ABSTRACT

IMAGE PROCESSING METHODS FOR FOOD

INSPECTION

Onur Yorulmaz

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Enis Çetin

January 2012

With the advances in computer technology, signal processing techniques are

widely applied to many food safety applications. In this thesis, new methods are

developed to solve two food safety problems using image processing techniques.

First problem is the detection of fungal infection on popcorn kernel images. This

is a damage called blue-eye caused by a fungus. A cepstrum based feature ex-

traction method is applied to the kernel images for classification purposes. The

results of this technique are compared with the results of a covariance based

feature extraction method, and previous solutions to the problem. The tests

are made on two different databases; reflectance and transmittance mode image

databases, in which the method of the image acquisition differs. Support Vec-

tor Machine (SVM) is used for image feature classification. It is experimentally

observed that an overall success rate of 96% is possible with the covariance ma-

trix based feature extraction method over transmittance database and 94% is

achieved for the reflectance database.

The second food inspection problem is the detection of acrylamide on cookies

that is generated by cooking at high temperatures. Acrylamide is a neurotoxin
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and there have been various studies on detection of acrylamide during the bak-

ing process. Some of these detection routines include the correlation between

the acrylamide level and the color values of the image of the cookies, resulting

easier detection of acrylamide without the need of complex, expensive and time

consuming chemical tests. Studies on the subject are tested on still images of

the cookies, which are obtained after the cookies are removed from the oven. An

active contour method is developed, that makes it possible to detect the cookies

inside the oven or possibly on a moving tray, from the video captured from a

regular camera. For this purpose, active contour method is modified so that

elliptical shapes are detected in a more efficient manner.

Keywords: Fungal Infections on Popcorn Kernels, Cepstrum Features, Covari-

ance Features, Acrylamide, Active Contour Algorithm, Support Vector Machine
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ÖZET

GIDA İNCELEMESİ İÇİN İMGE İŞLEME YÖNTEMLERİ

Onur Yorulmaz

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Enis Çetin

Ocak 2012

Bilgisayar teknolojilerindeki gelişmelerle birlikte, sinyal işleme teknikleri gıda

güvenliği alanında yaygın bir biçimde kullanılmaya başlanmıştır. Bu tezde,

iki gıda güvenliği problemine imge işleme teknikleri kullanılarak çözüm üretme

amacıyla, yeni yöntemler geliştirilmiştir. Bu problemlerin ilki, patlamış mısır

imgeleri üzerinden bir mantar enfeksiyonunun tespit edilmesidir. Mavi-göz

(blue-eye) adı verilen bu enfeksiyona bir tür küf sebep olmaktadır. Bu en-

feksiyonun sınıflandırılması amacıyla, kepstrum temeline dayanan bir öznitelik

çıkarımı yöntemi mısır tanelerinin imgelerine uygulanmıştır. Bu yöntem ile

alınan sonuçlar daha sonra, kovaryans temeline dayanan bir başka öznitelik

çıkarımı yönteminin sonuçlarıyla ve daha önceki çalışmalarla kıyaslanmıştır.

Testler iki veritabanı üzerinde gerçekleştirilmiştir; yansıtma ve geçirgenlik türü

imge veritabanları, bu iki veri tabanı imgelerin elde edilme tekniğiyle birbirinden

ayrışır. İmgelerin öznitelik sınıflandırması amacıyla, Destek Vektör Makinası

(SVM) kullanılmıştır. Yapılan deneyler göstermektedir ki, kovaryans matrisi

temelli öznitelik çıkarımı yöntemiyle, geçirgenlik veritabanında %96, yansıtma

veri tabanında ise %94 oranında genel tanıma başarısı elde edilebilmektedir.

İkinci gıda incelemesi problemi ise yüksek sıcaklıklardaki pişirime bağlı olarak,

bisküvilerde ortaya çıkan akrilamidin tespit edilmesidir. Akrilamid bir nörotoksin
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olup, pişirim sürecinde akrilamidin tespiti için pek çok çalışma mevcuttur.

Bu tespit yöntemlerinden bir kısmı akrilamid seviyesiyle, bisküvi imgelerindeki

renkler arasında kurulabilen bağlantıdan yola çıkmakta ve bu sayede akril-

amidin karışık, pahalı ve zaman tüketen kimyasal testler olmadan kolayca tespit

edilmesini sağlamaktadır. Ancak bu konudaki çalışmalar, fırından çıkarılmış

bisküvilerin üzerinde test edilmiştir. Bisküvileri fırın içerisinde ve hatta hareketli

fırın tepsisinden alınan video görüntüsü içinde tespit etmek amacıyla, aktif kon-

tur temeline dayanan bir yöntem geliştirilmiştir. Bu amaçla, elips şeklindeki

bölgelerin daha etkili bir şekilde tespit edebilmek için, aktif kontur algoritması

değiştirilmiştir.

Anahtar Kelimeler: Mısır Tanelerindeki Mantar Enfeksiyonu, Kepstrum

Öznitelikler, Kovaryans Öznitelikler, Akrilamid, Aktif Kontur Algoritması,

Destek Vektör Makinası
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Chapter 1

Introduction

Every year, millions of people experience serious and sometimes fatal health

problems following consumption of unsafe or contaminated food. The contami-

nation may involve foodborne disease or chemical hazards. Furthermore, billions

of dollars are lost annually in the food industry to insect damage and inefficient

production and inspection processes. The goal of this thesis is to introduce image

processing techniques and provide solutions to some of the challenges that arise in

food inspection. The traditional food-inspection techniques which rely on sample

collection and subsequent offline analysis in a laboratory are slow in inspection

and thus inefficient. However, with the advances in computers, newer approaches

that use nondestructive methods to measure various quality parameters of food

products in real time can be implemented.

In this thesis, two different cases of food inspection problems are investigated.

The first problem is the detection of fungal damaged popcorn kernels that are

hard to separate considering the sizes and the amounts of the kernels. All grain

kernels are vulnerable to fungal infection, if not dried quickly before loading into

a storage bin. Popcorn poses a particularly difficult problem in that the drying

rate must not be too fast and the level of kernel moisture not reduced too much
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or the kernels will not pop. Thus, popcorn processors have the difficult task of

balancing the drying rate of incoming popcorn with the risk of inadequate drying

and possible fungal infection. One type of prevalent fungus that infests popcorn

at harvest time is the Penicillium fungi which causes a dark blue blemish on the

germ of popcorn commonly referred to as “blue-eye” damage [2]. While this type

of infection is not a health risk, it does produce very strong off flavors, causing

consumers to reject the popcorn. Given the difficulty of balancing drying rate

while maximizing the number of kernels that will pop, a certain percentage of

blue-eye damaged popcorn kernels are inevitable every year. The blemish caused

by the fungal infection is small and currently no automated sorting machinery

can detect it. Thus, new methods for detecting and removing this type of defect is

needed by the popcorn industry. It is possible to detect popcorn kernels infested

by the fungi using image processing.

In this thesis, for the purpose of detection of fungus in popcorn kernels, two

different methods are developed and compared to each other. The first method

is based on two dimensional (2D) cepstrum. Cepstrum based methods are used

in order to match images which are scaled versions of each other [3]. Addition-

ally a non-uniform grid is used to reduce the total number of cepstral features

and weights are applied to emphasize the important frequency components. It

is observed that the method is effective for the detection of fungus. Fungus de-

tection results of the cepstrum method is then compared with the results of the

covariance based method which extracts features from groups of pixels of given

image. A property vector is built from the intensity values, color values, first and

second derivative values of intensity and color values, and the coordinate values.

The covariance matrix of these property vectors is also found to be distinctive

and is used to detect the existence of the fungus in popcorn kernels.

The second problem that is investigated is the detection of acrylamide level in

cookies. Food inspection for acrylamide detection involves the detection of this
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well-known neurotoxin in cookies using image processing. Acrylamide is classi-

fied as a probable human carcinogen by the International Agency for Research

on Cancer (IARC). In 2002, Swedish researchers [4] found that potato chips

and French fries contain levels of acrylamide that are hundreds of times higher

than those considered safe for drinking water by the Environmental Protection

Agency (EPA) and the World Health Organization (WHO). Currently, chemical

methods are used to estimate acrylamide levels in baked or fried foods. These

methods usually entail extraction of acrylamide from food and purification of

the extract prior to analysis by liquid chromatography or gas chromatography

coupled with mass spectrometry. The associated analytical systems are very ex-

pensive and not common in food inspection laboratories. On the other hand,

chemical reactions on the surface of foods are responsible for the formation of

color and acrylamide, giving them an opportunity to correlate with each other. A

simple color-measurement device measuring CIE Lab parameters cannot be used

to estimate meaningful parameters for acrylamide levels in a given food item

because the color is not homogeneously distributed over the surface of the food

item. Fortunately, the image of a food item can be analyzed in real time, and

meaningful features correlated with the acrylamide level can be estimated from

the image of the food item. After the cooking process, bright yellow, brown-

ish yellow, and dark brown regions are clearly visible in cookie images. It is

experimentally observed a high correlation between the normalized acrylamide

level and the normalized ratio of brownish yellow regions to the total area in

a cookie. This observation indicates that, by installing cameras in production

lines, and analyzing cookie images in real time, one can detect and remove cook-

ies with brownish yellow regions from a production line, significantly reducing

the acrylamide levels that people consume.

