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Assoc. Prof. Dr. İbrahim Körpeoğlu

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Asst. Prof. Dr. Behçet Uğur Töreyin
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ABSTRACT

SIGNAL AND DETECTOR RANDOMIZATION FOR

MULTIUSER AND MULTICHANNEL

COMMUNICATION SYSTEMS

Mehmet Emin Tutay

Ph.D. in Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Sinan Gezici

November 2013

Randomization can be considered as a possible approach to enhance error per-

formance of communication systems subject to average power constraints. In

the first part of this dissertation, we consider downlink of a multiuser commu-

nications system subject to an average power constraint, where randomization

is employed at the transmitter and receiver sides by modeling signal levels as

random variables (stochastic signals) and employing different sets of detectors

via time-sharing (detector randomization), respectively. In the second part, we

consider single-user systems, where we assume that there exist multiple channels

between the transmitter and receiver with arbitrary noise distributions over each

of them and only one of the channels can be employed for transmission at any

given time. In this case, randomization is performed by choosing the channel

in use according to some probability mass function and employing stochastic

signaling at the transmitter.

First, the jointly optimal power control with signal constellation randomiza-

tion is proposed for the downlink of a multiuser communications system. Unlike

a conventional system in which a fixed signal constellation is employed for all the
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bits of a user (for given channel conditions and noise power), power control with

signal constellation randomization involves randomization/time-sharing among

different signal constellations for each user. A formulation is obtained for the

problem of optimal power control with signal constellation randomization, and

it is shown that the optimal solution can be represented by a randomization of

(K+1) or fewer distinct signal constellations for each user, where K denotes the

number of users. In addition to the original nonconvex formulation, an approxi-

mate solution based on convex relaxation is derived. Then, detailed performance

analysis is presented when the receivers employ symmetric signaling and sign de-

tectors. Specifically, the maximum asymptotical improvement ratio is shown to

be equal to the number of users, and the conditions under which the maximum

and minimum asymptotical improvement ratios are achieved are derived. In

the literature, it is known that employing different detectors with corresponding

deterministic signals via time-sharing may enhance error performance of com-

munications systems subject to average power constraints. Motivated by this

result, as a second approach, we study optimal detector randomization for the

downlink of a multiuser communications system. A formulation is provided to

obtain optimal signal amplitudes, detectors, and detector randomization factors.

It is shown that the solution of this joint optimization problem can be calculated

in two steps, resulting in significant reduction in computational complexity. It is

proved that the optimal solution is achieved via randomization among at most

min{K,Nd} detector sets, where K is the number of users and Nd is the number

of detectors at each receiver. Lower and upper bounds are derived on the per-

formance of optimal detector randomization, and it is proved that the optimal

detector randomization approach can reduce the worst-case average probability

of error of the optimal approach that employs a single detector for each user by

up to K times. Various sufficient conditions are obtained for the improvability

and nonimprovability via detector randomization. In the special case of equal
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crosscorrelations and noise powers, a simple solution is developed for the opti-

mal detector randomization problem, and necessary and sufficient conditions are

presented for the uniqueness of that solution.

Next, a single-user M−ary communication system is considered in which the

transmitter and the receiver are connected via multiple additive (possibly non-

Gaussian) noise channels, any one of which can be utilized for a given symbol

transmission. Contrary to deterministic signaling (i.e., employing a fixed constel-

lation), a stochastic signaling approach is adopted by treating the signal values

transmitted for each information symbol over each channel as random variables.

In particular, the joint optimization of the channel switching (i.e., time-sharing

among different channels) strategy, stochastic signals, and decision rules at the re-

ceiver is performed in order to minimize the average probability of error under an

average transmit power constraint. It is proved that the solution to this problem

involves either one of the following: (i) deterministic signaling over a single chan-

nel, (ii) randomizing (time-sharing) between two different signal constellations

over a single channel, or (iii) switching (time-sharing) between two channels with

deterministic signaling over each channel. For all cases, the optimal strategies

are shown to employ corresponding maximum a posteriori probability (MAP)

decision rules at the receiver.

Keywords: Multiuser, Downlink, Probability of Error, Minimax, Detection,

Stochastic Signaling, Detector Randomization, Channel Switching, M -ary Com-

munications, Gaussian Noise, Multimodal Noise, Power Constraint.
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ÖZET

ÇOK KULLANICILI VE ÇOK KANALLI HABERLEŞME

SİSTEMLERİ İÇİN SİNYAL VE SEZİCİ

RASTGELELEŞTİRME

Mehmet Emin Tutay

Elektrik ve Elektronik Mühendisliği, Doktora

Tez Yöneticisi: Doç. Dr. Sinan Gezici

Kasım 2013

Rastgeleleştirme, ortalama güç kısıtlı iletişim sistemlerinde hata performansını

artırmak için muhtemel bir yaklaşım olarak düşünülebilir. Bu tezin ilk

kısmında, rastgeleleştirmenin verici ve alıcıda sırasıyla, işaret seviyelerinin

rastgele değişkenler (stokastik işaretler) olarak modellenerek ve farklı sezici

kümelerinin zaman paylaşımı (sezici rastgeleleştirme) ile kullanılarak uygu-

landığı çok kullanıcılı sistemlerin aşağı bağlantısı ortalama güç kısıtı altında

ele alınmaktadır. Tezin ikinci kısmında, tek kullanıcılı sistemler ele alınmakta,

verici ve alıcı arasında çeşitli gürültü dağılımlara sahip çoklu kanalların olduğu

ve anlık olarak bu kanallardan sadece birinin kullanılabildığı varsayılmaktadır.

Bu durumda rastgeleleştirme, iletişim yapılacak kanalın belirli olasılık yığın

fonksiyonuna göre seçilmesiyle ve vericide stokastik işaretleme kullanılmasıyla

gerçekleştirilmektedir.

İlk olarak, çok kullanıcılı sistemlerin aşağı bağlantısı için işaret yıldız

kümelerinin rastgeleleştirilmesiyle optimal güç kontrolü önerilmektedir. Kul-

lanıcının bütün bitleri için sabit bir işaret yıldız kümesinin (verilen kanal şartları

ve gürültü gücü için) kullanıldığı geleneksel sistemlerin aksine, işaret yıldız
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kümelerinin rastgeleleştirilmesiyle yapılan güç kontrolü, her bir kullanıcı için

farklı işaret yıldız kümeleri arasında rastgeleleştirme/zaman paylaşımı gerektire-

bilmektedir. İşaret yıldız kümelerinin rastgeleleştirilmesiyle optimal güç kontrolü

problemi için bir formülasyon elde edilmekte ve her bir kullanıcı için optimal

çözümün (K +1)- burada K kullanıcı sayısını göstermekte - veya daha az işaret

yıldız kümeleri arasında rastgeleleştirme ile ifade edilebileceği gösterilmektedir.

Özgün dış bükey olmayan formülasyona ek olarak, dışbükey gevşetme metoduna

dayanan yaklaşık bir çözüm elde edilmektedir. Daha sonra, alıcılarda simetrik

işaretleme ve işaret sezicileri kullanıldığı durumda detaylı başarım analizi sunul-

maktadır. Daha açık bir ifadeyle, en büyük asimptotik gelişim oranının kullanıcı

sayısına eşit olduğu gösterilmekte ve en büyük ve en küçük asimptotik gelişim

oranlarına erişilmesi için koşullar elde edilmektedir.

