
CONVECTION-REACTION EQUATION
BASED MAGNETIC RESONANCE

ELECTRICAL PROPERTIES
TOMOGRAPHY (CR-MREPT)

a thesis

submitted to the department of electrical and

electronics engineering

and the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By
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ABSTRACT

CONVECTION-REACTION EQUATION BASED
MAGNETIC RESONANCE ELECTRICAL

PROPERTIES TOMOGRAPHY (CR-MREPT)

Fatih Süleyman Hafalır

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Yusuf Ziya İder

August, 2013

Tomographic imaging of electrical conductivity and permittivity of tissues may

be used for diagnostic purposes as well as for estimating local specific absorption

rate (SAR) distributions. Magnetic Resonance Electrical Properties Tomography

(MREPT) aims at noninvasively obtaining conductivity and permittivity images

at RF frequencies of MRI systems. MREPT algorithms are based on measuring

the B1 field which is perturbed by the electrical properties of the imaged object.

In this study, the relation between the electrical properties and the measured

B+
1 field is formulated, for the first time as, the well-known convection-reaction

equation. The suggested novel algorithm, called “cr-MREPT”, is based on the

solution of this equation, and in contrast to previously proposed algorithms, it is

applicable in practice not only for regions where electrical properties are relatively

constant but also for regions where they vary. The convection-reaction equation

is solved using a triangular mesh based finite difference method and also finite

element method (FEM).

The convective field of the convection-reaction equation depends on the spatial

derivatives of the B+
1 field. In the regions where the magnitude of convective

field is low, a spot-like artifact is observed in the reconstructed conductivity

and dielectric permittivity images. For eliminating this artifact, two different

methods are developed, namely “constrained cr-MREPT” and “double-excitation

cr-MREPT”. In the constrained cr-MREPT method, in the region where the

magnitude of convective field is low, the electrical properties are reconstructed

by neglecting the convective term in the equation. The obtained solution is

used as a constraint for solving electrical properties in the whole domain. In

the double-excitation cr-MREPT method, two B1 excitations, which create two

convective field distributions having low magnitude of convective field in different
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locations, are applied separately. The electrical properties are then reconstructed

simultaneously using data from these two applied B+
1 field.

These methods are tested with both simulation and experimental data from

phantoms. As seen from results, successful electrical property reconstructions

are obtained in all regions including electrical property transition region. The

performance of cr-MREPT method against noise is also investigated.

Keywords: B1 mapping, conductivity imaging, convection-reaction equation,

Magnetic Resonance Electrical Properties Tomography, MREPT, MREIT, per-

mittivity imaging, quantitative MRI, triangular mesh, FEM.



ÖZET

TAŞIMA-REAKSİYON DENKLEMİ TEMELLİ
MANYETİK REZONANS ELEKTRİKSEL

ÖZELLİKLER TOMOGRAFİSİ (TR-MREÖT)

Fatih Süleyman Hafalır

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Yusuf Ziya İder

Ağustos, 2013

Dokuların elektrik iletkenliğinin ve dielektirik geçirgenliğinin tomografik

görüntülenmesi teşhis amaçıyla kullanılabildiği gibi lokal özgül soğurma oranı

(SAR) dağılımlarını kestirmek için de kullanılabilmektedir. Manyetik Rezonans

Elektriksel Özellikler Tomografisi (MREÖT), MRG sistemlerinin RF frekansında

elektriksel iletkenlik ve dielektrik geçirgenlik görüntülerinin noninvaziv olarak

elde edilmesini amaçlamaktadır. MREÖT algoritmaları, görüntülenen cismin

elektriksel özellikleri tarafından bozulan B1 manyetik alanın ölçülmesine dayan-

maktadır. Bu çalışmada, elektriksel özellikler ile ölçülen B+
1 manyetik alanı

arasındaki ilişki bilinen taşınım-reaksiyon denklemi olarak ilk defa formüle

edilmiştir. Önerilen bu yeni algoritma “tr-MREÖT” olarak adlandırılmış ve

bu denklemin çözümüne dayanmaktadır. Önceki önerilen algoritmaların tersine,

sadece elektriksel özelliklerin göreceli olarak sabit olduğu bölgelerde değil aynı

zamanda değiştiği bölgelerde de bu algoritma pratikte uygulanabilir. Taşınım-

reaksiyon denklemi, üçgen örgülere dayalı sonlu farklar yöntemi ve sonlu eleman

yöntemi (FEM) kullanılarak çözüldü.

Taşınım-reaksiyon denklemindeki konveksiyon alanı, B+
1 manyetik alanın uza-

ysal türevlerine bağlıdır. Konveksiyon alanın genliğinin düşük olduğu bölgelerde,

geriçatılmış elektriksel iletkenlik ve dielektrik geçirgenlik görüntülerinde benek

gibi hatalar gözlemlenmektedir. Bu hataları gidermek için, “kısıtlı tr-MREÖT”

ve “çift-uyarma tr-MREÖT” adlandırılan iki farklı yöntem geliştirildi. Kısıtlı tr-

MREÖT yönteminde, konveksiyon alanının genliğinin düşük olduğu bölgelerde,

denklemin konveksiyon terimi ihmal edilerek elektriksel özellikler geriçatıldı. Elde

edilen çözüm, tüm bölgede elektriksel özelliklerini çözmek için kısıt olarak kul-

lanıldı. Çift-uyarma tr-MREÖT yönteminde, farklı bölgelerde genliği düşük kon-

veksiyon alanına sahip iki B1 manyetik alanı ayrı ayrı uygulandı. Daha sonra
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elektriksel özellikler, uygulanan bu B+
1 manyetik alan verileri eş zamanlı kul-

lanılarak geriçatıldı.

Bu yöntemler, fantomlar kullanılarak yapılan simülasyon ve deney verileri

kullanılarak test edildi. Sonuçlardan görüldüğü gibi başarılı elektriksel özellik

geriçatılmaları, elektriksel özelliklerin değişim bölgelerini de içerecek şekilde

bütün bölgelerde elde edildi. Tr-MREÖT yönteminin gürültüye karşı performansı

da incelendi.

Anahtar sözcükler : B1 haritalama, elektriksel iletkenlik görüntüleme, taşınım-

reaksiyon denklemi, Manyetik Rezonans Elektriksel Özellikler Tomografisi,

MREÖT, MREET, dielektrik geçirgenlik görüntüleme, niceliksel MRG, üçgen

örgü, sonlu eleman yöntemi.
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Chapter 1

Introduction

1.1 Motivation

Tomographic imaging of electrical properties of biological tissues has been the

subject of research for decades since it is useful for monitoring and diagnostic

purposes [1]-[7]. Ex vivo studies on brain tissue in connection with stroke show

significant changes of conductivity and permittivity [8]. Also, the studies re-

ported that tumors can be characterized by their electrical properties, identifying

between healthy and malignant tissue [3]. On the other hand, it is known that

electrical properties of tissues depend on frequency and electrical properties at

RF frequencies are important parameters in the field of RF safety. The electrical

conductivity at RF frequencies is needed to correctly estimate the local specific

energy absorption rate (SAR), which is directly related to tissue heating. The

local heating of tissue is a major problem in high-field magnetic resonance (MR),

particularly in the framework of parallel transmission [9].

In the past two decades, there have been many studies on imaging of elec-

trical properties. Well-known methods of imaging electrical properties in vivo

are electrical impedance tomography (EIT) and its variants using magnetic in-

duction tomography (MIT). They are developed to image electrical conductivity

(σ) and dielectric permittivity (ε) of tissues in the frequency range 1 kHz to 1
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MHz [10]-[15]. In these methods, current is either injected into the body by sur-

face electrodes (EIT), or induced in the body using external coils (MIT), and

data is measured either on the surface of the body or outside the body. Con-

sequently, low spatial resolution is achieved especially for interior regions of the

body because measured data are less sensitive to the variations of the electrical

properties of such regions. In order to improve spatial resolution in the rela-

tively interior regions, Magnetic Resonance Electrical Impedance Tomography

(MREIT) has been proposed [16]-[22]. In MREIT, internal magnetic field gen-

erated by the internal current distribution is imaged with high resolution using

magnetic resonance imaging (MRI) techniques [23], [24]. Thereby local mag-

netic field perturbations due to local conductivity perturbations are sensitively

measured resulting in higher spatial resolution throughout the inside. Currently

MREIT is suitable for DC or below 1 kHz imaging of conductivity.

Besides the above mentioned techniques, several electrical property imaging

techniques have been developed for the RF frequencies used in high field MR

systems such as 1.5 T or higher and these are in general named Magnetic Res-

onance Electric Properties Tomography (MREPT) [25]-[28]. These techniques

exploit the fact that the electrical properties of the imaged object perturb the

RF magnetic field of the MRI system. Therefore, the MREPT methods are based

on a measurement of the complex RF magnetic field of the MRI system. The

electrical properties of the object are reconstructed using these measurements.

In principle, MREPT is able to reconstruct not only the electrical conductivity

but also the permittivity.