The rest of the thesis is organized as follows. In Chapter 2, fungus detection

problem in popcorn kernel images is investigated with cepstrum and covariance

based methods. The procedure, classifiers, dataset and simulation results are
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given in the same chapter. In Chapter 3, a cookie detection algorithm in video

frames of a production line is developed. After detecting the cookie, it is possible

to check its color to reject it or accept it. This will help reduce the average

acrylamide level of a production line. Conclusions are made and contributions

are stated in the last chapter.
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Chapter 2

Fungus Detection in Popcorn

Kernel Images

The drying of grain kernels is an important issue in agriculture that requires

precise timing. Grain kernels that are not dried properly may become infected

by fungi, thereby greatly reducing the economic value of the product. In popcorn

kernels, one of these problematic infections is called blue-eye damage and is

caused by fungi from the Penicillium genus. Fungi can spread over the kernels

after harvesting if they are not dried rapidly enough. However, popcorn cannot

be dried rapidly with the use of high heat because it may crack and be unable to

pop. If a balance between the time until storage and the time for proper drying is

not achieved successfully, kernels may still be wet when they are sent for binning,

thereby creating a favorable environment for fungal infections to spread. Blue-

eye damage changes the taste of popped kernels and causes consumers to reject

them, reducing the consumption of popcorn and resulting in economic losses

for the popcorn industry. Although damaged kernels do not occur with high

frequency, only a few infected kernels are required for consumers to stop buying

popcorn.

5



Figure 2.1: Images of blue-eye-damaged (left) and undamaged (right) popcorn
kernels.

Blue-eye-infected popcorn kernels have a small blue blemish on the kernels

at the center of the germ. This blemish makes it possible to approximate the

location of the infection and to detect infected kernels from images taken by

regular color cameras. Figure 2.1 shows images of undamaged and damaged

popcorn kernels that were obtained with a Canon Powershot G11 digital camera.

There have been various studies on the subject of separating blue-eye-

damaged and undamaged kernels. Pearson developed a machine to detect

the damaged kernels as they slide down a chute [2]. Three cameras located

around the perimeter of the kernel simultaneously obtained images while a Field-

Programmable Gate Array (FPGA) processed each image in real time. The array

looked for rows in the image matrix in which the intensity values were greater at

the borders of the germ and lower in the middle of the germ. The detection of

this valley-like shape in image intensity values along a line of the image was used

to confirm the existence of blue-eye damage. In this approach, the red channels

of the images of the kernels were used, because the kernels are red-yellow, and

the damage is more visible in this channel. However, the accuracy of this system,

74 % for the blue-eye damaged popcorn, was not adequate for the system to be

useful for the popcorn industry.
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The rest of the chapter is organized as follows. In Section 2.1, related work on

fungus detection in popcorn images are presented. In Section 2.2, the cepstrum-

based method that is developed is presented with details. Covariance-based fea-

ture extraction methods that are applied to popcorn damage detection problem

are presented in Section 2.3. The image acquisition steps for building the train-

ing and test databases are detailed in Section 2.4. SVM classification method

that is used in this thesis is reviewed in Section 2.5, and experimental results are

presented in Section 2.6.

2.1 Related Work on Fungus Detection in Pop-

corn Kernels

In this part of the thesis, the blue-eye damaged popcorn kernel detection prob-

lem is investigated through various image processing techniques. Two different

feature extraction methods are developed and applied to the popcorn kernel

images. The methods that are experimented are based on the cepstrum and co-

variance features. In Section 2.1.1, the cepstrum method is introduced and the

improvement made on this thesis is presented briefly which is explained in detail

in Section 2.2. In Section 2.1.2, covariance based methods are presented that

will be used in Section 2.3.

2.1.1 2D Cepstrum Analysis

Mel-cepstral analysis is a major tool for sound processing including important

speech applications such as speech recognition and speaker identification [5],

[6]. The two dimensional (2D) extension of the analysis method is also applied

to images to detect shadows, remove echoes and establish automatic intensity
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control [5], [7], and [8]. Recently the 2D cepstral analysis was applied to image

feature extraction for face recognition [9] and man made object classification [10].

The 2D mel-ceptrum is defined as the 2D inverse Fourier transform of the

logarithm of the magnitudes of 2D Fourier transform of an image. Cepstral

analysis is useful when comparing two similar signals in which one of them is a

scaled version of the other one. This is achieved through the logarithm operation.

As it is based on the magnitude of the Fourier transform, mel-cepstrum is

shift invariant. If a given image is translated version of another, only the phase

of the Fourier coefficients change. Therefore two images can be compared to each

other using only the Fourier transform magnitude based mel-cepstrum.

The Mellin-ceptrum is similar to the mel-cepstrum method, where the differ-

ence is that a log-polar conversion is applied to the logarithm of the magnitudes

of the Fourier coefficients to provide rotational invariance. In log-polar conver-

sion, the magnitude values which are represented in Cartesian coordinate indexes

are converted to polar coordinate system representation. As a result of this con-

version, rotational differences become shift differences. Shift differences can be

taken out by Inverse Discrete Fourier Transform (IDFT) that is followed by an

absolute value operation so that the Mellin-cepstrum of an image becomes rota-

tion invariant.

In [10], a grid technique is introduced to reduce the number of total features

in the classification phase. A grid is a set of bins with different sizes covering the

matrix of Fourier transform coefficients. By averaging the Fourier coefficients in

bins, it is possible to reduce the number of feature parameters representing a

given image. In [10] this combination is achieved through power averaging.

As a part of this thesis, popcorn kernel images are represented in mel– and

Mellin-cepstral domain. The details of the implementation procedure is given in

Section 2.2.
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2.1.2 Covariance Features

Covariance features are proposed and used for object detection by Tuzel et al.

[11]. In [12] and [13], covariance features are applied to synthetic aperture radar

(SAR) images for object detection purposes. Covariance features are introduced

as a general solution to object detection problems in [11]. Seven image-intensity-

based parameters were extracted from the pixels in image frames, and their

covariance matrix was used as a feature matrix to represent an image or an

image region. The distance between two covariance matrices was computed using

generalized eigenvalues in [11]. However, this operation is computationally costly.

To adapt the algorithm to real-time processing, the upper diagonal elements of

the covariance matrix are used as features [12], [14].

In [11] the covariance feature extraction methods are applied to object detec-

tion in videos. [15] used this method for image texture classification and forest

fire smoke detection in videos. Damaged popcorn kernels have an image texture

that is different from that of undamaged kernels; therefore, it is proposed that

a texture classification method can be used to distinguish damaged kernels from

undamaged kernels. The first step is to calculate the property vector of each pixel

in the image. Next, the covariance matrix of all property vectors is obtained to

represent an image or an image region. Typically, the property vector Θi,j of the

(i, j)’th pixel is composed of gray-scale intensity values or color-based properties

and their first and second derivatives. After the property vectors are computed,

the covariance matrix of an image is estimated by the following operation:

Σ̂ =
1

N − 1

∑
i

∑
j

(Θi,j −Θ)(Θi,j −Θ)T (2.1)

where, Σ̂ is the estimated covariance matrix; N is the number of pixels in the

region; Θi,j is the property vector of the pixel located at coordinates i and j; and

Θ is the mean of Θi,j in the given image region, which is calculated as follows:

Θ =
1

N

∑
i

∑
j

Θi,j, (2.2)
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The property vectors are defined to include various properties of the pix-

els. These properties may be based on intensity and color values, first and

second derivatives of intensity or color values and the coordinate information.

The property vector elements used in this thesis will be detailed in Section 2.3.

The covariance feature extraction from the covariance matrices of these property

vectors will also be introduced in the same section.

2.2 2D Cepstrum Based Methods

In this section, popcorn kernel images are represented in 2D mel- and Mellin-

cepstral domain. The 2D extension of the cepstral analysis is defined as follows:

x̃(p, q) = F−1
2 (log(|X(u, v)|2)) (2.3)

where p and q are the 2D cepstrum domain coordinates, F−1
2 denotes the inverse

2D Fourier transform, and X(u, v) denotes the Fourier transform coefficient of

a given signal x at frequency locations given by u and v. In practice the Fast

Fourier Transform (FFT) is used to calculate the Fourier transform of a signal

while the Inverse Fast Fourier Transform (IFFT) is used to calculate the inverse

Fourier transform.

As an extension of 2D cepstral analysis method, the mel-cepstrum method

applies grids to the Fourier transform of the signal and sums the energies of

Fourier transform components within grid cells before computing the logarithm

[9]. The goal of this is to reduce the size of the data and to emphasize some

frequency bands. In the mel-cepstrum method, there is also a weighting process

that emphasizes the important frequency values and reduces the contribution of

the noise to the final decision. Eight different grids are designed and studied

for best grid selection. The weights are also selected to increase the higher

frequency components’ contribution. The DC value was multiplied by a small

weight value where other high frequency grid cell energies are multiplied by
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(a) (b)

Figure 2.2: (a) A sample grid and (b) its corresponding sample weight.