Literatürde, ortalama güç kısıtlı iletişim sistemlerinde deterministik

işaretleme ile çalışan sezicilerin zaman paylaşımı ile kullanımının, hata perfor-

mansını iyileştirebileciği bilinmektedir. Bu sonuçtan hareketle, ikinci yaklaşım

olarak, çok kullanıcılı sistemlerin aşağı bağlantısı için optimal sezici rast-

geleleştirme problemi çalışılmaktadır. Optimal işaret genliklerinin, sezicilerin

ve sezici rastgeleleştirme oranlarının elde edilebilmesi için bir formülasyon

sunulmaktadır. Bu ortak eniyileme probleminin çözümünün, hesaplama

karmaşıklığının önemli ölçüde daha az olduğu iki aşamada hesaplanabildiği

gösterilmektedir. Optimal çözüme en fazla min{K,Nd} sezici seti arasında rast-

geleleştirme ile ulaşıldığı -burada K kullanıcı sayısını ve Nd her bir alıcıdaki

sezici sayısını göstermekte- ispatlanmaktadır. Optimal sezici rastgeleleştirme

başarımı için alt ve üst sınırlar elde edilmekte ve optimal sezici rastgeleleştirme

yaklaşımının en kötü durumdaki hata olasılığını her bir kullanıcı için bir sezici

kullanan optimal yaklaşıma göre K oranında azaltabildiği ispatlanmaktadır.

Sezici rastgeleleştirme ile iyileşmenin olabileceği ve olamayacağı yeter koşullar
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elde edilmektedir. Çapraz ilintilerin ve gürültü güçlerinin eşit olduğu özel durum-

larda, optimal sezici rastgeleleştirme problemi için basit bir çözüm geliştirilmekte

ve çözümün tek olması için gerek ve yeter koşullar sunulmaktadır.

Daha sonra, verici ve alıcı arasında, verilen bir sembol iletimi için herhangi

birinin kullanılabildiği çoklu toplanabilir gürültü kanalları (Gaussian olmaya-

bilir) bulunan, tek kullanıcılı M -li iletişim sistemleri ele alınmaktadır. Deter-

ministik işaretlemenin (sabit yıldız kümesi kullanmanın) aksine, her bilgi sem-

bolü için her bir kanal üstünden gönderilen işaret değerlerini rastgele değişkenler

olarak ele alan stokastik işaretleme benimsenmektedir. Özellikle, ortalama

güç kısıtı altında ortalama hata olasılığını enküçültmek için kanal anahtar-

lama yöntemi, stokastik işaretler ve alıcıdaki karar kurallarının ortak eniyilemesi

gerekleştirilmektedir. Bu problemin çözümünün şunlardan herhangi biri olduğu

ispat edilmektedir: (i) tek kanal üstünden deterministik işaretleme, (ii) tek kanal

üstünden iki farklı yıldız kümesi arasında rastgeleleştirme (zaman paylaşımı),

(iii) her biri deterministik işaretleme kullanan iki kanal arasında anahtarlama

(zaman paylaşımı). Bütün durumlarda, optimal yöntemlerin alıcıda maksimum

sonsal olasılık karar kurallarını kullandığı gösterilmektedir.

Anahtar Kelimeler: Çok Kullanıcı, Aşağı Bağlantı, Hata Olasılığı, En Küçük En

Büyük, Sezim, Stokastik İşaretleme, Sezici Rastgeleleştirme, Kanal Anahtarlama,

M -li iletişim, Gauss Gürültüsü, Çok Doruklu Gürültü, Güç Kısıtı.
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Chapter 1

Introduction

The main motivation behind this study is the recent results in which randomiza-

tion is shown to be an effective method for performance improvement in terms of

average error probability. Specifically, communications systems subject to aver-

age power constraints are studied for single-user scenarios in [2–6], where random-

ization is performed by modeling transmitted signal levels as random variables

(also referred to as stochastic signaling), employing different detectors with corre-

sponding deterministic signals via time-sharing (called detector randomization),

and employing different channels via time-sharing (i.e., channel-switching). In

the first part of this dissertation, downlink of a multiuser communications system

subject to some average power constraint is considered under stochastic signal-

ing and detector randomization approaches in the presence of Gaussian noise.

In the second part, a single-user scenario is considered in the presence of multi-

ple channels with any generic noise probability density functions (PDFs), when

stochastic signaling can be employed at the transmitter for each channel. In both

parts, it is shown that the optimal randomization strategy can be represented by

discrete probability distributions with certain numbers of point masses. In the

following, the previous related work in the literature and the main contributions

of this dissertation are presented.
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1.1 Multiuser Case

Recently, the effects of randomization or time-sharing have been investigated in

various studies such as [2–13]. In [2], the convexity properties of error probabil-

ity in terms of signal and noise power are investigated for binary-valued scalar

signals over additive unimodal noise channels under an average power constraint.

Based on the convexity results, the scenarios in which power randomization can

or cannot be useful for improving error performance are determined, and op-

timal strategies for jammer power randomization are developed. The study in

[3] generalizes the results of [2] by exploring the convexity properties of the er-

ror probability for constellations with arbitrary shape, order, and dimensionality

for a maximum likelihood (ML) detector in the presence of additive Gaussian

noise with no fading and with frequency-flat slowly fading channels. For commu-

nications systems that operate over time-invariant non-Gaussian channels [14],

randomization (time-sharing) among multiple signal constellations can improve

performance of a given receiver in terms of error probability. Specifically, it is

shown in [4] that randomization among up to three distinct signal constellations

can reduce the average probability of error of a communications system that op-

erates under second and fourth moment constraints. In addition, [5] investigates

the joint optimization of the signal constellation randomization and detector

design under an average power constraint and shows that the use of at most

two distinct signal constellations and the corresponding maximum a posteriori

probability (MAP) detector minimizes the average probability of error.

In a different context, time-varying or random signal constellations are uti-

lized in [15–20] for the purpose of enhancing error performance or achieving

diversity. In [15], the author proposes (pseudo)randomly rotating the signal con-

stellation for each transmitted vector in order to improve the coded frame-error-

rate of spatial multiplexing in block fading. The advantages of this approach

in reducing the outage probability are investigated in [16]. Although a form of
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constellation randomization is performed in [15, 16], they are different from the

work in Chapter 2 of this thesis since a (pseudo)random rotation of the signal

constellation is proposed for a single-user system in those studies, whereas we

obtain optimal randomization of signal constellations for a multiuser system in

this thesis. In addition, the studies in [17–20] consider random signal mapping,

random rotations, or time-varying phase shifts to transmitted signals in order to

achieve diversity.

1.1.1 Optimal Randomization of Signal Constellations on

the Downlink of a Multiuser DS-CDMA System

In the first part of this thesis, we consider a generic problem on the signal con-

stellation design for the downlink of a binary multiuser communications system

in which users can randomize or time-share among multiple signal constellations.

Unlike conventional systems in which a fixed signal constellation is employed for

all the bits of a user (for given channel conditions and noise power) [21], we for-

mulate a generic problem that can involve randomization/time-sharing among

different signal constellations for each user. Due to such randomization/time-

sharing, the signal amplitude corresponding to each bit of a user can be modeled

as a generic random variable in this approach. Therefore, the problem can be

formulated as obtaining the optimal probability distribution for the signal am-

plitude corresponding to each bit of each user in a multiuser system.

