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ABSTRACT 

 

HIGH PERFORMANCE FLOATING GATE MEMORIES 

USING GRAPHENE AS CHARGE STORAGE MEDIUM 

AND ATOMIC LAYER DEPOSITED HIGH-K 

DIELECTRIC LAYERS AS TUNNEL BARRIER 
 

Deniz Kocaay 

M.S. in Materials Science and Nanotechnology  

Supervisor: Assist. Prof. Dr. Aykutlu Dana 

January, 2013 

 

 

 

 

 

With the ongoing development in portable electronic devices, low power 

consumption, improved data retention rate and higher operation speed are the 

merits demanded by modern non-volatile memory technology. Flash memory 

devices with discrete charge-trapping media are regarded as an alternative 

solution to conventional floating gate technology. Flash memories utilizing Si-

nitride as charge storage media dominate due to enhanced endurance, better 

scaling capability and simple fabrication. The use of high-k dielectrics as tunnel 

layer and control layer is also crucial in charge-trap flash memory devices since 

they allow further scaling and enhanced charge injection without data retention 

degradation. Atomic layer deposition (ALD) is a powerful technique for the 

growth of pinhole-free high-k dielectrics with precisely controlled thickness and 

high conformality. The application of graphene as charge trapping medium in 

flash memory devices is promising to obtain improved charge storage capability 

with miniaturization. Graphene acts as an effective charge storage medium due 

to high density of states in deep energy levels.  

 

       In this thesis, we fabricate graphene flash memory devices with ALD-grown 

HfO2/AlN as tunnel layer and Al2O3 as control layer. Graphene oxide nanosheets 

are derived from the acid exfoliation of natural graphite by Hummers Method. 



 iv 

The graphene layer is obtained by spin-coating of water soluble graphene oxide 

suspension followed by a thermal annealing process. Memory performance 

including hysteresis window, data retention rate and program transient 

characteristics for both electron and hole storage mechanisms are determined by 

performing high frequency capacitance-voltage measurements. For comparing 

the memory effect of graphene on device performance, we also fabricate and 

characterize identical flash capacitors with Si-rich SiN layer as charge storage 

medium and HfO2 as tunnel oxide layer. The Si-nitride films are deposited with 

high SiH4/NH3 gas flow ratio by plasma-enhanced chemical vapor deposition 

system.   

 

       Graphene flash memory devices exhibit superior memory performance. 

Compared with Si-nitride based cells, hysteresis window, retention performance 

and programming speed are both significantly enhanced with the use of 

graphene. For electron storage, graphene flash memory provides a saturated flat 

band shift of 1.2 V at a write-pulse duration of 100 ns with a voltage bias of 5 V. 

The high density of states and high work function of graphene improve the 

memory performance, leading to increased charge storage capability, enhanced 

retention rate and faster programming operation at low voltages.  

 

       The use of graphene as charge storage medium and ALD-grown high-k 

dielectrics as tunnel and control layers improves the existing flash technology 

and satisfies the requirements including scalability, at least 10-year retention, 

low voltage operation, faster write performance and CMOS-compatible 

fabrication. 
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ÖZET 

 

YÜK DEPOLAMA ORTAMI OLARAK GRAFEN, 

TÜNELLEME BARİYERİ OLARAK ATOMİK KATMAN 

KAPLAMA TEKNİĞİYLE ÜRETİLMİŞ YÜKSEK-K 

DİELEKTRİK KULLANILARAK OLUŞTURULAN 

YÜKSEK PERFORMANSLI İKİNCİL KAPILI HAFIZA 

YAPILARI 
 

Deniz Kocaay 

Malzeme Bilimi ve Nanoteknoloji, Yüksek Lisans 

Tez Yöneticisi: Yar. Doç. Dr. Aykutlu Dana 

Ocak, 2013 

 

Taşınabilir elektronik cihaz teknolojisinde süregelen gelişim ile birlikte düşük 

güç tüketimi, gelişmiş veri tutma oranı ve daha yüksek çalışma hızı, modern flaş 

bellek teknolojisi tarafından talep edilen özellikler haline gelmiştir. Ayrık yük 

yakalama ortamı taşıyan flaş bellek aygıtları, geleneksel ikincil kapılı hafıza 

teknolojisine alternatif bir çözüm olarak kabul edilmektedir. Yük depolama 

ortamı olarak Si-nitrür kullanarak geliştirilmiş flaş bellekler dayanıklılık, daha 

iyi ölçekleme yeteneği ve basit üretimi nedeniyle yaygın olarak 

kullanılmaktadır. Tünelleme ve kontrol bariyerleri olarak Atomik katman 

kaplama (ALD) tekniğiyle üretilmiş yüksek-k dielektrikli filmlerin kullanımı, 

daha küçük yapıların üretimine ve verinin tutulma zamanını etkilemeksizin daha 

fazla yük tutulumuna elverdiğinden flaş bellek yapıları için çok önemlidir. ALD 

tekniği tam olarak kontrol kalınlığı ve yüksek konformalite sağlayabildiğinden 

deliksiz yüksek-k dielektrikli film büyütülmesi için çok güçlü bir tekniktir. Flaş 

bellek aygıtları için yük yakalama aracı olarak grafen kullanılması, geliştirilmiş 

yük depolama kapasitesine sahip daha küçük ölçekli aygıtlar elde etmek 

açısından umut vericidir. Grafen, derin enerji seviyelerinde daha fazla yük 

tutulabilecek yer bulunması nedeniyle etkili bir yük depolama ortamı olarak 

görülmektedir. 
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       Bu tez çalışmasında, ALD ile büyütülmüş tünel katmanı olarak  HfO2/AlN  

ve kontrol katmanı olarak Al2O3 malzemeler içeren grafen flaş bellek cihazları 

imal edilir. Grafen oksit nanotabakalar Hummers yöntemi ile doğal grafitin asit 

eksfoliyasyonu ile elde edilmektedir. Grafen tabakası suda çözünür grafen oksit 

süspansiyonunun döndürerek kaplanması ve ısıl tavlama işlemi ile elde edilir.  

Histerezis penceresi, veri saklama oranı ve elektron/deşik depolama 

mekanizmalarını içeren bellek performansı yüksek frekansta kapasitans-voltaj 

ölçümleri yapılarak belirlenir. Grafenin cihaz performansına etkisini 

karşılaştırmak için, yük saklama ortamı olarak Si-zengin SiN tabaka kullanan 

özdeş flaş kapasitörler imal edilmiş ve karakterizasyonu yapılmıştır. Si-nitrür 

filmler yüksek SiH4/NH3 gaz akış oranı ile plazma destekli kimyasal buhar 

biriktirme sisteminde kaplanmıştır. 

 

       Grafen flaş bellek cihazları üstün bellek performansı gösterir. Si-nitrür 

temelli hücrelerle ile karşılaştırıldığında, histerezis pencere, veri tutma 

performansı ve programlama hızı grafen kullanımı ile önemli ölçüde 

geliştirilmiştir. Elektron depolama için grafen flaş bellek 5 V gerilimde ve 100 

ns darbe süresi ile 1.2 V düz bant kayması sağlar. 

 

       Grafenin yük depolama ortamı ve ALD ile büyütülen yüksek-k 

dielektriklerin tünel ve kontrol katmanları olarak kullanılması mevcut flaş 

teknolojisini geliştirir ve en az 10 yıllık saklama, düşük voltajda çalışma,  hızlı 

yazma performansı ve CMOS-uyumlu fabrikasyon gibi gereksinimleri karşılar. 

 

 

 

 

 

 

 

Anahtar kelimeler: Flaş bellek, grafen, yüksek-k dielektrikler, ALD 
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Chapter 1 

 

Introduction 
 

 

 

 

 

 

Flash memory technology has recently gained much attention with the growing 

demand of non-volatile memories for mobile electronic devices. The 

conventional flash memory technology is composed of a MOSFET structure 

with a continuous floating gate (FG) as the charge storage medium. The basic 

operation principle of FG flash cell is based on the threshold voltage shift as a 

result of injected electrons in the charge storage medium. High retention rate, 

low power consumption, high density and high endurance are the desired 

features of a flash memory device.  

 

       As the dimensions scaled down, the FG technology encounters serious 

problems such as lateral charge leakage into drain or source regions, and 

complete charge loss because of pinholes and defects in the tunnel layer. 

Charge-trapping flash memory structures are proposed to overcome the 

drawbacks of scaled FG cells. In charge-trapping flash memories, the charge 

storage medium consists of a large number of electrically isolated traps. 

Nanoclusters in Si-nitride, semiconductor nanocrystals (Si, Ge etc.) and metal 

nanocrystals (Co, Ni, Al, Au, Ag etc.) are utilized as discrete traps. Discrete 

charge storage nodes prevent lateral charge leakage and allow further scaling of 

the tunnel oxide resulting in direct tunnelling mechanism. Direct tunnelling 

mechanism is desirable in flash technology to avoid oxide degradation due to 
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Fowler-Nordheim tunnelling and hot electron injection. Moreover, it allows 

faster write/erase speed at low operating voltages. The use of discrete charge-

trapping medium offers high endurance, low power consumption and fast 

operation in high density memory applications.  

 

       Leakage current increases exponentially as the gate oxide gets thinner, 

causing reliability problems in flash memories. Various materials with high 

dielectric constants are proposed as tunnel oxide and blocking oxide in flash 

memory technology. With the application of high-k dielectrics, the leakage 

current is significantly suppressed due to increased physical dielectric thickness. 

High-k dielectrics in flash cells enhance the write/erase speed without degrading 

the data retention performance. To further enhance the charge injection current 

and the retention rate, charge storage medium should provide great number of 

available states in deep energy levels. High-k dielectric flash devices with dense 

nanocrystals exhibit improved retention performance and faster operation. 

 

      This thesis investigates the charge storage property of graphene in flash 

memory applications and the effect of atomic layer deposited tunnel dielectrics 

on memory performance. For comparing graphene flash memories, identical 

flash cells with Si-rich nitride layer as the charge-trapping medium are 

fabricated and characterized. Our motivation is to improve the performance of 

the existing flash technology with the use of high-k dielectrics instead of SiO2 as 

tunnel/control barrier and graphene as charge storage medium.  

 

       This thesis is organized as follows: Chapter 2 includes theoretical 

preliminaries and basic concepts in flash memory devices. Chapter 3 addresses 

the promising solutions to the scaling issue in modern flash technology, 

including the usage of nanocrystals, ALD-grown high-k dielectrics and 

graphene. Chapter 4 provides detailed explanation of fabrication process and 

characterization methods. In Chapter 5, performance of fabricated graphene 

flash memories and detailed comparison with Si-nitride based flash memories 
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are presented. Chapter 6 concludes the thesis by summarizing the results and 

provides future work in this direction. 
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Chapter 2 
 

 

Device Physics  
 

 

2.1 Overview of Non-Volatile Memory 

   

Memory is an inherent crucial component of any information processing system. 

Various types of memories find application in different parts of modern 

computer systems. Solid state memories offer high density, low power and no 

mechanical components. Memory devices can be classified into two main types, 

volatile and non-volatile. A volatile memory loses the information when the 

power is off. Static Random Access memory (SRAM) and Dynamic Random 

Access Memory (DRAM) are the most widely-used types of a volatile memory 

family. SRAMs offer fast writing and reading operations and DRAMs have 

denser structure. 

 

       Unlike volatile memories, non-volatile memories retain the stored content 

even if the power is turned off. Non-volatile memories (NVM) can be random 

access and read only. Read-only Memory (ROM), Erasable programmable read-

only memory (EPROM), Electrically Erasable Programmable Read-Only 

Memory (EEPROM) and Flash are the main types of   NVMs. Among all, 

EEPROMs and Flash memories dominant in applications due to continuous 

improvement in performance and density. An EEPROM cell consists of two 

transistors while there is a single transistor in each Flash cell. Due to extra 

transistor, EEPROMs offer lower chip density compared to Flash memories. 
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Both EEPROMs and Flash memories require a floating gate layer for charge 

storage.    

 

       In recent years, the share of NVM in semiconductor market is increasing 

due to portable electronic equipments such as cellular phones, digital cameras, 

laptops etc. Low operating voltage, high density and high retention performance 

are the desired features of an ideal NVM. Compared to others, Flash seems to be 

more advantageous considering the cost and the ability to be programmed and 

erased many times. In the coming years, as mobile computing becomes more 

widely used, the demand for flash is expected to increase because of the need for 

low-cost, low-power, and high-density applications such as solid state hard 

drives, or expanding storage capacity in cell phones and tablets.  

 

2.2 Performance Considerations of Flash Memories 

 

High retention rate, high density, high endurance and low power consumption 

are the main features of a desired non-volatile semiconductor memory.  