Figure 2.3: The process of applying a grid to the 2D Fourier transform coefficients
of a given image.

relatively larger numbers. A sample grid and corresponding weight matrix are

shown in Figure 2.2.

In each grid cell the Fourier transform magnitudes are summed as follows;

g(m,n) =
1

size(B(m,n))

∑
u,v∈B(m,n)

|X(u, v)| (2.4)

where g(m,n) is the value of the grid in coordinate locations m and n, and

B(m,n) denotes the (m,n)-th grid bin. The size(B(m,n)) gives the total number

of frequency components that are in the bin B(m,n). Thus, the procedure of grid

usage on the Fourier transform of an image can be illustrated as in Figure 2.3.

After finding the grid values, the cepstral feature parameters are calculated

as follows:

x̃(p, q) = F−1
2 (log(|g(m,n)|)) (2.5)

Thus, the mel-cepstrum procedure is summarized in six steps:
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• 2D Fourier transform of the given NxN image matrices are taken. Here N

is selected to be a power of 2 such that N=2k where k is an integer. The

images are padded with zeros before Fourier transform so that the width

and height values are increased to N.

• The absolute value of the Fourier coefficients are taken to apply grids. The

grid bins are placed so that each frequency component resides inside a

certain bin according to the grid implementation.

• The grid features are taken by averaging. In this part of the procedure,

the average of the elements of each bin are calculated. Then the averages

are taken to be single features to be used in the process. While taking the

features, their locations in the grid are also untouched, so that an MxM

grid features matrix is calculated.

• Each component of the grid features matrix is multiplied by a coefficient

taken from designed weights matrix. 5. Logarithm of the grid features are

taken to make use of the cepstral analysis method.

• The inverse 2D Fourier transform is taken to find the final mel-cepstrum

features.

After taking the absolute values of 2D Fourier coefficients, the procedure

becomes translation invariant, however, it is still sensitive to rotational transfor-

mations. The rotational invariance is achieved in another method called Mellin-

cepstrum that is an extension of the mel-cepstrum. In Mellin-cepstrum, after the

application of grid process, a log-polar conversion is applied to achieve rotational

invariance. The log polar conversion is defined as;

p(r, θ) = g(er cos(θ), er sin(θ)), (2.6)

where g(m,n) is the calculated average power of the Fourier transform inside

the bin at coordinates m and n: the grid value, p is the frequency coefficient

12



representation in polar coordinates and r and θ are the parameters of polar

coordinate system. Here the parameters of the grid coefficient matrix may be

non-integer values. This problem can be solved by finding the approximation of

the values in those points through interpolation. The points in polar space that

correspond to the outside of the Fourier matrix can be taken as zero.

The log-polar procedure is also given as follows:

• 2D Fourier transform of the given NxN image matrices are taken. Here N

is selected to be a power of 2 such that N=2k where k is an integer. The

images are padded with zeros before Fourier transform so that the width

and height values are increased to N.

• Logarithm of the absolute value of the Fourier coefficients are taken to

make use of the cepstral analysis method.

• Grids are applied to resulting features. The grid bins are placed so that

each frequency component resides inside a certain bin according to the grid

implementation.

• The grid features are taken by averaging. In this part of the procedure,

the average of the elements of each bin are calculated. Then the averages

are taken to be single features to be used in the process. While taking the

features, their locations in the grid are also untouched, so that an MxM

grid features matrix is calculated.

• Each component of the grid features matrix is multiplied by a coefficient

taken from designed weights matrix.

• Log-polar transformation is applied to make the classification method ro-

tation invariant.

• The inverse 2D Fourier transform is taken.

13



• To remove imaginary parts in coefficients, absolute values of the resulting

coefficients are taken.

2.3 Covariance Based Methods

In this section, popcorn kernel images are represented by covariance and corre-

lation matrix based features. For this purpose, various property vectors were

tested and the classification performances of different combinations of properties

were compared. The gray-scale intensity values may not contribute significantly

to the popcorn classification results. However, the property values from separate

color channels may improve the recognition rates. As was performed by Tuzel

et al. [11], the color and gray-scale intensity-based properties were combined to

build property vectors and were shown to give superior classification results in

some applications.

In addition to the red- and blue-channel pixel values, the contributions of

the first and second derivative values in the vertical and horizontal directions

were tested by including them in the property vectors. The pixel locations were

included and excluded in vector definitions to test their contributions to the

results. The eight property vectors that were tested are given in Eqs. (2.7)-

(2.14) as follows:

Θi,j =

[
R(i, j),

∣∣∣∣∂R(i, j)

∂x

∣∣∣∣ , ∣∣∣∣∂R(i, j)

∂y

∣∣∣∣ , ∣∣∣∣∂2R(i, j)

∂x2

∣∣∣∣ , ∣∣∣∣∂2R(i, j)

∂y2

∣∣∣∣]T (2.7)

Θi,j =

[
R(i, j),

∣∣∣∣∂B(i, j)

∂x

∣∣∣∣ , ∣∣∣∣∂B(i, j)

∂y

∣∣∣∣ , ∣∣∣∣∂2B(i, j)

∂x2

∣∣∣∣ , ∣∣∣∣∂2B(i, j)

∂y2

∣∣∣∣]T (2.8)

Θi,j =

[
R(i, j), B(i, j),

∣∣∣∣∂R(i, j)

∂x

∣∣∣∣ , ∣∣∣∣∂R(i, j)

∂y

∣∣∣∣ , ∣∣∣∣∂2R(i, j)

∂x2

∣∣∣∣ , ∣∣∣∣∂2R(i, j)

∂y2

∣∣∣∣]T (2.9)

Θi,j =

[
R(i, j), B(i, j),

∣∣∣∣∂B(i, j)

∂x

∣∣∣∣ , ∣∣∣∣∂B(i, j)

∂y

∣∣∣∣ , ∣∣∣∣∂2B(i, j)

∂x2

∣∣∣∣ , ∣∣∣∣∂2B(i, j)

∂y2

∣∣∣∣]T (2.10)
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Θi,j =

[
i, j, R(i, j),

∣∣∣∣∂R(i, j)

∂x

∣∣∣∣ , ∣∣∣∣∂R(i, j)

∂y

∣∣∣∣ , ∣∣∣∣∂2R(i, j)

∂x2

∣∣∣∣ , ∣∣∣∣∂2R(i, j)

∂y2

∣∣∣∣]T (2.11)

Θi,j =

[
i, j, R(i, j),

∣∣∣∣∂B(i, j)

∂x

∣∣∣∣ , ∣∣∣∣∂B(i, j)

∂y

∣∣∣∣ , ∣∣∣∣∂2B(i, j)

∂x2

∣∣∣∣ , ∣∣∣∣∂2B(i, j)

∂y2

∣∣∣∣]T (2.12)

Θi,j =

[
i, j, R(i, j), B(i, j),

∣∣∣∣∂R(i, j)

∂x

∣∣∣∣ , ∣∣∣∣∂R(i, j)

∂y

∣∣∣∣ , ∣∣∣∣∂2R(i, j)

∂x2

∣∣∣∣ , ∣∣∣∣∂2R(i, j)

∂y2

∣∣∣∣]T
(2.13)

and

Θi,j =

[
i, j, R(i, j), B(i, j),

∣∣∣∣∂B(i, j)

∂x

∣∣∣∣ , ∣∣∣∣∂B(i, j)

∂y

∣∣∣∣ , ∣∣∣∣∂2B(i, j)

∂x2

∣∣∣∣ , ∣∣∣∣∂2B(i, j)

∂y2

∣∣∣∣]T
(2.14)

where R(i, j) and B(i, j) are, respectively, the red- and blue-channel color values

of the pixel located at coordinates i and j. The first and second derivatives of the

red- and blue-channel values are calculated by convolution with the [−1, 0, 1] and

[1,−2, 1] filters, respectively; i.e., the image is horizontally (vertically) convolved

with the [−1, 0, 1] vector to compute the horizontal (vertical) derivative. The

resulting covariance matrices has sizes of 5 × 5 for Eqs. (2.7) and (2.8), 6 × 6

for Eqs. (2.9) and (2.10), 7 × 7 for Eqs. (2.11) and (2.12), and 8 × 8 for Eqs.

(2.13) and (2.14), respectively. Coordinate values are also included in the feature

vectors (2.11), (2.12), (2.13) and (2.14) because the blue-eye damage is usually

located at the center of the popcorn kernel image. As a result, index-sensitive

covariance parameters can be obtained from the feature matrix. Feature vectors

(2.7) - (2.10) produced location-invariant feature matrices.

The covariance matrices of the image and video regions in either 2D or 3-

dimensional spaces can be used as representative features of an object, and they

can be compared for classification purposes. As stated in [11], covariance features

do not lie in Euclidean space, and, therefore, the distances between covariance

matrices cannot be calculated as if they are in Euclidean space. To overcome

this problem, [16] developed a method based on generalized eigenvalues and

used it to measure the similarity of matrices in [11]. However, this operation was

computationally costly, and because real-time applications require computational
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(a) (b) (c) (d)

Figure 2.4: Illustration of the entry selection from covariance matrices. Entries
extracted from covariance matrices are shown as black dots: Eqs. (2.7), (2.8);
Eqs. (2.9), (2.10); Eqs. (2.11), (2.12) and Eqs. (2.13), (2.14) produce the
matrices shown in (a), (b), (c) and (d) respectively.

efficiency, the elements of the covariance matrices were calculated as if they were

feature values in Euclidean space [14].