1.2 Review of Previous Studies in MREPT

The possibility to extract electrical properties directly from MRI images was

addressed by Haacke et al. [29]. They stated that when the electrical properties

are increased, the more the RF profile is disrupted in MRI. Then, they suggested

that the electrical properties can be estimated using MRI images that reflect the

disrupted RF profile and they proposed a method to extract electrical properties
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by using iterative sensitivity matrix algorithm. Moreover, these authors used

heterogeneous planar model to evaluate the effects of object size, object geometry

and signal to noise ratio (SNR) in extracting the conductivity and permittivity.

Wen has developed a modified Helmholtz equation based non-iterative algo-

rithm [25] whereby the conductivity and permittivity are estimated by

σ = −Im(∇2B+
1

/

B+
1 )

µ0ω
and ε = −Re(∇2B+

1

/

B+
1 )

µ0ω2
(1.1)

where B+
1 is the MR-wise active circularly polarized (left-handed rotating) com-

ponent of the RF field. In this method, B+
1 magnitude map is found using the

well-known double-angle B1 mapping technique [30] and B+
1 phase distribution

is assumed to be half of the spin-echo MR phase image. Then, the author tested

the algorithm with phantom and animal experiments using 1.5 and 4.7 T MRI.

Katscher et al. proposed an iterative algorithm derived from Ampere’s Law

to image the electrical properties and they conducted an in vivo experiments

on a human head and leg using a 3 T MRI system [31]. Later, Katscher et al.

proposed an algorithm similar to Wen’s but which is more robust to noise [26].

In this method, assuming that the electrical properties are constant within an

integration area A, the authors proposed the following reconstruction formula:

κ(r) = ε(r)− iσ(r)/ω =

∮

∂A
∇×H(r) · dl

µω2
∫

A
H(r) · da (1.2)

where ∂A is the boundary of A, dl is the line element, and da is the surface

element. The formula (1.2) is an implementation of a local average of Wen’s

equation (1.1), and it does not require the explicit calculation of the second

spatial derivatives of the magnetic field components. They suggested that the Hx

andHy components can be determined by positive and negative rotating magnetic

field components (H+ and H−). In this study, H+ magnitude map is determined

by actual flip angle imaging (AFI) [32] and same as Wen’s method, H− phase

distribution is assumed to be half of the spin-echo MR phase image. In order to

determine H− and Hz, the authors suggested that H− and Hz can be derived

from a full model of the RF coil with or without the patient, or assumed H− ≡ 0

and/or Hz ≡ 0 due to H+ ≫ H−, Hz for a birdcage coil (note that z-direction is

3



taken as the direction of the DC magnetic field of an MRI system). Both Wen’s,

and Katscher et al.’s algorithms are suitable for reconstructing conductivity and

permittivity in regions where these properties are almost constant.

Zhang et al. have developed a dual-excitation algorithm [27] whereby the

complex permittivity (εc = εrε0− iσ/ω) is reconstructed based on the equations:

−∇2Hx = ω2µ0Hxεc − 1
εc

∂Hx

∂z
∂εc
∂z

+ 1
εc

(

∂Hy

∂x
− ∂Hx

∂y

)

∂εc
∂y

−∇2Hx = ω2µ0Hyεc − 1
εc

∂Hy

∂z
∂εc
∂z

+ 1
εc

(

∂Hy

∂x
− ∂Hx

∂y

)

∂εc
∂x

(1.3)

These equations (1.3) are derived from Maxwell’s equations andHz components of

applied RF magnetic field are assumed to be negligible for birdcage and transverse

electromagnetic (TEM) coils. Using data which are collected for two different

linear RF excitations, a total of four equations are derived in which complex

permittivity (εc), and its 3 spatial derivatives appear as the unknown variables.

By solving these equations, conductivity and permittivity are reconstructed. In

this study, the algorithm is tested by using simulations of human brain. These

investigators assume that the Hx and Hy components of the excitation RF field

can be measured, and therefore this method is not easily applicable to most

clinical MRI scanners at present.

In Voigt et al.’s method [33], the conductivity distributions can be recon-

structed from phase images and permittivity distributions can be reconstructed

from magnitude images of the RF transmit field, approximately. Starting from

Katscher et al.’s formula (1.2), the conductivity and permittivity values are ap-

proximated as

σ ≈ 1

µ0ωV

∮

∂V

∇ϕ+ (r) · da and ε ≈
∮

∂V
∇

∣

∣B+
1 (r)

∣

∣ · da
µ0ω2

∫

V

∣

∣B+
1 (r)

∣

∣ dV
(1.4)

where ϕ+ is the phase of B+
1 , V is the integration volume, ∂V is the surface of V ,

and da is the surface element. The feasibility studies of this phase-based conduc-

tivity imaging and magnitude-based permittivity imaging are done by numerical

simulations and in vivo experiments on human brain.

Later, van Lier et al. suggested B+
1 phase can be derived directly from the

measurable transceive phase, arg(B+
1 B

−

1 ), in the head. Measured phase (ϕs)
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depends on the transceive phase (ϕ±), the off-resonant terms and the eddy current

induced magnetic field (Be):

ϕS (r, TE) = ϕ± (r)− ωoff−res (r)TE +

∫ TE

0

γBedt (1.5)

where TE is echo-time. These authors assumed that the transmit phase (ϕ+)

is half of the transceive phase (ϕ±). This assumption is valid for some situa-

tions for example for a dielectrically homogeneous lossy cylinder using quadra-

ture excitation and reception with the same coil. Then, using only B+
1 phase, the

conductivity is reconstructed approximately as

σ ≈ −Im

(∇2eiϕ+

eiϕ+

)

1

µ0ω
(1.6)

where ϕ+ is the phase of B+
1 . In this study, this method is tested for a human head

excited by 7T birdcage coil using simulation and measurements. The algorithms

proposed by van Lier et al. and Voigt et al. are also suitable for regions where

the electrical properties are almost constant.

Seo et al. pointed out the current MREPT methods rely on an assumption of a

locally homogeneous electrical properties and a reconstruction error occurs where

this assumption fails [34]. They analyzed the reconstruction error quantitatively

by performing numerical simulations and phantom experiments.

Recently, Sodickson et al. proposed a method called Local Maxwell Tomogra-

phy (LMT) which is free of assumption on RF phase [35]. Using complementary

information from the transmit and receive sensitivity distributions of multiple

coils, this method solves RF phase distribution along with unknown electrical

properties. In this method, the transmit and receive fields are expressed as:

B+
1,l =

(
∣

∣B+
1,l

∣

∣ eiϕΣl

) (

e−iϕ0
)

and B−

1,l′ =
(
∣

∣MB−

1,l′

∣

∣ eiϕ∆
l′

) (

|M |−1eiϕ0
)

(1.7)

where ϕ0 is the unknown phase distribution associated with a chosen reference

receive coil and |M | is the unknown magnetization. l labels transmit, and l′ re-

ceive coils. ϕΣl
is the sum of transmit and reference phase, ϕ∆′

l
is the difference

of receive and reference phase. Using product rule expansion of ∇2B±

1 , separa-

tion into real and imaginary parts, and assuming electrical properties are locally
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homogeneous, the Helmholtz equation is written in terms of receive and transmit

fields in matrix equations as follow (constant M):

[

−2∂ ln
∣

∣B+
1,l

∣

∣

/

∂x

2∂ ln
∣

∣MB−

1,l′

∣

∣

/

∂x

−2∂ ln
∣

∣B+
1,l

∣

∣

/

∂y

2∂ ln
∣

∣MB−

1,l′

∣

∣

/

∂y

−2∂ ln
∣

∣B+
1,l

∣

∣

/

∂z

2∂ ln
∣

∣MB−

1,l′

∣

∣

/

∂z

−1

1

1

1

]

·

[

∂ϕ0

∂x

∂ϕ0

∂y

∂ϕ0

∂z
∇2ϕ0 ωµσ

]T

=

[

−2∇ ln
∣

∣B+
1,l

∣

∣ · ∇ϕΣl
−∇2ϕΣl

−2∇
∣

∣MB−

1,l′

∣

∣ · ∇ϕ∆l′
−∇2ϕ∆l′

]

(1.8)

Similar equation can also be written for dielectric permittivity. Since there are

5 unknowns, a 3-element transmit-receive array will suffice to determine conduc-

tivity and dielectric permittivity and larger numbers of elements will improve

robustness. In this study, the algorithm is tested by using simulations and exper-

iments of phantoms. This algorithm enables electrical property mapping without

assumptions regarding phase and field structure. However, it is also suitable for

regions that have homogeneous electrical properties.

1.3 Objective and Scope of the Thesis

Imaging of electrical properties (EP) of tissues (conductivity σ and permittivity

ε) using MRI is important to provide diagnostic information about tissues and

patient-specific real-time SAR calculation. Magnetic Resonance Electrical Prop-

erties Tomography (MREPT) achieves non-invasive electrical property mapping

using the measured complex B1 field at Larmor frequency. Currently available

practical MREPT methods reconstruct electrical properties within local homo-

geneous regions where conductivity and dielectric permittivity values are almost

constant. In this thesis, we propose a novel algorithm named convection-reaction

equation based MREPT (cr-MREPT) which reconstructs conductivity and di-

electric permittivity also in transition regions where conductivity and dielectric

permittivity vary.

This thesis is confined to the reconstruction of tissue conductivity and di-

electric permittivity or equivalently admittivity defined as γ = σ + iωε, where

ω is the frequency of the applied RF field. Imaging of magnetic permeability
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is not considered, and it is assumed that tissues have the free space magnetic

permeability.