 

       Retention rate is the ability to retain the stored information even without 

power supply. Non-volatility implies that the flash cell should retain the data for 

at least 10 years at temperatures near 80°C and after many write/erase cycles.  In 

contrast, volatile memories are needed to be refreshed to prevent from losing the 

stored data. The refresh cycle is important for power consumption. Memories 

with high retention rate need lower refresh cycles, which decreases power 

consumption rate. Retention performance is determined by testing the reliability 

of a flash cell for nearly     -     s and extrapolated up to     s (approximately 

ten years).  Moreover, different experiments are also conducted at high 

temperatures to determine the retention capability of the flash cell.  
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       With the current trend in scaling device dimensions, today’s electronic 

applications require high-density components. A unit cell that is used to store 

one bit of information determines the memory density. Flash memories are 

suitable for high density applications due to single transistor structure in each 

cell. However, serious problems such as difficulty in lateral charge confinement 

and neighboring cell disturbance may occur due to scaled dimensions. When 

lateral dimension of memory cell becomes less than 25 nm, confined charges on 

FG can leak out into drain or source regions; therefore, such cells may need to 

be refreshed frequently to retain the data, which is not desired for NVMs. In 

addition, because of lateral charge leakage, one cell can easily disturb 

neighboring cells. Therefore, development of new technologies to improve 

floating gate memories must take into account geometry related effects in the 

device. 

 

       Endurance is another criterion to determine the memory performance. 

Endurance of a memory cell is referred as the ability to be accessed many times 

without the degradation of the performance. After many write/erase cycles, 

oxide defects may occur due to charge injection, which results in degradation of 

endurance and retention, and also reliability problems due to narrowing of the 

memory window. For solid state hard drives, endurance values above 10
5
 are 

desirable, where the data is frequently updated.  

 

       Low operating voltages are another desired feature of an ideal NVM. It is 

possible to reduce power consumption by decreasing oxide thickness between 

the FG and the channel. However, stored charges can leak into the channel 

easily when the tunnel oxide is scaled down. Moreover, the effect of hot 

electrons to thinner oxide becomes more serious. As a result, the application of 

thinner oxide in a Flash cell may reduce both endurance and retention 

performance. 
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       As outlined above, there are several directions in improvement of floating 

gate non-volatile memories. A more detailed discussion as given below can help 

identify routes to improve various qualities of flash NVMs. 

 

2.3 Floating Gate Flash Memories 

 

Floating gate (FG) flash memory is basically a metal-oxide semiconductor field 

effect transistor (MOSFET) with a poly-silicon FG layer sandwiched between 

two insulating thin-films. Actually, the storage location is mainly a MOS 

capacitor with two dielectrics and a FG gate layer between them. The structure 

of conventional flash cell can be seen in Figure 2.1. FG is a continuous thin-film 

in which charges are stored. The state of the memory cell is determined by the 

electrical charge state of the FG. The layer separating FG from the device 

channel is called as tunnel barrier. The thickness of this layer is generally in the 

range of 2-10 nm. The FG layer is blocked from the control gate by a control 

oxide that is used to prevent from discharging through gate contact.   

 

 

Figure 2.1: Device Structure of Conventional FG Flash Cell 

 

       Basic operation principle of a FG flash cell is as follows. When positive 

bias is applied to the gate, electrons are attracted from substrate through FG 

tunnel barrier layer via tunneling and trapped on the FG when the gate bias is 

removed. Negative bias causes the lowering of the barrier and facilitates escape 
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of electrons back to the substrate. The amount of charge stored on FG results in 

threshold voltage shift of the underlying transistor. Generally, neutral or 

positively charged state is defined as logical "1" and programmed or negatively 

charged state is referred as logical "0". Fowler-Nordheim (FN) and hot electron 

injection are the most frequently used mechanisms for charging and discharging.     

Compared to direct tunneling, these mechanisms are faster; however, they cause 

damage in the oxide layer due to high fields, which degrades endurance and 

retention performance of the flash cell. Thickness and quality of each oxide 

layer are also crucial to guarantee both non-volatility and program/erase 

repeatability. The information is preserved as long as the charges are trapped of 

FG. For a conventional flash cell, it is expected to retain the data for at least 10 

years at temperature range of -40°C and 125°C [1]. Conductive paths along 

dielectrics may cause trapped charges on FG to tunnel to substrate or to gate; 

therefore, defect-free oxides are necessary for high performance flash 

applications. 

 

       D. Kahng and S. M. Sze suggested the use of FG for charge storage for the 

first time in 1967 [2]. The first proposed structure for non-volatile MOS 

memory is as follows. A metal conducting layer as FG is sandwiched between a 

thin insulator as tunnel oxide and a thick insulator that isolates the FG from the 

gate metal. This memory cell is called as MIMIS (metal-insulator-metal-

insulator-semiconductor). Extremely thin oxide layer (< 5 nm) allows direct 

tunneling mechanism for programming. The main drawback of this structure is 

that all stored charges in metal layer can leak off in case of any pinhole in the 

tunneling oxide. Hence, there is a reliability problem with MIMIS cell. 

Increasing the thickness of tunneling oxide and replacing conducting layer with 

a dielectric without losing the capture probability would be the possible 

solutions to MIMIS structure. 

 

       The first improvement to reliability problem of MIMIS cell was first 

suggested by Wegener in 1967 [3]. Wegener proposed to replace conducting 
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layer and the insulator on top it with a nitride layer. This structure is referred as 

MNOS (metal-nitride-oxide-semiconductor). Nitride layer is composed of large 

number of traps for both electron and hole storage. Since individual trapping 

centers are separated from each other, any pinhole in thin tunnel oxide will not 

cause complete discharging.  Applying high positive voltage to gate metal, 

electrons tunnel from silicon conduction band (CB) to nitride CB and are 

confined in nitride traps, causing positive shift in threshold voltage. Conversely, 

high negative bias is applied to erase the cell, resulting in negative threshold 

voltage shift.  

 

       Floating gate Avalanche injection MOS (FAMOS) was suggested by 

Frohman-Bentchkowsky in 1971 [4-7]. In FAMOS cell, a poly-silicon FG 

surrounded by a thick oxide is used as charge storage layer. The programming 

mechanism is mainly based on the creation of highly energetic electrons by 

drain avalanche plasma. On the other hand, UV or X-ray radiation can be 

utilized to erase the cell. FAMOS cell was the first structure that is compatible 

with mass production.   

 

2.4 Charge-Trapping Flash Memories 

 

The main distinguishing feature of a charge-trapping flash memory is a 

discontinuous charge storage medium that contains a large number of 

electrically isolated traps. The cross-section of charge-trapping cells can be seen 

in Figure 2.2. Charges are stored in discrete traps, preventing from lateral charge 

leakage. Nitride films, semiconductor nanocrystals and metal nanocrystals can 

be used as charge-trapping layers. 
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Figure 2.2: Device Structures of SONOS and Nanocrystal Flash Cells 

        

       The application of discontinuous layer as charge storage medium allows for 

the reduction of tunnel oxide thickness. In charge-trapping devices, direct 

tunneling mechanism can be used for charging and discharging because of ultra-

thin tunnel oxide. Charge-trapping devices gain some advantages over floating 

gate memories due to direct tunneling mechanism. One of the main advantages 

is the life-time of the memory cell is increased since direct tunneling does not 

degrade the oxide as do Fowler-Nordheim or hot electron injection mechanisms. 

Another advantage of direct tunneling mechanism is to allow faster 

program/erase operations. In addition, retention rate of nanocrystal memories is 

less prone to oxide defects compared to a continuous floating gate memory since 

there is no lateral conduction between trap centers. Although charge-trapping 

memories can offer high endurance, low power consumption and fast 

program/erase speed at high-density memory applications, the distribution and 

the size of nanocrystals are both crucial to determine device performance.  

 

2.5 MOS Physics 

 

A nanocrystal flash cell can be modeled as a one-dimensional metal-oxide-

semiconductor (MOS) capacitor since thick dielectric electric isolates the 

nanocrystals laterally and the electric field is applied along gate-to-substrate 
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direction. Size, shape and distribution of nanocrystals, interfacial traps, oxide 

defects should be carefully analyzed to determine the electrostatic characteristics 

of a nanocrystal flash memory. To examine the electrical properties, MOS 

capacitor physics should be studied.  

 

       MOS capacitor is the main structure of a single flash cell. A MOS capacitor 

is composed of a dielectric layer sandwiched between a doped silicon substrate 

and a metal contact. An ideal MOS capacitor has no charge-trapping centers in 

the oxide and at oxide/semiconductor interface. Moreover, for an ideal MOS 

structure, the metal work function should be equal to the semiconductor work 

function. Leakage current under all static conditions is assumed to be zero in an 

ideal MOS.  

 

       According to applied voltage, MOS capacitor has three biasing regions, 

accumulation, depletion and inversion; all of which will be studied over an ideal 

n-type MOS.  

 

2.5.1 Accumulation 

 

When positive voltage is applied, Fermi level (EF) of the metal is lowered 

relative to EF of semiconductor, causing a positive slope in the energy band 

diagram. Excessive positive charges placed in gate electrode and this positive 

bias should be balanced by the electrons at the interface. In accumulation region, 

the total capacitance is the result of an oxide capacitance. 

 

2.5.2 Depletion 

 

The application of small negative voltage to n-type MOS capacitor slightly 

raises EF of metal with respect to EF of semiconductor. The concentration of 

electrons on the gate contact increases, causing the repulsion of majority carriers 

from the interface. Electron concentration is becoming less than the doping 
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concentration of Si substrate as the bias voltage is decreasing. The total 

capacitance is the serial combination of two parallel-plate capacitors, oxide 

capacitance and depletion capacitance. The depletion capacitance decreases with 

the increase of depletion thickness.  

 

2.5.3 Inversion 

 

When large negative voltage applied, bands at the interface bend more and 

depletion width reaches the maximum value. Hole concentration at the surface 

gets larger than the intrinsic carrier concentration. At low frequencies, minority 

carriers can follow the ac signal and total capacitance approaches to oxide 

capacitance value as the negative bias becomes larger. On the other hand, holes 

in the inversion layer cannot follow the ac signal at high frequencies. Then, the 

total capacitance will be equal to serially connected oxide capacitance and 

depletion capacitance.  

 

       Band diagrams and charge distributions of each biasing regions including 

flat-band condition for an ideal n-type MOS capacitor are demonstrated in 

Figure 2.3. 
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Figure 2.3: Energy band diagrams and corresponding block charge diagrams in 

an ideal n-type MOS capacitor. 

 

2.6 Tunneling Mechanism 

 

An ideal insulator does not allow any leakage current. But, when high electric 

field is applied on a thin dielectric layer, charges will pass through the dielectric. 

Tunneling mechanism is explained as the propagation of a particle through a 
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potential barrier that it could not pass according to classical view. Tunneling 

depends on the barrier height, availability of the states and applied electric field. 

Direct tunneling, Fowler-Nordheim tunneling and trap-assisted tunneling are the 

tunneling mechanisms to explain charging/discharging of a flash cell, shown in 

Figure 2.4. 

 

 

Figure 2.4: Tunneling Mechanisms 

 

 

2.6.1 Direct Tunneling 

 

Direct tunneling mechanism is referred as the propagation of electrons through 

the barrier without using the conduction band of the dielectric. It becomes 

dominant for the dielectrics with a thickness below 5 nm. Direct tunneling is 

temperature-dependent. It increases exponentially as the decrease of oxide 

thickness. It does not dependent on the electric field across the dielectric. Direct 

tunneling does not create oxide defects after repeated cycle operations [8].  
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2.6.2 Fowler-Nordheim Tunneling 

 

Fowler-Nordheim (FN) tunneling is a quantum mechanical mechanism in which 

electrons can propagate through the barrier by passing the conduction band of 

the oxide. The probability of FN tunneling increases exponentially as the electric 

field in the oxide layer increases [9].  

 

2.6.3 Trap-assisted Tunneling 

 

Oxide defects and interface traps give rise to two-step tunneling mechanisms. 

Trap-assisted tunneling becomes significant after many write/erase cycles in 

EEPROMs and flash memories. Due to repeated high stress, the tunneling current 

increases at low voltages. This is regarded as stress induced leakage current 

(SILC). SILC is generally accepted as the main reason for the degradation of 

oxide quality and retention performance in NVMs [10]. SILC was examined for 

MOS capacitors and EEPROMs in recent studies [11-13]. Single defect in a thick 

oxide would not be sufficient to initiate a leakage current. However, the existence 

of several traps can create large SILC and results in gate oxide breakdown. 
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Chapter 3 
 

 

Possible Solutions to the Scaling Issue 
 

 

3.1 Nanocrystal Flash Memory 

 

Floating gate (FG) flash memories encounter major problems as the flash gate 

stack is scaled down, explained in Chapter 2. In recent years, various materials 

as charge-trapping layer and high-k dielectrics as tunneling and blocking layers 

are proposed to overcome scaling issue of the conventional FG memory. One 

possible solution is to create a memory structure that stores charges in discrete-

traps, such as SONOS type memory and nanocrystal memory [14, 15]. 

