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ABSTRACT

 GENERALIZED LINEAR MODELS FOR IN-VITRO
NANOPARTICLE-CELL INTERACTIONS

Z. Gülce Çuhacı
M.S. in Industrial Engineering

Supervisor:Assoc. Prof. Savaş Dayanık
August, 2013

Nanomedicine techniques are quite promising in terms of treatment and detection of

cancerous cells.  Targeted drug delivery plays an important role in this field of cancer

nanotechnology. A lot of studies have been conducted so far concerning nanoparticle

(NP)-cell  interaction.  Most  of  them fail  to  propose  a  mathematical  model  for  a

quantitative  prediction  of  cellular  uptake  rate  with  measurable  accuracy.  In  this

thesis, we investigate cell-NP interactions and propose statistical models to predict

cellular uptake rate. Size, surface charge, chemical structure (type), concentration of

NPs and incubation time are known to affect the cellular uptake rate. Generalized

linear  models  are  employed  to  explain  the  change  in  uptake  rate  with  the

consideration of those effects and their interactions. The data set was obtained from

in-vitro NP-healthy cell experiments conducted by the Nanomedicine & Advanced

Technologies Research Center in Turkey. Statistical models predicting cellular uptake

rate are proposed for sphere-shaped Silica, polymethyl methacrylate (PMMA), and

polylactic acid (PLA) NPs.

Keywords: Nanomedicine, nanoparticle-cell  interaction,  generalized linear models,

logistic regression, splines

iii



ÖZET

 İN-VİTRO NANOPARTİKÜL-HÜCRE ETKİLEŞİMİ
İÇİN GENEL DOĞRUSAL MODELLER

Z. Gülce Çuhacı
Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç Savaş Dayanık
Ağustos, 2013

 

Nanotıp alanında gelişen yeni teknikler kanser teşhisi ve tedavisi konusunda umut

vericidir.  Güdümlü  ilaç  dağıtım  sistemleri  kanser  nanoteknolojisinin  bu  alanında

önemli bir role sahiptir. Nanopartikül – hücre etkileşimini araştıran pek çok çalışma

gerçekleştirilmiştir,  fakat  hücresel  tutunma  oranını  ölçülebilir  bir  doğrulukla

matematiksel  olarak modelleyen ve tahmin eden çalışma sayısı oldukça azdır. Bu tez

çalışmasında,  nanopartikül – hücre etkileşimini araştırılmış olup, hücresel tutunma

oranını  istatistiksel  olarak  tahmin  eden  bir  model  oluşturulmuştur.  Büyüklük,

yüzeysel  elektrik  yükü,  kimyasal  yapı  ve  nanopartiküllerin  ortamdaki  yoğunluğu,

enkübasyon zamanı hücresel tutunma oranını etkileyen faktörlerdir. Bu faktörlerin ve

birbirleri ile olan etkileşiminin hücresel tutunma oranındaki değişime etkisini   analiz

etmek için genel  doğrusal modeller kullanılmıştır.  Çalışma için kullanılan veri  seti

Türkiye'de  bir  Nano-Tıp  Araştırma  Merkezi  tarafından  yapılan  in-vitro  NP-hücre

etkileşimi deneyleri  sonucunda elde edilmiştir.  Hücresel tutunma oranını tahmin eden

istatistiksel  modeller  küre  şeklinde  olan  polimetil  metakrilat  (PMMA),  silika  ve

polilaktik asit (PLA) nanopartikülleri için oluşturulmuştur. . 

Keywords: Nanotıp, nanopartikül-hücre  etkileşimi, genel  doğrusal modeller,  lojistik
regresyon, parçalı eğriler
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Nanomedicine techniques are quite promising in terms of treatment and detection of

cancerous cells.  Targeted drug delivery plays an important role in this field of cancer

nanotechnology. A lot of studies have been conducted so far concerning nanoparticle

(NP)-cell  interaction.  Most  of  them fail  to  propose  a  mathematical  model  for  a

quantitative  prediction  of  cellular  uptake  rate  with  measurable  accuracy.  In  this

thesis, we investigate cell-NP interactions and propose statistical models to predict

cellular uptake rate. Size, surface charge, chemical structure (type), concentration of

NPs and incubation time are known to affect the cellular uptake rate. Generalized

linear  models  are  employed  to  explain  the  change  in  uptake  rate  with  the

consideration of those effects and their interactions. The data set was obtained from

in-vitro NP-healthy cell experiments conducted by the Nanomedicine & Advanced

Technologies Research Center in Turkey. Statistical models predicting cellular uptake

rate are proposed for sphere-shaped Silica, polymethyl methacrylate (PMMA), and

polylactic acid (PLA) NPs.

Keywords: Nanomedicine, nanoparticle-cell  interaction,  generalized linear models,

logistic regression, splines
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Nanotıp alanında gelişen yeni teknikler kanser teşhisi ve tedavisi konusunda umut

vericidir.  Güdümlü  ilaç  dağıtım  sistemleri  kanser  nanoteknolojisinin  bu  alanında

önemli bir role sahiptir. Nanopartikül – hücre etkileşimini araştıran pek çok çalışma

gerçekleştirilmiştir,  fakat  hücresel  tutunma  oranını  ölçülebilir  bir  doğrulukla

matematiksel  olarak modelleyen ve tahmin eden çalışma sayısı oldukça azdır. Bu tez

çalışmasında,  nanopartikül – hücre etkileşimini araştırılmış olup, hücresel tutunma

oranını  istatistiksel  olarak  tahmin  eden  bir  model  oluşturulmuştur.  Büyüklük,

yüzeysel  elektrik  yükü,  kimyasal  yapı  ve  nanopartiküllerin  ortamdaki  yoğunluğu,

enkübasyon zamanı hücresel tutunma oranını etkileyen faktörlerdir. Bu faktörlerin ve

birbirleri ile olan etkileşiminin hücresel tutunma oranındaki değişime etkisini   analiz

etmek için genel  doğrusal modeller kullanılmıştır.  Çalışma için kullanılan veri  seti

Türkiye'de  bir  Nano-Tıp  Araştırma  Merkezi  tarafından  yapılan  in-vitro  NP-hücre

etkileşimi deneyleri  sonucunda elde edilmiştir.  Hücresel tutunma oranını tahmin eden

istatistiksel  modeller  küre  şeklinde  olan  polimetil  metakrilat  (PMMA),  silika  ve

polilaktik asit (PLA) nanopartikülleri için oluşturulmuştur. 
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Chapter 1

Introduction

For many years, cancer is undoubtedly one of the most frequent diseases that

large number of people suffer around the world. At the same time, it is unfortunately

one of the top diseases that causes significant  number of patients to die each year.

This critical level severity of cancer disease preserves cancer research one of the hot

topics for years and still leads researchers, academicians and doctors to work on this

issue.  Although,  many  improvements  have been  achieved so  far  in  traditional

treatment methods such as  surgery, radiation, chemotherapy, what nanotechnology

brings as comparatively new,  more  effective and less harmful  solutions to cancer

disease are quite promising. 

Cancer has been one of leading causes of the death in the world resulting in

7.6 million deaths (around 13% of all deaths) in 2008  [1].  It is estimated that, by

2030, there will be 26 million new cancer cases and 17 million cancer deaths per

year [2].  Therefore, cancer research will continue to remain its popularity as well as

in the future. 

Current  diagnostic  and  treatment  techniques  may  not  be  regarded  as

successful enough to cure cancer disease and avoid further people to die in the future

due to  this  reason.  Complex and  non-standard  indications  of  cancerous cells  in
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human  causes  wrong  identification  of  cancer  diseases,  thus  wrong  therapeutic

techniques are dramatically applied in many cancer cases [3]. Furthermore, current

therapeutic techniques are not considered as effective enough, even if diagnosis is

correct  for  cancer  disease.  Many anti-cancer  medications  and  other  units  fail  to

properly defeat cancer cells. This  situation  causes  systematic toxicity and adverse

effects as a result of untargeted treatments [3].  In addition to their inefficiency, most

of the traditional treatment methods are painful and have toxic effects. Consequently,

cancer is leading cause of death around the world, currently first cause in US prior to

heart  diseases  [3],  and  many  people  unfortunately  die  as  a  result  of  wrong

identification or ineffective treatment. 

 At this  point,  Cancer Nanotechnology promises  advanced technologies for

diagnostics and early detection, as well as therapeutic techniques  and strategies to

deal  with  the  toxicity  and  adverse  effects  of  chemotherapy  drugs  [3]. Cancer

nanotechnology  is a newly emerging  interdisciplinary  field consisting of  biology,

chemistry, engineering and medicine and, it is basically a combination of innovation

in  nano-materials  and  cancer  biology.  Cell-targeted  treatment  and  diagnostic

techniques play an important role in the field of cancer nanotechnology.  To obtain

larger,  at  least  efficient number of nanoparticles,  used for treatment or diagnosis,

adhered  on  or  entered  into  the  targeted  cell  is  crucial  for  better  efficiency  for

therapeutic and diagnostic purposes [3,4]. In our study, nanoparticle-cell interaction

is examined with the cellular uptake rate and its dependencies to factors, namely NP
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size,  surface charge, concentration  of NP s,  incubation time and chemical  type of

NPs by using three different type of nanoparticles.

In  our  study,  we  focused  on  how  to  model  cellular  uptake  rate  of  three

different  kind  of  nanoparticles  (NP  s)   which  may  be  used  as  a  treatment  for

cancerous cells.  We aimed at a statistical model to estimate cellular uptake rate of

three types of NPs, namely, Silica, polymethyl methacrylate (PMMA), and polylactic

acid  (PLA).  Generalized  linear  models  (GLM) with  logit  link  function  with  and

without  consideration  of  interaction  effects  and  piecewise polynomial  regression

methods were used to model our data. 

For this study, our data are obtained from in-vitro experiments conducted by

Gazi  University  Nanomedicine  &  Advanced  Technologies  Research  Center  in

Turkey. In this experiment, for each NP type, number of NPs which are adhered on or

penetrated  into  the  cell  was  observed  for  various categories  of  NP size,  surface

charge  and  concentration  with  increasing incubation  time.  Accordingly,  NP size,

surface  charge,  concentration  and  incubation  time  were  considered  as  input  or

explanatory  (independent)  variables for  our  statistical  model  which  is  formed  to

estimate cellular uptake rate.  More or at least efficient level of cellular uptake rate

means a better treatment or diagnostic purpose for the cancerous cell. 
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In these experiments, all NP s used were sphere-shaped, Silica and PMMA

NPs were in 50 and 100 nm diameter, whereas PLA NP s had 250 nm diameter. NPs

were  formed  with positive and negative surface charges  with the combination of

each type and size. Each NP solutions with 0.001 mg/l and 0.01 mg/l concentrations

were added into cell cultures.  At 3, 6, 12, 24, and 48 hours of incubation time, the

number of NPs removed from the cell environment were identified. The number of

NPs  entered  into  the  cell  or  adhered to  the  cell  surface  was  calculated  as  the

difference  between  the  number  of  NPs  added  to  and  removed  from  the  cell

environment.

This  study is  closely related  to  Cenk et  al.'s  (2012)  and  Dogruoz  et  al.'s

(2013)  studies.  Cenk  modeled  the  cellular  uptake  rate  with   Artificial  Neural

Networks  and  Dogruoz  proposed  Statistical  Smoothing  and  Mixed  Models

Methodology for  this  experiment  data  [5,6].   Recently,  Akbulut  et  al.  (2013)

proposed a mathematical model as well for in-vitro NP-cell interactions [7].  In their

study they  applied  vector  support  regression  model  to  the  same  data  set. As  in

mentioned studies,  a  statistical  model  is  proposed  in  this  thesis  to  explain  the

variation in cellular uptake rate. With this statistical model, we would interpret which

factors  or  their  interactions  are  significant  and  necessary conditions  for  a  better

cellular uptake rate. Additionally, we may also decide that at which level the factors

are effective and quantify the effect of change in factors on cellular uptake rate.         
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The  remainder  of the thesis  is organized as  follows, Chapter 2,  reviews the

literature  on  NP-cell  interaction.  Chapter  3  presents background  about  the  cell

structure and particle transportation.  Generalized linear models (GLM) and splines

are introduced in Chapter  4.  Chapter  5  explains our modeling and computational

procedure,  presents  our  models  and  summarizes  the  findings.  The  results  and

methods are compared with the previous studies in Chapter 6. Chapter 7 concludes

the thesis.
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Chapter 2

Literature Review

2.1 Previous Studies on Nanoparticle-Cell Interaction 

Although, various experimental studies concerning NP-cell interaction have

been conducted so far, mathematical modelling approach was rarely and limitedly

considered in these studies.  In order to find which factors are effective for a better

NP – cell interaction and higher intake of NPs into the cell, several factors such as

size of nanoparticles, electrical charge of surface, concentration rate of the cell and

its  surrounding,  time  of  incubation,  chemical  characteristics  of  the  NPs  were

examined in those studies.    

