# EFFECTS OF BIOLOGICAL COMPOUND TURKISH PROPOLIS EXTRACT ON BREAST CANCER CELLS

A THESIS SUBMITTED TO THE DEPARTMENT OF MOLECULAR BIOLOGY AND GENETICS AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE OF BILKENT UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

> BY DENİZ UĞURLU AUGUST, 2013

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Işık YULUĞ (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Dönüş TUNCEL

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Özlen KONU

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural Director of the Graduate School

### ABSTRACT

## EFFECTS OF BIOLOGICAL COMPOUND TURKISH PROPOLIS EXTRACT ON BREAST CANCER CELLS

Deniz UĞURLU M.S. in Molecular Biology and Genetics Supervisor: Assoc. Prof. Dr. Işık YULUĞ August, 2013

Propolis is a resinous compound which is collected from various plants then combined with wax and bee enzymes by worker bees. There are many studies conducted on propolis or its active components aiming to find new treatment possibilities in diverse research fields such as immunology, infectious diseases, allergy, diabetes, ulcers, and oncology. Chemical analysis indicated that propolis is a multicomponent mixture of various compounds with prevalence of flavonoids and phenolic acids. Therefore it is important to investigate the propolis extract mechanisms of action in order to predict possible cytotoxic and may be therapeutic effects for cancer. The most common propolis extract is ethanol extract of propolis (EEP) whereas Turkish researchers were able to extract the propolis with *dimethyl* sulfoxide (DMSO) which can maximize the penetration of compounds from propolis to the cells as well as DMSO is a good solvent for flavonols (one of the most common compound in propolis). There are many studies conducted on propolis or its active components for treatment of cancer which reveals the potential of this biological compound in the development of novel anti-cancerous agents. However, anti-cancer activity of DMSO extract of Turkish propolis (DEP) on human breast cancer has not been investigated yet. The aim of this study was to investigate the anti-cancer effects of DMSO extract of Turkish propolis (DEP) on cancer cells. Inhibitory effects of propolis extracts collected from different regions of Turkey were analyzed on the growth of the human breast carcinoma cells. Two different propolis extracts were used to determine their cytotoxic effects of breast carcinoma cell lines using SRB staining and IC<sub>50</sub> values were determined. The results showed that propolis is cytotoxic in dose-dependent manner (IC<sub>50</sub> value of diverse from 25 ug/ml to 123 ug/ml). Real time monitoring (xCELLigence system) of propolis treated cells confirmed the cytotoxic effect of propolis, since increasing concentrations of propolis decreased the cell number in a dose- and cell line- dependent way. Furthermore, propolis treatment induces apoptosis in breast carcinoma cell lines. Propolis treated cells changed their adherent morphology to round cells and detached from the surface. Hoechst 33258 staining of propolis treated cells revealed the increasing number of cells displays DNA condensation. PARP-1, a 116 kDa nuclear enzyme, is cleaved in fragments of 89 and 24 kDa during apoptosis. Western blot analysis was performed to detect the PARP-1 cleavage in propolis treated cells. Decrease in the full-length PARP-1 protein levels supports our hypothesis that propolis shows its cytotoxic effect at least partially through induction of apoptosis. The effect of propolis on cell cycle was analyzed with flow cytometer after staining the cells with Propidium iodide (PI). Increase in the G2/M cell cycle arrest was observed in propolis treated cells compare to control DMSO treated MDA-MB-231 cells. In addition to cytotoxic effects, in vitro wound healing assay revealed that propolis treated MDA-MB-231 cells shows delayed invasion of the cells to the denuded area when compared to the DMSO control cells. In conclusion, propolis showed a cytotoxic effect on breast carcinoma cell lines by inducing apoptosis, G2/M arrest as well as delaying the invasion capacity of the cells which makes it a potent anti-tumorigenic compound that may be useful in cancer chemoprevention or therapy.

Key words: Propolis, Breast Cancer, Cytotoxic, Apoptosis, xCELLigence, Scratch Assay.

iv

## ÖZET

# BİYOLOJİK BİLEŞKE TÜRK PROPOLİSİNİN MEME KANSERİ HÜCRELERİNE ETKİLERİ

Deniz UĞURLU Moleküler Biyoloji ve Genetik, Yüksek Lisans Tez Yöneticisi: Doç. Dr. Işık YULUĞ Ağustos, 2013

Propolis, işçi arılar tarafından çeşitli bitkilerden toplanıp balmumu ve arı enzimleriyle kombine edilen, reçine tipinde bir üründür. Propolis veya aktif bileşenleriyle ilgili olarak immünoloji, enfeksiyon hastalıkları, alerji, diyabet, ülser ve onkoloji gibi çeşitli araştırma alanlarında yeni tedavi olasılıkları bulmayı hedefleyen çok sayıda çalışma vardır. Kimyasal analizler propolisin flavonoidler ve fenolik asitlerle birlikte çeşitli bileşenlerin karışımı olduğunu göstermiştir. Bu nedenle olaşı toksik ve terapötik etkileri öngörmek açısından propolis ekstrelerinin etki mekanizmalarını incelemek önemlidir. En sık kullanılan propolis ekstresi propolisin etanol ekstresidir (EEP). Türk araştırmacılar propolis bileşenlerinin hücrelere penetrasyonunu maksimuma çıkartabilecek şekilde propolisin dimetil sülfoksit (DMSO) ile ekstresini elde edebilmişlerdir. DMSO, flavonoller (propolis içinde en sık bulunan bileşenlerden) için iyi bir solventtir. Propolis veya aktif bileşenlerinin kanser tedavisinde kullanımıyla ilgili olarak yapılmış ve bu biyolojik bileşenin yeni antikanser ajanların geliştirilmesindeki potansiyelini gösteren çok sayıda çalışma vardır. Ancak Türk propolisinin DMSO ekstresinin (DEP) insan meme kanseri üzerindeki anti-kanser aktivitesi henüz incelenmemiştir. Bu çalışmanın amacı kanser hücreleri üzerinde Türk propolisinin DMSO ekstresinin (DEP) anti-kanser etkilerini araştırmaktır. Çalışmada Türkiye'nin çeşitli bölgelerinden toplanan propolisin insan meme karsinomu hücrelerinin büyümesi üzerindeki inhibe edici etkileri incelendi. SRB boyaması kullanılarak iki farklı propolis ekstresinin meme karsinomu hücre

v

hatları üzerindeki sitotoksik etkileri incelendi ve IC<sub>50</sub> değerleri belirlendi. Sonuçlar propolisin doza bağımlı bir şekilde sitotoksik olduğunu gösterdi (IC<sub>50</sub> değeri 25 ug/ml ile 123 ug/ml arasında değişmektedir). Propolis ile muamele edilen hücrelerin gerçek zamanlı incelenmesi (xCELLigence sistemi) propolis sitotoksik etkilerini doğruladı çünkü artan propolis konsantrasyonları hücre sayısını doza ve hücre hattına bağımlı bir şekilde azalttı. Ayrıca propolis tedavisi meme kanseri hücre hatlarında apoptozu indükledi. Muamele edilen hücrelerin adheran morfolojisi yuvarlak hücreler haline dönüştü ve Hoechst 33258 boyama yöntemi ile artan sayıda hücrede DNA kondansasyonu gösterdi. Apoptoz sırasında, 116 kDa bir nükleer enzim olan PARP-1, 89 ve 24 kDa büyüklüğündeki fragmanlara ayrılmaktadır. Propolis ile muamele edilen hücrelerde PARP-1 ayrılmasını saptamak üzere Western blot analizi yapıldı. Tam uzunlukta PARP-1 protein seviyelerinde azalma, propolisin sitotoksik etkisini en azından kısmen apoptoz indüksiyonu yoluyla gösterdiği hipotezimizi desteklemektedir. Propolisin hücre döngüsü üzerine etkisi, hücrelerin Propidium iyodür (PI) ile boyandıktan sonra bir akış sitometresi tarafından analiz edilmesiyle incelendi. Kontrol DMSO ile muamele edilmiş MDA-MB-231 hücreleriyle karşılaştırıldığında propolis ile muamele edilen hücrelerde G2/M hücre döngüsü arestinde güçlü bir artış görüldü. Sitotoksik etkilere ilaveten, in vitro yara iyileşmesi testi, propolis ile muamele edilen MDA-MB-231 hücrelerinin DMSO kontrol hücreleriyle karşılaştırıldığında soyulmuş bölgeye hücre invasyonunda gecikme olduğu saptandı. Sonuç olarak, meme kanseri hücre hatlarında apoptoz ve G2/M arestini indükleyerek ve ayrıca hücrelerin invazyon kapasitesini geciktirerek gösterdiği sitotoksik etki sayesinde propolis kanser kemoterapisi veya önlenmesinde faydalı olabilecek güçlü bir anti-tümorijenik bileşendir.

Anahtar Sözcükler: Propolis, Meme Kanseri, Sitotoksik, Apoptoz, xCELLigence, Yara İyileşmesi testi

## Acknowledgement

I would like to express my sincere gratitude to my supervisor, Assoc. Prof. Dr. Işık Yuluğ, who welcomed me to her lab and supported me patiently. She was an understanding advisor as well as sophisticated mentor in helping me gaining skills in scientific research. It has always been a privilege to work in her lab.

I would like to thank Prof. Dr. Orhan Değer for providing the propolis extracts for this study.

I am grateful to Assoc. Prof. Dr. Rengül Çetin-Atalay for her valuable contributions to this study.

I am highly indebted to PhD-to-be Gurbet Karahan and Nilüfer Sayar who are the greatest group mates with their helpful guidance and kind friendship.

I would also like to thank to The Scientific and Technological Research Council of Turkey (TÜBİTAK) for their financial support throughout my master study.

Moreover, I would like to thanks to PhD. Çiğdem Özen and Deniz Cansen Yıldırım for providing necessary information regarding this study.

I should also thank to lab members of Bilkent MBG, especially Sinem, Kerem, Azer, Gökhan, Mehmet, İhsan, Derya, Damla, Emre, Yusuf and Sıla for being a friendly colleagues.

I would like to thank my loved ones, Bilkenters Harun, Aslınur, Taner, Merve, Ece, Alper and my old friends Ferhan, Ezgi, Asya, Mehtap, Ece who have supported me throughout entire process, both by keeping me harmonious and helping me putting pieces together. I will be grateful forever for your love.

I would like to express my gratitude towards my parents for their encouragement in every step of my life.

vii

# **Table of Content**

| ABSTRACTiii                                                                |
|----------------------------------------------------------------------------|
| EFFECTS OF BIOLOGICAL COMPOUND TURKISH PROPOLIS EXTRACT ON BREAST          |
| CANCER CELLS iii                                                           |
| ÖZET v                                                                     |
| BİYOLOJİK BİLEŞKE TÜRK PROPOLİSİNİN MEME KANSERİ HÜCRELERİNE ETKİLERİ . v  |
| Acknowledgementvii                                                         |
| Table of Contentviii                                                       |
| List of Figures xi                                                         |
| List of Tablesxv                                                           |
| Abbreviationsxix                                                           |
| 1 INTRODUCTION                                                             |
| 1.1 Breast Cancer1                                                         |
| 1.1.1 Classification of Breast Cancer 2                                    |
| 1.1.2 Breast Carcinoma Cell Lines                                          |
| 1.2 Biological Compound Propolis4                                          |
| 1.2.1 Propolis Extracts                                                    |
| 1.2.2 Antitumoral Activity of Propolis and Its Active Components           |
| 1.2.3 Synergistic Effects of Propolis with Other Chemotherapeutic Drugs 10 |
| 1.3 Cell Death                                                             |

|   | 1.3 | .1               | Apoptosis                                                      | . 13 |
|---|-----|------------------|----------------------------------------------------------------|------|
|   | 1.3 | .2               | Poly(ADP-ribose) Polymerase-1 (PARP-1) Cleavage                | . 14 |
| 2 | Ma  | iteria           | ls                                                             | . 16 |
|   | 2.1 | Pro              | polis Extract                                                  | . 16 |
|   | 2.2 | Gro              | wth Mediums                                                    | . 16 |
|   | 2.3 | Buf              | fers and Solutions                                             | . 18 |
|   | 2.4 | Ger              | neral Materials                                                | . 20 |
| 3 | Me  | thod             | ls                                                             | . 22 |
|   | 3.1 | Cell             | Culture Techniques                                             | . 22 |
|   | 3.1 | .1               | Growth Conditions                                              | . 22 |
|   | 3.1 | .2               | Cryopreservation of Cells                                      | . 23 |
|   | 3.1 | .3               | Reculturing Frozen Cells                                       | . 23 |
|   | 3.1 | .4               | Storing Cell Pellets for Protein Isolation                     | . 24 |
|   | 3.1 | .5               | Cell Counting with Haemocytometer                              | . 24 |
|   | 3.2 | Sulf             | orhodamine B (SRB) Assay                                       | . 25 |
|   | 3.2 | .1               | Trichloroacetic acid (TCA) Fixation                            | . 26 |
|   | 3.2 | .2               | Sulforhodamine B (SRB) Staining                                | . 26 |
|   | 3.3 | IC <sub>50</sub> | Calculations                                                   | . 27 |
|   | 3.4 | Stat             | istical Analyses                                               | . 27 |
|   | 3.5 | Live             | e Cell Proliferation Assay (xCELLigence)                       | . 28 |
|   | 3.6 | Nuc              | lear Staining with Hoechst 33258                               | . 30 |
|   | 3.7 | We               | stern Blot                                                     | . 30 |
|   | 3.7 | .1               | Cell Lysis                                                     | . 30 |
|   | 3.7 | .2               | Bradford Assay for Protein Quantitation and Sample Preparation | . 31 |

|   | 3.7.3                  | Preparation of SDS gel and Its Transfer to Nitrocellulose Membrane            | 34   |
|---|------------------------|-------------------------------------------------------------------------------|------|
|   | 3.7.4                  | Blocking & Antibody Incubations                                               | . 35 |
|   | 3.7.5                  | ImageJ Analysis                                                               | . 36 |
|   | 3.8 F                  | ACS                                                                           | . 37 |
|   | 3.8.1                  | Cell Fixation                                                                 | . 37 |
|   | 3.8.2                  | Cell Staining with Propidium iodide (PI)                                      | . 37 |
|   | 3.9 S                  | cratch Assay                                                                  | . 38 |
| 4 | RESU                   | LTS                                                                           | . 40 |
|   | 4.1 A                  | nalysis of Propolis' Effects in Cancer Cells                                  | . 40 |
|   | 4.2 10                 | $C_{50}$ Values for Propolis extracts for Breast Carcinoma Cell Lines         | . 49 |
|   | 4.3 A                  | ssociation of $IC_{50}$ Values of Propolis extracts with Properties of Breast |      |
|   | Carcino                | ma Cell Lines                                                                 | . 73 |
|   | 4.4 D                  | ynamic Cell Proliferation of Propolis Treated Cells with xCELLigence          | . 79 |
|   | 4.5 P                  | ropolis Induces Apoptosis on Breast Carcinoma Cell Lines                      | . 83 |
|   | 4.5.1                  | Morphology of the Cells Changes with Propolis Treatment                       | . 83 |
|   | 4.5.2                  | Chromatin Condensation and Nuclear Fragmentation                              | . 86 |
|   | 4.5.3                  | Western Blot Analysis of PARP-1 cleavage                                      | . 89 |
|   | 4.6 P                  | ropolis Slightly Increases G2/M arrest of MDA-MB-231 Cells                    | . 95 |
|   | 4.7 P                  | ropolis Blocks Invasion of MDA-MB-231 Cells                                   | 100  |
| 5 | Discu                  | ssion                                                                         | 103  |
| 6 | Future Perspectives108 |                                                                               |      |
| 7 | References             |                                                                               |      |
| 8 | Appe                   | ndix                                                                          | 116  |
|   | 8.1 10                 | $C_{50}$ Analysis of Propolis                                                 | 116  |
|   | 8.2 D                  | ocuments of Permission to Reuse of Figures                                    | 146  |

# List of Figures

| Figure 1-1 Anatomy of breast (Harness, 2011)1                                              |
|--------------------------------------------------------------------------------------------|
| Figure 1-2 The Chemical Structure of Caffeic acid phenethyl ester (CAPE) $C_{17}H_{16}O_4$ |
| (Akyol, 2012)                                                                              |
| Figure 1-3 Picture of Taxus brevifolia (Pacific Yew) which Paclitaxel was isolated         |
| from (McMullen, 2008)11                                                                    |
| Figure 1-4 Fas-induced and TNF-induced Apoptosis Models (Nagata, 1997)                     |
| Figure 1-5 Various Fragments of PARP-1 after cleaved by specific suicidal proteases        |
| (Chaitanya, 2010)                                                                          |
| Figure 3-1 Schematic Drawing of the Working Principle of xCELLigence (ACEA                 |
| Bioscience Inc.)                                                                           |
| Figure 3-2 BSA Standard Curve32                                                            |
| Figure 3-3: The protein loading marker and the gel configuration where the dashed          |
| lines show the cutting sites of the gels35                                                 |
| Figure 4-1: The cell proliferation rate of FOCUS cells after propolis treatment. T42       |
| Figure 4-2: The cell proliferation rate of FOCUS (A) and Huh7 (B) cells after              |
| treatment with Propolis-1 and DMSO at 24 h, 48 h, and 72 h time points                     |
| Figure 4-3: Cell proliferation of FOCUS, Huh7, SK-LC, MDA-MB-231 and MCF12A cell           |
| lines with increasing concentrations of Propolis-1 and DMSO48                              |
| Figure 4-4: The relative fold change of each propolis treated cell line at different       |
| concentrations of Propolis-149                                                             |
| Figure 4-5: Calculation of IC <sub>50</sub> values for propolis extracts in MCF10A cells   |
| Figure 4-6: Calculation of IC <sub>50</sub> values for propolis extracts in MCF12A cells   |
| Figure 4-7 Calculation of $IC_{50}$ values for propolis extracts in MDA-MB-231 cells 54    |
| Figure 4-8: Calculation of IC50 values for propolis extracts in CAMA-1 cells               |

Figure 4-9: Calculation of IC50 values for propolis extracts in MDA-MB-453 cells ... 57 Figure 4-10: Calculation of IC50 values for propolis extracts in MDA-MB-468 cells.59 Figure 4-13: Calculation of IC50 values for propolis extracts in HCC-1937 cells. ..... 63 Figure 4-14: Calculation of IC50 values for propolis extracts in MDA-MB-157cells..65 Figure 4-16: Calculation of IC50 values for propolis extracts in MDA-MB-361 cells. 68 Figure 4-18: Calculation of IC50 values for propolis extracts in ZR-75-1 cells..........71 Figure 4-19: Calculation of IC50 values for propolis extracts in hTERT-HME-1 cells. 72 Figure 4-20 Comparison of IC<sub>50</sub> Values of Two Different Propolis Extracts on Breast carcinoma cell lines.....74 Figure 4-21 Fold change of IC<sub>50</sub> values of two different propolis extracts on breast carcinoma cell lines ......74 Figure 4-22 IC<sub>50</sub> values of propolis extracts were used to analyze according to the molecular subtypes of breast carcinoma cell lines......75 Figure 4-23 IC<sub>50</sub> values of propolis extracts were used to analyzed according to the ER status of breast carcinoma cell lines.....76 Figure 4-24 IC<sub>50</sub> values of propolis extracts were used to analyzed according to the PR status of breast carcinoma cell lines.....77 Figure 4-25 IC<sub>50</sub> values of propolis extracts were used to analyzed according to the HER2 status of breast carcinoma cell lines. ......78 Figure 4-26 Dynamic monitoring of cell proliferation using the xCELLigence system Figure 4-27 Dynamic monitoring of cell proliferation using the xCELLigence system Figure 4-28 Dynamic monitoring of cell proliferation using the xCELLigence system 

| Figure 4-29 Dynamic monitoring of cell proliferation using the xCELLigence system  |
|------------------------------------------------------------------------------------|
| in BT-20                                                                           |
| Figure 4-30 Dynamic monitoring of cell proliferation using the xCELLigence system  |
| in CAMA-182                                                                        |
| Figure 4-31 Dynamic monitoring of cell proliferation using the xCELLigence system  |
| in MDA-MB-231                                                                      |
| Figure 4-32 The morphological appearance of treated cell lines under the light     |
| microscope                                                                         |
| Figure 4-33 Hoechst 33258 staining and morphological appearance of cell nucleus    |
| after treatment                                                                    |
| Figure 4-34 Western blot analysis of PARP-1 cleavage in untreated and Adriamycin   |
| treated breast carcinoma cell lines89                                              |
| Figure 4-35 Graphical representation of normalized data of PARP-1 band intensities |
| in untreated breast carcinoma cell lines90                                         |
| Figure 4-36 Graphical representation of normalized data of PARP-1 band intensities |
| in untreated and Adriamycin treated MDA-MB-231 cells.                              |
| Figure 4-37 Western blot analysis of PARP-1 cleavage in DMSO and Propolis-2        |
| treated breast carcinoma cell lines92                                              |
| Figure 4-38 Graphical representation of normalized data of full length PARP-1 band |
| intensity in breast carcinoma cell lines92                                         |
| Figure 4-39 Graphical representation of normalized data of cleaved PARP-1 band     |
| intensity in breast carcinoma cell lines93                                         |
| Figure 4-40 Graphical representation of normalized data of full length PAPR-1 and  |
| cleaved PARP-1 band intensity ratio in untreated and Adriamycin treated MDA-MB-    |
| 231 cells                                                                          |
| Figure 4-41 Graphical representation of normalized data of full length PAPR-1 and  |
| cleaved PARP-1 band intensity ratio in breast carcinoma cell lines                 |
| Figure 4-42 Cell cycle analysis of untreated and Adriamycin treated MDA-MB-231     |
| cell line with flow cytometer                                                      |

| Figure 4-43 Graphical representation of cell cycle analysis of untreated and         |
|--------------------------------------------------------------------------------------|
| Adriamycin treated MDA-MB-231 cell line97                                            |
| Figure 4-44 Cell cycle analysis of DMSO and propolis treated MDA-MB-231 cell line    |
| with flow cytometer                                                                  |
| Figure 4-45 Graphical representation of cell cycle analysis DMSO and propolis        |
| treated MDA-MB-231 cell line99                                                       |
| Figure 4-46 Graphical representation of cell cycle analysis of untreated, DMSO,      |
| propolis and Adriamycin treated MDA-MB-231 cell line                                 |
| Figure 4-47 Light microscope image to evaluate wound healing in vitro in the scratch |
| assay using a confluent monolayer of MDA-MB-231 Cells                                |
| Figure 8-1 Permission to Reuse of Figure 1-1                                         |
| Figure 8-2 Permission to Reuse of Figure 1-2                                         |
| Figure 8-3 Permission to Reuse of Figure 1-3                                         |
| Figure 8-4 Permission to Reuse of Figure 1-4                                         |
| Figure 8-5 Permission to Reuse of Figure 1-5                                         |

# List of Tables

| Table 1.1 The two most common types of new cancer cases and deaths by world    |    |
|--------------------------------------------------------------------------------|----|
| area, 2008                                                                     | 2  |
| Table 1.2 Properties of Breast carcinoma cell lines.                           | 4  |
| Table 1.3 Chemical Composition of Propolis                                     | 7  |
| Table 2.1 Growth mediums of cell lines1                                        | 7  |
| Table 2.2 General Solutions1                                                   | 8  |
| Table 2.3 Cell Lysis Buffer1                                                   | .8 |
| Table 2.4 Bradford Stock Solution1                                             | .8 |
| Table 2.5 Bradford Working Solution1                                           | .8 |
| Table 2.6 5x Loading Dye1                                                      | 9  |
| Table 2.7 30% Acrylamide/Bisacrylamide Solution1                               | 9  |
| Table 2.8 SDS Gel Formulation to Prepare two Gels1                             | 9  |
| Table 2.9 5x Running Buffer1                                                   | 9  |
| Table 2.10 Wet Transfer Buffer1                                                | 9  |
| Table 2.11 Antibodies and Their Solutions 2                                    | 0  |
| Table 2.12 Propidium Iodide (PI) Staining Solution                             | 0  |
| Table 2.13 Production Information of Materials      2                          | 0  |
| Table 3.1 Starting cell number for IC <sub>50</sub> calculations2              | 5  |
| Table 3.2 Sample Preparation for BSA Standard Curve      3                     | 1  |
| Table 3.3 Sample Preparation for Protein Quantitation with Spectrophotometer 3 | 2  |
| Table 3.4 Absorbance and Protein Concentrations of Samples for Western Blot    |    |
| Analysis                                                                       | 3  |

| Table 4.1: The ELISA reading results that show the cytotoxic effects of Propolis-1   |
|--------------------------------------------------------------------------------------|
| and DMSO on FOCUS cells                                                              |
| Table 4.2: The ELISA reading results that show the cytotoxic effects of Propolis-1   |
| and DMSO on FOCUS (A) and Huh7 (B) cells at different time points                    |
| Table 4.3: The ELISA reading results of Propolis-1 and DMSO on FOCUS, Huh7, SK-LC,   |
| MDA-MB-231 and MCF12A cell lines45                                                   |
| Table 4.4: Comparison of control DMSO and propolis treated cells proliferation       |
| ratio                                                                                |
| Table 4.5 Classification of Breast carcinoma cell lines According to Their Molecular |
| Status with IC <sub>50</sub> Values of Propolis Extracts73                           |
| Table 4.6 Starting Cell Numbers of Cell Lines for xCELLigence Monitoring79           |
| Table 4.7 Percent gate comparison of untreated, DMSO, propolis and Adriamycin        |
| treated MDA-MB-231 cell line for cell cycle analysis                                 |
| Table 8.1: The ELISA reading results of MCF10A cell numbers when treated with        |
| Propolis-1 and DMSO116                                                               |
| Table 8.2: The ELISA reading results of MCF10A cell numbers when treated with        |
| Propolis-2 and DMSO117                                                               |
| Table 8.3: The ELISA reading results of MCF12A cell numbers when treated with        |
| Propolis-1 and DMSO                                                                  |
| Table 8.4: The ELISA reading results of MCF12A cell numbers when treated with        |
| Propolis-2 and DMSO119                                                               |
| Table 8.5: The ELISA reading results of MDA-MB-231 cell numbers when treated         |
| with Propolis-1 and DMSO120                                                          |
| Table 8.6: The ELISA reading results of MDA-MB-231 cell numbers when treated         |
| with Propolis-2 and DMSO121                                                          |
| Table 8.7: The ELISA reading results of CAMA-1 cell numbers when treated with        |
| Propolis-1 and DMSO122                                                               |
| Table 8.8: The ELISA reading results of CAMA-1cell numbers when treated with         |
| Propolis-2 and DMSO                                                                  |

| Table 8.9: The ELISA reading results of MDA-MB-453 cell numbers when treated     |
|----------------------------------------------------------------------------------|
| with Propolis-1 and DMSO124                                                      |
| Table 8.10: The ELISA reading results of MDA-MB-453 cell numbers when treated    |
| with Propolis-2 and DMSO125                                                      |
| Table 8.11: The ELISA reading results of MDA-MB-468 cell numbers when treated    |
| with Propolis-1 and DMSO126                                                      |
| Table 8.12: The ELISA reading results of MDA-MB-468 cell numbers when treated    |
| with Propolis-2 and DMSO127                                                      |
| Table 8.13: The ELISA reading results of T47D cell numbers when treated with     |
| Propolis-1 and DMSO128                                                           |
| Table 8.14: The ELISA reading results of T47D cell numbers when treated with     |
| Propolis-2 and DMSO129                                                           |
| Table 8.15: The ELISA reading results of MCF7 cell numbers when treated with     |
| Propolis-1 and DMSO 130                                                          |
| Table 8.16: The ELISA reading results of MCF7 cell numbers when treated with     |
| Propolis-2 and DMSO131                                                           |
| Table 8.17: The ELISA reading results of HCC-1937 cell numbers when treated with |
| Propolis-1 and DMSO                                                              |
| Table 8.18: The ELISA reading results of HCC-1937 cell numbers when treated with |
| Propolis-2 and DMSO 133                                                          |
| Table 8.19: The ELISA reading results of MDA-MB-157 cell numbers when treated    |
| with Propolis-1 and DMSO134                                                      |
| Table 8.20: The ELISA reading results of MDA-MB-157 cell numbers when treated    |
| with Propolis-2 and DMSO135                                                      |
| Table 8.21: The ELISA reading results of BT-20 cell numbers when treated with    |
| Propolis-1 and DMSO136                                                           |
| Table 8.22: The ELISA reading results of BT-20 cell numbers when treated with    |
| Propolis-2 and DMSO137                                                           |
| Table 8.23: The ELISA reading results of MDA-MB-361 cell numbers when treated    |
| with Propolis-1 and DMSO138                                                      |

| Table 8.24: The ELISA reading results of MDA-MB-361 cell numbers when treated   |
|---------------------------------------------------------------------------------|
| with Propolis-2 and DMSO139                                                     |
| Table 8.25: The ELISA reading results of BT-474 cell numbers when treated with  |
| Propolis-1 and DMSO                                                             |
| Table 8.26: The ELISA reading results of BT-474 cell numbers when treated with  |
| Propolis-2 and DMSO                                                             |
| Table 8.27: The ELISA reading results of ZR-75-1 cell numbers when treated with |
| Propolis-1 and DMSO142                                                          |
| Table 8.28: The ELISA reading results of ZR-75-1 cell numbers when treated with |
| Propolis-2 and DMSO                                                             |
| Table 8.29: The ELISA reading results of hTERT-HME1 cell numbers when treated   |
| with Propolis-1 and DMSO144                                                     |
| Table 8.30: The ELISA reading results of hTERT-HME1 cell numbers when treated   |
| with Propolis-2 and DMSO145                                                     |

# Abbreviations

| °C                 | degree Celsius                              |
|--------------------|---------------------------------------------|
| APS                | Ammonium persulfate                         |
| bCSCs              | breast cancer stem cells                    |
| BRCA1              | breast cancer type 1 susceptibility protein |
| BRCA2              | breast cancer type 2 susceptibility protein |
| BSA                | Bovine serum albumin                        |
| CAPE               | Caffeic acid phenethyl ester                |
| caspase-3          | cysteinyl-aspartate proteases-3             |
| CI                 | Cell Index                                  |
| CO <sub>2</sub>    | Carbon dioxide                              |
| Conc.              | Concentration                               |
| ddH <sub>2</sub> O | Double-distilled water                      |
| DEP                | DMSO extract of propolis                    |
| DMEM               | Dulbecco's modified Eagle's medium          |
| DMSO               | Dimethyl sulfoxide                          |
| DNA                | Deoxyribonucleic acid                       |
| EDTA               | Ethylenediaminetetraacetic acid             |
| EEP                | ethanol extract of propolis                 |
| EGF                | Epidermal growth factor                     |
| ELISA              | Enzyme-linked immunosorbent assay           |
| ER                 | estrogen receptor                           |
| etc                | et cetera                                   |
| FACS               | Fluorescence-activated cell sorting         |
| FBS                | Fetal bovine serum                          |
| G2/M               | Gap 2/Mitosis                               |
| h                  | hour                                        |
| HDACi              | histone deacetylase inhibitor               |
| HER2(ERBB2)        | Human Epidermal Growth Factor Receptor 2    |
| IC <sub>50</sub>   | The half maximal inhibitory concentration   |
| kDa                | kiloDalton                                  |
| INCaP              | androgen-sensitive human prostate           |
|                    | adenocarcinoma cells                        |
| ММР                | matrix metalloproteinase                    |
| n/a                | not available                               |
| NaCl               | Sodium chloride                             |
|                    |                                             |

|                 | nuclear factor kappa-light-chain-enhancer of |
|-----------------|----------------------------------------------|
|                 | activated B cells                            |
| nm              | nanometer                                    |
| NP-40           | nonyl phenoxypolyethoxylethanol              |
| OD              | Optical Density                              |
| p53             | protein 53                                   |
| PAR             | Poly(ADP-ribose)                             |
| PARP-1          | Poly(ADP-ribose) Polymerase-1                |
| PBS             | Phosphate buffered saline                    |
| PI              | Propidium iodide                             |
| Post-EMT        | Post-Epithelial-mesenchymal transition       |
| PR              | progesterone receptor                        |
| rpm             | Revolutions per minute                       |
| RPMI            | Roswell Park Memorial Institute medium       |
| SDS             | Sodium dodecyl sulfate                       |
| SEM             | Standard error of the mean                   |
| SRB             | Sulforhodamine B                             |
| TBS for SRB     | Tris Base Solution                           |
| TBS for Western | Tris-buffered saline                         |
| TBS-T           | Tris-buffered saline with Tween 20           |
| TCA             | Trichloroacetic Acid                         |
| TEMED           | Tetramethylethylenediamine                   |
| TNF             | Tumor necrosis factors                       |
| TRAIL           | TNF-related apoptosis-inducing ligand        |
| ul              | microliter                                   |
| VEGF            | Vascular endothelial growth factor           |
| WEP             | water extract of propolis                    |
| wt              | wild type                                    |
| Z               | impedance                                    |

## **1** INTRODUCTION

### 1.1 Breast Cancer

Malignant tumors can invade the surrounding cells or metastasize to other parts of body. It is defined as *breast cancer* when the malignant tumor starts in the cells of breast (cancer.org; American Cancer Society). Healthy breast consists of fat, connective tissue, blood and lymph vessels (Figure 1-1).