 

       The structure of a nanocrystal cell resembles conventional FG memory. The 

main difference is that charges are not stored in a continuous FG, but in 

nanocrystals or natural traps of a nitride layer. Those discrete charge-trapping 

centers allow thinner tunnel oxide thickness without a drastic decrease in the 

retention performance.  

 

       In a FG cell, oxide defects in the tunneling layer may form a conductive 

path the channel and the FG, which may cause full discharge of stored charges. 

On the other hand, nanocrystal memories can preserve most of the charge and 

improve the retention capability since they are stored in discrete traps and such a 

conductive path may discharge only a small number of nanocrystals. Therefore, 
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charge-trapping flash memories offer better scalability of the tunnel oxide 

thickness without retention degradation.  

 

       Another major benefit of charge-trapping memories is to allow multi-bit 

storage due to localized charge storage mechanism [16]. By injecting the charge 

through channel hot electron (CHE) to the source, to the drain or to the both 

sides and reading on only one end, it is possible to obtain multi-bit storage 

mechanism in a single cell, which has a great importance to increase the data 

density.  

 

       The application of nanocrystals as charge-trapping medium seems to be 

advantageous. They require the use of well-known materials and CMOS-

compatible fabrication steps since they have a similar structure to the 

conventional FG.  

 

3.1.1 Semiconductor Nanocrystal Preparation Methods 

 

The fabrication of semiconductor nanocrystals embedded in a MOS structure 

has been commonly studied. There are four major methods of nanocrystal 

preparation in non-volatile memory technology, which are the chemical vapor 

deposition (CVD) growth, the non-stoichiometric layer deposition, ion-beam 

synthesis and the layer-by-layer growth. 

 

       Si and Ge nanocrystals embedded in a dielectric matrix have been widely 

used in nanocrystal memory technology. In general, high temperature annealing 

process is required to complete nanocrystal formation. Ion implantation of Si 

and Ge in SiO2 matrix is the most frequently used method. This method is based 

on implantation of Si or Ge into SiO2 with low energies and post-implant 

annealing at high temperatures (>900ºC). At layer-by-layer growth technique, a 

thin amorphous Ge or Si layer is deposited by e-beam evaporation or thermal 

evaporation system, and then high-temperature annealing process is applied to 
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the sample. Si or Ge thin layer is either oxidized or covered by another dielectric 

layer to complete nanocrystal formation. 

 

       Another method of preparation is the deposition of Si-rich SiOx or SiNx 

layer by plasma enhanced chemical vapor deposition (PECVD) and subsequent 

high-temperature annealing. Iacona and coworkers showed that Si nanoclusters 

with a diameter between 1.4 nm and 4.2 nm are formed after high-temperature 

annealing of PECVD-deposited Si-rich SiO2 films [17]. The study of Sung et al. 

studied the formation of Si nanocrystals embedded in amorphous SiNx films 

grown by PECVD at 250ºC [18]. The size of Si nanocrystals varies from 2.1nm 

to 6.1 nm as altering deposition parameters [18, 19]. Further post-annealing is 

not applied to the Si-rich oxide and nitride films deposited by PECVD.  

 

       CVD is recently the most frequently used technique to form self-assembled 

nanocrystals in memory applications. The crucial point of this method is to 

control the initial nucleation of nanocrystals on top of a dielectric. The study of 

Ammendola et al. seems to be promising to obtain uniformly-distributed Si 

quantum dots incorporated in a thin SiO2 layer with low-pressure CVD 

(LPCVD). The average size of Si quantum dots was determined as 4-6 nm [20]. 

 

3.1.2 Metal Nanocrystals  

 

The application of metal nanocrystals as charge-storage layer is also promising 

because metal nanocrystals offer selectable work function and high density of 

states. In general, the fabrication of metal nanocrystals is based on the 

deposition of a thin metal layer by evaporation or sputtering techniques and 

post-deposition annealing.  

 

       Lee et al. demonstrated the charge storage property of Au, Ag and Pt 

nanocrystals in EEPROM devices [21]. A thin layer of Au, Ag and Pt was 

deposited o a direct tunneling oxide by e-beam evaporation and subsequently 
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annealed at 1000ºC. The size and the distribution of metal nanocrystals could be 

controlled with evaporation and annealing conditions. Besides the study of Lee 

et al., the charge-trapping property of various metal nanoparticles such as Co, 

Mo, Ni, TiN and Al nanocrystals were investigated [22-28].  

 

       Metal with high work functions are desirable for memory applications 

because higher effective potential well depth with respect to Si conduction band 

improves both retention performance and operation speed of the memory. Metal 

nanoparticles are crucial for engineering of effective potential well depth (deff). 

The energy band diagram of a flash cell with metal nanoparticles can be seen in 

Figure 3.1. High deff offers lower barrier for writing and longer barrier for 

retention. Thus, fast write/erase speed with improved retention can be achieved 

with metal nanocrystals as charge storage nodes.  

 

 

Figure 3.1: Energy Band Diagram of a Flash Cell with Metal Nanocrystals 

 

       Au and Pt have higher work function compared to Co, W, Ag, Al and Ni; as 

a result, they exhibit better memory performance. However, the application of 

Au and Pt nanoparticles does not seem to be a cost-effective solution in memory 

technology. There have been many reports on metal species with high work 

functions such as W5Si3, NiSi2, CoSi2 nanocrystals to enhance the memory 

performance and to allow further scaling [29-32]. The use of metal nanoparticles 
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also offer multi-bit storage mechanism. 2-bits per cell metal nanocrystal 

memory and 4-bits per cell with quad source/drain devices were reported [33, 

34].  

 

3.1.3 Basic Principle of Operation 

 

In conventional flash memories, data storage is mainly based on the threshold 

shift of FETs due to stored charges. During programming, charges are tunnelled 

from the channel to the FG. Reading operation is dependent on the measurement 

of source-drain current. Tiwari et al. explained the charge storage mechanism of 

nanocrystal flash memories as follows [35]. Reverse bias applied to the gate 

causes the injection of electrons into the nanocrystals. Conductance of the 

inversion layer is reduced because of the screening effect of the trapped charges 

in nanocrystals, causing a shift in the threshold voltage of the FET. 

 

       Write/Erase speed and operation voltage are both based on the injection 

current between the channel and the charge-stored medium. The injection 

current is exponentially dependent on the electric field across the tunnel oxide 

for FN tunneling mechanism. 

 

       A nanocrystal flash cell can be modelled as a serially connected three 

parallel plate capacitors. The capacitance of a parallel-plate capacitor is 

dependent on the permittivity of the dielectric between two plates, the thickness 

of the dielectric and the area. 

 

      When there is no charge stored in the flash memory, the electric field in the 

bottom oxide can be found as 

 

    
  

       
     
     

 
                                                                                        (3.1) 
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where 

   : Applied gate voltage 

   : Electric field in the tunnel oxide 

    : Dielectric constant of the tunnel oxide 

    : Tunnel oxide thickness 

     : Dielectric constant of the control oxide 

     : Control oxide thickness 

 

       The electric field in the tunnel oxide is a function of the thickness and the 

dielectric constant of both tunnel oxide and control oxide layers. The decrease in 

the ratio 
   

  
 enhances the electric field in the tunnel oxide. If the control oxide 

with a higher dielectric permittivity with respect to the tunnel oxide is used in 

the gate stack, the programming time duration or the operation voltage will 

decrease. 

 

       Taking into consideration that nanocrystals are the only charge storage 

nodes and exactly one electron is stored in each nanocrystal, flat band voltage 

shift is given as [35] 

 

      
    

   
    

 

 
 
   

   
                                                                       (3.2) 

 

       The charge density,    , can be directly calculated as 

 

     
       

 

 

    
 

 
 
   
   

    
                                                                         (3.3) 

 

where 

     : Charge density in nanocrystal medium 

    : Flat band voltage shift 

      : Dielectric constant of the tunnel oxide  
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     : Control oxide thickness 

    : Nanocrystal medium thickness 

     : Dielectric constant of Si 

 

3.1.4 Challenges of Nanocrystal Memories 

 

Although nanocrystal memories is regarded as a solution to scaling issue in 

conventional FG technology, there still exist major challenges that should be 

overcome. First of all, the memory performance of nanocrystal-based flash cells 

is directly affected by the size, the shape and the distribution of nanocrystals. 

The nanocrystal size must be around 3-4 nm due to carrier confinement effects. 

When more than one electron is stored in a single nanocrystal, the barrier 

potential for the electron occupying the highest energy level will reduce due to 

the increase in energy level separation according to the given formula assuming 

the nanocrystal shape is a perfectly symmetric sphere [36]. 

 

        
  

    
                                                         (3.4) 

 

where 

       : Energy separation  

          : Capacitance of a spherical nanocrystal 

d           : Diameter of the nanocrystal 

            : Dielectric constant of the nanocrystal 

 

       In addition, the density of nanocrystals should be at least          to 

obtain an appropriate shift in threshold voltage. Moreover, the separation 

between two neighboring nanocrystals is also significant to prevent lateral 

current flow. Generally, nanocrystals are formed by thermal annealing process, 

rather than by patterning. Thus, it becomes challenging to produce nanocrystals 

with a certain size, shape and distribution in each individual memory cells. 
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       The use of metal nanoparticles in charge-trapping memories has been also 

receiving attention since metal nanoparticles offer large density of states around 

the Fermi level and high work function. Metal nanoparticle memories show 

improved retention and greater charge storage capability compared to 

semiconductor nanocrystals due to the deeper effective potential well formed 

between the metal and the conduction band of the semiconductor. However, the 

formation of metal nanocrystals is usually required high-temperature process. 

They can easily diffuse into other layers during thermal annealing. Therefore, 

they create defects and conductive paths in the tunnel oxide and the control 

oxide. As a result, non-volatile memories with metal nanocrystals may have 

reliability problems. Moreover, flash cells with Au nanoparticles as charge 

storage nodes exhibit better performance due to its higher work function. 

However, the Au is considered as a non-CMOS compatible material. 

 

3.2 High-k Dielectrics  

 

Modern semiconductor technology requires high-density and low-power 

applications. In recent years, there have been many applications on possible 

solutions to overcome challenges arising from scaled dimensions. Silicon-based 

technology dominates modern electronic devices because of the excellent 

interface at Si / SiO2. Although other semiconductors such as Ge, GaAs, InGaAs 

offer greater transport properties, low-trap density at the interface of Si and its 

native oxide, SiO2 is considered as one reason that silicon-based FETs are the 

basis of modern electronics. 

 

       Further scaling of SiO2 beyond 10 nm brings problems due to two main 

reasons. First of all, leakage current rises exponentially as the gate oxide gets 

thinner because of quantum mechanical tunneling of carriers through such a thin 

SiO2 layer. The leakage current not only reduces the reliability of the device, but 

also creates oxide defects after repeated cycles of operation. The second reason 

is that the SiO2 loses its bulk electronic properties when its thickness is scaled 
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down to 0.7 nm. Because of such problems arising from the scaling issue, 

semiconductor technology is looking for new materials that form low-trap 

density on top of Si and offer equivalent electrical properties of a scaled SiO2. 

 

       High-k materials are regarded as an alternative solution to scaling issue to 

suppress the leakage current without reducing the oxide capacitance. The 

reduction of the leakage current is achieved by increasing the physical thickness 

of gate oxide, which is explained with equivalent oxide thickness (EOT). The 

EOT represents the electrical thickness of a dielectric that corresponds to the 

equivalent capacitance of a physically thinner SiO2 layer. The EOT is given as 

 

            
     

       
                                                                            (3.5) 

 

       where         is the thickness of the high-k layer,      
and         are the 

relative dielectric constants of SiO2 and high-k dielectric.  

 

       Band gaps and band offsets of various high-k materials can be seen in 

Figure 3.3 [37]. A high-k material with large band gap and high band offsets for 

both electrons and holes are required for an alternative gate dielectric. The 

inverse relation between the dielectric constants and the band gaps is shown in 

Figure 3.4 [38]. 
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Figure 3.2: Band gaps and band offsets of various high-k materials [37]. 

 

 

 

Figure 3.3: Inverse relation between band gap and dielectric constant of various 

high-k materials [38]. 
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       The first motivation for the replacement of SiO2 with a high-k material was 

to reduce the leakage current. Much work has focused on the leakage current 

measurements of devices with various high-k gate dielectrics.  A transistor with 

Al2O3 as a gate dielectric was reported in 2000 [39]. Further studies showed that 

the high-k dielectric layer as a gate oxide causes a flat band voltage shift in 

capacitance-voltage measurements, indicating the existence of oxide charges 

and traps. Studies on thermodynamic stability of the high-k materials onto Si 

have also reported [40-42]. BeO, ZrO2 and HfO2 are shown to be 

thermodynamically more stable than Al2O3, TiO2 and Ta2O5 [43].  

