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ABSTRACT

SCALABLE STREAMING PROFILE CLUSTERING
FOR TELCO ANALYTICS

Mehmet Ali Abbasoğlu

M.S. in Computer Engineering

Supervisors:

Asst. Prof. Dr. Buğra Gedik

Assoc. Prof Dr. Hakan Ferhatosmanoğlu

August, 2013

Many telco analytics require maintaining call profiles based on recent customer

call patterns. Such profiles are typically organized as aggregations computed

at different time scales over the recent customer interactions. Clustering these

profiles is needed to group customers with similar calling patterns and to build

aggregate models for them. Example applications include optimizing tariffs, seg-

mentation, and usage forecasting. In this thesis, we present an approach for

clustering profiles that are incrementally maintained over a stream of updates.

Due to the large number of customers, maintaining profile clusters have high

processing and memory resource requirements. In order to tackle this problem,

we apply distributed stream processing. However, in the presence of distributed

state, it is a major challenge to partition the profiles over machines (nodes) such

that memory and computation balance is maintained, while keeping the clus-

tering accuracy high. Furthermore, to adapt to potentially changing customer

calling patterns, the partitioning of profiles to machines should be continuously

revised, yet one should minimize the migration of profiles so as not to disturb

the online processing of updates. We provide a re-partitioning technique that

achieves all these goals. We keep micro-cluster summaries at each node, collect

these summaries at a centralized node, and use a greedy algorithm with novel

affinity heuristics to revise the partitioning. We present a demo application that

showcases our Storm and Hbase based implementation in the context of a cus-

tomer segmentation application.

Keywords: Distributed clustering, aggregate profile clustering, telco.
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ÖZET

TELKO ANALİZLERİ İÇİN ÖLÇEKLENEBİLİR AKAN
PROFİL KÜMELEMESİ

Mehmet Ali Abbasoğlu

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticileri:

Asst. Prof. Dr. Buğra Gedik

Assoc. Prof Dr. Hakan Ferhatosmanoğlu

Ağustos, 2013

Birçok telekom analizi geçmiş arama desenlerine dayalı arama profillerine

gereksinim duyar. Bu arama profilleri değişik zamanlardaki müşteri etk-

ileşimlerinin yığılması ile oluşmaktadır. Telekom şirketlerinin pazarlama ve

satış gibi operasyonlarını iyileştirecek analizler müşteri arama profilleri üzerinden

yapılmaktadır. Örnek uygulamalar olarak tarife iyileştirme, müşteri bölümleme

ve kullanım öngörüsü gösterilebilir. Bu tezde güncelleme katarları ile oluşan

müşteri profillerinin kümelenmesi için bir yöntem sunulmaktadır. Profil kümeleri

yüksek sayıda müşteri olması nedeniyle yüksek bellek ve işlemci gücü gerek-

tir. Bu gereksinimleri karşılayabilmek için çözümümüzde dağıtık veri katarı

işleme yöntemleri kullandık. Ancak profillerin makinalara dağılımını kümeleme

kalitesini yüksek tutarken, her makinanın eşit miktarda profil saklamasını ve

işlemesini sağlamak, dağıtık sistemlerde önemli bir zorluk. Buna ek olarak,

müşterilerin arama deseni değiştirmesi ihtimali nedeniyle, profillerin makinalara

dağılımı düzenli olarak güncellenmeli. Bu güncelleme işlemi çevirimiçi işleme

sürecini aksatmamak için asgari miktarda yer değişimi gerçekleştirmeli. Bu tezde

tüm bu ihtiyaçları karşılayan bir tekrar dağıtım tekniği sunulmuştur. Her mak-

ina kendi içerisinden mikro-kümeler oluşturmakta ve onların özetlerini merkezi

makinaya göndermektedir. Merkezi makina mikro-küme özetlerini üzerinde yeni

aitlik buluşsal yöntemleri içeren açgözlü bir işlemsel süreçten geçirerek profil

dağıtımını güncellemektedir. Tezde ayrıca sunulan çözümün Storm ve Hbase

tabanlı gerçekleştirmesini gösteren, telekom şirketleri için müşteri bölümleme

amacıyla kullanılabilecek bir demo uygulaması sunulmuştur.

Anahtar sözcükler : Dağıtık kümeleme, yığın profil kümeleme, telko.
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Chapter 1

Introduction

Telecommunications (telco) is a data-intensive domain where live feeds that carry

customer interaction data stream into the data centers of service providers. Ana-

lytics performed on such data can help improve operations (such as forecasting for

resource provisioning), marketing (such as customer segmentation for campaign

management), and sales (such as regression for churn prediction).

Keeping a recent history of customer calling behavior, creating customer call-

ing profiles from it, and maintaining such profiles as clusters are key enabling

techniques for many of the telco analytics. For example customer segmentation

by clustering is a fundamental operation for churn analysis [1] and customer pro-

filing [2]. Also, modeling and forecasting the call patterns of users is more effective

when applied on customers with similar calling profiles rather than on individual

customers [3].

As these examples motivate, many telco analytics operate on clusters of cus-

tomer calling profiles. Given the continuous and live nature of these analytics and

the potentially dynamic behavior of customers, there is a clear need to maintain

the customer call profiles in a clustered manner. However, processing customer

interactions for performing analytics on a large set of customers requires high

processing resources.

1



CHAPTER 1. INTRODUCTION 2

We present our system for scalable profile management and clustering in a

streaming setting. The demo highlights the effectiveness of our solution in the

context of a telco customer segmentation application. The main idea is to cluster

large number of profiles, where each profile is an incrementally updated aggregate

over streaming updates — aka an aggregate profile. While the problem has general

applicability, our work is strongly motivated by the telco domain. For instance,

our updates are call detail records (CDRs), which contain meta-data about calls

made between customers. Each CDR has a caller associated with it and con-

tributes to that caller’s aggregate profile (e.g., the daily number of international

calls can be a feature in the aggregate profile). The goal is to maintain profile

clusters, so that callers with similar behaviors are grouped together, and use these

profile clusters for analytics such as forecasting and customer segmentation.

Given the large number of profiles, maintaining these clusters on a single

machine may not be feasible, especially if the profiles are large in terms of size or

the cost to process each profile update is high (e.g., updating a forecasting model

for the profile or for the cluster). Furthermore, in most real-world scenarios the

profile updates are not used for the sole purpose of cluster maintenance and

clustered analytics, but for miscellaneous processing, such as enrichment, model

scoring, visualization, etc. Thus, the need for parallel and distributed processing

is paramount.