In [14], an SVM [17] was used as the classifier. The presence of the five ele-

ments in the property vectors that were defined in Eqs. (2.7) and (2.8) results

in 5 × 5 = 25 features in the covariance matrix. Similarly, covariance matrices

constructed from the property vectors in Eqs. (2.9) and (2.10) has 36 features;

Eqs. (2.11) and (2.12) produce 49 features, and Eqs. (2.13) and (2.14) produce

a total of 64 features. However, because the covariance matrices are symmetrical

with respect to their diagonal elements, only the upper or lower diagonal ele-

ments were included in the classification process. The elements of the covariance

matrices corresponding to the covariance values of xy, xx and yy (at locations

(1, 1), (1, 2) or (2, 1), and (2, 2), respectively) were omitted from the covariance

matrices that were calculated by Eqs. (2.11)–(2.14) because those values do not

provide any relevant information about the distributions of intensities. Figure 2.4

illustrates the entry selection process from covariance matrices that is computed

using Eqs. (2.7)–(2.14).

In addition to the covariance matrix features, correlation coefficient descrip-

tors that were defined in [18] were also applied to the classification problem.

Correlation coefficient-based features were obtained by normalizing the covari-

ance parameters from Eqs. (2.7)–(2.14) that were calculated from image pixel
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values. The correlation coefficient C(a, b) of the (a, b)-th entry of the correlation

coefficient matrix was calculated as follows:

C(a, b) =


√
Σ(a, b) , a = b√

Σ(a,b)√
Σ(a,a)

√
Σ(b,b)

, otherwise
, (2.15)

where Σ(a, b) is the (a, b)th entry of the covariance matrix Σ̂:

Σ(a, b) =
1

N − 1

∑
i

∑
j

Θi,j(a)Θi,j(b)− cN(a, b), (2.16)

where Θi,j(a) is the property value located in the ath index of the property vector

of the pixel with the coordinate values i and j, and

cN(a, b) =
1

N

(∑
i

∑
j

Θi,j(a)

)(∑
i

∑
j

Θi,j(b)

)
. (2.17)

2.4 Image Acquisition and Pre-processing

The datasets that are used with cepstrum- and covariance-based features are ob-

tained using a document scanner (Expression 1680, Epson America, Long Beach,

CA). There are two different types of popcorn images in these datasets: the first

set includes reflectance mode images, and the second set includes transmittance

mode images. Reflectance images are similar to regular camera images. In this

mode, the light reflected from the kernels is captured. In the transmittance

mode, the light that passes through the popcorn kernels is captured. In many

kernels, blue-eye damage is more visible in transmittance-mode images than in

reflectance-mode images. Examples of transmittance-mode and reflectance-mode

images are shown in Figure 2.5.
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(a) (b)

Figure 2.5: (a) Damaged (left) and undamaged (right) popcorn kernel images
acquired in the reflectance mode. (b) Damaged (left) and undamaged (right)
kernel images that were obtained in the transmittance mode.

2.4.1 Kernel Image Extraction

The dataset that is used in this thesis includes various popcorn kernels from

previous harvest years. This provides further robustness to the algorithms toward

the changes relative to the year of harvest and the seed variety. This dataset

contains 398 healthy and 510 damaged kernels. The kernels are grouped and

kernel images are acquired through a document scanner with a resolution of

4780× 2950. Example images of transmittance and reflectance modes are shown

in Figures 2.6 and 2.7, respectively. After this step, in order to extract the images

of single kernels, a Matlab program processed on the red channel of the image.

Using this program, a threshold is applied to red channel and connected pixels

that exceeds this threshold are selected as single kernels for reflectance mode.

For transmittance mode, pixels that are less than this threshold are selected to

be the kernel pixels. For transmittance and reflectance images, these threshold

values are selected accordingly. As a result images of single kernels are achieved

and the examples are shown in Figure 2.5.

As can be seen in Figure 2.5, the background is included in a typical popcorn

kernel image because the image data was obtained in a rectangular manner. To

reduce the effects of the background pixel intensities, the approximate location of

possible blue-eye damage was cropped from each popcorn image. This operation
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Figure 2.6: Output image of the document scanner for transmittance mode.

Figure 2.7: Output image of the document scanner for reflectance mode.
8
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(a) (b)

Figure 2.8: The cropping operation was performed in proportion to the size of
each kernel image.

was performed in proportion to the size of the kernel image. Because blue-eye

damage is mostly located in the upper part of a popcorn kernel, the left and

right margins were set to be 20% of the original image width, whereas the top

margin was set to 25% of the image height, and the bottom margin was set at

50% of the image height, as shown in Figure 2.8. Using this approach, a small

rectangular region of each image was extracted.

As a result of this kernel image extraction and the cropping process, images

of different sizes and shapes were obtained. Typically, the cropped sizes of ker-

nel images were 100 by 70 pixels. At this point, kernel images are customized

according to the kernel image detection algorithm. Such as, the images are ex-

tended to 256 by 256 pixels for cepstral feature extraction methods, in order to

make use of the FFT algorithm. Since extending the images by adding zeros

would cause high frequency values on the borders, the last rows and the last

columns are copied and so the images are stretched from the borders. Because

the covariance and correlation features do not depend on the number of pixels,

images need not be the same size and thus they are not extended for covariance

feature extraction.

2.4.2 Image Orientation Correction

Kernels are oriented manually on the document scanner such that the tips of the

germ were on the upper side of the image for the construction of the dataset of
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(a) (b)

Figure 2.9: (a) The thresholded image of a popcorn kernel and (b) the boundary
of the kernel obtained from the filtered image. The center of the mass is marked
with a (+) sign in both images

this thesis. However, in real-time sorting applications, popcorn kernels may have

different orientations. Therefore, the direction detection algorithm presented by

[19] was implemented to detect the tip of the kernel. This algorithm is based

on estimating the contour of the kernel and determining the tip of the popcorn

using the derivative of the contour.

The steps of this algorithm consisted of thresholding the kernel images from

the background and determining the boundaries of the popcorn kernels; the

center of the mass for the popcorn bodies was estimated using the thresholded

kernel images, as shown in Figure 2.9.

In order to detect the edges of the kernel, the thresholded image was high

pass filtered using the filter with 2D weights that are given as follows:

hHP [m,n] =


−0.0625 −0.125 −0.0625

−0.125 0.75 −0.125

−0.0625 −0.125 −0.0625

 (2.18)

Filtering produces the image shown in Figure 2.9 (b). In Figure 2.9 (b), the

absolute value of the filter output is shown. At this stage, the boundary pixels of
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(a) (b)

Figure 2.10: (a) The distance from the center of the mass of popcorn to its
boundary with respect to angle (Radians) and (b) the derivative of the function
in (a)

the kernel were clearly visible, and detecting these pixels was straightforward. A

1-dimensional distance function representing the distance between the boundary

pixels from the center of the mass of the kernel was calculated, as shown in

Figure 2.10 (a). In this distance function, the 360o angular range around the

kernel was covered in 64 steps. In almost all kernel images, the tip of the kernel

corresponded to the maximum of this function. The tip of the popcorn kernel

should also correspond to the highest curvature. The function in Figure 2.10 (a)

was processed using the high pass filter with the impulse response of Eq. 2.19 to

determine the angle with the highest curvature.

As shown in Figure 2.10 (b), the maximum value had the highest derivative.

Because the direction of the tip is known, the image of the popcorn was rotated

so that the tip pointed to the top of the image before extracting the germ portion

of the image.

gHP [n] = [−1, 0, 0, 2, 0, 0,−1]; (2.19)
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2.5 Classification Method

For both the covariance and correlation methods, the classification of kernels as

blue-eye damaged or non-damaged was achieved through an SVM, and the results

were compared with those obtained using the mel-cepstrum-based method. The

SVM is a supervised classification technique that was developed by Vladimir

Vapnik [17]. The algorithm was implemented as a Matlab library in [20] and

was also used for this study. The SVM algorithm projects the points in a space

into higher-dimensional spaces in which a superior differentiation between classes

can be achieved using the Radial Basis Function (RBF) Gaussian kernel. Next,

the algorithm finds vectors from the higher-dimensional space that are on the

borders of class clouds called support vectors and, using these vectors, classifies

the remaining samples. For this work, the RBF kernel of the SVM algorithm

was applied.

As it is a supervised classification method, an SVM must be trained using

previously labeled data. For this work, the datasets for training and testing the

SVM were randomly divided into subsets of equal size, and the SVM was trained

and tested accordingly.