One of those studies is about how concentration of nanoparticles around the

cell  is  effective for  cellular  uptake rate  which is  number  of  NPs entered into  or

adhered  on  the  target  cell.  Davda  and  Labhasetwar  (2001)  proposed  for  higher

concentrations of NPs in a centered location around the cell, higher uptake rates are

obtained provided that the other conditions are the same. In their study, endothelial

cells, as target cell, and similar sized NP s  were used. Uptake rates were observed in

each 30 minutes incubation times until 120 minutes and different NP concentration

effects were investigated as well.  One of the  significant  finding was that cellular

6



uptake rates were increasing as incubation time increases.   As a conclusion of this

study,  it is observed that uptake rate depends on number of NPs per unit area around

the cell, as well as incubation time [8].   

Another experimental study, to determine effectiveness of size and shape for

NP uptake into cell, was conducted by Chithrani et al. (2006). They used rod-shaped

gold Nps with combination of 40*14- 74*14 nm dimensions and  spherical NPs with

14,  30,  50,  74,  and  100  nm  diameters.  However,  no  mathematical  model  was

proposed in their article as a result of their experiment, this research gave an idea that

different sizes and shapes of NPs result in different cellular uptake rate. They also

observed that spherical NPs illustrated a better performance in terms of higher uptake

rate than rod-shaped ones [9].   

Interactions between gold nanoparticles (AuNP) and cell  membranes  were

examined  for  different signs and densities of surface charge by Lin et al. (2010).

Coarse-grained molecular dynamics (CGMD) simulation model was proposed and  it

was observed that the as  electrical charge amount in surface area increases, level of

penetration increases [10]. 

Jin  et  al.  (2009)  aimed  to  provide  a  quantitative  model  illustrating  the

correlation between endocytosis rate and nanoparticle geometry. They used receptor-

mediated endocytosis in experiment mechanism while measuring uptake rate.   Au

nanoparticles with a diameter of 14- 100 nm and DNA wrapped single-walled carbon

nanotubes  (DNA-SWNT) with  lengths  130-660 nm are  used  for  this  study.  With

7



obtained data,  a  model  parameter  regression was constructed  for  the  endocytosis

Rate Constant, their illustrated graphs and regression results show NP concentration

in one cell and cellular uptake rate differs as for NPs as their sizes differ.  Around 25

nm radius NPs show best results for endocytosis rate and as NP size increases, rate of

NP concentration in one cell decreases [11]. 

To  find  out  the  optimal  NP diameter  which  maximizes  number  of  NPs

adhered onto the target cell,  Boso et al. (2011) conducted an in vitro experiment by

using parallel   plate flow chamber.  They  proposed  two different  Artifical Neural

Network Model  (ANN) to model their experiment data. As a result of their study,

they concluded that ANN model structure is effective in terms of decreasing number

of  experiments  needed  to  draw  a  decision  and  they  proved  the  existence  of  an

optimal NP diamater for the maximum cellular uptake rate [12].     

Cho et al. (2011) investigated role of surface charge for adherence of gold

NPs onto the cell. In their study, it was observed that negatively and neutral charged

gold NPs were absorbed by negatively charged cell membrane comparatively much

less than NPs  which were positively charged. This resulted in lower uptake rate for

the case which cell  membrane and NP similarly charged  and helped us to derive

conclusion  on significant effect of surface charge on cellular uptake rate.   Another

surface charge effectiveness example illustrated with an experiment by Villanueva et

al.  (2009).  Interaction  of  similar  sized  iron  oxide  NP s  and  differently  charged

carbohydrates in human cervical carcinoma cells resulted in negatively charged  NPs'
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uptake and toxicity based on different kind of surfaces [13].

Cho et al. (2011) also investigated how size, shape and surface chemistry of

gold NPs are effective on  uptake rate on SK-BR-3 breast cancer cells. Cubic and

spherical NP s with two variety of size were used, but this time NP surfaces were

modified with three kind of chemical structure, namely poly (ethylene glycol) (PEG),

antibody anti-HER2,  or poly (allylamine hydrochloride) (PAA).  At the end of their

study, it is observed that same size of NP s shows similar behavior in terms of uptake

rate regardless of surface chemistry, whereas there may be an additional interaction

effect for different surface structures and shapes [14].   

Although, these studies mentioned above partially try to explain behaviors of

NP s  entering  to  cell  in  different  conditions,  none  of  them proposed a  concrete

mathematical  model  showing all  factors  or  even  more than two factors  affecting

uptake rate together.  Therefore, our study diverges from them in terms of examining

four different factors which are considered as effective for cellular uptake rate of

NPs.   Furthermore,  our  study  not  only  suggests  a  valid  mathematical  model  to

describe the change in cellular uptake rate as one of the factors changes, but also

examines their interaction effects and includes them in the mathematical model. 

Cenk (2012) and Dogruoz (2013) previously aimed to find out how cellular

uptake differs and which factors are effective for NP-cell interaction and proposed

mathematical models for this purpose by using same experiment data set.  Recently,

Akbulut (2013) has conducted research for the same purpose with another modeling
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approach.  As in our study, Cenk, Dogruoz and Akbulut also investigated the effects

of NP size,  surface charge, concentration  difference,  incubation time and chemical

type  of  NPs  on  cellular  uptake  rate.  All  of the  studies come  up  with  concrete

mathematical  models  to  estimate  the  variation  in  the  cellular  uptake  rate  and its

dependencies to factors which are mentioned above. Similarly, all of the studies give

statistical models. In this thesis, we propose alternative statistical model which gives

good fit and explains the factors in variation of cellular uptake rate. 

Furthermore,  our model is easier to understand and interpret for those  in

health sector who may not be very familiar to complex mathematical models. Unlike

Cenk's  and  Akbulut's  proposed  models,  our model  is  able  to  explain  interaction

effects and their  coefficients.  Quantitative  explanation  of uptake rate  change with

respect to change in one factor level, consideration of interaction effects and being

easily understandable may be regarded as advantages over other mentioned models.

Additionally, our study differs in terms of proposal for quantitative model selection

techniques  which  allows  us  to  decide  which  model  has  better  fit,  without

constructing  prediction  or  confidence intervals  as  proposed previously mentioned

studies.
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2.2 Experimental Procedure

Experimental data  are obtained  from  in-vitro  nanoparticle-cell  interaction

experiments conducted by Gazi University Nanomedicine & Advanced Technologies

Research Center.  

Polymethyl  methacrylate  (PMMA),  Silica  and  Polylactic  acid  (PLA)  were

used as nanoparticle substances which were interacted with target cells. "3T3 Swiss

albino Mouse Fibroblast" type of healthy cell  set  was used  as target cells  in this

experiment. 

Firstly, the cells were put into incubation environment containing 10% FBS, 2

mm L-glutamine, 100 IU/ml penicillin and 100 mg/ml streptomycin at 37°C with 5%

CO2. Using PBS and trypsin-EDTA solution, proliferating cells in the culture flask

were carried after incubation. After this step, these cells were counted and placed on

96-well cell culture plates. Next, previously prepared solutions containing  different

concentrations of nanoparticles were added to plates. 

By using micromanipulation systems in the labs established as a ''clean room''

principle, NP s were interacted with cells in vitro. Spectrophotometric measurement

methods, transmission electron microscopy and confocal microscopy were applied in

order to observe NP-cell interactions. Silica and PMMA NP s were examined with 8

settings  (50 or  100 nm size,  positive or  negatively charged,  0.001 or  0.01 mg/l

concentration); for PLA NPs, there were 4 different settings (250 nm size, positive or
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negatively charged, 0.001 or 0.01 mg/l concentration).  The number of NPs removed

from the environment was counted by washing the solution at 3, 6, 12, 24, 36 and 48

hours of incubation. 

The difference between the number of NPs added to and removed from the

cell environment were thought as number of NPs entered into the cell or adhered to

the cell surface.  The cellular uptake rate  was found with this difference divided by

initial NP quantity.
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Chapter 3

Brief Introduction to Cell Structure 

In  this  experiment,  we  observed  uptake  rate  of  three  different  kind  of

nanoparticles  (NPs)  which  can  be  used  for  cancer  treatment.  To  conduct  this

experiment, nanoparticle solutions are put into cell culture plates and number of NPs

which  are  penetrated  into  or  adhered  on  cell  are  counted  in  different  times  to

calculate  uptake  rates.  Since,  these  processes  are  directly  related  to  particle

transportation process into cell, giving a brief information on basic cell structure and

understanding   particle  transportation  mechanisms  would  be  quite  beneficial,

especially for those who have no previous information about these topics, in terms of

more solid understanding of experiment and interpretation of  physiological results.

For this purpose, in this chapter,  basic information on cell  structure and particle

transportation processes into the cell will be briefly introduced. 

The cell is the basic living unit of the body. Each type of cell is specialized to

perform one or a few functions. Each organ in the body is made up of many different

cells  [15].  Like  human body,  each  cell  forming our  bodies  can grow, reproduce,

process  information  and  implement chemical  reactions.  These  are  the  abilities  to

define life. Many organisms consist of even one single cell, while humans and other
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multicellular  organisms  are  composed  of  billions  or  trillions  of  cells.  However,

distinct type of cells may have different shapes and sizes, all cells contain certain

structural  features.  Biological  organisms are made of  two types  of  cells,  namely,

prokaryotic  and  eukaryotic.  Prokaryotic  cells  have comparatively  simple  internal

structure consisting of a single closed compartment and plasma membrane outside of

it. There is no defined nucleus in this kind of cells. Bacteria, blue-green algea are the

most  numerious  and  well  known  prokaryotes.  Opposing  to prokaryotic  cells,

eukaryotic cells  contain a membrane-bound nucleus and the organelles which are

conducting different functions of the cell [16]. 

Two  major  parts  in  the  eukaryotic  cell  are called  the  nucleus  and  the

cytoplasm.  Nuclear  membrane  separates  the  nucleus  from  cytoplasm  and  cell

membrane does this function for the cytoplasm and the surrounding of the cell [15]. 

There are two major components in the nucleus called as nucleolar fibers and

nucleolar  granules  and  they  are  packed  densely.  For  cell  activities,  the  nucleus

functions as a control center [17]. The nucleus contains DNA, which is called as

genes as well, determining the characteristics of proteins in the cell and the enzymes

for cytoplasmic activities. The nucleus also plays a main role in reproduction of the

cell. 

The portion of the cell outside the nucleus, called as the cytoplasm, contains

ribosomes and a variety of organelles with membranes. Some of these organelles are

mitochondria,  endoplasmic  reticulum, Golgi  complex,  lysosome and each organel
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has a specific functional utility [17]. 

Mainly all organelles in the cell and the itself are covered with membranes

basically composed of lipids and proteins. The lipids of membranes construct barriers

preventing movement of water and water-soluble substances freely from one cell part

to another,  whereas protein molecules provide specialized pathways for passage of

specific  substances  and  play  a  catalyzer  role  in  chemical  reactions  as  enzymes

[16,18]. 

Similarly, the cell membrane, separates the cell from its surrounding,  is made

of  lipids and proteins. It  is thin  as 7.5-10 nanometers  and has an  elastic structure.

The cell membrane consists of two types of proteins namely integral proteins and

peripheral  proteins.  While  some  integral  proteins  on  the  cell  membrane  provide

channels for water-soluble substances which may pass into or pass out the cell with

diffusion, other integral proteins help for the transportation of opposite direction to

the  natural  direction  of  diffusion.  This  kind  of  transportation  is  called  as  Active

Transport, whereas the integral proteins which take part in active transport are called

as carrier  proteins.  Remaining integral proteins and the peripheral proteins act as

enzymes or other controllers for functions into the cell [15,18].    

Passive transport (diffusion) and active transport are two basic mechanisms

which allow transportation of substances into the cell.  Passive transport is simply

based on the differences in concentration of substances inside and outside the cell. In

passive transport, natural movement direction is from more highly concentrated side
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to lower concentrated side without using any cellular energy. Conversely, in active

transport,  substances  move in  the  opposite  direction  of  passive  transport,  in  this

activity, cellular energy is consumed [17]. 

Membrane  permeability,  concentration  difference,  electrical  potential  are

known factors for affecting rate of diffusion.  Membrane permeability  is the rate  of

diffusion of a given subtance for each unit  area of the cell membrane under a unit

concentration  difference  between  two  sides. Thickness  of  the  membrane,  lipid

solubility,  number  of  protein  channels  per  unit  area,  molecular  weight and

temperature  are  the  factors  for  affecting  membrane  permeability.  Concentration

difference between outside the cell and inside also affects rate of diffusion.  As this

difference increases, rate of diffusion  is gets higher.  Since differently charged ions

attract each other, whereas same charges repel, electrical potential  may results for

particles  which are even in environments with same concentration  to move  other

side.  Therefore,  electrical  potential  may be  considered  as  one  of  the  reasons  for

diffusion  rate  [14,15].  Additionally,  there  may  be other  considerable  effects  for

diffusion  rate  such  as  pressure  difference  between  two  sides,  size,  shape  and

chemical structure of particles [14,15].