Since the signal amplitudes for all bits of all users are modeled as generic

random variables in the power control with signal constellation randomization

problem in this study, the proposed approach can also be considered as a gener-

alization of randomized power control algorithms in the literature from various
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perspectives [22–27].1 First, as the power control with signal constellation ran-

domization approach can result in strategies in which different power allocation

strategies are employed for different bits of a given user, it is a more generic

approach than randomized power control in general. Second, the proposed ap-

proach is employed for each state of the channel whereas power control algorithms

are used with respect to varying channel conditions. In other words, the power

control strategies in the literature adapt the power as the channel state changes,

whereas the proposed approach performs constellation randomization for a given

(fixed) channel state. Third, even for the symmetric signaling case (in which sig-

nal amplitudes for bit 0 and bit 1 are negatives of each other, and the same power

allocation strategy is employed for bit 0 and bit 1 for each user), the proposed

approach is different from those in the literature [22–27] since it models the sig-

nal amplitudes (powers) of the users as generic random variables and obtains the

optimal probability distributions of those random variables that minimize a prob-

ability of error metric. (The main intuition behind the benefits of this approach

is that when the signal amplitudes (powers) are modeled as random variables,

various time-sharing (randomization) strategies can be implemented in order to

optimize the error performance of the system, as investigated in Sections 2.3-2.5.)

For example, in [22], transmit powers are selected from a discrete set of power

levels, namely, zero and peak power, and optimal power randomization strategies

are obtained under that specification for a two-hop interference channel.2 [23]

considers the same strategy for power control in ad-hoc sensor networks, and

works on the optimization of transmission (on-state) probability to meet certain

quality of service requirements. In another study [24], a random power control

algorithm is proposed, in which the transmitter selects its power level randomly

from a uniform distribution. It is shown that this approach can improve network

connectivity over the fixed power control approach in the case of static channels.

However, the performance of this uniform power selection approach deteriorates

1Please refer to [28–30] for surveys on power control in wireless networks.
2Please refer to [31] and [32] for other game theoretic approaches for power control.
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in fading channels, as investigated in [25]. In [26], random power allocation ac-

cording to a certain probability distribution is proposed. Namely, the transmit

power is modeled by a truncated inverted exponential distribution, and the pa-

rameter of this distribution is updated at certain intervals based on feedback.

The connectivity analysis of this approach is presented in [27] for wireless sensor

networks, and improvements in energy efficiency are observed.3

Motivated by the recent results that illustrate the improvements obtained via

randomization [2–10, 15, 35, 36], the aim of this study is to formulate a generic

power control problem with signal constellation randomization for the downlink

of a multiuser communications system in which the signal amplitude for each

bit of a user is modeled as a random variable. In other words, by adopting the

approach in [4], the aim is to jointly design the optimal randomization of signal

constellations for all users in the downlink of a direct sequence code division mul-

tiple access (DS-CDMA) system in order to optimize error performance for given

receiver structures. The main challenge in the joint design of signal constellation

randomization is that signal amplitudes of each user affect not only its own error

performance but also the performance of all other users via interference.

The main contributions of Chapter 2 can be summarized as follows:

• The joint design of optimal randomization of signal constellations is per-

formed in a multiuser system for the first time.

• It is shown that the optimal power control with signal constellation ran-

domization results in a randomization among up to (K+1) different signal

constellations for each user, where K is the number of users.

3In [33] and [34], the term “stochastic power control” is used in a different meaning from

“randomized power control” in [22–27]. Specifically, [33] and [34] do not employ any power

or signal randomization but apply an approach that is based on measurements (which are

inherently random) instead of known deterministic parameters.
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• In addition to the generic problem formulation, which needs to be solved

via global optimization algorithms due to its nonconvex nature, an approx-

imate convex solution is obtained based on convex relaxation.

1.1.2 Optimal Detector Randomization for Multiuser

Communications Systems

In the previous scenario, the downlink of a multiuser system is considered in

which randomization is employed at the transmitter by modeling transmitted

signal levels as random quantities, while at the receiver of each user a fixed deci-

sion rule (e.g., sign detector) is employed. Another technique for enhancing error

performance of some communications systems that operate over time-invariant

channels is to perform detector randomization, which involves the use of multiple

detectors at the receiver with certain probabilities (certain fractions of time) [6–

8], [37, 38]. In other words, a receiver can randomize (time-share) among multiple

detectors in order to reduce the average probability of error. In [7], randomiza-

tion between two antipodal signal pairs and the corresponding MAP detectors

is performed for an average power constrained binary communications system,

and significant performance improvements are observed as a result of detector

randomization in some cases in the presence of symmetric Gaussian mixture

noise. In [6], the results in [7] and [5] are extended by considering both detector

randomization and signal constellation randomization for an average power con-

strained M -ary communications system. It is proved that the joint optimization

of detector and signal constellation randomization results in a randomization

between at most two MAP detectors corresponding to two deterministic signal

constellations. The study in [6] is extended to the Neyman-Pearson (NP) frame-

work in [37] by considering a power constrained on-off keying communications

systems. As discussed in [39], detector randomization can be regarded as a gen-

eralization of noise enhanced detection with a fixed detector [9, 13]. In addition,
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when variable detectors are considered, noise enhanced detection and detector

randomization can be considered as alternative approaches.4 In [8], probability

distributions of optimal additive noise components are investigated for variable

detectors, and the optimal randomization between detector and additive noise

pairs is investigated for optimal noise enhancement.

Although detector randomization has recently been investigated, e.g., in [6–

8, 37], no previous studies have considered detector randomization for multiuser

communications systems. In Chapter 3 of this dissertation, we study optimal

detector randomization for multiuser communications systems. In particular, we

consider the downlink of a direct sequence spread spectrum (DSSS) communi-

cations system under an average power constraint, and propose an optimization

problem to obtain optimal signal amplitudes (corresponding to information sym-

bols for different users), detectors, and detector randomization factors (proba-

bilities) that minimize the worst-case (maximum) average probability of error of

the users. Since this joint optimization problem is quite complex in its original

formulation, a low-complexity approach is developed in order to obtain the op-

timal solution in two steps, where the optimal signal amplitudes and detector

randomization factors are calculated in the first step, and the corresponding ML

detectors are obtained in the second step. Also, it is shown that the optimal

solution requires randomization among at most min{K,Nd} detectors for each

user, where K is the number of users and Nd is the number of detectors at

each receiver. In addition, the performance of the optimal detector randomiza-

tion approach is investigated, and a lower bound is presented for the minimum

worst-case average probability of error. It is proved that the optimal detector

randomization approach can improve the performance of the optimal approach

that employs a single detector for each user (i.e., no detector randomization)

4The main difference is that an additive noise component is employed at the detector in the

noise enhanced detection approach whereas the transmitted signal values are adapted according

to the detector randomization strategy in the detector randomization approach.
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by up to K times. Sufficient conditions are derived for the improvability and

nonimprovability via detector randomization. Furthermore, in the special case

of equal crosscorrelations and noise powers, a simple solution is proposed for the

optimal detector randomization problem, and necessary and sufficient conditions

are obtained for the uniqueness of that solution. Finally, numerical examples are

presented in order to illustrate the improvements achieved via detector random-

ization. Although the results in this study are obtained for the downlink of a

binary DSSS system, possible extensions to uplink scenarios and M -ary systems

are discussed in Section 3.5.