Figure 1-1 Anatomy of breast (Harness, 2011).

Breast cancer is the most common cancer type and the leading cause of cancer death among women worldwide (Table 1.1). Increase in the age is the most important risk factor and BRCA1 & BRCA2 inherited mutations increase the risk (cancer.org; American Cancer Society).

Table 1.1 The two most common types of new cancer cases and deaths by worldarea, 2008 (cancer.org; American Cancer Society).

|                            | Cancer Cases |       |                 | Cancer Deaths<br>Females |                 |       |                 |       |
|----------------------------|--------------|-------|-----------------|--------------------------|-----------------|-------|-----------------|-------|
|                            | Females      |       |                 |                          |                 |       |                 |       |
|                            | First        |       | Second          |                          | First           |       | Second          |       |
| Eastern Africa             | Cervix uteri | 26.2% | Breast          | 14.9%                    | Cervix uteri    | 24.5% | Breast          | 11.3% |
| Middle Africa              | Breast       | 22.1% | Cervix uteri    | 22.0%                    | Cervix uteri    | 20.7% | Breast          | 16.9% |
| Northern Africa            | Breast       | 33.8% | Cervix uteri    | 6.4%                     | Breast          | 26.3% | Colon & rectum  | 5.6%  |
| Southern Africa            | Breast       | 23.4% | Cervix uteri    | 16.9%                    | Breast          | 17.5% | Cervix uteri    | 13.6% |
| Western Africa             | Breast       | 26.4% | Cervix uteri    | 25.9%                    | Cervix uteri    | 24.9% | Breast          | 21.0% |
| Caribbean                  | Breast       | 24.6% | Cervix uteri    | 13.0%                    | Breast          | 15.8% | Lung & bronchus | 12.7% |
| Central America            | Breast       | 18.9% | Cervix uteri    | 16.9%                    | Cervix uteri    | 13.7% | Breast          | 11.6% |
| South America              | Breast       | 26.6% | Cervix uteri    | 14.4%                    | Breast          | 14.6% | Cervix uteri    | 11.8% |
| North America              | Breast       | 26.6% | Lung & bronchus | 14.3%                    | Lung & bronchus | 25.9% | Breast          | 14.9% |
| Eastern Asia               | Breast       | 15.2% | Lung & bronchus | 13.2%                    | Lung & bronchus | 19.1% | Stomach         | 15.5% |
| South-Eastern Asia         | Breast       | 22.4% | Cervix uteri    | 11.4%                    | Breast          | 15.2% | Lung & bronchus | 11.5% |
| South-Central Asia         | Cervix uteri | 22.5% | Breast          | 22.4%                    | Cervix uteri    | 19.8% | Breast          | 17.1% |
| Western Asia               | Breast       | 27.2% | Colon & rectum  | 8.2%                     | Breast          | 19.0% | Colon & rectum  | 8.1%  |
| Central and Eastern Europe | Breast       | 23.4% | Colon & rectum  | 13.3%                    | Breast          | 16.8% | Colon & rectum  | 14.6% |
| Northern Europe            | Breast       | 30.0% | Colon & rectum  | 12.1%                    | Lung & bronchus | 18.6% | Breast          | 15.8% |
| Southern Europe            | Breast       | 29.0% | Colon & rectum  | 14.2%                    | Breast          | 16.5% | Colon & rectum  | 13.1% |
| Western Europe             | Breast       | 32.1% | Colon & rectum  | 13.8%                    | Breast          | 18.2% | Colon & rectum  | 13.3% |
| Australia/New Zealand      | Breast       | 28.4% | Colon & rectum  | 14.0%                    | Lung & bronchus | 16.4% | Breast          | 15.7% |
| Melanesia                  | Cervix uteri | 19.5% | Breast          | 17.1%                    | Cervix uteri    | 18.7% | Breast          | 13.6% |
| Micronesia                 | Breast       | 35.7% | Colon & rectum  | 11.6%                    | Breast & lung   | 17.8% | Colon & rectum  | 11.2% |
| Polynesia                  | Breast       | 29.6% | Thyroid         | 12.2%                    | Breast          | 16.7% | Lung & bronchus | 15.4% |

#### 1.1.1 Classification of Breast Cancer

Since breast consists of epithelial cells, almost all of the breast cancers are carcinomas. Some of them are adenocarcinomas if cancer starts from ducts or lobules of the breast which produces milk. Carcinoma *in situ* is the early stage of the cancer and this is referred to as non-invasive or pre-invasive (cancer.org; American Cancer Society). On the other hand, infiltrating carcinomas are invasive and constitutes more than 95% of all mammary carcinomas (Yoder, 2007). Both carcinomas can be ductal or lobular.

Molecular classification is very important for breast cancer because of the heterogeneous nature of the cancer. Basal and luminal cells are the two distinct epithelial subtypes of mammary gland (Perou, 2000). Luminal subtype can be divided into Luminal A and Luminal B as their gene expression pattern (Sorlie, 2003). Also another subdivision came from Neve *et. al.* as Basal A and Basal B (Neve, 2006). Dawson *et. al.* introduced a novel categorization in recently published article. This categorization includes 10 "integrative clusters" which are generated from molecular information of genomic and transcriptomic features of breast cancer (Dawson, 2013). Categorization of Breast cancer is important for the sake of proper treatment to each subtype of breast cancer. Different drugs may affect a subtype of breast cancer which can be linked with its molecular properties.

#### 1.1.2 Breast Carcinoma Cell Lines

BT-20 was the first breast carcinoma cell line to be established in 1958. Followed by MD Anderson series of breast carcinoma cell lines and the most famous one, MCF7 was established by Michigan Cancer Foundation in 1973. Cell lines are good models of breast cancer research (Holliday, 2011). Classification of cell lines is also important to use the right cell line as model. For example, a specific kinase inhibitor was shown that it preferentially inhibits proliferation of luminal estrogen receptorpositive human breast carcinoma cell lines (Finn, 2009). Different compounds may have selective effect on subtypes of breast cancer and this can be linked with its molecular properties of the subtype. Some of the characteristics of the breast carcinoma cell lines are summarized in the Table 1.2. **Table 1.2 Properties of Breast carcinoma cell lines.** {\* = amplified but not highly expressed, n/a = not available, wt = wild type, ER = estrogen receptor, PR = progesterone receptor, HER2[ERBB2] = Human Epidermal Growth Factor Receptor 2} (Neve, 2006; Kao, 2009; Finn, 2009; Holliday, 2011).

|            | Subtype     | ER status | PR status | HER2 status  | p53 mutation |
|------------|-------------|-----------|-----------|--------------|--------------|
| MCF10A     | Basal B     | negative  | negative  | immortalized | +/- wt       |
| MCF12A     | Basal B     | negative  | negative  | n/a          | +            |
| CAMA-1     | Luminal     | positive  | negative  | normal       | +            |
| MDA-MB 231 | Basal       |           |           |              |              |
|            | B(Post-EMT) | negative  | negative  | normal       | ++ mutant    |
| MDA-MB-453 | Luminal     | negative  | negative  | amplified*   | - wt         |
| MDA-MB-468 | Basal A     | negative  | negative  | normal       | +            |
| MCF7       | Luminal A   | positive  | positive  | normal       | +/- wt       |
| T47D       | Luminal A   | positive  | positive  | normal       | ++ mutant    |
| MDA-MB-157 | Basal       |           |           |              |              |
|            | B(Post-EMT) | negative  | negative  | normal       | -            |
| HCC-1937   | Basal A     |           |           |              |              |
|            | (Post-EMT)  | negative  | negative  | normal       | -            |
| BT-20      | Basal A     | negative  | negative  | normal       | ++ wt        |
| MDA-MB-361 | Luminal     | positive  | positive  | amplified    | - wt         |
| BT-474     | Luminal B   | positive  | positive  | amplified    | +            |
| ZR-75-1    | Luminal B   | positive  | negative  | normal       | -            |
| hTERT-HME1 | Basal B     | negative  | n/a       | negative     | n/a          |

### **1.2 Biological Compound Propolis**

From ancient times to today, humankind faced to reality of breast cancer and tried different treatments varies from organic supplies to surgical operations. We are still looking for a cure for cancer in general. If we assume that nature has a remedy for all problems, we should look for the remedy for treatment of breast cancer. In this case we are looking for it in a beehive where propolis comes from. Propolis or bee glue is a yellow-brownish resinous compound which is collected from various plants and combined with wax and bee enzymes by worker bees. This mixture is used to smooth out hive walls, to protect bees from diseases because of its antiseptic features and also to embalm the carcasses of invader insects to avoid decomposition (Sforcin, 2011). The word propolis comes from a Greek origin which pro is 'in front of' or 'at the entrance to' and polis is city -in this case, hive- therefore propolis means that a material in defense of the hive (Castaldo, 2002).

Using propolis as a medicine has a long history dating back to ancient times. For instance, Ancient Egyptians used propolis to embalm the cadavers and Ancient Greeks and Romans used propolis as an anti-inflammatory agent to heal wounds and ulcers. Also it was accepted as an official drug in London in 17<sup>th</sup> century (Salatino, 2011). Still, it is widely used among Balkan States. There are also studies that show propolis having no side effect to mice or human (Sforcin, 2007). Recently, there are many studies associated with propolis extracts aiming to find new treatment possibilities in diverse research fields such as immunology, oncology, infectious diseases, allergy, diabetes, ulcers, *etc* (Sforcin, 2011).

Chemical composition of propolis varies by the geographical status and by the different races of honeybees. Different studies are going on with local propolis extracts such as Cuban, Brazilian, Chinese, Indian *etc.* (Monzote, 2012; Sforcin, 2011; Sun, 2012; Thirugnanasampandan, 2012). Propolis is mainly composed of resins which comes from plants those honeybees collect from. Hence, propolis extracts from different geographical origin have a specific combination of chemicals that reflect the floral properties of the field (Salatino, 2011). Sibel Silici and Semiramis Kutluca showed that Turkish propolis collected form Erzurum region have a number of chemical compounds which were identified from propolis for the first time (Silici, 2005).

Diversity of propolis has both advantages and disadvantages for the research. Distinct compounds found in propolis may have novel benefits for the drug

5

discoveries or they may construct a novel synergistic effect with regular compounds found in propolis. Major disadvantage would be the problem of standardization of propolis as a possible drug; however there are many ways to overcome this problem. The most common solution to standardize of propolis is to categorize propolis according to its chemical composition and source of plant. Six main types of propolis are poplar propolis, birch propolis, Brazilian green propolis, red propolis, pacific propolis and Canarian propolis (Bankova, 2005). When the standardization problem is defeated, the use of propolis is "safe and less toxic than many synthetic medicines" (Castaldo, 2002).

#### 1.2.1 Propolis Extracts

Propolis extraction is made with alcoholic solvents or water, generally. The most common solvent is absolute ethanol, methanol and water follows it. While water extraction has 7% activity, alcoholic extractions can reach up to 28% activity. Also triglyceride extraction patent is held by Japanese researchers (Ashry, 2012). Since the chemical composition of propolis is very complex (propolis consist of more than 300 components), solvent of the extraction method affects the activity of propolis. Different compounds in the mixture can solubilize in different solvents so that each extraction material gives different outcomes (Sforcin, 2007).

Turkish researchers were able to extract the propolis with *dimethyl sulfoxide* (DMSO) which can dissolve both polar and nonpolar compounds (Aliyazicioglu, 2005). DMSO maximizes the penetration of compounds to the cells as well as it is a good solvent for flavonols (one of the most common compound in propolis) (Cai, 2011). According to one of the studies, DMSO extract of propolis (DEP) is richer in polyphenols and flavonoids than water extraction of propolis (WEP). They also claim that the antioxidant potentials of those two extracts are parallel with the total phenolic compounds in each extract (Barlak, 2011).

6

Propolis composition is highly variable considering the plant source, bee race, geographical and seasonal diversity. In general, propolis contains flavonoids such as chrysin, acacetin, apigenin, and phenolic acids like cinnamic acid, caffeic acid, *etc* (Table 1.3). Propolis also includes some vitamins and minerals as well as fatty acids (Khalil, 2006). Some of the researchers use the whole extract of propolis whereas others prefer to use active components of it. Even though using an individual constituent of propolis is an effective way of standardization, there might be a synergic effect of components within the propolis extract. This effect can be the reason that propolis has different pharmacological activities (Banskota, 2001).

| Compounds                 | Percentage |
|---------------------------|------------|
| Fatty and Aliphatic Acids | 24-26 %    |
| Flavonoids                | 18-20 %    |
| Sugars                    | 15-18 %    |
| Aromatic Acids            | 5-10 %     |
| Esters                    | 2-6 %      |
| Vitamins                  | 2-4 %      |
| Alcohol and Terpens       | 2-3.3 %    |
| Microelements             | 0.5-2 %    |
| Others                    | 21-27 %    |

| Table 1.3 Chemica | I Composition | of Propolis | (Sawicka, | 2012). |
|-------------------|---------------|-------------|-----------|--------|
|-------------------|---------------|-------------|-----------|--------|

#### 1.2.2 Antitumoral Activity of Propolis and Its Active Components

Propolis is a research subject for its antitumoral activity all over the world with local extracts since its composition changes with its origin. The common point of the anticancerous effects of propolis is the ability of propolis to trigger apoptosis in cancer cells. Some of the active components of propolis as well as alcoholic extractions or water-soluble derivatives of propolis were shown to induce apoptosis in cancer cells depending on the concentration (Sawicka, 2012). There are many studies conducted on propolis or its active components for treatment of cancer which reveals the potential of this biological compound in the development of novel anti-cancerous agents.

Numerous studies claim that polyphenols in propolis, activates TRAIL-induced apoptosis in cancer cells. Naringenin in lung cancer, Biochanin A in prostate cancer, Kaempferol in glioma and chrysin, quercetin, apigenin in various cancer cells were particularly identified as a synthesizer of TRAIL-induced apoptosis (Szliszka, 2013). Synthesizing cancer cells to TRAIL-targeted therapies with propolis or its polyphenols would increase the anticancer activity of TRAIL so that TRAIL-resistance may be overcome by propolis treatment.

Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid) is one of the active components of propolis which causes significant damage to carcinoma and malignant melanoma. Intratumor injection of Artepillin C (500g, three times a week) increases the number of helper T cells in addition to suppression of tumor growth in mice (Khalil, 2006).

Caffeic acid phenethyl ester (CAPE) is a strong antioxidant, extracted from propolis and it is a well-known NF-κB specific inhibitor (Figure 1-2). It suppresses the cell proliferation of some metastatic prostate cancer cell lines as well as sensitizes cancer cells to radiation and chemotherapeutic drugs. LNCaP (androgen-sensitive human prostate adenocarcinoma cells) xenograft nude mice were orally treated with CAPE (10 mg/kg per day for six weeks) and consequently tumor volume was reduced 50% (Liu, 2013). As a result of these findings, it is hypothesized that CAPE can be an effective adjuvant therapy for prostate cancer.



Figure 1-2 The Chemical Structure of Caffeic acid phenethyl ester (CAPE)  $C_{17}H_{16}O_4$  (Akyol, 2012).

As a candidate anti-cancer agent, propolis can be a relatively inexpensive solution for cancer treatment. Administration of propolis does not lead to side effects on rats or humans along with the fact that it can reduce side effects of cancer treatment (Watanabe, 2011). A research group from Turkey also supports that usage of CAPE prevents the damages and side effects of chemotherapy and radiotherapy. They propose the usage of CAPE as a protective agent during chemotherapy in clinical trials (Akyol, 2012). A research group from Taiwan claims that CAPE has an anti-metastatic and anti-angiogenic effects on cancer cells. Even though the exact mechanism of anti-metastatic activity of CAPE is not revealed yet, they demonstrated that CAPE has effects on destruction of capillary-like tube formation, inhibition of tumor cell invasion, and elimination of VEGF level *in vitro* and *in vivo* (Liao, 2003).

Another usage of active components of propolis is as a histone deacetylase inhibitor (HDACi). with anticancer activity. Chrysin (Sun, 2012) and NMB-HD-1 (Huang, 2012) are examples of HDACis synthesized from propolis. Chrysin, a known potent anticancer compound, is a HDAC8 inhibitor as well as it can significantly inhibit tumor growth. Chrysin is also important for the standardization of Chinese propolis since it is the major index compound (Sun, 2012). NMB-HD-1 has an antiproliferative effect and also injection of NMB-HD-1 to MDA-MB-231 breast cancer xenograft model exhibited antitumor activity. This outcome may involve HDAC inhibition which changes chromatin core histones so that expression of cell cycle regulating genes changes. Another possibility is the suppression of PTEN/AKT pathway which inhibits cancer cell growth (Huang, 2012).

#### 1.2.3 Synergistic Effects of Propolis with Other Chemotherapeutic Drugs

Propolis have various functional and biological properties such as antibacterial (Grange, 1990)., antimicrobial (Monzote, 2012), anti-oxidative (Thirugnanasampandan, 2012), antiviral (Viuda-Martos, 2008), hepatoprotective (Albukhari, 2009), anti-cancerious (Sawicka, 2012), anti-ulcerous (Viuda-Martos, 2008) as well as anti-inflammatory (Banskota, 2001). Especially anti-oxidative and anti-inflammatory features of propolis make it a promising candidate as an adjuvant to chemotherapy.

More than 70% of antitumor agents are natural compounds or materials derived from natural products (Watanabe, 2011). Propolis is one of the candidates for such products while paclitaxel is already one of them. Paclitaxel also known as Taxol<sup>®</sup> is an anticancer agent which was isolated from bark of *Taxus brevifolia* (Figure 1-3) (Khosroushahi, 2011).



Figure 1-3 Picture of *Taxus brevifolia* (Pacific Yew) which Paclitaxel was isolated from (McMullen, 2008).

Paclitaxel is widely used for treatment of breast cancer, non-small cell lung cancer, ovarian cancer, melanoma, head and neck cancer. Giving paclitaxel in combination with propolis, results in maximum protection from induced mammary carcinogenesis in rats. Treating breast cancer-bearing rats with 50 mg propolis per kg body weight along with 33 mg paclitaxel per kg body weight reduces the toxic side effects of paclitaxel by propolis' immunemodulatory activity. Another effect of propolis is free radical scavenging activity against alkoxyl radicals that is due to the antioxidant property of propolis. Synergistic action of propolis mixture is distinct from the action of a single component since there are diverse effects of propolis on cancer treatment (Padmavathi, 2006).

In another study, ethanolic extract of propolis was used with temozolomide to inhibit U87MG (human glioblastoma cell line) cell line growth. Researchers affirmed that propolis has cytotoxic effects as well as growth inhibiting activity in combination with temozolomide. They think there is at least partial relationship between cytotoxic properties and reduced activity of NF-κB since NF-κB is an essential survival factor for glioblastomas (Markiewicz-Żukowska, 2013).

11

Caffeic acid phenethyl ester (CAPE), an active component of propolis was found to change the characteristics of breast cancer stem cells (bCSCs). CAPE inhibits the selfrenewal and clonal expansion in soft agar, also decrease the CD44 (cell surface markers for bCSCs) content and malignancy in bCSCs. Another effect of CAPE is that it increases the cycling state of bCSCs so that susceptibility to chemotherapeutic agents of bCSCs increases. In conclusion, CAPE can be used effectively for cancer treatment in combination with other chemotherapeutic agents (Omene, 2012).

### 1.3 Cell Death

Carl Vogt was the first one to describe cell death in 1842 following the establishment of cell theory. He observed the elimination of cells and replacement of them by new cells (Clarke, 2012). Stress to the cellular system causes cell death with a diverse and complex process. Apoptosis, necrosis, autophagy and mitotic cell death are the known cell death types for today. An individual cell may have a heterogeneous behavior within a population as well as cell death can also be a heterogeneous property. Both biochemical and morphological properties may cause the heterogeneity in cellular systems (Stevens, 2013). Apoptosis and autophagy are the most well-known programmed cell death mechanism however there is third one: programmed necrosis. These are the three main forms of programmed cell death and they balance survival with cell death for normal cells (Ouyang, 2012).

#### 1.3.1 Apoptosis

In the case of cellular life, death program comes with the code which gives the life itself. In case of emergencies, cells kill themselves for the sake of population of other cells. This is also parallel with the evolutionary development since cells cannot pass their genetic information if the information is damaged.



Degradation of Chromosomal DNA



If the DNA damage is irreversible, major type of cell death is the apoptosis. Apoptosis can be triggered by two different pathways: death receptor (extrinsic) and mitochondrial (intrinsic) pathway. When plasma-membrane death receptor, Fas binds to its extracellular ligand Fas-L; the extrinsic pathway triggers. Both TNF and Fas induces extrinsic pathway of apoptosis (Figure 1-4). Mitochondrial pro-enzymes control the intrinsic pathways of apoptosis (Ouyang, 2012).

#### 1.3.2 Poly(ADP-ribose) Polymerase-1 (PARP-1) Cleavage

Single and double stranded DNA breaks activate the nuclear protein PARP and PARP is also involved in DNA repair, cell cycle regulation, differentiation and transformation mechanisms (Whitacre, 1999). PARP binds to DNA single strand brakes and induces a structural modification to promote base excision repair. Poly(ADP-ribose) (PAR) recruits other DNA damage proteins to the close vicinity and PARP induces the synthesis of PAR. Following Poly(ADP-ribosyl)ation (PARylation), PARP is needed to be cleaved by cysteinyl-aspartate proteases-3 (caspase-3) (Nowsheen, 2012).

Caspases, calpains, cathepsins, granzymes and matrix metalloproteinases (MMPs) are some of the suicidal proteases which cleave PARP from different sites so that signature fragments appear (Figure 1-5). Each cleaved fragment has its specific molecular weight therefore fragments can be used as a biomarker for specific cell death program (Chaitanya, 2010).



Figure 1-5 Various Fragments of PARP-1 after cleaved by specific suicidal proteases (Chaitanya, 2010).

PARP-1 cleavage by caspases is considered as a hallmark of apoptosis. There are 2 different possible fragments after the cleavage of PARP by caspases: 85 and 89 kDa fragments. These fragments are indicators of apoptosis of the cell. The full-length protein is 116 kDa and cleavage by caspase-3 results in 89 kDa fragment. However, cleavage by caspases-7 yields two specific fragments, 89 and 24 kDa (Chaitanya, 2010). Therefore detection of one of these bands shows the association of apoptosis. On the other hand, 50 kDa fragment is detected during necrosis (Buontempo, 2010).

### 2 Materials

### 2.1 Propolis Extract

Propolis extracts were kindly provided by Prof. Dr. Orhan Değer from Karadeniz Technical University, Faculty of Medicine, Department of Medical Biochemistry. Two different batches of DMSO extracts of propolis were used in this study; first batch is 25 mg/ml (Propolis-1) and second batch is 100 mg/ml (Propolis-2). Propolis was collected from different regions of Turkey by Fanus Gida Corporation (Trabzon, Turkey) and extractions were prepared in laboratories of Karadeniz Technical University with the following method: Natural propolis was grinded and mixed until it became powder. For 25 mg/ml propolis extract, 0.5 g of propolis powder was mixed with 20 ml DMSO and vortexed. Mixture was incubated on the shaker at 150 rpm for 24 hours at 60°C for propolis to dissolve. Mixture was filtered with filter paper and the extracts were kept in dark at +4°C. 100 mg/ml propolis extract was prepared with the same procedure.

### 2.2 Growth Mediums

Growth mediums of cell lines are given in Table 2.1.
Table 2.1 Growth mediums of cell lines

# 2.3 Buffers and Solutions

|  | Table | 2.2 | General | Solutions |
|--|-------|-----|---------|-----------|
|--|-------|-----|---------|-----------|

| 10% TCA Solution         | (v/v) 10% TCA in ddH <sub>2</sub> O                                |  |
|--------------------------|--------------------------------------------------------------------|--|
| 1% Acetic Acid Solution  | (v/v) 1% Acetic acid in ddH <sub>2</sub> O                         |  |
| 0.4% SRB Solution        | (w/v) 0.4% SRB in 1% Acetic Acid                                   |  |
| 10 mM Tris Base Solution | 10 mM Tris in ddH <sub>2</sub> O                                   |  |
| 300 ug/ml Hoechst 33258  | 300 ug/ml Hoechst dissolved in ddH <sub>2</sub> O (stored in dark) |  |
| Stock Solution           |                                                                    |  |
| 1 ug/ml Hoechst 33258    | 1 ug/ml Hoechst diluted from 300 ug/ml Hoechst stock               |  |
| Working Solution         | solution dissolved in 1x PBS (kept in dark)                        |  |
| 10x TBS                  | 12.19 g Tris-base and 87.76 g NaCl were dissolved in 1 liter       |  |
|                          | of ddH2O and the pH was adjusted to 8 to prepare 10X               |  |
|                          | TBS stock solution.                                                |  |
| 0.2 % TBS-T              | 0.2% Tween 20 was added into 1X TBS solution.                      |  |
| 10% APS                  | (w/v) 10% APS in 1% ddH <sub>2</sub> O                             |  |
| 5 % BSA                  | (w/v) 5% BSA in 0.2 % TBS-T                                        |  |
| 5 % milk                 | (w/v) 5% milk powder in 0.2 % TBS-T                                |  |

Table 2.3 Cell Lysis Buffer

| Reagent            | <b>Final concentration</b> |
|--------------------|----------------------------|
| Tris-HCl (pH:8.0)  | 50 mM                      |
| NaCl               | 150 mM                     |
| NP-40              | 1%                         |
| SDS                | 0.1 %                      |
| Protease Inhibitor | 1x                         |
| ddH <sub>2</sub> O | Rest of the solution       |

Table 2.4 Bradford Stock Solution

| Coomassie brilliant blue              | 17.5 mg |
|---------------------------------------|---------|
| Ethanol                               | 4.75 ml |
| Phosphoric acid                       | 10 ml   |
| final volume with ddH <sub>2</sub> O= | 25 ml   |

#### Table 2.5 Bradford Working Solution

| Bradford stock solution               | 1.5 ml  |
|---------------------------------------|---------|
| 95% Ethanol                           | 0.75 ml |
| Phosphoric acid                       | 1.5 ml  |
| final volume with ddH <sub>2</sub> O= | 25 ml   |

#### Table 2.6 5x Loading Dye

| Tris-HCL, pH:6.8, , | 62.5 mM |
|---------------------|---------|
| β-mercaptoethanol   | 5%      |
| glycerol            | 15%     |
| bromophenol blue.   | 0.001%  |
| SDS                 | 2%      |

#### Table 2.7 30% Acrylamide/Bisacrylamide Solution

| Acrylamide                            | 29 gr  |
|---------------------------------------|--------|
| Bisacrylamide                         | 1 gr   |
| final volume with ddH <sub>2</sub> O= | 100 ml |
| stored in the dark                    |        |

#### Table 2.8 SDS Gel Formulation to Prepare two Gels

| Reagents                              | 5% Stacking Gel | 10% Resolving Gel |
|---------------------------------------|-----------------|-------------------|
| 30% acrylamide/bisacrylamide solution | 1.3 ml          | 6.7 ml            |
| 1.0 M Tris Solution (pH: 8.8)         | -               | 7.5 ml            |
| 1.0 M Tris Solution (pH: 6.8)         | 1.0 ml          | -                 |
| 10% SDS solution                      | 80 ul           | 200 ul            |
| 10% APS solution                      | 80 ul           | 200 ul            |
| TEMED                                 | 8 ul            | 8 ul              |
| ddH <sub>2</sub> O                    | 5.6 ml          | 5.4 ml            |
| TOTAL=                                | 8 ml            | 20 ml             |

#### Table 2.9 5x Running Buffer

| Tris    |                                       | 45 g     |
|---------|---------------------------------------|----------|
| Glycine |                                       | 216 g    |
| SDS     |                                       | 15 g     |
|         | final volume with ddH <sub>2</sub> O= | 3 liters |

#### Table 2.10 Wet Transfer Buffer

| Tris                                  | 6 g     |
|---------------------------------------|---------|
| Glycine                               | 28.8g   |
| Methanol                              | 15%     |
| final volume with ddH <sub>2</sub> O= | 1 liter |

#### Table 2.11 Antibodies and Their Solutions

| Primary Antibodies                                                   |
|----------------------------------------------------------------------|
| PARP-1 (Cell Signaling 46D11): 1:200 in 5% BSA in 0.2 % TBS-T        |
| β-actin (Sigma A5441): 1:5000 in 5% milk powder in 0.2% TBS-T        |
| Secondary Antibodies                                                 |
| Anti-Mouse IgG (Sigma A9044): 1:5000 in 5% milk powder in 0.2% TBS-T |
| Anti-Rabbit IgG (Sigma A0545): 1:5000 in 5% BSA in 0.2 % TBS-T       |

Table 2.12 Propidium Iodide (PI) Staining Solution

| Propidium Iodide (PI) stock | 50 ug/ml  |
|-----------------------------|-----------|
| RNAse-A                     | 0.1 mg/ml |
| Triton X                    | 0.05%     |
| Dissolved in PBS            |           |

# 2.4 General Materials

Table 2.13 Production Information of Materials

| Material                        | Catalog Number | Company           |  |  |
|---------------------------------|----------------|-------------------|--|--|
| DMEM (Low Glucose)              | SH30021.01     | Hyclone           |  |  |
| Acetic Acid                     | 27225-2.5L-R   | Sigma Aldrich     |  |  |
| Acrylamide                      | BP170-500      | Fisher Scientific |  |  |
| Adriamycin (ADRIMISIN 10<br>mg) | L01DB01        | Saba İlaç         |  |  |
| APS                             | 420627         | Carlo Erba        |  |  |
| Bisacrylamide                   | A3636,0250     | AppliChem         |  |  |
| <b>Bovine Pituitary Extract</b> | 13028-014      | Gibco             |  |  |
| Bromophenol blue.               | B5525          | Sigma Aldrich     |  |  |
| BSA                             | 10 735 078 001 | Roche             |  |  |

| Material                   | Catalog Number | Company           |  |  |
|----------------------------|----------------|-------------------|--|--|
| Coomassie brilliant blue   | 27816          | Fluka             |  |  |
| D-Glucose                  | 16325          | Riedel de Haen    |  |  |
| DMEM/Ham's F12             | F4815          | Biochrom          |  |  |
| DMSO                       | A3672,0100     | AppliChem         |  |  |
| EGF                        | E9644-2MG      | Sigma Aldrich     |  |  |
| Ethanol                    | CAS-64-17-5    | AlcoMED           |  |  |
| FBS                        | SV30160.03     | Hyclone           |  |  |
| Glycerol                   | 346165         | Carlo Erba        |  |  |
| Glycine                    | EC200-272-2    | Fisher Scientific |  |  |
| Hoechst 33258              | 861405         | Sigma Aldrich     |  |  |
| Hydrocortisone             | H0888-19       | Sigma Aldrich     |  |  |
| Insulin                    | I1882-100MG    | Sigma Aldrich     |  |  |
| Isopropanol                | 1.009.952.500  | MERCK             |  |  |
| L-Glutamine                | К0293          | Biochrom          |  |  |
| Methanol                   | 24229-2.5L-R   | Sigma Aldrich     |  |  |
| Milk powder                | -              | Sütaş             |  |  |
| NaCl                       | 1,06404,1000   | MERCK             |  |  |
| Nitrocellulose Membrane    | RPN3032D       | Amersham          |  |  |
| Nonessential Amino Acids   | BE13-114E      | Lonza             |  |  |
| NP-40                      | NonidetP-40    | AppliChem         |  |  |
| Parafilm                   | PM.996         | Pechiney          |  |  |
| PBS                        | BE17-516F      | Lonza             |  |  |
| Penicillin/Streptomycin    | SV30010        | Hyclone           |  |  |
| Phosphoric acid            | 4107           | Riedel de Haen    |  |  |
| Propidium Iodide (PI)      | D4864          | Sigma Aldrich     |  |  |
| Protease Inhibitor         | 11873580001    | Roche             |  |  |
| RNAse-A                    | EN0531         | Thermo Scientific |  |  |
| RPMI Medium                | SH30096.01     | Hyclone           |  |  |
| SDS                        | L5750          | Sigma Aldrich     |  |  |
| Sodium Pyruvate            | 11360          | Gibco             |  |  |
| Sulforhodamine B (SRB)     | S1402          | Sigma Aldrich     |  |  |
| Trichloroacetic Acid (TCA) | 33731-100G     | Sigma Aldrich     |  |  |
| Tris                       | 826            | Amresco           |  |  |
| Tris-Base                  | T1503-1KG      | Sigma Aldrich     |  |  |
| Tris-HCI                   | T-3253         | Sigma Aldrich     |  |  |
| Trypsin/EDTA               | SH30236.01     | Hyclone           |  |  |
| Tween 20                   | 0777-1L        | Amresco           |  |  |
| β-mercaptoethanol          | M-3148         | Sigma Aldrich     |  |  |

## 3 Methods

# 3.1 Cell Culture Techniques

#### 3.1.1 Growth Conditions

Every cell line was grown in their appropriate growth medium which is listed in the materials section Table 2.1. Cells were passaged when their confluence was over 70%. Some of the cells were passaged 1:2 while some fast growing cell lines were passaged 1:5. When cells reached confluency the growth medium was removed and the cells were washed with 1xPBS. 1 ml pre-warmed Trypsin/EDTA was spread into 75 cm<sup>2</sup> flasks and incubated at 37°C for 1-2 minutes. When cells detached from the flask surface, trypsin was inactivated with FBS containing fresh culture medium. Cells were dispersed by pipetting up and down a few times. Cells were transferred to new culture flasks and incubated in a 5% air jacketed CO<sub>2</sub> incubator at 37°C.