Starting from the Maxwell’s equations, we derive a partial differential equation

for admittivity, γ, which is in the form of the convection-reaction equation where

the coefficients of the equation depend on the complex B+
1 map. The derived

equation is then solved using a triangular mesh based finite difference method

and finite element method (FEM) to reconstruct conductivity and permittivity

for single or double RF excitation cases. The convective field of the convection-

reaction equation depends on the spatial derivatives of the B+
1 field, and in the

regions where its magnitude is low, a spot-like artifact is observed in the recon-

structed electrical properties images. For eliminating this artifact, two different

methods are developed, namely “constrained cr-MREPT” and “double-excitation

cr-MREPT”. The proposed method is suitable for reconstructing electrical prop-

erties not only in regions where they are relatively constant but also in regions

where they change. Reconstructions are made using noise-free and noisy simu-

lated data and also from experimental data.

1.4 Organization of the Thesis

The thesis is organized as follows: Chapter 2 describes the derivation of the pro-

posed convection-reaction equation based MREPT (cr-MREPT) algorithm. In

Chapter 3, a triangular mesh based finite difference method is explained for solu-

tion of the convection-reaction equation based MREPT (cr-MREPT) algorithm.

Then, the simulation methods include birdcage coil modeling and also the de-

scription of simulation phantoms. The preparation of the experimental phantom,

the experiment procedures and the measuring method of complex B+
1 mapping

are also explained in this chapter. In Chapter 4, the simulation and experimental

results are given. In the preliminary results, the spot-like artifacts are observed.

For eliminating these artifacts, two different methods namely “constrained cr-

MREPT” and “double-excitation cr-MREPT” are suggested in this chapter. In

addition, the noise behavior of the cr-MREPT algorithm is also analyzed. In

7



Chapter 5, the cr-MREPT algorithm using finite element method (FEM) is de-

scribed and also using this method, the simulation and experimental studies are

given. Chapter 6 includes discussion of the proposed cr-MREPT algorithm and

concludes the thesis.
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Chapter 2

Theory

Let H represent the RF magnetic field generated by the RF coil at Larmor fre-

quency inside the object to be imaged. H is determined by the geometry of the

coil and is also influenced by the presence (loading effect) of the object. The

loading effect of the object is related to its electrical properties, and specifically

to its admittivity which is defined as γ = σ+iωε where σ is electrical conductivity

and ε is dielectric permittivity. Although the influence of γ on H is not desired in

conventional imaging because it destroys the homogeneity of the RF field within

the object, in MREPT, this influence is exploited. The purpose of this section

is therefore to relate the perturbation in H to the admittivity distribution of the

object, so that if H can be measured then an inverse problem may be solved to

find admittivity.

Components of H can be expressed in terms of the left-handed rotat-

ing and right-handed rotating RF fields H+, and H− respectively defined as

H+ = (Hx + iHy)/2, and H− = (Hx − iHy)
∗/2 such that H = (Hx, Hy, Hz) =

(H+ + H−∗
,−iH+ + iH−∗

, Hz) [36]. It is assumed in the forthcoming that H+

can be measured by MRI techniques and therefore it is desired to obtain a rela-

tion between H+ and γ. ( H− cannot be measured using MRI since it is counter

productive in MRI).

Admittivity appears in Ampere’s Law (with Maxwell’s correction) as∇×H =
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γE. By taking the curl of both sides of this equation, by using the fact that∇·H =

0, and also by making use of the vector identity ∇×∇×H = −∇2H+∇∇ ·H
and the Faraday’s Law ∇ × E = −iωµH, we can obtain an equation involving

the magnetic field only, as follows:

∇×∇×H = ∇× (γE) = ∇γ × E+ γ∇×E (2.1)

⇒ −∇2H =
∇γ

γ
× (∇×H)− iωµγH (2.2)

We can write the x- and y-components of Equation (2.2) as:

−∇2Hx =
1

γ

∂γ

∂y

(

∂Hy

∂x
− ∂Hx

∂y

)

− 1

γ

∂γ

∂z

(

∂Hx

∂z
− ∂Hz

∂x

)

− iωµγHx (2.3)

−∇2Hy =
1

γ

∂γ

∂z

(

∂Hz

∂y
− ∂Hy

∂z

)

− 1

γ

∂γ

∂x

(

∂Hy

∂x
− ∂Hx

∂y

)

− iwµγHy (2.4)

If we multiply Equation (2.4) by i and add to Equation (2.3), we obtain

−2∇2H+ = −1

γ

∂γ

∂x
i

(

∂Hy

∂x
− ∂Hx

∂y

)

− 1

γ

∂γ

∂y

(

−∂Hy

∂x
+

∂Hx

∂y

)

−1

γ

∂γ

∂z

[

2
∂H+

∂z
− ∂Hz

∂x
− i

∂Hz

∂y

]

− 2iωµγH+

(2.5)

By using the definitions of H+, H−, and ∇ ·H = ∂Hx

∂x
+ ∂Hy

∂y
+ ∂Hz

∂z
= 0 we can

modify the
(

∂Hy

∂x
− ∂Hx

∂y

)

factor as

∂Hy

∂x
− ∂Hx

∂y
=

∂Hy

∂x
− ∂Hx

∂y
− i

(

∂Hx

∂x
+

∂Hy

∂y
+

∂Hz

∂z

)

= 2i

(

−i
∂H+

∂x
− ∂H+

∂y
− i

2

∂Hz

∂z

)

− i
∂Hz

∂z

(2.6)

By using this identity, Equation (2.5) becomes:

−∇2H+ = −1

γ

∂γ

∂x

((

∂H+

∂x
− i

∂H+

∂y

)

+
1

2

∂Hz

∂z

)

−1

γ

∂γ

∂y

(

i

(

∂H+

∂x
− i

∂H+

∂y

)

+
i

2

∂Hz

∂z

)

−1

γ

∂γ

∂z

(

∂H+

∂z
− 1

2

∂Hz

∂x
− i

2

∂Hz

∂y

)

− iωµγH+

(2.7)

Dividing by γ and using the definition u = 1/γ, Equation (2.7) can be written

as:

C · ∇u+∇2H+u− iωµH+ = 0 (2.8)
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where

∇u =



















∂u

∂x
∂u

∂y

∂u

∂z



















=



















− 1

γ2

∂γ

∂x

− 1

γ2

∂γ

∂y

− 1

γ2

∂γ

∂z



















and C =









Cx

Cy

Cz









=



















∂H+

∂x
− i

∂H+

∂y
+

1

2

∂Hz

∂z

i
∂H+

∂x
+

∂H+

∂y
+

i

2

∂Hz

∂z

∂H+

∂z
− 1

2

∂Hz

∂x
− i

2

∂Hz

∂y



















This equation is the well-known convection-diffusion-reaction equation with null

diffusion term, whereC is the convective field and∇2H+u−iωµH+ is the reaction

component [37]. (Note that Cy = iCx)

We have already assumed thatH+ can be measured using MRI. If additionally

the gradient ofHz is known, then Equation (2.8) can be solved in three dimensions

for u by imposing appropriate boundary conditions. However, measurement of

Hz component is not feasible in MRI. On the other hand, Hz can be neglected

in the central regions for a birdcage RF coil where end-ring generated Hz field

is minimum. In many reconstruction applications, u is desired to be found in a

specified xy-plane (slice). For such applications, if it can be assumed that ∂u/∂z

is negligible for the slice of interest then Equation (2.8) can be simplified into its

2-D form:

F · ∇̄u+∇2H+u− iωµH+ = 0 (2.9)

where ∇̄u =









∂u

∂x
∂u

∂y









and F =

[

Fx

Fy

]

=









∂H+

∂x
− i

∂H+

∂y

i
∂H+

∂x
+

∂H+

∂y









.

If ∇̄u is assumed to be negligible such as in regions where electrical properties

vary slowly, then the solution of Equation (2.9) reduces to

u =
iωµH+

∇2H+
(2.10)

This formula is in effect the same as the Wen’s formula mentioned in Chapter

1.2 except that u = 1/γ. (Note that the symbol H+ used in this section and

the symbol B+
1 used frequently in the literature both represent the left-handed

rotating RF field and that B+
1 = µH+.)
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From MRI system, B+
1 can be measured and so H+ can be found using the

relation, H+ = B+
1

/

µ, where µ is the magnetic permeability. The magnetic

permeability, µ is given by

µ = µ0 (1 + χv) (2.11)

where χv is volume magnetic susceptibility. Water is the predominant component

of most tissues and the susceptibility of most tissues appears to be within ±10%−
20% that of water; i.e., χwater = −9.05 × 10−6 and −11 × 10−6 < χtissue <

−7 × 10−6 [38]. For example, the magnetic susceptibility values of bone and

whole blood are χbone = −11.31 × 10−6 and χblood = −7.9 × 10−6, respectively

[38]. Therefore, when the spatial resolution of the MRI images is considered,

the first and second derivatives of the magnetic permeability for tissues can be

neglected in our formulas. In other words, the magnetic permeability of tissues

can be assumed to be constant and equal to the magnetic permeability of the free

space, µ = µ0 = 4π × 10−7. All MREPT algorithms use this assumption [39].