 

       Gritsenko et al. compared the simulated write/erase characteristics of 

SONOS devices with SiO2, Al2O3 and ZrO2 as a blocking oxide. They concluded 

that the application of high-k as a control oxide reduces the operation voltage or 

the write/erase speed from 1ms to 10µs [44]. Moreover, interfacial properties of 

high-k materials with Si in flash applications were studied [45].  

 

       The use of high-k materials as a tunnel oxide in flash memories is 

advantageous over SiO2 gate oxide. First, it improves the write/erase speed. The 

charge injection mechanism of most flash memories is based on FN tunneling 

and hot electron injection. These tunneling mechanisms are dependent on the 

potential barrier height between the Si substrate and the tunnel oxide. Actually, 

larger barrier height requires higher voltage operation or longer programming 

duration. Most high-k dielectrics form lower barrier height on Si, allowing faster 

operations or low-voltage applications.  The second is the improved retention 

rate. Since high-k dielectrics are physically thicker than a SiO2 layer to achieve 

the EOT, SONOS with a high-k dielectric as a tunnel oxide can exhibit better 

retention performance.  

 

       Dana et al. proposed a model that explains the charge/discharge dynamics 

of nanocrystal flash memories and studied the effect of dielectric properties on 

memory performance [46]. In this study, the figure of merit (FOM) is defined as 
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                                                                     (3.6) 

 

       where      and         denote the retention and the charging times. The 

FOM is calculated for various high-k dielectric materials with same EOT and 

other parameters that effect charge/discharge dynamics such as nanocrystal size 

and distribution, write voltage, and gate work function are kept unchanged, 

given in Figure 3.4.  

 

 

Figure 3.4: FOM for various high-k materials for nanocrystal diameter of 6 nm, 

write voltage of 10 V, and EOT of 4 nm [46]. 

 

       The use of materials with higher dielectric constants improves the FOM, 

leading to enhanced retention rate and decreased charging time. Since high-k 

materials provide larger physical thickness, the escape tunnelling current is 

significantly decreased.  Charging time is also improved as a result of smaller 

conduction band offset of the high-k material on Si.  
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3.2.1 Reliability Issues of High-k Dielectrics 

 

Although high-k dielectrics are regarded as a solution to scaling issue of SiO2 

gate oxide, they have various disadvantages that directly affect the performance 

and the reliability of the device.  

 

       One major problem for the integration of high-k dielectrics to CMOS 

technology is the presence of dipoles and defects at Si/high-k interface. 

Capacitance-voltage measurements of a MOS capacitor with a high-k layer 

demonstrate that the flat band voltage is shifted from the ideal position, proving 

the existence of uncompensated charges and dipoles in the high-k oxide. 

Diffusion of oxygen through the film and formation of SiOx layer at the interface 

was observed in most high-k oxides including Al2O3, ZrO2 and HfO2. To prevent 

oxygen diffusion from gate electrode, poly-Si gate is replaced with a metal 

electrode such as TiN [47]. At this point, the metal contacts should have 

appropriate work functions and thermal stability at temperatures required for 

CMOS technology. 

 

       Secondly, mobility degrades as the thickness of gate stack decreases. The 

reason for this is explained as the coupling of soft phonon modes in the 

dielectric with channel electrons [48]. It is probable that charge trapping and 

fixed charges in high-k films are responsible for lower carrier mobility. 

Moreover, it was reported that the mobility becomes higher when the thickness 

of the interfacial SiOx becomes more than 1nm by thermal treatments. Forming 

gas annealing at high temperatures and O3 surface treatments were carried out to 

reduce interfacial defects [49-51]. 

 

       In addition, another challenge with the integration of high-k dielectrics is 

the presence of fast charge trapping and detrapping. Hysteresis phenomena and 

threshold voltage instability in MOSFETs with HfO2 was reported [52]. It was 
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observed that threshold voltage shift depends on the HfO2 thickness and post 

deposition annealing conditions.  

 

       The thermal stability of high-k materials is also crucial for device 

performance because conventional CMOS technology needs for high-

temperature steps. At high temperatures, ultra thin high-k layers cannot prevent 

O2 diffusion through Si surface and there occurs SiO2 growth at the interface [53, 

54]. 

 

3.3 Graphene 

 

Graphene is a one-atom thick material made of carbon atoms that are arranged 

in honeycomb order.  In 2010, graphene was worth of Nobel Prize since it is 

considered as one of the most promising material ever discovered. Graphene is 

regarded as a unique material because of its electrical, thermal, mechanical, 

optical and chemical properties. Graphene is one of the strongest and the most 

conductive material ever known. The unique properties of graphene make it the 

most promising material for electronic applications, including transistors, 

sensors, composite materials and flexible electronics. Especially for transistor 

technology, graphene is proposed as a new solution that can be used to further 

Moore’s Law.   

 

       The main challenge is the growth of high quality graphene layers.  

Graphene films are desired to be uniform with minimal roughness and few 

defects. One method of graphene deposition is metal exfoliation or scotch-tape 

method [55]. In this method, the starting material is commercially available 

highly ordered pyrolytic graphite (HOPG).  To mechanically exfoliate graphene 

on a substrate, a piece of sticky tape is used to peel graphene layers from HOPG 

and sticky tape is removed slowly from the substrate. Although high-quality 

graphene layers with few defects are obtained, this method would not seem to be 

applicable to mass production. In addition, graphene is deposited in a small area 
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and number of graphene layers varies. The number of graphene layers is also a 

crucial issue in device applications.  In recent years, many studies have focused 

on the fabrication of wafer-sized graphene layers and the interaction of graphene 

with other materials.  

 

 

Figure 3.5: Graphene and its band structure 

 

       The high mobility and the doping property allow the graphene an alternative 

material to the silicon technology. Although the graphene has a zero band gap, 

recent studies showed that bilayer and few-layer graphene introduce a band gap 

[56]. Many researchers and industrial companies such as Intel and IBM are 

doing research on field effect transistor with graphene as a channel. The stability 

of graphene has already moved the attention into one-electron transistors and 

molecular-sized electronic devices.   

 

3.3.1 Graphene Growth Techniques 

 

The mechanical exfoliation is a simple method to produce graphene flakes with 

high purity. But, it is not useful for mass production and large-area applications.  

Besides mechanical exfoliation method, recent techniques are chemical vapor 
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deposition (CVD), epitaxy deposition and chemical decomposition of graphite 

oxide.  

 

3.3.1.1 CVD Growth 

 

Chemical Vapor Deposition (CVD) is a technique to deposit solid materials 

from a gaseous phase at low or vacuum pressure.  In CVD, precursor gases are 

delivered into the reaction chamber at ambient temperatures. As they come into 

contact with a heated substrate, they react or decompose forming a solid phase 

and are deposited onto the substrate. The most commonly used material that 

catalyzes a CVD process is metal.  In CVD growth of graphene, organic gases 

are used to initiate the growth of carbon monolayer.  Growth condition can be 

optimized by changing the gas flow rates, the metal film thickness, the cooling 

rate and the temperature.  

 

       Li and coworkers have demonstrated graphene growth on copper using a 

mixture of hydrogen and methane gases at temperatures up to 1000°C [57]. One 

of the major benefits of this method is that it can be integrated to CMOS 

fabrication technology because 300 nm copper films on silicon wafer is a 

standard substrate in CMOS technology. They used SEM, TEM and Raman 

Spectroscopy to determine the uniformity and quality of graphene flakes. The 

process yielded graphene that was 95% monolayer over an area of 1cmx1cm. 

Mobility was reported as 4.050 cm
2
V

-1
s

-1
, confirming the high concentration of 

monolayer graphene.  The grown graphene can also be easily transferred to 

other substrates such as Si/SiO2.  This work seems to be promising for graphene-

based applications; however, maintaining chamber pressure during the 

procedure is a crucial issue due to the gaseous methane. They also reported that 

graphene growth on copper is self-limited. Growth that proceeded for more than 

60 min yielded is similar to growth performed for 10 min. For less than 10 min, 

SEM images show that copper film is not completely covered. The growth of 

graphene on Cu foils of varying thicknesses also yields similar structures. Based 
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on these observations, they reiterated that graphene is growing by a surface-

catalyzed process rather than a precipitation process.   

 

       A method for the direct CVD of monolayer or few-layer graphene film on 

dielectric surfaces via a sacrificial copper film was reported [58]. Based on the 

observation of evaporation of Cu during CVD process, they proposed a new 

method for graphene growth on insulators by a controlled metal evaporation 

during or immediately after the catalytic growth. According to metal thickness 

and duration of CVD process, the areas between metal fingers change in size 

and shape. It was reported that almost 20 m
2
 size areas filled with continuous 

graphene layers. The continuity of the metal film on the surface depends on its 

thickness, the metal-dielectric wetting properties, the temperature and the time. 

This method was reported to be applicable to various insulating surfaces 

including single-crystal quartz, sapphire, fused silica, and silicon oxide.  This 

process could suppress the need for a transfer to a new substrate. Additionally, 

further improvements on the control of dewetting and evaporation process could 

result in direct deposition of graphene for large-area electronics.  

 

       Rather than copper films, graphene can also be grown on nickel films. The 

film thickness should be less than 300 nm, preventing from graphite deposition.  

Graphene is produced on nickel surface using a diluted hydrocarbon gas at 

ambient pressure and 1000°C [59].  The film is then evaporated by e-beam 

deposition onto Si/SiO2 substrate. Thermal annealing facilitates the growth of a 

nickel film. Nickel film can be etched with chemicals to transfer the graphene 

layers to another substrate.  Direct patterning of graphene film was also 

demonstrated and this method eliminates the need for post-processing.  

                     

       The study of Lee and coworkers is mainly based on the idea of graphene 

growth at low temperatures by plasma enhanced chemical vapor deposition 

(PECVD) [60]. A methane/hydrogen mixture is utilized to form plasma. Plasma 

is applied at a pressure of 2 mbar at a process temperature of 450°C.  The 
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substrate with graphene film is then annealed at 900°C and rapidly cooled. This 

method produces at both top of nickel film and at interface between Si and 

nickel film. They also observed that annealing does not seem to enhance the 

graphene film quality; however, they proposed that annealing could be applied 

to increase the quality of graphene grown at Si/nickel film interface at low 

temperature processes.   

 

       Lee and coworkers further studied on production of wafer scale, high-

quality graphene films on Ni and Cu films under ambient pressure and transfer 

them onto arbitrary substrates by chemical etching of metal layers and polymer-

supported transfer onto arbitrary substrates [61]. They used 3-inch SiO2/Si 

wafers with 300 nm-thick Ni or 700 nm-thick Cu. They applied a mixture of 

hydrogen/helium/methane for Cu and a mixture of hydrogen/argon/methane for 

Ni for 5 min. The samples were then rapidly cooled down to room temperature. 

They observed that the average number of graphene layers grown on a Ni film 

ranged from 3 to 8. On the other hand, the monolayer and bilayer graphene grew 

on a Cu film. In their study, the polymer supports such as PDMS and thermal-

release tapes were used to transfer graphene layers.  

 

       In case of flexible electronics, it seems to be difficult to grow graphene 

directly on plastic surfaces due to low temperature melting point of plastic. In a 

recent process, mechanical rollers are used to transfer graphene film from a 

thermal release tape to a PET film at 120°C [62]. With roll-to-roll production of 

8-inch wafer scale graphene films, commercial production of graphene-based 

transparent electrodes could be released in the near future.  

 

3.3.1.2 Epitaxial Growth 

 

In epitaxial growth, the substrate acts as a seed crystal and the deposited film 

will have the similar crystallographic orientations with respect to the substrate. 

The most popular epitaxial process makes use of a silicon carbide (SiC) 
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substrate. For large-scale few-layer graphene production, epitaxial growth on 

SiC by thermal decomposition is receiving much interest. When SiC substrates 

are annealed at high temperatures, Si atoms selectively desorbs from the surface 

and the C atoms are left behind naturally form FLG. Because SiC is a wide-

band-gap semiconductor, FLG on SiC can serve as a graphene substrate for 

electronics applications [63]. The two fundamental problems with thermal 

decomposition are thickness distribution and understanding how the SiC 

substrate affects physical properties of FLG. In epitaxial growth method, the 

substrate increases the possibility of achieving a large area of graphene due to 

the uniform structure of the substrate crystal.  

 

       Emtsev and coworkers proposed a near atmospheric pressure method to 

grow graphene epitaxially from SiC and compare their results with high-vacuum 

experiments [64]. The authors grew graphene at 676.4 Torr, increasing the 

temperature, which is necessary for decomposition of the SiC sample. They 

observed that growth rate increases; however, the surface of the grown graphene 

improved. To decrease the growth rate, they applied argon to the sample to slow 

down the Si atoms leaving the surface. Their near-atmospheric method results in 

the increase of the mobility by a factor of 2 compared to high-vacuum 

experiments. This method seems to be promising due to importance of growth 

rate control in epitaxial methods.  