#### 3.1.2 Cryopreservation of Cells

Cells were incubated 24 h after passaging and 75 cm<sup>2</sup> flask full of cells was frozen into one tube. Their growth medium was removed and washed with 1x PBS. 1 ml Trypsin/EDTA was spread into 75 cm<sup>2</sup> flasks and incubated at 37°C for 1-2 minutes. When cells appeared to have lost their adherence, trypsin was inactivated by adding fresh medium which contains FBS. Cells were transferred into 15 ml tubes and centrifuged at 1500 rpm for 5 minutes. Cryopreservative medium was freshly prepared by mixing 90% FBS and 10% DMSO. After centrifugation, medium was removed and cell pellets were suspended within 1 ml freezing medium. Each cell pellet was stored in separate cryotubes at -20°C for 1 hour and -80°C or in liquid nitrogen for long term storage. Each vial contains approximately 3-4 millions of cells.

#### 3.1.3 Reculturing Frozen Cells

Frozen cells need to be thawed rapidly therefore they were melted down in a water bath at 37°C. Melted cells were mixed with 5 ml pre-warmed growth medium and centrifuged at 1500 rpm for 5 minutes. After centrifugation, DMSO containing freezing medium was removed and cell pellets were suspended within 5 ml fresh growth medium and transferred into 25 cm<sup>2</sup> flask. Cells were incubated at 37°C with 5% CO<sub>2</sub> air. Next day, the growth medium was removed and the cells were washed with 1x PBS. If the cells were confluent enough, the cells were cultured into 75 cm<sup>2</sup> flask as described above. Cells were incubated at 37°C with 5% CO<sub>2</sub> air. The cells were passaged at least once before using for further manipulations.

#### 3.1.4 Storing Cell Pellets for Protein Isolation

The cells pellets were collected for protein extraction to use for Western blot experiments. The drug treated and un-treated cells were cultured in 6 well plates. Since apoptotic cells detach from the plate surface and remain in the growth media, growth medium in each well was collected into separate 15 ml tubes. The wells were washed with 1x PBS and PBS was added into same 15 ml tubes detached cells containing growth medium. 0.3 ml Trypsin/EDTA was spread into each well of 6 well plate to detach the adherent cells and incubated at 37°C for 1-2 minutes. When cells appeared to have lost their adherence, trypsin was inactivated by adding fresh medium which contains FBS. Cells were transferred into appropriate tubes containing the cells collected from the previous steps and centrifuged at 1500 rpm for 5 minutes at +4°C. The supernatant was removed and the cell pellets were resuspended with ice-cold 1x PBS. Tubes were centrifuged at 1500 rpm for 5 minutes at +4°C. PBS was removed and tubes were soaked in liquid nitrogen immediately to freeze them. Pellets were stored at -80°C for further experiments.

#### 3.1.5 Cell Counting with Haemocytometer

Haemocytometer was used to determine the number of cells in the cell cultures. Certain number of cells was required for  $IC_{50}$  calculations, xCELLigence and other propolis treatment experiments. The cultured cells were trypsinized and resuspended in culture mediums as described above. Haemocytometer was cleaned with 70% ethanol and a coverslip was gently put onto the chamber area. The cell suspension was mixed gently to ensure equal distribution of the cells in the tube and then 10 ul of cell suspension was taken and placed into the edge of the chambers. Two chambers were used for counting. The cells in 16 corner squares were counted under the light microscope for both chambers of Haemocytometer. Average of those numbers was multiplied with 10<sup>4</sup>. This gives the approximate cell number within 1 ml of cellular solution. The certain amount of cells for each cell line was used for various experiments.

# 3.2 Sulforhodamine B (SRB) Assay

Different cell lines were plated (Table 3.1) into the 96 well plates and treated with Propolis-24 hours later. At a given amount of time later, cells need to be fixed to stop further cell growth. After fixation cells were stained with SRB and the color intensity was measured with ELISA reader. Resulting optical density (OD) is correlated with the amount of cells.

|            | Propolis-1 | Propolis-2 |
|------------|------------|------------|
| BT-20      | 12,000     | 12,000     |
| BT-474     | 20,000     | 10,000     |
| CAMA-1     | 4,000      | 4,000      |
| HCC-1937   | 10,000     | 8,000      |
| hTERT-HME1 | 6,000      | 6,000      |
| MCF10A     | 4,000      | 5,000      |
| MCF12A     | 5,000      | 6,000      |
| MCF7       | 3,000      | 3,000      |
| MDA-MB 231 | 4,000      | 7,000      |
| MDA-MB-157 | 10,000     | 10,000     |
| MDA-MB-361 | 20,000     | 20,000     |
| MDA-MB-453 | 4,000      | 8,000      |
| MDA-MB-468 | 4,000      | 4,000      |
| T47D       | 5,000      | 4,000      |
| ZR-75-1    | 5,000      | 6,000      |

Table 3.1 Starting cell number for IC<sub>50</sub> calculations

# 3.2.1 Trichloroacetic acid (TCA) Fixation

For propolis and DMSO control treated cells, fixation was done as following method for each well. These cells were plated and after 24 h, treated with either propolis or DMSO. Cells need to be fixed after 72 h incubation of treatment. This part was done by using multi-channel pipetting for 96 well plate.

- Remove growth medium with pipet
- Add 100-200 ul PBS at room temperature and shake gently (Add 500 ul for 24 well plates)
- Remove PBS with pipet
- Add 50 ul ice-cold 10% TCA solution (Add 200 ul for 24 well plates)
- Incubate at +4°C for 1 hour
- Wash with excess ddH<sub>2</sub>O for 5 times
- Leave at room temperature for air dry

## 3.2.2 Sulforhodamine B (SRB) Staining

TCA fixed and air-dried plates were stained with SRB dye solution for further measurements as in the following method:

- 0.4% SRB prepared with 1% acetic acid solution
- Add 50 ul SRB solution to each well and make sure that solution covers all the bottom surface of each well (Add 200 ul for 24 well plates)
- Incubate the dye at room temperature for 10 minutes in dark.
- Wash with excess 1% acetic acid solution 5 times
- Leave at room temperature for air dry
- Add ice-cold 100 ul 10mM Tris-base solution (Add 500 ul for 24 well plates)
- Solubilize the dye in the Tris-base solution on the shaker for 5 minutes
- Read the results with ELISA reader at 515 nm

### 3.3 IC<sub>50</sub> Calculations

For the  $IC_{50}$  calculations SRB assay results were used. Cells were treated with propolis and DMSO control with serial diluted concentrations of propolis for at least 5 different concentrations. Samples were collected and calculated at least in triplicates. OD results were then converted to the percent cell death values by using following formula. At a given concentration:

#### percent cell death = (1 – average OD propolis/average OD DMSO)\*100

Percent cell death values of each concentration were calculated and drawn on an X-Y Scatter graph on Excel sheet. For this graph logarithmic trend line was added and 50% inhibition intersection was calculated with given formula on Excel:

#### IC<sub>50</sub> value =EXP((50 – y-intersection point of trend line)/ slope of trend line)

This formula gives  $IC_{50}$  value of propolis at a given time point for particular cell line. Also coefficient of determination was checked to see the significance of calculated  $IC_{50}$  value. That was calculated by Excel by  $R^2$  value of the trend line. For this study  $IC_{50}$  values were calculated only if the  $R^2$  values are in between 0.75 -1.00.

#### 3.4 Statistical Analyses

#### Standard Error of the Mean (SEM)

To determine the standard deviation between triplicate or quadruplicate samples, SEM analysis was performed. STDEVA function was used for the calculation of standard deviation and the result was divided by square root of sample number. The result shows the standard error of the mean (SEM) for selected samples.

SEM = STDEVA (Sample1, sample2,...) / (v sample number)

#### <u>Student's t-test</u>

To calculate the significance of two groups such as luminal-basal, ER positivenegative, *etc*. T-TEST function was used with Microsoft Excel. Function was used to compare the significance of two subgroups with two-tailed distribution and twosample unequal variance. P<0.05 were analyzed as significant result.

# 3.5 Live Cell Proliferation Assay (xCELLigence)

The xCELLigence is a system that monitors dynamic cellular events in real time and gives quantitative information about biological status of the cells including cell number and viability. This system enabled to provide good sensitivity and reproducibility in monitoring an entire cell population in a culture well. The technology behind this system comes from the design of the platform. E-plate 96 is similar to 96 well plates but it contains electrode sensors integrated into the each well so that each well can be monitored separately. The electrode impedance (Z) increases as the number of cells increase on it (Figure 3-1).



Figure 3-1 Schematic Drawing of the Working Principle of xCELLigence (ACEA Bioscience Inc.)

Before inoculating the cells to the E-plate 96, 50 ul of growth medium was put into E-plate 96 wells for each cell line to obtain background readings (takes only 1 minute). This step also allows us to determine if there are any inconvenient wells exist in that particular plate so that a problematic well can be omitted from the experiment design and replaced with another well. The certain number of cells were from cell suspensions were added on top of growth mediums with 100 ul/well volume where the total volume will be 150 ul/well in total. The xCELLigence system (RTCA SP Station) where the cells were replaced was kept at 37°C with 5% CO<sub>2</sub> air incubator during the experiment. Depending of the cell growth (between 24 to 72 hours), cells were treated with either DMSO or Propolis-2 with pre-determined concentrations. The treatment time point determined as the cells pass 0.75 Cell Index and before they reach to 1.25 Cell Index so that cells can be treated when they are in the log phase. At the beginning of the experiment, Cell Index values were recorded for every 30 minutes but after the drug treatment the Cell Index values were recorded for every 10 minutes to observe the fast drug response. After the observation of fast drug response the counter changed into record Cell Index for every 30 minutes. Long-term drug response was recorded at least 72 hours after the drug treatment.

#### 3.6 Nuclear Staining with Hoechst 33258

Cells (80,000 cells/well) were plated in cover slips in 6 well plates and after 24 h cells were treated with 0.1 % DMSO control or 100 ug/ml Propolis-2. Cells were incubated at 37°C with 5% CO<sub>2</sub> air. After 48 h incubation, growth medium was removed and cells were washed with 1x PBS. After removal of PBS, cells were fixed with 1 ml ice-cold 100% methanol and kept for 10 minutes at +4°C. Cells were washed with ice-cold 1x PBS. 1 ug/ml Hoechst 33258 solution was prepared with ice-cold 1x PBS. After removal of PBS, cells were stained with 400 ul Hoechst solution and incubated at room temperature for 5 minutes in the dark. Then the cells were destained with ddH<sub>2</sub>O for 10 minutes at room temperature in the dark. Water was removed and cover slips were mounted on glass slides with glycerol. Cover slips were fixed onto the slides by wiping transparent nail polish to the edges. The stained cells' nuclear morphology was examined under fluorescent microscope.

## 3.7 Western Blot

#### 3.7.1 Cell Lysis

Cell pellets were taken from -80°C freezer and thawed on ice. Each pellet was resuspended with 50 ul (depending on to cell pellet size) cell lysis buffer, vortexed 3

times and left on ice for 30 minutes with occasional vortexing. Samples were centrifuged at 13000 rpm at +4°C for 15 minutes. The supernatant was taken into the fresh tubes. Protein samples were always stored in -80°C and kept on ice during the experiments.

#### 3.7.2 Bradford Assay for Protein Quantitation and Sample Preparation

Bradford assay was used to determine the amount of protein in each cell lysate. BSA Standard Curve was prepared before using Bradford working solution. BSA samples were prepared in Cuvettes as in Table 3.2. Samples were measured with spectrophotometer at 515 nm wavelength and absorbance results were used to draw a BSA Standard Curve (Figure 3-2). Trendline of this curve was used for protein quantitation of samples.

| Vial #        | Blank | 1    | 2    | 3    | 4    | 5    | 6    |
|---------------|-------|------|------|------|------|------|------|
| BSA (ug/ml)   | -     | 1    | 2    | 4    | 8    | 16   | 32   |
| ddH2O (ul)    | 100   | 99   | 98   | 96   | 92   | 84   | 68   |
| Bradford (ul) | 900   | 900  | 900  | 900  | 900  | 900  | 900  |
| TOTAL (ul)    | 1000  | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 |



Figure 3-2 BSA Standard Curve

After generating the BSA Standard Curve, protein samples were prepared as in Table 3.3 to measure with spectrophotometer at 515 nm wave length. The measurements were taken and the results were calculated with the trendline equation of BSA Standard Curve (y=0.2021x-0.2554). Since 2 ul of samples were loaded to the cuvettes, the results were divided by 2. Absorbance of samples and their protein concentrations were calculated and given in Table 3.4.

Table 3.3 Sample Preparation for Protein Quantitation with Spectrophotometer

| Vial #                 | Blank | Samples |  |
|------------------------|-------|---------|--|
| Cell Lysis Buffer (ul) | 2     | -       |  |
| Protein Sample (ul)    | -     | 2       |  |
| ddH2O (ul)             | 98    | 98      |  |
| Bradford (ul)          | 900   | 900     |  |
| TOTAL (ul)             | 1000  | 1000    |  |

| Sam        | ple Name               | Absorbance | Protein<br>Conc.<br>(ug/ul) | for 50<br>ug (ul) | ddH2O<br>(ul) | 5X<br>Loading<br>dye (ul) |
|------------|------------------------|------------|-----------------------------|-------------------|---------------|---------------------------|
|            | DMSO(%0.1)             | 0,7606     | 22,99                       | 2,18              | 9,82          | 3                         |
| MCF10A     | Propolis(100ug/ml)     | 0,4599     | 16,18                       | 3,09              | 8,91          | 3                         |
|            | DMSO(%0.1)             | 0,5867     | 19,05                       | 2,62              | 9,38          | 3                         |
| MDA-MB-231 | Propolis(100ug/ml)     | 0,4558     | 16,09                       | 3,11              | 8,89          | 3                         |
| T47D       | DMSO(%0.1)             | 0,4038     | 14,91                       | 3,35              | 8,65          | 3                         |
| T47D       | Propolis(100ug/ml)     | 0,2771     | 12,05                       | 4,15              | 7,85          | 3                         |
| CAN4A 1    | DMSO(%0.1)             | 0,4285     | 15,47                       | 3,23              | 8,77          | 3                         |
| CAMA-1     | Propolis(100ug/ml)     | 0,1991     | 10,28                       | 4,86              | 7,14          | 3                         |
| BT 20      | DMSO(%0.1)             | 0,8366     | 24,71                       | 2,02              | 9,98          | 3                         |
| B1-20      | Propolis(100ug/ml)     | 0,353      | 13,76                       | 3,63              | 8,37          | 3                         |
| BT 474     | DMSO(%0.1)             | 0,3074     | 12,73                       | 3,93              | 8,07          | 3                         |
| D1-474     | Propolis(100ug/ml)     | 0,0323     | 6,51                        | 7,68              | 4,32          | 3                         |
|            | DMSO(%0.1)             | 0,5058     | 17,22                       | 2,90              | 9,10          | 3                         |
| MDA-MB-231 | IC50(74 ug/ml)         | 0,0082     | 5,96                        | 8,38              | 3,62          | 3                         |
|            | Propolis(100 ug/ml)    | 0,2985     | 12,53                       | 3,99              | 8,01          | 3                         |
|            | IC100(148 ug/ml)       | -0,0519    | 4,60                        | 10,86             | 1,14          | 3                         |
|            | Adriamycin 500         |            |                             |                   |               |                           |
| MDA-MB-231 | ng/ml                  | 0,2178     | 10,71                       | 4,67              | 7,33          | 3                         |
| (Positive  | Adriamycin 750         |            |                             |                   |               |                           |
| Control)   | ng/ml                  | 0,3035     | 12,64                       | 3,95              | 8,05          | 3                         |
|            | Adriamycin 1000        |            |                             |                   |               |                           |
|            | ng/ml                  | 0,1351     | 8,83                        | 5,66              | 6,34          | 3                         |
| MCF10A     |                        | 0,1726     | 9,68                        | 5,16              | 6,84          | 3                         |
| T47D       |                        | 0,0819     | 7,63                        | 6,55              | 5,45          | 3                         |
| CAMA-1     | Untroated Cell Lines   | 0,038      | 6,64                        | 7,53              | 4,47          | 3                         |
| BT-20      |                        | -0,0734    | 4,12                        | 12,14             | -0,14         | 3                         |
| BT-474     |                        | 0,0431     | 6,75                        | 7,40              | 4,60          | 3                         |
| MDA-MB-231 |                        | 0,2143     | 10,63                       | 4,71              | 7,29          | 3                         |
| BSA c      | urve is y=0.2021x-0.25 | 54         | TOTAL                       |                   | 15 ul         |                           |

Table 3.4 Absorbance and Protein Concentrations of Samples for Western BlotAnalysis.

Western blot analysis was performed with these protein extracts. 50 mg of protein was mixed with 1x loading dye and added up to final volume of 15 ul with  $ddH_2O$ 

(Table 3.4). Samples were incubated on boiling water for 5 minutes. After a quick spin down, samples were ready to load into SDS gel. The samples were always kept on ice during the experiments.

#### 3.7.3 Preparation of SDS gel and Its Transfer to Nitrocellulose Membrane

The material used for gel preparation was pre-washed with soap, rinsed with tap water and then with distilled water to get rid of the debris on the material. The apparatus was set and 10% resolving gel was prepared and poured in between the glasses and then filled with isopropanol. After polymerization of resolving gel, isopropanol was removed and the empty area was washed with distilled water to remove remaining alcohol. 5% stacking gel was prepared, poured on top of resolving gel and combs were placed in between glasses. After polymerization of gels, glasses with gels were placed in the tank that was filled with 1x running buffer. Combs were carefully removed and the wells were cleared with a syringe. The first well was loaded with 5 ul of PageRuler Plus Prestained Protein Ladder (Thermo Scientific) and samples were loaded into the wells. Power supply was adjusted to 90 Volts until proteins passed through the stacking gel and then increased to 120 Volts. The gels were transferred to nitrocellulose membrane with wet transfer method.

Wet transfer buffer was prepared with 15% methanol concentration. Whatman papers, sponges and membranes were soaked in wet transfer buffer for a few minutes. From negative plate towards positive plate; sponge, two Whatman papers, gel, nitrocellulose membrane, two Whatman papers, and sponge were aligned one top of each other. Before putting the last sponge, air bubbles were destroyed by rolling a tube on the layers. Transfer cassettes were placed in tank and filled with wet transfer buffer. Power supply was adjusted to 80 Volts and the gels were run for approximately 2 hours.

34

#### 3.7.4 Blocking & Antibody Incubations

Blocking solution was prepared with 5% BSA in 0.2 % TBS-T. Each membrane was placed in an appropriate container and the container was filled with blocking solution. Membranes were incubated for 1 hour on shaker (very slow) at room temperature. At the end, membranes were prepared for antibody incubation: Each membrane was cut from the 55 kDa and 35 kDa marker band for different primary antibodies. (Figure 3-3: The protein loading marker and the gel configuration where the dashed lines show the cutting sites of the gels. )



Figure 3-3: The protein loading marker and the gel configuration where the dashed lines show the cutting sites of the gels.

After blocking, membranes were placed in an appropriate container and containers were filled with its primary antibody (Table 2.11 and Figure 3-3). They were incubated with constant shaking (very slow) at +4°C over-night. After incubation, membranes were washed with 0.2 % TBS-T for 10 minutes on shaker (fast) at room-temperature, 3 times. Then, secondary antibody (Table 2.11 and Figure 3-3) incubation was done, on shaker (very slow) at room temperature for 2 hours. After

incubation, membranes were washed three times with 0.2 % TBS-T for 10 minutes on shaker (fast) at room-temperature.

Clarity<sup>™</sup> Western ECL Substrate (Bio-Rad) material was used for detecting the signal of secondary antibodies. The membranes were placed on a 10x10 cm parafilm on the bench. Each membrane was coved with 250-350 ul (according to area of the membrane) 1:1 mixed ECL solution drop by drop. Membranes were incubated for 5 minutes at room-temperature and plastic covers were put on top of every membrane so that solution was not exposed to light. After incubation membranes were placed on glass plate. The x-ray film was used to capture image of the membranes in the dark room. Membranes were exposed to film between 1-5 seconds depending of the intensity of the bands.

#### 3.7.5 ImageJ Analysis

Resulting bands on film were analyzed with ImageJ software (National Institutes of Health (NIH)) which is a public domain Java image processing program. The resulted band intensities need to be quantified to be able to compare the western blot results. Films were scanned and saved as jpeg photo. These photos were used for ImageJ analysis. The bands were selected with a rectangular shape option of the program and all the lanes were repeated with the same rectangular selection. At the end rectangular area was plotted by the program and the resulting band intensity was quantified. The comparable data was calculated by dividing PARP-1 protein intensity to its  $\beta$ -actin loading control. The resulting values were displayed in bar graphs.

### **3.8 FACS**

#### 3.8.1 Cell Fixation

Propolis-treated and un-treated cells were used for staining with Propidium iodide (PI) to analyze the cell cycle stages with FACS method. Six well plates were used for culturing the cells and for treatment. Since apoptotic cells detach from the plate surface and remain in the growth media, each well was transferred into separate 15 ml tubes and labeled. Then, each well was washed with 1x PBS and PBS was collected into same tubes containing the detached cells. 0.3 ml Trypsin/EDTA was put into each well of 6 well plate and incubated at 37°C for 1-2 minutes to detach the adherent cells. When the cells appeared to have lost their adherence, trypsin was inactivated by adding fresh medium which contains FBS. Cells were transferred into appropriate tubes containing the cells collected in previous steps and centrifuged at 1500 rpm for 5 minutes at +4°C. Supernatant was removed and cell pellets were resuspended by gentle pipetting with 1 ml 1x PBS. Cell suspensions were vortexed vigorously and 2.5 ml of ice-cold 100% absolute ethanol was added drop wise to prevent cell clumps during fixation. Cell suspensions were incubated for 30 minutes on ice with occasional vortexing. Fixed cell suspensions were stored at +4°C overnight before the PI staining procedure.

#### 3.8.2 Cell Staining with Propidium iodide (PI)

Fixed cell suspensions were centrifuged at 1500 rpm for 5 minutes at +4°C. The supernatant was aspirated. Cells were stained with 500 ul PI Staining Solution and suspensions were pipetted gently to break cell clumps. Since PI is light-sensitive,

tubes need to be kept in dark after this step. Cells were incubated at 37°C for 40 minutes with occasional vortexing. After incubation, 3 ml 1x PBS was added onto each tube and tubes were centrifuged at 1500 rpm for 5 minutes at +4°C. The supernatant was removed and cell pellets were resuspended in 200-500 ul 1x PBS (according to size of the pellet). Cell suspensions were transferred into special tubes to analyze them in Flow Cytometer.

## 3.9 Scratch Assay

The in vitro scratch assay (wound healing assay) is an easy, low-cost and welldeveloped method to measure cell invasion *in vitro*. A straight line of cells are scraped from the plate and the invasion of the cells through this scraped line is observed via light microscope.

FBS concentration in the growth medium was dropped from 10 % to 0.1 % to prevent cells growing through the scratch. By this way, wound healing assay can display the invasion properties of cells but not the proliferation. There were 6 conditions for this set up to observe the invasion rate:

- 10 % FBS containing growth medium treated cells (untreated, mock cells) to observe the effect of proliferation and compare it with 0.1 % FBS medium treated cells,
- 0.1 % FBS containing growth medium treated cells to observe the effect of decreased FBS and compare it with DMSO control cells,
- 0.1 % FBS + 0.1 % DMSO containing growth medium treated cells as a control for propolis treated cells,

0.1 % FBS + 50, 75 (IC50 value propolis for MDA-MB-231 cells) and 100 ug/ml Propolis-2 containing growth medium treated cells to see the effect of gradually increasing concentrations of propolis on cell invasion ability.

Cells (500,000 cells/well) were seeded in 6 well plate to obtain high confluency and 24 hours later, scratches were made with a 200 ul micropipette tip. Cells were washed with 1X PBS twice to get rid of cell debris in the medium and then cells were treated with the growth mediums listed above. Right after the scratches were performed, time zero photos were taken to observe the scratches borders clearly. Then, the photos were taken at 6, 12, 24, 36 and 48 h intervals under the light microscope with 10X magnification.

# **4 RESULTS**

# 4.1 Analysis of Propolis' Effects in Cancer Cells

Two different propolis extracts were used in this study to analyze its cytotoxic effects on cancer cells by using SRB staining and ELISA reading. First propolis extract received from Karadeniz Technical University (Propolis-1) was prepared in DMSO and the stock at a concentration of 25 mg/ml. The initial studies were performed with increasing concentrations (starting from 100 ng/ml up to 2000 ng/ml) of propolis by using FOCUS cell line at two different time points (48 and 72 h). The ELISA reading as a result of SRB staining was given at Table 4.1 and results of these experiments were analyzed in Figure 4-1.

Table 4.1: The ELISA reading results that show the cytotoxic effects of Propolis-1 and DMSO on FOCUS cells (A, 48h; B, 72h incubations).

| Α |  |
|---|--|
|   |  |

| FOCUS 48h<br>3000<br>cells/well | Concentration<br>(ng/ml) | Set 1  | Set 2  | Set 3  | Average | SEM   |
|---------------------------------|--------------------------|--------|--------|--------|---------|-------|
|                                 | 100                      | 0.011  | 0.026  | 0.012  | 0.016   | 0.005 |
|                                 | 250                      | 0.005  | 0.023  | 0.046  | 0.025   | 0.012 |
| DMSO                            | 500                      | 0.004  | 0.01   | 0.012  | 0.009   | 0.002 |
| DIVISO                          | 750                      | 0.033  | 0.03   | 0.029  | 0.031   | 0.001 |
|                                 | 1000                     | 0.005  | 0.007  | 0.013  | 0.008   | 0.002 |
|                                 | 2000                     | -0.003 | 0      | -0.003 | -0.002  | 0.001 |
|                                 | 100                      | 0.046  | 0.051  | 0.027  | 0.041   | 0.007 |
|                                 | 250                      | 0.018  | 0.027  | 0.011  | 0.019   | 0.005 |
| Duou alla                       | 500                      | 0.013  | 0.019  | 0.015  | 0.016   | 0.002 |
| Propolis                        | 750                      | 0.019  | 0.015  | 0.003  | 0.012   | 0.005 |
|                                 | 1000                     | 0.011  | -0.007 | 0.001  | 0.002   | 0.005 |
|                                 | 2000                     | 0.008  | -0.001 | 0.001  | 0.003   | 0.003 |

# B)

| FOCUS 72h<br>3000<br>cells/well | Concentration<br>(ng/ml) | Set 1 | Set 2 | Set 3 | Average | SEM   |
|---------------------------------|--------------------------|-------|-------|-------|---------|-------|
|                                 | 100                      | 0.037 | 0.032 | 0.157 | 0.075   | 0.041 |
|                                 | 250                      | 0.136 | 0.178 | 0.091 | 0.135   | 0.025 |
| DMSO                            | 500                      | 0.012 | 0.029 | 0.026 | 0.022   | 0.005 |
| DIVISO                          | 750                      | 0.048 | 0.052 | 0.033 | 0.044   | 0.006 |
|                                 | 1000                     | 0.024 | 0.057 | 0.036 | 0.039   | 0.01  |
|                                 | 2000                     | 0.017 | 0.015 | 0.023 | 0.018   | 0.002 |
|                                 | 100                      | 0.108 | 0.126 | 0.084 | 0.106   | 0.012 |
|                                 | 250                      | 0.038 | 0.02  | 0.078 | 0.045   | 0.017 |
| Duenelie                        | 500                      | 0.023 | 0.01  | 0.025 | 0.019   | 0.005 |
| Propolis                        | 750                      | 0.018 | 0.008 | 0.09  | 0.039   | 0.026 |
|                                 | 1000                     | 0.029 | 0.019 | 0.021 | 0.023   | 0.003 |
|                                 | 2000                     | 0.031 | 0.001 | 0.037 | 0.023   | 0.011 |





**Figure 4-1: The cell proliferation rate of FOCUS cells after propolis treatment**. The cells were treated with Propolis-1 and DMSO at 48 h (A) and 72 h (B). Standard error of the mean (SEM) for each calculation is given at Table 4.1. (\*, p<0.1; \*\*, p<0.05)

These analyses showed that the Propolis-1 at low concentrations (100 ng/ml up to 2000 ng/ml) did not result with a significant cytotoxic effect. Therefore, the concentration of Propolis-1 was increased to 50 ug/ml. The cell proliferation rate

was measured at different time points (24, 48 and 72 h) by using FOCUS and Huh7 hepatocellular carcinoma cell lines. The ELISA reading as a result of SRB staining was given at Table 4.2 and the results of these experiments were analyzed in Figure 4-2.

Table 4.2: The ELISA reading results that show the cytotoxic effects of Propolis-1 and DMSO on FOCUS (A) and Huh7 (B) cells at different time points (24 h, 48 h, and 72 h). The starting cell number was 20,000 cells/well into 24 well plates.