The coefficients of the partial differential equation in Equation (2.9) depend on

H+ and therefore H+ must be measured. Magnitude of H+ can be found by one

of the several available B1 mapping techniques [30][32][40]-[42]. In this thesis we

have used the double-angle-method [30]. For the measurement of the phase of H+

no exact and general method has been developed so far. However, as explained in

Section 3.3.2 the phase of H+ can be closely estimated if a quadrature birdcage

RF coil is used [25].

12



Chapter 3

Methods

3.1 Solution of the Convection-Reaction Equa-

tion based MREPT (cr-MREPT)

3.1.1 Convection-Reaction Equation based MREPT (cr-

MREPT) using a Triangular Mesh based Finite Dif-

ference Method

In cr-MREPT method, in order to reconstruct σ and ε, Equation (2.9) is solved

for u. A triangular mesh based finite difference method is proposed where a

triangular mesh is generated in the imaging slice as a first step. It is assumed that

H+ is measured (known) on the nodes of the triangular mesh. The procedure for

obtaining H+ distribution on the nodes from the MR raw data is discussed in the

“Experimental Methods” section. Equation (2.9), which is a partial differential

equation, has the first derivatives and the Laplacian of H+ as its space dependent

coefficients. In the following, it is assumed that these coefficients are already

calculated on the nodes (the procedure for calculating these first derivatives and

the Laplacian is discussed at the end of this section).
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Inside each triangular element, u can be approximated as

u(x, y) =

3
∑

i=1

ui,jφi,j(x, y) (x, y) ∈ Ωj , j = 1, 2, ..., Nt (3.1)

where Ωj denotes the inside of the j’th triangle, Nt is the number of triangles

in the imaging slice, ui,j is the value of u at the i’th node of the j’th triangle,

and φi,j(x, y) = ai,jx+ bi,jy + c. In the finite element method (FEM) literature,

φi,j(x, y) is called linear shape function. The coefficients, a, b, and c, in these

equations can be calculated by using the definitions φi,j(xm,j , ym,j) = 1 if i =

m and φi,j(xm,j , ym,j) = 0 otherwise where (xm,j , ym,j) are the coordinates of

the m’th node of the j’th triangle (i,m = 1, 2, 3). Once the coefficients are

determined, ∂u/∂x and ∂u/∂y are found inside the j’th triangle as follows

∂u(x, y)

∂x
=

3
∑

i=1

ui,jai,j and
∂u(x, y)

∂y
=

3
∑

i=1

ui,jbi,j (3.2)

Similar to how u is approximated in Equation (3.1), each of Fx, Fy and ∇2H+

can also be approximated in a triangle using their nodal values and the linear

shape functions. Using these approximations and also Equation (3.2), Equation

(2.9) can be written for each triangle as

3
∑

i=1

F x
i,jφi,j(x, y)

3
∑

i=1

ui,jai,j +
3

∑

i=1

F y
i,jφi,j(x, y)

3
∑

i=1

ui,jbi,j

+

3
∑

i=1

∇2H+
i,jφi,j(x, y)

3
∑

i=1

ui,jφi,j(x, y) = iωµ

3
∑

i=1

H+
i,jφi,j(x, y)

(3.3)

where F x
i,j, F

y
i,j, ∇2H+

i,j, and H+
i,j are Fx, Fy, ∇2H+ and H+ values at the i’th

node of the j’th triangle, respectively. Evaluating Equation (3.3) at the centroid

of the j’th triangle, denoted by (xj, yj), and rearranging terms, one obtains

3
∑

i=1

ui,j

(

ai,jF
x
j + bi,jF

y
j +∇2H+

j

)

= iωµH+
j (3.4)

where F x
j , F

y
j , ∇2H+

j , and H+
j are defined at the centroid of the j’th triangle

and they are the means of the three corresponding nodal values (note that F x
j =

3
∑

i=1

F x
i,jφi,j(xj , yj) =

3
∑

i=1

F x
i,j

/

3 and similarly for F y
j , ∇2H+

j , and H+
j ). Assigning
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global indices to all nodes in the imaging slice, Equation (3.4) is written for the

j’th triangle as
∑

k

uk

(

akF
x
j + bkF

y
j +∇2H+

j

)

= iωµH+
j (3.5)

where k ∈ Pj and Pj by definition contains three integers which are the global

indices of the nodes of the j’th triangle. Equation (3.5) can be written for each

triangle and a matrix system is obtained as

KNtxNp
uNpx1 = fNtx1 (3.6)

where Nt is the number of triangles and Np is the number of nodes on the imaging

slice. Note that each row of the K matrix has only three non-zero elements. For

the solution of Equation (2.9), boundary conditions should also be considered.

In cr-MREPT method, u values at the boundaries of the solution domain are as-

sumed to be known (i.e. Dirichlet boundary condition is used). This information

is used to eliminate corresponding columns of the matrix K and the number of

unknowns (Np) is decreased. Since Nt>Np, the system is over-determined and it

is solved in the least-square sense.

As discussed in ”Simulation Results” section, in some cases, it is desired to

specify u values in a certain region and use this information as a-priori knowledge

(as a constraint). The u values in this region are calculated beforehand whether

using another reconstruction method or they are assumed to be known. Similar

to the boundary nodes, this information is incorporated in the solution by elimi-

nating corresponding columns of the matrix K and the number of unknowns (Np)

is further decreased.

As discussed above, K matrix and f vector in Equation (3.6) are constructed

using the measured data and thus they are strictly related to the distribution of

H+. Obviously, for different H+ distributions, different K and f are obtained.

Let K1, K2 and f1, f2 be obtained for two different H+ distributions. In this case,

these matrices and vectors can be concatenated for the solution of u as follows:
[

K1

K2

]

2NtxNp

uNPx1 =

[

f1

f2

]

2Ntx1

(3.7)

Similar to the case when Equation (3.6) is solved alone, the boundary condi-

tions and the a-priori knowledge (if desired) are used to eliminate corresponding
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columns of the concatenated matrix in Equation (3.7) and the number of un-

knowns is decreased. The final matrix system is also over-determined and it is

solved in the least-square sense. In the “Simulation Results” section, the ratio-

nale behind using two RF excitations resulting in two different H+ distributions

rather than a single excitation is discussed.

3.1.2 Calculation of the First Derivatives and the Lapla-

cian of H+ at the Triangular Mesh Nodes

For the calculation of the first derivatives and the Laplacian of H+ at the mesh

nodes the method proposed by Fernandez et al is used [43]. It is assumed that H+

is known at the nodes of the triangular mesh defined in the imaging slice. Using

nodal H+ values, the first derivatives and the Laplacian of H+ are calculated

separately for every node as follows: Let n0 denote the node where the first

derivatives and the Laplacian of H+ are to be calculated and let n1 to n6 denote

the neighboring nodes of the central node n0 as shown in Figure 3.1. H+ is

approximated as a second order polynomial in the shaded region as H+(x, y) =

ax2 + by2 + cxy + dx + ey + f . To find the coefficients, a, b, c, d, e, and f the

following set of equations is written:

H+(xi, yi) = ax2
i + by2i + cxiyi + dxi + eyi + f for i = 0, 1, . . . , 6 (3.8)

where xi and yi are the x- and y- coordinates of node i. Note that in this system

there are 6 unknowns and 7 equations, and therefore the system is solved in the

least square sense. However, for some nodes, such as the boundary nodes, the

number of equations is less than 6. In such a case, the minimum-norm solution

is used for finding the coefficients. Once the coefficients of the second order

polynomial are determined, the first derivatives and the 2-D Laplacian of H+ for

node n0 are found as

∂H+

∂x
= 2ax0 + cy0 + d,

∂H+

∂y
= 2by0 + cx0 + e, and ∇̄2H+ = 2a+ 2b (3.9)

where x0 and y0 are the x- and y- coordinates of node n0. This procedure is

repeated for every node of the triangular mesh.
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It should be noted that ∇2H+ also involves the second derivative of H+ with

respect to z. In simulations, H+ is calculated on two other slices one 5 mm above

the imaging slice and one 5 mm below the imaging slice. In the experiments,

H+ is measured also on three slices with 5 mm spacing. Therefore, the second

derivative with respect to z is calculated using central difference approximation.

Figure 3.1: A sample region of the triangular mesh at the imaging slice: n0 and
its 6 neighboring nodes (n1 to n6) are shown. H+ is approximated as a second
order polynomial in the shaded region using the H+ values at the nodes n0 to n6.

3.2 Simulation Methods

To test the proposed algorithms, simulated data are obtained using MATLAB

(The Mathworks, Natick, USA), and COMSOL Multiphysics 4.2a (COMSOL AB,

Stockholm, Sweden), a FEM based software package. MATLAB and COMSOL

Multiphysics are also used for the implementation of reconstruction algorithms,

filters, pre-processing steps, and all numerical procedures.
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3.2.1 Birdcage Coil FEM Model

The geometry of the shielded high-pass quadrature birdcage coil which is built in

COMSOL Multiphysics is shown in Figure 3.2(a).

Figure 3.2: (a) A shielded high-pass quadrature birdcage coil model (shield is
shown as red) (b) Model of the rungs (green), end rings (purple), and capacitors
(red) of the coil.