2.6 Experimental Results

Cepstrum and covariance based features are experimented on the databases that

are introduced in Section 2.4. While testing the images with the cepstral features,

three intensity based features are added to the feature vector that is acquired from

the cepstral features. These additional features includes, the mean of the pixel

intensity values in red channel, the difference between mean and the minimum

of the intensity values and the number of pixels with intensity values less than

a given threshold i. The value i is determined by a Matlab program that finds
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the best i to maximize the detection rate. The second parameter related to the

minimum intensity value is ignored in the tests with reflectance images since it

reduced success rates because of the dark background. The overall success was

also calculated by weighting the results according to the number of test images of

two different kernel classes. The non-uniform grid properties are given in Table

2.1.

Table 2.1: The sizes of grids and the number of resulting features without the
addition of intensity based feature.

Grid Name Size of Grid Number of Resulting Features

Non–Uniform Grid 1 11x11 66
Non–Uniform Grid 2 17x17 153
Non–Uniform Grid 4 21x21 231
Non–Uniform Grid 4 25x25 325
Non–Uniform Grid 5 29x29 435
Non–Uniform Grid 6 35x35 630
Non–Uniform Grid 7 39x39 780
Non–Uniform Grid 8 49x49 1225

From the results of the tests, two different tables are obtained for cepstral fea-

tures. Table 2.2 illustrates the success rates of Mellin–cepstral features for both

transmittance and reflectance mode popcorn kernel images. Table 2.3 illustrates

the success of mel–cepstral features.

Table 2.2: Healthy, damaged and overall recognition rates of Mellin–cepstrum
based classification method on transmittance and reflectance mode popcorn ker-
nel images.

Reflectance Success Rate (%) Transmittance Success Rate (%)
Grid Name Overall Healthy Damaged Overall Healthy Damaged

Non–Uniform Grid 1 73.8571 82.2785 62.9508 95.3571 96.4557 93.9344
Non–Uniform Grid 2 81.2143 82.4051 79.6721 93.4286 94.9367 91.4754
Non–Uniform Grid 3 78.7857 84.0506 71.9672 93.2143 94.6835 91.3115
Non–Uniform Grid 4 80.2857 83.0380 76.7213 93.6429 93.9241 93.2787
Non–Uniform Grid 5 76.7857 79.7468 72.9508 91.5000 93.6709 88.6885
Non–Uniform Grid 6 78.2143 81.0127 74.5902 91.2143 91.3924 90.9836
Non–Uniform Grid 7 77.7143 79.7468 75.0820 92.0714 91.8987 92.2951
Non–Uniform Grid 8 73.1429 77.2152 67.8689 92.2857 95.1899 88.5246
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Table 2.3: Healthy, damaged and overall recognition rates of mel–cepstrum based
classification method on transmittance and reflectance mode popcorn kernel im-
ages.

Reflectance Success Rate (%) Transmittance Success Rate (%)
Grid Name Overall Healthy Damaged Overall Healthy Damaged

Non–Uniform Grid 1 78.2857 83.0380 72.1311 92.2143 96.0759 87.2131
Non–Uniform Grid 2 81.5000 83.1646 79.3443 93.0714 95.9494 89.3443
Non–Uniform Grid 3 82.0714 83.4177 80.3279 94.0714 97.2152 90.0000
Non–Uniform Grid 4 83.3571 86.8354 78.8525 92.1429 96.5823 86.3934
Non–Uniform Grid 5 82.3571 84.8101 79.1803 93.2143 97.0886 88.1967
Non–Uniform Grid 6 81.5000 86.4557 75.0820 92.9286 97.4684 87.0492
Non–Uniform Grid 7 80.2143 82.6582 77.0492 92.2857 97.3418 85.7377
Non–Uniform Grid 8 81.3571 84.0506 77.8689 92.6429 96.9620 87.0492

The experiments showed that the transmittance images are more suitable for

the classification of blue-eye damaged popcorn kernel images from the undam-

aged ones. In general, Mellin-cepstrum resulted the greatest recognition rate

when Non-Uniform Grid 1 is applied to cepstral features. However in general,

when compared to mel-cepstrum, Mellin-cepstrum did not have a significant

advantage since the kernels in the images were oriented and thus orientation-

invariance was not necessary. On the other hand, mel-cepstrum had a greater

recognition rate for reflectance mode images. This is important because the

transmittance mode images are harder to obtain compared to reflectance mode.

Thus the success rate increase in reflectance mode is considered to be more im-

portant.

The same dataset is also experimented with the covariance and correlation

features. These features are extracted using the eight different property vector

types that were defined in Eqn. 2.7 – 2.14. As it was in the case of cepstrum-

based features, the overall success for covariance is also calculated by weighting

the results according to the number of test images of two different kernel classes.

The covariance and the correlation success rates for transmittance mode images

are shown in Table 2.4, and the success rates for Reflectance mode images are

shown in Table 2.5.
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Table 2.4: Comparison of the kernel recognition success rates using the property
vectors defined in Eqs. 2.7 – 2.14 to derive image features from transmittance-
mode images.

Covariance Features (%) Correlation Features (%)
Property Vector Overall Healthy Damaged Overall Healthy Damaged

Eq. 2.7 92.6 94.5 90.3 92.9 95.1 90.2
Eq. 2.8 94.7 95.1 94.2 87.6 90.0 84.5
Eq. 2.9 93.7 95.3 91.7 93.9 94.3 93.4
Eq. 2.10 96.0 97.4 94.3 89.7 91.1 87.8
Eq. 2.11 93.9 95.6 91.8 93.7 94.9 92.2
Eq. 2.12 96.3 97.1 95.4 91.5 92.6 90.2
Eq. 2.13 96.1 96.4 95.7 94.6 95.4 93.6
Eq. 2.14 96.5 97.6 95.1 94.3 96.5 91.6

Table 2.5: Comparison of the kernel recognition success rates using the property
vectors defined in Eqs. 2.7 – 2.14 to derive image features from reflectance-mode
images

Covariance Features (%) Correlation Features (%)
Property Vector Overall Healthy Damaged Overall Healthy Damaged

Eq. 2.7 89.2 91.2 86.6 83.6 84.8 82.1
Eq. 2.8 85.6 87.6 83.0 81.7 87.7 74.1
Eq. 2.9 90.4 91.9 88.5 88.1 89.7 86.1
Eq. 2.10 86.1 89.0 82.3 81.4 84.2 77.8
Eq. 2.11 92.6 93.6 91.3 92.5 93.7 91.0
Eq. 2.12 91.9 93.9 89.3 86.8 87.8 85.6
Eq. 2.13 94.0 94.4 93.5 94.1 94.4 93.6
Eq. 2.14 91.9 93.4 99.0 88.6 88.9 88.2

For transmittance mode images, the correlation features using properties de-

fined in Eq. 2.14 provided the best overall recognition: 96.5%. The best overall

success rate using cepstrum features for this mode was 95.4%, indicating an im-

provement of 1.1% in the overall success rate when using the correlation features

for this mode. However, the classification accuracies were more uniform for the

covariance and correlation methods than for the cepstrum-based feature meth-

ods. For example, in the reflectance mode for the mel-cepstrum results, the

recognition rates to correctly identify undamaged and damaged kernels varied

from 79% to 87%, whereas those for the covariance- or correlation-based features

varied from 91% to 94%.
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The best classification accuracy using covariance features, 94% overall, was

observed using reflectance-mode images. Table 2.5 suggests that the use of co-

variance features improved the overall success rates of blue-eye damage detection

in reflectance mode images by approximately 11% compared with mel-cepstrum

features. This result is important because transmittance-mode images are more

difficult to obtain, and it is almost impossible to use this mode in real-time ap-

plications. Reflectance-mode imaging, however, is a simpler method and can be

achieved using simple cameras and lighting.

Another advantage of the covariance method is the higher speed of the al-

gorithm. Although there are fast algorithms for calculating a Fourier transform

and its inverse, their usage complicates the performance of real-time applica-

tions. However, covariance features are calculated via convolution with small

vectors using a small subset of pixels. The filter vector lengths are short for

both the first and second derivative calculations, which provide efficient real-

time processing using low-cost FPGA hardware. Furthermore, for SVM training

and testing, cepstral-based feature vectors have greater lengths. To achieve the

best results of reflectance mode images with cepstral features, a grid with a size

of 25x25 was required, resulting in a feature matrix with 325 values as shown in

Table 2.1. Conversely, covariance feature vectors had fewer than 64 values. A

reduced number of dimensions results in faster calculations of support vectors,

faster decision times for test images and, probably, a more robust classification

performance.

An advantage of the cepstrum-based features is that they are shift-invariant,

while covariance-based algorithms are not. With the use of the absolute value

of an FFT, the mel-cepstrum had a translational invariance and added a rota-

tional invariance because of its log-polar conversion. However, the use of the i

and j coordinate values causes the covariance method to be variant to trans-

lational changes. Conversely, shift invariance was achieved in Eqs. 2.7 – 2.10,
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which excluded these properties. Moreover, all of the property vector definitions

used for the experiments in this study were rotationally variant because they

included the derivative values in the vertical and horizontal directions. Recent

advances in kernel-handling mechanisms [21] enabled the rotation of kernels to

be constrained; therefore, rotationally variant features are not an overwhelming

problem.