A)

| FOCUS      | Time | Set 1 | Set 2 | Set 3 | Set 4 | Set 5 | Set 6 | Average | SEM   |
|------------|------|-------|-------|-------|-------|-------|-------|---------|-------|
|            | 24h  | 0.094 | 0.097 | 0.085 | 0.105 | 0.098 | 0.108 | 0.098   | 0.003 |
| Mock       | 48h  | 0.216 | 0.221 | 0.212 | 0.24  | 0.217 | 0.214 | 0.22    | 0.004 |
|            | 72h  | 0.338 | 0.43  | 0.383 | 0.392 | 0.382 | 0.31  | 0.373   | 0.017 |
|            | 24h  | 0.084 | 0.088 | 0.094 | 0.096 | 0.091 | 0.09  | 0.091   | 0.002 |
| DMSO       | 48h  | 0.214 | 0.243 | 0.229 | 0.224 | 0.266 | 0.248 | 0.237   | 0.008 |
|            | 72h  | 0.125 | 0.116 | 0.147 | 0.102 | 0.104 | 0.093 | 0.115   | 0.008 |
| Duonalia 4 | 24h  | 0.069 | 0.067 | 0.068 | 0.078 | 0.062 | 0.064 | 0.068   | 0.002 |
| Propolis-1 | 48h  | 0.109 | 0.096 | 0.078 | 0.091 | 0.097 | 0.082 | 0.092   | 0.005 |
| 50 ug/mi   | 72h  | 0.038 | 0.03  | 0.026 | 0.016 | 0.018 | 0.016 | 0.024   | 0.004 |

B)

| Huh7       | Time | Set 1 | Set 2 | Set 3 | Set 4 | Set 5 | Set 6 | Average | SEM   |
|------------|------|-------|-------|-------|-------|-------|-------|---------|-------|
|            | 24h  | 0.064 | 0.062 | 0.069 | 0.073 | 0.07  | 0.064 | 0.067   | 0.002 |
| Mock       | 48h  | 0.136 | 0.138 | 0.134 | 0.139 | 0.154 | 0.148 | 0.142   | 0.003 |
|            | 72h  | 0.289 | 0.295 | 0.3   | 0.306 | 0.309 | 0.264 | 0.294   | 0.007 |
|            | 24h  | 0.065 | 0.057 | 0.057 | 0.053 | 0.059 | 0.056 | 0.058   | 0.002 |
| DMSO       | 48h  | 0.118 | 0.13  | 0.128 | 0.143 | 0.136 | 0.143 | 0.133   | 0.004 |
|            | 72h  | 0.324 | 0.3   | 0.266 | 0.293 | 0.32  | 0.307 | 0.302   | 0.009 |
| Duanalia 4 | 24h  | 0.043 | 0.043 | 0.038 | 0.042 | 0.039 | 0.043 | 0.041   | 0.001 |
| Propolis-1 | 48h  | 0.067 | 0.075 | 0.063 | 0.064 | 0.076 | 0.078 | 0.071   | 0.003 |
| 50 ug/mi   | 72h  | 0.083 | 0.063 | 0.087 | 0.083 | 0.084 | 0.084 | 0.081   | 0.004 |





As a result of the above analysis, the most significant time point on HCC cell lines showing significant cytotoxic effect was observed at 72 h with 50 ug/ml of Propolis-1. Then the following experiments were designed to analyze the time points and different concentration of Propolis-1 (25, 50 and 75 ug/ml) on five different cell lines (FOCUS and Huh7 are hepatocellular carcinoma cells; SK-LC is a lung cancer cell line; MDA-MB-231 is breast carcinoma cell line) and non-tumorigenic breast cell line (MCF12A). For each cell line 20000 cells/well were plated on 24 well plates and experiments were designed as triplicates. The cells were treated with indicated concentrations of Propolis-1 and DMSO after 24 h incubation. The cells were fixed and cell numbers were counted with SRB staining method at 72 h time point after 24 h treatment. The ELISA reading as a result of SRB staining was given at Table 4.3 and the results of these experiments were analyzed in Figure 4-3.

| Table 4.3: The ELISA reading results of Propolis-1 and DMSO on FOCUS, Huh7, SK | - |
|--------------------------------------------------------------------------------|---|
| LC, MDA-MB-231 and MCF12A cell lines.                                          |   |

| FOCUS (20000 cells/well) | Set 1 | Set 2 | Set 3 | Average | SEM   |
|--------------------------|-------|-------|-------|---------|-------|
| 25ug/ml DMSO             | 0.857 | 0.752 | 0.003 | 0.537   | 0.269 |
| 25ug/ml Propolis         | 0.306 | 0.402 | 0.415 | 0.374   | 0.034 |
| 50ug/ml DMSO             | 0.642 | 0.942 | 0.043 | 0.542   | 0.264 |
| 50ug/ml Propolis         | 0.042 | 0.095 | 0.119 | 0.085   | 0.023 |
| 75ug/ml DMSO             | 0.246 | 0.312 | 0.211 | 0.256   | 0.03  |
| 75ug/ml Propolis         | 0.005 | 0.007 | 0.008 | 0.007   | 0.001 |
| Huh7 (20000 cells/well)  | Set 1 | Set 2 | Set 3 | Average | SEM   |
| 25ug/ml DMSO             | 0.431 | 0.616 | 0.019 | 0.355   | 0.176 |
| 25ug/ml Propolis         | 0.072 | 0.141 | 0.128 | 0.114   | 0.021 |
| 50ug/ml DMSO             | 0.331 | 0.535 | 0.177 | 0.348   | 0.104 |
| 50ug/ml Propolis         | 0.025 | 0.043 | 0.07  | 0.046   | 0.013 |
| 75ug/ml DMSO             | 0.279 | 0.387 | 0.13  | 0.265   | 0.075 |
| 75ug/ml Propolis         | 0.004 | 0.013 | 0.011 | 0.009   | 0.003 |
| SK-LC (20000 cells/well) | Set 1 | Set 2 | Set 3 | Average | SEM   |
| 25ug/ml DMSO             | 0.219 | 0.287 | 0.002 | 0.169   | 0.086 |
| 25ug/ml Propolis         | 0.035 | 0.042 | 0.051 | 0.043   | 0.005 |
| 50ug/ml DMSO             | 0.144 | 0.247 | 0.025 | 0.139   | 0.064 |
| 50ug/ml Propolis         | 0.038 | 0.035 | 0.034 | 0.036   | 0.001 |
| 75ug/ml DMSO             | 0.108 | 0.162 | 0.111 | 0.127   | 0.018 |
| 75ug/ml Propolis         | 0.002 | 0.004 | 0.002 | 0.003   | 0.001 |

| MDA-MB-231 (20000<br>cells/well) | Set 1 | Set 2 | Set 3 | Average | SEM   |
|----------------------------------|-------|-------|-------|---------|-------|
| 25ug/ml DMSO                     | 0.122 | 0.101 | 0.093 | 0.105   | 0.009 |
| 25ug/ml Propolis                 | 0.057 | 0.064 | 0.061 | 0.061   | 0.002 |
| 50ug/ml DMSO                     | 0.126 | 0.09  | 0.097 | 0.104   | 0.011 |
| 50ug/ml Propolis                 | 0.049 | 0.043 | 0.043 | 0.045   | 0.002 |
| 75ug/ml DMSO                     | 0.074 | 0.118 | 0.116 | 0.103   | 0.014 |
| 75ug/ml Propolis                 | 0.012 | 0.01  | 0.007 | 0.01    | 0.001 |
| MCF12A (20000 cells/well)        | Set 1 | Set 2 | Set 3 | Average | SEM   |
| 25ug/ml DMSO                     | 0.052 | 0.075 | 0.052 | 0.06    | 0.008 |
| 25ug/ml Propolis                 | 0.043 | 0.038 | 0.044 | 0.042   | 0.002 |
| 50ug/ml DMSO                     | 0.041 | 0.066 | 0.088 | 0.065   | 0.014 |
| 50ug/ml Propolis                 | 0.031 | 0.033 | 0.037 | 0.034   | 0.002 |
| 75ug/ml DMSO                     | 0.041 | 0.057 | 0.013 | 0.037   | 0.013 |
| 75ug/ml Propolis                 | 0.003 | 0.005 | 0.004 | 0.004   | 0.001 |











**Figure 4-3: Cell proliferation of FOCUS (A), Huh7 (B), SK-LC (C), MDA-MB-231 (D) and MCF12A (E) cell lines with increasing concentrations of Propolis-1 and DMSO.** Values are the average of at least three independent data sets. Error bars represent standard error of the mean of triplicates given at Table 4.3. (\*, p<0.1; \*\*, p<0.05)

According to above analysis, higher concentrations of propolis have a greater effect on cell number decrease in each cell line. When the ratio of DMSO over propolis was calculated (Table 4.4), the effect of propolis was revealed more clearly (Figure 4-4). As the concentration of propolis increases, decrease in the cell number became up to 10 fold more than low concentrations of propolis.

Table 4.4: Comparison of control DMSO and propolis treated cells proliferationratio. Each cell lines fold decrease ratio was calculated by dividing control DMSOcell number to propolis value (data was taken from Figure 4-3).

| Fold<br>Decrease | FOCUS | Huh7 | SK-LC | MDA-MB-231 | MCF12A |
|------------------|-------|------|-------|------------|--------|
| 25 ug/ml         | 1,4   | 3,1  | 3,9   | 1,7        | 1,4    |
| 50 ug/ml         | 6,4   | 7,6  | 3,9   | 2,3        | 1,9    |
| 75 ug/ml         | 36,6  | 29,4 | 42,3  | 10,3       | 9,3    |



**Figure 4-4: The relative fold change of each propolis treated cell line at different concentrations of Propolis-1**. Each cell lines fold decrease ratio was calculated by dividing control DMSO value to propolis value (data was taken from **Table 4.3**).

# 4.2 IC<sub>50</sub> Values for Propolis extracts for Breast Carcinoma Cell Lines

IC<sub>50</sub> value determination was started with inoculation of breast carcinoma cells into 96 well plates. The numbers of cells were different for each cell line and indicated in the related sections. 24 hours later, cells were treated with serial dilutions of propolis and control DMSO. Propolis extract dissolved in DMSO, therefore the same volume of DMSO was used in serial dilutions as controls. Cells were fixed with TCA to 72 hours after the treatment. Cells were stained with SRB and the color intensity was measured with ELISA reader. Resulting optical density (OD<sub>515</sub>) is correlated with the amount of cells. Samples were collected and calculated at least in triplicates and standard error of mean (SEM) was calculated according to sample number. IC<sub>50</sub> values were analyzed with at least 5 different concentrations of propolis. All the IC<sub>50</sub> value calculations were analyzed the same way. Two different batches of DMSO extracts of propolis were used in this study; first batch is 25 mg/ml (Propolis-1) and second batch is 100 mg/ml (Propolis-2). Propolis was collected from different regions of Turkey by Fanus Gida Corporation (Trabzon, Turkey) and extractions were prepared in laboratories of Karadeniz Technical University, Medical biochemistry laboratories, Trabzon.

# <u>IC<sub>50</sub> Values of Propolis Extracts for Non-Tumorigenic Cell Lines (MCF10A and MCF12A)</u>

Analysis of IC<sub>50</sub> value of propolis extracts on MCF10A was performed with following conditions:

**<u>Propolis-1</u>**: 100-50-25-12.5-6 ug/ml, 4000 cells were used in each well. MCF10A cell line's  $IC_{50}$  value was calculated as 45 ug/ml (Figure 4-5, A). The experiment was performed in triplicate.

**<u>Propolis-2</u>**: 200-150-100-75-37.5 ug/ml, 5000 cells were used in each well. MCF10A cell line's IC<sub>50</sub> value was calculated as 72 ug/ml (Figure 4-5, B). The experiment was performed in triplicate.

The original data for ELISA reading results are given in Appendix Table 8.1 for Propolis-1 and Appendix Table 8.2 for Propolis-2.





Figure 4-5: Calculation of IC<sub>50</sub> values for propolis extracts in MCF10A cells. Each point shows the percent cell death at different concentrations of Propolis extracts. A, The IC<sub>50</sub> value for Propolis-1 is 45 ug/ml and R<sup>2</sup> value is R<sup>2</sup>=0.7781. B, The IC<sub>50</sub> value for Propolis-2 is 72 ug/ml and R<sup>2</sup> value is R<sup>2</sup>=0.8955. Error bars represent standard error of the mean (SEM).

Analysis of IC<sub>50</sub> value of propolis extracts on MCF12A was performed with following conditions:

<u>**Propolis-1**</u>: 100-80-50-40-25-12.5 ug/ml, 5000 cells were used in each well. MCF12A cell line's IC<sub>50</sub> value was calculated as 35 ug/ml (**Figure 4-6**, A). The experiment was performed in triplicate.

**Propolis-2**: 200-150-100-75-50-37.5 ug/ml, 6000 cells were used in each well. MCF12A cell line's IC<sub>50</sub> value was calculated as 45 ug/ml (Figure 4-6, B). The experiment was performed in quadruplicate.

The original data for ELISA reading results are given in Appendix Table 8.3 for Propolis-1 and Appendix Table 8.4 for Propolis-2.




Figure 4-6: Calculation of IC<sub>50</sub> values for propolis extracts in MCF12A cells. Each point shows the percent cell death at different concentrations of Propolis extracts. **A**, The IC<sub>50</sub> value for Propolis-1 is 35 ug/ml and R<sup>2</sup> value is R<sup>2</sup>=0.8174. **B**, The IC<sub>50</sub> value for Propolis-2 is 45 ug/ml and R<sup>2</sup> value is R<sup>2</sup>=0.8014. Error bars represent standard error of the mean (SEM).

#### IC50 Values of Propolis extracts for MDA-MB-231 Cell line

Analysis of  $IC_{50}$  value of propolis extracts on MDA-MB-231 was performed with following conditions:

**<u>Propolis-1</u>**: 100-75-50-25-12.5-6 ug/ml, 4000 cells were used in each well. MDA-MB-231 cell line's IC<sub>50</sub> value was calculated as 26 ug/ml (**Figure 4-6**, A). The experiment was performed in quadruplicate.

**Propolis-2:** 150-120-75-60-37.5-30 ug/ml, 7000 cells were used in each well. MDA-MB-231 cell line's  $IC_{50}$  value was calculated as 74 ug/ml (Figure 4-6, B). The experiment was performed in quadruplicate.

The original data for ELISA reading results are given in Appendix Table 8.5 for Propolis-1 and Appendix Table 8.6 for Propolis-2.







Each point shows the percent cell death at different concentrations of Propolis extracts. A, The IC<sub>50</sub> value for Propolis-1 is 26 ug/ml and R<sup>2</sup> value is R<sup>2</sup> =0.9072. B, The IC<sub>50</sub> value for Propolis-2 is 74 ug/ml and R<sup>2</sup> value is R<sup>2</sup> =0.8009. Error bars represent standard error of the mean (SEM).

# IC50 Values of Propolis extracts for CAMA-1 Cell line

Analysis of  $IC_{50}$  value of propolis extracts on CAMA-1 was performed with following conditions:

**<u>Propolis-1</u>**: 80-60-50-40-30-25 ug/ml, 4000 cells were used in each well. CAMA-1 cell line's IC<sub>50</sub> value was calculated as 25 ug/ml (Figure 4-8, A). The experiment was performed in quadruplicate.

**<u>Propolis-2</u>**: 100-80-50-40-25-20 ug/ml, 4000 cells were used in each well. CAMA-1 cell line's IC<sub>50</sub> value was calculated as 35 ug/ml (Figure 4-8, B). The experiment was performed in quadruplicate.

The original data for ELISA reading results are given in Appendix Table 8.7 for Propolis-1 and Appendix Table 8.8 for Propolis-2.





**Figure 4-8: Calculation of IC50 values for propolis extracts in CAMA-1 cells.** Each point shows the percent cell death at different concentrations of Propolis extracts. A, The IC50 value for Propolis-1 is 25 ug/ml and R<sup>2</sup> value is R<sup>2</sup>=0. 8977. B, The IC50 value for Propolis-2 is 35 ug/ml and R<sup>2</sup> value is R<sup>2</sup>=0. 9885. Error bars represent standard error of the mean (SEM).

#### IC<sub>50</sub> Values of Propolis extracts for MDA-MB-453 Cell line

Analysis of  $IC_{50}$  value of propolis extracts on MDA-MB-453 was performed with following conditions:

**<u>Propolis-1</u>**: 80-60-40-30-20 ug/ml, 4000 cells were used in each well. MDA-MB-453 cell line's IC<sub>50</sub> value was calculated as 47 ug/ml (Figure 4-9, A). The experiment was performed in triplicate.

**Propolis-2:** 120-100-60-50-30 ug/ml, 8000 cells were used in each well. MDA-MB-453 cell line's  $IC_{50}$  value was calculated as 53 ug/ml (Figure 4-9, B). The experiment was performed in quadruplicate.

The original data for ELISA reading results are given in Appendix Table 8.9 for Propolis-1 and Appendix Table 8.10 for Propolis-2.







# IC<sub>50</sub> Values of Propolis extracts for MDA-MB-468 Cell line

Analysis of  $IC_{50}$  value of propolis extracts on MDA-MB-468 was performed with following conditions:

**<u>Propolis-1</u>**: 80-60-40-30-20-15 ug/ml, 4000 cells were used in each well. MDA-MB-468 cell line's  $IC_{50}$  value was calculated as 30 ug/ml (Figure 4-10, A). The experiment was performed in quadruplicate.

**Propolis-2:** 120-100-60-50-30 -25 ug/ml, 4000 cells were used in each well. MDA-MB-468 cell line's IC<sub>50</sub> value was calculated as 26 ug/ml (Figure 4-10, B). The experiment was performed in quadruplicate.

The original data for ELISA reading results are given in Appendix Table 8.11 for Propolis-1 and Appendix Table 8.12 for Propolis-2.







Each point shows the percent cell death at different concentrations of Propolis extracts. A, The IC50 value for Propolis-1 is 30 ug/ml and R<sup>2</sup> value is R<sup>2</sup>=0. 965. B, The IC50 value for Propolis-2 is 26 ug/ml and R<sup>2</sup> value is R<sup>2</sup>=0. 971. Error bars represent standard error of the mean (SEM).

#### <u>IC50 Values of Propolis extracts for T47D Cell line</u>

Analysis of  $IC_{50}$  value of propolis extracts on T47D was performed with following conditions:

<u>**Propolis-1**</u>: 80-60-50-40-30-25 ug/ml, 5000 cells were used in each well. T47D cell line's  $IC_{50}$  value was calculated as 36 ug/ml (Figure 4-11, A). The experiment was performed in quadruplicate.

<u>**Propolis-2**</u>: 100-80-50-40-25-20 ug/ml, 4000 cells were used in each well. T47D cell line's IC<sub>50</sub> value was calculated as 43 ug/ml (Figure 4-11, B). The experiment was performed in quadruplicate.

The original data for ELISA reading results are given in Appendix Table 8.13 for Propolis-1 and Appendix Table 8.14 for Propolis-2.



**Figure 4-11: Calculation of IC50 values for propolis extracts in T47D cells.** Each point shows the percent cell death at different concentrations of Propolis extracts. A, The IC50 value for Propolis-1 is 36 ug/ml and R<sup>2</sup> value is R<sup>2</sup>=0. 979. B, The IC50 value for Propolis-2 is 43 ug/ml and R<sup>2</sup> value is R<sup>2</sup>=0. 9602. Error bars represent standard error of the mean (SEM).

# IC50 Values of Propolis extracts for MCF7 Cell line

Analysis of  $IC_{50}$  value of propolis extracts on MCF7 was performed with following conditions:

<u>**Propolis-1**</u>: 100-80-50-40-25-20 ug/ml, 3000 cells were used in each well. MCF7 cell line's  $IC_{50}$  value was calculated as 41 ug/ml (Figure 4-12, A). The experiment was performed in quadruplicate.

**<u>Propolis-2</u>**: 120-100-60-50-30 -25 ug/ml, 3000 cells were used in each well. MCF7 cell line's IC<sub>50</sub> value was calculated as 61 ug/ml (Figure 4-12, B). The experiment was performed in quadruplicate.

The original data for ELISA reading results are given in Appendix Table 8.15 for Propolis-1 and Appendix Table 8.16 for Propolis-2.







### IC50 Values of Propolis extracts for HCC-1937 Cell line

Analysis of  $IC_{50}$  value of propolis extracts on HCC-1937 was performed with following conditions:

**Propolis-1**: 150-120-75-60-37.5-30 ug/ml, 10000 cells were used in each well. HCC-1937 cell line's IC<sub>50</sub> value was calculated as 123 ug/ml (Figure 4-13, A). The experiment was performed in quadruplicate.

**<u>Propolis-2</u>**: 150-120-75-60-30 ug/ml, 8000 cells were used in each well. HCC-1937 cell line's IC<sub>50</sub> value was calculated as 119 ug/ml (Figure 4-13, B). The experiment was performed in quadruplicate.

The original data for ELISA reading results are given in Appendix Table 8.17 for Propolis-1 and Appendix Table 8.18 for Propolis-2.





**Figure 4-13: Calculation of IC50 values for propolis extracts in HCC-1937 cells.** Each point shows the percent cell death at different concentrations of Propolis extracts. A, The IC50 value for Propolis-1 is 123 ug/ml and R<sup>2</sup> value is R<sup>2</sup>=0. 949. B, The IC50 value for Propolis-2 is 119 ug/ml and R<sup>2</sup> value is R<sup>2</sup>=0. 8847. Error bars represent standard error of the mean (SEM).

# IC<sub>50</sub> Values of Propolis extracts for MDA-MB-157 Cell line

Analysis of  $IC_{50}$  value of propolis extracts on MDA-MB-157 was performed with following conditions:

**Propolis-1:** 120-100-60-50-30 -25 ug/ml, 10000 cells were used in each well. MDA-MB-157cell line's  $IC_{50}$  value was calculated as 88 ug/ml (Figure 4-14, A). The experiment was performed in quadruplicate.

**<u>Propolis-2</u>**: 150-120-75-60-37.5-30 ug/ml, 10000 cells were used in each well. MDA-MB-157cell line's IC<sub>50</sub> value was calculated as 61 ug/ml (Figure 4-14, B). The experiment was performed in triplicate.

The original data for ELISA reading results are given in Appendix Table 8.19 for Propolis-1 and Appendix Table 8.20 for Propolis-2.





**Figure 4-14: Calculation of IC50 values for propolis extracts in MDA-MB-157cells.** Each point shows the percent cell death at different concentrations of Propolis extracts. A, The IC50 value for Propolis-1 is 88 ug/ml and R<sup>2</sup> value is R<sup>2</sup>=0. 9018. B, The IC50 value for Propolis-2 is 61 ug/ml and R<sup>2</sup> value is R<sup>2</sup>=0. 9429. Error bars represent standard error of the mean (SEM).

#### IC<sub>50</sub> Values of Propolis extracts for BT-20 Cell line

Analysis of  $IC_{50}$  value of propolis extracts on BT-20 was performed with following conditions:

**<u>Propolis-1</u>**: 150-120-75-60-37.5-30 ug/ml, 12000 cells were used in each well. BT-20 cell line's IC<sub>50</sub> value was calculated as 73 ug/ml (Figure 4-15, A). The experiment was performed in quadruplicate.

**<u>Propolis-2</u>**: 120-100-60-50-30 ug/ml, 12000 cells were used in each well. BT-20 cell line's  $IC_{50}$  value was calculated as 117 ug/ml (Figure 4-15, B). The experiment was performed in triplicate.

The original data for ELISA reading results are given in Appendix Table 8.21 for Propolis-1 and Appendix Table 8.22 for Propolis-2.



**Figure 4-15: Calculation of IC50 values for propolis extracts in BT-20 cells.** Each point shows the percent cell death at different concentrations of Propolis extracts. A, The IC50 value for Propolis-1 is 73 ug/ml and R<sup>2</sup> value is R<sup>2</sup>=0. 9444. B, The IC50 value for Propolis-2 is 117 ug/ml and R<sup>2</sup> value is R<sup>2</sup>=0. 8773. Error bars represent standard error of the mean (SEM).

# IC<sub>50</sub> Values of Propolis extracts for MDA-MB-361 Cell line

Analysis of IC<sub>50</sub> value of propolis extracts on MDA-MB-361 was performed with following conditions:

**<u>Propolis-1</u>**: 80-60-40-30-20-15 ug/ml, 20000 cells were used in each well. MDA-MB-361 cell line's  $IC_{50}$  value was calculated as 51 ug/ml (Figure 4-16, A). The experiment was performed in quadruplicate.

**<u>Propolis-2</u>**: 150-120-75-60-37.5-30 ug/ml, 20000 cells were used in each well. MDA-MB-361 cell line's  $IC_{50}$  value was calculated as 57 ug/ml (Figure 4-16, B). The experiment was performed in quadruplicate.

The original data for ELISA reading results are given in Appendix Table 8.23 for Propolis-1 and Appendix Table 8.24 for Propolis-2.





**Figure 4-16: Calculation of IC50 values for propolis extracts in MDA-MB-361 cells.** Each point shows the percent cell death at different concentrations of Propolis extracts. A, The IC50 value for Propolis-1 is 51 ug/ml and R<sup>2</sup> value is R<sup>2</sup>=0. 9212. B, The IC50 value for Propolis-2 is 57 ug/ml and R<sup>2</sup> value is R<sup>2</sup>=0. 9433. Error bars represent standard error of the mean (SEM).

#### IC50 Values of Propolis extracts for BT-474 Cell line

Analysis of  $IC_{50}$  value of propolis extracts on BT-474 was performed with following conditions:

**<u>Propolis-1</u>**: 150-120-75-60-37.5-30 ug/ml, 20000 cells were used in each well. BT-474 cell line's IC<sub>50</sub> value was calculated as 50 ug/ml (Figure 4-17, A). The experiment was performed in triplicate.

**Propolis-2:** 150-120-75-60-37.5-30 ug/ml, 10000 cells were used in each well. BT-474 cell line's  $IC_{50}$  value was calculated as 92 ug/ml (Figure 4-17, B). The experiment was performed in triplicate.

The original data for ELISA reading results are given in Appendix Table 8.25 for Propolis-1 and Appendix Table 8.26 for Propolis-2.



**Figure 4-17: Calculation of IC50 values for propolis extracts in BT-474 cells.** Each point shows the percent cell death at different concentrations of Propolis extracts. A, The IC50 value for Propolis-1 is 50 ug/ml and R<sup>2</sup> value is R<sup>2</sup>=0. 9317. B, The IC50 value for Propolis-2 is 92 ug/ml and R<sup>2</sup> value is R<sup>2</sup>=0. 9517. Error bars represent standard error of the mean (SEM).

# IC50 Values of Propolis extracts for ZR-75-1 Cell line

Analysis of  $IC_{50}$  value of propolis extracts on ZR-75-1 was performed with following conditions:

**<u>Propolis-1</u>**: 120-100-80-75-60-50 ug/ml, 5000 cells were used in each well. ZR-75-1 cell line's IC<sub>50</sub> value was calculated as 73 ug/ml (Figure 4-18, A). The experiment was performed in quadruplicate.

**<u>Propolis-2</u>**: 120-100-60-50-30 ug/ml, 6000 cells were used in each well. ZR-75-1 cell line's IC<sub>50</sub> value was calculated as 76 ug/ml (Figure 4-18, B). The experiment was performed in triplicate.

The original data for ELISA reading results are given in Appendix Table 8.27 for Propolis-1 and Appendix Table 8.28 for Propolis-2.





**Figure 4-18: Calculation of IC50 values for propolis extracts in ZR-75-1 cells.** Each point shows the percent cell death at different concentrations of Propolis extracts. A, The IC50 value for Propolis-1 is 73 ug/ml and R<sup>2</sup> value is R<sup>2</sup>=0. 9423. B, The IC50 value for Propolis-2 is 76 ug/ml and R<sup>2</sup> value is R<sup>2</sup>=0. 8916. Error bars represent standard error of the mean (SEM).

#### IC<sub>50</sub> Values of Propolis extracts for hTERT-HME-1 Cell line

Analysis of  $IC_{50}$  value of propolis extracts on hTERT-HME-1 was performed with following conditions:

**<u>Propolis-1</u>**: 120-100-60-50-30 ug/ml, 6000 cells were used in each well. hTERT-HME-1 cell line's IC<sub>50</sub> value was calculated as 41 ug/ml (Figure 4-19, A). The experiment was performed in quadruplicate.

**<u>Propolis-2</u>**: 150-120-75-60-37.5 ug/ml, 6000 cells were used in each well. hTERT-HME-1 cell line's IC<sub>50</sub> value was calculated as 114 ug/ml (Figure 4-19, B). The experiment was performed in triplicate.

The original data for ELISA reading results are given in Appendix Table 8.29 for Propolis-1 and Appendix Table 8.30 for Propolis-2.





# **Figure 4-19: Calculation of IC50 values for propolis extracts in hTERT-HME-1 cells.** Each point shows the percent cell death at different concentrations of Propolis extracts. A, The IC50 value for Propolis-1 is 41 ug/ml and R<sup>2</sup> value is R<sup>2</sup>=0. 8443. B, The IC50 value for Propolis-2 is 114 ug/ml and R<sup>2</sup> value is R<sup>2</sup>=0. 8783. Error bars represent standard error of the mean (SEM).

# 4.3 Association of IC<sub>50</sub> Values of Propolis extracts with Properties of Breast Carcinoma Cell Lines

Previously calculated IC<sub>50</sub> values of propolis extracts for breast carcinoma cell lines were classified according to cell lines' molecular properties (Table 4.5). Statistical analysis was performed to analyze whether there is any correlation between IC<sub>50</sub> values of propolis and the molecular status of cell line with Microsoft Excel program by using T.TEST function. Student's t-test was calculated with two-tailed distribution and two-sample unequal variance. Fold change of propolis extracts was calculated by dividing IC<sub>50</sub> values of Propolis-2 extract to IC<sub>50</sub> values of Propolis-1 extract(Figure 4-20 and Figure 4-21).

Table 4.5 Classification of Breast carcinoma cell lines According to Their Molecular Status with  $IC_{50}$  Values of Propolis Extracts (Neve, 2006; Kao, 2009; Finn, 2009; Holliday, 2011).

| Cell Lines | IC <sub>50</sub> (ug/ml) |                | Molecular Status of Cell Lines |                           |                               |              |
|------------|--------------------------|----------------|--------------------------------|---------------------------|-------------------------------|--------------|
|            | Propolis-<br>1           | Propolis-<br>2 | Subtype                        | Estrogen<br>Receptor (ER) | Progesterone<br>Receptor (PR) | HER2         |
| BT-20      | 73                       | 117            | basal A                        | negative                  | negative                      | normal       |
| BT-474     | 50                       | 92             | luminal B                      | positive                  | positive                      | amplified    |
| CAMA-1     | 25                       | 35             | luminal                        | positive                  | negative                      | normal       |
| HCC-1937   | 123                      | 119            | basal A                        | negative                  | negative                      | normal       |
| hTERT-HME1 | 41                       | 114            | basal B                        | negative                  | n/a                           | negative     |
| MCF10A     | 45                       | 72             | basal B                        | negative                  | negative                      | immortalized |
| MCF12A     | 35                       | 45             | basal B                        | negative                  | negative                      | n/a          |
| MCF7       | 41                       | 61             | luminal A                      | positive                  | positive                      | normal       |
| MDA-MB 231 | 26                       | 74             | basal B                        | negative                  | negative                      | normal       |
| MDA-MB-157 | 88                       | 61             | basal B                        | negative                  | negative                      | normal       |
| MDA-MB-361 | 51                       | 57             | luminal                        | positive                  | positive                      | amplified    |
| MDA-MB-453 | 47                       | 53             | luminal                        | negative                  | negative                      | amplified    |
| MDA-MB-468 | 30                       | 26             | basal A                        | negative                  | negative                      | normal       |
| T47D       | 36                       | 43             | luminal A                      | positive                  | positive                      | normal       |
| ZR-75-1    | 73                       | 76             | luminal B                      | positive                  | negative                      | normal       |



Figure 4-20 Comparison of  $IC_{50}$  Values of Two Different Propolis Extracts on Breast carcinoma cell lines



Figure 4-21 Fold change of  $IC_{50}$  values of two different propolis extracts on breast carcinoma cell lines (p= 0,0016,  $IC_{50}$  values of Propolis-2 are significantly higher than  $IC_{50}$  values of Propolis-1).

The result showed that  $IC_{50}$  values of Propolis-2 extract were significantly higher than  $IC_{50}$  values of Propolis-1 extract among all cell lines. Pearson correlation was also calculated and the resulted correlation was found as significant at the 0.05 level (2-tailed).

The calculated  $IC_{50}$  for each cell line was analyzed for the cell lines molecular classification groups. Basal cell line group was compared to luminal cell lines to analyze if there is any significant difference between the subgroups responding to propolis extracts. The results showed that there is no significant correlation between these two groups for any of the two extracts (Propolis-1, p=0.4 and Propolis-2, p=0.2).



**Figure 4-22 IC**<sub>50</sub> values of propolis extracts were used to analyze according to the molecular subtypes of breast carcinoma cell lines. Basal cell line group was compared to luminal cell line group for both Propolis-1 and Propolis-2 (Propolis-1, p=0.4 and Propolis-2, p=0.2).

The calculated  $IC_{50}$  for each cell line was analyzed for ER status (positive/negative) of the breast carcinoma cell lines. The results showed that there is no significant correlation between these two groups for any of the two extracts (Propolis-1, p=0.4 and Propolis-2, p=0.3).



**Figure 4-23 IC**<sub>50</sub> values of propolis extracts were used to analyzed according to the **ER status of breast carcinoma cell lines.** ER positive cell line group was compared to ER negative cell line group for both Propolis-1 and Propolis-2 (Propolis-1, p=0.4 and Propolis-2, p=0.3).

The calculated  $IC_{50}$  for each cell line was analyzed for PR status (positive/negative) of the cell lines. The results showed that there is no significant correlation between these two groups for any of the two extracts (Propolis-1, p=0.3 and Propolis-2, p=0.8).



**Figure 4-24 IC**<sub>50</sub> values of propolis extracts were used to analyzed according to the **PR status of breast carcinoma cell lines.** PR positive cell line group was compared to PR negative cell line group for both Propolis-1 and Propolis-2 (Propolis-1, p=0.3 and Propolis-2, p=0.8).

The calculated  $IC_{50}$  for each cell line was analyzed for HER2 status (normal/amplified) of the cell lines. The results showed that there is no significant correlation between these two groups for any of the two extracts (Propolis-1, p=0.5 and Propolis-2, p=1.0).



**Figure 4-25 IC**<sub>50</sub> values of propolis extracts were used to analyzed according to the **HER2 status of breast carcinoma cell lines.** HER2 normal cell line group was compared to HER2 amplified cell line group for both Propolis-1 and Propolis-2 (Propolis-1, p=0.5 and Propolis-2, p=1.0).