To address this challenge, partitioned stateful parallelism is employed. Incom-

ing stream is partitioned over a set of processing nodes based on a partition by

attribute (such as the caller id in a CDR) and each node process its portion of the

sub-stream, maintaining a subset of the clusters and the associated state needed

to maintain the aggregate profiles. Here, we want to make sure that each node

gets assigned similar amount of processing load, since the slowest node will form

a bottleneck for the system.

There are a number of challenges in achieving this. First, in order to distribute

the incoming updates over the set of nodes, we need a way of partitioning them

such that each update is routed to the node that contains profiles similar to its

own. Note that the similarity here applies to the aggregate profiles, and not to
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the update itself. Initially, there is no information on the profile clusters, and

as a result the partitioning will be hash based. Thus, after some time all nodes

will form similar clusters. This is a problem, since similar profiles cannot be co-

located on the same machine and as the number of nodes increase the fidelity of

the clusters will decrease. As we know more about the nature of the profiles and

frequencies of the partitioning attribute values, we need to incrementally update

our partitioning scheme and migrate profiles as needed, to increase the clustering

quality.

Second, this re-distribution has to make sure that each node gets a similar

sized flow of updates (good processing balance). Furthermore, the changes in the

partitioning function should be incremental, so as the migration of profiles do not

cause a pause in processing (low migration overhead).

Our aim is to distribute profiles to nodes according to their similarities to each

other, while at the same time considering the balance between the nodes with

respect to processing and memory cost. In our proposed solution, while stream

of CDRs update the profiles in distributed nodes, each processing node in the

system calculates its micro-cluster summaries and informs the master node for a

new distribution periodically. The master node builds the new distribution with

the latest version of the micro-cluster summaries. New distribution is built by

calculating an overall affinity value for every micro-cluster summary towards each

processing node. Each micro-cluster is directed to the node that has the highest

ranked overall affinity. Overall affinity consists of clustering disaffinity which is

calculated with average distance of k nearest neighbors, balance disaffinity which

compares the fullness of nodes and migration affinity which aims to minimize the

amount of state migration between nodes.

We present a demo application that uses the proposed solutions for telco

customer segmentation. The system relies on distributed stream processing mid-

dleware Storm [4] for processing updates and maintaining the profile clusters in

memory, and HBase [5] for partial fault-tolerance and for facilitating the migra-

tion. The application uses a CDR stream in which every CDR is labeled with call

tariff data of the customer. Tariffs are rated considering their distribution over
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customer profiles in order to detect poorly defined tariffs, and clusters are rated

by considering the heterogeneity of the tariffs they contain in order to detect new

possible call tariffs. Tariffs which are scattered over multiple clusters in which

they are not well represented are identified as not well defined tariffs, and clusters

with high entropy are identified as potential targets for defining new tariffs.

The remainder of this thesis is organized as follows. Chapter 2 formalizes scal-

able and distributed profile clustering problem. Chapter 3 discusses related work

on distributed clustering methodologies. Chapter 4 explains the proposed greedy

algorithm that includes three heuristics: cluster affinity, processing affinity and

migration affinity. Chapter 5 describes our experiment environment and evalu-

ation results. Chapter 6 presents demo application which uses aggregate profile

clustering to perform cluster segmentation for call tariff optimization. Finally,

Chapter 7 concludes this thesis.



Chapter 2

Problem Definition

In this section we formalize our problem. We define our requirements as cluster-

ing quality, balance quality, and migration quality. Using clustering quality we

formalize how successful our clustering is compared to a centralized clustering

approach. Using balance quality we compare the processing loads of nodes and

measure how balanced they are. Migration quality formulation aims to capture

how much migration is done in the process with respect to the total state size.

Finally, we present an overall quality formulation which is a combined measure

of quality that relies on the clustering, balance, and migration qualities.

Let S denote a stream of updates, where u ∈ S denotes an update. We use

ι(u) ∈ D to denote the value of the profile id for the update, where D is the

domain of the profile ids. Let P (d) denote the aggregate profile for profile id

d ∈ D. We assume that P (d) is a multi-dimensional vector. We use f(d) to

denote the frequency of updates with profile id d ∈ D.

We define a partitioning function p : D → [0..N) that maps each profile id to

a node, where we have N nodes. When an update u is received, it is forwarded

to the node at index p(d), where ι(u) = d. There, it contributes to the aggregate

profile information P (d), via the transformation:

〈P (d), S(d)〉 ← γ(P (d), S(d), u).

5
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Here, γ is an aggregation function and S(d) is the state maintained to compute

it continuously for profile id d.

At time step s, the partitioning function will be updated from ps−1 to ps, with

the goal of keeping the clustering quality high, the processing and/or memory

loads balanced, and the migration cost low. We now define each of these metrics.

2.1 Clustering Quality

Let Ci be the set of clusters on node i after applying a local clustering algorithm

A, that is Ci = A({P (d) : p(d) = i}). Let C be the set of all clusters from all

nodes, that is C =
⋃

i∈[0..N) Ci. Further assume that C∗ denotes the clustering that

would be formed if the same clustering algorithm is applied on all profiles, that

is C∗ = A({P (d) : d ∈ D}).

We define the clustering quality as the Normalized Mutual Information (NMI)

between the ideal clustering denoted by C∗ and the distributed clustering we

computed denoted by C:

Qc = NMI(C∗, C) (2.1)

NMI is defined as:

NMI(X, Y ) =
H(X) +H(Y )−H(X, Y )

(H(X) +H(Y ))/2
, (2.2)

where H(X) is the entropy of the clustering X and H(X, Y ) is the joint entropy

of X and Y .

With this definition of clustering quality, we aim to compare our distributed

clustering results with the clustering that is formed when all profiles are collected

at a single node and the same clustering method is applied. NMI incurs a low

penalty for clusters that are split into multiple sub-clusters. This is crucial for
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our evaluation, because as a result of distributed processing our clusters might

split into several pieces.

Here, it is important to use a clustering algorithm A whose parameter settings

are not impacted by the number of nodes, N . For instance, for small number of

dimensions a density-based clustering algorithm (such as DB-scan [6]) will work

well. For k-means based algorithms, the distribution of k over the N nodes

will be a problem. To aleviate this, k-means algorithms that use automatic

determination of the k value can be used, such as those that rely on the BIC

metric to determine k [7].

For this work, we have used EM clustering [8] – a distribution-based clustering

algorithm. The WEKA [9] implementation of the EM clustering can set the

number of clusters automatically, which makes it easy to use in our setup, as its

avoids having to adjust the number of clusters based on the node count.