 

3.3.1.3 Chemical Techniques 

 

Chemical exfoliation of graphite to form graphene monolayer has been a 

promising method for mass production. The starting point for the fabrication of 

reduced graphene oxide (rGO) thin films is the oxidation of graphite. For 

electronic and optoelectronic applications, GO should be reduced to become 

electrically conductive. Synthesis of graphite oxide can be achieved by placing 

graphite in concentrated acid. Hummers proposed a less dangerous process of 

graphite oxidation with a mixture of sodium nitrate, potassium permanganate 
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and sulfuric acid [65].  Individual sheets of GO can be viewed as graphene with 

oxygen functional groups on both sides of the flakes. Exfoliation of graphite 

oxide into individual sheets can be obtained by ultrasonic agitation [66]. 

Thermal reduction of GO is typically achieved above 200°C in inert atmosphere 

and becomes more efficient at higher temperatures. GO sheets can be deposited 

on any surface using techniques such as drop-casting, dip-coating, spraying, spin 

coating and electrophoresis [67]. Uniformity, thickness, surface coverage and 

number of layers of GO film are dependent on the deposition technique and the 

deposition parameters. For instance, dip-coating, drop-casting and spraying 

result in non-uniform film deposition and thickness may not be controllable in 

these methods. On the other hand, for spin-coating technique, GO suspensions 

with high concentrations should be utilized to obtain uniform films. N2 gun 

should be applied during spin-coating procedure to facilitate solvent evaporation 

[68].  

 

3.3.2 Graphene in Flash Memory Applications 

 

Graphene as charge storage medium has potential applications in flash memory 

technology because of the fascinating intrinsic properties such as high work 

function, high density of states and low dimensionality. The use of graphene in 

charge-trapping memories is regarded as a solution to increase charge storage 

capability and reduce device dimensions.  

 

       The charge trapping property of graphene oxide (GO) was reported [69]. 

The solution-processable GO monolayers are sandwiched between a SiO2 layer 

as tunnel barrier and Al2O3 as control barrier in TANOS 

(TaN/Al2O3/GO/SiO2/p-Si) structure. The production of GO sheets is based on 

modified Hummer's method and the solution is spin-coated on top of the tunnel 

layer. The TANOS structure with GO layer exhibits a wide memory window up 

o 7.5 V at the sweep range of -5V/14V. In addition, the memory window is 

reduced to 1.4 V after thermal treatment. 
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       Non-volatile devices with gold nanoparticles and reduced GO were reported 

[70]. Reduced GO layer is used as a channel and gold nanoparticles are 

covalently bounded to the channel with a molecular linker. This molecular linker 

forms an energy barrier between the reduced GO and the channel. Au NPs with 

reduced GO memory device shows nonlinear hysteresis behavior, stable 

write/multiple read/erase/multiple read cycles and a retention rate of 700 s.  

 

       Hang et al. demonstrated the advantages of graphene as a charge-trapping 

medium in flash memories [71]. Single layer and multilayer graphene sheets are 

grown by CVD method and transferred onto SiO2 tunnel oxide layer. Al2O3 layer 

grown by atomic layer deposition (ALD) is used for blocking oxide. Single layer 

graphene device exhibits a memory window of ~2 V at sweep range of 7 V; on 

the other hand, memory window width is around 6 V for multilayer graphene 

flash. In addition, the graphene flash memory provides a long retention rate of 

8% charge loss after 10 years.  

  

3.4 ALD Basics 

 

Atomic layer deposition (ALD) is a thin film deposition method based on 

surface reactions of subsequently pulsed source vapors. In ALD, vapor sources 

are separated by evacuation or purge periods. Chemical reactions are similar to 

CVD method, but the separation of precursor materials during the reaction is the 

main difference from CVD technique. ALD achieves atomic-scale deposition 

control due to self-limited growth property.  

 

       ALD was first introduced in the late 1970s by Suntab et al. with the 

motivation to produce thin film electroluminescent (TFEL) flat panel display 

[73-76]. Since mid 1990s, the interest towards ALD has been increasing due to 

the need for thin and conformal films, which is a direct consequence of scaled 

device dimensions of IC technology. Recently, ALD has been a widely-used 

technique for the growth of high-k materials. In this study, HfO2 as tunnel oxide 
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and Al2O3 as control oxide are deposited by Cambridge Nanotech Savannah 

S100. 

 

       ALD deposition cycle for an ideal growth is demonstrated in Figure 3.6. 

Film growth by ALD appears in a cyclic manner with four main steps per cycle, 

which are 

 

1. exposure of the first precursor into the process chamber 

2. purge or evacuation  

3. exposure of the second precursor into the process chamber 

4. purge or evacuation 

 

 

Figure 3.6: ALD deposition cycle for an ideal growth 

 

       The thickness of deposited films can be precisely controlled with the 

number of cycles since each cycle grows exactly one monolayer of film due to 

self-limiting property of ALD. In addition, self-limiting growth mechanism 

guarantees the perfect conformality because it is not necessary for the precursor 
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flux to be uniformly diffused over the sample. The flux should be large enough 

to saturate the chemisorption layer. Moreover, it is also possible to deposit films 

subsequently and create multilayer structures. Low-temperature deposition is 

another advantage of ALD. Plasma-enhanced ALD can grow materials at lower 

temperatures than thermal ALD. Low-temperature deposition is significant for 

especially for polymers. For instance, Al2O3 can be grown with TMA precursor 

and O2 plasma by plasma-enhanced ALD at room temperature [77]. In addition, 

ALD-grown thin films are very continuous and pinhole-free. This property has 

great significance to reduce the leakage current through scaled gate dielectrics.  

 

       One major disadvantage of ALD is the slow deposition rates. For example, 

the growth rate of HfO2 with Savannah reactor is closed to 0.1Å /cycle. The 

second is the variety of materials that can be deposited by ALD is still less 

compared other widely-used methods such as MBE and CVD. The nucleation of 

ALD has great importance to grow defect-free thin films. If the precursor cannot 

react with the initial substrate, the film may not nucleate uniformly. This lack of 

nucleation is a very serious problem for ultra-thin gate oxides. Recently, much 

research has been focusing on the nucleation issue of high-k dielectrics on 

hydrogen-passivated Si substrate. The nucleation of ZrO2, Al2O3 and HfO2 was 

reported [78]. The nucleation difficulty was also observed during the deposition 

of Al2O3 on carbon nanotubes and graphene sheets [79-81]. Al2O3 was grown 

only along the step edges of graphene sheets. Chemical treatment with 

perylenetetracarboxylic acid and ozone treatment was tried to functionalize the 

graphene surface [82, 83]. 
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Chapter 4 
 

 

Device Fabrication and 

Characterization Methods  
 

 

4.1 Device Fabrication 

 

The fabrication of flash memory devices with SiN and graphene as charge 

storage nodes is compatible with the modern semiconductor manufacturing. The 

fabrication process is composed of five main parts, which are wafer cleaning, 

back contact deposition, active area definition, gate stack formation and gate 

contact definition. All fabrication processes are conducted in Class100 clean 

room facility at UNAM. Characterization methods include spectroscopic 

ellipsometry, atomic force microscopy (AFM), scanning electron microscopy 

(SEM) and semiconductor parameter analyzer (SPA). Figure 4.1 illustrates the 

schematics of the fabricated flash memory capacitors. 
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Figure 4.1: Schematics of the fabricated flash memory capacitors. 

 

4.1.1 Wafer Cleaning 

 

Before device fabrication, organic and metal contaminations should be removed 

off the silicon wafer since contaminants may affect electrical properties of 

fabricated devices. Both p-type and n-type (100) Si wafers with a resistivity of 

1-10 Ω.cm are used for the fabrication. This resistivity range corresponds to a 

non-degenerate semiconductor with a doping level of 10
15 

- 10
16 

cm
-3

.  
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       The wafer cleaning consists of three major steps: 

 

1. The wafer is agitated in acetone, methanol and isopropyl alcohol solutions for 

about 10 minutes to remove dusts and organic particles. Ultrasonic agitation is 

beneficial to improve efficiency of removal.  

 

2. A mixture of sulfuric acid and hydrogen peroxide, piranha solution, is used to 

remove off organic contaminants. The wafers are cleaned in H2SO4:H2O2 (4:1) 

solution for 20 minutes. Then, the samples are rinsed with DI water and dried 

with N2 gun. Piranha clean requires great care since it is highly reactive and 

easily damages the skin.  

 

3. Since Piranha solution is a strong oxidizing agent, H2O:HF (95:5) mixture is 

applied to remove the native oxide layer on silicon surface. The wafers are 

cleaned in HF solution for 3 min. Then, they are rinsed with DI water and dried 

with N2 gun. 

 

4.1.2 Back Contact Deposition 

 

Back contacts are formed by depositing metal layers by VAKSIS PVD Vapor-

3S Thermal Evaporation System. Operation principle of thermal evaporator is as 

follows. The source material is heated to several hundreds of degrees in vacuum. 

The vapor particles from the source move towards the sample without colliding 

air molecules and condense to a solid state on the surface. Chamber pressure, 

substrate temperature, power applied to source material and the distance 

between the source and the substrate are the main parameters of thermal 

evaporation systems. Thermal evaporators are widely used for metal contact and 

masking layer deposition in microfabrication. Compared to sputtering systems, 

the density and the adhesion of deposited films are lower.  
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       For n-type wafers, the back surface is covered with 5 nm-thick Cr layer and 

100-nm-thick Au layer by thermal evaporator. Thin Cr layer is applied to 

improve Au adhesion on Si surface. For p-type devices, 100nm-thick Al is 

deposited in a chamber pressure of around 10
-6

 Torr. Material coating rate is 

kept constant at 0.5-0.6 Ǻ/s to achieve high density deposition. 

 

       Tungsten and molybdenum boats are used to place pallets of coating 

materials. Samples are rotated during deposition to allow uniformity. Cooling is 

not provided by VAKSIS, thus the temperature of the sample is observed to 

increase up to 80ºC during coating. Chamber cleaning prior to pumping is 

significant to avoid the particles remaining on the inner walls of the chamber; 

otherwise, it requires extended pumping time before reaching the desired 

chamber pressure. 

 

       After metal layer deposition, the samples are annealed by ATV SRO-

704 rapid thermal annealing system (RTA) to form ohmic contacts. RTA is a 

common process in semiconductor technology in which silicon wafers are 

heated to high temperatures in a few seconds. RTA has many applications on 

semiconductor manufacturing such as activation of dopants, crystallization, 

densification of thin film and ohmic contact formation.  

 

       Metal-semiconductor contacts with low impedance are essential in modern 

electronics. Ohmic contacts are formed by doping the Si substrate heavily 

enough to allow tunneling. Ohmic contact formation includes a high temperature 

process at which metal atoms diffuse into the substrate and make an alloy with 

the semiconductor. P-type devices with Al as back contact are heated to 450ºC 

for 2 min. in inert atmosphere. Similarly, n-type devices with Au layer are 

annealed at 400ºC for 2 min. annealing process is applied under atmospheric 

pressure and takes approximately 10 min.  
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4.1.3 Active Region Definition 

 

This fabrication step includes the deposition of an insulating layer on Si surface 

and patterning this layer to form an active region for each flash cell.  

 

       SiOx insulating layer is deposited on Si surface by VAKSIS CVD-Handy 

Plasma-Enhanced Chemical Vapor Deposition (PECVD) System to isolate flash 

cells from each other. PECVD is a technique in which various thin films are 

deposited from gas state to solid state on a substrate at lower temperatures 

compared to chemical vapor deposition (CVD). Plasma is created due to the 

capacitive coupling between a ground electrode and a RF electrode. Chemical 

reactions between the gases are initialized after the creation of the plasma, 

forming the desired material film on the sample. In PECVD technique, the 

substrate is heated to 250ºC - 350ºC. The lower deposition temperature makes 

PECVD more advantageous than CVD in many applications. PECVD system 

has limited capacity and allow individual wafer loading.  In addition, it can be 

easily contaminated and requires frequent cleaning. However, most PECVD-

coated films such as Si, SiOx and SiNx can be easily cleaned from the electrodes 

and the chamber walls with a plasma containing fluorine. Frequent cleaning of 

chamber has great importance to prevent contamination from deposited films. 

Compared to physical deposition systems, PECVD reaches faster deposition 

rates while maintaining conformality and uniformity.  

 

       Argon is used to dilute the plasma, which is crucial to achieve uniformity. 

Low deposition rate is achieved by lowering gas flow rates. The thickness at the 

center is measured as 204 nm by spectroscopic ellipsometry and it gradually 

increases through the edge, reaching around 212 nm.   