A comparison of the results obtained using different property vector defini-

tions is provided in Tables 2.4 and 2.5 for transmittance– and reflectance-mode

images, respectively. For reflectance mode, overall accuracies ranged from 85.6%

to 94%. While Eq. 2.13 had the highest overall accuracy, it used 33 prop-

erty values in the SVM for classification. Eq. 2.7 had an overall accuracy of

89.2% but only used 15 property values. For transmittance images, the range

of property vector accuracies was smaller, with values of 92.6% to 96.5%. The

covariance feature set based on Eq. refeq2 had an overall accuracy of 94.7% and,

in accordance with Eq. 2.7, only consists of 15 covariance values. However, the

covariance feature set based on Eq. 2.14 uses 33 parameters.

Tables 2.4 and 2.5 suggest that it is favorable to select different property-

vector definitions to calculate covariance and correlation features depending on

the image mode. To achieve the best detection rates when using transmittance

mode images, Eq. 2.13 should be selected, and if the images are taken in the

reflectance mode, the best results would be achieved with Eq. 2.14. The only

difference between Eqs. 2.13 and 2.13 is in the derivative values used in the

property vectors. In Eq. 2.13, the first and second derivatives are calculated using

the red channel, whereas in Eq. 2.14, they are calculated with the blue channel.

In addition, the best results when using the reflectance mode were achieved with

covariance-based features, while the best results for the transmittance mode were

obtained with a correlation method. Therefore, depending on the mode that the
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images are taken in, the success rates for kernel recognition can be maximized

by selecting the appropriate method.

2.7 Summary

In this chapter, proposed cepstrum– and covariance-based features are applied

to blue-eye damaged popcorn kernel detection problem. The SVM is used for

classification. Experimental results indicate that the covariance-based features

are more suitable for this detection problem for transmittance and reflectance

mode images. Combined with the algorithm that is explained in Section 2.4.2,

covariance and correlation methods can become rotation-invariant and thus can

be comparable to the results of Mellin-cepstral features for real-time application.

For the speed requirements of real-time applications, although the usage of the

FFT makes cepstral applications faster, the resulting feature vectors that enter

to the SVM are much larger than in the covariance case, and thus the covariance

features may have an advantage in terms of speed. When compared on the

reflectance mode images, covariance features show greater recognition rate. This

is important because it is practical to obtain popcorn kernel images in this mode,

rather than the transmittance mode.

This study experimentally shows that the detection of blue-eye damaged pop-

corn is possible with a sufficient accuracy to be used in popcorn processors. The

proposed techniques and test results are published in [22].
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Chapter 3

Active Contour Based Method

for Cookie Detection on Baking

Lines

This chapter of the thesis focuses on problem of detection of the cookies under

the baking process for acrylamide level estimation. During the cooking process

the flavor characteristics are determined by the Maillard reaction [23]. This reac-

tion changes the chemical properties of the food. In the case of cookie browning

process with elevated temperatures, it is seen that the amount of acrylamide in-

creases because of the Maillard reaction [24]. Acrylamide is a neurotoxin which

is dangerous for humans [25]. Therefore, the detection of the amount of acry-

lamide in cookies that is produced when baking is an important issue in the food

safety community. Chemical tests to detect this amount takes excessive time

and energy thus it is not a very efficient method to test each cookie during the

baking process. Instead there have been various studies to detect the acrylamide

through indirect ways [26].
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Recent studies of detecting the acrylamide indirectly includes some signal

processing techniques. In [26], images of the potato chips and french fries are

captured to detect the acrylamide levels from color changes in the RGB space.

In this study, potato chips images are segmented into two different colors as light

and dark brown. It is seen that the proportion of the dark brown region to the

total surface area of the food is correlated with the acrylamide level of the food

and thus can be used as a measure. The same procedure is repeated for cookies in

[23] to detect acrylamide in cookie baking process. The procedure of the baking

is stopped in the middle and the total baking time is recorded while the image of

the cookie is also captured at Hacettepe University. Signal processing techniques

are applied to the cookie images and some chemical test are carried out at the

same time. As a result, it is observed that the acrylamide levels were correlated

with the proportion of dark brown and yellow colored regions of the surface of the

cookie. However this procedure has been executed by taking the cookies into an

image capturing box, in which the images are captured with a stable light source

and from the same angle for all sample cookies. This technique was efficient

only under the conditions that the cookies are baked on the same location of the

oven, so that the lightning conditions and image capturing angles, distances and

orientations according to the cookie is the same for all cookies that are compared.

In this thesis, the cookies which may be on the move on a baking line or in

random locations of an oven tray are detected using signal processing techniques.

In order to detect the location and the orientation of the cookies, a method based

on active contours is developed and improved. Active contours is a computer

vision technique that is most widely used in segmentation problems [27, 28]. The

algorithm is first proposed with the name of “Snake Algorithm” by [1] and applied

to discrete case. In the “snake” algorithm, a contour is defined by connecting

node points (snaxels) on the image. Then this contour is manipulated by moving

nodes to new locations according to some properties of these nodes. The aim is
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to finalize the contour in a boundary. The details of the algorithm will be given

in Section 3.1.

Active contours are improved and applied to many different applications. In

[1], snaxels are free to move into any shape and size as long as the curve can

reduce its total energy. However in some applications, the shape is given as a

constraint to specialize the algorithm for those applications. In [29] the contour

is defined with a given shape restricting the search for the correct locations

of the contours to a specific shape of region. In [30], normalized first order

derivatives are replaced by optimal local features as landmarks. In [31] The

shape information is collected from statistical measurements. The shape contour

that is obtained statistically is moved to its correct location with the help of

an active contour that tries to grow. The contour is restricted with the shape

contour.

The rest of this chapter is organized as follows: In Section 3.1, Snake al-

gorithm is reviewed. In Section 3.2, the proposed method to detect cookies is

presented. In Section 3.3, the procedure of cookies detection is given. The exper-

imental results are given in Section 3.4, followed by the summary of the chapter

in Section 3.5.

3.1 The Snake Algorithm

Active contours algorithm have been widely used in segmentation problems [27,

28, 30]. The algorithm is defined in an iterative way in which the contour is

deformed trying to reduce the total energy. The termination condition interferes

when the contour can no longer be deformed, meaning that the total energy is

minimum. The total energy of the closed contour v is defined as follows:

E(v(s)) =

∮
v

(Eint(s) + Eext(s))ds (3.1)
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where, Eint(s) and Eext(s) are the internal and external energies of the contour.

The internal energy is related to the contour properties. Total internal energy of

the contour is defined as follows:

Eint(s) = α
dv

ds
+ β

d2v

ds2
(3.2)

The first and second derivatives of the contour with respect to s are called the

length and bending energies respectively. The derivation operation is related to

the variations along the small spline pieces of the contour. Weights α and β are

used to emphasize the importance of these energies.

The external energy is related to the image properties rather than the contour

properties. External energy is defined to be the sum of the average pixel intensity

values and the average derivative of the image over the contour. Since the contour

is continuous and yet the application is on a discrete environment, snaxels are

defined to make a combination. Snaxels are nodes that form a contour. Usage

of the snaxels makes it easier to compute length and bending energies and also

makes it possible to combine with the discrete image properties. Length energy

of the contour is calculated over these snaxels as follows:

El =
N∑
i=1

√
(mi −mi+1)2 + (ni − ni+1)2 (3.3)

where, mi and ni are the horizontal and vertical pixel coordinates of the location

of the ith snaxel and N is the total number of snaxels. In Eq. 3.3, closed contour

property yields that mN+1 = m1 and nN+1 = n1.

Bending energy is calculated as follows:

Eb =
N∑
i=1

√
(mi−1 − 2mi +mi+1)2 + (ni−1 − 2ni + ni+1)2 (3.4)

where m0 = mN , n0 = nN , mN+1 = m1 and nN+1 = n1, since the contour is

closed.

The external energy of the contour is defined as follows:

Eext = wnEn + weEe (3.5)
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where En and Ee are the line and edge energies of the contour, and the weights

wn and we changes the contribution of these energies to the total energy of the

contour. Line and edge energies of the contour are defined as follows:

En =
M∑
j=1

x[mj, nj] (3.6)

and

Ee =
M∑
j=1

[
(x[mj+1, nj]− x[mj−1, nj])

2 + (x[mj, nj+1]− x[mj, nj−1])
2
]

(3.7)

where j runs for all the M pixels along the contour.

In this active contour algorithm definition, as the contour enlarges, the length

energy increases. As the contour curve becomes smoother, bending energy de-

creases. As the pixel intensities along the contour increases, line energy of the

contour increases and as the contour curve sits on the borders of the image, edge

energy increases. By changing the weights, α, β, wn and we, active contour

algorithm can be adapted to different applications.

The active contour algorithm based on [32] is summarized in Table 3.1.

Table 3.1: Active contour algorithm
1. Get image x[m,n].
2. Initialize the contour v[i] = [mi, ni] where i = 1, . . . , N number of snaxels.
3. Calculate the total energy and assign this value to Emin.
4. For each snaxel v[i], i = 1 to N

4.1. For each neighborhood of the ith snaxel
4.1.1. Calculate the total energy E[j] as in Eq. 3.1 using the pixel j

instead of ith snaxel.
4.1.2. If E[j] < Emin

4.1.2.1. Replace minimum energy, Emin = E[j].
4.1.2.2. Move snaxel to new location, v[i] = [mj , nj ].

4.2. Calculate the angle θ between two lines connected to the ith snaxel.
4.3. If θ < 90o.
4.3.1. Move snaxel toward the midpoint of its neighbors until θ > 90o.