16



Chapter 4

Background  on  Generalized  Linear  Models,

Logit Models and Splines 

For  this  study,  in  a  generalized  linear  model  context,  logistic  regression  and

piecewise polynomial are used to model data.  Our aim was to construct good fitted

models for cellular uptake rate estimations for three kind of NP s. In the following

parts of this section, general information and theory on these models are provided.     

4.1 Generalized Linear Models (GLM)

Generalized  Linear  Models  (GLM)  is  principally  a  broader  approach  of

ordinary  Linear Regression Models with more flexible extentions.  Ordinary Linear

Regression model is a GLM which uses identity link function. In a GLM, response

variables can be continuous, binary or categorical with more than two categories.  

 Right hand side of the equation of a GLM may include, 

• quantitative explanatory variables and their transformations

• polynomial regressors of quantitative explanatory variables

• dummy regressors representing qualitative explanatory variables

• interaction terms between/among any type of variables [19].
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Thus, a generalized form of a GLM can be illustrated as, 

f (Y i)=β 0 f 1(X i)+β 1 f 2( X i)+ .....+β p f p( X i)+ε i

 (4.1)

where β i  s are coefficients of the model,  Y i  is the response variable

corresponding to  ith  observation,  X i  s are  a vector of explanatory variables

that can be qualitative and quantitative and  f i(.) s are functions of explanatory

variables containing only known observations.  

GLMs  have three components:

1- Random component specifies the conditional distribution of the response variable

Y i  (for the ith of n independently sampled observations) given the values of the

explanatory variables in the model. 

2- Systematic component of a GLM specifies the explanatory variables  which are

right hand side of the equation.  Linear predictor, shown as formula below, 

α+ β1 x1+· · ·+ βk xk  

(4.2)

is linear combination of the explanatory variables.
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3-  Link function g() , which transforms the expectation of the response variable 

 μ = E(Y)  to the linear predictor is the third component [19,20] 

Identity Link function,  g(μ) = μ, models the mean directly.  It  constructs a

linear model for the mean response  and it  is  the ordinary regression model form

when response is continuous.

μ=α+ β1 x1+· · ·+ βk x k

(4.3)

The link function, g ( μ)=log [
μ

(1 − μ)
] , models the log of odds.

This function is called as the logit link and it is used when μ is between 0 and

1 such as a probability. Logistic regression model is the GLM that uses the logit link

as the link function. 

GLMs which contain nonlinear or qualitative terms of explanatory variables

are named as Nonlinear Regression Models  (NRM).  As a special case of  nonlinear

regression models, a polynomial regression model is obtained, if quadratic, cubic or

higher ordered terms of explanatory variables are included in the model.

Other special cases, namely  piecewise polynomials (also known as splines)

and logistic  regression  techniques  are  used  in  our  study for  a  statistical   model

estimating cellular uptake rate.  These models are defined in the remaining of this

chapter.
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4.1.1 Generalized Linear Models For Binary Response Data

In some cases, there are only two categories to be modeled. For these cases,

response variable, Y, is a binary response variable  has  two possible outcomes  as  1

(“success”) and 0 (“failure”). 

The  distribution  of  Y  is  specified  with  probabilities  P (Y =1)=π of

success  and  P (Y =0)=(1−π ) of  failure.  Mean  (Expected  Value)  can  be

computed as E (Y )=π .

Linear Probability Model 

In ordinary regression,  μ=E (Y )  is a linear function of x. For a binary

response, a proposed model is,

π (x )=α +β x

(4.4)

 Since the probability of success changes linearly in x, this  model called a linear

probability model. The parameter β represents the change in the probability per

unit  change  in  x.  This  model  is  a  GLM with  binomial  random component  and

identity link function [20]. 

Logistic Regression Model

Relationships between π (x )  and x are usually nonlinear rather than linear.
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A fixed change in x may have less impact when π is near 0 or 1 than x is somewhere

middle of its range. 

Let  π (x )  denote  the  probability  of  success.  π (x )  often  either

increases or decreases continuously as x increases.

Logistic regression function used in this model given as, 

π (x )=
e(α +β x)

1+e(α +β x)

(4.5)

Logistic regression model form corresponding to (4.3) is defined as, 

log
π (x )

1−π (x)
=α +β x

(4.6)

The logistic regression model (4.5) is a special case of a GLM. This model is

called as logit model as well. 

The random component  for the (success, failure) outcomes has a binomial

distribution. 

The link function is the logit function,  defined as  log [
(π ( x))

(1−π ( x))
]  and

called as logit of π (x ) .

21



Probit Regression Model 

The  link  function  for  this model,  called as  the  probit  link,  transforms

probabilities to z-values from the standard normal distribution.

The probit model has an expression of the form 

probit (π (x))=α +β x

(4.7)

The probit link function applied to  π (x )  gives the standard normal z-score at

which the left-tail probability equals π (x ) [19].

Indicator   (Dummy)   Variables Represent  ing   Categori  cal Data  

Qualitative variables, may be defined as factors for effecting response, can be

included in the model by defining dummy variables for different factors' additional

effects.  For a more clear illustration, Let x and y take values 0 and 1 to represent the

two categories of each explanatory variable. 

The logistic regression model for P (Y =1)=π (x) ,

logit (π ( x))=α +β 1 x+β 2 y

(4.8)

This model has only main effects and x and y are called indicator (dummy) variables

showing categories for the predictors.

22



Logits values are given in the following table,

x y Logit 

0 0 α

1 0 α+β 1  

0 1   α +β 2

1 1  α +β 1+β 2

Table 4.1 – Logit Values for Main Effects.

Provided  that  interaction  terms  are  included  in  the  model,  additional

coefficients are added to model in order to define effect of two factors applied at

same time.  In this case, the model given above is modified as,  

  logit (π ( x))=α +β 1 x+β 2 y+β 3 xy    

(4.9)

If  interaction  effect  is  considered  as  statistically  significant,  then  for  the

values of x =1 and y =1, logit value is estimated with α +β 1+β 2+β 3 . [19,20] 

4.1.2 Spline Regression Models

Splines can be defined as piecewise polynomials. In many cases, linear terms

may be very restrictive to model data. In a linear regression structure, higher ordered

terms  of  explanatory  variables  are  included  in  the  model  with  keeping  linear
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structure in terms of model coefficients, a polynomial regression model is obtained. 

 In the cases where increasing order of the polynomials and transformation of

data can not be an effective solution, spline models may help to construct better fitted

models thanks to their flexibility. In this model, piecewise polynomials are used for

curve fitting [21,22].

Basic properties of splines

Splines  are defined  as  piecewise  polynomials  and linear  combinations  of

truncated power functions. Let t be any real number, then we can define a p th

degree truncated power function as,

(x −t)+=
p

(x− t) p I x >t( x)

(4.10)

As a function of x, this function takes on the value 0 for smaller x values than

t, and it takes on the value (x −t ) p for x values greater than t.  t is called a knot.

This truncated power function is a basic example of a spline. 

In general,  a p th degree spline with one knot at t. Let P(x)  be an arbitrary

p th  degree polynomial such as,

 

P (x )=β0+ β1 x+ β2 x2+· · ·+ β p x p.

(4.11)
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Then, S (x )=P ( x)+ β( p+1)1(x −t)+.
p , takes only value of P(x) for any x< t,

and it takes value of P (x )+β ( p+1)(x −t) p for any x > t. S (x )  is a p th  degree

piecewise polynomial.

As one of the special case of spline models in literature, a piecewise  linear

function model with two knots is given below,  

f (x )=β 0+β 1 x+β 2( X i−K1)+.+β 3( X i−K 2)+.  

where,  
( X i – K i)+.=0 if X i< K j

( X i – K i)+.= ( X i – K i) if X i≥K j

(4.12)

and β i s are coefficients for the model and K i are called as knots. 

In this model, ( X i – K i)+. , becomes 0 for x values which are smaller than

knot. After knot point, it takes the value of difference. This allows different slopes in

three parts of regression separated with knots [19].     

Due to flexible curve shape of cubic terms, cubic spline are commonly used

in spline regression models.

A cubic regression model can be formulated as follows, 

Y I=α +β 1 X i+β 2 X i
2
+β 3 X i

3
+β 4(X i−K1)+.

3
+β 5( X i−K2)+.

3

(4.13)

where, α , β i s are coefficients and K i are knots, similarly defined above and
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( X i−K j)+.
3
=( X i−K j)

3if X i≥K j

( X i−K j)+.
3
=0 if X i<K j

B-splines

 Any  piecewise  polynomial  can  be  expressed  as  a  linear  combination  of

truncated  power  functions  and  polynomials  of  degree  p.  In  other  words,  any

piecewise polynomial of degree p can be written as follows, 

S (x )=β0+ β1 x+ β2 x2+· · ·+ β p x p+ β ( p+1)( x− t1)+.
p
+· ··+ β( p+k )( x− t k )+.

p  

(4.14)

1, x , x2, . .. , x p ,(x− t 1)+,
p
(x −t 2)+ ,

p .. . ,( x− t k )+.
p  is  a  basis  for  the  space  of  p th

degree splines with knots at t 1,t 2, . .. , t k.

Thus,  we  can  obtain  a  spline  regression  model  relating  a  response

y=S ( x)+ε  to  the  predictor  x.  Least-squares  can  be  used  to  estimate  the

coefficients [23,24]. Natural basis for piecewise constant functions as follows,

{ 1( x∈ (a ,t 1))
,1(x ∈ (t1, t2 ))

(x ) ,1( x∈ (t2, t3))
( x) ,. . ,1(x ∈ (t( k− 1) ,t k))

(x) , 1( x∈ (tk ,b))(x ) }

(4.15)

This  is  a  basis  for  piecewise  constant  functions  on  [a,  b]  with  knots at

t 1,. .. , t k ,  [23,24].
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Thus, any piecewise constant function can be written as,

S 0(x )=β01(x ∈ (a , t1))
+ ∑

(k − 1)

( j=1)

β j1(x ∈ (t k ,t(k +1)))
+ β k 1(x ∈ (t k ,b))

(4.16)

In our study, B-spline basis is used in GLMs for modelling time variable with

splines. In computation, bs function of R program was used to construct B-spline

basis.  

Parameter Selection for Spline Terms

For a  spline regression model,  in  the concept  of  parameter  selection,  two

questions arise and needs to be answered.

• What should be the polynomial degree of spline models  ? 

• How many knots should be used and where they should be located ? 

For the cases in which one of these parameters (knot numbers, locations and

polynomial degree), problem gets comparatively simpler. When knot  locations are

not known, a nonlinear estimation method such as Nonlinear Least Squares (NLS)

can  be  applied,  since  the  regression  equation  becomes  nonlinear  in  terms  of  its

parameters [22,23]. 
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4.2 Inference with GLMs

Inferences  on  GLM  are  basically  based  on  the  theory  of  Maximum

Likelihood  Estimation,  which  is  valid  in  linear  models  as  well.   With  given

parameters β , , f ( y , β )  is the probability density function of response variable

y. 

Putting  observed  data  , yobs ,  into  this  function  and  assuming  this  is  a

function of β , likelihood fuction is obtained as, 

L(β ) = f ( yobs ,β )

(4.17)

For  GLMs,  to  find  maximum  likelihood  estimates, β̂ ,  likelihood  is

maximized with respect to β by Iteratively Re-weighted Least Squares (IRLS), so

that  successively  improved β̂  found  by  fitting  linear  models  to  transformed

response data [19].

I  nference   on   Model Parameters   and   Significance Testing  

One  convenient  way  to  construct  confidence  intervals  (CI)  and  test  the

hypothesis for significant effect of coefficients in model is to use Wald Statistics.  
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Wald Statistic is computed as, 

z0=
(β −β̂ )

SE

(4.18)

 where SE is the standard error of  β̂

To  test  H 0: β=0 the  Wald  Statistic, z0=β̂ /SE ,  is  approximately

standard normally distributed for sufficiently large samples.  At the same time z2

has an approximate chi-squared distribution with one degree of freedom.

As an alternative to Wald Statistic, Likelihood Ratio approach can be used. 

L0  denotes maximized value of the likelihood function under H 0: β=0  and

L1 denotes  same  statistic  when β≠0 .  The  likelihood  ratio  test  statistic,

−2(L0−L1) has chi-squared distribution with one degree of freedom [20].

The likelihood-ratio method can also determine a confidence interval for  β.

The  95% confidence  interval  consists  of  all  β0 values  for  which  the  P-value

exceeds 0.05 in the likelihood-ratio test of  H 0: β=β0 . For the cases of  small  n,

this is preferable to the Wald interval [20]. 

Confidence Intervals for Effects

A  100(1−α ) % confidence  interval  for  a  model  parameter  β is

computed as β̂ ± z(α / 2)(SE) . Exponentiating the endpoints, an interval for eβ ,
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the multiplicative effect on the odds of a 1-unit increase in x, is obtained.

When n is small or fitted probabilities are mainly near 0 or 1, it is preferable

to construct a confidence interval based on the likelihood-ratio test.  All the  β̂

values  for  which  the  likelihood-ratio  test  of H 0: β =β 0  result  with

P−value>α  is included to construct this interval [19,20].