It should be emphasized that detector randomization in this study is designed

for time-invariant channels; equivalently, detector randomization is performed for

each channel realization assuming that channel statistics do not change for a cer-

tain number of symbols [6, 7, 37]. Therefore, the proposed approach is different

from power control (and detector adaptation) algorithms that are developed for

varying channel conditions [28–30]. In addition, randomized power control algo-

rithms in the literature, such as [22–27], employ significantly different approaches

than that in this study.

1.2 Single-User Case

1.2.1 Optimal Signaling and Detector Design for M−ary

Communications Systems in the Presence of Mul-

tiple Additive Noise Channels

When multiple channels are present between a transmitter and a receiver, it

may be advantageous to perform channel switching; that is, to transmit over one

channel for a certain fraction of time, and then switch to another channel during

the next transmission period even if the channel statistics are not varying with
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Figure 1.1: Illustrative example demonstrating the benefits of switching between
two channels under an average power constraint [1].

time [2, 40, 41]. Figure 1.1 illustrates this fact for an average power constrained

binary communications system which employs antipodal signaling with −
√
S,
√
S

for a given signal power S. It is seen that the average probability of error can

be reduced by switching (time-sharing) between channel 1 and channel 2 with

respective power levels S1 and S2 in comparison to the constant power transmis-

sion scheme that employs power Savg exclusively over channel 1. More precisely,

time-sharing exploits the nonconvexity of the plot for the minimum of the error

probabilities over both channels as a function of the signal power. The resulting

strategy yields the convex hull of the individual error probability functions. This

observation is first noted in [2] while studying the convexity properties of error

probability with respect to the transmit signal power for the optimal detection

of antipodal signals corrupted by additive unimodal noise. It is shown that the

optimum performance under an average power constraint can be achieved by

time-sharing between at most two channels and power levels.

In Chapter 4 of this dissertation, we study the optimal signaling and detec-

tion strategy that minimizes the average probability of error for an average power
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constrained M -ary communications system in which the transmitter and the re-

ceiver are connected via multiple additive noise channels. Similar to [2], it is

assumed that only a single channel is used for symbol transmission at any given

time instant. Although the analysis in [2] is restricted to unimodal noise distribu-

tions and deterministic binary antipodal signals, we consider generic noise PDFs

(i.e., including non-Gaussian or multimodal cases), and a stochastic signaling ap-

proach by assuming that the transmitter can perform signal randomization for

each information symbol sent over any one of the channels. More specifically, we

investigate the joint optimization of the channel switching strategy, stochastic

signals (employed for the transmission of each symbol over each channel), and

decision rules (used for each channel at the receiver) in order to minimize the

average probability of error under an average transmit power constraint.

The main contributions of Chapter 4 can be summarized as follows:

• A generic problem formulation is proposed for the optimal signaling and de-

tection problem in the presence of multiple additive noise channels by con-

sidering the joint optimization of the channel switching strategy, stochastic

signals, and detectors without imposing any restrictions on probability dis-

tributions of channel noise.

• It is proved that the solution to this generic problem corresponds to either

(i) deterministic signaling (i.e., employing a fixed constellation) over a sin-

gle channel with the corresponding MAP detector, (ii) randomizing (time-

sharing) between two different signal constellations over a single channel

with the corresponding MAP detector, or (iii) switching (time-sharing) be-

tween the MAP detectors of two channels with deterministic signaling over

each channel.

In addition, numerical examples are provided to illustrate the improvements that

can be achieved via the optimal signaling and detection strategy. The results in
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this study generalize some of the previous studies in the literature and cover

them as special cases. For example, in the absence of channel switching (i.e., in

the presence of a single channel between the transmitter and the receiver) and

for binary communications, the results reduce to those in [5]. In addition, in the

absence of stochastic signaling and when the channel noise is assumed to have

a unimodal differential PDF for a binary communications system, the problem

considered in this study covers the one in [2] as a special case.

1.3 Organization of the Dissertation

This dissertation is organized as follows. In Chapter 2, downlink of a multiuser

communications system is considered in the presence of Gaussian noise when

fixed decision rules (specifically, sign detectors) are employed at the receiver of

each user [42]. The system is subject to an average power constraint and the

objective is to find the optimal signal constellation randomization to minimize the

worst-case average error probability. Chapter 3 considers the scenario in Chapter

2 based on a different approach [43]. Namely, It is assumed that each user has Nd

detectors at the receiver and the objective is to jointly optimize randomization

factors, detectors and corresponding deterministic signals to minimize the worst-

case error probability. Another important difference is that power is assumed

to be limited for a bit duration, while in Chapter 2 the time average power

constraint is considered. In Chapter 4, single-user systems are considered in

the presence of multiple channels with any generic noise PDFs when stochastic

signaling is adopted at the transmitter for each channel. The objective is to

optimize stochastic signals, channel switching factors, and detectors to minimize

the average error probability. Finally, Chapter 5 concludes this dissertation by

providing an overall summary.
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Chapter 2

Optimal Randomization of Signal

Constellations on the Downlink

of a Multiuser DS-CDMA

System

This chapter is organized as follows. In Section 2.1, the system model is intro-

duced and receiver structures are described. In Section 2.2, the optimal power

control with signal constellation randomization problem is formulated and theo-

retical results are obtained for generic detector structures at the receivers. Spe-

cific results are obtained for sign detectors in Section 2.3. In Section 2.4, nu-

merical examples are provided to illustrate the improvements obtained via the

proposed power control with signal constellation randomization approach. Con-

cluding remarks are made and possible extensions to uplink scenarios and M -ary

systems are discussed in Section 2.5.
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2.1 System Model

Consider the downlink of a multiuser DS-CDMA binary communications system,

in which the baseband model for the transmitted signal is given by

p(t) =
K∑
k=1

S
(ik)
k ck(t) , (2.1)

where K is the number of users, S
(ik)
k denotes the amplitude of the kth user’s

signal corresponding to bit ik, with ik ∈ {0, 1}, and ck(t) is the real pseudo-noise

signal for user k. The pseudo-noise signals spread the spectra of users’ signals

and provide multiple-access capability [21]. Information intended for user k is

carried by S
(ik)
k , which corresponds to bit 0 for ik = 0 and bit 1 for ik = 1. S

(ik)
k ’s

are modeled as real numbers, and they scale the amplitudes of the pseudo-noise

signals, ck(t)’s. It is assumed that bit 0 and bit 1 are equally likely (i.e., the prior

probabilities of the bits are equal to 0.5) for all users, and the information bits

for different users are independent.

The signal in (2.1) is transmitted to K users, and the received signal at user

k is represented by

rk(t) =
K∑
l=1

S
(il)
l cl(t) + nk(t) , (2.2)

for k = 1, . . . , K, where nk(t) denotes the noise at the receiver of user k, which

is modeled as a zero-mean white Gaussian process with spectral density σ2
k. It is

assumed that the noise processes at different receivers are independent. Although

a simple additive noise model is employed in (2.2), multipath channels with

slow frequency-flat fading can also be covered by the considered model if perfect

channel estimation is assumed at the receivers [4]. In that case, the signal in

(2.2) can be considered as the scaled version of the received signal by the inverse

of the channel coefficient; hence, the average power of the noise component in

(2.2), σ2
k, would correspond to the average noise power in the received signal

divided by the channel power gain. (In other words, the effects of frequency-flat
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Figure 2.1: Receiver structure for user k.

fading can be taken into account by incorporating channel power gains into the

σ2
k terms in (2.2).)