2.2 Balance Quality

Let Ri =
∑

p(d)=i f(d) · β(|S(d)|) denote the processing cost required to handle

the profiles assighed to the ith node. Here, β is a function that defines the

relationship between the amount of state maintained and the required processing

to update the aggregate profile. We define the processing balance quality as

Qpb = 1 − CoV({Ri}), where CoV is the coefficient of variation (ratio of std.

deviation to mean). When the std. deviation in the balance is 0, then the balance

quality is 1. When the deviation reaches a single node’s share of the load (i.e.,

the mean), then the quality reaches 0. Let Mi =
∑

p(d)=i |S(d)| denote the size

of state stored on the ith note to maintain the profiles assigned to it. We define

the memory balance quality as Qmb = 1− CoV({Mi}).

Depending on the nature of the state maintained (S(d) for profile d), the

memory may or may not be a concern. For instance, if the state is constant

size and small, then it may fit on a single machine. In this case we can take

the balance quality as Qb = Qpb, ignoring the memory balance. On the other
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hand, when the state is linear in the frequency (|S(d)| ∝ f(d)), such as for an

aggregation γ defined over time-based sliding windows, then the memory balance

may factor into the balance quality and thus we take Qb = (Qpb +Qmb)/2. Other

combinations are possible.

2.3 Migration Quality

As the system knows more about the nature of the profiles and frequencies of

the partitioning attribute values, partitioning scheme needs to be incrementally

updated and profiles should be migrated as needed. In this operation, migration

overhead should be low, therefore we compare migrated amount of state with the

total state to define the migration quality.

We formalize the migration quality as follows:

Qm = 1−
∑

d∈D |S(d)| · 1(p′(d) 6= p(d))∑
d∈D |S(d)|

(2.3)

Here, p′ is the previous partitioning function. For no migration, the migration

quality is 1. When the entire state needs to move, then the migration quality is

0.

2.4 Overall Quality

We define overall quality with the help of previously defined concerns: clustering

quality, balance quality, and migration quality. There is a trade-off between

clustering quality and balance quality. When the importance of balance quality

is set high, the clustering quality may suffer, as keeping the balance quality high

may necessitate splitting clusters into several sub-clusters. Therefore, there is a

need to strike a good balance between clustering quality and balance quality.
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We denote the overall quality as Q, and define it as:

Q = (α ·Qc + (1− α) ·Qb) ·Qm (2.4)

Here, α ∈ [0, 1] adjusts the relative importance of clustering quality versus load

balance.

2.5 An Example

Single node clustering

Hashing results in reduced cluster fidelity Partitioning does not respect balance requirements

Balanced partitioning that has sub-optimal migration cost Ideal partitionong

Two node clusterings

Figure 2.1: An illustration of alternative partitionings.

Figure 2.1 illustrates a toy scenario with 4 clusters of profiles, namely C1, C2,

C3, and C4. Among these, C1 is the largerst in terms of the number of profiles

(|C1| ∝ 5), but the frequency of updates for profiles in this cluster is the lowest
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(f(d) ∝ 1,∀d∈C1
1). C4, on the other hand, has the lowest number of profiles

(|C4| ∝ 1), but the highest frequency of updates (f(d) ∝ 5,∀d∈C4). C2 and C3

have values in between. In this example, we have constant state (|S(d)|,∀d ∈ D)

for aggregation and processing time linear in state size (β(x) = x). Given pro-

cessing load for a cluster is p(Ci) =
∑

d∈Ci
f(d) · β(|S(d)|) and memory size

is m(Ci) =
∑

d∈Ci
|S(d)|, we have the following characteristics for the clusters:

〈p(C1), p(C2), p(C3), p(C4)〉 = 〈5, 6, 4, 5〉 and 〈m(C1),m(C2),m(C3),m(C4)〉 =

〈5, 3, 2, 1〉.

Figure 2.1 shows four different partitionings for N = 2. The first alternative

represents hashing. The problem with this alternative is that, the fidelity of the

clusters are reduced. As N increases, this alternative will further degrade with

respect to the cluster quality. The second alternative puts together clusters that

are similar on the same node (akin to clustering the clusters). However, this is

not an appropriate goal, as it does not balance the load. In this alternative, the

processing load for the first node is ≈ 11, whereas that of second node is ≈ 9. The

third alternative balances the load perfectly (10 and 10), has the same clustering

result as the single node case, but compared to the last alternative, it has higher

migration cost (6 versus 5). As a result, the best alternative is the rightmost one.

1In this example, the frequency is taken as equal for all updates in the same cluster.



Chapter 3

Related Work

Clustering can be defined as the task of grouping a set of objects in such a way

that objects in the same group are more similar in some sense to each other than

to those in other groups. Clustering is the main task of exploratory data mining

and is commonly used in statistical data analysis.

We classify existing work on clustering using the following dimensions:

A) Nature of processing:

• Centralized : In centralized processing, there is a single processing node

which performs the clustering.

• Distributed : In distributed processing, multiple nodes are used to perform

the clustering. In general, one or more of these nodes can be used as a

master to establish cross-node arbitration.

• Decentralized : In decentralized processing, all nodes have the same task.

There is no master, all nodes are equivalent.

B) Dynamicity of the dataset:

• Static: In static data sets, the objects to be clustered do not change. As a

result, the processing is performed offline.

11
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• Dynamic: In dynamic data sets, the objects to be clustered are updated

frequently. As a result the clusters need to be maintained in an online

manner, usually via incremental schemes.

C) Home location of clustered objects:

• Centralized : In centralized setting, all clustered objects are stored at a

single node.

• Distributed : In distributed setting, clustered objects are partitioned over

nodes.

D) Mobility of clustered objects:

• Fixed : In fixed setting, each clustered object stays at its home location.

• Migratable: In migratable setting, clustered objects can be migrated across

nodes.

E) Source of updates to the clustered objects:

• Local : In local setting, the updates to the clustered objects are generated

at their home location.

• Remote: In remote setting, the updates to the clustered objects come from

a remote place and have to be routed to the home location.

F) Nature of the updates:

• Complete: In complete updates, each update replaces the clustered object.

• Partial : In partial updates, each update contributes to the value of the

clustered object.
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We classify existing clustering methodologies into five main categories. In the

following sections we explain these methodologies and their categories according

to aforementioned dimensions. A summary of the comparison is also given in

Table 3.1.