For our models, which are presented in next chapter, all significances were

checked by using R program functions. With R program, it was possible to derive

and interpret the result obtained from two approaches discussed above. 

Model   C  omparison  

F-test comparison of  two models,   analysis of variance (ANOVA), is well

known and widely used for Linear Regression Models. It is able to explain variability

in the data as decomposition of sum of squares. The method decomposing variability

used for GLMs is an analysis of deviance which is generalization of  ANOVA.

Deviance  of a GLM is a test  statistic to compare two models.  Let  LM

presents the maximized log likelihood value with the estimated parameters and  let

LS  denotes the highest possible log likelihood value of most complex model can

be hold, deviance of estimated model is defined as − 2[LM − LS ] . If this statistic is

approximately distributed as chi-squared, then a goodness of fit test can be proposed

for the model. For a comparison of better fit between two models,  L0  for Model
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1 and  L2  for model 2,  their deviances can be compared since,

− 2[L0 − L1]=− 2[L0 − LS]−(− 2[L1 − L s])=Deviance0 − Deviance1

(4.19)

In our study, two different model selection criteria were used to select which model

is more appropriate to define variation in our response variable. These method are

comparison for proportion of deviance explained and Akaike Information Criterion

(AIC). Both methods are highly related to log likelihood and deviance value which

are mentioned above [20].

 In general, for model selection, AIC score is a highly preferable indication, which is

computed as, assuming β  is given parameters and its estimates is β̂ ,

AIC=−2 L( β̂ )+2 dim(β )

(4.20)

In this equation, β̂  is the parameter which maximizes the likelihood ratio

of  the  model.  Second  component  of  AIC, 2dim (β ) ,  is  the  penalization  term

resulting  higher  AIC  scores,  while  the  complexity  of  the  model  unnecessarily

increases.  dim β denotes  for  the  dimension  of  the  estimation  matrix  for β .

Lower AIC indicates a better fitted model. 
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With unnecessary variables added to model which do not include a unique

information to express the change in response variable, likelihood value increases

which  gives  an  indication  of  'better  model'.  Indeed,  over  fitting  causes  higher

likelihood values for models including unnecessary explanatory variables. Therefore,

interpreting better  AIC scores can be considered as more applicable than looking at

high likelihood values as a sign of good fit [25]. 

   

Proportion of deviance explained (PDE) used as another indication in this

study. PDE basically measures how much of the total variation of response variable

can  be  explained  with  the  considered  effects  in  the  model.   Smaller  residual

deviance, which means less variation coming from noise factors and unidentifiable

reasons, is desirable for a fitted model. PDE is computed as, 

Proportion Deviance Explained (PDE )=
Null Deviance−Residual Deviance

Null Deviance

(4.21)

Fortunately,  close relationship between dummy variable models and spline

models within the context of regression analysis and their effective usability together

in one model bring us convenience of including each explanatory qualitative variable

and cubic spline application for time at once in a logistic regression model. [22,23].

Thus, logit  of cellular uptake rate can be modelled with one regression including
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size, charge, density effects with dummy variables and time with cubic splines and

their  interaction  terms.  Testing  for  significance  and  interpretation  of  results  and

coefficients, all for dummy regressors, cubic splines and other polynomial terms for

time, are derived from quite similar idea and theory. Thus, methods for inferences on

GLMs, which are discussed in this chapter, are valid for interpretion of all main and

interaction effects. 
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Chapter 5

Proposed Models

5.1 Modelling Procedure 

In our study, we focused on construction of a statistical model that predicts

cellular uptake rate as accurate as possible for each three type of NP.  Surface charge,

NP  size,  density and  incubation  time  were considered for prediction of   cellular

uptake rate in our models. From our data set obtained,  it is aimed to analyze which

factors are more effective to model  uptake rate  and which main factors and their

interaction effects have to be included in the model explaining variation in cellular

uptake rate. The following table summarizes explanatory variables considered for our

models  in the basis of each type of NPs.

 Types of NPs PMMA (1), Silica (2), PLA (3)

    Diameter size of NPs 50 nm and 100 nm for PMMA and Silica 250 nm for PLA 

    Surface charge of NPs Positive (+1) and Negative (-1)

Concentrations of NPs 0,001 - 0,01 mg/l

 Incubation time 0,3, 6, 12, 24, 36, 48 hours for PMMA, Silica and PLA

Table 2 – Explanatory variables used in models
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Cellular  uptake  rate,  response  variable  of  our  models,  comes  from  an

extension of each Bernoulli cases of observations. In these Bernoulli cases, success is

defined as related NP adhered on or entered into the target cell, while removals from

cell  environment  is  defined as  failure.  Thus,  the cellular  uptake  rate  illustrates  a

binomial  distribution  structure  with  success  probability, π (x ) ,  defined  as  the

proportion of NP s adhered on or entered into the cell.  

Based on our experiment data structure, firstly logistic regression method is

applied.  All  the variables  except  time are qualitative  and have to  be included as

factors. They are added with dummy variables into the model as explained in Section

4.1.1.  

As modeling procedure, first we considered only main effects in the models

and tested the significance and fit of the models, as well as significance of model

coefficients. In the next step, we assumed that interaction effects may occur between

two  explanatory variables and included the interaction effects in the model, then

conducted same tests. 

However,  significance of all  main and interaction effects  were statistically

proved, AIC score and PDE as model selection criteria, explained in the Section 4.2,

were not illustrating a sufficiently good fit of data, especially these models had very

low PDE which means our constructed models were not able to explain the variation

response  sufficiently.  The  main  reason  was  that  the  effect  of  our  quantitative

variable, incubation time, was not able to be defined properly with linear functions of
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the variable, since linear functions are very restrictive to explain curving behavior in

data. Therefore, further improvements were inevitable. Supporting plots are given in

Appendix A.2-A.3 and A-4 for PMMA, Silica and PLA NPs respectively.   From

these figures, it is easily observed that the fitted  values in 1st and 2nd models  (i.e.

models without interaction effects and models with interaction effects) are not close

enough to exact values for each type of NPs. This situation can be interpreted as

these models can not give good predicted values. AIC and PDE values  also give

indications  of  poor  fit  for  these  models.  From Appendix  B.1,  B.2  and  B.3,  glm

results, containing AIC, null and deviance residuals, can be viewed  as indications of

poor fit. 

Significantly better  fits  could  be  obtained  with  the  known transformation

techniques  such as square root transformation on time variable. Nevertheless, these

models  still   contains  significant  rate  of  unidentifiable  cause  of  variation  and

illustrated PDE s were not sufficiently large.

As third step, polynomials and its piecewise functions were applied to time

variable. Second and third degree polynomials were considered for spline regression

as  discussed  in  Section  4.1,  because  higher  degrees  were  not  able  provide

significantly  better  fit,  but  cause  more  complexity  in  the  models.  Third  degree

piecewise polynomials with two knots were selected for models of three different

NPs. As a nature of modeling principle, avoiding more complex models is needed

when a simpler model can sufficiently explain the cause of variation. In addition to
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this,  due to  very limited number of unique time values,  locating two knots were

considered as optimal choice, since models with one knot location were not able to

give a satisfactory fit. AIC and deviance residual tables under the consideration of

cubic  and  quadratic  polynomial  splines  with  one  or  two  knots  are  provided  in

Appendix A.1. Selected models for each type of NP are highlighted in this table.      

In this study, for all of models constructed, variables can be defined as follows,    

Time: quantitative explanatory variable (observed as 0, 3, 6, 12, 24, 36, 48 hours) 

Diameter Size: qualitative explanatory variable (observed as 50 and 100 nm) which

is considered as a factor in GLMs for PMMA and Silica NP s. 

Since PLA NP s are made of 250 nm only. This variable can not be included as a

factor in the models for PLA s .

Surface Charge: qualitative explanatory variable ( observed as + and – as electrical

charge) which is considered as a factor in GLMs. 

Density: qualitative explanatory variable ( observed as 0,01 and 0,001 mg/l) which is

considered as a factor in GLMs. 

Response variable is uptake rate which is computed as, 

Uptake rate=
Number of NPs entered into or adhered oncell

Number of Initial NP quantity

(5.1)

Cellular  uptake  rate, π (x ) ,  is  the  success  probability.  In  our  models
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logit (π ( x)) constructs left hand side of our equation. 

In the following of this chapter, in the context of modelling procedure's three

steps  discussed  above,  constructed  models  without  consideration  of  interaction

effects,  with  consideration  of  interaction  effects  and  models  with  cubic  splines

included will be given for three type of NPs. 

5.2 Computational Procedure

For all computations, R program is used. Glm function, with family=binomial

condition and logit link function,  is used to formulate logistic regression models.

Glm function performs an iterative algorithm to maximize the likelihood value and

find estimated parameters [26].

Bs function of spline package is applied to time variable to construct B-spline

basis. Thus, coefficients for piecewise cubic polynomial function, included into our

logistic  regression  model,  were  able  to  estimated  with  same model  equation.  As

explained previous chapter, piecewise polynomial functions, which can be expressed

with B-splines, are easily used in GLMs.    

5.2.1 Testing for Coefficients and Model Significance

 Testing  for  coefficients  is  important  in  terms  of  providing  evidence  for

significance of factors and variables included in the model. In other case, a simpler
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model  does   almost  the same job,  but  we unnecessarily add more  variables  into

model. 

Wald  test  is  a  statistical  method  for  GLMs  measuring coefficients are

statistically  significant or not.  Assuming there are  two components  in the model,

hypotheses are as follows for each coefficient,  

 H 00 :α = 0 vs H 10 :α ≠ 0

 H 01 : β = 0 vs H 11 : β ≠ 0

(5.2)

With 95% confidence, Wald test result shows significance of coefficients. In

R computation results, for p-values < 0.05, we may conclude  H 1 which means

that effect should be included in the model, there is statistically sufficient evidence

for this.  

R  program  allows  us  to  directly  compute  the  confidence  intervals  for

coefficient based on log-likelihood as well, which is more preferable for GLM s than

Wald CI s. This type of CI s tends to be more accurate for GLMs [26]. 

 To test the significance of all coefficient, R computation result for Wald Tests,

which  test  the  hypothesis,   H 0: coeff =  0  vs  H 1: coeff ≠  0,  are  listed  in

Appendix B.1-B.2-B.3 sections for all models of three types of NPs. 

Standard deviations of the coefficients  are  quite low, even if  they tend to

increase a little as complexity of model increases. Less variability is preferable in

terms of  having more accurate results. Standard deviations of model coefficients can
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be viewed from model summary tables in Appendix B.1-2-3.  

 All  regressor  terms,  included in  the  models  represented  in  the  following

chapter, are statistically significant. All coefficients are significant in  at least  %95

confidence level and even more  in many cases up to Wald test results given in R

outputs in the Appendix Section B. Therefore, all main and interaction effect terms in

the model should remain, there is no sufficient information that they are unnecessary

in the model. Cubic spline and polynomial terms' significancy were tested in similar

way.  In  all  models  using  cubic  splines,  similarly,  all  coefficients  are  statistically

significant. R outputs showing significancy are given in Appendix B.1-2-3 sections.

Furthermore, step  function, which is a stepwise model selection algorithm, is used to

examine  if  any elimination  in  needed  on  coefficient  of  the  models  [26].  It  uses

backward elimination algoritm as default. Step function  chooses the best model by

looking at the AIC value, if any elimination increases the AIC value, it proposes to

eliminate that variable from the model. Results are a given as last tables of Appendix

B sections.  As an indication of significancy of all coefficients, backward elimination

algorithm keep all of them in the model.       

Having the aim of visualization of the quality of model fits, understanding the

behaviours of residuals, visual illustration on main, interaction and marginal effects,

several plots were  constructed and played supportive role for our model selection

decision. These plots are  fitted vs actual value plots, interaction effects plots and

residual plots for constructed models.  
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5.2.2 Computations for Model Comparison and Selection

To  test  the  difference  of  two  models  (for  instance, the  model  without

interaction terms and model having interaction terms) for the concern that these two

models are statistically significantly different,  ANOVA can be used as in ordinary

linear regression models [23]. Anova function of R is used for this purpose. 

Test statistics is the deviance between two models which are to be compared.

As explained in section 4.2.  Anova uses χ 2  test statistic. Within confidence level

of 95%, acceptance of significant difference is based on the condition that p-value <

0.05. For p-values < 0.05 , we can conveniently reject null hypothesis which means

that  two  models  are  statistically  indifferent.  Once,  the  null  hypothesis  can  be

rejected, the model, illustrating better AIC or PDE, can be regarded as a better fitted

model.

For  all  steps  when interaction terms  and cubic splines  are  added into  the

model, ANOVA tests are conducted to test significant difference. ANOVA results are

represented in Appendix B.1-2-3. In three steps of modelling,  all improvements and

added  terms  were  necessary  and  newly  constructed  models  were  repsenting

significant difference from the previous one. Consequently, models using piecewise

polynomials   can be considered as better from this point of view.   