 

       Active regions are created by photolithography and wet etching with 

buffered oxide solution (BOE). The photomask with a minimum feature size of 

150 µm is designed by Layout Editor Software and produced by Heidelberg 
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Instruments DWL-66 Mask Writer. Prior to photolithography, samples are 

heated at 110ºC on a hot plate for 5 min. to remove humidity from the surface. 

Photoresist adhesion is improved by spin-coated HMDS (hexamethyldisilazane) 

at 5000 rpm for 40 s. Then, AZ5214E photoresist is spin coated at 4000 rpm for 

50 s., achieving a thickness of 1.4 µm. The samples are baked at 110ºC for 60 s 

to decrease the solvent concentration of the photoresist. After exposure, a 

mixture of AZ400K:H2O (1:4) is used to pattern the active regions on the 

surface. Photolithography process is finished with post-exposure bake. The post-

exposure bake is applied at 120ºC for 20 s. to increase the physical stability of 

the resist for chemical etching process. After photolithography, active regions 

are formed with wet etching of SiOx layer in BOE solution for approximately 3 

min. During etching process, the color of the sample is frequently observed with 

an optical microscopy to prevent over-etching.  

 

4.1.4 Gate Stack Formation 

 

Gate stack is composed of a charge storage medium sandwiched between HfO2 

as tunnel barrier and Al2O3 as control barrier. For graphene flash memories, 

chemically-synthesized graphene sheets are used as charge storage medium. For 

ONO-type flash memories, PECVD-grown Si-rich nitride layer is utilized for 

charge trapping. Gate stack formation includes deposition of graphene flakes, 

growth of nitride layer and deposition of tunnel layer and control layer by ALD.  

 

       Water-soluble graphene oxide is synthesized from natural graphite by 

Hummers Method [65]. Based on Hummers Method, graphene oxide sheets are 

derived from the acid exfoliation of natural graphite (SP-1, Bay Carbon). A 

mixture of sodium nitrate, potassium permanganete and sulfuric acid is applied 

to achieve acid oxidation. The graphite oxide is exfoliated into individual sheets 

by ultrasonic agitation for 60 min. Unexfoliated graphene oxide particles are 

completely eliminated by centrifuging the suspension sequentially at 8000 rpm 
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and 14000 rpm for 20 min each. Graphene flakes are obtained by thermally 

annealing the spin-coated graphene oxide layer. 

 

       The first process for gate stack is to grow 7 nm-thick HfO2 as tunnel oxide. 

69 cycles of HfO2 layer is deposited at 200ºC by Cambridge Nanotech Savannah 

thermal ALD system. For graphene flash memories, graphene oxide solution is 

spin-coated onto tunnel oxide layer at 300 rpm for 50 s. Thermal reduction of 

graphene oxide sheets is achieved at 300ºC for 30 min in ALD chamber. Prior to 

Al2O3 deposition, 50 cycles of TMA is deposited at 300ºC for functionalization 

of graphene surface. It was reported that metal oxides cannot be grown directly 

on graphene sheets by ALD since graphene surface is lack of dangling bonds 

and functional groups [84]. Surface functionalization is required to deposit 

defect-free thin films on graphene layers. After surface functionalization, 110 

cycles of Al2O3 as blocking oxide is grown at 300ºC by ALD. N2 with a flow 

rate of 20 sccm is applied to ALD chamber as a carrier gas. Deposition 

conditions of HfO2 and Al2O3 are summarized in Table 4.1. 

 

Table 4.1:  ALD Deposition Conditions 

 

Film Precursor #1 Precursor #2 
Growth 
Temp. 

Growth Rate 
# of 

cycles 

HfO2 Hf(NMe2)4 H2O 200°C 1.08 Å/cycle 69 

Al2O3 TMA H2O 300°C 1.01 Å/cycle 110 

 

 

       SiN flash memories contain Si-rich nitride layer as charge-trapping medium. 

SiN layer is deposited by VAKSIS CVD-Handy PECVD System. Uniformity is 

achieved by applying helium into the chamber to dilute the atmosphere.  It is 

difficult to obtain stoichiometric ratio in PECVD-deposited films because of the 

complexity of the chemical reactions in the plasma. Therefore, the control of gas 

flow ratio is crucial on nitride film properties. The SiH4/NH3 ratio is kept 

constant as (4sccm/200sccm) at 250°C under 0.6 Torr chamber pressure. 
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Thickness of nitride layer is measured as 5.4 nm by ellipsometry. In ONO-type 

flash cells, Si-rich nitride layer is sandwiched between HfO2 and Al2O3, which 

are deposited by ALD in similar growth conditions as do in graphene flash cells.  

 

4.1.5 Gate Contact Definition 

 

Gate contacts are formed by lift-off process after deposition of Al layer. Before 

Al evaporation, photolithography process is applied to pattern the gate 

electrodes. Details of photolithography steps are given in Section 4.1.3. 

However, post-deposition bake is not utilized not to harden the resist. After 

patterning, 100 nm-thick Al layer is deposited by thermal evaporation. Then, 

samples are left in acetone for 20 min to complete the lift-off process.  

 

4.2 Characterization Methods  

 

 4.2.1 Spectroscopic Ellipsometry 

 

Spectroscopic ellipsometer is a machine to measure the refractive index and 

thickness of films. The working principle is based on the change of polarization 

of light due to the reflection at the surface and the change of phase of the 

incoming light when the light transmits through the transparent parts of the 

sample. The polarization change is represented as an amplitude component, Ψ 

and the phase difference, Δ.  

 

       The spectroscopic ellipsometry allows film characterization with a thickness 

ranging from a few angstroms to several micrometers with superior precision. It 

is widely used in many different fields such as microelectronics, materials 

science and biology. It can yield information about various properties of thin 

films, including morphology, electrical conductivity, crystal quality and 

chemical composition. 
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       V-Vase Ellipsometry is used to determine the thickness of ALD-grown 

HfO2 and Al2O3, and PECVD-deposited SiN layer.  Optical constants of Si-rich 

nitride are also measured to determine the charge-trapping property of nitride 

films in ONO stack. 

 

4.2.2 Atomic Force Microscopy 

 

Atomic force microscopy (AFM) is one of the most widely used instruments for 

imaging, manipulation and measuring the sample at nano-scale. Information is 

gathered by scanning the surface with a sharp tip and measuring the forces 

between the tip and the sample.  

 

       There are many advantages of AFM over conventional microscopy 

techniques. First, AFM provides a three-dimensional image of a sample with 

atomic resolution. AFM does not require a vacuum condition. Moreover, it can 

be used in a liquid environment and sample preparation is not necessary before 

characterization.  

 

       AFM finds great number of applications in the field of materials science, 

semiconductor manufacturing, chemistry and biology. Scanning speed and scan 

image size are regarded as the main drawbacks of AFM compared with scanning 

electron microscopy (SEM). 

 

       Asylum MFP-30 AFM at UNAM is used to obtain topographical and 

surface potential data of graphene flakes in graphene flash memory. A 

conventional NA-NC polysilicon cantilever with a force constant of 9.5 N/m is 

driven in the repulsive mode.  
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4.2.3 Semiconductor Parameter Analyzer 

 

Capacitance-voltage measurements of SONOS-type and graphene flash 

memories are conducted with Keithley Model 4200 Semiconductor 

Characterization System. The measurement setup also includes a manual probe 

station, Cascade PM-5, where the sample is mounted o a vacuum chuck and 

microneedles are gently placed on bottom and top electrodes to achieve 

electrical connection. Coaxial cables are used for the connection to avoid 

environmental noise. 

 

       The semiconductor parameter analyzer (SPA) includes Model 4200-CVU 

card, which is an impedance measurement card at frequency range from 10 kHz 

to 10 MHz. The impedance measurement is conducted by sourcing AC signal to 

device terminals, then measuring the resulting AC current and the phase 

difference. Capacitance and conductance are extracted from measured 

impedance and phase difference.  

 

       Before the measurements, connection compensation data should be 

generated for open correction, short correction and load correction to avoid gain 

errors and parasitic effects caused by the electrical connection between the 

device under test (DUT) and the SPA. 

 

       The performance of the memory devices is determined with high frequency 

capacitance-voltage (C-V) measurement. All measurements are conducted in an 

ambient environment without light illumination to eliminate minority carrier 

generation by light. 
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Chapter 5 
 

 

Results and Discussion  
 

 

The fabrication of flash cells with Si-nitride and graphene sheets as charge 

trapping layer is given in the previous chapter. In this chapter, electrical 

characterization of graphene and SiN flash cells will be presented. Charge 

storage property of graphene is compared with ONO-type flash cells with Si-

nitride as storage medium. C-V measurements are performed for both electron 

and hole storage. This chapter also includes the structural characterization of 

graphene flakes by SEM and AFM.  

 

 

5.1 Characterization of Graphene 

 

5.1.1 SEM 

 

Characterization of graphene flakes is performed by SEM. Graphene oxide 

suspension is spin-coated onto SiO2/Si wafer at 300 rpm for 50 s. SEM images 

of graphene oxide layer can be observed in Figure 5.1. It is clearly shown that 

the surface is not uniformly covered with graphene flakes. Graphene layer is 

composed of monolayer, bi-layer and few-layer graphene nanosheets. In 

addition, SEM images confirm that individual sheets are in the range of 

hundreds of nanometers.  Chemical exfoliation of graphene is a simple and 
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inexpensive method to deposit graphene flakes in large dimensions. Uniform 

and continuous films can be achieved by altering the density of graphene oxide 

suspension and spin rate. 

 

 

Figure 5.1: SEM images of graphene flakes on a Si substrate 

 

5.1.2 AFM  

 

Topographical and surface potential data of graphene flakes are obtained 

simultaneously by Asylum MFP-30 AFM, given in Figure 5.2. The used 

nanoprobe is commercial HA_NC polysilicon cantilever of NT MDT company 

which is of force constant 9.5 N/m. The probe is coated with 10 nm of Pt for 

conductance necessary for surface potential data. The measured cantilever 

resonance frequency is 235.9 kHz. Back gate contact of the sample was DC 

biased, and AC bias was applied to the cantilever. DC bias was provided with 

AFM electronics, whereas AC bias of frequency 25 kHz was provided with the 

Stanford Research Systems DS345 Function Generator. The cantilever was 

driven in the repulsive mode.  To measure surface potential data, the deflection 

signal connected to the SR830 lock-in amplifier which is locked to 25 kHz. The 

topographic height of graphene layer is determined as 2 nm, approving the 

existence of monolayer and few-layer sheets.  
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Figure 5.2: AFM images of graphene flakes. 

 

5.1.3 Raman 

 

The Raman spectrum of exfoliated graphene oxide is illustrated in Figure 5.3. 

The sample for Raman spectroscopy is prepared by spin-coating the graphene 

oxide suspension on a Si substrate with a 120nm-thick Al layer on top of it. The 

measurement is performed at room temperature with Witec Raman Module. The 

raman spectrum of graphene oxide shows a D peak at 1347 cm
-1 

and a G peak at 

1597 cm
-1 

[84]. 
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Figure 5.3: Raman spectrum of exfoliated graphene oxide 

 

 

5.2 Electrical Characterization of Control Samples 

 

To understand the storage property of both graphene and Si-nitride layers, p-

type and n-type control samples with HfO2 as the tunnel oxide and Al2O3 as the 

control oxide are fabricated. C-V measurements are conducted at frequency of 1 

MHz and AC signal amplitude of 25 mVrms. Large hysteresis in C-V curve is a 

strong indicative of charging/discharging in MOS capacitors. As observed in 

Figure 5.4 and Figure 5.5, C-V characterization of control samples exhibit 

negligible hysteresis at a voltage range of ± 6 V, approving that high-k dielectric 

layers and interface traps have negligible effect on charge storage in flash cells. 

In other words, graphene and Si-nitride layers will be responsible for charge 

storage in this study.  
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Figure 5.4: C-V characteristics of n-type control sample 

 

 

 

Figure 5.5: C-V characteristics of p-type control sample 
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5.3 Surface Functionalization of Graphene 

 

Recently there has been much research conducted on the deposition of high-k 

dielectrics on top of graphene flakes. Dielectric films deposited on graphene 

surface should have high uniformity with a pinhole-free structure, high 

breakdown voltage and low leakage current at nano-scale thicknesses. ALD 

system seems to be a possible solution to deposit ultrathin homogenous films on 

top of graphene layer. Wang et al. tried to grow a 2 nm-thick Al2O3 layer on 

mechanically exfoliated graphene sheets using TMA and H2O as ALD 

precursors at 100ºC [83]. They concluded that direct deposition of metal oxides 

on graphene surface is not possible due to nonexistence of dangling bonds. 

Oxide growth can be initiated on the edge and defect sites, where dangling 

bonds and functional groups enhance the possibility of nucleation in ALD 

deposition. Surface functionalization of graphene is crucial before ALD 

deposition to nucleate continuous and uniform growth of thin high-k dielectrics. 