As shown in Figure 3.2(a), the coil is a 24-leg high-pass birdcage coil with

a radius of 0.3 m and length of 1 m. Capacitors (Figure 3.2(b)) in the end

rings are modelled as parallel plate capacitors (in 3-D) whereas rungs, and end

rings (Figure 3.2(b)) are modelled as rectangular surfaces and Perfect Electric

Conductor (PEC) boundary condition is assigned to the surfaces. In order to

prevent reflections from the outer boundary of the spherical solution domain of

radius 1.5 m, a perfectly matched layer is introduced on the outer boundary [44].

Detailed analysis and modelling of the birdcage coil are given in [45]. In order to

generate a homogeneous and circularly polarized H+ in the region of interest, for

the unloaded case, optimum capacitance value is calculated as 8.6 pF at 123.2

MHz (corresponding to the 2.89 T MRI system used in this study) using the

method proposed in [46].
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3.2.2 Verification of the Coil Model

Calculated |H+| and |H−| distributions at the central slice of unloaded quadrature

birdcage model at the desired frequency are shown in Figure 3.3. As expected,

Figure 3.3: (a) |H+| distribution and (b) |H−| distribution at the central slice
(z = 0), when the unloaded quadrature birdcage coil is driven by 500V peak from
the ports that are geometrically 90◦ apart from each other and with 90◦ phase
difference.

|H+| has uniform distribution whereas |H−| is nearly zero in the central region of

the birdcage coil. Variation of |H+| is less than ±2% within a cylindrical region of

30 cm length along the z-axis and 30 cm in diameter. Magnetic field distributions

for loaded birdcage coil will be given in the simulation results section.

3.2.3 Simulation Phantoms

As the loading objects, two different phantoms shown in Figure 3.4 are modeled

in the simulation environment.
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Figure 3.4: (a) The first simulation phantom: geometric model of two concentric
cylindrical objects. (b) The second simulation phantom: geometric model of two
eccentric cylindrical objects.

The first phantom shown in Figure 3.4(a), called the “first simulation phan-

tom”, consists of two concentric cylindrical objects (A and B) with a total di-

ameter of 14.4 cm and a height of 19.5 cm. Object A has a diameter of 7.5 cm

and these two objects have different conductivity and permittivity distributions

which will be given in the simulation results section.

The second phantom shown in Figure 3.4(b), called the “second simulation

phantom”, on the other hand, consists of two eccentric cylindrical objects (C

and union of D an E) with a total diameter of 14.4 cm and a height of 19.5

cm. Object C has a diameter of 5 cm. The outer cylindrical object is separated

into two objects (D and E). This separation provides the possibility of making

electromagnetic simulations with and without object E (region E is cut out when

so desired) and thus acquiring two different simulated data in the region of interest

(D and C).
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3.3 Experimental Methods

In order to test the proposed cr-MREPT algorithm with experimental data, two

experimental setups are prepared. For these setups, the simulation phantoms

shown in Figure 3.4(a) and (b) are manufactured from plexiglass and these are

called the “first experimental phantom” and the “second experimental phantom”,

respectively.

3.3.1 Phantom Preparation

For the first experimental phantom, the background (region B in 3.4(a)) is made

by using an agar solution (20 gr/l Agar, 2 gr/l NaCl, 1.5 gr/l CuSO4). NaCl is

used for adjusting the conductivity of the phantom and CuSO4 is used for de-

creasing T1 of the solution to around 300 ms. After region B is solidified (within

several hours), region A (shown in Figure 3.4(a)) is filled with a solution of dif-

ferent conductivity (6 gr/l NaCl, 1.5 gr/l CuSO4) in order to obtain conductivity

contrast. Since NaCl diffusion between region A and B affects the conductivity

distribution, the data acquisition is started right after region A is filled.

The second experimental phantom is prepared by applying similar steps as

above: Regions D and E in Figure 3.4(b) are built using an agar solution (20

gr/l Agar, 2 gr/l NaCl, 1.5 gr/l CuSO4) and region C is filled with a solution of

different conductivity (6 gr/l NaCl, 1.5 gr/l CuSO4). As discussed in the “Exper-

imental Results” section, two different experiments, with and without region E,

are performed using this phantom in order to obtain different H+ distributions.

It can be deduced from the experimental work of Iizuka that addition of 2%

Agar does not significantly alter the electrical properties of our solutions [30].

Therefore, the electrical properties of our solutions are determined by NaCl and

to a less extent by CuSO4 (because CuSO4 is used in small amounts). Electri-

cal conductivity was measured at low frequency by a conductivity meter (Hanna

Instruments, HI 8733) and similarity with corresponding literature values is ob-

served [47]. Dielectric permittivity of the saline solutions, on the other hand,
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was only estimated by the formula given in [47]. In conclusion, for the inner

object and the background, we estimate the conductivities to be 1.0 S/m and

0.42 S/m, and the relative permittivities to be 76.3 and 77.6 respectively. From

[47], it can be also calculated that salt-free water has a relative permittivity of 80.

Moreover, the electrical properties of the solutions at MR RF frequency can be

measured using a dielectric spectroscopy which measures the dielectric properties

of a medium as a function of frequency [48]. Although we have not measured the

electrical properties of our solutions at the MR RF frequency, we think that the

above estimates give insight for the relative differences between different solutions

and different regions.

3.3.2 Measurement of H+

3.3.2.1 Measurement of H+ Magnitude

The magnitude of H+ can be found by one of the several available B1 mapping

techniques [30][32][40]-[42]. In this thesis, the magnitude of H+ is measured by

using the double-angle method [30]: Two MR magnitude images, |M1| and |M2|,
are acquired by using two gradient-echo pulse sequences of nominal flip angles 60◦

and 120◦ respectively. For transmit and receive, the quadrature birdcage body

coil of the MRI system is used. The magnitude of H+ is calculated using the

formula
∣

∣H+
∣

∣ =
cos−1 (|M2|/(2 |M1|))

µ0γTRF

(3.10)

where TRF is the duration of the RF excitation pulse and γ is the gyro-magnetic

ratio. The MR imaging parameters are TR = 1500 ms, TE = 5 ms, FOV = 180×
180 mm, raw data matrix size = 128×128, number of averages = 5, slice thickness

= 5 mm, and number of slices = 8 (no gap). The experiments are conducted using

the 3T (nominal) Siemens Magnetom Trio MR scanner installed in UMRAM

(National Magnetic Resonance Research Center) at Bilkent University.

22



3.3.2.2 Measurement of H+ Phase

For obtaining the phase of H+, a spin-echo MR image is acquired using the

quadrature birdcage body coil of the MRI system. The MR imaging parameters

are the same as above except for the nominal flip angle which is chosen to be 90◦.

The phase of this spin-echo image can be written as

φs(r, TE) = φtr(r) +

∫ TE

0

γBedt (3.11)

where r is the position vector, TE is the echo-time, φtr(r) is the transceive phase,

and
∫ TE

0
γBedt is the phase accumulated due to the eddy-currents generated

inside the imaging object during the rise-time of the read-out gradient field. φtr(r)

is the sum of two contributions, namely

φtr(r) = φ+(r) + φ−(r) (3.12)

where φ+(r) and φ−(r) are phases due to the RF transmit (excitation) and receive

fields respectively. Due to the nature of spin-echo imaging, there is no phase term

related to the B0 field inhomogeneity.

It is a known fact that the polarity of
∫ TE

0
γBedt term depends on the polarity

of the read-out gradient, i.e. if k-space is scanned from kx,max to −kx,max rather

than from −kx,max to kx,max, this term changes sign (assuming read-out direction

is x). In this thesis, as suggested in [28], this fact is exploited for obtaining φtr(r)

as follows:

Two phase images are acquired by using spin-echo pulse sequences of different

read-out gradient polarities. Their phases are then summed and the resulting

phase is halved to obtain φtr(r). It is assumed that the transmit and receive

phases of a quadrature birdcage coil are very close to each other, i.e. φ+(r) ≈
φ−(r) [25], and as a result of this assumption, the phase of H+ is calculated as

half of the transceive phase:

φ+(r) ≈ φtr(r)/2 (3.13)

The relation between the transmit and transceive phase can be derived using

the formalism of Overall et al for imperfect quadrature excitation [49]. Two
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ports (Q and I) which are placed orthogonally with respect to each other are

considered. BI
x and BQ

y are the desired main fields generated by ports Q and

I. δBQ
x and δBI

y are residual fields due to electromagnetic interaction with the

sample. If the port Q is phased to lead I by 90◦ (I + jQ), the forward transmit

effective field (B+
1 in transmit mode) is generated:

B+
1 =

1

2

[

BI
x +BQ

y + j
(

δBQ
x − δBI

y

)]

(3.14)

If we switch the sign of the port Q to lag I by 90◦ (I − jQ), the forward receive

field (B−

1 in receive mode) for quadrature excitation is generated:

B−

1 =
1

2

[

BI
x +BQ

y − j
(

δBQ
x − δBI

y

)]

(3.15)

Using the Equation (3.14) and (3.15), the transceive field is given by:

B+
1 B

−

1 =
1

4

[

(

BI
x +BQ

y

)2
+
(

δBQ
x − δBI

y

)2
]

(3.16)

If δBQ
x − δBI

y = 0, the B+
1 and transceive field simplify to:

B+
1 =

1

2

[

BI
x +BQ

y

]

(3.17)

B+
1 B

−

1 =
1

4

[

(

BI
x +BQ

y

)2
]

(3.18)

Thus, the B+
1 phase(φ+) and the transceive phase (φtr) are, respectively:

φ+ = arg
[

BI
x +BQ

y

]

(3.19)

φtr = arg
[

(

BI
x +BQ

y

)2
]

= 2 arg
[

BI
x +BQ

y

]

= 2φ+ (3.20)

The condition, δBQ
x −δBI

y = 0, is satisfied, when the residual fields can be ne-

glected (i.e. δBQ
x ≈ 0 and δBI

y ≈ 0) or when the residual fields are approximately

equal (δBQ
x ≈ δBI

y). In the case of unloaded quadrature birdcage coil, the resid-

ual fields are zero, as a consequence, the condition is satisfied. Furthermore, it

can be argued that the residual fields are equal in several situations, e.g., circular

symmetry [28].