# 4.4 Dynamic Cell Proliferation of Propolis Treated Cells with xCELLigence

The xCELLigence Systems allow for label-free and real-time monitoring of cellular processes such as cell proliferation. The cell growth curves were automatically recorded on the xCELLigence System in real time. IC<sub>50</sub> value calculations were restricted to the one time point whereas response to a treatment is dynamic phenomena. Therefore observing the effect of propolis on growing cells (real-time) is an important analysis. xCELLigence (Roche) system was used to monitor the growing cells in real time. Dynamic monitoring of the logarithmic growth of the cells was correlated with cell index (CI). Cells were inoculated to E plate 96 with indicated cell numbers and experiments were performed in triplicate (Table 4.6). Cells were monitored and measurements were collected every 10 minutes. When the cell index reaches to 0,75 before it exceeds the cell index 1,20, cells were treated with three different Propolis extract-2 concentrations (IC<sub>50</sub> values, half and double of IC<sub>50</sub> values of each cell line) and control DMSO. Then the measurements were collected for every 30 min for minimum of 72 h. DMSO amount was adjusted in each propolis-2 concentration to the same dilution so that only one control DMSO dilution was used. The logarithmic growth of each cell line was given from Figure 4-26 to Figure 4-31.

| Cell Line  | Starting Cell Numbers |  |  |
|------------|-----------------------|--|--|
| MCF10A     | 2000 cells/well       |  |  |
| BT-474     | 4000 cells/well       |  |  |
| T47D       | 2000 cells/well       |  |  |
| BT-20      | 2000 cells/well       |  |  |
| CAMA-1     | 4000 cells/well       |  |  |
| MDA-MB-231 | 3000 cells/well       |  |  |

Table 4.6 Starting Cell Numbers of Cell Lines for xCELLigence Monitoring



Figure 4-26 Dynamic monitoring of cell proliferation using the xCELLigence system in MCF10A. MCF10A ( $IC_{50}$ =72 ug/ml) cells treated with propolis-2 at 32.5 ug/ml, 65 ug/ml, and 130ug/ml concentrations and control DMSO. The arrow shows the time point where the propolis-2 and DMSO were added to the cells.



Figure 4-27 Dynamic monitoring of cell proliferation using the xCELLigence system in BT-474. BT-474 ( $IC_{50}$ = 92 ug/ml) cells treated with propolis-2 at 47.5 ug/ml, 95ug/ml and 190ug/ml concentrations and control DMSO. The arrow shows the time point where the propolis-2 and DMSO were added to the cells.



Figure 4-28 Dynamic monitoring of cell proliferation using the xCELLigence system in T47D. T47D ( $IC_{50}$ = 43 ug/ml) cells treated with propolis-2 at 20 ug/ml, 40ug/ml and 80ug/ml concentrations and control DMSO. The arrow shows the time point where the propolis-2 and DMSO were added to the cells.



Figure 4-29 Dynamic monitoring of cell proliferation using the xCELLigence system in BT-20. BT-20 ( $IC_{50}$ = 117 ug/ml) cells treated with propolis-2 at 55 ug/ml, 110 ug/ml and 220ug/ml concentrations and control DMSO. The arrow shows the time point where the propolis-2 and DMSO were added to the cells.



Figure 4-30 Dynamic monitoring of cell proliferation using the xCELLigence system in CAMA-1. CAMA-1 ( $IC_{50}$ = 35 ug/ml) cells treated with propolis-2 at 17.5 ug/ml, 35ug/ml and 70ug/ml concentrations and control DMSO. The arrow shows the time point where the propolis-2 and DMSO were added to the cells.





Real Time Growth Curves of breast carcinoma cell lines with different concentrations of propolis-2 were monitored by xCelligence system. The arrow shows the time point where the propolis-2 and control DMSO were added to the cells.

All the cell lines , except CAMA1, showed decrease in growth rate compare to only DMSO treated cells. Increasing concentrations of propolis-2 was decreases the cell number in a dose- and cell line- dependent way.

# 4.5 Propolis Induces Apoptosis on Breast Carcinoma Cell Lines

The observation of propolis anti-proliferative effect led us to evaluate its cellular mechanism. To evaluate the anti-proliferative effects of propolis, the cell lines were analyzed for cell death.

#### 4.5.1 Morphology of the Cells Changes with Propolis Treatment

The cells were treated with propolis and their morphology was observed under the light microscope. Morphological changes indicate apoptotic cell death. The effected cells were changed their adherent morphology to round cells and after a few hours later, those round cells were detached from the surface of the plate.

Breast carcinoma cell lines were cultured on 6 well plates as 80,000 cells/well. The cells were treated with either 0.1 % DMSO or 100 ug/ml Propolis-2 after 24 hours. The cells were observed under light microscope and photos were taken with 10X magnification, 48 hours after the treatment (Figure 4-32).

A-1 ) MCF10A, DMSO

A-2 ) MCF10A, Propolis



**B-1 )** MDA-MB-231, DMSO

B-2) MDA-MB-231, Propolis



**C-1 )** T47D, DMSO

C-2 ) T47D, Propolis



D-1 ) BT-20, DMSO

# D-2) BT-20, Propolis



E-1) BT-474, DMSO

E-2) BT-474, Propolis



**F-1 )** CAMA-1, DMSO, 10X

F-2 ) CAMA-1, Propolis, 10X



Figure 4-32 The morphological appearance of treated cell lines under the light microscope. The cells were treated with 100 ug/ml Propolis and 0.1% DMSO control

and the photos were taken after 48 h of treatment. MCF10A (A), MDA-MB-231 (B), T47D (C), BT-20 (D), BT-474 (E), CAMA-1 (F), (10X magnification).

Cell death effect of propolis in cell lines were evaluated by treating cells with propolis and the morphology of the cells were observed under light microscope. The cell morphology changed after treatment. It was observed that the cells become more round and the cell edges were sharper than control cells. The increased number of round and detached cells were observed which made the apoptosis as a suspected cell death mechanism.

#### 4.5.2 Chromatin Condensation and Nuclear Fragmentation

To analyze the apoptosis the Propolis and DMSO treated cells were stained with well-known nuclear dye Hoechst 33258 and common properties of apoptotic cells, chromatin condensation and nuclear fragmentation, were observed.

The cells were seeded onto glass coverslips in 6 well plates as 80,000 cells/well and 24 hours later, cells were treated with either 0.1 % DMSO or 100 ug/ml Propolis-2. Cells were stained with Hoechst 33258, 48 hours after the treatment. Photos were taken under fluorescent microscope with 40X magnification (Figure 4-33). Condensed chromatins were identified by their intense staining while normal cells can be depicted with clear and uniformly dispersed nuclei. In DMSO control treated cells, the nucleolus could be observed ( black dots in the cells) . White arrows in the pictures indicate apoptotic cells with condensed chromatin and red circles indicate the dividing cells. The bold white arrow in Figure 4-33, C-2 shows the nuclear fragmented apoptotic cell.











**Figure 4-33 Hoechst 33258 staining and morphological appearance of cell nucleus after treatment.** The MCF10A (A), MDA-MB-231 (B), T47D (C), BT-20 (D), CAMA-1 (E) cells were incubated with Propolis-2 with either 0.1% DMSO (1) or 100 ug/ml Propolis-2 (2) for 48 h. Then the cells were stained with Hoechst 33258. Photos were taken under the flourescent microscope with 40X magnification. Chromatin condensations were indicated with arrows, red circles indicate dividing cells, and big white arrow in C-2 shows the nuclear fragmented apoptotic cells.

The result showed that there is an increase in the number of apoptotic cells when they were treated with propolis.
#### 4.5.3 Western Blot Analysis of PARP-1 cleavage

The Poly (ADP-Ribose) Polymerase 1 (PARP-1) is an ADP-ribosylating enzyme essential for initiating various forms of DNA repair. PARP-1, a 116 kDa nuclear enzyme, is cleaved in fragments of 89 and 24 kDa during apoptosis. This cleavage has become a useful hallmark of apoptosis. Western blot analysis was performed to detect the PARP-1 cleavage in propolis treated cells. Cells were seeded on 6 well plates as 80,000 cells/well and cells were treated with either 0.1 % DMSO or 100 ug/ml Propolis-2 after 24 hours. Cell pellets were collected after 48 hours of treatment. Protein extraction was performed and 50 ug proteins were run in SDS-PAGE. PARP-1 protein was detected in the membranes and  $\beta$ -actin was used as equal loading control (Figure 4-37). The PARP-1 antibody can both target the full length PARP-1 (116 kDa) as well as its cleaved fragment (89 kDa). The image photos were analyzed with ImageJ software to obtain quantified, comparable data. Each band's intensity was quantified by using ImageJ to obtain numerical results of its intensity. Each sample's normalization was calculated by dividing its PARP-1 protein band intensity to its  $\beta$ -actin protein band intensity (from Figure 4-38 to Figure 4-36).



**Figure 4-34 Western blot analysis of PARP-1 cleavage in untreated and Adriamycin treated breast carcinoma cell lines.** Untreated cell lines (left), Adriamycin treated (as a positive control) cells (right) were analysed for their PARP-1 protein cleavage.



Figure 4-35 Graphical representation of normalized data of PARP-1 band intensities in untreated breast carcinoma cell lines. Each sample's normalization was calculated by dividing its full length PARP-1 protein (116 kDa) band intensity to its  $\beta$ -actin protein (42 kDa) band intensity (left) and cleaved PARP-1 protein (89 kDa) band intensity to its  $\beta$ -actin protein (42 kDa) band intensity (right)(images from Figure 4-34).



Figure 4-36 Graphical representation of normalized data of PARP-1 band intensities in untreated and Adriamycin treated MDA-MB-231 cells. Each sample's normalization was calculated by dividing its full length PARP-1 protein (116 kDa) band intensity to its  $\beta$ -actin protein (42 kDa) band intensity (left) and cleaved PARP-1 protein (89 kDa) band intensity to its  $\beta$ -actin protein (42 kDa) band intensity (right)(images from Figure 4-34). Adriamycin is a well know DNA damaging drug that directly intercalates into doublestranded DNA. It prevents DNA replication and induces apoptosis therefore Adriamycin was used as a positive control of apoptosis. In the increasing amount of Adriamycin treatment, PARP-1 full length as well as cleaved fragment of PARP-1 were decreased.



**Figure 4-37 Western blot analysis of PARP-1 cleavage in DMSO and Propolis-2 treated breast carcinoma cell lines.** Adriamycin treated cells were analysed for their PARP-1 protein cleavage as a positive control.

The propolis treated sample intensity was compared to DMSO control sample intensity for PARP-1 changes after  $\beta$ -actin normalization.



**Figure 4-38 Graphical representation of normalized data of full length PARP-1 band intensity in breast carcinoma cell lines.** Each sample's normalization was calculated by dividing its full length PARP-1 protein (116 kDa) band intensity to its βactin protein (42 kDa) band intensity (images from Figure 4-37).



Figure 4-39 Graphical representation of normalized data of cleaved PARP-1 band intensity in breast carcinoma cell lines. Each sample's normalization was calculated by dividing its cleaved fragment of PARP-1 protein (89 kDa) band intensity to its  $\beta$ actin protein (42 kDa) band intensity (images from Figure 4-37).

Decrease in the full length PARP-1 protein levels (except MDA-MB-231 cell line) supports our hypothesis that propolis treated cells enter to apoptotic state. Increase in the cleaved PARP-1 was observed only in MDA-MB-231 and BT-20 cell lines. To analyze the relative effect of full length and cleaved PARP-1 protein levels, another analysis was performed by calculating the intensity ratio of full length PARP-1 and cleaved PARP-1 proteins. Since the analysis gave an expected result with positive control samples (Figure 4-40), the same analysis was performed with propolis and control DMSO treated cells ().



Figure 4-40 Graphical representation of normalized data of full length PAPR-1 and cleaved PARP-1 band intensity ratio in untreated and Adriamycin treated MDA-MB-231 cells. Each sample's ratio was calculated by dividing its full length PARP-1 protein (116 kDa) band intensity to cleaved PARP-1 protein (89 kDa) band intensity (images from Figure 4-34).





ratio was calculated by dividing its full length PARP-1 protein (116 kDa) band intensity to cleaved PARP-1 protein (89 kDa) band intensity (images from Figure 4-37).

MDA-MB-231, CAMA-1, BT-20 and BT-474 cell lines were showed a decrease in the ratio of full length PAPR-1 over cleaved PAPR-1 protein band intensity which supports the apoptosis possibility of cell death mechanism.

### 4.6 Propolis Slightly Increases G2/M arrest of MDA-MB-231 Cells

The effect of propolis on cell cycle was analyzed with flow cytometer. MDA-MB-231 cells were seeded on 6 well plates (80,000 cells/well) and 24 hours later, cells were treated with DMSO, 75 ug/ml Propolis-2 (IC<sub>50</sub> value for this cell line), 250 ng/ ml Adriamycin (as a positive control for G2/M arrest) or untreated (control for Adriamycin treated cells) for 72 hours. Cell pellets were maintained and stained with Propidium Iodide (PI) and stained cells were counted with flow cytometer.

Initially, the Adriamycin treated MDA-MB-231 cells were analyzed with flow cytometer as a control experiment to observe cell cycle changes. The cells were treated with Adriamycin for 72 hours (Figure 4-42).



|          |             | Histogram | n Statistics |            |                |          |         |        |         |               |           |             |          |
|----------|-------------|-----------|--------------|------------|----------------|----------|---------|--------|---------|---------------|-----------|-------------|----------|
|          |             | -         |              |            |                |          |         |        | Histog  | ram Statistie | cs        |             |          |
| File: md | a mb 231 7  | 2h mock   | Acqu         | isition Da | te: 08-Feb-13  |          |         |        |         |               |           |             |          |
| Gate: G  | 1           |           | Gate         | d Events:  | 9340           | File: md | a mb 2  | 31 72h | adriamy | cin           | Acquisiti | on Date: 08 | 3-Feb-13 |
| Total Ev | ents: 10000 | )         | X Pa         | rameter:   | FL2-A (Linear) | Gate: G  | 4       |        |         |               | Gated E   | vents: 8090 | )        |
|          |             |           |              |            |                | Total Ev | ents: 1 | 0000   | 1       |               | X Param   | eter: FL2-A | (Linear) |
| Marker   | Left, Righ  | Events    | % Gated      | % Total    | Peak Ch        |          |         |        |         |               |           |             |          |
| All      | 0, 102      | 3 9340    | 100.00       | 93.40      | 197            | Marker   | Left, I | Right  | Events  | % Gated       | % Total   | Peak Ch     |          |
| M1       | 3. 16       | 5 61      | 0.65         | 0.61       | 127            | All      | 0,      | 1023   | 8090    | 100.00        | 80.90     | 412         |          |
| M2       | 165 21      | 7 6/32    | 68.87        | 64.32      | 107            | M1       | З,      | 168    | 110     | 1.36          | 1.10      | 113         |          |
| IVIZ     | 017 04      | 0402      | 10.01        | 10.10      | 137            | M2       | 168,    | 227    | 1057    | 13.07         | 10.57     | 197         |          |
| M3       | 217, 34     | 1010      | 10.81        | 10.10      | 325            | M3       | 233.    | 325    | 903     | 11.16         | 9.03      | 324         |          |
| M4       | 340, 49     | 1867      | 19.99        | 18.67      | 381            | M4       | 331     | 472    | 5857    | 72 40         | 58 57     | 412         |          |
|          |             |           |              |            |                |          | 001,    | 472    | 0007    | 72.40         | 00.07     | 412         |          |

Figure 4-42 Cell cycle analysis of untreated and Adriamycin treated MDA-MB-231 cell line with flow cytometer. Untreated cells (A) and Adriamycin treated cells (B). The cell cycle phases were represented in the histogram as M1: Sub-G1; M2: G1; M3: S; M4: G2/M.



**Figure 4-43 Graphical representation of cell cycle analysis of untreated and Adriamycin treated MDA-MB-231 cell line.** Data in Figure 4-42. was used to show the cell cycle phase differences between untreated and Adriamycin treated cells.

It was observed that the Adriamycin treated cells were entered G2/M cell cycle arrest. After this control experiment, the same analysis was performed with DMSO and propolis treated MDA-MB-231 cells.



| Figure 4-44 Cell cycle analysis of DMSO and propolis treated MDA-MB-231 cell line |
|-----------------------------------------------------------------------------------|
| with flow cytometer. DMSO treated cells (A) and Propolis-2 treated cells (B). The |
| cell cycle phases were represented in the histogram as M1: Sub-G1; M2: G1; M3: S; |
| M4: G2/M.                                                                         |

M1

0, 165

M2 168, 230

M3 236, 355

M4 358, 444

102

4635

1348

2371

1.18

53.75

15.63

27.49

1.02

46.35

13.48

23.71

134

203

307

405

M1

M4

0, 168

M2 168, 236

M3 242, 355

358, 481

45

6162

909

1938

0.49

67.65

9.98

21.28

0.45

61.62

9.09

19.38

158

207

354



**Figure 4-45 Graphical representation of cell cycle analysis DMSO and propolis treated MDA-MB-231 cell line.** Data in Figure 4-44. was used to show the cell cycle phase differences between DMSO and propolis treated cells.

Table 4.7 Percent gate comparison of untreated, DMSO, propolis and Adriamycintreated MDA-MB-231 cell line for cell cycle analysis.Data was taken from Figure4-42 an Figure 4-44.

| % Gate | Untreated | DMSO  | Propolis | Adriamycin |
|--------|-----------|-------|----------|------------|
| Sub-G1 | 0.65      | 0.49  | 1.18     | 1.36       |
| G1     | 68.87     | 67.65 | 53.75    | 13.07      |
| S      | 10.81     | 9.98  | 15.63    | 11.16      |
| G2/M   | 19.99     | 21.28 | 27.49    | 72.4       |



Figure 4-46 Graphical representation of cell cycle analysis of untreated, DMSO, propolis and Adriamycin treated MDA-MB-231 cell line. Data was taken from Figure 4-42 an Figure 4-44.

Above analyses demonstrate that propolis treatment induces G2/M arrest of MDA-MB-231 cell line.

#### 4.7 Propolis Blocks Invasion of MDA-MB-231 Cells

The in vitro scratch assay (wound healing assay) is an easy, low-cost and welldeveloped method to measure cell invasion *in vitro*. A straight line of cells are scraped from the plate and the invasion of the cells through this scraped line is observed via light microscope.

FBS concentration in the growth medium was dropped from 10 % to 0.1 % to prevent cells growing through the scratch. By this way, wound healing assay can

display the invasion properties of cells but not the proliferation. There were 6 conditions for this set up to observe the invasion rate:

- 10 % FBS containing growth medium treated cells (untreated, mock cells) to observe the effect of proliferation and compare it with 0.1 % FBS medium treated cells,
- 0.1 % FBS containing growth medium treated cells to observe the effect of decreased FBS and compare it with DMSO control cells,
- 0.1 % FBS + 0.1 % DMSO containing growth medium treated cells as a control for propolis treated cells,
- 0.1 % FBS + 50, 75 (IC<sub>50</sub> value propolis for MDA-MB-231 cells) and 100 ug/ml Propolis-2 containing growth medium treated cells to see the effect of gradually increasing concentrations of propolis on cell invasion ability.

Cells (500,000 cells/well) were seeded in 6 well plate to obtain high confluency and 24 hours later, scratches were made with a 200 ul micropipette tip. Cells were washed with 1X PBS twice to get rid of cell debris in the medium and then cells were treated with the growth mediums listed above. Right after the scratches were performed, time zero photos were taken to observe the scratches borders clearly. Then, the photos were taken at 6, 12, 24, 36 and 48 h intervals under the light microscope with 10X magnification.

As shown in Figure 4-47, cells treated with propolis shows decreased invasion rate of the cells to the denuded area when compared to the DMSO control cells.

# **EMPTY PAGE**

**Figure 4-47 Light microscope image to evaluate wound healing** *in vitro* **in the scratch assay using a confluent monolayer of MDA-MB-231 Cells.** Cell migration into the wound was observed in response to an artificial injury of the cells.

### **5** Discussion

The aim of this study was to evaluate the organic compound propolis effect on cancer cells. We are interested in the effects of propolis on cell growth in human cancer cells, as predictors of novel agents that may be useful in cancer chemoprevention or therapy. In recent years, it has been shown that propolis have antiviral, antimicrobial and antifungal and anti-carcinogenic activity (Sun, 2012). Propolis is a resinous material gathered by honeybees from the buds, leaf and bark of certain trees and plants. It is claimed to improve human health and prevent diseases, such as diabetes, inflammation and cancer (Viuda-Martos, 2008). There are many studies conducted on propolis or its active components for treatment of cancer which reveals the potential of this biological compound in the development of novel anti-cancerous agents (Markiewicz-Zukowska, 2013). Chemical analysis indicated that propolis is a multicomponent mixture of various compounds with prevalence of flavonoids and phenolic acids. Therefore it is important to investigate the propolis extract mechanisms of action in order to predict possible toxic and may be therapeutic effects. The information may help us to develop new drugs that are even more effective for the prevention and treatment of cancer.

In this study, the inhibitory effects of propolis collected from different regions of Turkey were analyzed on the growth of the human breast carcinoma cells. Two different extracts of propolis used in this study were provided by Prof. Dr. Orhan Deger at Karadeniz Technical University, Medical Biology Department. The propolis was extracted and diluted in DMSO and added to the cultures.

Initial experiments to evaluate the effect of propolis on cancer cells was analyzed with low concentrations (100-2000 ng/ml). The low concentrations did not show

any significant effect on cancer cells. One of the reasons can be the very low cell number of the living cells at the end of incubation period. However, the studies conducted so far show that propolis from different regions of the world are cytotoxic to cancer cells for different specific isolates of the extract with differing concentrations. Therefore, the analysis was repeated with higher concentrations of propolis and the result was promising. After the most effective incubation period was determined as 72 hours, the following experiments were conducted with 72 hour incubation. The starting analysis was done with hepatocellular carcinoma cells, lung cancer cells, breast cancer cells as well as normal breast cell line and higher concentrations (25-50-75 ug/ml) of propolis were found to be significantly increasing the cell death among cancer cell lines. However, we decided to focus on one cancer type, breast cancer, to carry on further analysis.

The first step of screening was performed with breast carcinoma cell line panel by calculating the  $IC_{50}$  values of propolis on each breast carcinoma cell line. The resulting  $IC_{50}$  values of 15 breast carcinoma cell lines for Propolis-1 extract were found to be ranging from 25 ug/ml to 123 ug/ml. Since propolis is a biological compound, a new propolis extract (Propolis-2) was also screened with the same breast carcinoma cell line panel by calculating the  $IC_{50}$  values to confirm that the effect of propolis. In this case,  $IC_{50}$  values of those breast carcinoma cell lines for Propolis-2 extract were found to be ranging from 26 ug/ml to 119 ug/ml. We concluded that propolis is cytotoxic to breast cancer cells with dose-dependent manner.

Student's t-test and Pearson correlation analyses show that there is significant increase in the  $IC_{50}$  values of Propolis-2 extract on breast carcinoma cell lines when compared with the  $IC_{50}$  values of Propolis-1 extract. This result may stem from the nature of a biological compound which can display fluctuating results according to the different propolis collections. Since propolis is a mixture of many compounds, plants that bees collect the propolis from may influence the effects on composition of propolis. Even the season that propolis collected in has an effect on active

components of propolis (Barlak, 2011). Because of these reasons, having different results from different extracts of a biological compound is inevitable.

Another statistical analysis was processed to assess the possible correlation between molecular properties of different breast carcinoma cell lines and their IC<sub>50</sub> values for propolis extracts. Student's t-test results show that there is no significant correlation between subtypes of breast carcinoma cell lines and IC<sub>50</sub> values of propolis extracts. ER status as well as PR status and HER2 status of breast carcinoma cell lines do not result in a significant correlation with IC<sub>50</sub> values of propolis extracts. We concluded that there is not a significant correlation between the cytotoxic effect of propolis extracts with different molecular properties of breast carcinoma cell lines.

xCELLigence analysis is a powerful method to show the effect of drug on living cells. In this study, real time monitoring was a confirmative assay to show the effect of propolis on breast carcinoma cell lines. xCELLigence analysis shows the effect of propolis on cells in a short time intervals whereas SRB experiments can be performed only one particular time point. Results support the cytotoxicity of propolis on breast carcinoma cells. We could see the gradual decrease in the cell number as the concentration of propolis increases. Lower concentration of propolis behaves similar to control treatments however high concentrations of propolis almost kill all the cells after 72-100 hours. Also SRB measurements were correlated with this experiment. Other than T47D and CAMA-1 cell lines, the result showed that IC<sub>50</sub> calculations had a similar effect on both SRB staining and xCELLigence experiments. This data reveals that propolis has cytotoxic effects on breast carcinoma cells and this effect is dose- and time- dependent.

Induction of apoptosis in cancer cells is an important mechanism to eliminate the cancer cells. Since propolis extracts were toxic to the carcinoma cells, we evaluated the apoptosis effect of propolis in cell lines. To reveal if propolis effects apoptosis the cells were treated with the compound and the morphology of the cells were

first evaluated under light microscope and then stained with Hoechst, evaluated under fluorescence microscope. The cell morphology changed after treatment. It was observed that the cells become more round and the cell edges were sharper than control cells. The increased number of round and detached cells were observed. The Hoechst staining was performed to evaluate this observation. The staining results showed chromatin condensation and partial nuclear fragmentation in some cells. These data strengthen the hypothesis that Turkish propolis cytotoxic effect resulted with cell death through apoptosis.

To further support this hypothesis, PARP-1 protein cleavage was investigated with western blot analysis. PAPR-1 is a well-known marker protein for apoptosis. The cleavage of PARP-1 into 89 kDa and 24 kDa fragments is another reliable marker of apoptotic cells (Chaitanya, 2010). Adriamycin was used as a positive control of apoptosis (Bilim, 1997). The Western blot results reveal that majority of the breast carcinoma cell lines had less amount of full length PARP-1 protein when treated with propolis than DMSO. The decrease in full length PARP-1 protein amount in propolis treated cells indicates the apoptosis was taken place in the cells. However we could not see a significant increase in the apoptotic 89 kDa PARP-1 fragment when compared with control cells. Therefore further analysis are required to confirm the cell western blot analysis. Caspase-3 or 7 activities can be detected or other apoptotic markers can be analyzed. Also to eliminate the necrosis as a cell death another PARP-1 western blot analysis can be done with a different antibody which can recognize the 50 kDa fragment of PARP-1 protein which is associated with necrosis (Buontempo, 2010). Although increase in the amount 89 kDa cleaved protein was not clearly observed in propolis treated cells, observation of decrease in the full length PARP-1 protein after treatment shows that apoptosis takes place in these cell lines. Another analysis which compares the ratio of full length PAPR-1 over cleaved PARP-1 protein band intensity showed a better result for supporting the apoptosis. MDA-MB-231, CAMA-1, BT-20 and BT-474 cell lines were found to have decreased ratio of full length PAPR-1 over cleaved PARP-1 protein band

intensity which combines the expected result of decrease in the full length PAPR-1 band intensity while increase in the cleaved PAPR-1 band intensity.

The effect of propolis on cell cycle was also analyzed by flow cytometer. In this assay Adriamycin treated cells were used as a positive control for G2/M arrest (Bilim, 2000). The cell cycle analysis with Propidium iodide (PI) staining of propolis treated cells showed that the cells enter cell cycle arrest in G2/M phase. When the results were compared, increase in the propolis treated cells' G2/M arrest was not as dramatic as Adriamycin effect. Therefore we can conclude that propolis slightly increases the number of cells stuck in the G2/M phase.

Previously CAPE was showed as an inhibitor of invasion in hepatocellular carcinoma (Jin, 2005). We used scratch assay to see the effect of propolis on breast cancer cells. Scratch assay was an easy but informative assay to analyze the effect of propolis on invasion property of breast cancer cells. For this experiment one of the most invasive breast cancer cell, MDA-MB-231 was chosen. When treated with higher concentrations of propolis, cells could not invade the scratched area while DMSO treated cells could fill up the scratched area within 2 days. Since we dropped the serum concentration in the growth media, we can say that invasion of the control samples are not due to the reproduction of existing cells but the invasion of the neighboring cells. This assay is a strong evidence to show the ability of propolis to block the invasion on breast carcinoma cell lines.

In conclusion, propolis showed a cytotoxic effect on breast carcinoma cell lines by inducing apoptosis, G2/M arrest as well as delaying the invasion capacity of the cells which makes it a potent anti-tumorigenic compound that may be useful in cancer chemoprevention or therapy.

### **6** Future Perspectives

We are interested in the effects of propolis on cell growth in human cancer cells, as predictors of novel agents that may be useful in cancer chemoprevention or therapy. Anti-proliferative activity of DMSO and water extracts of Turkish propolis was previously demonstrated with prostate cancer cell lines (Barlak, 2011). In this study, we showed that DMSO extracts of Turkish propolis has an anti-proliferative activity on breast carcinoma cell lines. Effects of Turkish propolis can be investigated in other cancer types such as hepatocellular carcinoma and lung carcinoma which we have preliminary data that shows cytotoxic effect.

Propolis and its polyphenols target TRAIL-induced apoptosis signaling pathway in tumor cells and sensitizes the TRAIL-resistant cancer cells (Szliszka, 2013). Therefore, more comprehensive study on apoptosis pathway that propolis induce can be designed to reveal the molecular mechanism behind the cytotoxic effect of propolis on carcinoma cells. We showed that DMSO extracts of Turkish propolis increase the apoptosis rate in breast carcinoma cells however the responsible apoptosis pathway is yet to be unknown. The activity of caspases (caspase3 and 7) and other apoptotic molecules on propolis treated carcinoma cells is required to be analyzed.

To eliminate the necrosis as a cell death another PARP-1 western blot analysis can be done with a different antibody which can recognize the 50 kDa fragment of PARP-1 protein which is associated with necrosis (Buontempo, 2010). To eliminate the senescence as a cell death, senescence  $\beta$ -Galactosidase staining can be performed to propolis treated cells.

Due to the technical problems, we performed the cell cycle analysis of only one cell line (MDA-MB-231). The following experiments are required to analyze the effects of propolis on cell cycle with remaining breast carcinoma cell lines. Flow cytometer can be used for both PI staining which is used for cell cycle analysis and Annexin-V

staining for apoptosis detection. Therefore, Annexin-V staining can be performed to confirm the apoptotic cell death of propolis treated cell lines.

To confirm the scratch assay results, matrigel assay can be performed so that prevention of invasion can be proved. In addition, epithelial to mesenchymal transition (EMT) markers (vimentin as mesenchymal and E-cadherin as an epithelial marker) can be detected with immunofluorescence method to analyze the effect of propolis on EMT.

Anti-proliferative activities of CAPE and Chrysin are not always based on similar mechanisms as whole propolis extract was revealed by Sawicka *et. al.* in 2012. Therefore, chemical analysis of propolis compound can be performed and the active components of the propolis extract can be studied separately or in combinations to see the individual effects of chemicals in propolis. We also believe in the synergistic effects of individual compounds, depending on their concentrations. For example, CAPE is an effective adjuvant by targeting Akt signaling in advanced prostate cancer. CAPE treatment reduces the dosage of chemotherapeutic agents required therefore it can be used as a potential adjuvant therapy since it is a safe, natural product (Liu, 2013). The resulting active components of Turkish propolis can be investigated in synergistic effects with existing chemotherapeutic agents.

Protective role of flavonoids in propolis were demonstrated on rats to reduce the toxicity as an adjuvant to chemotherapeutic agents (Padmavathi, 2006). According to this study, there are strong evidences for propolis being a cytotoxic material so that animal cancer models can be treated with Turkish propolis to see the effects on healing. Clinical studies to substantiate these results can help to show the beneficial effects of Turkish propolis since little information is available concerning propolis efficiency clinically. Pharmacological variability of preparations is expected, but biological properties of propolis could be linked to its chemical composition and to its botanical sources (Sforcin, 2011). If Turkish propolis is standardized based on most important active constituents, it can be subjected to clinical trials.