The receiver for user k processes the signal in (2.2) as shown in Figure 2.1.

Specifically, the received signal rk(t) is correlated with the pseudo-noise signal

for user k, ck(t), which effectively corresponds to a despreading operation, and

then the correlator output is used by a generic detector in order to estimate the

transmitted bit for user k. Based on (2.2), the correlator output for user k can

be expressed as

Yk = S
(ik)
k +

K∑
l=1
l ̸=k

ρk,lS
(il)
l +Nk , (2.3)

for k = 1, . . . , K, where ρk,l ,
∫
ck(t)cl(t)dt denotes the crosscorrelation between

the pseudo-noise signals for user k and l (it is assumed without loss of generality

that ρk,k = 1 for k = 1, . . . , K ), and Nk ,
∫
nk(t)ck(t)dt is the noise component.

It can be shown that N1, . . . , NK form a sequence of independent zero-mean

Gaussian random variables with variances, σ2
1 . . . , σ

2
K , respectively. In (2.3),

the first term corresponds to the desired signal component, the second term

represents the multiple-access interference (MAI), and the last term is the noise

component.

The correlator output in (2.3) is used by a generic detector (decision rule) ϕk

to generate an estimate of the transmitted information bit, as shown in Figure 2.1.
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Specifically, for a given correlator output Yk = yk, the bit estimate is denoted as

îk = ϕk(yk) =


0 , yk ∈ Γk,0

1 , yk ∈ Γk,1

(2.4)

for k = 1, . . . , K, where Γk,0 and Γk,1 denote the decision regions for bit 0 and

bit 1, respectively, and they form a partition of the observation space [44]. In

the next section, theoretical results are obtained for generic detectors at the

receivers; that is, ϕk’s can be arbitrary decision rules.

2.2 Power Control with Signal Constellation

Randomization for Multiuser Systems

2.2.1 Optimal Power Control with Signal Constellation

Randomization

In conventional systems, S
(ik)
k in (2.1) corresponds to a fixed value for each bit of

a given user; in other words, a signal constellation is selected for each user, and it

is employed for all the bits in the multiuser system (for given channel conditions

and noise power). For example, consider a two-user system, in which bit 0 and

bit 1 are represented by −1 and 1, respectively, for user 1, and by −0.5 and 0.5,

respectively, for user 2. Then, the joint signal constellation for the two users is

represented by
(
S
(0)
1 , S

(1)
1 , S

(0)
2 , S

(1)
2

)
= (−1, 1,−0.5, 0.5). In this case, there is no

randomization or time-sharing among multiple signal constellations, and a fixed

signal constellation is employed for all the bits of each user in the system for

given channel conditions and noise power. A specific example is illustrated in

Table 2.1-(A) when 12 bits are transmitted for each user.

Unlike conventional systems, we consider power control with signal constel-

lation randomization in this study and model S
(ik)
k in (2.1) as generic random
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Table 2.1: (A) Example of a conventional system in which no signal constellation

randomization is employed. Joint signal constellation
(
S
(0)
1 , S

(1)
1 , S

(0)
2 , S

(1)
2

)
=

(−1, 1,−0.5, 0.5) is used for all the bits. (B) Example of power control with
signal constellation randomization in which half of the bits are transmitted ac-
cording to joint signal constellation (−0.7, 0.7,−0.4, 0.4) and the remaining half
are transmitted according to (−1.1, 1.1,−0.8, 0.8).

(A)

Bit of User 1 (i1) 0 1 0 0 1 0 1 1 0 0 1 1

Amplitude of User 1’s Signal
(
S
(i1)
1

)
-1 1 -1 -1 1 -1 1 1 -1 -1 1 1

Bit of User 2 (i2) 1 0 1 0 0 1 1 0 1 0 0 1

Amplitude of User 2’s Signal
(
S
(i2)
2

)
0.5 -0.5 0.5 -0.5 -0.5 0.5 0.5 -0.5 0.5 -0.5 -0.5 0.5

(B)

Bit of User 1 (i1) 0 1 0 0 1 0 1 1 0 0 1 1

Amplitude of User 1’s Signal
(
S
(i1)
1

)
-0.7 0.7 -1.1 -0.7 1.1 -1.1 0.7 1.1 -0.7 -1.1 0.7 1.1

Bit of User 2 (i2) 1 0 1 0 0 1 1 0 1 0 0 1

Amplitude of User 2’s Signal
(
S
(i2)
2

)
0.4 -0.4 0.8 -0.4 -0.8 0.8 0.4 -0.8 0.4 -0.8 -0.4 0.8

variables [4]. In this case, it is possible to employ different signal constella-

tions for different bits in the system (for given channel conditions and noise

power). In other words, randomization/time-sharing among multiple signal con-

stellations is possible. For example, in a two-user system, one can time-share

between joint signal constellations
(
S
(0)
1 , S

(1)
1 , S

(0)
2 , S

(1)
2

)
= (−0.7, 0.7,−0.4, 0.4)

and
(
S
(0)
1 , S

(1)
1 , S

(0)
2 , S

(1)
2

)
= (−1.1, 1.1,−0.8, 0.8). Specifically, if half of the bits

are sent according to the first set of signal constellations and the remaining

half are sent according to the second one, the overall joint signal constellation,(
S
(0)
1 , S

(1)
1 , S

(0)
2 , S

(1)
2

)
, can be represented by a discrete random variable which is

equal to (−0.7, 0.7,−0.4, 0.4) or (−1.1, 1.1,−0.8, 0.8) with equal probabilities. In

Table 2.1-(B), this example of power control with signal constellation random-

ization is illustrated when 12 bit are transmitted for each user. As observed from

the table, for user 1 (user 2), half of bits 0 are represented by −0.7 (−0.4) and

the remaining half are represented by −1.1 (−0.8); similarly, half of bits 1 are

represented by 0.7 (0.4) and the remaining half are represented by 1.1 (0.8) in

order to implement the desired signal constellation randomization.
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In order to provide a generic formulation of the proposed power control with

signal constellation randomization approach in multiuser systems, let S denote

the vector of random variables corresponding to the amplitudes of all users’

signals for bit 0 and bit 1; that is,

S =
(
S
(0)
1 , S

(1)
1 , S

(0)
2 , S

(1)
2 , · · · , S(0)

K , S
(1)
K

)
, (2.5)

where S
(ik)
k is as in (2.1). In other words, S is the joint signal constellation,

which is a 2K dimensional vector consisting of signal constellations for all users

(as exemplified in the previous paragraphs), and it is modeled as a generic ran-

dom vector in order to facilitate any type of signal constellation randomization.

In addition, let pS represent the probability density function (PDF) of S. Ac-

cording to this definition, the conventional approach of no constellation ran-

domization (or, fixed signal constellations) corresponds to a PDF in the form

of pS(s) = δ(s − s0), where δ(·) represents the Dirac delta function. (For in-

stance, pS(s) = δ (s− (−1, 1,−0.5, 0.5)) for the example in Table 2.1-(A).) On

the other hand, any generic PDF can be employed in the power control with

signal constellation randomization approach considered in this study. (For in-

stance, pS(s) = 0.5 δ(s − (−0.7, 0.7,−0.4, 0.4)) + 0.5 δ(s − (−1.1, 1.1,−0.8, 0.8))

for the example in Table 2.1-(B).)