By van Lier et al., the feasibility, validity and precision of this measurement

method of B+
1 phase were demonstrated in cylindrical phantoms and in vivo

in the human head [28]. Since cr-MREPT method based on this measurement

method of B+
1 phase, cr-MREPT method gives more accurate results when this

measurement method is more accurate.
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3.3.3 Obtaining H+ on the Nodes of the Triangular Mesh

As discussed above, the proposed cr-MREPT algorithm is triangular mesh based

and it is required that H+ is known on the nodes of the triangular mesh in

the imaging slice. In order to obtain H+ on the nodes of the triangular mesh,

it is necessary that M1, M2, and the spin-echo MR images are reconstructed

on the nodes as well. These MR images are obtained on the nodes from the

corresponding raw (fid) data matrices by evaluating the inverse discrete Fourier

transform at the nodes: The value of a complex MR image at the k’th node,

m(k), can be expressed as

m(k) =
1

N2

N
∑

u=1

N
∑

v=1

s(u, v)ei2π∆k(vxk+uyk) k = 1, 2, ..., Np (3.21)

where s(u, v) denotes the raw data matrix, ∆k denotes the spatial frequency

spacing in x- and y- directions (∆k = 1/FOV ), xk and yk denote the x- and y-

coordinates of the k’th node, N denotes the raw data matrix size, and Np denotes

the number of nodes in the imaging slice.
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Chapter 4

Results

4.1 Simulation Results

In this section, we first present simulation results for the first simulation phantom.

The actual conductivity and permittivity distributions of this phantom which

has two concentric cylinders is shown in Figure 4.2(a) and 4.3(a). It should be

noted that in this phantom material properties do not change in the z-direction

and furthermore in the internal boundaries the material properties change in a

tapered fashion (not abruptly). The central slice (z = 0) of the phantom is

chosen as the slice of interest, and the corresponding H+ magnitude, and H+

phase distributions are shown in Figure 4.1(a) and (b). ∇2H+ distribution, and

the modulus of the convective field, are shown in Figure 4.1(c) and (d) (Note

that since Fy = iFx, |F| =
√
F · F∗ =

√
2 |Fx| =

√
2 |Fy|). It is observed that the

modulus of the convective field falls to zero at the center. The ∇2H+ distribution,

as expected, has high magnitude on the internal boundaries (transition regions).

Using these data, σ and ε distributions are reconstructed by applying both the

Wen’s method and also the cr-MREPT method that we have proposed.

The reconstructed σ and ε distributions obtained using the Wen’s method

are shown in Figure 4.2(b) and 4.3(b), respectively. This method gives good

reconstruction results in the regions where the spatial variations of σ and ε are
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(a) (b)

(c) (d)

Figure 4.1: Simulation results for the central axial slice of the first simulation
phantom: (a) magnitude of H+, (b) phase of H+, (c) modulus of ∇2H+, (d)
modulus of the convective field. Units are arbitrary. Modulus of the convective
field has much lower value at the region around the center of the imaging slice,
and this region is called as LCF (Low Convection Field) region.
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small but it yields severe errors in and around the boundary (transition) regions.

This is because Wen’s method assumes that spatial variations of σ and ε are small

in the region of reconstruction and the term involving ∇̄u = ∇̄(1/γ) in Equation

(2.9) is not taken into account in this method.

Figure 4.2 and 4.3 also show the results of the cr-MREPT method and the

most important advantage of this method seems to be its ability to reliably recon-

struct σ and ε distributions everywhere including the transition regions. On the

other hand, cr-MREPT method seems to be ill-conditioned (not well-posed) at

the origin where a spot-like artifact is observed. This artifact is mainly due to the

numerical errors introduced by the region where the modulus of the convective

field (in Equation (2.9)) is nearly zero (shown in Figure 4.1(d)). This region is

referred to as the Low Convection Field (LCF) region. To eliminate the spot-like

artifact, we propose two different methods.

4.1.1 Constrained cr-MREPT

In the first method, called “constrained cr-MREPT”, we determine the LCF re-

gion by observing the convective field, and in this region we use Wen’s method

(i.e., Equation (2.10)) which is derived by ignoring the convection term in Equa-

tion (2.9). Then, we solve Equation (2.9) by providing the σ and ε found by Wen’s

method in the LCF region as a-priori knowledge (as explained in Section 3.1).

The resultant reconstructed σ and ε distributions, shown in Figure 4.2(d) and

4.3(d), do not have spot-like artifacts. This improvement in the reconstructions

is also observed in the line profiles of reconstructed conductivity and permittivity

shown in Figure 4.4. However, this method does not give reliable reconstruc-

tion results when the LCF region coincides with the boundaries. This is simply

because Wen’s method gives unreliable estimates of the electrical properties in

regions where they vary.
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(a) (b)

(c) (d)

Figure 4.2: Conductivity σ (S/m) reconstruction results for the first simulation
phantom: (a) true σ, (b) reconstructed σ using the Wen’s method, (c) recon-
structed σ using cr-MREPT method, (d) reconstructed σ using the constrained
cr-MREPT method. The spot-like artifact observed in (c) at the center is elimi-
nated when constrained cr-MREPT method is used as shown in (d).
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(a) (b)

(c) (d)

Figure 4.3: Relative dielectric permittivity εr reconstruction results for the first
simulation phantom: (a) true εr, (b) reconstructed εr using the Wen’s method,
(c) reconstructed εr using cr-MREPT method, (d) reconstructed εr using the
constrained cr-MREPT method. The spot-like artifact observed in (c) at the
center is also eliminated when constrained cr-MREPT method is used as shown
in (d).
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(a) (b)

(c) (d)

Figure 4.4: Line profiles of the reconstructed and the actual conductivity along
the x-axis for the first simulation phantom: (a) The cr-MREPT and the con-
strained cr-MREPT are used for the reconstruction, (b) Wen’s method is used
for the reconstruction. (c) and (d) The reconstructed relative dielectric permit-
tivity using the same methods as in (a) and (b). The spot-like artifact observed
in cr-MREPT reconstructions is eliminated when constrained cr-MREPT is used.
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4.1.2 Double-excitation cr-MREPT

The second method, called “double-excitation cr-MREPT”, is reconstructing σ

and ε using two different H+ data that have different LCF regions. To explain

and test this method the second simulation phantom shown in Figure 3.4(b) is

used. In this phantom there are 3 regions, C, D, and E. Regions D and E are

the background regions and region C represents the anomaly region where σ and

ε are different. This anomaly region and its immediate surrounding (including

the transition region) is our region of interest. We need to realize two different

experiments in which the H+ data in the region of interest are different. This is

achieved by including or excluding region E in the simulations. In other words

in one case region E is assigned the same material properties as region D, and in

the other case it is assumed to be cut out (or assigned material properties of air).

(a) (b)

Figure 4.5: Moduli of the convective fields for the second simulation phantom us-
ing two different excitations: (a) Region E is included (assigned the same material
properties as region D), (b) Region E is cut out (assigned material properties of
air). The region of interest (C and D) is enclosed by a black border in (a). Con-
vective fields shown in (a) and (b) have different LCF regions in the region of
interest

Using this procedure, we obtain two different H+ data for the region of interest

by modifying the regions external to the region of interest. These two different
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H+ data, that also have different LCF regions in the region of interest, are shown

in Figure 4.5(a) and (b). If these H+ data are used separately for cr-MREPT

method, the reconstruction results are obtained as shown in Figure 4.6(a)(b) and

4.7(a)(b) and the spot-like artifacts can be observed in the corresponding LCF

regions. Using these H+ data together, Equation (2.9) is solved via Equation

(3.7) and the reconstructed σ and ε, shown in Figure 4.6(c) and 4.7(c), do not

have spot-like artifacts. Figure 4.6(d) and 4.7(d) show the reconstruction results

of Wen’s method when the first H+ data is used and as in previous results, this

method yields severe errors in the transition regions.