### 7 References

- Akyol, Sumeyya *et al...* "The Potential Usage of Caffeic Acid Phenethyl Ester (CAPE)
   Against Chemotherapy-induced and Radiotherapy-induced Toxicity." *Cell biochemistry and function* 30.5 (2012): 438–443. *NCBI PubMed*. Web.
- Albukhari, Ashwag A *et al...* "Caffeic Acid Phenethyl Ester Protects Against Tamoxifen-induced Hepatotoxicity in Rats." *Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association* 47.7 (2009): 1689–1695. *NCBI PubMed*. Web.
- Aliyazicioglu, Yuksel et al... "Effects of Turkish Pollen and Propolis Extracts on Respiratory Burst for K-562 Cell Lines." International immunopharmacology 5.11 (2005): 1652–1657. NCBI PubMed. Web.
- Ashry, El Sayed H El, and Tarek A Ahmad. "The Use of Propolis as Vaccine's Adjuvant." *Vaccine* 31.1 (2012): 31–39. *NCBI PubMed*. Web.
- Bankova, Vassya. "Chemical Diversity of Propolis and the Problem of Standardization." *Journal of ethnopharmacology* 100.1-2 (2005): 114–117. *NCBI PubMed*. Web.
- Banskota, A H, Y Tezuka, and S Kadota. "Recent Progress in Pharmacological Research of Propolis." *Phytotherapy research: PTR* 15.7 (2001): 561–571. Print.
- Barlak, Yaşam *et al...* "Effect of Turkish Propolis Extracts on Proteome of Prostate Cancer Cell Line." *Proteome science* 9 (2011): 74. *NCBI PubMed*. Web.
- Bilim, V et al... "Adriamycin Induced G2/M Cell Cycle Arrest in Transitional Cell
   Cancer Cells with Wt P53 and p21(WAF1/CIP1) Genes." Journal of
   experimental & clinical cancer research: CR 19.4 (2000): 483–488. Print.
- Bilim, V N et al... "Adriamycin (ADM) Induced Apoptosis in Transitional Cell Cancer (TCC) Cell Lines Accompanied by P21 WAF1/CIP1 Induction." Apoptosis: an international journal on programmed cell death 2.2 (1997): 207–213. Print.

Buontempo, Francesca et al... "Inhibition of Akt Signaling in Hepatoma Cells Induces Apoptotic Cell Death Independent of Akt Activation Status." Investigational new drugs 29.6 (2011): 1303–1313. NCBI PubMed. Web.

<http://www.cancer.org/> 2013. American Cancer Society, Inc.

Cai, Wai-Jiao *et al...* "Icariin and Its Derivative Icariside II Extend Healthspan via insulin/IGF-1 Pathway in C. Elegans." *PloS one* 6.12 (2011): e28835. *NCBI PubMed*. Web.

Castaldo, Stefano, and Francesco Capasso. "Propolis, an Old Remedy Used in Modern Medicine." *Fitoterapia* 73 Suppl 1 (2002): S1–6. Print.

- Chaitanya, Ganta Vijay, Alexander J Steven, and Phanithi Prakash Babu. "PARP-1
   Cleavage Fragments: Signatures of Cell-death Proteases in
   Neurodegeneration." *Cell communication and signaling: CCS* 8 (2010): 31.
   *NCBI PubMed*. Web.
- Chen, Ming-Jen *et al...* "Caffeic Acid Phenethyl Ester Inhibits Epithelial-mesenchymal Transition of Human Pancreatic Cancer Cells." *Evidence-based complementary and alternative medicine: eCAM* 2013 (2013): 270906. *NCBI PubMed*. Web.
- Clarke, P G H, and S Clarke. "Nineteenth Century Research on Cell Death." Experimental oncology 34.3 (2012): 139–145. Print.
- Dawson, Sarah-Jane *et al...* "A New Genome-driven Integrated Classification of
   Breast Cancer and Its Implications." *The EMBO journal* 32.5 (2013): 617–628.
   *NCBI PubMed*. Web.
- Finn, Richard S *et al.*.. "PD 0332991, a Selective Cyclin D Kinase 4/6 Inhibitor, Preferentially Inhibits Proliferation of Luminal Estrogen Receptor-positive Human Breast carcinoma cell lines in Vitro." *Breast cancer research: BCR* 11.5 (2009): R77. *NCBI PubMed*. Web.
- Grange, J M, and R W Davey. "Antibacterial Properties of Propolis (bee Glue)." Journal of the Royal Society of Medicine 83.3 (1990): 159–160. Print.

- Harness, Jay K, Thomas S Vetter, and Arthur H Salibian. "Areola and Nipple-areolasparing Mastectomy for Breast Cancer Treatment and Risk Reduction: Report of an Initial Experience in a Community Hospital Setting." Annals of surgical oncology 18.4 (2011): 917–922. NCBI PubMed. Web.
- Holliday, Deborah L, and Valerie Speirs. "Choosing the Right Cell Line for Breast Cancer Research." *Breast cancer research: BCR* 13.4 (2011): 215. *NCBI PubMed*. Web.
- Huang, Wei-Jan et al... "NBM-HD-1: A Novel Histone Deacetylase Inhibitor with Anticancer Activity." Evidence-based complementary and alternative medicine: eCAM 2012 (2012): 781417. NCBI PubMed. Web.
- Jin, Un-Ho *et al...* "Caffeic Acid Phenyl Ester in Propolis Is a Strong Inhibitor of Matrix Metalloproteinase-9 and Invasion Inhibitor: Isolation and Identification." *Clinica chimica acta; international journal of clinical chemistry* 362.1-2 (2005): 57–64. *NCBI PubMed*. Web.
- Kao, Jessica *et al...* "Molecular Profiling of Breast carcinoma cell lines Defines Relevant Tumor Models and Provides a Resource for Cancer Gene Discovery." *PloS one* 4.7 (2009): e6146. *NCBI PubMed*. Web.
- Khalil, Mahmoud Lotfy. "Biological Activity of Bee Propolis in Health and Disease." Asian Pacific journal of cancer prevention: APJCP 7.1 (2006): 22–31. Print.
- Liao, Hui-Fen *et al...* "Inhibitory Effect of Caffeic Acid Phenethyl Ester on Angiogenesis, Tumor Invasion, and Metastasis." *Journal of agricultural and food chemistry* 51.27 (2003): 7907–7912. *NCBI PubMed*. Web.
- Markiewicz-Żukowska, Renata *et al...* "Propolis Changes the Anticancer Activity of Temozolomide in U87MG Human Glioblastoma Cell Line." *BMC complementary and alternative medicine* 13 (2013): 50. *NCBI PubMed*. Web.
- McMullen, Catherine M. "*Taxus brevifolia* photo." Department of Natural Resource Ecology and Management, Iowa State University; 06.08.2013. Web. <a href="http://www.nrem.iastate.edu/class/for356/species/Taxus\_brevifolia.html">http://www.nrem.iastate.edu/class/for356/species/Taxus\_brevifolia.html</a>
- Monzote, Lianet *et al...* "In Vitro Antimicrobial Assessment of Cuban Propolis Extracts." *Memórias do Instituto Oswaldo Cruz* 107.8 (2012): 978–984. Print.

Nagata, Shigekazu. "Apoptosis by Death Factor." *Cell*; Volume 88, 355-365; 1997.

Neve, Richard M *et al...* "A Collection of Breast carcinoma cell lines for the Study of Functionally Distinct Cancer Subtypes." *Cancer cell* 10.6 (2006): 515–527.
 *NCBI PubMed*. Web.

Nowsheen, S, and E S Yang. "The Intersection Between DNA Damage Response and Cell Death Pathways." *Experimental oncology* 34.3 (2012): 243–254. Print.

- Omene, Coral O, Jing Wu, and Krystyna Frenkel. "Caffeic Acid Phenethyl Ester (CAPE) Derived from Propolis, a Honeybee Product, Inhibits Growth of Breast Cancer Stem Cells." *Investigational new drugs* 30.4 (2012): 1279– 1288. *NCBI PubMed*. Web.
- Ouyang, L et al... "Programmed Cell Death Pathways in Cancer: a Review of Apoptosis, Autophagy and Programmed Necrosis." Cell proliferation 45.6 (2012): 487–498. NCBI PubMed. Web.
- Padmavathi, Radhakrishnan *et al...* "Therapeutic Effect of Paclitaxel and Propolis on Lipid Peroxidation and Antioxidant System in 7,12 Dimethyl
   Benz(a)anthracene-induced Breast Cancer in Female Sprague Dawley Rats." Life sciences 78.24 (2006): 2820–2825. NCBI PubMed. Web.
- Perou, C M *et al...* "Molecular Portraits of Human Breast Tumours." *Nature* 406.6797 (2000): 747–752. *NCBI PubMed*. Web.
- Salatino, Antonio *et al...* "Propolis Research and the Chemistry of Plant Products." *Natural product reports* 28.5 (2011): 925–936. *NCBI PubMed*. Web.
- Sawicka, Diana et al.. "The Anticancer Activity of Propolis." Folia histochemica et cytobiologica / Polish Academy of Sciences, Polish Histochemical and Cytochemical Society 50.1 (2012): 25–37. NCBI PubMed. Web.
- Sforcin, J M. "Propolis and the Immune System: a Review." *Journal of ethnopharmacology* 113.1 (2007): 1–14. *NCBI PubMed*. Web.
- Sforcin, José Maurício, and Vassya Bankova. "Propolis: Is There a Potential for the Development of New Drugs?" *Journal of ethnopharmacology* 133.2 (2011): 253–260. NCBI PubMed. Web.

- Silici, Sibel, and Semiramis Kutluca. "Chemical Composition and Antibacterial Activity of Propolis Collected by Three Different Races of Honeybees in the Same Region." *Journal of ethnopharmacology* 99.1 (2005): 69–73. *NCBI PubMed*. Web.
- Sorlie, Therese et al.. "Repeated Observation of Breast Tumor Subtypes in Independent Gene Expression Data Sets." Proceedings of the National Academy of Sciences of the United States of America 100.14 (2003): 8418– 8423. NCBI PubMed. Web.
- Stevens, J B *et al.*. "Heterogeneity of Cell Death." *Cytogenetic and genome research* 139.3 (2013): 164–173. *NCBI PubMed*. Web.
- Sun, Li-Ping *et al.*. "Chrysin: a Histone Deacetylase 8 Inhibitor with Anticancer
   Activity and a Suitable Candidate for the Standardization of Chinese
   Propolis." Journal of agricultural and food chemistry 60.47 (2012): 11748–
   11758. NCBI PubMed. Web.
- Szliszka, Ewelina, and Wojciech Krol. "Polyphenols Isolated from Propolis Augment TRAIL-Induced Apoptosis in Cancer Cells." *Evidence-based complementary and alternative medicine: eCAM* 2013 (2013): 731940. *NCBI PubMed*. Web.
- Thirugnanasampandan, R, Sayana Beena Raveendran, and R Jayakumar. "Analysis of Chemical Composition and Bioactive Property Evaluation of Indian Propolis." Asian Pacific journal of tropical biomedicine 2.8 (2012): 651–654. NCBI PubMed. Web.

Viuda-Martos, M et al.. "Functional Properties of Honey, Propolis, and Royal Jelly." Journal of food science 73.9 (2008): R117–124. NCBI PubMed. Web.

- Watanabe, Maria Angélica Ehara *et al.*. "Cytotoxic Constituents of Propolis Inducing Anticancer Effects: a Review." *The Journal of pharmacy and pharmacology* 63.11 (2011): 1378–1386. *NCBI PubMed*. Web.
- Whitacre, C M et al.. "Detection of poly(ADP-ribose) Polymerase Cleavage in
   Response to Treatment with Topoisomerase I Inhibitors: a Potential
   Surrogate End Point to Assess Treatment Effectiveness." Clinical cancer

*research: an official journal of the American Association for Cancer Research* 5.3 (1999): 665–672. Print.

- Yari Khosroushahi, Ahmad, Hossein Naderi-Manesh, and Henrik Toft Simonsen.
  "Effect of Antioxidants and Carbohydrates in Callus Cultures of Taxus Brevifolia: Evaluation of Browning, Callus Growth, Total Phenolics and Paclitaxel Production." *BioImpacts: BI* 1.1 (2011): 37–45. *NCBI PubMed*. Web.
- Yoder, Brian J, Edward J Wilkinson, and Nicole A Massoll. "Molecular and Morphologic Distinctions Between Infiltrating Ductal and Lobular Carcinoma of the Breast." *The breast journal* 13.2 (2007): 172–179. *NCBI PubMed*. Web.

## 8 Appendix

### 8.1 IC<sub>50</sub> Analysis of Propolis

# Table 8.1: The ELISA reading results of MCF10A cell numbers when treated with **Propolis-1 and DMSO.** Percent cell death and IC<sub>50</sub> value were calculated according to this data.

| MCF10A       |         | Conce  | entration (u | ug/ml)  |         |
|--------------|---------|--------|--------------|---------|---------|
| Propolis-1   | 100     | 50     | 25           | 12.5    | 6.125   |
| Set 1        | 0.003   | 0.448  | 1.161        | 1.692   | 1.415   |
| Set 2        | -0.002  | 1.018  | 1.859        | 2.192   | 1.729   |
| Set 3        | 0.019   | 0.751  | 1.687        | 2.302   | 2.282   |
| AVERAGE      | 0.007   | 0.739  | 1.569        | 2.062   | 1.809   |
| SEM          | 0.006   | 0.165  | 0.21         | 0.188   | 0.253   |
|              |         |        |              |         |         |
| MCF10A       |         | Conce  | entration (u | ug/ml)  |         |
| DMSO         | 100     | 50     | 25           | 12.5    | 6.125   |
| Set 1        | 0.858   | 1.288  | 1.505        | 1.824   | 1.812   |
| Set 2        | 0.904   | 1.367  | 1.672        | 1.829   | 1.925   |
| Set 3        | 0.757   | 1.388  | 1.789        | 2.184   | 1.801   |
| AVERAGE      | 0.84    | 1.348  | 1.655        | 1.946   | 1.846   |
| SEM          | 0.043   | 0.03   | 0.082        | 0.119   | 0.04    |
|              |         |        |              |         |         |
| Percent Cell |         | Conce  | entration (u | ug/ml)  |         |
| Death        | 100     | 50     | 25           | 12.5    | 6.125   |
| Set 1        | 99.65   | 65.217 | 22.857       | 7.237   | 21.909  |
| Set 2        | 100.221 | 25.53  | -11.184      | -19.847 | 10.182  |
| Set 3        | 97.49   | 45.893 | 5.702        | -5.403  | -26.707 |
| AVERAGE      | 99.167  | 45.178 | 5.196        | -5.961  | 2.004   |
| SEM          | 0.679   | 9.356  | 8.025        | 6.388   | 11.96   |
|              |         |        |              |         |         |
| y-int        | -83.773 |        |              |         |         |
| slope        | 35.115  |        | IC50         | 45      | ug/ml   |
| R2           | 0.78    |        |              |         |         |

### Table 8.2: The ELISA reading results of MCF10A cell numbers when treated with

**Propolis-2 and DMSO.** Percent cell death and  $IC_{50}$  value were calculated according to this data.

| MCF10A       |         | Conce  | ntration (u | g/ml)  |        |
|--------------|---------|--------|-------------|--------|--------|
| Propolis-2   | 200     | 150    | 100         | 75     | 37.5   |
| Set 1        | 0.103   | 0.109  | 0.246       | 0.327  | 0.406  |
| Set 2        | 0.147   | 0.197  | 0.492       | 0.687  | 0.747  |
| Set 3        | 0.101   | 0.169  | 0.376       | 0.418  | 0.653  |
| AVERAGE      | 0.117   | 0.158  | 0.371       | 0.477  | 0.602  |
| SEM          | 0.015   | 0.026  | 0.071       | 0.108  | 0.102  |
|              |         |        |             |        |        |
| MCF10A       |         | Conce  | ntration (u | g/ml)  |        |
| DMSO         | 200     | 150    | 100         | 75     | 37.5   |
| Set 1        | 0.329   | 0.584  | 0.786       | 0.959  | 0.923  |
| Set 2        | 0.349   | 0.766  | 1.16        | 0.913  | 1.075  |
| Set 3        | 0.397   | 0.47   | 0.913       | 0.91   | 0.713  |
| AVERAGE      | 0.358   | 0.607  | 0.953       | 0.927  | 0.904  |
| SEM          | 0.02    | 0.086  | 0.11        | 0.016  | 0.105  |
|              |         |        |             |        |        |
| Percent Cell |         | Conce  | ntration (u | g/ml)  |        |
| Death        | 200     | 150    | 100         | 75     | 37.5   |
| Set 1        | 68.693  | 81.336 | 68.702      | 65.902 | 56.013 |
| Set 2        | 57.88   | 74.282 | 57.586      | 24.754 | 30.512 |
| Set 3        | 74.559  | 64.043 | 58.817      | 54.066 | 8.415  |
| AVERAGE      | 67.318  | 73.97  | 61.07       | 48.544 | 33.407 |
| SEM          | 3.989   | 4.105  | 2.878       | 9.986  | 11.24  |
|              |         |        |             |        |        |
| y-int        | -50.593 |        |             |        |        |
| slope        | 23.507  |        | IC50        | 72     | ug/ml  |
| R2           | 0.9     |        |             |        |        |

Table 8.3: The ELISA reading results of MCF12A cell numbers when treated withPropolis-1 and DMSO. Percent cell death and  $IC_{50}$  value were calculated accordingto this data.

| MCF12A       |         | C      | Concentrat | ion (ug/m | I)     |         |
|--------------|---------|--------|------------|-----------|--------|---------|
| Propolis-1   | 100     | 80     | 50         | 40        | 25     | 12.5    |
| Set 1        | 0.006   | 0.034  | 0.203      | 0.022     | 0.073  | 0.529   |
| Set 2        | 0.096   | 0.19   | 0.526      | 0.298     | 0.373  | 0.641   |
| Set 3        | 0.021   | 0.189  | 0.332      | 0.466     | 0.615  | 0.707   |
| Set 4        | 0.012   | 0.149  | 0.478      | 0.308     | 0.743  | 0.707   |
| AVERAGE      | 0.034   | 0.141  | 0.385      | 0.274     | 0.451  | 0.646   |
| SEM          | 0.021   | 0.037  | 0.073      | 0.092     | 0.148  | 0.042   |
|              |         |        |            |           |        |         |
| MCF12A       |         | C      | Concentrat | ion (ug/m | l)     |         |
| DMSO         | 100     | 80     | 50         | 40        | 25     | 12.5    |
| Set 1        | 0.404   | 0.807  | 0.326      | 0.922     | 0.725  | 0.394   |
| Set 2        | 0.661   | 0.851  | 0.64       | 0.836     | 0.927  | 0.88    |
| Set 3        | 0.313   | 0.67   | 0.724      | 0.741     | 0.806  | 0.905   |
| Set 4        | 0.322   | 0.4    | 0.815      | 0.58      | 0.682  | 0.935   |
| AVERAGE      | 0.425   | 0.682  | 0.626      | 0.77      | 0.785  | 0.779   |
| SEM          | 0.081   | 0.102  | 0.106      | 0.073     | 0.054  | 0.129   |
|              |         |        |            |           |        |         |
| Percent Cell |         | C      | Concentrat | ion (ug/m | I)     |         |
| Death        | 100     | 80     | 50         | 40        | 25     | 12.5    |
| Set 1        | 98.515  | 95.787 | 37.73      | 97.614    | 89.931 | -34.264 |
| Set 2        | 85.477  | 77.673 | 17.813     | 64.354    | 59.763 | 27.159  |
| Set 3        | 93.291  | 71.791 | 54.144     | 37.112    | 23.697 | 21.878  |
| Set 4        | 96.273  | 62.75  | 41.35      | 46.897    | -8.944 | 24.385  |
| AVERAGE      | 92      | 79.326 | 38.498     | 64.416    | 42.548 | 17.073  |
| SEM          | 2.484   | 6.062  | 6.517      | 11.53     | 18.611 | 12.855  |
|              |         |        |            |           |        |         |
| y-int        | -67.185 |        |            |           |        |         |
| slope        | 33      |        | IC50       | 35        | ug/ml  |         |
| R2           | 0.82    |        |            |           |        |         |

### Table 8.4: The ELISA reading results of MCF12A cell numbers when treated with

**Propolis-2 and DMSO.** Percent cell death and  $IC_{50}$  value were calculated according to this data.

| MCF12A       |         | C      | oncentrati | on (ug/ml | )      |        |
|--------------|---------|--------|------------|-----------|--------|--------|
| Propolis-2   | 37.5    | 50     | 75         | 100       | 150    | 200    |
| Set 1        | 0.06    | 0.068  | 0.05       | 0.058     | 0.027  | 0.007  |
| Set 2        | 0.174   | 0.235  | 0.144      | 0.107     | 0.044  | 0.038  |
| Set 3        | 0.265   | 0.288  | 0.263      | 0.183     | 0.069  | 0.049  |
| Set 4        | 0.285   | 0.304  | 0.216      | 0.155     | 0.089  | 0.049  |
| AVERAGE      | 0.196   | 0.224  | 0.168      | 0.126     | 0.057  | 0.036  |
| SEM          | 0.051   | 0.054  | 0.046      | 0.027     | 0.014  | 0.01   |
|              |         |        |            |           |        |        |
| MCF12A       |         | C      | oncentrati | on (ug/ml | )      |        |
| DMSO         | 37.5    | 50     | 75         | 100       | 150    | 200    |
| Set 1        | 0.173   | 0.169  | 0.193      | 0.193     | 0.143  | 0.113  |
| Set 2        | 0.413   | 0.338  | 0.367      | 0.268     | 0.319  | 0.115  |
| Set 3        | 0.45    | 0.466  | 0.412      | 0.339     | 0.487  | 0.168  |
| Set 4        | 0.554   | 0.601  | 0.771      | 0.921     | 0.489  | 0.179  |
| AVERAGE      | 0.398   | 0.394  | 0.436      | 0.43      | 0.36   | 0.144  |
| SEM          | 0.081   | 0.092  | 0.121      | 0.166     | 0.082  | 0.017  |
|              |         |        |            |           |        |        |
| Percent Cell |         | C      | oncentrati | on (ug/ml | )      |        |
| Death        | 37.5    | 50     | 75         | 100       | 150    | 200    |
| Set 1        | 65.318  | 59.763 | 74.093     | 69.948    | 81.119 | 93.805 |
| Set 2        | 57.869  | 30.473 | 60.763     | 60.075    | 86.207 | 66.957 |
| Set 3        | 41.111  | 38.197 | 36.165     | 46.018    | 85.832 | 70.833 |
| Set 4        | 48.556  | 49.418 | 71.984     | 83.17     | 81.8   | 72.626 |
| AVERAGE      | 50.754  | 43.147 | 61.468     | 70.698    | 84.167 | 75     |
| SEM          | 4.618   | 5.562  | 7.538      | 6.923     | 1.152  | 5.231  |
|              |         |        |            |           |        |        |
| y-int        | -32.074 |        |            |           |        |        |
| slope        | 21.581  |        | IC50       | 45        | ug/ml  |        |
| R2           | 0.8     |        |            |           |        |        |

### Table 8.5: The ELISA reading results of MDA-MB-231 cell numbers when treated

with Propolis-1 and DMSO. Percent cell death and  $IC_{50}$  value were calculated according to this data.

| MDA-MB-231   |         | Co      | oncentrati | on (ug/m | l)      |         |
|--------------|---------|---------|------------|----------|---------|---------|
| Propolis-1   | 100     | 75      | 50         | 25       | 12.5    | 6       |
| Set 1        | -0.006  | -0.006  | 0.267      | 0.358    | 0.465   | 0.61    |
| Set 2        | -0.004  | -0.013  | 0.222      | 0.41     | 0.559   | 0.449   |
| Set 3        | -0.005  | -0.006  | 0.216      | 0.424    | 0.692   | 0.764   |
| Set 4        | -0.014  | -0.001  | 0.283      | 0.409    | 0.651   | 0.692   |
| AVERAGE      | -0.007  | -0.007  | 0.247      | 0.4      | 0.592   | 0.629   |
| SEM          | 0.002   | 0.002   | 0.017      | 0.014    | 0.051   | 0.068   |
|              |         |         |            |          |         |         |
| MDA-MB-231   |         | Co      | oncentrati | on (ug/m | I)      |         |
| DMSO         | 100     | 75      | 50         | 25       | 12.5    | 6       |
| Set 1        | 0.616   | 0.527   | 0.714      | 0.663    | 0.966   | 0.801   |
| Set 2        | 0.694   | 0.68    | 0.703      | 0.637    | 0.746   | 0.888   |
| Set 3        | 0.574   | 0.499   | 0.625      | 0.608    | 0.664   | 0.61    |
| Set 4        | 0.481   | 0.565   | 0.549      | 0.539    | 0.495   | 0.544   |
| AVERAGE      | 0.591   | 0.568   | 0.648      | 0.612    | 0.718   | 0.711   |
| SEM          | 0.044   | 0.04    | 0.038      | 0.027    | 0.098   | 0.08    |
|              |         |         |            |          |         |         |
| Percent Cell |         | Co      | oncentrati | on (ug/m | l)      |         |
| Death        | 100     | 75      | 50         | 25       | 12.5    | 6       |
| Set 1        | 100.974 | 101.139 | 62.605     | 46.003   | 51.863  | 23.845  |
| Set 2        | 100.576 | 101.912 | 68.421     | 35.636   | 25.067  | 49.437  |
| Set 3        | 100.871 | 101.202 | 65.44      | 30.263   | -4.217  | -25.246 |
| Set 4        | 102.911 | 100.177 | 48.452     | 24.119   | -31.515 | -27.206 |
| AVERAGE      | 101.184 | 101.232 | 61.883     | 34.641   | 17.549  | 11.533  |
| SEM          | 0.463   | 0.31    | 3.832      | 4.021    | 15.706  | 16.42   |
|              |         |         |            |          |         |         |
| y-int        | -64.179 |         |            |          |         |         |
| slope        | 35.005  |         | IC50       | 26       | ug/ml   |         |
| R2           | 0.91    |         |            |          |         |         |

# Table 8.6: The ELISA reading results of MDA-MB-231 cell numbers when treated with Propolis-2 and DMSO. Percent cell death and IC<sub>50</sub> value were calculated according to this data.

| MDA-MB-           |         |        | Concentrat | ion (ug/ml | )       |        |
|-------------------|---------|--------|------------|------------|---------|--------|
| 231<br>Dronolis 2 | 150     | 120    | 75         | 60         | 27 5    | 20     |
| Propoils-2        | 0.001   | 0.012  | 0.019      | 0.026      | 0.05/   | 0.052  |
| Set 1             | 0.001   | 0.012  | 0.018      | 0.030      | 0.054   | 0.052  |
| Set 2             | 0.017   | 0.035  | 0.144      | 0.075      | 0.135   | 0.145  |
| Set 3             | 0.007   | 0.020  | 0.132      | 0.11       | 0.125   | 0.134  |
|                   | 0.006   | 0.032  | 0.127      | 0.133      | 0.100   | 0.122  |
| AVERAGE           | 0.000   | 0.033  | 0.11       | 0.089      | 0.107   | 0.114  |
| SEIVI             | 0.004   | 0.008  | 0.031      | 0.022      | 0.019   | 0.021  |
|                   |         |        |            |            |         |        |
| 231               |         |        | Concentrat | ion (ug/ml | )       |        |
| DMSO              | 150     | 120    | 75         | 60         | 37.5    | 30     |
| Set 1             | 0.014   | 0.118  | 0.201      | 0.211      | 0.193   | 0.223  |
| Set 2             | 0.026   | 0.142  | 0.187      | 0.187      | 0.138   | 0.147  |
| Set 3             | 0.083   | 0.107  | 0.142      | 0.128      | 0.073   | 0.141  |
| Set 4             | 0.07    | 0.125  | 0.099      | 0.117      | 0.086   | 0.12   |
| AVERAGE           | 0.048   | 0.123  | 0.157      | 0.161      | 0.123   | 0.158  |
| SEM               | 0.017   | 0.007  | 0.023      | 0.023      | 0.027   | 0.023  |
|                   |         |        |            |            |         |        |
| Percent Cell      |         |        | Concentrat | ion (ug/ml | )       |        |
| Death             | 150     | 120    | 75         | 60         | 37.5    | 30     |
| Set 1             | 92.857  | 89.831 | 91.045     | 82.938     | 72.021  | 76.682 |
| Set 2             | 34.615  | 72.535 | 22.995     | 60.963     | -0.725  | -1.361 |
| Set 3             | 91.566  | 73.832 | -7.042     | 14.063     | -71.233 | 4.965  |
| Set 4             | 100     | 58.4   | -28.283    | -15.385    | -25.581 | -1.667 |
| AVERAGE           | 87.5    | 73.171 | 29.936     | 44.72      | 13.008  | 27.848 |
| SEM               | 13.244  | 5.567  | 22.642     | 19.386     | 26.284  | 16.617 |
|                   |         |        |            |            |         |        |
| y-int             | -125.33 |        |            |            |         |        |
| slope             | 40.743  |        | IC50       | 74         | ug/ml   |        |
| R2                | 0.8     |        |            |            |         |        |

### Table 8.7: The ELISA reading results of CAMA-1 cell numbers when treated with

**Propolis-1 and DMSO.** Percent cell death and  $IC_{50}$  value were calculated according to this data.

| CAMA-1       |          | Co     | ncentratio | on (ug/ml) |        |        |
|--------------|----------|--------|------------|------------|--------|--------|
| Propolis-1   | 80       | 60     | 50         | 40         | 30     | 25     |
| Set 1        | 0        | 0      | 0          | 0.034      | 0.058  | 0.063  |
| Set 2        | 0        | 0      | 0.019      | 0.067      | 0.069  | 0.083  |
| Set 3        | 0.007    | 0.001  | 0.02       | 0.073      | 0.091  | 0.113  |
| Set 4        | -0.002   | 0.001  | 0.007      | 0.071      | 0.091  | 0.114  |
| AVERAGE      | 0.001    | 0.001  | 0.012      | 0.061      | 0.077  | 0.093  |
| SEM          | 0.002    | 0      | 0.005      | 0.009      | 0.008  | 0.012  |
|              |          |        |            |            |        |        |
| CAMA-1       |          | Со     | ncentratio | on (ug/ml) |        |        |
| DMSO         | 80       | 60     | 50         | 40         | 30     | 25     |
| Set 1        | 0.087    | 0.157  | 0.196      | 0.191      | 0.201  | 0.202  |
| Set 2        | 0.202    | 0.187  | 0.198      | 0.18       | 0.207  | 0.184  |
| Set 3        | 0.22     | 0.158  | 0.21       | 0.182      | 0.183  | 0.177  |
| Set 4        | 0.158    | 0.129  | 0.19       | 0.164      | 0.198  | 0.138  |
| AVERAGE      | 0.167    | 0.158  | 0.199      | 0.179      | 0.197  | 0.175  |
| SEM          | 0.03     | 0.012  | 0.004      | 0.006      | 0.005  | 0.013  |
|              |          |        |            |            |        |        |
| Percent Cell |          | Со     | ncentratio | on (ug/ml) |        |        |
| Death        | 80       | 60     | 50         | 40         | 30     | 25     |
| Set 1        | 100      | 100    | 100        | 82.199     | 71.144 | 68.812 |
| Set 2        | 100      | 100    | 90.404     | 62.778     | 66.667 | 54.891 |
| Set 3        | 96.818   | 99.367 | 90.476     | 59.89      | 50.273 | 36.158 |
| Set 4        | 101.266  | 99.225 | 96.316     | 56.707     | 54.04  | 17.391 |
| AVERAGE      | 99.401   | 99.367 | 93.97      | 65.922     | 60.914 | 46.857 |
| SEM          | 0.822    | 0.189  | 2.038      | 4.97       | 4.314  | 9.71   |
|              |          |        |            |            |        |        |
| y-int        | -109.394 |        |            |            |        |        |
| slope        | 49.468   |        | IC50       | 25         | ug/ml  |        |
| R2           | 0.9      |        |            |            |        |        |

### Table 8.8: The ELISA reading results of CAMA-1cell numbers when treated with

**Propolis-2 and DMSO.** Percent cell death and  $IC_{50}$  value were calculated according to this data.

| CAMA-1       |         | C      | oncentrati | on (ug/ml | )      |        |
|--------------|---------|--------|------------|-----------|--------|--------|
| Propolis-2   | 100     | 80     | 50         | 40        | 25     | 20     |
| Set 1        | 0.022   | 0.025  | 0.072      | 0.078     | 0.101  | 0.109  |
| Set 2        | 0.013   | 0.028  | 0.056      | 0.063     | 0.097  | 0.054  |
| Set 3        | 0.016   | 0.013  | 0.054      | 0.101     | 0.039  | 0.054  |
| Set 4        | 0.017   | 0.032  | 0.15       | 0.123     | 0.139  | 0.12   |
| AVERAGE      | 0.017   | 0.025  | 0.083      | 0.091     | 0.094  | 0.084  |
| SEM          | 0.002   | 0.004  | 0.023      | 0.013     | 0.021  | 0.018  |
|              |         |        |            |           |        |        |
| CAMA-1       |         | C      | oncentrati | on (ug/ml | )      |        |
| DMSO         | 100     | 80     | 50         | 40        | 25     | 20     |
| Set 1        | 0.173   | 0.077  | 0.292      | 0.177     | 0.19   | 0.108  |
| Set 2        | 0.156   | 0.202  | 0.294      | 0.249     | 0.116  | 0.1    |
| Set 3        | 0.122   | 0.203  | 0.155      | 0.189     | 0.131  | 0.122  |
| Set 4        | 0.127   | 0.207  | 0.208      | 0.148     | 0.154  | 0.158  |
| AVERAGE      | 0.145   | 0.172  | 0.237      | 0.191     | 0.148  | 0.122  |
| SEM          | 0.012   | 0.032  | 0.034      | 0.021     | 0.016  | 0.013  |
|              |         |        |            |           |        |        |
| Percent Cell |         | C      | oncentrati | on (ug/ml | )      |        |
| Death        | 100     | 80     | 50         | 40        | 25     | 20     |
| Set 1        | 87.283  | 67.532 | 75.342     | 55.932    | 46.842 | -0.926 |
| Set 2        | 91.667  | 86.139 | 80.952     | 74.699    | 16.379 | 46     |
| Set 3        | 86.885  | 93.596 | 65.161     | 46.561    | 70.229 | 55.738 |
| Set 4        | 86.614  | 84.541 | 27.885     | 16.892    | 9.74   | 24.051 |
| AVERAGE      | 88.276  | 85.465 | 64.979     | 52.356    | 36.486 | 31.148 |
| SEM          | 1.034   | 4.801  | 10.357     | 10.477    | 12.155 | 10.91  |
|              |         |        |            |           |        |        |
| y-int        | -84.629 |        |            |           |        |        |
| slope        | 37.999  |        | IC50       | 35        | ug/ml  |        |
| R2           | 0.99    |        |            |           |        |        |