Many efforts have been carried out in the field of high-k/graphene interaction 

including deposition of seed layer with Al and polymer, pretreatment with ozone 

and fluorine [85-89]. These attempts are based on to create hydrophilic 

characteristics on graphene surface with reactive species such as hydroxyl 

groups. These functional groups have great importance to improve chemical 

reaction between graphene surface and ALD precursors.  

 

       In this study, graphene surface is functionalized with TMA precursor before 

Al2O3 growth. A graphene flash memory sample without surface 

functionalization is fabricated to observe the importance of surface pretreatment 

before ALD deposition.  In this sample, Al2O3 layer is directly deposited on top 

of graphene surface with TMA and H2O as precursors at 300ºC.  For the sample 

with surface functionalization, 50 cycles of TMA precursor is deposited before 

Al2O3 deposition to create dangling bonds and functional groups on the graphene 

surface. Figure 5.6 shows the C-V curves of the samples with/without surface 

functionalization at voltage sweep range of ± 4V. The C-V characteristics of the 
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sample without surface functionalization exhibit a narrow memory hysteresis 

with a significant corruption in accumulation region. This corruption indicates 

non-uniform and discontinuous growth of Al2O3 layer on graphene surface. The 

graphene layer is partially adhered to the control oxide due to hydrophobic 

characteristics of graphene surface; therefore, stored charges can easily tunnel 

through the gate metal. On the other hand, the sample with surface 

functionalization exhibits a large hysteresis window, confirming that Al2O3 layer 

is continuous and can avoid charge leakage through the gate contact.  

 

 

Figure 5.6: C-V characteristics of the samples with/without surface 

functionalization  
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trapping is the leading mechanism. Both electron and hole charging begins at ±3 

V. Compared to n-type graphene flash devices, charge trapping/detrapping 

begins at larger voltage range because of the fact that holes face higher band 

offset while tunneling through HfO2 as tunneling oxide.   

 

 

Figure 5.7: Hysteresis window of p-type graphene flash memory device 
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Figure 5.8: Hole storage performance of graphene flash devices for varying bias 

voltages 

 

       Retention rate of p-type graphene flash structures for hole storage is given 

in Figure 5.9. Uncharged p-type graphene cells are programmed at -5 V for 0.5 

s. Retention characteristics is determined by observing flat band voltage shift. 

The measurements take more than 12 hours and the data is extrapolated up to 

10
8
 s (10 years).   After programming two identical cells in a single sample, a 

flat band shift is found as around 0.6 V. According to the results, initial charge 

emission seems to be faster because of discharging of holes in shallow traps and 

interface states. After a certain period of time, charge loss rate has decreased 

significantly. Extrapolated data shows that 50% of trapped charge will be lost 

after ten years, approving that p-type graphene flash devices for hole storage 

exhibit enhanced retention rate. 
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pulse duration is illustrated in Figure 5.10. The cells are programmed at -5 V 
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memory performance for varying pulse duration. Flat band shift of 0.2 V - 0.3 V 

is obtained at a pulse duration of 100 ns and hole trapping increases with the 
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increase of pulse duration. Non-uniform deposition of graphene nanosheets 

causes a slight difference in the maximum shift obtained at 0.5 s.  

 

 

Figure 5.9: Retention characteristics of p-type graphene flash devices  

 

 

 

Figure 5.10: Program transient characteristics of p-type graphene flash devices 
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Memory window of p-type graphene flash cells is obtained after many 

write/erase cycles, shown in Figure 5.11. The cell is    programmed/erased   at  

-5V/5V for 0.1 s and C-V measurements are repeated for 30 times. The memory 

window of 1.1V is obtained after the first cycle. The memory window is 

observed to decrease to 0.8 V after 30 cycles. Oxide defects may be the reason 

of memory window degradation. After many write/erase cycles, charge injection 

through tunnel oxide may cause forming oxide defects and narrowing of the 

memory window. This result has a great importance to confirm that p-type 

graphene flash cells can be written/erased with low bias voltages and short 

pulses. 

 

 

Figure 5.11: Memory transfer characteristics of p-type graphene falsh device 

under written and erased conditions.  
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graphene flash memory cells are taken to determine the charging/discharging 

ability and the memory window. C-V curves on n-type graphene cells with 

successively increasing range from ±1 V to ±6 V are shown in Figure 5.12. All 

measurements are taken at a frequency of 1 MHz and it is concluded that CV 

hysteresis is strongly dependent on the maximum voltage limit. Large memory 

window is obtained at low voltage ranges, indicating that the usage of graphene 

as charge trapping medium improves the charge storage property of flash 

memories at low operation voltages.  

 

 

Figure 5.12: Hysteresis window of n-type graphene flash memory device 

 

       Retention performance of graphene flash cells for electron storage is given 

in Figure 5.13. Retention performance is determined by observing change in flat 

band voltage after programming the sample. The flat band voltage shift is 

estimated with respect to the C-V curve of the uncharged sample. The flash cell 

is programmed at 5 V for 0.5 s and subsequent C-V measurements are taken for 

more than 10 hours at room temperature. It is estimated that the cell Batch #1 

will lose 34% of the total stored charge after 10 years. Charge loss at the 

beginning of retention seems to be faster because of trapped charges at interface 

states. Moreover, maximum flat band shifts obtained from two separated cells 

-6 -4 -2 0 2 4 6
0

50

100

150

200

250

Voltage (V)

C
a
p

a
c
it

a
n

c
e
 (

p
F

)

 

 

-1V/1V

-2V/2V

-3V/3V

-4V/4V

-5V/5V

-6V/6V

-7V/7V



 61 

are different due to non-uniform deposition of graphene sheets.  The retention 

rate of the graphene flash cell exhibits that graphene layer as charge storage 

medium has great capability in retaining the stored charges over long periods of 

time.  

 

       The dependency of memory effects as a function of pulse duration is shown 

in Figure 5.14. Bias amplitude is kept constant at 5 V for electron storage and 

pulse width is varied from 100 ns to 0.5 s. It is clearly shown that electron 

injection is significant even when a gate bias with a pulse width of 100 ns is 

applied to the n-type graphene flash structure. High charge storage capability of 

graphene is the main reason for such a fast programming with a low voltage 

bias.  Reverse flat band shift is observed for Batch #1 in program transient 

characteristics. A probable reason for this effect could be the transfer of oxygen 

atoms between two graphene flakes.  

 

 

 

Figure 5.13: Retention characteristics of n-type graphene flash devices. 
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Figure 5.14: Program transient characteristics of n-type graphene flash devices. 
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Figure 5.15: Hysteresis window of p-type SiN flash memory device. 

 

       The impact of programming voltage on p-type SiN flash memories is given 

in Figure 5.16. Pulse duration of gate voltage is kept constant as 0.5 s and its 
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Figure 5.16: Hole storage performance of SiN flash devices for varying bias 

voltages. 
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comparison of retention rate with graphene flash cells for hole storage. A flat 
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According to the retention characteristics, the cell exhibits fast charge loss. The 

reason is that shallow traps are the main storage nodes in SiN layer and emission 

of holes from these traps becomes faster.  

 

       Figure 5.18 illustrates the transient program characteristics of p-type SiN 

flash devices for hole storage. The C-V curves are taken from three separated 

cells in a single sample at a constant write voltage of -5 V. The measurements 

are conducted without illumination to avoid generation of charge carriers with 

light-assisted voltage pulses. Based on the results, it is clear that a continuous 

increase in flat band shift cannot be obtained with increasing pulse duration. A 
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bias voltage of -5 V seems not to be sufficient to inject holes into the storage 

medium. The program transient characteristics of Batch #2 show a continuous 

increase in flat band shift up to 100 µs; however, it returns its uncharged 

condition at the following voltage pulse. Based on this behavior, we predict that 

charges are mainly stored in shallow traps and can be easily detrapped in a few 

seconds. The magnitude of voltage bias should be increased to store charges in 

deep traps.   

 

Figure 5.17: Retention characteristics of p-type SiN flash device. 

 

Figure 5.18: Program transient characteristics of p-type SiN flash devices. 
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5.7 Electrical Characterization of n-type SiN Flash 

Memories 

 

The high frequency (1 MHz) C-V curves of an n-type SiN flash cell under 

successively increasing voltage ranges are illustrated in Figure 5.19. According 

to the results, hysteresis width gets larger as dual-directional sweep range 

increases. For n-type SiN structure, the C-V characteristics exhibit clockwise 

hysteresis window around 4 V under a range of -8V/8V. The hysteresis window 

expands toward positive voltages, confirming that electron trapping is the 

dominant mechanism. In addition, hole trapping at the inversion state is also 

observed in the experiment.  

 

 

Figure 5.19: Hysteresis window of n-type SiN flash memory device. 

 

       Figure 5.20 shows the retention characteristics of n-type flash cell with SiN 
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rate is obtained under zero gate voltage and extrapolated to 10 years. After 

programming the device, a flat band shift of 0.82 V is observed. The n-type SiN 

flash structure exhibits a charge loss of 62% according to extrapolated data. This 
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significant amount of charge loss proves that electrons mostly stored in shallow 

traps of SiN layer. These shallow traps result in large emission rates from the 

beginning of the retention.  

 

 

Figure 5.20: Retention characteristics of n-type SiN flash device.  

 

       Figure 5.21 illustrates the program transient characteristics of n-type 

capacitors with SiN as charge trapping medium. High frequency C-V 

measurements are taken under a constant gate bias of 5 V. The SiN flash cells 

cannot provide significant electron storage until pulse duration exceeds 100 µs. 
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flat band shift of 0.5 V will not be sufficient for read operation of flash 

memories. Operation voltage should be increased to improve injection of 

charges and to reach a larger memory window. For Batch #2, program transfer 

characteristics make jumps at 100 µs and 10 ms, confirming that electrons are 

stored in traps with multiple levels in SiN layer.  
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Figure 5.21: Program transient characteristics of n-type SiN flash devices. 
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Figure 5.22: Band diagrams for samples with (a) graphene nanosheets and (b) 

Si-rich nitride as charge-trapping mediums. 

 

       The high frequency C-V curves of flash cells with graphene and Si-rich 

nitride under different sweep ranges are illustrated in Figure 5.23. For graphene 

flash cell, the C-V characteristics exhibit larger hysteresis window (about 2.03 

V) under voltage sweep of ±5 V whereas the hysteresis window for SiN flash 

cell is 1.75 V. The enhanced memory window confirms that the use of graphene 

improves the charge storage capability and reduces the operation voltage.  

 

       The stored charge density can be calculated with the following equation: 

 

   
        

  
                                                                                                (5.1) 

 

       where n is the stored charge density, A is the contact area and q is the 

charge. ΔVfb and Cox are determined from the measured data. The trapped charge 

density for graphene flash is calculated as 8.17x10
12 

cm
-2 

and for SiN flash 
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memory device; it is 1.90x10
12 

cm
-2 

under ±5 V dual sweep range. Considering 

the trapped charge density, graphene layer provides better charge storage 

capability.  

 

 

 
 

Figure 5.23: Comparision of hysteresis window for electron storage.  
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flash devices exhibit improved retention characteristics at room temperature. 
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medium. Graphene provides a deeper potential well for electrons; however, for 

Si-rich SiN, charges are stored in shallow traps and trapped electrons face a 

lower barrier height during retention. Since graphene flash memory structure has 

traps in deep energy level, it shows superior retention rate.  
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cannot achieve the same saturated flat ban shift even at 0.5 s.  The write voltage 

should be increased or longer pulse durations should be applied for SiN flash 

devices. The improvement in programming speed is attributed to the higher 

density of states in graphene nanosheets. A higher saturation flat band shift is 

observed for graphene flash, confirming that the application of graphene as the 

trapping layer enhances the charge storage capability. Moreover, graphene 

offers deep trapping levels and increases the barrier height with the control 

oxide. Then, back tunneling of trap charges is decreased.  While, for Si-rich 

nitride, the traps are located in shallow energy levels and the probability of back 

tunneling is enhanced.  

 

 

 

Figure 5.24: Retention characteristics of samples with graphene trapping layer 

and SiN trapping layer for electron storage. 
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Figure 5.25: Program Transient characteristics of samples with graphene 

trapping layer and SiN trapping layer for electron storage. 
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Figure 5.26: Comparision of hysteresis window for hole storage. 

 

       Hole storage performance of SiN flash and graphene flash cells for varying 

gate voltage at a pulse duration of 0.5 s is presented in Figure 5.27. Graphene 

flash cells exhibit significant flat band shifts at low voltages and reach the 

saturated flat band shift at -6 V. For Si-rich nitride flash devices, flat band shift 

is negligible with the applied voltage of -5 V and nitride-based cells do not reach 

a saturated flat band shift. Since graphene provides higher density of states, hole 

storage capability is better and larger flat band shifts are observed at low 

programming voltages in comparison to p-type SiN flash memories.  