4.1.3 Noise Behaviour of cr-MREPT

The noise tolerance of the double-excitation cr-MREPT method is also investi-

gated by using the second simulation phantom. In order to obtain noisy complex

H+ data, the following procedure is applied:

a) Obtaining noisy H+ magnitude

i. Simulated |H+| is obtained

ii. MR magnitude image with nominal 60◦ flip angle is obtained using the

formula S1 = sin (k |H+|). The constant k is determined so that the

average flip angle in the imaging slice is 60◦. MR magnitude image with

nominal 120◦ flip angle is obtained by the formula S2 = sin (2k |H+|).

iii. An SNR value for MR magnitude image is assumed.

iv. Gaussian white noise is added to S1 with standard deviation sd = A
SNR

where A is the mean of S1 magnitude image. Another Gaussian white

noise with the same standard deviation is added to S2.

v. Using noisy S1 and S2 magnitude images, noisy H+ magnitude is obtained

using the double angle B1 mapping formula:

∣

∣H+
∣

∣ =
cos−1 (S2/2S1)

k
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(a) (b)

(c) (d)

Figure 4.6: Conductivity σ (S/m) reconstruction results for the second simulation
phantom: cr-MREPT method is used for (a) only the first excitation and (b) for
only the second excitation. (c) double-excitation cr-MREPT method is used, (d)
Wen’s method is used. The spot-like artifacts observed in (a) and (b) at different
locations, are eliminated when double-excitation cr-MREPT method is used as
shown in (c).

34



(a) (b)

(c) (d)

Figure 4.7: Relative dielectric permittivity εr reconstruction results for the second
simulation phantom: cr-MREPT method is used for (a) only the first excitation
and (b) for only the second excitation. (c) double-excitation cr-MREPT method
is used, (d) Wen’s method is used. The spot-like artifacts observed in (a) and
(b) at different locations, are also eliminated when double-excitation cr-MREPT
method is used as shown in (c).
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b) Obtaining noisy H+ phase

The noise in MRI phase images is assumed to have zero-mean Gaussian dis-

tribution with standard deviation sdΦ =
√
2
/

SNR where SNR is the signal-

to-noise ratio of the MRI magnitude image [50]. Since H+ phase is assumed

to be half of the MRI spin-echo phase, the noise in H+ phase image becomes

sdΦ
H+

= 1
/

(
√
2 SNR).

c) Obtaining noisy complex H+

Noisy complex H+ is obtained from the noisy H+ magnitude and phase, using

Euler’s formula.

In the simulations, SNR values of 50, 100, and 150 are used. These SNR values

are reasonable for regular MRI scanning. In fact, the SNRs of the MRI magnitude

images obtained experimentally throughout this study using this phantom were

estimated to be in the range of 50-100.

Errors made in the reconstructed conductivity and permittivity at the slice of

interest are calculated using the relative L2-error formulae:

EL2(σ) = 100





∑Np

j=1

(

σa
j − σj

)2

∑Np

j=1

(

σa
j

)2





1/2

EL2(ε) = 100





∑Np

j=1

(

εaj − εj
)2

∑Np

j=1

(

εaj
)2





1/2
(4.1)

where σa
j (εaj ) and σj (εj) are the actual and reconstructed conductivity (permit-

tivity) distributions at the jth node, respectively.

A low pass filter with Gaussian kernel (in the spatial domain) with standard

deviation 0.0032 m was applied to the noisy simulated H+ complex images. The

filter was applied using non-linear diffusion based denoising technique [51]. Us-

ing the filtered H+ complex image for different SNR values, the σ and ε are

reconstructed and results are given in Figure 4.8 and 4.9.
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(a) SNR = 50 (b) SNR = 100

(c) SNR = 150

Figure 4.8: Double excitation cr-MREPT conductivity σ (S/m) reconstruction
results for the second simulation phantom when noise corresponding to SNRs of
50, 100, or 150 is added to each H+ data obtained for the two excitations.
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(a) SNR = 50 (b) SNR = 100

(c) SNR = 150

Figure 4.9: Double excitation cr-MREPT relative dielectric permittivity εr recon-
struction results for the second simulation phantom when noise corresponding to
SNRs of 50, 100, or 150 is added to each H+ data obtained for the two excitations.
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As observed in Figure 4.8 and 4.9, the double-excitation cr-MREPT method

is robust against noisy H+ data and it does not generate an artifact in the re-

constructed σ and ε distributions in the LCF regions.

For the infinite SNR case (no noise is added), the relative L2 errors for σ and

ε are 8.7% and 9.1% respectively. A significant portion of these errors are due

to the low pass filter mentioned above. If the low-pass filter is not used, then for

the noiseless case the corresponding relative L2 errors are 3.7% and 3.9%. The

filter tapers the variations of ∇2H+ in the transition regions and consequently

blunts the variations of σ and ε across the internal boundaries and thus relative

L2 errors increase. Table 4.1 presents the relative L2 errors for different SNRs. It

may be concluded from these results that for the SNR range of 50-150 acceptable

relative L2 errors are obtained.

Table 4.1: L2 errors in σ and ε reconstructed using double-excitation cr-MREPT
method when noise corresponding to different SNR values added to H+.

Relative L2 error (%)

SNR Filter applied EL2(σ) EL2(ε)

∞ no 3.7 3.9

∞ yes 8.7 9.1

150 yes 9.3 10.0

100 yes 9.8 11.2

50 yes 15.0 18.7

4.2 Experimental Results

Experiments are first conducted using the first experimental phantom. Figure

4.10 shows the measured H+ magnitude and phase, modulus of ∇2H+, and the

modulus of the convective field. They are in good agreement and have similar

trends with the simulated data shown in Figure 4.1.
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(a) (b)

(c) (d)

Figure 4.10: Experimental results for the central axial slice of the first experi-
mental phantom, (a) magnitude of B+

1 (T), (b) phase of B+
1 (rads), (c) modulus

of ∇2B+
1 (T/m2), (d) modulus of the convective field (T/m).
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The same low pass filter, which is used for noisy simulated data as mentioned

above, is applied also to the measured H+ as the first step. Using the filtered

H+, Voigt’s method, which is described in Section 1.2, is applied and the re-

constructed conductivity distribution is obtained as shown in Figure 4.11(a). In

this method, for volume integral and surface integral covering this volume, 4x4x4

voxels or equivalently 5x5x5 samples are selected. Moreover, using the calculated

∇2H+ and convective field, reconstructed conductivity distribution is obtained

by applying cr-MREPT methods, and is shown in Figure 4.11(b). Similarly, the

result of Voigt’s method has severe errors in the transition regions. On the other

hand, cr-MREPT is very successful in reconstructing the boundary transitions.

However, the result of cr-MREPT method has a spot-like artifact in the LCF

region.

When the constrained cr-MREPT method, which is explained in Section 4.1.1,

is applied, the reconstructed conductivity shown in Figure 4.11(c) is obtained and

it does not have a spot-like artifact. In this method, a circular region with radius

of 0.007 m which encloses the spot-like artifact region is first selected. In this

region, the averages of the electrical properties found using Wen’s method are

calculated. These average values are used for this region as a constraint (a-priori

knowledge) in the constrained cr-MREPT method. The average conductivity

values for the reconstructed distribution shown in Figure 4.11(c) are 0.93 S/m

for the inner object and 0.43 S/m for the background. These values are consistent

with the estimated values given in Section 3.3.1. When applying the cr-MREPT

method, the average conductivity and permittivity values obtained by the Wen’s

method at the outer boundary are used for assigning the Dirichlet boundary

condition required in solving Equation (2.9).

Experiments are then performed using the second experimental phantom. Fig-

ure 4.12(a) and (b) show the moduli of the convective fields with and without

segment E. As shown in Figure 4.12, these convective fields have different LCF

regions that do not coincide with each other. Using the calculated ∇2H+ data of

the two cases together, double excitation cr-MREPT method is applied and the

reconstructed conductivity distribution is obtained, as shown in Figure 4.12(c).

Outer boundary conditions are again taken from the results of the Wen’s method.
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(a) (b)

(c)

Figure 4.11: Reconstructed conductivity σ (S/m) distributions for the axial slice
of the first experimental phantom: (a) Voigt’s method, (b) cr-MREPT method,
(c) constrained cr-MREPT method.
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As expected, the reconstructed conductivity distribution does not have spot-like

artifacts, and the boundary transitions are well constructed. The average recon-

structed conductivity values are 0.99 S/m for the inner object and 0.45 S/m for

the background, again similar to the estimated values.
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(a)

(b)

(c)

Figure 4.12: For the axial slice of the second experimental phantom, (a) modulus
of the convective field (T/m) for the first excitation, (b) modulus of the convec-
tive field (T/m) for the second excitation, (c) reconstructed conductivity σ (S/m)
distribution using double-excitation cr-MREPT method. Convective fields shown
in (a) and (b) have different LCF regions. Note that these images which corre-
spond to the second experimental phantom are presented in a horizontal fashion
in contrast to the images previously given in a rotated fashion for the second
simulation phantom.
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Chapter 5

Convection-Reaction Equation

based Magnetic Resonance

Electrical Properties

Tomography (cr-MREPT) using

Finite Element Method (FEM)

In cr-MREPT method, the convection-reaction equation (i.e. Equation (2.9)) can

be also solved by different methods. In previous results, a triangular mesh based

finite difference method is used. In this chapter, Finite Element Method (FEM)

is used to solve the convection-reaction equation.

5.1 Method

In this method, it is assumed thatH+ is measured in Cartesian coordinate system.