Clustering
A - B - C - Home D - E - Update F - Update
Processing Dynamicity Location Mobility Source Type

Our aim distributed dynamic distributed flexible remote partial

Traditional clustering centralized static centralized fixed local complete

Distributed/parallel
distributed static centralized fixed local complete

traditional clustering

Distributed clustering
distributed dynamic distributed fixed local complete

for remote monitoring

Data clustering in
decentralized dynamic distributed fixed local complete

sensor/p2p networks

Incremental data
centralized dynamic centralized fixed

remote
complete

stream clustering local

Table 3.1: Comparison of different approaches to clustering.

3.1 Traditional Clustering

In traditional clustering, a single node is responsible for performing clustering.

All data is gathered to a single node and the clustering process is performed over

the data. Objects to be clustered are not updated, they are static. Objects reside

on the same node that is responsible for performing the clustering.

K-means [10] is one of the traditional clustering methodologies. K-means

clustering is used to cluster objects into groups of related objects without any

prior knowledge of those relationships. The algorithm clusters objects into k

groups, where k is provided as an input parameter. Initially it picks k random

objects as the cluster centers. It then assigns each object to a cluster based upon

the object’s proximity to the cluster center. After the assignments are complete,

it recomputes the cluster centers as the averages of all points assigned to the same

clusters. The process repeats until convergence. In our proposed solution, we use

k-means to create micro-clusters by setting the k parameter relatively high.
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Density-based spatial clustering of applications with noise (DBSCAN) [6] is

another example of traditional clustering. DBSCAN is a density-based clustering

algorithm, where the number of clusters is not pre-determined and can change

depending on the nature of the data. DBSCAN is designed to discover clusters of

arbitrary shape. It requires two parameters: ε and the minimum number of points

required to form a cluster. The algorithm starts with an arbitrary starting point

that has not been visited and computes the density-reachable ε neighborhood. If

the neighborhood contains sufficiently many points, a cluster is started.

Clustering using Expectation-Maximization (EM) [8] is another traditional

clustering method. EM clustering is an example of probability distribution based

clustering. EM algorithm is an iterative method for finding maximum likeli-

hood values where the model depends on unobserved latent variables. The EM

clustering relies on Gaussian mixture models, where the object labels are the

unobserved variables. It follows an iterative approach, which tries to find the

parameters of the Gaussian mixture that provides the maximum likelihood for

the data at hand. In our proposed solution, we use EM clustering to create final

clusters from micro-clusters.

There are various other clustering methods, such as link-based clustering used

to create hierarchical clusters. We do not cover them here, as our focus is on the

distribution and partitioning rather than the core algorithms.

3.2 Distributed and Parallel Implementations

of Traditional Clustering

Distributed and parallel versions of clustering algorithms have been developed

to provide speedup, scale-up, and size-up. In distributed and parallel implemen-

tations, multiple nodes are used to perform clustering. Clustered objects are

stored on the master node, which is also responsible for establishing cross-node

arbitration and distribution of the data.



CHAPTER 3. RELATED WORK 15

Parallel clustering algorithm PDBSCAN [11] is based on DBSCAN for knowl-

edge discovery in large datasets. PDBSCAN uses ‘shared-nothing’ architecture,

therefore it can be scaled up to hundreds of computers. In a similar fashion, Par-

allel k-means [12] offers a parallel clustering algorithm on shared-nothing parallel

machines. Mahout [13] provides distributed implementation of several traditional

clustering algorithms based on the Map/Reduce [14] framework.

3.3 Distributed Clustering for Remote Moni-

toring

In remote monitored distributed clustering, clustering task is distributed over

several nodes and the objects in the dataset are updated frequently. Therefore

clusters need to be updated in an online matter, when a change appears in dataset.

In contrast with distributed and parallel versions of traditional clustering meth-

ods, objects to be clustered are also distributed to several nodes. Furthermore,

the updates are local to the home location of the items.

Research by Januzaj et al. [15] propose clustering data locally and extract

suitable representatives out of these clusters. These representatives are sent to

global master node, where complete clustering based on local representatives are

built.

As another example to remote monitored distributed clustering, Cormode et

al., 2007 [16] declare that collecting voluminous data over distributed network

to a central location is undesirable. They suggest to perform clustering in-place

where data is collected, send result information to a central location, and form

high accuracy clusters while minimizing the communication and computational

cost.
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3.4 Data Clustering in Sensor/P2P Networks

Clustering in sensor networks and peer-to-peer environments is done without a

central node. In such systems, each node holds some data value, e.g., a local

sensor reading, and is responsible from participation in a distributed clustering

algorithm. We classify these clustering approaches as having decentralized nature

of processing.

Eyal et al. [17] propose a solution where numerous interconnected sensor nodes

partition their data into multiple clusters, and describe each cluster concisely.

They observe that distance criterion is not suffient to provide good clustering

results, and for this reason they develop a generic algorithm that models the

values as a Gaussian mixture model. Gedik et al. [18] propose ASAP, an adaptive

sampling approach to data collection in sensor networks. ASAP uses sensing-

driven clustering to group nodes into clusters. This clustering technique tries to

form clusters that contain sensor nodes that are not only spatially close but also

their sensor readings are close.

3.5 Incremental Data Streaming Clustering

Incremental data streaming is used in cases where the data is evolving dynami-

cally. A single node is responsible for maintaining clusters in an online manner

with incremental schemes. The data is scanned only once, thus it is streaming.

Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) [19]

is an unsupervised data mining algorithm used to perform hierarchical clustering

over incrementally and dynamically incoming data. Guha et al. [20] also study k-

Median problem in the streaming context and provides a new streaming clustering

algorithm which is based on a facility location algorithm.



Chapter 4

Proposed Solution

In this chapter, we give an overview of our solution, describe its core algorithm

in detail, and provide the system architecture of its implementation.

4.1 Solution Overview

Our aim is to cluster large number of profiles which are formed with incremental

updates. Maintaining profile clusters on a single machine is not feasible, especially

when profiles have high numbers of updates. Thus, we propose parallel and

distributed clustering for aggregate profiles.

In our solution, profiles are distributed to nodes according to their similarities

to each other, while at the same time considering the balance between the nodes

with respect to processing and memory costs. First, the incoming stream is

partitioned over processing nodes by a simple hash function using a key attribute

from the update (such as the caller id in a CDR) and each node process its portion

of the substream. Aggregate profiles are incrementally built on the processing

nodes. After some ∆t time, each node applies k-means clustering with relatively

high k parameter to create micro-clusters. Micro-clusters are then sent to the

master node to form new clustering results and update the partitioning function.