4.4. Calculate the distance d between snaxel pairs (vi, vi+1).
4.5. If d > Threshold.
4.5.1. Add a new snaxel between the snaxels (vi, vi+1)
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3.2 Active Contours Based Elliptic Region De-

tection Algorithm for Cookie Detection

As a part of this thesis, in order to detect the cookies in the oven, an elliptical re-

gion detection algorithm is developed that is based on active contours. Spherical

cookies inside the oven are observed as ellipses by the camera when the camera

is not located directly above them which is not the case for the images experi-

mented in this chapter. The approximate locations of the cookies can be found

by color thresholding methods which will be explained in Section 3.3. However,

color thresholding methods fail to find the best possible cookie borders since the

colors of the surface of the cookie depends on the distances and angles between

light sources, cookies and the camera. These dependencies change the visual

content that is perceived by the camera.

Region growing algorithms are also considered to be insufficient. The regions

grow over the color or intensity information with no specific shape restriction.

However as can be seen in Figure 3.1, at the beginning of the baking process, the

bright light source causes the reflection of the cookie from the aluminum surface

to unite with the cookie itself. As a result of this, region growing and active

contour algorithms find the cookie as a combination of cookie and its reflection.

Figure 3.1: Cookie inside the oven after 5 minutes of baking.

The active contour improvement proposed in this thesis aims to put some

restrictions to the problem. As stated before, cookies in the oven images are

elliptical. The algorithm is required to find ellipses with different orientations
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(a) (b)

Figure 3.2: (a)Ellipses with different orientations and (b) ellipses with different
rL
rS

values.

and sizes as show in Figure 3.2a. Furthermore proportions of the long and short

radius of the ellipse may also change (Figure 3.2b). Algorithm should also be

able to handle these different ellipses (Note that circle is a special case of an

ellipse).

3.2.1 Moving the Snaxels

Based on the elliptic requirements, proposed algorithm modifies a circularly ini-

tialized contour that consists of snaxels. Despite the classical active contours

algorithm that is introduced in Section 3.1, the number of snaxels are fixed (N)

and uniformly distributed on a circular contour. as shown in Figure 3.3.

The initial distribution of the ith snaxel on the contour is given as follows:

s(i) =

[
mx + rinit cos

(
2πi

N

)
,my + rinit sin

(
2πi

N

)]
(3.8)

where mx and my are the approximate x and y coordinate values of the ellipse

respectively and N is the total number of snaxels. rinit is the initial radius of the

contour which must be small enough so that the contour is initialized inside the

elliptical region.

When the ith snaxel is needed to be moved to a new location to reduce the

total energy of the contour, the translation of other snaxels is required to preserve
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Figure 3.3: The initial positions of the snaxels on the contour for N = 32.

the elliptical shape. In Figure 3.4, when the current snaxel is moved to a different

location, it is shown that the motion is echoed in all other snaxels except for the

snaxel with index i− N
2
.

In active contour methods, possible new locations for snaxels are selected to

be the neighborhood of the snaxel pixel. In the proposed method, a snaxel is

restricted to move along the line that is defined by the center point of the contour

and the snaxel. The direction vector d for the ith snaxel is defined as follows:

d =
si −m

|si −m|
(3.9)

where si is the coordinate vector of the ith snaxel and m is the mean value of

all snaxels corresponding to the center of the contour.

Throughout the iterations to search for the minimum energy of the contour,

each snaxel is moved inward and outward along the direction d defined in Eq.

3.9. As stated before, translation of a single snaxel causes all other snaxels to

move, resulting faster convergence and preservation of the elliptical shape. The

movement vector of jth snaxel with respect to the displacement of the ith snaxel

is given as follows:

dj = d

(
1

2
+

1

2
cos

(
2π(i− j)

N

))
j = 1, . . . , N (3.10)
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Figure 3.4: Any translation of a snaxel should affect other snaxels to keep the
elliptical shape.

Note that in Eq. 3.10, dj is maximum when i = j and minimum when i− j = N
2
.

When i = j, dj = d which yields the original direction vector for the ith snaxel.

To search for the minimum energy along the contour, in each iteration for

snaxel i, other snaxels are moved to temporary locations as follows:

stemp(j) = rstepdj + sj j = 1, . . . , N (3.11)

where rstep is the amount of displacement for the ith snaxel. In each iteration for

i, this parameter may take negative or positive values. The defined movement can

extent or shrink the contour in one direction. However in the case of boundary

touch, another difficulty is faced. As will be explained in Section 3.2.2, snaxels

to move away from a boundary results increase in total energy. In cases as shown

in Figure 3.5 relative movement of other snaxels with the movement of ith snaxel
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(a) (b)

Figure 3.5: (a) The contour sits on a part of the boundary and (b) extending
toward the center of the bright region causes some snaxels to leave the boundary
and increases total energy.

results a few snaxels to move away from the boundary and increases the total

energy.

In order to handle this difficulty during the ith iteration, another extending

vector g is introduced for the snaxels as follows:

g =
si−N

4
−m∣∣∣si−N

4
−m

∣∣∣ (3.12)

Similarly, for each j an additional gj is defined using g as:

gj = g sin

(
2π(i− j)

N

)
j = 1, . . . , N (3.13)

Temporary locations of snaxels in the iteration of ith snaxel is given as follows:

st(j) = rddj + rggj + sj j = 1, . . . , N (3.14)

where rd and rg are the coefficients that determine the displacement amount in

the given directions dj and gj for each jth snaxel. In this thesis, weights rd is

restricted to get a value from [−1, 1] and rg is restricted to get a value from

[−1, 0, 1] vectors. For a given i, the displacement vectors are visualized in Figure

3.6. In Figure 3.7, it is shown that the sitting on the boundary problem is solved

with two vectors dj and gj.
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(a) (b)

Figure 3.6: (a) Visualization of dj displacement vectors for each jth snaxel. (b)
The gj vectors for the same snaxels (N = 16).

(a) (b) (c)

Figure 3.7: (a) The contour sits on a part of the boundary. (b) Extending toward
the center of the bright region causes some snaxels to leave the boundary. (c)
The translation of all snaxels in the direction of gj moves the snaxels back to the
boundaries decreasing the total energy.

3.2.2 Energy Calculation on Elliptical Contours

The snaxel moving process is presented in Section 3.2.1. Throughout the iterative

process, the contour deformation is decided according to an energy measure

for the contour. The total energy of the active contour based elliptical region

detection algorithm introduced in this thesis which needs to be minimized is
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given as follows:

E(v) =
N∑
i=1

(w1Eint[i] + w2Eext[i]) (3.15)

where, Eint[i] and Eext[i] are the internal and external energies of the ith snaxel

of the discretely defined contour, similar to Eq. 3.1. The internal energy of the

contour is defined as follows:

Eint[i] =
√
(mi − cm)2 + (ni − cn)2 (3.16)

where, mi and ni are the horizontal and vertical coordinate values of the pixel of

ith snaxel, respectively, and, cm and cn are the coordinate values of the center of

the contour. Eint[i] then can be stated to be the sum of the distances of center

to the snaxel pixels. In the active contour model that is introduced in Section

3.1, this property corresponds to length energy which is increased as the contour

enlarges. The bending energy is excluded in this study, because the smoothness

of the contour surface is controlled with the forced elliptical shape.

The external energies of the ith snaxel is calculated as follows:

Eext[i] = wnEn[i] + weEe[i] (3.17)

where, En[i] and Ee[i] are the line and edge intensities of the ith snaxel similar to

Eq. 3.5. wn and we are the weights that arrange the importance of these weights

to the total energy. The line and edge energies are calculated in this study by:

En[i] = x[mi, ni] (3.18)

and

Ee[i] = |2x[mi, ni]−x[mi−2, ni]−x[mi+2, ni]|+|2x[mi, ni]−x[m1, ni−2]−x[m1, ni+2]|,

(3.19)

respectively.

Alternatively, Ee[i] can be calculated using any high pass filter that results

higher values on the edges of the image.
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The elliptical region detection algorithm based on active contours can be

summarized as follows:

Table 3.2: Active contour based algorithm for elliptical region detection
1. Get image x[m,n].
2. Initialize the contour v[i] = [mi, ni] where i = 1, . . . , N number of snaxels.
3. Calculate the total energy and assign this value to Emin.
4. For each snaxel v[i], i = 1 to N

4.1. Calculate the g and d vectors.
4.2. For each rd and rg combination,
4.2.1. Find st(j) according to Eq. 3.14 and calculate total energy.
4.2.2. If E[j] < Emin

4.2.2.1. Replace minimum energy, Emin = E[j].
4.2.2.2. Move snaxel to new location, v[i] = [mj , nj ].

5. if a change is made through these N iterations
5.1. Restart iterations (goto 4.).