Based on the definition in (2.5), the aim is to find the optimal PDF of S, i.e.,

the optimal randomization of signal constellations, in a given multiuser system.

Considering a generic approach in the sense that the PDF of S, pS, can be in

any form (corresponding to discrete, continuous, or mixed random variables), we

formulate the following power control with signal constellation randomization

problem:

min
pS

max
k∈{1,...,K}

Pk (2.6)

subject to E

{∫
|p(t)|2dt

}
≤ A (2.7)

where Pk denotes the average probability of error for user k, p(t) is as in (2.1),

and A is a constraint on the average power of the transmitted signal. In other
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words, the aim is to find the optimal PDF for the joint signal constellation that

minimizes the maximum of the average probabilities of error under a constraint

on the average transmitted power. The minimax approach is adopted for fairness

[45–48]; that is, for preventing scenarios in which the average probabilities of

error are very low for some users whereas they are (unacceptably) high for others.

Extensions to cases in which different users have different levels of importance are

also possible as discussed in Section 2.5. It is noted that the formulation in (2.6)-

(2.7) is similar to a max-min SINR problem [46]. However, the main differences

are that the optimization in (2.6)-(2.7) is performed over the set of possible PDFs

for the joint signal constellation, and that the considered probability of error

metric leads to different solutions than the max-min SINR problem in general.

In order to express the optimization problem in (2.6)-(2.7) more explicitly, we

first manipulate the average power expression in (2.7) based on (2.1) as follows:

E

{∫
|p(t)|2dt

}
=

K∑
k=1

K∑
l=1

ρk,l E
{
S
(ik)
k S

(il)
l

}
= E{H(S)} (2.8)

where H(S) is defined as

H(S) ,
K∑
k=1

K∑
l=1

ρk,lS
(ik)
k S

(il)
l . (2.9)

In some scenarios, symmetric signaling is used, that is, the amplitudes of users’

signals corresponding to bit 0 and bit 1 are selected as S
(0)
k = −S

(1)
k for k =

1, . . . , K.1 In that case, E
{
S
(ik)
k S

(il)
l

}
= E

{∣∣S(1)
k

∣∣2} if k = l and E
{
S
(ik)
k S

(il)
l

}
= 0

if k ̸= l since information bits are equally likely. Then, H(S) in (2.9) becomes

H(S) =
∑K

k=1

∣∣S(1)
k

∣∣2.
Next, the average probability of error for user k, Pk, is obtained as follows

(please see Appendix 2.6.1 for details):

Pk = E{Gk(S)} , (2.10)

1For the example in Table 2.1, symmetric signaling is employed.

18



where the expectation is over the random vector S in (2.5), and Gk(S) is defined

as

Gk(S) ,
1

2K

∑
m∈{0,1}

∑
ik∈{0,1}K−1

P

{(
Nk + S

(m)
k +

K∑
l=1
l ̸=k

ρk,lS
(il)
l

)
∈ Γk,1−m

∣∣∣S} .

(2.11)

The probabilities in (2.11) are calculated with respect to the PDF of Nk for

given values of S
(ik)
k ’s, and ik is defined as ik , [i1 · · · ik−1 ik+1 · · · iK ]; i.e., the

vector of all the bit indices except for the kth one. In (2.11), we consider fixed

(given) decision rules at the receivers; that is, the decision regions, Γk,1−m’s, are

independent of pS.

Based on (2.8) and (2.10), the optimization problem in (2.6)-(2.7) can be

stated as

min
pS

max
k∈{1,...,K}

E{Gk(S)} (2.12)

subject to E {H(S)} ≤ A . (2.13)

The optimization problem in (2.12)-(2.13) can be quite complex in its current

form since it requires optimization over all possible PDFs for a random vector

of size 2K (see (2.5)).2 However, various approaches can be taken in order to

provide a simpler formulation of the optimization problem. To that end, the

following proposition is presented first.

Proposition 2.2.1. Suppose Gk’s are continuous functions and the elements of

S take values from finite closed intervals. Then, an optimal solution to (2.12)-

(2.13) can be expressed as

pS(s) =
K+1∑
j=1

λj δ(s− sj) , (2.14)

where
∑K+1

j=1 λj = 1 and λj ≥ 0 for j = 1, . . . , K + 1.

2The dimension of vector S can be reduced to K if symmetric signaling is employed.
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Proof: Please see Appendix 2.6.2. �

Proposition 2.2.1 states that an optimal joint signal constellation S can be

represented as a discrete random variable which corresponds to a randomization

of (K + 1) or fewer distinct signal constellations for each user. In other words,

for each information bit of each user, an optimal solution can be obtained by

performing randomization among up to (K+1) different signal amplitudes. This

is unlike the conventional case in which a fixed amplitude value is transmitted

for each information bit of a user.

Another implication of Proposition 2.2.1 can be provided as follows. Since

a generic formulation is considered, the set of Gk’s and H corresponding to all

possible joint signal constellations is not a convex set in general. Hence, the

optimal solution of (2.12)-(2.13) can require randomization (time-sharing), as

expressed in (2.14), in order to achieve the points on the convex hull of this set.

(Please see the proof of the proposition in Appendix 2.6.2 for a mathematical

statement of this observation.)

In practice, randomization of signal constellations can be performed, for ex-

ample, via time-sharing by employing each signal constellation for a certain num-

ber of information bits in proportion to the probability of that constellation. A

simple example was provided in the second paragraph of this section and in Ta-

ble 2.1-(B). More generally, if NI information bits are to be transmitted to each

user, λ1NI bits are generated according to s1, λ2NI bits are generated according

to s2, . . . , and λK+1NI bits are generated according to sK+1 in order to realize

the PDF of the joint signal constellation in (2.14). It should be emphasized that

the receivers do not need to know this randomization structure since the signal

constellation randomization is optimized by the transmitter for fixed (given) de-

tectors at the receivers of different users (see (2.4)) based on the optimization

problem in (2.6)-(2.7). In particular, the average probability of error for user

k, Pk, in (2.6) is given by (2.10) and (2.11), which indicate that the decision
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regions Γk,0 and Γk,1 (equivalently, the detector) for each user are independent

of the probability distribution of the joint signal constellation, S; hence, the

receiver implements its detector without knowing the randomization structure.

Proposition 2.2.1 implies that it is not necessary to search over all PDFs in

(2.12)-(2.13). Instead, only the PDFs in the form of (2.14) can be considered,

and the problem in (2.12)-(2.13) can be reduced to

min
{λj ,sj}K+1

j=1

max
k∈{1,...,K}

K+1∑
j=1

λj Gk(sj) (2.15)

subject to
K+1∑
j=1

λj H(sj) ≤ A ,
K+1∑
j=1

λj = 1 , λj ≥ 0 , j = 1, . . . , K + 1 .

(2.16)

Since this optimization problem is over a number of variables instead of func-

tions, it provides a significant simplification over the problem in (2.12)-(2.13).

However, it can still be a nonconvex optimization problem in general. The struc-

ture of the optimization problem in (2.15)-(2.16) can be utilized in order to

obtain close-to-optimal solutions with low complexity. Namely, as discussed in

the next subsection, a convex relaxation approach can be employed to provide

an approximate solution of (2.15)-(2.16).