### Table 8.9: The ELISA reading results of MDA-MB-453 cell numbers when treated

with Propolis-1 and DMSO. Percent cell death and  $IC_{50}$  value were calculated according to this data.

| MDA-MB-453   |                                 | Conce  | entration ( | ug/ml)  |          |
|--------------|---------------------------------|--------|-------------|---------|----------|
| Propolis-1   | 80                              | 60     | 40          | 30      | 20       |
| Set 1        | 0.001                           | 0.046  | 0.041       | 0.043   | 0.034    |
| Set 2        | 0.003                           | 0.027  | 0.073       | 0.085   | 0.197    |
| Set 3        | 0.052                           | 0.024  | 0.077       | 0.086   | 0.129    |
| Set 4        | 0.036                           | 0.016  | 0.045       | 0.185   | 0.134    |
| AVERAGE      | 0.023                           | 0.028  | 0.059       | 0.1     | 0.124    |
| SEM          | 0.013                           | 0.006  | 0.009       | 0.03    | 0.034    |
|              |                                 |        |             |         |          |
| MDA-MB-453   | DA-MB-453 Concentration (ug/ml) |        |             |         |          |
| DMSO         | 80                              | 60     | 40          | 30      | 20       |
| Set 1        | 0.119                           | 0.093  | 0.168       | 0.078   | 0.144    |
| Set 2        | 0.115                           | 0.13   | 0.106       | 0.141   | 0.086    |
| Set 3        | 0.059                           | 0.199  | 0.052       | 0.151   | 0.065    |
| AVERAGE      | 0.098                           | 0.141  | 0.109       | 0.123   | 0.098    |
| SEM          | 0.019                           | 0.031  | 0.034       | 0.023   | 0.024    |
|              |                                 |        |             |         |          |
| Percent Cell |                                 | Conce  | entration ( | ug/ml)  |          |
| Death        | 80                              | 60     | 40          | 30      | 20       |
| Set 1        | 97.391                          | 79.231 | 31.132      | 39.716  | -129.07  |
| Set 2        | 11.864                          | 87.94  | -48.077     | 43.046  | -98.462  |
| Set 3        | 38.983                          | 91.96  | 13.462      | -22.517 | -106.154 |
| AVERAGE      | 76.531                          | 80.142 | 45.872      | 18.699  | -26.531  |
| SEM          | 22.041                          | 3.556  | 23.844      | 17.413  | 25.576   |
|              |                                 |        |             |         |          |
| y-int        | -250.482                        |        |             |         |          |
| slope        | 77.961                          |        | IC50        | 47      | ug/ml    |
| R2           | 0.93                            |        |             |         | -        |
# Table 8.10: The ELISA reading results of MDA-MB-453 cell numbers when treated

| MDA-MB-<br>453 |         | Conce  | ntration (u | g/ml)  |        |
|----------------|---------|--------|-------------|--------|--------|
| Propolis-2     | 30      | 50     | 60          | 100    | 120    |
| Set 1          | 0.045   | 0.042  | 0.045       | 0.018  | 0.014  |
| Set 2          | 0.108   | 0.093  | 0.095       | 0.06   | 0.027  |
| Set 3          | 0.118   | 0.079  | 0.073       | 0.053  | 0.027  |
| Set 4          | 0.093   | 0.073  | 0.101       | 0.058  | 0.028  |
| AVERAGE        | 0.091   | 0.072  | 0.079       | 0.047  | 0.024  |
| SEM            | 0.016   | 0.011  | 0.013       | 0.01   | 0.003  |
|                |         |        |             |        |        |
| MDA-MB-<br>453 |         | Conce  | ntration (u | g/ml)  |        |
| DMSO           | 30      | 50     | 60          | 100    | 120    |
| Set 1          | 0.128   | 0.052  | 0.179       | 0.222  | 0.071  |
| Set 2          | 0.186   | 0.134  | 0.213       | 0.205  | 0.092  |
| Set 3          | 0.125   | 0.185  | 0.176       | 0.214  | 0.077  |
| Set 4          | 0.115   | 0.191  | 0.082       | 0.086  | 0.047  |
| AVERAGE        | 0.139   | 0.141  | 0.163       | 0.182  | 0.072  |
| SEM            | 0.016   | 0.032  | 0.028       | 0.032  | 0.009  |
|                |         |        |             |        |        |
| Percent Cell   |         | Conce  | ntration (u | g/ml)  |        |
| Death          | 30      | 50     | 60          | 100    | 120    |
| Set 1          | 64.844  | 19.231 | 74.86       | 91.892 | 80.282 |
| Set 2          | 41.935  | 30.597 | 55.399      | 70.732 | 70.652 |
| Set 3          | 5.6     | 57.297 | 58.523      | 75.234 | 64.935 |
| Set 4          | 19.13   | 61.78  | -23.171     | 32.558 | 40.426 |
| AVERAGE        | 34.532  | 48.936 | 51.534      | 74.176 | 66.667 |
| SEM            | 11.289  | 9.047  | 19.138      | 10.956 | 7.38   |
|                |         |        |             |        |        |
| y-int          | -56.529 |        |             |        |        |
| slope          | 26.85   |        | IC50        | 53     | ug/ml  |
| R2             | 0.92    |        |             |        |        |

#### Table 8.11: The ELISA reading results of MDA-MB-468 cell numbers when treated

| MDA-MB-468   |          | Co      | ncentratio | on (ug/ml | )      |         |
|--------------|----------|---------|------------|-----------|--------|---------|
| Propolis-1   | 15       | 20      | 30         | 40        | 60     | 80      |
| Set 1        | 0.268    | 0.199   | 0.048      | 0.033     | 0.017  | 0.004   |
| Set 2        | 0.331    | 0.053   | 0.233      | 0.172     | 0.032  | -0.003  |
| Set 3        | 0.335    | 0.292   | 0.301      | 0.204     | 0.076  | -0.004  |
| Set 4        | 0.325    | 0.293   | 0.233      | 0.244     | 0.142  | 0.009   |
| AVERAGE      | 0.315    | 0.209   | 0.204      | 0.163     | 0.067  | 0.002   |
| SEM          | 0.016    | 0.057   | 0.054      | 0.046     | 0.028  | 0.003   |
|              |          |         |            |           |        |         |
| MDA-MB-468   |          | Co      | ncentratio | on (ug/ml | )      |         |
| DMSO         | 15       | 20      | 30         | 40        | 60     | 80      |
| Set 1        | 0.492    | 0.433   | 0.466      | 0.186     | 0.146  | 0.264   |
| Set 2        | 0.373    | 0.362   | 0.423      | 0.372     | 0.342  | 0.212   |
| Set 3        | 0.272    | 0.344   | 0.395      | 0.388     | 0.372  | 0.196   |
| Set 4        | 0.375    | 0.263   | 0.25       | 0.555     | 0.606  | 0.045   |
| AVERAGE      | 0.378    | 0.351   | 0.384      | 0.375     | 0.367  | 0.179   |
| SEM          | 0.045    | 0.035   | 0.047      | 0.075     | 0.094  | 0.047   |
|              |          |         |            |           |        |         |
| Percent Cell |          | Co      | ncentratio | on (ug/ml | )      |         |
| Death        | 15       | 20      | 30         | 40        | 60     | 80      |
| Set 1        | 45.528   | 54.042  | 89.7       | 82.258    | 88.356 | 98.485  |
| Set 2        | 11.26    | 85.359  | 44.917     | 53.763    | 90.643 | 101.415 |
| Set 3        | -23.162  | 15.116  | 23.797     | 47.423    | 79.57  | 102.041 |
| Set 4        | 13.333   | -11.407 | 6.8        | 56.036    | 76.568 | 80      |
| AVERAGE      | 16.667   | 40.456  | 46.875     | 56.533    | 81.744 | 98.883  |
| SEM          | 12.201   | 18.478  | 15.567     | 6.694     | 2.97   | 4.584   |
|              |          |         |            |           |        |         |
| y-int        | -104.079 |         |            |           |        |         |
| slope        | 45.398   |         | IC50       | 30        | ug/ml  |         |
| R2           | 0.97     |         |            |           |        |         |

# Table 8.12: The ELISA reading results of MDA-MB-468 cell numbers when treated

| MDA-MB-        |         | с      | oncentrati | on (ug/ml | )      |        |
|----------------|---------|--------|------------|-----------|--------|--------|
| Propolis-2     | 25      | 30     | 50         | 60        | 100    | 120    |
| Set 1          | 0.119   | 0.075  | 0.036      | 0.06      | 0.01   | 0.014  |
| Set 2          | 0.546   | 0.435  | 0.195      | 0.234     | 0.008  | 0.014  |
| Set 3          | 0.447   | 0.35   | 0.188      | 0.236     | 0.048  | 0.004  |
| Set 4          | 0.457   | 0.379  | 0.19       | 0.201     | 0.035  | 0.02   |
| AVERAGE        | 0.392   | 0.31   | 0.152      | 0.183     | 0.025  | 0.013  |
| SEM            | 0.094   | 0.08   | 0.039      | 0.042     | 0.01   | 0.003  |
|                |         |        |            |           |        |        |
| MDA-MB-<br>468 |         | С      | oncentrati | on (ug/ml | )      |        |
| DMSO           | 25      | 30     | 50         | 60        | 100    | 120    |
| Set 1          | 0.301   | 0.234  | 0.891      | 0.873     | 0.931  | 0.09   |
| Set 2          | 0.793   | 0.619  | 0.773      | 1.123     | 0.798  | 0.303  |
| Set 3          | 0.83    | 0.859  | 0.606      | 0.985     | 0.606  | 0.425  |
| Set 4          | 0.927   | 1.004  | 0.247      | 0.428     | 0.403  | 0.253  |
| AVERAGE        | 0.713   | 0.679  | 0.629      | 0.852     | 0.685  | 0.268  |
| SEM            | 0.14    | 0.168  | 0.14       | 0.15      | 0.115  | 0.069  |
|                |         |        |            |           |        |        |
| Percent Cell   |         | C      | oncentrati | on (ug/ml | )      |        |
| Death          | 25      | 30     | 50         | 60        | 100    | 120    |
| Set 1          | 60.465  | 67.949 | 95.96      | 93.127    | 98.926 | 84.444 |
| Set 2          | 31.148  | 29.725 | 74.774     | 79.163    | 98.997 | 95.38  |
| Set 3          | 46.145  | 59.255 | 68.977     | 76.041    | 92.079 | 99.059 |
| Set 4          | 50.701  | 62.251 | 23.077     | 53.037    | 91.315 | 92.095 |
| AVERAGE        | 45.021  | 54.345 | 75.835     | 78.521    | 96.35  | 95.149 |
| SEM            | 5.306   | 7.404  | 13.481     | 7.233     | 1.835  | 2.747  |
|                |         |        |            |           |        |        |
| y-int          | -57.459 |        |            |           |        |        |
| slope          | 32.889  |        | IC50       | 26        | ug/ml  |        |
| R2             | 0.97    |        |            |           |        |        |

# Table 8.13: The ELISA reading results of T47D cell numbers when treated with

| T47D         |          | Со     | ncentratio | on (ug/ml) |        |        |
|--------------|----------|--------|------------|------------|--------|--------|
| Propolis-1   | 120      | 100    | 60         | 50         | 30     | 25     |
| Set 1        | 0.045    | 0.064  | 0.039      | 0.097      | 0.365  | 0.563  |
| Set 2        | 0.032    | 0.006  | 0.39       | 0.749      | 1.636  | 1.658  |
| Set 3        | 0.035    | 0.025  | 0.758      | 0.946      | 1.697  | 2.067  |
| Set 4        | 0.031    | 0.031  | 0.99       | 0.931      | 1.955  | 2.009  |
| AVERAGE      | 0.036    | 0.032  | 0.544      | 0.681      | 1.413  | 1.574  |
| SEM          | 0.003    | 0.012  | 0.209      | 0.2        | 0.356  | 0.349  |
|              |          |        |            |            |        |        |
| T47D         |          | Со     | ncentratio | on (ug/ml) |        |        |
| DMSO         | 120      | 100    | 60         | 50         | 30     | 25     |
| Set 1        | 1.152    | 2.009  | 2.511      | 2.554      | 2.452  | 2.159  |
| Set 2        | 1.461    | 2.105  | 2.543      | 2.458      | 2.518  | 2.548  |
| Set 3        | 1.466    | 1.679  | 2.233      | 2.137      | 2.668  | 2.483  |
| Set 4        | 0.263    | 1.498  | 1.15       | 1.728      | 1.975  | 2.099  |
| AVERAGE      | 1.086    | 1.823  | 2.109      | 2.219      | 2.403  | 2.322  |
| SEM          | 0.284    | 0.142  | 0.327      | 0.186      | 0.15   | 0.113  |
|              |          |        |            |            |        |        |
| Percent Cell |          | Co     | ncentratio | n (ug/ml)  |        |        |
| Death        | 120      | 100    | 60         | 50         | 30     | 25     |
| Set 1        | 96.094   | 96.814 | 98.447     | 96.202     | 85.114 | 73.923 |
| Set 2        | 97.81    | 99.715 | 84.664     | 69.528     | 35.028 | 34.929 |
| Set 3        | 97.613   | 98.511 | 66.055     | 55.732     | 36.394 | 16.754 |
| Set 4        | 88.213   | 97.931 | 13.913     | 46.123     | 1.013  | 4.288  |
| AVERAGE      | 96.685   | 98.245 | 74.206     | 69.311     | 41.199 | 32.214 |
| SEM          | 2.007    | 0.523  | 16.146     | 9.443      | 14.988 | 13.147 |
|              |          |        |            |            |        |        |
| y-int        | -104.651 |        |            |            |        |        |
| slope        | 43.289   |        | IC50       | 36         | ug/ml  |        |
| R2           | 0.98     |        |            |            |        |        |

# Table 8.14: The ELISA reading results of T47D cell numbers when treated with

| T47D         |          | Co     | ncentratio  | on (ug/ml) |        |        |
|--------------|----------|--------|-------------|------------|--------|--------|
| Propolis-2   | 120      | 100    | 60          | 50         | 30     | 25     |
| Set 1        | 0.12     | 0.134  | 0.203       | 0.283      | 1.062  | 0.64   |
| Set 2        | 0.06     | 0.252  | 0.391       | 1.502      | 1.724  | 1.616  |
| Set 3        | 0.126    | 0.07   | 1.041       | 1.547      | 1.847  | 1.715  |
| Set 4        | 0.085    | 0.069  | 0.585       | 1.05       | 1.935  | 2.164  |
| AVERAGE      | 0.098    | 0.131  | 0.555       | 1.096      | 1.642  | 1.534  |
| SEM          | 0.015    | 0.043  | 0.18        | 0.293      | 0.198  | 0.321  |
|              |          |        |             |            |        |        |
| T47D         |          | Co     | oncentratio | on (ug/ml) |        |        |
| DMSO         | 120      | 100    | 60          | 50         | 30     | 25     |
| Set 1        | 0.737    | 1.419  | 2.105       | 2.503      | 2.482  | 2.273  |
| Set 2        | 1.022    | 2.07   | 1.999       | 2.324      | 2.352  | 2.298  |
| Set 3        | 1.424    | 2.336  | 1.978       | 2.582      | 2.374  | 1.981  |
| Set 4        | 1.357    | 1.269  | 1.967       | 2.186      | 1.823  | 2.216  |
| AVERAGE      | 1.135    | 1.774  | 2.012       | 2.399      | 2.258  | 2.192  |
| SEM          | 0.159    | 0.256  | 0.032       | 0.089      | 0.148  | 0.072  |
|              |          |        |             |            |        |        |
| Percent Cell |          | Co     | oncentratio | on (ug/ml) |        |        |
| Death        | 120      | 100    | 60          | 50         | 30     | 25     |
| Set 1        | 83.718   | 90.557 | 90.356      | 88.694     | 57.212 | 71.843 |
| Set 2        | 94.129   | 87.826 | 80.44       | 35.37      | 26.701 | 29.678 |
| Set 3        | 91.152   | 97.003 | 47.371      | 40.085     | 22.199 | 13.428 |
| Set 4        | 93.736   | 94.563 | 70.259      | 51.967     | -6.144 | 2.347  |
| AVERAGE      | 91.366   | 92.616 | 72.416      | 54.314     | 27.281 | 30.018 |
| SEM          | 2.096    | 1.771  | 7.976       | 10.454     | 11.243 | 13.202 |
|              |          |        |             |            |        |        |
| y-int        | -119.562 |        |             |            |        |        |
| slope        | 45.188   |        | IC50        | 43         | ug/ml  |        |
| R2           | 0.96     |        |             |            |        |        |

| Table 8.15: The ELISA reading results of MCF7 cell numbers when treated with                 |
|----------------------------------------------------------------------------------------------|
| <b>Propolis-1 and DMSO.</b> Percent cell death and $IC_{50}$ value were calculated according |
| to this data.                                                                                |

| MCF7         |          | Co     | oncentratio | on (ug/ml | )      |         |
|--------------|----------|--------|-------------|-----------|--------|---------|
| Propolis-1   | 100      | 80     | 50          | 40        | 25     | 20      |
| Set 1        | 0.025    | 0.11   | 0.259       | 0.335     | 0.298  | 0.975   |
| Set 2        | 0.056    | 0.154  | 0.533       | 1.137     | 1.659  | 1.637   |
| Set 3        | 0.077    | 0.253  | 0.619       | 1.166     | 1.525  | 1.223   |
| Set 4        | 0.063    | 0.166  | 0.502       | 1.044     | 1.334  | 1.338   |
| AVERAGE      | 0.055    | 0.171  | 0.478       | 0.921     | 1.204  | 1.293   |
| SEM          | 0.011    | 0.03   | 0.077       | 0.197     | 0.309  | 0.137   |
|              |          |        |             |           |        |         |
| MCF7         |          | Co     | oncentratio | on (ug/ml | )      |         |
| DMSO         | 100      | 80     | 50          | 40        | 25     | 20      |
| Set 1        | 0.498    | 1.404  | 1.708       | 1.753     | 1.697  | 1.517   |
| Set 2        | 0.634    | 1.742  | 1.757       | 1.767     | 1.719  | 1.562   |
| Set 3        | 1.067    | 1.543  | 1.709       | 1.61      | 1.533  | 1.573   |
| Set 4        | 1.078    | 0.901  | 1.225       | 1.132     | 1.248  | 1.106   |
| AVERAGE      | 0.819    | 1.398  | 1.6         | 1.566     | 1.549  | 1.44    |
| SEM          | 0.149    | 0.179  | 0.125       | 0.149     | 0.109  | 0.112   |
|              |          |        |             |           |        |         |
| Percent Cell |          | Co     | oncentrati  | on (ug/ml | )      |         |
| Death        | 100      | 80     | 50          | 40        | 25     | 20      |
| Set 1        | 94.98    | 92.165 | 84.836      | 80.89     | 82.44  | 35.728  |
| Set 2        | 91.167   | 91.16  | 69.664      | 35.654    | 3.49   | -4.802  |
| Set 3        | 92.784   | 83.603 | 63.78       | 27.578    | 0.522  | 22.25   |
| Set 4        | 94.156   | 81.576 | 59.02       | 7.774     | -6.891 | -20.976 |
| AVERAGE      | 93.284   | 87.768 | 70.125      | 41.188    | 22.272 | 10.208  |
| SEM          | 0.723    | 2.308  | 4.862       | 13.406    | 18.163 | 11.122  |
|              |          |        |             |           |        |         |
| y-int        | -151.771 |        |             |           |        |         |
| slope        | 54.181   |        | IC50        | 41        | ug/ml  |         |
| R2           | 0.97     |        |             |           |        |         |

Table 8.16: The ELISA reading results of MCF7 cell numbers when treated with **Propolis-2 and DMSO.** Percent cell death and IC<sub>50</sub> value were calculated according to this data.

| MCF7         |          | С      | oncentrat | ion (ug/m | I)      |         |
|--------------|----------|--------|-----------|-----------|---------|---------|
| Propolis-2   | 120      | 100    | 60        | 50        | 30      | 25      |
| Set 1        | 0.116    | 0.123  | 0.332     | 0.259     | 1.878   | 0.724   |
| Set 2        | 0.053    | 0.099  | 0.351     | 1.036     | 1.735   | 2.044   |
| Set 3        | 0.087    | 0.178  | 0.624     | 1.355     | 0.602   | 2.06    |
| Set 4        | 0.099    | 0.15   | 0.71      | 1.358     | 0.7     | 0.397   |
| AVERAGE      | 0.089    | 0.138  | 0.504     | 1.002     | 1.807   | 1.609   |
| SEM          | 0.013    | 0.017  | 0.096     | 0.259     | 0.051   | 0.383   |
|              |          |        |           |           |         |         |
| MCF7         |          | C      | oncentrat | ion (ug/m | l)      |         |
| DMSO         | 120      | 100    | 60        | 50        | 30      | 25      |
| Set 1        | 0.907    | 1.16   | 2.113     | 2.175     | 2.09    | 2.049   |
| Set 2        | 0.615    | 1.312  | 1.887     | 2.293     | 1.917   | 2.039   |
| Set 3        | 0.741    | 0.952  | 1.613     | 1.853     | 0.996   | 1.41    |
| Set 4        | 1.071    | 1.488  | 0.637     | 1.144     | 0.922   | 0.909   |
| AVERAGE      | 0.834    | 1.228  | 1.563     | 1.866     | 1.481   | 1.602   |
| SEM          | 0.099    | 0.114  | 0.325     | 0.258     | 0.304   | 0.275   |
|              |          |        |           |           |         |         |
| Percent Cell |          | C      | oncentrat | ion (ug/m | I)      |         |
| Death        | 120      | 100    | 60        | 50        | 30      | 25      |
| Set 1        | 87.211   | 89.397 | 84.288    | 88.092    | 10.144  | 64.666  |
| Set 2        | 91.382   | 92.454 | 81.399    | 54.819    | 9.494   | -0.245  |
| Set 3        | 88.259   | 81.303 | 61.314    | 26.875    | 39.558  | -46.099 |
| Set 4        | 90.756   | 89.919 | -11.46    | -18.706   | 24.078  | 56.326  |
| AVERAGE      | 89.329   | 88.762 | 67.754    | 46.302    | -22.012 | -0.437  |
| SEM          | 0.861    | 2.095  | 19.622    | 19.668    | 11.379  | 22.883  |
|              |          |        |           |           |         |         |
| y-int        | -270.841 |        |           |           |         |         |
| slope        | 78.093   |        | IC50      | 61        | ug/ml   |         |
| R2           | 0.89     |        |           |           |         |         |

#### Table 8.17: The ELISA reading results of HCC-1937 cell numbers when treated with

| HCC-1937     |         | С      | oncentrati | on (ug/ml | )      |        |
|--------------|---------|--------|------------|-----------|--------|--------|
| Propolis-1   | 30      | 37.5   | 60         | 75        | 120    | 150    |
| Set 1        | 0.63    | 0.69   | 0.552      | 0.555     | 0.433  | 0.443  |
| Set 2        | 0.631   | 0.559  | 0.516      | 0.437     | 0.417  | 0.332  |
| Set 3        | 0.427   | 0.52   | 0.387      | 0.463     | 0.099  | 0.291  |
| Set 4        | 0.629   | 0.504  | 0.492      | 0.397     | 0.403  | 0.276  |
| AVERAGE      | 0.579   | 0.568  | 0.487      | 0.463     | 0.338  | 0.336  |
| SEM          | 0.051   | 0.042  | 0.035      | 0.034     | 0.08   | 0.038  |
|              |         |        |            |           |        |        |
| HCC-1937     |         | C      | oncentrati | on (ug/ml | )      |        |
| DMSO         | 30      | 37.5   | 60         | 75        | 120    | 150    |
| Set 1        | 0.807   | 0.864  | 0.827      | 0.806     | 0.775  | 0.68   |
| Set 2        | 0.775   | 0.86   | 0.81       | 0.81      | 0.732  | 0.704  |
| Set 3        | 0.746   | 0.788  | 0.758      | 0.738     | 0.707  | 0.627  |
| Set 4        | 0.833   | 0.772  | 0.745      | 0.771     | 0.713  | 0.689  |
| AVERAGE      | 0.79    | 0.821  | 0.785      | 0.781     | 0.732  | 0.675  |
| SEM          | 0.019   | 0.024  | 0.02       | 0.017     | 0.015  | 0.017  |
|              |         |        |            |           |        |        |
| Percent Cell |         | C      | oncentrati | on (ug/ml | )      |        |
| Death        | 30      | 37.5   | 60         | 75        | 120    | 150    |
| Set 1        | 21.933  | 20.139 | 33.253     | 31.141    | 44.129 | 34.853 |
| Set 2        | 18.581  | 35     | 36.296     | 46.049    | 43.033 | 52.841 |
| Set 3        | 42.761  | 34.01  | 48.945     | 37.263    | 85.997 | 53.589 |
| Set 4        | 24.49   | 34.715 | 33.96      | 48.508    | 43.478 | 59.942 |
| AVERAGE      | 26.709  | 30.816 | 37.962     | 40.717    | 53.825 | 50.222 |
| SEM          | 4.686   | 3.131  | 3.177      | 3.471     | 9.193  | 4.669  |
|              |         |        |            |           |        |        |
| y-int        | -28.656 |        |            |           |        |        |
| slope        | 16.334  |        | IC50       | 123       | ug/ml  |        |
| R2           | 0.95    |        |            |           |        |        |

# Table 8.18: The ELISA reading results of HCC-1937 cell numbers when treated with

| HCC-1937     |          | Concer  | ntration (u | g/ml)   |         |
|--------------|----------|---------|-------------|---------|---------|
| Propolis-2   | 150      | 120     | 75          | 60      | 30      |
| Set 1        | 0.01     | 0.06    | 0.104       | 0.096   | 0.172   |
| Set 2        | 0.022    | 0.169   | 0.324       | 0.445   | 0.781   |
| Set 3        | 0.037    | 0.204   | 0.437       | 0.482   | 0.778   |
| Set 4        | 0.052    | 0.245   | 0.319       | 0.563   | 0.588   |
| AVERAGE      | 0.03     | 0.17    | 0.296       | 0.397   | 0.58    |
| SEM          | 0.009    | 0.04    | 0.07        | 0.103   | 0.143   |
|              |          |         |             |         |         |
| HCC-1937     |          | Concer  | ntration (u | g/ml)   |         |
| DMSO         | 150      | 120     | 75          | 60      | 30      |
| Set 1        | 0.09     | 0.419   | 0.457       | 0.238   | 0.626   |
| Set 2        | 0.129    | 0.43    | 0.515       | 0.39    | 0.601   |
| Set 3        | 0.098    | 0.231   | 0.313       | 0.475   | 0.55    |
| Set 4        | 0.147    | 0.187   | 0.223       | 0.505   | 0.361   |
| AVERAGE      | 0.116    | 0.317   | 0.377       | 0.402   | 0.535   |
| SEM          | 0.013    | 0.063   | 0.067       | 0.06    | 0.06    |
|              |          |         |             |         |         |
| Percent Cell |          | Concer  | ntration (u | g/ml)   |         |
| Death        | 150      | 120     | 75          | 60      | 30      |
| Set 1        | 88.889   | 85.68   | 77.243      | 59.664  | 72.524  |
| Set 2        | 82.946   | 60.698  | 37.087      | -14.103 | -29.95  |
| Set 3        | 62.245   | 11.688  | -39.617     | -1.474  | -41.455 |
| Set 4        | 64.626   | -31.016 | -43.049     | -11.485 | -62.881 |
| AVERAGE      | 74.138   | 46.372  | 21.485      | 1.244   | -8.411  |
| SEM          | 5.735    | 22.72   | 25.813      | 15.135  | 26.119  |
|              |          |         |             |         |         |
| y-int        | -190.347 |         |             |         |         |
| slope        | 50.278   |         | IC50        | 119     | ug/ml   |
| R2           | 0.88     |         |             |         | -       |

#### Table 8.19: The ELISA reading results of MDA-MB-157 cell numbers when treated

with Propolis-1 and DMSO. Percent cell death and IC<sub>50</sub> value were calculated according to this data.

| MDA-MB-157   |          | C      | oncentrati | ion (ug/m | I)      |         |
|--------------|----------|--------|------------|-----------|---------|---------|
| Propolis-1   | 120      | 100    | 60         | 50        | 30      | 25      |
| Set 1        | 0.179    | 0.105  | 0.267      | 0.307     | 0.376   | 0.386   |
| Set 2        | 0.232    | 0.161  | 0.215      | 0.497     | 0.474   | 0.689   |
| Set 3        | 0.211    | 0.195  | 0.263      | 0.446     | 0.48    | 0.585   |
| Set 4        | 0.233    | 0.158  | 0.299      | 0.175     | 0.484   | 0.369   |
| AVERAGE      | 0.214    | 0.155  | 0.261      | 0.356     | 0.454   | 0.507   |
| SEM          | 0.013    | 0.019  | 0.017      | 0.073     | 0.026   | 0.078   |
|              |          |        |            |           |         |         |
| MDA-MB-157   |          | C      | oncentrati | ion (ug/m | I)      |         |
| DMSO         | 120      | 100    | 60         | 50        | 30      | 25      |
| Set 1        | 0.421    | 0.478  | 0.477      | 0.483     | 0.41    | 0.536   |
| Set 2        | 0.459    | 0.46   | 0.454      | 0.465     | 0.484   | 0.426   |
| Set 3        | 0.403    | 0.445  | 0.478      | 0.5       | 0.503   | 0.506   |
| Set 4        | 0.413    | 0.413  | 0.421      | 0.439     | 0.413   | 0.427   |
| AVERAGE      | 0.424    | 0.449  | 0.458      | 0.472     | 0.453   | 0.474   |
| SEM          | 0.012    | 0.014  | 0.013      | 0.013     | 0.024   | 0.028   |
|              |          |        |            |           |         |         |
| Percent Cell |          | C      | oncentrati | ion (ug/m | I)      |         |
| Death        | 120      | 100    | 60         | 50        | 30      | 25      |
| Set 1        | 57.482   | 78.033 | 44.025     | 36.439    | 8.293   | 27.985  |
| Set 2        | 49.455   | 65     | 52.643     | -6.882    | 2.066   | -61.737 |
| Set 3        | 47.643   | 56.18  | 44.979     | 10.8      | 4.573   | -15.613 |
| Set 4        | 43.584   | 61.743 | 28.979     | 60.137    | -17.191 | 13.583  |
| AVERAGE      | 49.528   | 65.479 | 43.013     | 24.576    | -0.221  | -6.962  |
| SEM          | 2.527    | 4.016  | 4.288      | 12.708    | 4.926   | 17.15   |
|              |          |        |            |           |         |         |
| y-int        | -144.434 |        |            |           |         |         |
| slope        | 43.383   |        | IC50       | 88        | ug/ml   |         |
| R2           | 0.9      |        |            |           |         |         |