Then, its first derivatives and the Laplacian of H+ are calculated using finite

difference approximations of derivatives and Laplacian of H+ is calculated using

3 axial slices in simulations and experiments. The coefficients of the Equation
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(2.9) are also calculated in Cartesian coordinates. A mesh is generated by using

a FEM software package (we use COMSOL Multiphysics) and the calculated

coefficients of the Equation (2.9) are linearly interpolated to the mesh points.

Equation (2.9) is then solved using finite element method (FEM). Similarly, for

boundary condition Dirichlet boundary condition is also used, i.e., conductivity

and dielectric permittivity are specified at the boundary. In this thesis, we used a

commercial FEM software tools (COMSOL Multiphysics) to solve the Equation

(2.9).

In simulation studies, H+ is calculated at mesh nodes. Therefore, H+ in

Cartesian coordinates is calculated using linear interpolation. In experimental

studies, MR images are already in Cartesian coordinates and the measured H+

can be found in Cartesian coordinates.

5.2 Simulations

Simulated magnetic field data is generated using COMSOL Multiphysics (COM-

SOL AB, Sweden) for the phantom shown in Figure 5.1(a). In this phantom

two eccentric cylindrical objects with different electrical properties (σ and ε) are

placed in a quadrature birdcage coil model. Radius of inner and outer cylindri-

cal objects are 2 cm and 5 cm, respectively and their heights are 10 cm. The

cross-sectional conductivity and dielectric permittivity distributions are shown in

Figure 5.1(b).

Using simulated H+ map and FEM method, the solution of Equation (2.9)

gives the conductivity and dielectric permittivity reconstructions shown in Figure

5.2(a) and (b). In these figures, a spot-like artifact is observed in Low Convection

Field (LCF) region. To eliminate the spot-like artifact, constrained cr-MREPT

method is used. The resultant reconstructed conductivity and dielectric per-

mittivity distributions, shown in Figure 5.2(c) and (d), do not have spot-like

artifacts.

46



(a) (b) (c)

Figure 5.1: (a) Simulation phantom, (b) simulated actual conductivity and di-
electric permittivity, (c) modulus of convective field, unit is arbitrary (black circle
shows LCF region).

(a) (b)

(c) (d)

Figure 5.2: Simulation results of cr-MREPT using FEM: (a) reconstructed con-
ductivity, (b) reconstructed dielectric permittivity, (c) reconstructed conductivity
using the constrained cr-MREPT method, (d) reconstructed dielectric permittiv-
ity using the constrained cr-MREPT method.
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5.3 Experiments

For experimental studies, a rectangular phantom (filled with solution of 1 gr/l

CuSO4, 12 gr/l NaCl) which contains a cylindrical bottle (filled with solution of

1 gr/l CuSO4, 2.3 gr/l NaCl) is constructed. The dimensions of the rectangular

phantom are 22.5x34x11 cm, the diameter of inner cylindrical object is 7 cm

and its height is 15 cm. The conductivity values of the background and inner

object are calculated as 2.0 and 0.4 S/m and their relative dielectric permittivity

values are calculated as 74.4 and 77.6, respectively [47]. The experiments were

performed on a 3T MR scanner (Siemens, Erlangen, Germany) using quadrature

transmit/receive coil. H+ amplitude map is also acquired using double angle

method (flip angle = 60deg and 120deg, TR=2000 ms, GRE, 1.6x1.6x5 mm,

3 axial slices). Similarly, H+ phase map is also approximated as half of the

transceive phase for quadrature birdcage coil and transceive phase is acquired by

SE experiment (1.6x1.6x5 mm, SE, TR=2000, 3 axial slices). A Gaussian filter

with kernel size 5 and standard deviation 1 is applied to the measured complex

H+ maps.

Experiments are conducted using this experimental phantom. Figure 5.3

shows the spin-echo magnitude image, measured B+
1 magnitude and phase images

after the filter is applied.

(a) (b) (c)

Figure 5.3: (a) Spin echo magnitude (white rectangle shows the region of interest),
(b) B+

1 magnitude, (c) B+
1 phase image
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Using the measured B+
1 magnitude and phase, H+, derivatives and Laplacian

of the H+ are calculated at Cartesian coordinates by applying finite difference

approximations of derivatives. Then, the reconstructed conductivity distribution

shown in Figure 5.4(a) is obtained by solving Equation (2.9) using FEM method.

Similar to simulation results, a spot-like artifact is observed in LCF region. To

eliminate this artifact, the constrained cr-MREPT method is used. When this

method is applied, the reconstructed conductivity shown in Figure 5.4(b) is ob-

tained and it does not have a spot-like artifact. When Wen’s method is applied,

the reconstructed conductivity distribution shown in Figure 5.4(c) is obtained.

Similar to the previous experimental results, the reconstruction results of Wen’s

method has severe errors on the internal boundaries but cr-MREPT methods are

very successful in reconstructing the boundary regions.
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(a) (b)

(c)

Figure 5.4: Experiment results of cr-MREPT using FEM, reconstructed con-
ductivity σ (S/m) distributions for the axial slice: (a) cr-MREPT method, (b)
constrained cr-MREPT method, (c) Wen’s method.
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Chapter 6

Discussion and Conclusion

Magnetic Resonance Electrical Properties Tomography (MREPT) is developed

to reconstruct both the electrical conductivity and the dielectric permittivity of

tissues, at the Larmor frequency of the MRI system, in order to provide informa-

tion for diagnostic purposes, and also for the calculation of the spatial distribution

of patient-specific SAR. Although MREPT and MREIT reconstruct high spatial

resolution electrical property images at completely different frequencies, neverthe-

less MREPT has a significant advantage over MREIT because it does not require

electrode mounting on the body surface. Furthermore MREPT uses standard

MR sequences and does not have a safety burden on the patient. Additionally, it

does not have a restriction like the limitation on the maximum amount of applied

current in MREIT.

For MREPT, previously developed practical algorithms reconstruct electrical

properties in regions where σ and ε values are almost constant [25][26][28]. In this

thesis, we have proposed a novel algorithm named convection-reaction equation

based MREPT (cr-MREPT) which reconstructs σ and ε also in transition regions

where σ and ε vary. However, spot-like artifacts are observed in the regions where

the convection field is low. To eliminate these artifacts, we have proposed two

different correction techniques named as “constrained cr-MREPT” and “double-

excitation cr-MREPT”. We have validated these MREPT algorithms using both

simulated and experimental data. The “constrained cr-MREPT” method has the
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limitation that it can not be applied in the LCF regions which have varying σ and

ε. For the “double-excitation cr-MREPT” method, we have removed part of the

object (region E of the phantom shown in Figure 3.4(b)) in order to generate a

second B+
1 distribution. Obviously, this procedure can not be applied to human

subjects. Therefore, we propose that an additional object is attached to one

side of the body in order to distort the internal B+
1 field. The determination of

the exact shape, position, material, and electrical properties of such a contacting

object is the subject of further studies.

In this thesis, the derived convection-reaction equation of MREPT is solved

using a triangular mesh based finite difference method. We have used the mesh

generation facility of COMSOL Multiphysics in order to obtain a triangular mesh.

The solution of the equation itself can also be done by FEM or other numerical

methods. In previously published work, a convection equation based formula-

tion is developed for MREIT and the numerical solution was based on FEM [52].

Some specific problems which arise when a commercial FEM package is used

for the solution are discussed in [52]. We also applied a FEM based solution

method for constrained cr-MREPT [53]. Extension of FEM to the double excita-

tion cr-MREPT and also use of regularization and stabilization methods will be

considered in future studies.

The cr-MREPT algorithm requires magnitude and phase of B+
1 measurements

to reconstruct σ and ε distributions. Many B+
1 mapping techniques have been

proposed to measure magnitude of the field [30][32][40]-[42] whereas there is no

exact and general method to measure B+
1 phase. B+

1 phase mapping has been

studied by several groups and it has been argued that the B+
1 phase is equal to

half the transceive phase in many situations, e.g., circular symmetry [25][26][28].

In general, development of more accurate and robust B+
1 complex image map-

ping techniques will help to improve the efficiency and accuracy of all MREPT

algorithms.

In the cr-MREPT algorithm, the z-component of the magnetic field intensity

Hz is neglected. In the case of a RF birdcage coil, Hz in the central imaging

slice is generated mainly by the end-rings of the RF birdcage coil. However, the
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magnitude of this Hz is small enough not to influence our reconstructed images.

When TEM coils are used, better reconstruction results with higher accuracy can

be obtained [27]. On the other hand, Hz can be estimated from a full model

including the birdcage coil and the patient, and/or it can be found by iterative

computation [26][31].

Noise tolerance of our algorithm is also investigated for different noise levels.

Since the Laplacian operation, used in finding ∇2H+, amplifies the noise, the cr-

MREPT method is relatively sensitive to noise. A low pass filter with Gaussian

kernel with standard deviation 0.0032 m is applied when processing both the noisy

simulated data and the experimental data. This filtering causes the transition

regions, where electrical properties vary, to appear wider in the reconstructed

images. Therefore, in determining the standard deviation of the Gaussian kernel,

this tradeoff between having less noisy reconstructions and having higher spatial

resolution must be taken into consideration.
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