Remark: In order to realize the proposed approach of power control with

signal constellation randomization in practice, the transmitter needs to know

the noise powers at the receivers (or, the signal-to-noise ratios (SNRs) at the re-

ceivers, considering a flat-fading scenario, as discussed after (2.2)), which can be

sent via feedback to the transmitter. Such a feedback is commonly available in

multiuser systems for power control purposes [28]. In addition, if the randomiza-

tion is implemented via time-sharing, the channel conditions should be (almost)

constant for a number of bit durations; hence, slowly fading channels are well-

suited for the power control with signal constellation randomization approach.

�
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Power Control with Constellation Randomization versus Conventional

Power Control

The main difference of the proposed power control with constellation randomiza-

tion approach from conventional power control algorithms is that the former is

employed for each state of the channel whereas the latter is used with respect to

varying channel conditions. In other words, the power control strategies in the

literature adapt the power as the channel state changes, whereas the proposed

approach performs constellation (power) randomization for a given (fixed) chan-

nel state. Therefore, these two approaches are different in the sense that they are

employed in different scenarios. In addition, it is possible to employ these two

approaches jointly: conventional power control as the channel conditions change,

and power control with constellation randomization for each channel state. In

such a scenario, the conventional power control strategy will determine the power

that is allocated for each channel state, which in effect sets the value of A in (2.7),

and the proposed approach will employ the optimal constellation randomization

under the power limit based on the optimization problem in (2.6)-(2.7). There-

fore, the proposed power control with constellation randomization approach is

well-suited for slow fading channels, where the channel state is (almost) constant

for a certain number of bit durations and then changes to a different value after

a certain amount of time (i.e., block fading scenarios).

2.2.2 Approximate Solution Based on Convex Relaxation

Although the optimization problem in (2.15)-(2.16) can be solved via global

optimization techniques in general, it becomes challenging for an optimization

technique to achieve the global optimum as the number K of users increases.3

3Specifically, there are a total of (2K+1)(K+1) unknown variables in (2.15)-(2.16) (which

reduces to (K + 1)2 for symmetric signaling).
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Therefore, it is desirable to obtain a convex version of the problem, which always

converges to its global optimum. In the following, an approximate formulation

of the problem is provided based on convex relaxation [49].

First, consider a set of possible joint signal constellations for S in (2.5) and

denote them as s̃1, . . . , s̃Nm . Then, the PDF of the joint signal constellation is

approximately modeled as

pS(s) ≈
Nm∑
j=1

λ̃j δ(s− s̃j) , (2.17)

where
∑Nm

j=1 λ̃j = 1, λ̃j ≥ 0 for j = 1, . . . , Nm, and s̃1, . . . , s̃Nm are known joint

signal constellations. Then, the approximate version of (2.12)-(2.13) can be

formulated as follows:

min
λ̃

max
k∈{1,...,K}

λ̃
T
gk (2.18)

subject to λ̃
T
h ≤ A , λ̃

T
1 = 1 , λ̃ ≥ 0 , (2.19)

where λ̃ ,
[
λ̃1 · · · λ̃Nm

]
, gk , [Gk(s̃1) · · ·Gk(s̃Nm)], h , [H(s̃1) · · ·H(s̃Nm)], and

0 and 1 denote vectors of zeros and ones, respectively. In other words, instead

of considering all possible PDFs as in (2.15)-(2.16), a number of known joint

signal constellations are considered, and the optimal weights, λ̃, corresponding

to those joint signal constellations are searched for. In general, the solution of

(2.18)-(2.19) provides an approximation to the optimal solution that is obtained

from (2.15)-(2.16). The approximation accuracy can be improved by increasing

Nm, i.e., by considering a larger number of elements in the set of possible signal

values, s̃1, . . . , s̃Nm , in (2.17). (In effect, for a larger Nm, the optimization in

(2.18)-(2.19) is performed based on a discrete random variable with a larger

number of point masses. If these point masses are selected appropriately, a

larger Nm results in an error rate that is never higher than that for a smaller

Nm.) In addition, if s̃1, . . . , s̃Nm contain all the possible joint signal constellations

(e.g., for a digital system), then the solution of (2.18)-(2.19) becomes exact.
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By defining an auxiliary variable t, an equivalent form of (2.18)-(2.19) can

be obtained as follows:

min
t , λ̃

t (2.20)

subject to λ̃
T
gk ≤ t , k = 1, . . . , K (2.21)

λ̃
T
h ≤ A , λ̃

T
1 = 1 , λ̃ ≥ 0 . (2.22)

It is noted that (2.20)-(2.22) corresponds to linearly constrained linear program-

ming (LCLP). Therefore, it can be solved efficiently in polynomial time [49].

2.2.3 Optimal Selection of Fixed Signal Constellations as

a Special Case of Optimal Power Control with Sig-

nal Constellation Randomization

Conventionally, a fixed signal constellation is employed for each user in a mul-

tiuser system [21, 28]. This conventional scenario can be considered as a special

case of power control with signal constellation randomization in which the PDF

of S in (2.5), pS, is modeled as pS(x) = δ(x− s). Then, the optimization prob-

lem in (2.12)-(2.13) reduces to the optimal selection of fixed signal constellations

problem, which is expressed as

min
s

max
k∈{1,...,K}

Gk(s) subject to H(s) ≤ A . (2.23)

In other words, the optimal fixed signal constellations that minimize the maxi-

mum probability of error are obtained under the average power constraint. As

investigated in Section 2.4, the optimal fixed signal constellations approach can

result in degraded performance in certain scenarios compared to the optimal

power control with signal constellation randomization However, it has lower com-

putational complexity, which can be desirable in certain applications.
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2.3 Special Case: Sign Detectors

In this section, optimal power control with signal constellation randomization is

studied in detail for symmetric signaling when sign detectors are employed at the

receivers. In addition to the statistical characterization of the optimal solution,

performance improvements that can be achieved via constellation randomization

are quantified for interference limited scenarios.

Although sign detectors may not be optimal in the presence of interference

[50], they facilitate simple implementation as they have low complexity and do

not need any prior information about the interference. The use of sign detectors

is justified also by the zero mean nature of the noise and interference (see (2.3)).

It should be noted that the interference has zero mean since symmetric signaling

and equally likely information bits are assumed. For these reasons, sign detectors

are employed in many binary communications systems, such as in various wireless

sensor network applications due to their low complexity and practicality [51].

For sign detectors, the decision rules at the receivers (see (2.4)) become

îk = ϕk(yk) =


0 , yk < 0

1 , yk > 0

(2.24)

for k = 1, . . . , K. In the case of yk = 0, the detector decides for bit 0 or bit 1

with equal probabilities. Then, for symmetric signaling (i.e., S
(1)
k = −S

(0)
k for

k = 1, . . . , K), Gk(S) in (2.11) can be expressed, after some manipulation, as

Gk(S) =
1

2K−1

∑
ik∈{0,1}K−1

Q

(
S
(1)
k +

∑K
l=1,l ̸=k ρk,lS

(il)
l

σk

)
. (2.25)

In order to provide intuitions about the performance of constellation ran-

domization in MAI limited scenarios, an asymptotical analysis is performed as

σk → 0 for i = 1, . . . , K. In this case, Gk(S) in (2.25) can be expressed as

Gk(S) =
1

2K−1

∑
ik∈{0,1}K−1

u

(
−S

(1)
k −

K∑
l=1, l ̸=k

ρk,lS
(il)
l

)
, (2.26)
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where u(·) represents the unit step function defined as u(x) = 1 for x > 0,

u(x) = 0.5 for x = 0 and u(x) = 0 for x < 0.