17
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After the master node gets all micro-clusters from processing nodes, the sys-

tem pauses until the new partition mapping is created. For each micro-cluster,

the master node ranks the processing nodes and assigns the micro-cluster to the

most appropriate node. Ranking is performed using three considerations: (1)

keep the clustering quality high by placing micro-clusters that are close to each

other on the same nodes, (2) keep the total processing/memory balanced, and

(3) minimize the amount of state migration that will result from updating the

partitioning function. After every micro-cluster is assigned to a processing node,

a new partition mapping is created from profile-ids to processing node-ids. All

processing nodes are informed about the new partition mapping, and state mi-

grations are performed for the profiles whose node mappings have changed. After

the migration operation is complete, the system resumes processing again.

4.2 Updating the Partitioning Function

Recall that the main idea is to update the partitioning function periodically, by

collecting summary information at a master node. The goal is to balance the

load and keep the clustering quality high, while incurring low migration cost.

At step s = 0, we set the partitioning function to the consistent hash func-

tion HN , that is p0(d) = HN(d). For the purpose of updating the partitioning

function, each node creates micro-clusters [21] over the profiles they maintain.

The summaries of these micro-clusters are then sent to a master node, which

computes a new partitioning function ps.

A micro-cluster, denoted as M ⊂ D, keeps a set of profile ids. It is summarized

as a 5-tuple: M̂=〈o, r, p,m, l〉. Here, o denotes the centroid of the micro-cluster,

that is M̂.o =
∑

d∈M P (d)/|M |. The radius of the micro-cluster is denoted by r.

We have M̂.r = maxd∈M ‖P (d)− M̂.o‖. The total processing cost for the profiles

in the micro-cluster is denoted as p. We have M̂.p =
∑

d∈M f(d) · β(|S(d)|). The

total memory cost for the state associated with the profilies of the micro-cluster

is denoted by m. We have M̂.m =
∑

d∈D |S(d)|. Finally, l denotes the current
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location of the micro-cluster. We have M̂.l = ps−1(d), d ∈M .

The master node, upon receiving all the micro-cluster summaries, creates a

new partitioning function. For this purpose we use the greedy procedure described

in Algorithm 1. The algorithm iterates over the micro-clusters and for each micro-

cluster it makes a node assignment. We consider micro-clusters in the order of

their state sizes during the assignment.

For making assignments, the algorithm makes use of a heuristic metric. It

picks the assignment that maximizes this metric. LetM = {Mi} be the list of all

micro-clusters, and assume that i− 1 assignments are made and we are to make

an assignment for the ith micro-cluster, Mi. In order to do this, we first compute

the affinity of this micro-cluster to each node. Let A(Mi, j) denote the affinity

of Mi to the jth node. We set ∀d ∈ Mi, ps(d) = argmaxj∈[0..N)A(Mi, j). That

is, the node for which the micro-cluster has the highest affinity becomes the new

mapping for all the profiles of the micro-cluster.

Algorithm 1: updatePartitioning(M, N,O)

Param : M, micro-clusters
Param : N , number of nodes
Param : O, ordering policy
p← {} . The partitioning function to be constructed
M′ ← Sort(M, O) . Order micro-clusters based on policy
for M ∈M′ do . For each micro-cluster, in order

i← −1; a← 0 . Best assignment and affinity
for j ∈ [0..N) do . For each node

. Compute the affinity of M to the current node j
v ← Am(M, j) · (1− ((1− α) ·Ac(M, j) + α ·Ac(M, j)))
if v > a then 〈i, a〉 ← 〈j, v〉; . Update best, if necessary

p[d] = i,∀d ∈M . Create mappings for the profiles in M

return p . Return the fully constructed mapping

Affinity has three aspects to it: the clustering disaffinity denoted by Ac, the

balance disaffinity denoted by Ab, and the migration affinity denoted by Am.

Let Ml denote the set of micro-clusters assigned to the lth node so far, i.e.,

Ml = {M | ps(d) = l ∧ d ∈M ∈M}.
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4.2.1 Clustering Disaffinity

As clustering disaffinity, we aim to calculate how far a micro-cluster is to a pro-

cessing node in the multi-dimensional space. k micro-cluster members of the

processing node that are closest to the micro-cluster at hand are found, and the

sum of their distances is calculated. We normalize this value with the sum of all

clustering disaffinities towards all nodes.

The clustering disaffinity is formalized as follows:

Ac(Mi, j) =

∑
x∈min-k(Li,j)

x∑
l∈[0..N)

∑
x∈min-k(Li,l)

x
, (4.1)

where Li,j = {‖M̂i.o − M̂.o‖ | M ∈ Mj} and argmin-k is a function that takes

the smallest k elements from a list. Li,j represents the list of distances from the

micro-cluster centroid M̂i.o to the centroids of micro-clusters that are assigned

to the jth node so far. k ≥ 1 is a parameter of our algorithm. The clustering

disaffinities sum up to 1, that is
∑

j∈[0..N)A
c(Mi, j) = 1.

4.2.2 Balance Disaffinity

One of our aims is to assign a similar sized flow of updates to each processing

node. Therefore we use balance disaffinity, which calculates how much processing

capacity is used in a processing node after the micro-cluster at hand is assigned

to it. Balance disaffinities are normalized with the total used processing capacity

across all processing nodes.

The balance disaffinity, for processing, is formalized as:

Ab(Mi, j) ≈
Ci,j∑

l∈[0..N)Ci,l

, (4.2)

where Ci,j = M̂i.p+
∑

M∈Mj
M̂.p. Here, Ci,j represents the amount of processing

capacity used up on the jth node once the micro-cluster Mi is placed on it,

also considering all the previous micro-clusters that were placed on that node.

We normalize balance disaffinities so that
∑

j∈[0..N)A
b(Mi, j) = 1. The balance

disaffinity for memory is defined similarly, by replacing p with m.
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Figure 4.1: g functions for different c values.

4.2.3 Migration Affinity

To calculate the migration affinity, we compute how much migration is performed

so far and compare it to the maximum migration cost that is allowed. Migration

affinity decreases as the total amount of migration so far increases. The rate at

which migration affinity decreases increases with increasing migration cost. This

means that migration affinity has lower impact initially, when the total migration

is quite small compared to the maximum allowed.