# Table 8.20: The ELISA reading results of MDA-MB-157 cell numbers when treated

| MDA-MB-<br>157 |         | С      | oncentrati | on (ug/ml | )      |        |
|----------------|---------|--------|------------|-----------|--------|--------|
| Propolis-2     | 30      | 37.5   | 60         | 75        | 120    | 150    |
| Set 1          | 0.983   | 0.782  | 0.684      | 0.371     | 0.138  | 0.181  |
| Set 2          | 0.88    | 0.905  | 0.953      | 0.742     | 0.341  | 0.287  |
| Set 3          | 0.828   | 1.086  | 1.097      | 0.841     | 0.445  | 0.478  |
| AVERAGE        | 0.897   | 0.924  | 0.911      | 0.651     | 0.308  | 0.315  |
| SEM            | 0.046   | 0.088  | 0.121      | 0.143     | 0.09   | 0.087  |
|                |         |        |            |           |        |        |
| MDA-MB-<br>157 |         | С      | oncentrati | on (ug/ml | )      |        |
| DMSO           | 30      | 37.5   | 60         | 75        | 120    | 150    |
| Set 1          | 1.301   | 1.007  | 1.896      | 1.553     | 1.534  | 1.045  |
| Set 2          | 1.303   | 1.34   | 1.654      | 1.711     | 1.487  | 1.353  |
| Set 3          | 1.145   | 1.689  | 1.56       | 1.634     | 1.661  | 1.141  |
| AVERAGE        | 1.25    | 1.345  | 1.703      | 1.633     | 1.561  | 1.18   |
| SEM            | 0.052   | 0.197  | 0.1        | 0.046     | 0.052  | 0.091  |
|                |         |        |            |           |        |        |
| Percent Cell   |         | C      | oncentrati | on (ug/ml | )      |        |
| Death          | 30      | 37.5   | 60         | 75        | 120    | 150    |
| Set 1          | 24.443  | 22.344 | 63.924     | 76.111    | 91.004 | 82.679 |
| Set 2          | 32.464  | 32.463 | 42.382     | 56.634    | 77.068 | 78.788 |
| Set 3          | 27.686  | 35.702 | 29.679     | 48.531    | 73.209 | 58.107 |
| AVERAGE        | 28.24   | 31.301 | 46.506     | 60.135    | 80.269 | 73.305 |
| SEM            | 1.902   | 3.301  | 8.168      | 6.683     | 4.413  | 6.226  |
|                |         |        |            |           |        |        |
| y-int          | -86.302 |        |            |           |        |        |
| slope          | 33.19   |        | IC50       | 61        | ug/ml  |        |
| R2             | 0.94    |        |            |           |        |        |

# Table 8.21: The ELISA reading results of BT-20 cell numbers when treated with

| BT-20        |          | Co      | oncentratio | on (ug/ml) | )       |         |
|--------------|----------|---------|-------------|------------|---------|---------|
| Propolis-1   | 150      | 120     | 75          | 60         | 37.5    | 30      |
| Set 1        | 0.02     | 0.089   | 0.101       | 0.095      | 0.168   | 0.202   |
| Set 2        | 0.004    | 0.082   | 0.189       | 0.743      | 0.683   | 0.731   |
| Set 3        | 0.025    | -0.011  | 0.566       | 0.4        | 0.91    | 0.642   |
| Set 4        | 0.028    | 0.303   | 0.51        | 0.759      | 0.87    | 1.013   |
| AVERAGE      | 0.019    | 0.116   | 0.342       | 0.499      | 0.658   | 0.647   |
| SEM          | 0.005    | 0.066   | 0.115       | 0.158      | 0.171   | 0.168   |
|              |          |         |             |            |         |         |
| BT-20        |          | Co      | oncentratio | on (ug/ml) | )       |         |
| DMSO         | 150      | 120     | 75          | 60         | 37.5    | 30      |
| Set 1        | 0.146    | 0.139   | 0.362       | 0.962      | 0.335   | 0.359   |
| Set 2        | 0.103    | 0.412   | 0.915       | 0.976      | 0.663   | 0.542   |
| Set 3        | 0.126    | 0.738   | 0.921       | 0.945      | 0.777   | 0.948   |
| Set 4        | 0.092    | 0.778   | 1.16        | 0.641      | 0.858   | 0.974   |
| AVERAGE      | 0.117    | 0.517   | 0.84        | 0.881      | 0.658   | 0.706   |
| SEM          | 0.012    | 0.15    | 0.169       | 0.08       | 0.115   | 0.152   |
|              |          |         |             |            |         |         |
| Percent Cell |          | Co      | ncentrati   | on (ug/ml) | )       |         |
| Death        | 150      | 120     | 75          | 60         | 37.5    | 30      |
| Set 1        | 86.301   | 35.971  | 72.099      | 90.125     | 49.851  | 43.733  |
| Set 2        | 96.117   | 80.097  | 79.344      | 23.873     | -3.017  | -34.871 |
| Set 3        | 80.159   | 101.491 | 38.545      | 57.672     | -17.117 | 32.278  |
| Set 4        | 69.565   | 61.054  | 56.034      | -18.409    | -1.399  | -4.004  |
| AVERAGE      | 83.761   | 77.563  | 59.286      | 43.36      | 0       | 8.357   |
| SEM          | 4.821    | 12.199  | 7.872       | 20.164     | 12.818  | 15.497  |
|              |          |         |             |            |         |         |
| y-int        | -181.212 |         |             |            |         |         |
| slope        | 53.877   |         | IC50        | 73         | ug/ml   |         |
| R2           | 0.94     |         |             |            |         |         |

# Table 8.22: The ELISA reading results of BT-20 cell numbers when treated with

| BT-20        |         | Conce   | entration   | (ug/ml)  |          |
|--------------|---------|---------|-------------|----------|----------|
| Propolis-2   | 120     | 100     | 60          | 50       | 30       |
| Set 1        | 0.084   | 0.45    | 0.933       | 1.06     | 1.188    |
| Set 2        | 0.115   | 0.488   | 1.194       | 1.352    | 1.41     |
| Set 3        | 0.056   | 0.625   | 1.219       | 1.186    | 1.184    |
| AVERAGE      | 0.085   | 0.521   | 1.115       | 1.199    | 1.261    |
| SEM          | 0.017   | 0.053   | 0.091       | 0.085    | 0.075    |
|              |         |         |             |          |          |
| BT-20        |         | Conce   | entration   | (ug/ml)  |          |
| DMSO         | 120     | 100     | 60          | 50       | 30       |
| Set 1        | 0.161   | 1.154   | 0.961       | 0.991    | 1.168    |
| Set 2        | 0.139   | 1.537   | 0.817       | 0.525    | 0.546    |
| Set 3        | 0.416   | 0.876   | 0.694       | 0.596    | 0.509    |
| AVERAGE      | 0.21675 | 0.96525 | 0.6995      | 0.58725  | 0.61875  |
| SEM          | 0.089   | 0.192   | 0.077       | 0.145    | 0.214    |
|              |         |         |             |          |          |
| Percent Cell |         | Conce   | entration   | (ug/ml)  |          |
| Death        | 120     | 100     | 60          | 50       | 30       |
| Set 1        | 47.826  | 61.005  | 2.914       | -6.963   | -1.712   |
| Set 2        | 17.266  | 68.25   | -<br>46.144 | -157.524 | -158.242 |
| Set 3        | 86.538  | 28.653  | -<br>75.648 | -98.993  | -132.613 |
| AVERAGE      | 60.784  | 46.024  | -59.4       | -104.172 | -103.798 |
| SEM          | 16.63   | 10.12   | 19.559      | 36.089   | 39.62    |
|              |         |         |             |          |          |
| y-int        | -595.77 |         |             |          |          |
| slope        | 135.493 |         | IC50        | 117      | ug/ml    |
| R2           | 0.88    |         |             |          |          |

#### Table 8.23: The ELISA reading results of MDA-MB-361 cell numbers when treated

| MDA-MB-361   |         | C       | oncentratio | n (ug/ml)  |        |        |
|--------------|---------|---------|-------------|------------|--------|--------|
| Propolis-1   | 15      | 20      | 30          | 40         | 60     | 80     |
| Set 1        | 1.109   | 1.177   | 0.827       | 0.918      | 0.692  | 0.549  |
| Set 2        | 1.923   | 1.847   | 1.143       | 0.857      | 0.954  | 0.981  |
| Set 3        | 2.292   | 1.497   | 1.469       | 0.842      | 1.11   | 0.084  |
| Set 4        | 2.292   | 1.711   | 0.969       | 1.161      | 1.138  | 0.779  |
| AVERAGE      | 1.904   | 1.558   | 1.102       | 0.945      | 0.974  | 0.598  |
| SEM          | 0.279   | 0.146   | 0.138       | 0.074      | 0.102  | 0.193  |
|              |         |         |             |            |        |        |
| MDA-MB-361   |         | C       | oncentratio | on (ug/ml) |        |        |
| DMSO         | 15      | 20      | 30          | 40         | 60     | 80     |
| Set 1        | 2.158   | 0.795   | 1.783       | 1.835      | 2.389  | 2.032  |
| Set 2        | 2.048   | 1.515   | 2.072       | 1.403      | 2.334  | 2.264  |
| Set 3        | 1.872   | 1.807   | 2.045       | 1.886      | 1.514  | 1.678  |
| Set 4        | 2.313   | 2.109   | 0.824       | 1.297      | 2.103  | 1.735  |
| AVERAGE      | 2.098   | 1.557   | 1.681       | 1.605      | 2.085  | 1.927  |
| SEM          | 0.093   | 0.281   | 0.293       | 0.149      | 0.2    | 0.136  |
|              |         |         |             |            |        |        |
| Percent Cell |         | C       | oncentratio | n (ug/ml)  |        |        |
| Death        | 15      | 20      | 30          | 40         | 60     | 80     |
| Set 1        | 48.61   | -48.05  | 53.617      | 49.973     | 71.034 | 72.982 |
| Set 2        | 6.104   | -21.914 | 44.836      | 38.917     | 59.126 | 56.67  |
| Set 3        | -22.436 | 17.156  | 28.166      | 55.355     | 26.684 | 94.994 |
| Set 4        | 0.908   | 18.872  | -17.597     | 10.486     | 45.887 | 55.101 |
| AVERAGE      | 9.247   | -0.064  | 34.444      | 41.121     | 53.285 | 68.967 |
| SEM          | 12.82   | 14.16   | 13.825      | 8.679      | 8.253  | 8.039  |
|              |         |         |             |            |        |        |
| y-int        | -104.55 |         |             |            |        |        |
| slope        | 39.224  |         | IC50        | 51         | ug/ml  |        |
| R2           | 0.92    |         |             |            |        |        |

# Table 8.24: The ELISA reading results of MDA-MB-361 cell numbers when treated

| MDA-MB-<br>361 |          | Co     | oncentratio | on (ug/ml) |        |        |
|----------------|----------|--------|-------------|------------|--------|--------|
| Propolis-2     | 30       | 37.5   | 60          | 75         | 120    | 150    |
| Set 1          | 0.455    | 0.317  | 0.219       | 0.401      | 0.127  | 0.03   |
| Set 2          | 0.779    | 0.797  | 0.489       | 0.692      | 0.432  | 0.053  |
| Set 3          | 1.757    | 1.289  | 0.724       | 0.471      | 0.39   | 0.059  |
| Set 4          | 1.748    | 1.353  | 0.622       | 0.489      | 0.269  | 0.099  |
| AVERAGE        | 1.185    | 0.939  | 0.514       | 0.513      | 0.305  | 0.06   |
| SEM            | 0.334    | 0.242  | 0.109       | 0.063      | 0.069  | 0.014  |
|                |          |        |             |            |        |        |
| MDA-MB-<br>361 |          | Co     | oncentratio | on (ug/ml) |        |        |
| DMSO           | 30       | 37.5   | 60          | 75         | 120    | 150    |
| Set 1          | 0.74     | 0.825  | 1.908       | 1.797      | 1.631  | 1.382  |
| Set 2          | 0.927    | 0.885  | 1.713       | 1.684      | 1.557  | 1.54   |
| Set 3          | 1.728    | 1.737  | 1.586       | 1.614      | 1.442  | 1.594  |
| Set 4          | 1.924    | 1.857  | 0.88        | 0.773      | 1.628  | 0.878  |
| AVERAGE        | 1.33     | 1.326  | 1.522       | 1.467      | 1.565  | 1.349  |
| SEM            | 0.292    | 0.273  | 0.224       | 0.234      | 0.044  | 0.163  |
|                |          |        |             |            |        |        |
| Percent Cell   |          | Co     | oncentratio | on (ug/ml) |        |        |
| Death          | 30       | 37.5   | 60          | 75         | 120    | 150    |
| Set 1          | 38.514   | 61.576 | 88.522      | 77.685     | 92.213 | 97.829 |
| Set 2          | 15.965   | 9.944  | 71.454      | 58.907     | 72.254 | 96.558 |
| Set 3          | -1.678   | 25.792 | 54.351      | 70.818     | 72.954 | 96.299 |
| Set 4          | 9.148    | 27.141 | 29.318      | 36.74      | 83.477 | 88.724 |
| AVERAGE        | 10.902   | 29.186 | 66.229      | 65.031     | 80.511 | 95.552 |
| SEM            | 7.425    | 9.431  | 11.004      | 7.828      | 4.114  | 1.799  |
|                |          |        |             |            |        |        |
| y-int          | -148.202 |        |             |            |        |        |
| slope          | 49.003   |        | IC50        | 57         | ug/ml  |        |
| R2             | 0.94     |        |             |            |        |        |

# Table 8.25: The ELISA reading results of BT-474 cell numbers when treated with

| BT-474       |        |        | Concentra | tion (ug/n | nl)    |         |
|--------------|--------|--------|-----------|------------|--------|---------|
| Propolis-1   | 30     | 37.5   | 60        | 75         | 120    | 150     |
| Set 1        | 1.454  | 1.752  | 0.715     | 0.779      | 1.04   | 1.433   |
| Set 2        | 1.878  | 0.402  | 0.119     | 0.51       | 1.517  | 0.682   |
| Set 3        | 0.547  | 1.032  | 1.333     | 0.702      | 0.138  | -0.012  |
| AVERAGE      | 1.293  | 1.062  | 0.722     | 0.664      | 0.898  | 0.701   |
| SEM          | 0.393  | 0.39   | 0.35      | 0.08       | 0.404  | 0.417   |
|              |        |        |           |            |        |         |
| BT-474       |        |        | Concentra | tion (ug/n | nl)    |         |
| DMSO         | 30     | 37.5   | 60        | 75         | 120    | 150     |
| Set 1        | 2.128  | 1.787  | 1.21      | 1.612      | 1.697  | 1.734   |
| Set 2        | 2.317  | 2.219  | 1.176     | 0.728      | 2.337  | 1.015   |
| Set 3        | 2.744  | 2.19   | 1.989     | 1.73       | 2.464  | 2.679   |
| AVERAGE      | 2.396  | 2.065  | 1.458     | 1.357      | 2.166  | 1.809   |
| SEM          | 0.182  | 0.139  | 0.266     | 0.316      | 0.237  | 0.482   |
|              |        |        |           |            |        |         |
| Percent Cell |        |        | Concentra | tion (ug/n | nl)    |         |
| Death        | 30     | 37.5   | 60        | 75         | 120    | 150     |
| Set 1        | 31.673 | 1.959  | 40.909    | 51.675     | 38.715 | 17.359  |
| Set 2        | 18.947 | 81.884 | 89.881    | 29.945     | 35.088 | 32.808  |
| Set 3        | 80.066 | 52.877 | 32.981    | 59.422     | 94.399 | 100.448 |
| AVERAGE      | 46.035 | 48.571 | 50.48     | 51.069     | 58.541 | 61.249  |
| SEM          | 15.218 | 19.093 | 14.576    | 7.298      | 15.688 | 21.075  |
|              |        |        |           |            |        |         |
| y-int        | 14.512 |        |           |            |        |         |
| slope        | 9.069  |        | IC50      | 50         | ug/ml  |         |
| R2           | 0.93   |        |           |            |        |         |

# Table 8.26: The ELISA reading results of BT-474 cell numbers when treated with

| BT-474       |          | Concent | ration (ug | ;/ml)  |          |
|--------------|----------|---------|------------|--------|----------|
| Propolis-2   | 30       | 60      | 75         | 120    | 150      |
| Set 1        | 0.513    | 0.418   | 0.45       | 0.172  | 0.064    |
| Set 2        | 0.508    | 0.91    | 0.911      | 0.384  | 0.157    |
| Set 3        | 0.346    | 1.081   | 0.835      | 0.134  | 0.088    |
| AVERAGE      | 0.456    | 0.803   | 0.732      | 0.23   | 0.103    |
| SEM          | 0.055    | 0.199   | 0.143      | 0.078  | 0.028    |
|              |          |         |            |        |          |
| BT-474       |          | Concent | ration (ug | ;/ml)  |          |
| DMSO         | 30       | 60      | 75         | 120    | 150      |
| Set 1        | 0.283    | 0.455   | 1.81       | 1.667  | 0.468    |
| Set 2        | 0.319    | 0.676   | 1.276      | 0.428  | 0.503    |
| Set 3        | 0.359    | 1.73    | 1.22       | 0.823  | 0.224    |
| AVERAGE      | 0.32     | 0.954   | 1.435      | 0.973  | 0.398    |
| SEM          | 0.022    | 0.393   | 0.188      | 0.365  | 0.088    |
|              |          |         |            |        |          |
| Percent Cell |          | Concent | ration (ug | ;/ml)  |          |
| Death        | 30       | 60      | 75         | 120    | 150      |
| Set 1        | -81.272  | 8.132   | 75.138     | 89.682 | 86.325   |
| Set 2        | -59.248  | -34.615 | 28.605     | 10.28  | 68.787   |
| Set 3        | 3.621    | 37.514  | 31.557     | 83.718 | 60.714   |
| AVERAGE      | -42.5    | 15.828  | 48.99      | 76.362 | 74.121   |
| SEM          | 20.787   | 17.454  | 12.334     | 21.299 | 6.204    |
|              |          |         |            |        |          |
| y-int        | -296.566 |         |            |        |          |
| slope        | 76.61    |         | IC50       | 92     | ug/ml    |
| R2           | 0.95     |         |            |        | <u>.</u> |

# Table 8.27: The ELISA reading results of ZR-75-1 cell numbers when treated withPropolis-1 and DMSO. Percent cell death and $IC_{50}$ value were calculated accordingto this data.

| ZR-75-1      |          | Со     | ncentratio | on (ug/ml) |        |        |
|--------------|----------|--------|------------|------------|--------|--------|
| Propolis-1   | 120      | 100    | 80         | 75         | 60     | 50     |
| Set 1        | 0.064    | 0.039  | 0.097      | 0.365      | 0.563  | 0.914  |
| Set 2        | 0.006    | 0.39   | 0.749      | 1.636      | 1.658  | 2.378  |
| Set 3        | 0.025    | 0.758  | 0.946      | 1.697      | 2.067  | 2.441  |
| Set 4        | 0.031    | 0.99   | 0.931      | 1.955      | 2.009  | 2.378  |
| AVERAGE      | 0.032    | 0.544  | 0.681      | 1.413      | 1.574  | 2.028  |
| SEM          | 0.012    | 0.209  | 0.2        | 0.356      | 0.349  | 0.372  |
|              |          |        |            |            |        |        |
| ZR-75-1      |          | Со     | ncentratio | on (ug/ml) |        |        |
| DMSO         | 120      | 100    | 80         | 75         | 60     | 50     |
| Set 1        | 2.009    | 2.511  | 2.554      | 2.452      | 2.159  | 2.369  |
| Set 2        | 2.105    | 2.543  | 2.458      | 2.518      | 2.548  | 2.307  |
| Set 3        | 1.679    | 2.233  | 2.137      | 2.668      | 2.483  | 2.505  |
| Set 4        | 1.498    | 1.15   | 1.728      | 1.975      | 2.099  | 2.386  |
| AVERAGE      | 1.823    | 2.109  | 2.219      | 2.403      | 2.322  | 2.392  |
| SEM          | 0.142    | 0.327  | 0.186      | 0.15       | 0.113  | 0.041  |
|              |          |        |            |            |        |        |
| Percent Cell |          | Со     | ncentratio | on (ug/ml) |        |        |
| Death        | 120      | 100    | 80         | 75         | 60     | 50     |
| Set 1        | 96.814   | 98.447 | 96.202     | 85.114     | 73.923 | 61.418 |
| Set 2        | 99.715   | 84.664 | 69.528     | 35.028     | 34.929 | -3.078 |
| Set 3        | 98.511   | 66.055 | 55.732     | 36.394     | 16.754 | 2.555  |
| Set 4        | 97.931   | 13.913 | 46.123     | 1.013      | 4.288  | 0.335  |
| AVERAGE      | 98.245   | 74.206 | 69.311     | 41.199     | 32.214 | 15.217 |
| SEM          | 0.523    | 16.146 | 9.443      | 14.988     | 13.147 | 13.349 |
|              |          |        |            |            |        |        |
| y-int        | -349.542 |        |            |            |        |        |
| slope        | 93.018   |        | IC50       | 73         | ug/ml  |        |
| R2           | 0.94     |        |            |            |        |        |

# Table 8.28: The ELISA reading results of ZR-75-1 cell numbers when treated with

| ZR-75-1      |         | Conce  | ntration (u | ug/ml) |         |
|--------------|---------|--------|-------------|--------|---------|
| Propolis-2   | 120     | 100    | 60          | 50     | 25      |
| Set 1        | 0.103   | 0.049  | 0.589       | 0.526  | 0.701   |
| Set 2        | 0.125   | 0.08   | 0.635       | 0.684  | 0.755   |
| Set 3        | 0.078   | 0.271  | 0.681       | 0.785  | 0.838   |
| AVERAGE      | 0.102   | 0.133  | 0.635       | 0.665  | 0.765   |
| SEM          | 0.014   | 0.069  | 0.027       | 0.075  | 0.04    |
|              |         |        |             |        |         |
| ZR-75-1      |         | Conce  | ntration (u | ug/ml) |         |
| DMSO         | 120     | 100    | 60          | 50     | 25      |
| Set 1        | 0.198   | 0.091  | 0.94        | 1.066  | 0.93    |
| Set 2        | 0.32    | 0.409  | 1.258       | 1.318  | 0.886   |
| Set 3        | 0.191   | 0.716  | 0.958       | 1.139  | 0.72    |
| AVERAGE      | 0.236   | 0.405  | 1.052       | 1.174  | 0.845   |
| SEM          | 0.042   | 0.18   | 0.103       | 0.075  | 0.064   |
|              |         |        |             |        |         |
| Percent Cell |         | Conce  | ntration (u | ug/ml) |         |
| Death        | 120     | 100    | 60          | 50     | 25      |
| Set 1        | 47.98   | 46.154 | 37.34       | 50.657 | 24.624  |
| Set 2        | 60.938  | 80.44  | 49.523      | 48.103 | 14.786  |
| Set 3        | 59.162  | 62.151 | 28.914      | 31.08  | -16.389 |
| AVERAGE      | 56.78   | 67.16  | 39.639      | 43.356 | 9.467   |
| SEM          | 3.319   | 8.18   | 4.894       | 5.017  | 10.107  |
|              |         |        |             |        |         |
| y-int        | -93.951 |        |             |        |         |
| slope        | 33.28   |        | IC50        | 76     | ug/ml   |
| R2           | 0.89    |        |             |        |         |

# Table 8.29: The ELISA reading results of hTERT-HME1 cell numbers when treated

with Propolis-1 and DMSO. Percent cell death and IC<sub>50</sub> value were calculated according to this data.

| hTERT-HME1   |         | С      | oncentrati | on (ug/ml | )      |        |
|--------------|---------|--------|------------|-----------|--------|--------|
| Propolis-1   | 25      | 30     | 50         | 60        | 100    | 120    |
| Set 1        | 0.118   | 0.05   | 0.05       | 0.039     | 0.036  | 0.045  |
| Set 2        | 0.548   | 0.557  | 0.624      | 0.093     | 0.041  | 0.092  |
| Set 3        | 0.893   | 0.719  | 0.538      | 0.387     | 0.153  | 0.087  |
| Set 4        | 0.723   | 0.713  | 0.371      | 0.155     | 0.082  | 0.087  |
| AVERAGE      | 0.571   | 0.51   | 0.396      | 0.169     | 0.078  | 0.078  |
| SEM          | 0.166   | 0.158  | 0.127      | 0.077     | 0.027  | 0.011  |
|              |         |        |            |           |        |        |
| hTERT-HME1   |         | C      | oncentrati | on (ug/ml | )      |        |
| DMSO         | 25      | 30     | 50         | 60        | 100    | 120    |
| Set 1        | 0.237   | 0.304  | 0.272      | 0.922     | 1.02   | 0.399  |
| Set 2        | 0.85    | 0.78   | 0.909      | 1.161     | 1.048  | 0.38   |
| Set 3        | 0.889   | 1.065  | 1.091      | 1.15      | 1.122  | 0.542  |
| Set 4        | 1.093   | 1.219  | 1.099      | 0.389     | 0.251  | 0.152  |
| AVERAGE      | 0.767   | 0.842  | 0.843      | 0.906     | 0.86   | 0.368  |
| SEM          | 0.185   | 0.201  | 0.195      | 0.181     | 0.204  | 0.081  |
|              |         |        |            |           |        |        |
| Percent Cell |         | С      | oncentrati | on (ug/ml | )      |        |
| Death        | 25      | 30     | 50         | 60        | 100    | 120    |
| Set 1        | 50.211  | 83.553 | 81.618     | 95.77     | 96.471 | 88.722 |
| Set 2        | 35.529  | 28.59  | 31.353     | 91.99     | 96.088 | 75.789 |
| Set 3        | -0.45   | 32.488 | 50.687     | 66.348    | 86.364 | 83.948 |
| Set 4        | 33.852  | 41.509 | 66.242     | 60.154    | 67.331 | 42.763 |
| AVERAGE      | 25.554  | 39.43  | 53.025     | 81.347    | 90.93  | 78.804 |
| SEM          | 9.338   | 11.055 | 9.368      | 7.789     | 5.99   | 9.075  |
|              |         |        |            |           |        |        |
| y-int        | -91.469 |        |            |           |        |        |
| slope        | 38.216  |        | IC50       | 41        | ug/ml  |        |
| R2           | 0.84    |        |            |           |        |        |

# Table 8.30: The ELISA reading results of hTERT-HME1 cell numbers when treated

| hTERT-         |          | Concen | tration (ug | g/ml)  |        |
|----------------|----------|--------|-------------|--------|--------|
| Propolis-2     | 37.5     | 60     | 75          | 120    | 150    |
| Set 1          | 0.684    | 0.638  | 0.516       | 0.216  | 0.093  |
| Set 2          | 0.679    | 0.636  | 0.561       | 0.314  | 0.097  |
| Set 3          | 0.379    | 0.581  | 0.585       | 0.434  | 0.066  |
| AVERAGE        | 0.581    | 0.618  | 0.554       | 0.321  | 0.085  |
| SEM            | 0.101    | 0.019  | 0.02        | 0.063  | 0.01   |
|                |          |        |             |        |        |
| hTERT-<br>HME1 |          | Concen | tration (ug | g/ml)  |        |
| DMSO           | 37.5     | 60     | 75          | 120    | 150    |
| Set 1          | 0.421    | 0.565  | 0.839       | 0.252  | 0.255  |
| Set 2          | 0.516    | 1.059  | 0.874       | 0.576  | 0.275  |
| Set 3          | 0.59     | 1.13   | 0.591       | 0.524  | 0.288  |
| AVERAGE        | 0.509    | 0.918  | 0.768       | 0.55   | 0.273  |
| SEM            | 0.049    | 0.178  | 0.089       | 0.1    | 0.01   |
|                |          |        |             |        |        |
| Percent Cell   |          | Concen | tration (ug | g/ml)  |        |
| Death          | 37.5     | 60     | 75          | 120    | 150    |
| Set 1          | -62.47   | -12.92 | 38.498      | 14.286 | 63.529 |
| Set 2          | -31.589  | 39.943 | 35.812      | 45.486 | 64.727 |
| Set 3          | 35.763   | 48.584 | 1.015       | 17.176 | 77.083 |
| AVERAGE        | -14.145  | 32.68  | 27.865      | 41.636 | 68.864 |
| SEM            | 23.729   | 15.844 | 9.888       | 9.346  | 3.539  |
|                |          |        |             |        |        |
| y-int          | -190.891 |        |             |        |        |
| slope          | 50.9     |        | IC50        | 114    | ug/ml  |
| R2             | 0.88     |        |             |        |        |

# 8.2 Documents of Permission to Reuse of Figures

| License Number                      | 3202720503883                                                                                                                                                  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| License date                        | Aug 05, 2013                                                                                                                                                   |
| Licensed content publisher          | Springer                                                                                                                                                       |
| Licensed content publication        | Annals of Surgical Oncology                                                                                                                                    |
| Licensed content title              | Areola and Nipple-Areola-Sparing Mastectomy for Breast Cancer Treatment and Risk<br>Reduction: Report of an Initial Experience in a Community Hospital Setting |
| Licensed content author             | Jay K. Harness MD, FACS                                                                                                                                        |
| Licensed content date               | Jan 1, 2010                                                                                                                                                    |
| Volume number                       | 18                                                                                                                                                             |
| Issue number                        | 4                                                                                                                                                              |
| Type of Use                         | Thesis/Dissertation                                                                                                                                            |
| Portion                             | Figures                                                                                                                                                        |
| Author of this<br>Springer article  | No                                                                                                                                                             |
| Title of your thesis / dissertation | Effects of biological compound Turkish propolis extract on breast cancer cell lines                                                                            |
| Expected completion date            | Aug 2013                                                                                                                                                       |
| Estimated size(pages)               | 100                                                                                                                                                            |
| Total                               | 0.00 USD                                                                                                                                                       |

# Figure 8-1 Permission to Reuse of Figure 1-1.

| License Number                              | 3203030511731                                                                                                                 |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| License date                                | Aug 06, 2013                                                                                                                  |
| Licensed content<br>publisher               | John Wiley and Sons                                                                                                           |
| Licensed content publication                | Cell Biochemistry & Function                                                                                                  |
| Licensed content title                      | The potential usage of caffeic acid phenethyl ester (CAPE) against chemotherapy-<br>induced and radiotherapy-induced toxicity |
| Licensed copyright<br>line                  | Copyright © 2012 John Wiley & Sons, Ltd.                                                                                      |
| Licensed content<br>author                  | Sumeyya Akyol,Zeynep Ginis,Ferah Armutcu,Gulfer Ozturk,M. Ramazan Yigitoglu,Omer Akyol                                        |
| Licensed content date                       | Mar 20, 2012                                                                                                                  |
| Start page                                  | 438                                                                                                                           |
| End page                                    | 443                                                                                                                           |
| Type of use                                 | Dissertation/Thesis                                                                                                           |
| Requestor type                              | University/Academic                                                                                                           |
| Format                                      | Print                                                                                                                         |
| Portion                                     | Figure/table                                                                                                                  |
| Number of<br>figures/tables                 | 1                                                                                                                             |
| Original Wiley<br>figure/table<br>number(s) | Figure 1.                                                                                                                     |
| Will you be translating?                    | No                                                                                                                            |
| Total                                       | 0.00 USD                                                                                                                      |

Figure 8-2 Permission to Reuse of Figure 1-2.

McMullen, Catherine M [NREM] <mabry@iastate.edu> Kime: Deniz Ugurlu <denizugurlu88@gmail.com>

6 Ağustos 2013 02:47

Deniz, I would be glad to have you use the photo. Best wishes,

Cathy McMullen, PhD Department of Natural Resource Ecology and Management lowa State University



#### Figure 8-3 Permission to Reuse of Figure 1-3.

| License Number                                  | 3202740357481                                                                       |
|-------------------------------------------------|-------------------------------------------------------------------------------------|
| License date                                    | Aug 05, 2013                                                                        |
| Licensed content publisher                      | Elsevier                                                                            |
| Licensed content publication                    | Cell                                                                                |
| Licensed content title                          | Apoptosis by Death Factor                                                           |
| Licensed content author                         | Shigekazu Nagata                                                                    |
| Licensed content date                           | 7 February 1997                                                                     |
| Licensed content volume<br>number               | 88                                                                                  |
| Licensed content issue<br>number                | 3                                                                                   |
| Number of pages                                 | 11                                                                                  |
| Type of Use                                     | reuse in a thesis/dissertation                                                      |
| Portion                                         | figures/tables/illustrations                                                        |
| Number of<br>figures/tables/illustrations       | 1                                                                                   |
| Format                                          | print                                                                               |
| Are you the author of this<br>Elsevier article? | No                                                                                  |
| Will you be translating?                        | No                                                                                  |
| Order reference number                          |                                                                                     |
| Title of your<br>thesis/dissertation            | Effects of biological compound Turkish propolis extract on breast cancer cell lines |
| Expected completion date                        | Aug 2013                                                                            |
| Estimated size (number of pages)                | 100                                                                                 |
| Elsevier VAT number                             | GB 494 6272 12                                                                      |
| Permissions price                               | 0.00 USD                                                                            |
| VAT/Local Sales Tax                             | 0.00 USD / 0.00 GBP                                                                 |
| Total                                           | 0.00 USD                                                                            |

Figure 8-4 Permission to Reuse of Figure 1-4.



Figure 8-5 Permission to Reuse of Figure 1-5.