Backward algoritm, discussed in previous topic, is also a good application for

model selection,  since it chooses which variables should be included in the model

and eliminates unnecessary ones. 
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In general, as well as determining polynomial degree of spline models, how

many knots should be used and where they should be located are two concerned

topics  [23].  For  time  variable,  having  only 6  unique  measure,  i.e  observation  is

conducted and data is obtained in 6 different times, restricted us to compute number

of knots and their location with more complex statistical methods. Like in Stepwise

Regression Method,  starting from 1 knot,  other combinations were tried and two

knots were selected by considering the improvements in model selection criteria, i.e.

AIC and proportion of deviance explained. A little lower AIC s and more explained

deviance could be obtained by increasing number of  knots,  but  this  may lead to

unnecessarily overfitting of data and  more complexity in models. AIC and residual

deviance results with different knots are presented in Appendix A.1.  

5.3 Proposed Models and Interpretation of Results  

5.3.1 Proposed Models for PMMA Nanoparticles

In general, the logistic regression model can be expressed as 

log( π
1−π )=α+β X 1İ+γ 1 D1İ+γ 22 D2i+γ 3 D3i+ε i

(5.3)

 where X i corresponds  to  time  and D s are  dummy  variables  corresponding
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diameter size, surface charge and density respectively. 

Logistic  Regression    Model  for  PMMA  Nanoparticles  Without  Considering  

Interaction Effecs

log (
π i

1−π i

)=α +β X 1i+γ 1 D1i+γ 2 D 2i+γ 3 D 3i+ε İ

(5.4)

where π −proportion of uptake

X 1i – time

D1i - size 

D2i – charge 

D3i - density 

γ i s and β are coefficients of logistic regression.

 From R computations, we can construct our model such as, 

log(
Π i

1−Π i
)=−1,284+0,027 X 1İ−0,506 D1İ+0,093 D2İ+0,508 D3İ  

 (5.5)

where,

D1İ = 0 for size = 50 nm  and D1İ = 1 for size = 100 nm 
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D2İ = 0 for ( - )surface charge and D2İ = 1 for  (+ )surface charge 

D3İ = 0 for  density= 0.001 mg/l and D3İ  = 1 for  density=0.01 mg/l 

Model selection criteria results were computed as, 

AIC = 4518000

Proportion of Deviance Explained (PDE) = (Null Deviance – Residual Deviance) /

Null Deviance

= 0.25

With 95% confidence, Wald test result shows that  all coefficients (coefficients for

intercept, time, charge,  size  and density) are significant.(There is enough evidence

that these coefficients are different than zero) (Appendix B.1)

Rejecting H 0 and concluding H 1 for all  hypotheses.  Intercept, time's, charge's,

size's and density's coefficients make us to conclude that these variables and factors

should be included in our logistic regression model. (Appendix B.1)

Logistic Regression Model for PMMA Nanoparticles With Interaction Effecs

To  consider  interaction  effect,  all  pairwise  interaction  terms  are  added  to  our

previous logit model. 

Below equation is the general form of our logistic regression model. 
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log(
π i

1−π i
)=α +β X 1İ+γ 1 D1İ+γ 2 D 2İ+γ 3 D3İ+η1 X 1İ D1İ+η 2 X 1İ D2İ

+η 3 X 1İ D3İ+η4 D1İ D2İ+η5 D2İ D3İ+η6 D1İ D3İ+ε İ

(5.6)

 where Π −proportion of uptake

X 1İ – time

D1İ - size 

D2İ – charge 

D3i - density 

γ i s and β are coefficients of logistic linear regression for main effects

η i s are coefficients for interaction effects.

From R computation results, the coefficients which are included in our model are

estimated such as,

 

log(
Π i

1−Π i
)=−0,79+0,043 X 1İ−0,5 D1İ−1,6 D2İ+0,12 D3İ−0,001 X 1İ D1İ+0,006 X 1İ D2İ

−0,02 X 1İ D3İ+0,803 D1İ D2İ+1,56 D 2İ D3İ−0,471 D1İ D3İ

(5.7)

where, 

D1i  = 0 for size = 50 nm  and D1İ = 1 for size = 100 nm 

D2İ = 0 for ( - )surface charge and D2İ = 1 for  (+ )surface charge 
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D3İ = 0 for  density= 0.001 mg/l and D3İ  = 1 for  density=0.01 mg/l 

AIC = 4132000

Proportion of Deviance Explained = 0.315

Model for PMMA Nanoparticles By Using Logistic Regression with   Cubic    Spline  s  

For Time

General form of our model using cubic polynomial splines with two knots, 

log(
π i

1−π i
)=α +β 1 X i+β 2 X i

2
+β 3 X i

3
+β 4(X i−K1)+.

3
+β 5( X i−K 2)+.

3
+γ 1 D 1i+γ 2 D2i

+γ 3 D3i+η 11 X i D1i+η12 X i
2 D 1i+η13 X İ

3 D1i+η14( X i−K 1)+.
3 D1i+η15(X i−K 2)+.

3 D1i

+η 21 X i D2i+η22 X i
2 D2i+η23 X i

3 D2i+η 24( X i−K1)+.
3 D2i+η 25( X i−K 2)+.

3 D2i

+η31 X i D3i+η32 X i
2 D 3i+η33 X i

3 D3i+η34( X i−K 1)+.
3 D3i+η35( X i−K 2)+.

3 D3i

+η 4 D 1i D2i+η5 D2i D 3i+η6 D1i D3i+ε i

(5.8)

where Π −proportion of uptake

X i – time , X i
2 – quadratic function of time , X i

3 – cubic function of time
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( X i−K j)+.
3
=0 if X i<K j

( X i−K j)+.
3
=( X i−K j)

3if X i≥K j

D1İ - size 

D2İ – charge 

D3i - density 

γ i s and β i are coefficients of logistic linear regression for main effects

η ij s are coefficients for interaction effects.

and

D1i  = 0 for size = 50 nm  and D1i = 1 for size = 100 nm 

D2i = 0 for ( - )surface charge and D2i = 1 for  (+ )surface charge 

D3i = 0 for  density= 0.001 mg/l and D3i  = 1 for  density=0.01 mg/l 

Firstly,  number  of  knot  selection  and  their  locations  were  decided  as

explained in previous section.  Based on AIC and PDE scores, cubic splines with 2

knots was considered as an appropriate model. For PMMA NPs, knot locations are

given as, 

K1 = 6 and K 2 =24   

After R computation results, coefficients of the model can be given as, 
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log(
π i

1−π i

)=−9.284+11.37 X i+7.38 X i
2
+10.99 X i

3
+9,14 (X i−6)+.

3
+10.67( X i−24)+.

3

−0,66 D1i – 2,03 D2i+3,2 D3i+0.24 X i D1i –0.68 X i
2 D 1i+0.15 X i

3 D1i+1.04( X i−6)+.
3 D1i

−0.25( X i−24)+.
3 D1i 0.85 X i D2i –0.7 X i

2 D2i+1.59 X i
3 D2i+1.37 (X i−6)+.

3 D2i

+0.09 (X i−24)+.
3 D2i−4,29 X i D3i – 2,27 X i

2 D3i−3,39 X i
3 D3i−4,19( X i−6)+.

3 D3i

– 4.28( X i−24)+.
3 D 3i+0.85 D1i D2i+1.54 D2i D3i−0.39 D1i D3i

(5.9)

AIC = 334100

Proportion of Deviance Explained = 0.95

5.3.2 Proposed Model for SILICA Nanoparticles

Since, all factors and observation times are same as in experiment for PMMA NPs,

the general form of our logistic regression equations can be defined similarly as in

PMMA NP Models.

Logistic  Regression  Model  for    SILICA   Nanoparticles  Without  Considering  

Interaction Effecs

From R computations, we can construct our model as, 

log(
Π i

1−Π i
)=−0,46+0,042 X 1İ+0,014 D1İ+0,157 D2İ+0,392 D3İ  

(5.10)
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where, 

D1İ = 0 for size = 50 nm  and D1İ = 1 for size = 100 nm 

D2İ = 0 for ( - )surface charge and D2İ = 1 for  (+ )surface charge 

D3İ = 0 for  density= 0.001 mg/l and D3İ  = 1 for  density=0.01 mg/l 

AIC = 5.691∗1014

Proportion of Deviance Explained = 0.25

Logistic Regression Model for   SILICA   Nanoparticles With Interaction Effecs  

From R computation results, the coefficients which are included in our model are

estimated such as 

log(
Π i

1−Π i
)=−0.065+0.016 X 1İ+0.372 D1İ+0.081 D2İ−0.015 D3İ−0,004 X 1İ D1İ

−0.236 X 1İ D2İ−0,001 X 1İ D3İ+0,027 D1İ D2İ+0,008D2İ D3İ−0,2 D1İ D3İ

(5.11)

where, 

D1i  = 0 for size = 50 nm  and D1i = 1 for size = 100 nm 

D2i = 0 for ( - )surface charge and D2i = 1 for  (+ )surface charge 

D3i = 0 for  density= 0.001 mg/l and D3i  = 1 for  density=0.01 mg/l 

AIC = 5.6035∗1014
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Proportion of Deviance Explained = 0.26

Model for   SILICA     Nanoparticles   By Using Logistic Regression   with     Cubic Splines  

for   Time  

General form of our model using cubic polynomial splines with two knots are

defined similar as in equation (5.8). 

Similarly, model with cubic splines and two knots is the best alternative for

Silica Nps.  Knots are selected as 3 and 36  hours, since this  combination gives  a

higher PDE and a lower AIC. (Appendix A.1)  

From R computations, our model is given as, 

log(
π i

1−π i

)=−27.96+27.82 X i+30.48 X i
2
+5.18 X i

3
+28.85( X i−3)+.

3
+27.85( X i−36)+.

3

+0.92 D1i – 0,31 D2i−1,75 D3i−1.6 X i D1i – 0.98 X i
2 D1i−2.16 X i

3 D1i

−0.65( X i−3)+.
3 D1i−1.87( X i−36)+.

3 D1i+1.36 X i D2i –1.49 X i
2 D2i+2.75 X i

3 D2i

−1.29( X i−3)+.
3 D2i+1.05( X i−36)+.

3 D2i+2.16 X i D3i+1.59 X i
2 D3i+2.83 X i

3 D3i

+1.97( X i−12)+.
3 D3i+3.11( X i−36)+.

3 D3i−0.35 D 1i D2i+0.002 D2i D3i−0.28 D1i D3i

(5.12)

AIC = 1.085∗1013

Proportion of Deviance Explained = 0.986
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5.3.3 Proposed Model for PLA Nanoparticles

In experiments, PLA nanoparticles have only size of 250 nm, therefore, it is

impossible to add Size as a categorical  explanatory variable into the model. 

Other variables were considered for the model as explanatory variables. 

Logistic Regression Model for P  LA   Nanoparticles Without Considering Interaction  

Effecs

This time, we can define a logistic regression model as, 

log(
π i

1−π i

)=α +β X 1İ+γ 1 D1İ+γ 2 D 2İ+ε İ

(5.13)

where Π −proportion of uptake

X 1İ – time

D1i – charge 

D2i - density 

γ i s and β are coefficients of logistic regression.

Glm function in R, computes the coefficients of our model as, 

log(
π i

1−π i

)=−0.269+0,013 X 1i−0,044 D1i+0.259 D 2i

(5.14) 

51



where, 

D1i = 0 for ( - )surface charge and D1i = 1 for  (+ )surface charge 

D2i = 0 for  density= 0.001 mg/l and D2i  = 1 for  density=0.01 mg/l 

AIC = 2.914∗1012

Proportion of Deviance Explained = 0.05

Logistic Regression Model for   PLA   Nanoparticles With Interaction Effecs  

Below equation is the general form of our logistic regression model for this

case 

log(
π i

1−π i
)=α +β X 1i+γ 1 D1İ+γ 2 D2İ+η1 X 1i D1i+η2 X 1i D2i+η3 D1i D2İ

(5.15)

where Π −proportion of uptake

X 1i – time

D1i – charge 

D2i - density 

γ i s and β are coefficients of logistic regression for main effects

η i s are coefficients for interaction effects.

From R computation results, the coefficients which are included in our model
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are estimated as, 

log(
π i

1−π i

)=−0.22−0.01 X 1i−0.05 D 1i+0.15 D 2i−0.01 X 1i D 1i+0.002 X 1i D 2i+0.13 D1i D2i

(5.16)

where, 

D1i = 0 for ( - ) surface charge and D1i = 1 for  (+) surface charge 

D2i = 0 for  density= 0.001 mg/l and D2i  = 1 for  density=0.01 mg/l 

AIC = 2.9051∗1012

Proportion of Deviance Explained = 0.053

Model for   PLA   Nanoparticles By Using Logistic Regression with   Cubic Splines for  

Time

General form of our model using cubic polynomial splines with two knots, 

log(
π i

1−π i

)=%ialfa+β 1 X i+β 2 X i
2
+β 3 X i

3
+β 4( X i−K 1)+.

3
+β 5( X i−K 2)+.