The migration affinity is defined as follows:

Am(Mi, j) = g〈c,G〉(R + M̂i.m · 1(M̂i.l 6= j)), (4.3)

where R =
∑

i∈[0..N)

∑
M∈Mi

(M̂.m · 1(M̂.l 6= i)) represents the total migration

cost so far. G = 2
N
·
∑

M∈M M̂.m represents the maximum allowable migration

cost (taken as the twice the amount of state per node). g〈c,G〉(x) is a function

of the form y = a − b · ec·x/G that satisfies g〈c,G〉(0) = 1 and g〈c,G〉(G) = 0. c

is a parameter that adjusts the skew of the function. For instance, for G = 100,

we get the graph shown in Figure 4.1. The motivation for having the g function

is to penalize migrations less when initially there is a high budget for migration.
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4.2.4 Overall Affinity

Given these definitions, we define the overall affinity as follows:

A(Mi, j) = Am(Mi, j) · (1− ((1− α) · Ac(Mi, j) + α · Ab(Mi, j))) (4.4)

Here, ((1−α) ·Ac(Mi, j) +α ·Ab(Mi, j)) defines the combined clustering and

balance disaffinity, where α ∈ [0..1] adjusts there importance of one compared

to the other. As the value of α increases, the clustering becomes less decisive

compared to the balance. Subtracting the combined clustering and balance dis-

affinity from 1 give the combined affinity, which we multiply with the migration

affinity to get the overall affinity value.

4.2.5 Handling Edge Cases

There are a few edge cases to handle with the partitioning algorithm we have

described so far. The first one is about the proper computation of the clustering

disaffinity when a node has no micro-clusters assigned so far. The second is about

the over-sensitivity of the balance disaffinity when there are very few assignments

performed. We now look at how these issues are resolved.

Initial Condition Handling for Clustering Disaffinity

In order to be able to compute a clustering disaffinity for a node that has no

assignments so far, we come up with initial cluster centers for each node to be able

to compute a clustering dissaffinity. In particular, we take all micro-clusters and

use k-means clustering to create N clusters out of them. We take the centroids

of the resulting clusters and assign each one to one of the nodes as that node’s

initial cluster center. When the clustering disaffinity is to be computed for a

micro-cluster that has no assignmets, this initial cluster center is used to compute

the distance.
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Figure 4.2: l functions for different d values.

Start-up Phase Handling for Balance Disaffinity

During the start-up phase of the algorithm, the balance disaffinity may prevent

micro-clusters that are close to each other to be assigned to the same node, as that

might hurt load balance. However, initial imbalances are not that important, as

there would be plenty of opportunities for correcting them later in the assignment

process. To capture this, we scale the importance of the load disaffinity (originally

α) by a scaler function. We denote the scaler function as l and define it as follows:

l〈d, L〉(x) =

a− b · ed·x/L x < L/10

1 otherwise
(4.5)

The function takes as a parameter, the total amount of load assigned to the

nodes so far. L is the maximum amount of load to be assigned and d is a

parameter that adjusts the skew of the function. After 10% of the load is assigned,

the scaler function defaults to 1. Furthermore, the scaler function l satisfies

l〈d, L〉(0) = 0 and l〈d, L〉(L/10) = 1. For instance, for L = 100, we get the graph

shown in Figure 4.2. The motivation for having the l function is to gradually

increase the penalty due to the load imbalance.
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Figure 4.3: The architecture of the aggregate profile clustering system running
on the telco analytics platform.

4.3 Implementing the Partitioned Clustering

We implemented our profile clustering technique in the context of a telco analytics

platform. Figure 4.3 depicts the system architecture.

The updates (CDRs in the telco domain) stream into the system and are

processed by a topology that runs on the Storm distributed stream processing

system. The updates are tuplized and partitioned using the splitter operator. The

splitted flows first go through the writer operator, which persists the updates to

the HBase distributed key value store for historical access. This parallel write

feature is not strictly needed for our aggregate profiling technique, but is part of

the analytics platform.

The updates are then sent to the profiler operators, which are responsible for

updating the in-memory profiles and performing clustering. The profiler interacts

with the partitioner operator, which in turn interacts with the splitter, for imple-

menting the re-partitioning. In particular, when re-partitioning is initiated the

partitioner asks the splitter to pause the flow. After all in-flight tuples are pro-

cessed, the micro-clusters are shipped from the profilers to the partitioner. The
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partitioner executes the re-partitioning algorithm and computes the new parti-

tioning. Using this partitioning, it computes migration schedules and sends these

to the profilers. To minimize the coupling between profilers, the actual migration

of state is performed through HBase. Each profiler writes to HBase the state that

it no longer has to keep. After a synchronization step, it also borrows the state

that it needs to maintain from now on. Once the state migration is completed,

the partitioner sends the new partitioning to the splitter operator, which installs

it and resumes the flow.

The profilers also use the HBase store to backup their state periodically, to

support fault-tolerance. While the profile maintenance is not sensitive to short

term tuple loss, this backup is needed to avoid losing long-term aggregations that

are computed over large time scales.

Analytics operators use the clusters formed by the profiler operators to per-

form mining tasks such as usage forecasting and customer segmentation. The

summarizer operator is a bridge between the analytics operators and the dash-

board that visualizes the results.



Chapter 5

Experimental Setup and Results

We have performed a number of experimental studies with the aim of evaluating

the success of the proposed architecture. In this chapter, we first describe the

experimental setup and then discuss our experimental studies and their results

in detail.

5.1 Experimental Setup

In this section machines that are used as processing nodes are explained in detail,

the source of incoming CDR stream is explained, and the default parameters of

the system are presented.

5.1.1 Machines

Evaluating the scalability of our solution requires multiple machines. We use

kernel-based virtual machines in amd64 architecture with 4 cores and 4GB mem-

ory. The machines have CentOS 6.4 operating system, 1.7.0 version of Java, 1.0.3

version of Hadoop [22], 0.94.9 version of Hbase [5], and 0.8.2 version of Storm [4]

installed.

26
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5.1.2 Dataset

To evaluate the system with varying workload characteristics, there is a need for

a data provider. We built a CDR generator for this purpose. CDRs are generated

according to predefined customer profiles. Predefined customer profiles have tar-

get, time, and duration features, and each of those features have different values

with their associated probability. Before the CDR generator starts working, sys-

tem builds its customer base by selecting one of the predefined profiles for each

customer using a Zipf distribution [23]. When CDRs are being generated, target,

time, and duration values are determined by using probabilities which are defined

in customer profiles.

5.1.3 Experimental Parameters

In the proposed solution, we use many parameters. As a result of our focus on

scalability, Number of Nodes is the main parameter we study. In our heuristic

algorithm, when we define clustering disaffinity in Equation 4.1, k is used for

deciding how many nearest points will be taken into account. And also when

we define overall quality in Equation 4.4, α is used for adjusting the relative

importance of balance disaffinity and cluster disaffinity.

To experiment and evaluate the proposed solution, we feed the system with

different types of customer bases. Number of Profile Types defines how many

predefined profiles exists in the CDR generator, and it gives insight about how

customers are really clustered. As we mentioned earlier, customer base is built

by assigning each customer to one of the predefined profiles. Profile selection

is performed using a Zipf distribution, and Z is used to adjust the skew of the

distribution.