 

 

 

Figure 5.27: Hole storage performance of samples with graphene trapping layer 

and SiN trapping layer for varying bias voltages. 
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       The long-term retention characteristics are compared in Figure 5.28. The 

graphene flash devices are programmed at -5 V for 0.5 s. For SiN memory 

structure, a gate voltage of -5 V is not sufficient to obtain an obvious flat band 

shift; therefore, it is charged at -7 V for 0.5 s to compare the retention rate with 

the graphene-based memory cell. It is observed that the nitride flash cell exhibits 

faster charge loss with a lower initial flat band shift. For graphene flash cells, a 

quick charge loss is observed in the early stage of retention, but charge loss 

becomes negligible after waiting time of 10
5
 s. The good retention rate of 

graphene flash memories is the result of charge storage nodes located in deep 

energy level. The leakage currents towards the tunnel oxide and the control 

oxide are suppressed by storing charges in deep traps. P-type flash memory with 

Si-rich nitride shows worse retention rate in the early stage of retention time and 

better retention in the later stages because of the reason that Si-rich nitride have 

higher trap density in shallow levels and less charge traps in deep levels.  

 

 

 

Figure 5.28: Retention characteristics of samples with graphene trapping layer 

and SiN trapping layer for hole storage. 
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memory cells. The devices with Si-rich nitride as charge-trapping layer cannot 

exhibit a continuous increase in flat band shift, confirming that injected holes 

are stored in shallow traps with the application of -5 V and can easily detrap in a 

few seconds. Whereas graphene flash cells shows superior program transient 

characteristics with 0.3 V flat band shift at 100 ns. Faster programming speed of 

graphene-based devices is related to the greater number of trapping nodes. In 

addition, holes encounter higher barrier when tunneling thorough the control 

oxide, confirming that the use of graphene flakes decreases the back-tunneling 

probability.  For comparison with electron storage, graphene flash cells achieved 

quick saturation at 100 ns when electrons are injected in the trapping medium. 

The faster behavior is attributed that HfO2 tunnel dielectric offers asymmetric 

band offsets with a lower barrier for electrons. In addition, hole injection reaches 

the saturated flat band shift at longer pulse durations due to their larger effective 

mass. 

 

 

 

Figure 5.29: Program transient characteristics of samples with graphene trapping 

layer and SiN trapping layer for hole storage. 
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5.10 Graphene Flash Memory with AlN as Tunnel Layer 

 

In this study, we have fabricated graphene flash structure with AlN as a tunnel 

layer. We compare the retention, operation voltage and program transient 

characteristics of AlN-based graphene flash memories with the structure using 

HfO2 as the tunnel oxide. The results presented in this study are collaboration 

efforts with Cagla Ozgit, Inci Donmez and Dr. Necmi Biyikli.  

 

5.10.1 Device Fabrication 

 

The graphene flash structure with AlN as the tunnel layer is fabricated on p-type 

Si wafers. The fabrication process is similar to the one explained in Chapter 4. 

The main difference is that the HfO2 tunnel layer is replaced with a 7-nm-thick 

AlN film deposited by plasma-enhanced atomic layer deposition (PEALD) using 

TMA and NH3 as precursors at 185ºC. Ozgit et al. reported the deposition 

conditions and characterization of PEALD-grown AlN thin films [93]. The 

structure of AlN-based graphene flash cells is given in Figure 5.30. 

 

 

Figure 5.30: Device structure for graphene flash device with AlN as charge 

storage medium. 
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5.10.2 Electrical Characterization of AlN Thin Film 

 

The AlN thin film can be seen a prospective candidate for tunnel oxide in flash 

applications due to its appropriate band offsets and high dielectric constant. 

However, the AlN thin film should provide minimal charge trapping in order to 

utilize as a tunnel layer. Tunnel oxides in flash devices should provide low 

charge trapping to avoid trap-assisted tunneling of stored charges.  

 

       The electrical performance of PEALD-grown AlN thin film is determined 

by fabricating MIS capacitors and characterizing the charge trapping property. 

For this study, the MIS capacitors are fabricated on a p-type Si substrate with 7 

nm AlN layer as an insulator. Thermally-evaporated Al layers are utilized as a 

top and bottom contact. The charge trapping property is determined by carrying 

out C-V measurements over a large voltage range under dark. As given in Figure 

5.31.  The hysteresis window slightly increases towards negative direction with 

the increase of a dual-directional voltage range. Based on the shift of flat band 

voltage in negative direction, it is concluded that the AlN layer has hole traps. 

C-V curves of the MIS capacitor confirm that the dielectric has an excellent 

interface with the Si for a film thickness less than 10 nm. Although hole traps 

exist in the AlN layer, it can be still utilized as a tunnel layer due to the fact that 

charge trapping behavior will become insignificant at low operating voltages 

according to the hysteresis curve.  
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Figure 5.31: C-V crahateristics of MIS structure with 7 nm-thick AlN layer. 

 

5.10.3 Electrical Characterization of the Memory Structure 

 

Figure 5.32 illustrates the band diagram of the memory capacitor under zero bias 

[94, 95]. AlN provides a higher conduction band offset with Si compared to 

HfO2. Therefore, the use of AlN is expected to improve the retention 

performance for electron storage. Moreover, AlN-based flash cells can exhibit 

faster write/erase speed at lower operating voltage since the dielectric constant 

of AlN is much lower than HfO2. The electric field across the tunnel oxide will 

increase when the tunnel oxide with a lower dielectric permittivity compared to 

the control oxide is utilized according to the Eq. 5.2, explained in Chapter 3.  

 

                                                                                  (5.2) 
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Figure 5.32: Band diagram for samples with AlN as the tunnel layer [94, 95]. 

 

         The high frequency (1 MHz) C-V measurements of graphene flash 

memory with AlN as the tunnel layer are given in Figure 5.33. The hysteresis 

window gets larger with the increase of the dual-sweep range. The structure 

exhibits a counterclockwise hysteresis of 6 V under sweep range of ±8 V. The 

hysteresis window expands towards both negative and positive directions; 

however, electron trapping becomes dominant after the applied voltage range of 

±3 V. Based on the large hysteresis width, it is concluded that the structure can 

exhibit great memory performance at low operating voltages.  

 

       Electron storage performance of the flash cell for varying the bias voltage is 

illustrated in Figure 5.34. Pulse duration is kept constant during the 

measurements. Based on the results, electron storage begins when the device is 

biased at 1 V and flat band shift becomes significant at 3 V biasing. 

Programming voltage characteristics approves that the use of AlN as the tunnel 
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oxide decreases the operating voltage. Since AlN provides smaller conduction 

band offset, the charge injection efficiency at low voltages is improved.  

 

 

Figure 5.33: Hysteresis window of graphene flash memory device with AlN as 

the tunnel layer. 

       

 

 

Figure 5.34: Electron storage performance of samples with graphene trapping 

layer and AlN tunneling layer for varying bias voltages. 
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       Figure 5.35 shows the retention characteristics of AlN-based flash structure 

for electron storage. C-V measurements are conducted at zero retention voltage 

after programming the cell at 5 V for 0.5 s. A flat band shift of 1.36 V is 

obtained after programming and the flat band shift is observed as a function of 

retention time. The charge loss rate for the structure is worse than expected.  

 

 

Figure 5.35: Retention characteristics of graphene flash device with AlN 

tunneling layer 

 

       To investigate the reason for fast charge loss, 7nm-thick AlN film deposited 

on Si(100) is examined with X-Ray photoelectron spectroscopy (XPS). 

Elemental composition as a function of ion beam etching is given in Figure 5.36.  

According to the compositional depth profile, C concentration rapidly decays 

and O concentration is high in the film. High concentration of oxygen impurities 

may create a conductive path between the Si substrate and the charge-trapping 

medium, resulting in a faster charge loss. Oxygen concentration in the film 

should be decreased to obtain improved retention capability for graphene flash 

cells with AlN as the tunnel layer.  
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Figure 5.36: XPS results of 7nm-thick AlN film deposited on Si(100).  

 

       The transient program characteristics are presented in Figure 5.37. The 

device is programmed at 5 V and the flat band shift is determined as a function 

of pulse duration. Although the structure provides a significant flat band shift of 

0.4 V at pulse duration of 100 ns, it was expected that the charge injection rate 

would be improved when the tunnel oxide was replaced with AlN layer. Since 

the oxygen impurities in the AlN thin film increases the charge leakage, the 

program transient characteristics become worse than expected. Lower oxygen 

concentration could be beneficial for the leakage and the operation speed. But, 

the study still shows promising results to enhance the sub-microsecond 

programming speed.  

 

       The transfer characteristics of the graphene flash with AlN tunnel layer 

under programmed and erased states is given in Figure 5.38. The write/erase 

conditions are +5V/-5V for 0.5 s. A memory window of 1.43 V is clearly 

achieved for the first write/erase cycle. The memory window narrows with the 

repeated write/erase cycles as the result of defects formed in the tunnel 

dielectric.  
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Figure 5.37: Program transient characteristics of graphene flash device with AlN 

tunneling layer. 

 

 

 

Figure 5.38: Memory transfer characteristics of graphene flash device with AlN 

tunneling layer under written and erased conditions. 
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Chapter 6 

 

 

Conclusions 

 

 

In recent years, non-volatile memory has dominated the semiconductor market 

due to increased demand for portable electronic equipments such as cellular 

phones, digital cameras, laptops etc. Conventional non-volatile memory 

structure is based on a MOSFET with a poly-silicon floating gate layer as the 

charge storage medium. Non-volatile flash memory devices with discrete 

charge-trap mediums are recently considered as an alternative solution to scaling 

issue in conventional floating gate technology. Currently, silicon-oxide-nitride-

oxide-silicon (SONOS) type flash memory structures utilizing Si-nitride as the 

charge-trapping layer have been investigated because of its better scalability, 

simpler fabrication and improved endurance. Metal nanoparticles have been 

used as discrete charge storage nodes since they offer high density of states and 

selectable work function. However, diffusion of metal nanoparticles into other 

layers during high-temperature processes may cause reliability problems in flash 

memory applications.  

 

       High-k dielectrics in flash technology allow further scaling without 

increasing the leakage mechanism. In flash applications, dielectrics with wide 

band gaps, high band offsets and minimal charge trap densities are crucial to 

obtain improved retention characteristics with high charge injection currents. 
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Atomic layer deposition (ALD) is a powerful technique for the growth of 

pinhole-free high-k dielectrics with precisely controlled thickness and high 

conformality.  

 

       Graphene is a promising candidate as a charge storage medium for non-

volatile technology since it provides high work function and advanced charge 

storage capability, which enable further scaling down of the tunnel and control 

dielectric thicknesses without degradation of retention characteristics. Therefore, 

replacing SiN layer in SONOS structure with graphene sheets is crucial to obtain 

low voltage operations, faster programming speed and enhanced retention.  

 

       In this thesis, our aim is to compare the charge storage performance of 

graphene sheets with those of SiN layer in flash memory applications. We 

fabricate graphene flash memories and characterize the memory performances 

of Al/Al2O3/Graphene sheets/HfO2/(p-Si or n-Si) structures performing C-V 

measurements for both electron and hole storage. Based on Hummers Method, 

graphene oxide sheets are derived from the acid exfoliation of graphite and spin-

coated onto tunnel oxide layer. Graphene sheets are obtained by thermal 

annealing and examined with AFM and SEM.  ALD-grown HfO2 and Al2O3 

high-k dielectric layers are used as tunnel oxide and control oxide, respectively. 

For comparing the effect of graphene as the charge-trapping layer on the 

memory device performance, we also fabricate identical memory cells with Si-

rich SiN layer replacing graphene. SiN films are deposited with high SiH4/NH3 

gas flow ratio by PECVD and characterized by ellipsometer. 

 

       The flash memory structure with graphene nanosheets as the charge-

trapping medium exhibits superior memory performance for both electron and 

hole storage. Compared to Si-rich nitride based devices, the retention rate and 

the programming speed are significantly enhanced with the application of 

graphene. Improved retention performance is a consequence of high density of 

charge nodes in deep energy level. The leakage mechanism through tunnel oxide 



 86 

and control oxide is effectively suppressed with the charge storage in deep traps. 

Graphene trapping layers also improve the charge injection efficiency as a result 

of high density of states. For electron storage, the saturated flat band shift is 

obtained even with the pulse duration of 100 ns at applied bias of 5 V.  

 

       In order to investigate the memory performance of chemically-exfoliated 

graphene charge-trapping flash memory devices, hysteresis window, retention 

rate, operation voltage and programming speed characteristics are analyzed both 

for electron and hole storage mechanisms. The unique properties of graphene 

flakes offer promising solution for the requirements of high-density flash 

memory technology such as scalability, low operating voltage, faster write 

performance, at least 10-year retention and CMOS-compatible fabrication. 
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