3
+%igama1 D1i+%igama2 D2i

+η11 X i D1i+η12 X i
2 D1i+η13 X İ

3 D1i+η14( X i−K 1)+.
3 D1i+η 15( X i−K 2)+.

3 D1i+η21 X İ D2i

+η 22 X i
2 D 2i+η23 X i

3 D2i+η24( X i−K1)+.
3 D2i+η25( X i−K 2)+.

3 D2i+η4 D1i D2i+ε i

(5.17)

where %iPİ−proportion of uptake
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X i – time , X i
2 – quadratic function of time , X i

3 – cubic function of time

( X i−K j)+.
3
=0 if X i<K j

( X i−K j)+.
3
=( X i−K j)

3if X i≥K j

D1i – charge 

D2i - density 

%igamai
s and β i are coefficients of logistic regression for main effects

η ij s are coefficients for interaction effects.

and

D1i = 0 for ( - )surface charge and D1i = 1 for  (+ )surface charge 

D2i = 0 for  density= 0.001 mg/l and D3İ  = 1 for  density=0.01 mg/l 

Knot  locations  were  selected  as  3  and 36 hours,  based  on AIC and PDE

results. (Appendix A.1)

Estimated coefficients of our model are, 

log(
π i

1−π i

)=−23.17+23.56 X i+24.16 X i
2
+22.36 X i

3
+24.74( X i –3)+.

3
+23.11( X i –36)+.

3

−0.08D1i−2.39 D2i+0.4 X i D1i – 0.7 X i
2 D1i−0.01 X i

3 D1i−0.22( X i−3)+.
3 D1i –0.25( X i−36)+.

3 D 1i

+2.44 X i D2i+3.09 X i
2 D2i+2.34 X i

3 D2i+2.64( X i – 3)+.
3 D2i+2.58( X i –36)+.

3 D2i+0.17 D1i D2i

(5.18)
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AIC = 1.528∗1010

Proportion of Deviance Explained = 0.995

5.4 Interpretation of Results

To begin with, all models with logistic regression and cubic splines give high

PDE values which are indications of good fit. As stated in section 5.3, PMMA Model

has  0,95  PDE,  whereas  Silica  and  PLA has  0.99  PDE.  PDE  is  a  measurement

indicating how much of the variation of response can be explained with our model

variables. This means that our models perform well for predictions and explanation

of the factors affecting the cellular uptake rate.   

 For  each  type of Nps, the best option is modeling logit of uptake rate by

using  cubic  splines,  cubic,  quadratic  polynomial  terms  for  time  and  keeping  all

interaction effects in the model, as well as keeping all main effects. 

Interaction effects are visualized with plots for each three type of NPs. Figure

1, 2 and 3 illustrate how cellular uptake rate changes if both of the factors occur at

the same time for PMMA, Silica and PLA NPs respectively.   

There is similar behavior of uptake rate of each type of NPs. At first hours of

incubation,  uptake  rates  are  generally  higher,  and  then  these  rates  are  slightly

decreasing, as incubation time increases more, uptake rates begins to increase again.

This fluctuating behavior of uptake rates are common for each type of NPs. 
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PLA and Silica NPs are entering into cells more faster compared to PMMA

NPs. Thus, uptake rates are more higher at the beginning of incubation for these two

NPs. In graphs, a sharp increase can be observed in 0-3 hour incubation time, and

then slope  changes  significantly.  For  both NPs’ uptake rates,  a  sharp decrease  is

 clearly observable at late hours of incubation. Compared these two NPs, uptake rates

of PMMA NPs generally continue less rapidly at the beginning of incubation. This

comments are not only provided with figures, but also knot locations in our model.

We  examined  knot  locations  on  data  points  to  construct  a  proper  cubic  spline

function. Based on AIC and PDE results, knot locations were selected as 3 and 36 for

Silica and PLA NPs, whereas model with knots at 6 and 24 provides better results for

PMMA NPs.   Adding knots where general curving behavior  of the  data  changes,

generally results  in  better  fitted model  and more proper  knot  selection as in  this

example. 
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Figure 1- Interaction effects plot for PMMA NPs

 Figure 2- Interaction effects plot for SILICA NPs
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 Figure 3- Interaction effects plot for PLA NPs

Residual plots versus fitted values and versus each of the predictors play an

important role in model diagnostic. Under the correctly specified linear model, there

is an assumption that Pearson residuals are independent of both fitted values and the

predictors [26]. These plots are expected to be null plots, i.e. the residuals should be

randomly separated without any observable behavior.  Residual plots for three NP

models  with  logistic  regression  and cubic  splines  are  provided in  Appendix  A.5.

These plots are not clearly illustrating any curving behavior. Thus our models remain

valid from this point of view.
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Chapter 6

Comparison and Discussion

 Four different mathematical models, including ours, have been proposed so

far with this experimental data set. In all those studies, incubation time, NP type, NP

size,  NP charge  and concentration  were  considered  as  known effects  for  cellular

uptake rate.  However,  different  mathematical  approaches were tried and different

models were proposed, all of them aimed to explain the change on cellular uptake

rate with respect to considered factors for each three type of NPs. 

          To  begin  with,  as  discussed  in  previous  sections,  our  study  proposes  a

generalized  linear  model  with  logistic  regression and cubic splines.  All  variables

except time are considered as factors and their unique value represents a level of

factor.  We  divided  time  into  sections  to  catch  a  better  fit  for  models.  Pair-wise

interaction effects were considered, thus interactions between time and other variable

are  taken  into  consideration  for  the  sections of  time  separated  with  knots.  Two

selection criteria AIC and PDE were chosen for model selection and best model with

cubic splines were considered based on these values. In order to visually observe that

our  model  creates  good  fitted  values  and  for  prediction  comparisons with  other

models,  fitted  versus  actual  data  were  plotted  with  respect  to  time  for  each

combination of other factors. Unlike other studies, left hand side of  our model is

formed from log of odds ratio for cellular uptake rate, which is not uptake rate itself,
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but it is a strong interpretation of how many times uptake is more likely to occur than

removal cases. 

Secondly, Cenk’s study (2012) contains an artificial neural network (ANN)

model  to  explain  the  change  in  cellular  uptake  of  three  NPs.  Our  explanatory

variables  were  inputs  for  ANN,  whereas  cellular  uptake  rate  is  output.  ANN  is

modeled with an input layer of five knots and an output layer of one knot. Data set

was separated into two parts. One part was used for training purpose, while other was

used  for  testing.  Modelling  was  conducted  with  training  data  set,  whereas

performance measure  was  computed  with test  data  set.   MSE was calculated  for

overall  network  performance.  Batch  training  method  and Bayesian  regularization

training function were utilized. By trial and error method, based on the scores of

MSE and Mean Absolute Error (MAE) , model selection was done and the optimal

number of hidden layer knots were computed as twelve. Simulation was conducted

with 50 runs for uptake rates within 48 hours. For each type of NP, best simulation

results were considered as best fit. CIs for uptake rate was constructed with mean of

these 50 samples and ∓2σ , where σ  denotes the standard deviation of these

samples. 

 Thirdly, in her study, Dogruoz used  mixed models which is an extention of

regression  models  with  random effects.  Similarly in  our  study,  a  fitted  model  is

constructed and no result was obtained from simulations for decision of included

factors  into  model.  Furthermore,  this  model  used  replication  data  which  is  not
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considered in our model. 

          Finally, Akbulut (2013) suggested support regression vector (SRV) to model

this data.  SRV is a technique to improve generalization performance. MSE is used to

evaluate the performance of the models. As in Cenk’s study, to decide significance of

the effects, 50 simulation run was conducted. Sample mean and standard deviation of

these samples are computed and t-tests were done. 

          Cenk’s model differs from ours in terms of considering simulation results not

coefficients  of  a  fitted  model.  Cenk’s  model  requires  simulation  runs  to  accept

validity of the model and conducts t tests for effect significancy with the results of

simulated samples. However, in our model, there is a fitted equation which explicitly

represents all coefficients of effects and their significance can be tested with Wald

tests. With the statistical tests for significancy of the model and coefficients, we can

easily  give  a  conclusion  with  a  desired  confidence  level.  Additionally,  statistical

models as in our study have always the advantage of usage model selection criteria

such as AIC, BIC, PDE , R2 etc.  to decide the fitted model is appropriate or not.

From another point of view, Cenk’s model can be considered as more robust, since

there is no underlying model assumption. 

Dogruoz's study and our models are able to provide prediction intervals, since

both are statistical  models that can give predicted values for response.  Prediction

intervals are more meaningful to show model accuracy, since predicted values from

the model are considered. Dogruoz’s and this study have advantage of interactions

61



effects consideration and include them into proposed models.  Both studies indicate

that interaction effects are significant in general. In our study, based on model and

backward elimination algorithm results (summary and step functions are applied in R

computations), no main or interaction effects included our model could be eliminated

(Results are in Appendix B.1 for PMMA, Appendix B.2 for SILICA and Appendix

B.3 for PLA NPs)   .  Nevertheless, Dogruoz’s computations allow to eliminate Size

and Size×Density from the mixed effect model. 

Including interaction terms into models and explaning them with quantitative

coefficients can be considered as one of the advantages of our study over Cenk’s and

Akbulut’s.  Both models fail to  interpret properly how cellular uptake rate changes

when combination of two interacting effect occurs at same time. However, they can

use  simulation  results  to  interpret  interaction  effects,  as  they  proposed  for  main

effects in their studies, this way is harder to decide and requires more computation  in

each time  when  this kind of question arises. Consequently, in  our  opinion,  Cenk’s

and Akbulut’s study have a gap of clear explanation  on interaction effects.       

62



Chapter 7

Conclusion

Traditional  treatment  and  diagnostic  techniques  fail  to  detect  and  defeat

cancerous cells properly. Cancer nanotechnology promises further improvement for

treatment and diagnosis of cancerous cell.  Targeted drug delivery plays an important

role  in  this  field  of  cancer  nanotechnology  and  NP-cell  interactions  have  been

examined with different points of view so far. 

 In this study, NP-cell interaction of three different NPs, namely PMMA, Silica

and PLA NPs, was investigated. Nanoparticle-cell interaction is examined with  the

cellular uptake rate and its dependencies to factors, namely NP size, surface charge,

concentration  of NPs,  incubation time and chemical  type of NPs.  In this  reseach,

generalized linear models are used to model cellular uptake rate. Modeling procedure

consists of  three  steps.  First,  only  main  effects  were  considered  for  our  models

predicting cellular uptake rates for three type of NPs.  At second step, interaction

effects are included in those models as well. At third step, quantitative variable time

was seperated with knots and interpreted with cubic splines in the proposed models.

Logistic regression and cubic splines were used for third step. 

In this study, we examined the uptake rate behoviours for each kind of NPs

with diffrent combinations of affecting factors. Additionally, we proposed a statistical
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model  to  predict  cellular  uptake  rate.  Cenk,  Dogruoz and Akbulut  also proposed

other  mathematical  models  for  this  purpose.  Limited  number  of  previous  studies

considered  mathematical  models  to  explain  the  variation  in  cellular  uptake  rate.

These four studies are leading in terms of bringing a strong mathematical approach to

cellular uptake rate prediction and investigating many effective factors in same study

with one model.