The aforementioned parameters will be analyzed separately, assuming other

variables are assigned to their default values in the process. Default values are

given in Table 5.1.
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Parameter Default Value
Number of Nodes 16
Number of Nearest Neighbors 10
Alpha 0.5
Number of Profile Types 6
Zipf Z 1

Table 5.1: Default values of the experimental variables.

The system is fed withNumberOfNodes∗100000 CDRs fromNumberOfNodes∗
1000 customers. In k-means clustering part of the algorithm where we compute

micro-clusters, k is taken as NumberOfCustomers/ (NumberOfNodes ∗ 30).

In other words, each micro-cluster contain, on average, 30 profile summaries.

5.1.4 Evaluation Metrics

We evaluate the proposed solution with two fundamental metrics; quality and

execution time. There are four quality metrics: Cluster Quality, Balance Quality,

Migration Quality, and Overall Quality. Quality definitions and formulations are

given in Problem Definition part of the thesis in Chapter 2.

There are three execution time metrics to analyze: clustering time, partition-

ing time and total time. For jth round of the system let T (Cij) be the time node

i spent on calculating the micro-clusters, T (Sj) be the time that summarizer

module spent on building resulting clusters and T (Pj) be the time that system

spent on creating a new partition for the next incoming batch of updates. We

define clustering time T (C) and partition time T (P ) as follows:

T (C) =
∑
j

(∑
i

T (Cij) + T (Sj)

)
(5.1)

T (P ) =
∑
j

T (Pj) (5.2)

Total time is the total time spent on consuming all incoming batch of updates.
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5.2 Experiment Results

We now present our experimental results, studying the impact of each one of the

system parameters on the evaluation metrics.

5.2.1 Scalability Experiment

To test scalability, we investigate the change in the quality metrics by running

the proposed solution with varying number of nodes.
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Figure 5.1: Impact of the number of nodes on the quality metrics.

Figure 5.1 plots different quality measures as a function of the number of nodes

used. As we observe from the figure, for small number of nodes (< 10) overall

quality drastically decreases. Cluster quality drops because when the system runs

on small number of nodes, cluster affinities have similar values for every node.
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Some small clusters do not exactly belong to one of the nodes, and they migrate

from one node to another. As a result of these unnecessary migrations, migration

quality also decreases. The decrease in cluster and migration qualities result in

decrease in the overall quality as well.

Cluster quality reaches its maximum point when number of profile types nearly

equal to the number of nodes. We investigate this situation further in the prede-

fined clusters experiment.

After reaching maximum overall quality, further increase in number of nodes

decreases cluster and balance quality. Cluster quality decreases because the sys-

tem needs to split some of the clusters into multiple nodes, but in order to prevent

a drastic decrease in cluster quality, the system decreases balance quality after

some point. As a result of the decrease in both cluster quality and balance quality,

overall quality also decreases but this is tolerable because system offers scalability

when clustering large number of profiles.

5.2.2 Nearest Neighbor Experiment

Cluster disaffinity is calculated as average of distances to k nearest micro-clusters

in target node. To investigate the effect of selection of k such micro-clusters on the

quality measures, we experiment with varying the number of nearest neighbors.

Figure 5.2 plots the quality measures as a function of the number of neigh-

bors (k) used for computing the clustering disaffinity. As we can see from the

figure, increasing the number of nearest neighbors results in decreasing the cluster

quality, but balance and migration qualities increase very slightly.

For high values of k, the average distance of micro-clusters to nodes becomes

very similar to each other and similar clusters are formed in all nodes, albeit with

decreased fidelity. This provides additional flexibility for migration and balance,

as clustering is often a conflicting goal.
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Figure 5.2: Impact of the number of neighbors on the quality metrics.

For small values of k, the clustering quality is high, because clustering dis-

affinity computation produces distinctive results. Although the overall quality

increases as k gets smaller, it should not be selected as 1 if a more resilient result

is desired. In cases when there are high number of outliers, same clusters can be

formed in every node.

5.2.3 Clustering vs. Balance Experiment

As mentioned earlier, when we define the overall quality in Equation 4.4, α is used

for adjusting the relative importance of balance disaffinity and cluster disaffinity.

For lower values of α cluster affinity has more importance than balance affinity

in our heuristic algorithm. Conversely, for higher values of α, balance affinity has
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more importance.

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1 1.2

Q
u

al
it

y 

Alpha 

ClusterQuality

BalanceQuality

MigrationQuality

OveralQuality

Figure 5.3: Impact of α on the quality measures.

Figure 5.3 plots the quality measures as a function of α. It shows that for

lower values of α, the proposed solution cannot achieve balanced distribution

and tries to collect all similar clusters to one node, and cluster quality becomes

high, but balance quality becomes too low. Conversely, for higher values of α,

the proposed solution just tries to achieve good balance, resulting decrease in

the cluster quality. When we analyze overall quality, it reaches maximum point

around α = 0.4 and continues stable. In order to achieve the best results, α

should be assigned to values in between 0.4 and 1 according to main our concern.

The figure also shows that even for α = 1, the balance quality is not 1, because

micro-clusters have variety of profiles and system migrates cluster vectors, not

profiles. Therefore achieving total balance is not easy.
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5.2.4 Predefined Clusters Experiment

To analyze the behavior of the proposed solution with different types of cus-

tomer bases, we run experiments on different datasets. The parameter Number

of Profiles defines the number of clusters that exist in the customer base.
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Figure 5.4: Impact of number of profile types on the quality metrics.

Figure 5.4 plots the quality metrics as a function of the number of profile types.

It shows that overall quality increases as the number of profile types increases up

to some point. As we mentioned before, 16 nodes are used in this experiment.

When the amount of nodes and number of profiles types are nearly equal, system

splits every profile type into one node and reach maximum overall quality.

When there are more nodes than customer profile types, cluster quality de-

creases. The reason behind that is one profile type needs to be seperated into
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multiple nodes in order to preserve balance quality. Overall quality does not

decrease too much, because balance quality is preserved.

5.2.5 Cluster Size Experiment

We experiment our proposed solution with varying sizes of customer clusters.

As mentioned before, customer distribution to profile types is done using a Zipf

distribution. For low values of Z, customers have a more balanced distribution

over the clusters. Increasing values of Z creates skew.
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Figure 5.5: Impact of varying values of Zipf Z on the quality metrics.