3.3 The Detection Procedure

The images that are taken from cookies inside the oven are on an aluminum cover

that protects the tray from oil while transmitting the heat without considerable

resistance. The inside of the oven is captured by the camera as gray, as well as

the reflective aluminum. Thus the first step to approximate the cookie locations

is to eliminate gray based areas that range from black to white. The cookies

have a yellow-white color at the beginning of the cooking process and this color

tends to red-brown as the cookie is baked through time. In this thesis this small

variation from the white color is used to detect the approximate locations, so

that the active contour algorithm presented in Section 3.2 can be initiated. An

example image of two cookies baked in the oven is given in Figure 3.8.

The detection procedure is started by low pass filtering the image to reduce

the small pixel color variations due low light conditions or the hitches on the

surface of the cookies. The low pass filter that is used in this study is given as
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Figure 3.8: An image of two cookies being baked inside the oven

follows:

hLP = ([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]) /100 (3.20)

The filter is applied to the image first horizontally and then vertically (in the

vertical filtering, hT
LP is applied) by 2D convolution. Next step is to calculate

the non-gray areas by searching for a considerable difference over Red, Green

and Blue color values on RGB color space. For this purpose, for each pixel the

following properties are calculated:

PRG[m,n] =
xR[m,n]

xG[m,n]
(3.21)

PGB[m,n] =
xG[m,n]

xB[m,n]
(3.22)

PBR[m,n] =
xB[m,n]

xR[m,n]
(3.23)

where xR, xG and xB refers to the red, green and blue channels of the image,

respectively. These properties are calculated on the image pixel color values, and
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in order to prevent a division by zero, all the pixels with at least one “0” among

RGB values are eliminated.

In this study the gray pixels are found according to the pixel properties

defined in Eqs. 3.21–3.23. These values are required to be in the range of 0.83 –

1.2 in order to state that the pixel is gray.

After eliminating the gray pixels, what is left are connected pixel groups that

are the possible locations of the cookies. However, in order to prevent false recog-

nitions, pixel groups with less than 2000 connected pixels are eliminated stating

that these groups exist due noise. The remaining pixel groups are considered to

be cookies and the mean values of vertical and horizontal locations of the pixels

in the group are considered to be the center of the cookie. They are set as the

beginning points of the elliptical active contour algorithm. In order to start from

inside the cookies, initial radius of the contours are set to be as small as 10 pixels.

3.4 Experimental Results

The dataset used in this study is selected from two different baking processes.

Video of the baking is recorded with an Axis IP (model: Axis M-1011) camera

which is attached to the window of the oven as well as two white light sources.

Video is taken with the resolution of 640 by 480 pixels horizontally and vertically

respectively and processed by the algorithm implemented on Matlab 2010. Since

the increase in acrylamide level is not an instantaneous event, capturing of frames

of the tray may be as slow as one frame per minute. That duration is enough

for the iterations of the snake algorithm with the initialization process since the

total runtime of the algorithm for a frame with two cookies is less than 1 second

on a AMD Phenom II X2 560, 3.3GHz processor computer with 16 GB Ram.
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Images are extracted from the two videos starting from 5th minute to 12th

minute which is considered to be a regular baking duration. Eight images with

two cookies are extracted from each of the baking video so that in total, 32 cookie

images are experimented. An example of a frame from the first baking process

is given in Figure 3.9.

Figure 3.9: Image taken from the first baking video at the 8th minute.

For the case of cookies snake coefficients for the length, edge and line energies

are set to be -0.011, -0.7 and -1, respectively. The total number of snaxels are

set to be 128. The search radius values rd and rg are selected from within the

vectors [−1, 1] and [−1, 0, 1] respectively. A sample test result is given in Figure

3.10.

For comparison, the active contour implementation by [33] based on [1] is also

used for the tests. It is seen that the original active contour algorithm initialized

from the outside of the cookies have major problems with the reflections of the

cookies and the light sources from the aluminum surface. However forcing the

shape constraint, elliptical active contour algorithm may detect the same cookie

with more accuracy. A comparison between the active contour and the elliptical

active contour algorithms is visualized in Figure 3.11.
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Figure 3.10: Detection results on the image taken from 1st video at the 5th
minute.

(a) (b)

Figure 3.11: Detection of the cookie region with (a) the proposed method and
(b) with the ordinary active contour method [1].
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In order to calculate a criteria for success, the region of the cookie and the

detected region are compared. For this reason, real cookie regions are marked

manually. Then, for the detection rate, intersection of the resulting region of

the algorithm and the real region is found and the area is calculated. Detection

rate is found to be the proportion of this area to the total area of the cookie.

False alarm rate is calculated by the detected region that does not overlap with

the real cookie region. The area of this region is divided by the area of the

real cookie region to calculate a false alarm rate. The mis-detection rate is

found by 100−Detection, as percentage. Resulting detection, false alarm and

mis-detection rates are calculated as shown in Table 3.3:

Table 3.3: Success rates calculation of the proposed method.
Proposed Method Snake Algorithm in [1]

Video Number Cookie Detection False-Alarm Detection False-Alarm

Video 1 Cookie 1 94.3% 0.14% 99.3% 10.8%
Cookie 2 96.2% 1.17% 99.8% 17.3%

Video 1 Cookie 1 95.1% 0.12% 99.6% 20.9%
Cookie 2 96.2% 0.33% 99.7% 20.6%

Overall Success Rates: 95.5% 0.44% 99.6% 17.4%

The data in Table 3.3 is prepared by averaging the success rates of the cookies

through time from 5th to 12th minutes. From Table 3.3, it can be stated that the

false-alarm rates are very small due to the fact that the converged contour stays

fully inside the cookie. The reason for this is that the near the cookie borders,

color intensities decrease severely, increasing the line energy component. The

edge energies also play an important role on this result. Because of the nature of

the high pass filter that is used in this thesis, response of the image to the filter

remains constant for the pixels that are close to the edges.

The ordinary collapsing active contour that is shown in 3.11 is also considered

for its success rates. The algorithm is found to be very successful on finding the

edges, when the outer region of the cookie is smooth. However as it is shown in

Figure 3.11, when there are intensity changes outside of the cookie, this algorithm
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sticks to these artificial borders of intensity changes. As a result, all the cookie

is inside the detected region, the detection rate becomes very high, however the

false alarm rate is also higher than the false alarm rates of the results of the

proposed algorithm.

3.5 Summary

In this chapter, proposed active contour based technique is applied to cookie

region detection problem during the baking process. The detection procedure

started by estimating the cookie center locations by thresholding the color values

and finding the connected pixel regions. Large pixel groups with a distinct color

are considered to be cookies on the image. Possible cookie centers are estimated

by finding the center of these pixel groups for each cookie in the image. A

spherical discrete active contour is defined by snaxels on the possible cookie

center locations, and this contour is enlarged or collapsed according to given

energy calculation results. In the process of moving a snaxel, all the snaxels

are affected by this deformation which resulted the preservation of the shape

constraints. In other words, spherical contour is modified to enlarge keeping an

elliptical shape. It is experimentally shown that the algorithm is successful in

finding the cookies on an image, even when the image is not taken from directly

above the tray that carries the cookies.
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Chapter 4

Conclusions

In this thesis, two food safety problems are investigated and new image processing

methods are developed. The first problem was the detection of a fungal infection

on dry popcorn kernels. The infection was fast in spreading and easy to occur in

inaccurate drying processes. The visibility of the infection on visible light range

made it easier to develop signal processing techniques for detection using simple

cameras. On the other hand, the second problem was the detection of acrylamide

generation on cookies during the baking process. It was shown that the level of

acrylamide was correlated with the surface color values taken by regular cameras

[26]. In this thesis, a new method is developed to detect the locations and borders

of cookies on a production line, in order to detect the generation of acrylamide

level.

Two different methods are developed for the detection of fungal infections

(blue-eye) on popcorn kernels. The first method was the cepstral analysis based

algorithm that is improved by the non-uniform grids. Performances of different

grids for mel- and Mellin-cepstrum computation are compared and a high recog-

nition rate is achieved. Then the results of this algorithm is compared with the

covariance based methods which is experimentally found to be more successful,
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in terms of correct detection. Moreover the covariance based classification pro-

cedure is simplified. In the standard covariance methods, covariance matrices

are compared to each other using their joint eigenvalues. On the contrary, in

this thesis, the entries of the covariance matrices are used as features. This sim-

plification reduced complexity, compared to the eigenvalue based classification.

For both covariance and correlation methods, and the mel- and Mellin-cepstral

methods, classification is obtained using an SVM classifier with RBF kernel.

A new method based on active contours is developed for the cookie detec-

tion problem. In this new method, an elliptical shape is forced on the active

contour that makes it more successful to detect the cookies because the circular

cookie on the baking line appears as an ellipse when looked from a point that

is not directly above the cookie. Additionally, forcing a specific shape makes

it possible to detect the correct borders which may not be achieved by the free

to deform active contour algorithms that can choose changes in intensity on the

cookie as boundaries. Compared to ordinary active contour algorithms, the pro-

posed method provides better results in correct detection of the boundaries of

the cookies in the tested images.
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