In the future, other type of Nps can be investigated in terms of cellular uptake

rate behavior. New factors which are thought to be effective and different levels of

factors discussed in this study may be analyzed. Furthermore, other semi-parametric

or nonparametric statistical methods in the literature can be applied to  this kind of

experimental data set.       
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Appendix A.1

AIC and Residual Deviance Table For Knot Selection
PMMA NPs - Residual Deviance and AIC Scores -(Null Deviance : 6029000)

DEGREE 2- TWO
KNOTS

KNOTS AT 3,12 KNOTS AT 3,24 KNOTS AT 3,36 KNOTS AT 6,24 KNOTS AT 6,36 KNOTS AT12,36

Residual Deviance 463000 470400 515900 873500 1022000 1915000

AIC 466000 473400 519000 876500 1025000 1918000

DEGREE 3 - TWO
KNOTS

KNOTS AT 3,12 KNOTS AT 3,24 KNOTS AT 3,36 KNOTS AT 6,24 KNOTS  AT 6,36 KNOTS AT12,36

Residual Deviance 467000 395300 386000 331000 336200 707200

AIC 470100 398300 389000 334100 339200 710300

DEGREE 3 -
SINGLE KNOT

KNOT AT 3 KNOT AT 6 KNOT AT 12 KNOT AT 18 KNOT AT 24 KNOT AT 36

Residual Deviance 476500 598700 1274000 1800000 2017000 2085000

AIC 479500 601700 1277000 1803000 2020000 2088000

SILICA NPs - Residual Deviance and AIC Scores -(Null Deviance : 7.608e+14)

DEGREE 2- TWO
KNOTS

KNOTS AT 3,12 KNOTS AT 3,24 KNOTS AT 3,36 KNOTS AT 6,24 KNOTS AT 6,36 KNOTS AT12,36

Residual Deviance 1,84E+13 1,57E+13 1,40E+13 6,07E+13 6,15E+13 1,62E+14

AIC 1,84E+13 1,57E+13 1,40E+13 6,07E+13 6,15E+13 1,62E+14

DEGREE 3 - TWO
KNOTS

KNOTS AT 3,12 KNOTS AT 3,24 KNOTS AT 3,36 KNOTS AT 6,24 KNOTSAT 6,36 KNOTS AT12,36

Residual Deviance 1,49E+13 1,13E+13 1,09E+13 3,33E+16 3,99E+16 5,97E+13

AIC 1,49E+13 1,13E+13 1,09E+13 3,33E+16 3,99E+16 5,97E+13

DEGREE 3 -
SINGLE KNOT

KNOT AT 3 KNOT AT 6 KNOT AT 12 KNOT AT 18 KNOT AT 24 KNOT AT 36

Residual Deviance 1,56E+13 2,97E+13 9,69E+13 1,48E+14 1,74E+14 1,84E+14

AIC 1,56E+13 2,97E+13 9,69E+13 1,48E+14 1,74E+14 1,84E+14

PLA NPs - Residual Deviance and AIC Scores -(Null Deviance: 3.068e+12)

DEGREE 2- TWO
KNOTS

KNOTS AT 3,12 KNOTS AT 3,24 KNOTS AT 3,36 KNOTS AT 6,24 KNOTS AT 6,36 KNOTS AT12,36

Residual Deviance 6,90E+10 5,33E+10 3,53E+10 2,57E+11 2,75E+11 8,66E+11

AIC 6,90E+10 5,33E+10 3,53E+10 2,57E+11 2,75E+11 8,66E+11

DEGREE 3 - TWO
KNOTS

KNOTS AT 3,12 KNOTS AT 3,24 KNOTS AT 3,36 KNOTS AT 6,24 KNOTS AT 6,36 KNOTS AT12,36

Residual Deviance 2,89E+10 1,56E+10 1,53E+10 7,88E+10 7,80E+10 3,65E+11

AIC 2,89E+10 1,56E+10 1,53E+10 7,88E+10 7,80E+10 3,65E+11

DEGREE 3 -
SINGLE KNOT

KNOT AT 3 KNOT AT 6 KNOT AT 12 KNOT AT 18 KNOT AT 24 KNOT AT 36

Residual Deviance 5,31E+10 8,00E+10 4,11E+11 7,15E+11 9,26E+11 1,02E+12

AIC 5,31E+10 8,00E+10 4,11E+11 7,15E+11 9,26E+11 1,02E+12

68



Appendix A.2
Figures For PMMA NP Models 
Figure-A.2.1
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Figure-A.2.2

Figure-A.2.3
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Appendix A.3
Figures For SILICA NP Models 
Figure-A.3.1
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Figure-A.3.2

Figure-A.3.3
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Appendix A.4
Figures For PLA NP Models
Figure-A.4.1
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Figure-A.4.2

Figure-A.4.3

74



Appendix A.5
Residual Plots for  Models with Cubic Splines
Figure-A.5.1 Residual Plots for PLA Model 3 
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Figure-A.5.2 Residual Plots for SILICA Model 3 
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Figure-A.5.3 Residual Plots for PMMA Model 3 
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Appendix B.1
R Outputs for PMMA NP Models  

Table  B.1.1 -PMMA  Model Without Interaction Effects (PMMA Model 1)

glm(formula = cbind(AttNpNum,WashedNpNum,) ~ Time + Size + Charge +  Density, family = binomial,

data = d)

Coefficients:

(Intercept)         Time      Size100          Charge+       Density0.01  

   -1.28379     0.02747      -0.50642     +0.09325        +0.50795  

Degrees of Freedom: 335 Total (i.e. Null);  331 Residual

Null Deviance:      6029000 

Residual Deviance: 4515000      AIC: 4518000 

Table B.1.2 PMMA Model With Interaction Effects (PMMA Model 2)

Call:  glm(formula = cbind(WashedNpNum, AttNpNum) ~ Time * Size + Size * harge + Charge * Density + 
Time * Density + Time * Charge +  Size * Density, family = binomial, data = d)

Coefficients:

        (Intercept)                  Time                      Size100                 Charge+                Density0.01  

          -0.7886004               0.0433157           -0.4983736            -1.5885376           0.1197981  

         Time:Size100        Size100:Charge+    Charge+:Density0.01       Time:Density0.01       Time:Charge+  

          -0.0008112            0.8027300               1.5562420                         -0.0203578                  0.0055502  

         Size100:Density0.01  

          -0.4709545  

Degrees of Freedom: 335 Total (i.e. Null);  325 Residual

Null Deviance:      6029000 

Residual Deviance: 4129000      AIC: 4132000 

Table B.1.3 ANOVA Output For Comparison PMMA Model 1 and 2 

 Analysis of Deviance Table

Model 1: cbind(WashedNpNum, AttNpNum) ~ Time + Size + Charge + Density

Model 2: cbind(WashedNpNum, AttNpNum) ~ Time * Size + Size * Charge +     Charge * Density + Time * 
Density + Time * Charge + Size * Density

       Resid. Df    Resid. Dev   Df    Deviance      Pr(>Chi)    

1       331           4515381                          
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2       325           4128763      6       386618      < 2.2e-16 ***

Table B.1.4  - PMMA Model With Cubic Splines  (PMMA Model 3)

   Call:  glm(formula = cbind(AttNpNum, WashedNpNum) ~ bs(Time, knots = c(6, 24)) * Size + Size *    

     Charge + Charge *Density + bs(Time, Charge + Size * Density, family = binomial, data = d)      

    Coefficients:

                            (Intercept)              bs(Time, knots = c(6, 24))1              bs(Time, knots = c(6, 24))2  

                               -9.28404                                 11.36765                                  7.38183  

            bs(Time, knots = c(6, 24))3              bs(Time, knots = c(6, 24))4              bs(Time, knots = c(6, 24))5  

                               10.99137                                  9.14422                                   10.67533  

                                Size100                                  Charge+                                 Density0.01  

                               -0.66501                                 -2.02886                                    3.20379  

  bs(Time, knots = c(6, 24))1:Size100      bs(Time, knots = c(6, 24))2:Size100    bs(Time, knots = c(6,24)3:Size100

                                0.24109                                  -0.68501                                       0.15873  

    bs(Time, knots = c(6, 24))4:Size100      bs(Time, knots = c(6, 24))5:Size100                          Size100:Charge+  

                                1.04158                                 -0.25459                                                                0.84568  

            Charge+:Density0.01  bs(Time, knots = c(6, 24))1:Density0.01   bs(Time, knots = c(6, 24))2:Density0.01  

                                1.53706                                  -4.29497                                         -2.27489  

     bs(Time, knots = c(6, 24))3:Density0.01  bs(Time, knots = c(6, 24))4:Density0.01      bs(Time, knots = c(6,

                                                                                                                                                24))5:Density0.01  

                               -3.38584                                 -4.19464                                                      -4.28145  

   bs(Time, knots = c(6, 24))1:Charge+  bs(Time, knots = c(6, 24))2:Charge+   bs(Time, knots = c(6,24))3:Charge+

                                0.42551                                    0.06931                                                     1.59447  

    bs(Time, knots = c(6, 24))4:Charge+      bs(Time, knots = c(6, 24))5:Charge+                    Size100:Density0.01  

                                1.36701                                       0.09235                                                              -0.38726  

   Degrees of Freedom: 335 Total (i.e. Null);  309 Residual

   Null Deviance:      6029000 

   Residual Deviance: 331000       AIC: 334100 

Table B.1.5 – Summary function Output for  PMMA Model 3 

Call:

glm(formula = cbind(AttNpNum, WashedNpNum) ~ bs(Time, knots = c(6,  24)) * Size + Size * Charge +

Charge * Density + bs(Time,  knots = c(6, 24)) * Density + bs(Time, knots = c(6, 24)) * Charge + Size *
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Density, family = binomial, data = d)

Deviance Residuals: 

    Min       1Q   Median       3Q       Max  

-84.943  -24.187   -1.738   16.300  112.376  

Coefficients:

                                                                 Estimate     Std. Error    z value       Pr(>|z|)    

(Intercept)                                               -9.284044   0.075182  -123.488      < 2e-16 ***

bs(Time, knots = c(6, 24))1                    11.367645   0.085871  132.380       < 2e-16 ***

bs(Time, knots = c(6, 24))2                      7.381831   0.068415  107.897       < 2e-16 ***

bs(Time, knots = c(6, 24))3                     10.991368   0.082622  133.032      < 2e-16 ***

bs(Time, knots = c(6, 24))4                       9.144218   0.073562   124.306     < 2e-16 ***

bs(Time, knots = c(6, 24))5                      10.675327   0.075697  141.026    < 2e-16 ***

Size100                                                   -0.665009   0.034524    -19.262      < 2e-16 ***

Charge+                                                  -2.028857   0.023390     -86.741      < 2e-16 ***

Density0.01                                               3.203792   0.075333     42.528      < 2e-16 ***

bs(Time, knots = c(6, 24))1:Size100         0.241086   0.039698     6.073      1.26e-09 ***

bs(Time, knots = c(6, 24))2:Size100        -0.685009   0.030946    -22.135    < 2e-16 ***

bs(Time, knots = c(6, 24))3:Size100          0.158731   0.038591    4.113      3.90e-05 ***

bs(Time, knots = c(6, 24))4:Size100         1.041575   0.033629   30.972      < 2e-16 ***

bs(Time, knots = c(6, 24))5:Size100        -0.254587   0.034288   -7.425      1.13e-13 ***

Size100:Charge+                                       0.845682   0.002531  334.091     < 2e-16 ***

Charge+:Density0.01                                1.537064   0.003720  413.160     < 2e-16 ***

bs(Time, knots = c(6, 24))1:Density0.01 -4.294969   0.085908  -49.995     < 2e-16 ***

bs(Time, knots = c(6, 24))2:Density0.01 -2.274887   0.068645  -33.140     < 2e-16 ***

bs(Time, knots = c(6, 24))3:Density0.01 -3.385841   0.082687  -40.948     < 2e-16 ***

bs(Time, knots = c(6, 24))4:Density0.01 -4.194641   0.073750  -56.876     < 2e-16 ***

bs(Time, knots = c(6, 24))5:Density0.01 -4.281453   0.075870  -56.431     < 2e-16 ***

bs(Time, knots = c(6, 24))1:Charge+      0.425514   0.026695   15.940       < 2e-16 ***

bs(Time, knots = c(6, 24))2:Charge+      0.069310   0.021104    3.284         0.00102 ** 

bs(Time, knots = c(6, 24))3:Charge+      1.594474   0.026168   60.933       < 2e-16 ***

bs(Time, knots = c(6, 24))4:Charge+      1.367008   0.022851   59.823       < 2e-16 ***

bs(Time, knots = c(6, 24))5:Charge+      0.092347   0.023110    3.996        6.44e-05 ***

Size100:Density0.01                              -0.387262   0.004510  -85.858        < 2e-16 ***

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 6029168  on 335  degrees of freedom

Residual deviance:  331038  on 309  degrees of freedom
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AIC: 334073

Number of Fisher Scoring iterations: 7

Table B.1.6 ANOVA Output For Comparison PMMA Model 2 and 3 

Analysis of Deviance Table

Model 1: cbind(AttNpNum, WashedNpNum) ~ Time * Size + Size * Charge + Charge * Density + Time *

Density + Time * Charge + Size *  Density

Model 2: cbind(AttNpNum, WashedNpNum) ~ bs(Time, knots = c(6, 24)) * Size +  Size * Charge + Charge *

Density + bs(Time, knots = c(6,    24)) * Density + bs(Time, knots = c(6, 24)) * Charge + Size *  Density

  Resid. Df Resid. Dev Df Deviance  Pr(>Chi)    

1       325    4128763                          

2       309     331038 16  3797725     < 2.2e-16 ***

Table B.1.7 Backward Elimination Results for  PMMA Model 3 

Start:  AIC=334073.2

cbind(AttNpNum, WashedNpNum) ~ bs(Time, knots = c(6, 24)) * Size + Size * Charge + Charge * Density +

bs(Time, knots = c(6, 24)) * Density + bs(Time, knots = c(6, 24)) * Charge + Size *  Density

                                                          Df  Deviance  AIC

<none>                                                    331038 334073

- Size:Density                                     1   338299 341333

- bs(Time, knots = c(6, 24)):Size        5   388820 391846

- bs(Time, knots = c(6, 24)):Density  5   402274 405300

- Size:Charge                                      1   444717 447751

- Charge:Density                                 1   512009 515042

- bs(Time, knots = c(6, 24)):Charge   5   534418 537444

81



Appendix B.2
R Outputs for SILICA NP Models  

Table  B.2.1 -SILICA Model Without Interaction Effects (SILICA Model 1)

Call:  glm(formula = cbind(AttNpNum, WashedNpNum) ~ Time + Size + Charge + Density, family = 

binomial, data = d)

Coefficients:

(Intercept)         Time      Size100      Charge+  Density0.01  

   -0.46038      0.04250      0.01429      0.15746      0.39187  

Degrees of Freedom: 335 Total (i.e. Null);  331 Residual

Null Deviance:      7.608e+14 

Residual Deviance: 5.691e+14    AIC: 5.691e+14 

Table B.2.2 Summary Function Output  SILICA Model Without Interaction Effects

Call: glm(formula = cbind(AttNpNum, WashedNpNum) ~ Time + Size + Charge +   Density, family = binomial,

data = d)

Deviance Residuals: 

     Min        1Q           Median        3Q       Max  

-5297836   -457477    211051    614609   2383753  

Coefficients:

                       Estimate      Std. Error     z value         Pr(>|z|)    

(Intercept)    -4.604e-01    1.764e-07   -2609153      <2e-16 ***

Time              4.250e-02    3.396e-09    12513181    <2e-16 ***

Size100         1.429e-02    1.581e-07     90402         <2e-16 ***

Charge+        1.575e-01    9.967e-08     1579819     <2e-16 ***

Density0.01  3.919e-01    1.682e-07     2329939     <2e-16 ***

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 7.6082e+14  on 335  degrees of freedom

Residual deviance: 5.6906e+14  on 331  degrees of freedom

AIC: 5.6906e+14

Number of Fisher Scoring iterations: 5

82



Table  B.2.3 -SILICA Model With Interaction Effects (SILICA Model 2)

Call:glm(formula = cbind(AttNpNum, WashedNpNum) ~ Time * Size + Size * Charge + Charge

* Density + Time * Density + Time * Charge + Size * Density, family = binomial, data = d)

Deviance Residuals: 

     Min        1Q           Median      3Q         Max  

-5132039   -358447    172678    568194   2400888  

Coefficients:

                                    Estimate         Std. Error    z value          Pr(>|z|)    

(Intercept)                    -6.499e-02     2.839e-07   -228903        <2e-16 ***

Time                              1.595e-02     9.998e-09    1594840      <2e-16 ***

Size100                          3.718e-01    5.481e-07    678328        <2e-16 ***

Charge+                         8.082e-02    3.309e-07     244206       <2e-16 ***

Density0.01                  -1.459e-02    2.919e-07    -49970         <2e-16 ***

Time:Size100               -4.433e-03    1.063e-08    -416977       <2e-16 ***

Size100:Charge+          -2.358e-01    3.147e-07    -749345      <2e-16 ***

Charge+:Density0.01    -1.335e-03    3.259e-07    -4095         <2e-16 ***

Time:Density0.01           2.675e-02    1.008e-08     2654253   <2e-16 ***

Time:Charge+                7.532e-03     6.876e-09    1095431    <2e-16 ***

Size100:Density0.01     -2.004e-01    5.194e-07   -385918      <2e-16 ***

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 7.6082e+14  on 335  degrees of freedom

Residual deviance: 5.6035e+14  on 325  degrees of freedom

AIC: 5.6035e+14

Number of Fisher Scoring iterations: 5

Table B.2.4 ANOVA Output For Comparison SILICA Model 1 and 2 

    Analysis of Deviance Table

   Model 1: cbind(AttNpNum, WashedNpNum) ~ Time * Size + Size * Charge + Charge *

Density + Time * Density + Time * Charge + Size *  Density

    Model 2: cbind(AttNpNum, WashedNpNum) ~ Time + Size + Charge + Density

    Resid. Df    Resid. Dev    Df     Deviance           Pr(>Chi)    

1       325       5.6035e+14                             

2       331       5.6906e+14    -6     -8.7006e+12     < 2.2e-16 ***
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Table B.2.5  - SILICA Model With Cubic Splines (SILICA Model 3) 

    Call:  glm(formula = cbind(AttNpNum, WashedNpNum) ~ bs(Time, knots = c(3, 

    36)) * Size + Size * Charge + Charge * Density + bs(Time, 

    knots = c(3, 36)) * Density + bs(Time, knots = c(3, 36)) * 

    Charge + Size * Density, family = binomial, data = d)

    Coefficients:

                            (Intercept)              bs(Time, knots = c(3, 36))1              bs(Time, knots = c(3, 36))2  

                             -27.964742                                27.824666                                30.478886  

            bs(Time, knots = c(3, 36))3              bs(Time, knots = c(3, 36))4              bs(Time, knots = c(3, 36))5  

                              27.962158                                28.849725                                27.851609  

                                Size100                                  Charge+                              Density0.01  

                               1.921590                                -0.314616                                -1.747790  

  bs(Time, knots = c(3, 36))1:Size100 bs(Time, knots = c(3, 36))2:Size100   bs(Time, knots = c(3, 36))3:Size100  

                              -1.599473                                -0.976930                                -2.164959  

    bs(Time, knots = c(3, 36))4:Size100      bs(Time, knots = c(3, 36))5:Size100        Size100:Charge+  

                              -0.649605                                -1.869196                                     -0.349276  

            Charge+:Density0.01  bs(Time, knots = c(3, 36))1:Density0.01  bs(Time, knots = c(3, 36))2:Density0.01  

                               0.002381                                 2.164334                                 1.587013  

bs(Time, knots = c(3, 36))3:Density0.01 bs(Time, knots = c(3, 36))4:Density0.01    bs(Time, knots = c(3,

                                                                                                                                        36))5:Density0.01  

                               2.827713                                  1.971398                                              3.109669  

 bs(Time, knots = c(3, 36))1:Charge+ bs(Time, knots = c(3, 36))2:Charge+   bs(Time, knots = c(3, 36))3:Charge+

                               1.357178                                -1.486534                                 2.754654  

    bs(Time, knots = c(3, 36))4:Charge+      bs(Time, knots = c(3, 36))5:Charge+       Size100:Density0.01  

                              -1.288083                                 1.048435                                -0.276185  

   Degrees of Freedom: 335 Total (i.e. Null);  309 Residual

   Null Deviance:      7.608e+14 

   Residual Deviance: 1.085e+13    AIC: 1.085e+13 

Table B.2.6 ANOVA Output For Comparison SILICA Model 2 and 3 

     Analysis of Deviance Table
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    Model 1: cbind(AttNpNum, WashedNpNum) ~ Time * Size + Size * Charge + Charge * Density + Time *

Density + Time * Charge + Size * Density

   Model 2: cbind(AttNpNum, WashedNpNum) ~ bs(Time, knots = c(3, 36)) * Size + Size * Charge + Charge *

Density + bs(Time, knots = c(3,36)) * Density + bs(Time, knots = c(3, 36)) * Charge + Size *   Density

   Resid. Df   Resid. Dev  Df   Deviance   Pr(>Chi)    

    1       325 5.6035e+14                            

    2       309 1.0847e+13 16 5.4951e+14 < 2.2e-16 ***

Table B.2.7 Backward Elimination Results for  SILICA Model 3 

Start:  AIC=1.084699e+13

cbind(AttNpNum, WashedNpNum) ~ bs(Time, knots = c(3, 36)) * Size +   Size * Charge + Charge * Density +

bs(Time, knots = c(3,    36)) * Density + bs(Time, knots = c(3, 36)) * Charge + Size * Density

                                                               Df   Deviance        AIC

<none>                                                    1.0847e+13   1.0847e+13

- Charge:Density                                  1 1.0847e+13   1.0847e+13

- Size:Density                                       1 1.1052e+13   1.1052e+13

- Size:Charge                                        1 1.1721e+13   1.1721e+13

- bs(Time, knots = c(3, 36)):Size          5 1.1860e+13   1.1860e+13

- bs(Time, knots = c(3, 36)):Density     5 1.5365e+13   1.5365e+13

- bs(Time, knots = c(3, 36)):Charge      5 1.8640e+13   1.8640e+13
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Appendix B.3
R Outputs for PLA NP Models  

Table  B.3.1 -PLA Model Without Interaction Effects (PLA Model 1)

Call:  glm(formula = cbind(AttNpNum, WashedNpNum) ~ Time + Charge +   Density, family = binomial, data

= d)

Coefficients:

(Intercept)         Time      Charge+  Density0.01  

   -0.26927      0.01340     -0.04381      0.25945  

Degrees of Freedom: 167 Total (i.e. Null);  164 Residual

Null Deviance:      3.068e+12 

Residual Deviance: 2.914e+12    AIC: 2.914e+12 

Table  B.3.2 -PLA Model With Interaction Effects (PLA Model 2)

   Call: glm(formula = cbind(AttNpNum, WashedNpNum) ~ Charge * Density +  Time * Density + Time * 

Charge, family = binomial, data = d)

    Deviance Residuals: 

      Min       1Q   Median         3Q        Max  

   -408580   -26928    22600    57665   159334  

   Coefficients:

                                       Estimate         Std. Error      z value        Pr(>|z|)    

  (Intercept)                     -2.227e-01      3.637e-06     -61243       <2e-16 ***

   Charge+                       -5.173e-02      4.226e-06     -12242       <2e-16 ***

   Density0.01                   1.454e-01      3.749e-06      38770       <2e-16 ***

   Time                              1.428e-02      1.249e-07      114302     <2e-16 ***

   Charge+:Density0.01    1.340e-01      4.206e-06      31853       <2e-16 ***

   Density0.01:Time          2.563e-03      1.253e-07      20451      <2e-16 ***

   Charge+:Time              -6.339e-03      7.305e-08     -86773      <2e-16 ***

(  Dispersion parameter for binomial family taken to be 1)

    Null deviance: 3.0675e+12  on 167  degrees of freedom

    Residual deviance: 2.9051e+12  on 161  degrees of freedom

    AIC: 2.9051e+12

    Number of Fisher Scoring iterations: 4
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   Table B.3.3 ANOVA Output For Comparison PLA Model 1 and 2 

    Analysis of Deviance Table

   Model 1: cbind(AttNpNum, WashedNpNum) ~ Charge * Density + Time * Density + Time * Charge

    Model 2: cbind(AttNpNum, WashedNpNum) ~ Time + Charge + Density

           Resid. Df    Resid. Dev       Df      Deviance          Pr(>Chi)    

   1       161             2.9051e+12                             

   2       164             2.9141e+12    -3       -9022885624     < 2.2e-16 ***

 

Table B.3.4  - PLA Model With Cubic Splines (PLA Model 3) 

Call:  glm(formula = cbind(AttNpNum, WashedNpNum) ~ Charge * Density +  bs(Time, knots = c(3, 36)) *

Density + bs(Time, knots = c(3, 36)) * Charge, family = binomial, data = d)

Coefficients:

                            (Intercept)                                  Charge+                                     Density0.01  

                             -23.167530                                -0.083000                                       -2.385585  

            bs(Time, knots = c(3, 36))1              bs(Time, knots = c(3, 36))2              bs(Time, knots = c(3, 36))3  

                                  23.561934                                24.155291                                      22.365302  

            bs(Time, knots = c(3, 36))4              bs(Time, knots = c(3, 36))5                      Charge+:Density0.01  

                                 24.735945                              23.112789                                         0.165999  

Density0.01:bs(Time, knots = c(3, 36))1  Density0.01:bs(Time, knots = c(3, 36))2  Density0.01:bs(Time, knots = c(3, 36))3  

                               2.435103                                 3.089166                                             2.340414  

Density0.01:bs(Time, knots = c(3, 36))4  Density0.01:bs(Time, knots = c(3, 36))5 Charge+:bs(Time, knots = c(3, 36))1  

                               2.635794                                 2.582467                                              0.396505  

    Charge+:bs(Time, knots = c(3, 36))2      Charge+:bs(Time, knots = c(3, 36))3      Charge+:bs(Time, knots = c(3, 36))4  

                              -0.705313                                -0.006665                                             -0.223387  

    Charge+:bs(Time, knots = c(3, 36))5  

                              -0.249398  

Degrees of Freedom: 167 Total (i.e. Null);  149 Residual

Null Deviance:      3.068e+12 

Residual Deviance: 1.528e+10    AIC: 1.528e+10 

Table B.3.5 ANOVA Output For Comparison PLA Model 2 and 3 

Analysis of Deviance Table

Model 1: cbind(AttNpNum, WashedNpNum) ~ Charge * Density + Time * Density + Time * Charge

Model 2: cbind(AttNpNum, WashedNpNum) ~ Charge * Density + bs(Time, knots = c(3, 36)) * Density +
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bs(Time, knots = c(3, 36)) * Charge

  Resid. Df Resid. Dev    Df   Deviance           Pr(>Chi)    

1       161     2.9051e+12                            

2       149     1.5277e+10 12   2.8898e+12      < 2.2e-16 ***

Table B.2.7 Backward Elimination Results for  PLA Model 3

Start:  AIC=15277370487

cbind(AttNpNum, WashedNpNum) ~ Charge * Density + bs(Time, knots = c(3, 36)) * Density + bs(Time, knots

= c(3, 36)) * Charge

                                                          Df   Deviance        AIC

<none>                                               1.5277e+10      1.5277e+10

- Density:bs(Time, knots = c(3, 36))  5 1.6334e+10   1.6334e+10

- Charge:Density                                 1 1.6565e+10   1.6565e+10

- Charge:bs(Time, knots = c(3, 36))    5 3.2339e+10   3.2339e+10
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