Figure 5.5 plots the quality measures as a function of the Zipf skew parameter

Z. We observe that the balance and cluster qualities decrease as the skew is

increased. The clustering quality is effected the most. As the skew increases we
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get a few large clusters. Such clusters won’t fit into a single node, and as a result

they must be divided. This results in decreased clustering quality. While the

situation is hopeless for the very large clusters, the clustering concern tries to

improve the situation as much as possible for the other clusters that can still be

located on the same node. However, this happens at the cost of reduced load

balance.

Overall, high skew negatively impacts the scalability of our solution. yet, for

a Zipf skew value of K = 1, best results are obtained.

5.2.6 Execution Time Experiment

To analyze the execution time of our distributed clustering algorithm, we run our

system with varying number of nodes.
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Figure 5.6: Impact of number of nodes on the clustering time.
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Figure 5.6 plots the execution time of the distributed clustering step (in sec-

onds) as a function of the number of nodes. We observe that ad the number of

nodes increase the total time and the local clustering time decrease (less profiles

per node), but the partition time (the centralized part) increases. This trend

continues up to 8 nodes. Since the processing load for clustering is shared over

nodes, it is normal that the local clustering time decreases with increasing num-

ber of nodes. On the other hand increase in possible targets in the centralized

partitioning algorithm results in increased execution time for large number of

nodes.

After 8 nodes, the system reaches maximum share of processing load and

becomes I/O bound. Increasing number of nodes does not affect any of the time

metrics after system splits processing load to the available hardware. If we had

more nodes, we could have demonstrated additional speedup.
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Application

Telco companies provide their customers with tariffs that regulate base fees and

call charges according to call types. Correctly defining tariffs can be useful to

telecom companies in several ways. By means of tariff, not only the customer will

gain benefits, but also the telecom companies can analyze customer orientation

better and develop the necessary infrastructure and better optimize resources.

To define well targeted tariffs, telco companies need to understand call pat-

terns of their customer base. Whenever a customer makes a call, a call detail

record (CDR) comes to the data center of the telco company. The CDR has a

caller associated with it and contains information about the call, such as; call

target, call time, call duration, etc. When CDRs of a customer are aggregated,

customer call patterns can be understood.

We built an application that uses aggregate profile clustering to perform cus-

tomer segmentation for tariff optimization. The system uses CDRs as profile

updates and builds aggregate customer calling profiles. Each profile has tariff

information associated with it, and resulting cluster has labeled points with tariff

information. The goal is to perform tariff optimization by detecting poorly defined

tariffs and potential new tariffs.

The main idea is that customers who have similar call patterns should have
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the same tariff, if that tariff is well defined. The system analyzes the clustering

results and detects if a tariff is scattered over many clusters where the tariff

in question is a minority, or concentrated on a few clusters where the tariff in

question is a majority. If a tariff is scattered over many high-entropy clusters,

then it could not reach its target audience. Therefore it is a poorly defined tariff.

Using a similar line of thought, the majority of customers in a cluster should

have the same tariff, if there is a tariff that meets the expectations of the clustered

customer group. Therefore clusters with high entropy are identified as potential

new tariffs.

We modified the CDR generator we have used in our evaluation for demo

purposes. Tariff labels are added as a feature to pre-defined customer profiles

with their associated possibilities. When the customer base is being built, each

customer gets a tariff, from its predefined possible tariff targets. Other generator

features are preserved as is.

Figure 6.1: A sample screenshot from the demo dashboard.

The CDRs are processed to compute customer calling profiles. We define a

number of features, based on the kind of the destination number of the call (local,

trunk, GSM, international), based on the time of the call (nighttime, daytime,

weekday, weekend), as well as the length of the call (short, long). For each call
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category, we maintain separate aggregates of the percentage of calls falling into

that category. These form a call profile vector, which is updated each time a new

call is received. Whenever the infrastructure creates a new clustering, micro-

clusters are also sent to the demo application.

The demo application uses a visualization dashboard to identify tariff quality,

a sample screenshot of which is shown in Figure 6.1. Each tariff is assigned to

a color and clusters are shown as shapes in the clustering results panel. Tariff

legend with quality and cluster legend with entropy can be found on the right

side of the visualization dashboard.

The analytics operator in our application computes the quality value for each

tariff and displays the distribution of the tariff over the clusters. Let Cji be

the percentage of jth cluster members that use the ith tariff, and Tij be the

percentage ith tariff users that are member of the jth cluster. The quality of the

ith tariff, denoted by Q(Ti), is calculated as follows:

Q(Ti) =
∑
i,j

Tij · Cji (6.1)

The quality of a cluster is taken as the entropy of the cluster with respect to

the tariffs of the users contained within.
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Conclusion

In this thesis, we introduced the problem of scalable streaming profile clustering

for the telco domain. We propose a solution that employs partitioned stateful

parallelism and heuristic re-partitioning techniques. The solution consist of three

main parts: micro-clustering, re-partitioning, and migration. K-means with rel-

atively high k-parameter is used for creating micro-clusters on processing nodes.

After creating micro-clusters, each node sends its micro-cluster summaries to a

centralized master node and the tuple flow is temporarily paused via buffering.

Master node ranks micro-clusters towards possible target nodes and calculates

three metrics: clustering disaffinity, balance disaffinity, and migration affinity.

Using these metrics, it calculates the overall affinity of a micro-cluster for every

target node, and assigns each micro-cluster to a node that provides the highest

overall affinity. The micro-clusters are considered in decreasing order of state

size. When every micro-cluster is assigned to a node, the master node creates a

new partition mapping, and informs every node and the splitter about the new

partitioning. Each node reads its new profile information from persistent storage

and performs necessary state migrations. Finally, the tuple flow is restarted.

We have evaluated the performance of our proposed solution using a CDR

generator, and studied the impact of various system parameters on the perfor-

mance metrics. When we experiment for scalability, we observe that the system
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reaches its maximum quality when number of profile types is close to the num-

ber of nodes. After reaching its maximum, the quality decreases slowly when

the number of nodes is increased. We experiment with different values for the

algorithmic parameters, such as the number of nearest neighbors used (k) and

scaler used to adjust the trade-off between balance and clustering quality (α) in

order to decide best values for achieving maximum quality. We evaluated the sys-

tem with varying number of clusters and skewed cluster sizes to understand how

the proposed solution behaves for different datasets. Finally, we evaluated the

running time cost of the re-partitioning, which has shown that most of the cost

is incurred during local clustering at each node, which is effectively parallelized

when the number of nodes used is increased.

Last, but not the least, we presented a demo application that illustrates the

use of our solution for telco customer segmentation. Our application aims to

perform tariff optimization by detecting poorly defined tariffs and potential new

tariffs.
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