First, the following corollary to Proposition 2.2.1 is presented related to the

probability distribution of the optimal joint signal constellation when sign detec-

tors are employed.

Corollary 2.3.1. Assume that signal amplitudes take values from finite closed

intervals, and σk → 0 for k = 1, . . . , K. Then, an optimal solution to (2.12)-

(2.13) can be expressed, for sign detectors and symmetric signaling, as

pS(s) =
K∑
j=1

λj δ(s− sj) , (2.27)

where
∑K

j=1 λj = 1 and λj ≥ 0 for j = 1, . . . , K.

Proof: Please see Appendix 2.6.3. �

In other words, instead of the generic solution in (2.14), which specifies a

randomization among up to (K + 1) different signal constellations for each user,

a randomization among up to K different signal constellations is sufficient in

this scenario. This is mainly due to the fact that, as σk → 0 for k = 1, . . . , K,

Gk(S) in (2.26) depends only on the relative signal amplitudes, which makes

the average power constraint in (2.13) ineffective (i.e., signal amplitudes can be

scaled by the same positive number without affecting Gk(S)’s and H(S) in (2.9)

can be adjusted appropriately).

Next, the aim is to compare the performance of the power control with signal

constellation randomization and fixed signal constellations approaches for sign

detectors in the absence of noise. Assume without loss of generality that S
(1)
k ’s are

positive. Then, it is observed that both approaches can achieve zero probability
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of error if there exists a joint signal constellation S such that4

S
(1)
k >

K∑
l=1, l ̸=k

|ρk,l|S(1)
l , ∀k ∈ {1, . . . , K} . (2.28)

This simple condition follows from (2.26) since it guarantees that the argument

of the unit step function is negative for all bit combinations (recalling that S
(0)
l =

−S
(1)
l as symmetric signaling is considered). This is similar to the no error floor

condition in classical multiuser systems [21]. (However, we still state it explicitly

in order to employ it in Proposition 2.3.1 and Proposition 2.3.2 below.)

The condition in (2.28) corresponds to scenarios in which MAI is not signifi-

cant and no error floor occurs due to interference. However, this condition may

not be satisfied in certain cases and the MAI can be significant. For those cases,

it is important to quantify the maximum amount of improvement that can be

achieved via the power control with signal constellation randomization approach

over the fixed signal constellations approach. Let Prnd denote the minimum value

of the maximum probability of error corresponding to the optimal power con-

trol with signal constellation randomization, which is obtained as the solution of

(2.12)-(2.13). In addition, let Pfix denote the minimum value of the maximum

probability of error for the optimal fixed signal constellations approach, which

is obtained from (2.23). Then, the following proposition specifies the maximum

asymptotical improvement due to signal constellation randomization.

Proposition 2.3.1. Suppose there exist no signal amplitudes that satisfy (2.28).

Then, for sign detectors and symmetric signaling, the maximum asymptotical

improvement ratio is equal to the number of users. In other words,

1 ≤ lim
σ1,...,σK→0

Pfix

Prnd

≤ K . (2.29)

4It can be assumed without loss of generality that S satisfies the power constraint in (2.13)

since scaling the joint signal constellation S by any positive number does not affect the in-

equalities in (2.28).
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Also, the maximum asymptotical improvement ratio, K, is achieved if there exist

signal amplitudes such that

S
(1)
k >

K∑
l=1, l ̸=k

|ρk,l|S(1)
l , ∀k ∈ {1, . . . , K} \ {k∗} and (2.30)

− 2 min
l∈{1,...,K}\{k∗}

{
|ρk∗,l|S(1)

l

}
< S

(1)
k∗ −

K∑
l=1, l ̸=k∗

|ρk∗,l|S(1)
l < 0 (2.31)

for any k∗ ∈ {1, . . . , K}.

Proof: In order to prove the inequality in (2.29), it is first observed that

Pfix/Prnd ≥ 1 is satisfied in all cases (even for finite σk’s) since the fixed signal

constellations approach is a special case of the power control with signal con-

stellation randomization approach, as discussed in Section 2.2.3. To prove the

upper bound in (2.29), consider the case in which there exist signal amplitudes

that satisfy the conditions in (2.30)-(2.31).

For fixed signal constellations, the average probability of error for user

k is given by Pk = Gk (s) for k = 1, . . . , K (see (2.10)). Let s
(1)
k∗ denote

a joint signal constellation that satisfies the conditions in (2.30)-(2.31) for

k∗ ∈ {1, . . . , K}. Based on the expression for Gk in (2.26), it is obtained that

Gk

(
s
(1)
k∗

)
= 0, ∀k ∈ {1, . . . , K}\{k∗} since the argument of the unit step function,

−S
(1)
k −

∑K
l=1, l ̸=k ρk,lS

(il)
l , is always negative due to the conditions in (2.30).5 On

the other hand, the value of Gk∗
(
s
(1)
k∗

)
is obtained as follows. The condition in

(2.31) can be expressed as

K∑
l=1, l ̸=k∗

|ρk∗,l|S(il)
l − 2 min

l∈{1,...,K}\{k∗}

{
|ρk∗,l|S(1)

l

}
< S

(1)
k∗ <

K∑
l=1, l ̸=k∗

|ρk∗,l|S(il)
l .

(2.32)

Due to symmetric signaling,
∑K

l=1, l ̸=k∗|ρk∗,l|S
(il)
l corresponds to the maxi-

mum value of −
∑K

l=1, l ̸=k∗ ρk∗,lS
(il)
l for ik∗ ∈ {0, 1}K−1 (see (2.26)). Similarly,

5It is recalled that S
(1)
l ’s are assumed to be positive without loss of generality and S

(0)
l =

−S
(1)
l due to symmetric signaling.
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∑K
l=1, l ̸=k∗|ρk∗,l|S

(il)
l − 2 min

l∈{1,...,K}\{k∗}

{
|ρk∗,l|S(1)

l

}
is equal to the second largest

value of −
∑K

l=1, l ̸=k∗ ρk∗,lS
(il)
l since that value is achieved when all the −ρk∗,l S

(il)
l

terms are taken to be positive except for the one with the smallest absolute value.

Therefore, under the condition in (2.32), S
(1)
k∗ is between the maximum and the

second largest value of −
∑K

l=1, l ̸=k∗ ρk∗,lS
(il)
l , which implies that the argument of

the unit step function in (2.26), −S
(1)
k∗ −

∑K
l=1, l ̸=k∗ ρk∗,lS

(il)
l , is negative for all pos-

sible signal combinations except for one of them. Hence, the unit step function

in (2.26) becomes zero for (2K−1−1) combinations and becomes one only for one

combination, which results in Gk∗
(
s
(1)
k∗

)
= 1/2K−1. Overall, the maximum value

of the average probability of error is given by max
k

Pk = max
k

Gk

(
s
(1)
k∗

)
= 1/2K−1

for the fixed signal constellations approach when a joint signal constellation that

satisfies the conditions in (2.30)-(2.31) is employed. Since it is impossible to

set all Gk’s to zero simultaneously due to the assumption in the proposition,

1/2K−1 presents the minimum value for the maximum average probability of

error. Therefore, the solution of (2.23) is given by Pfix = 1/2K−1 under the

conditions in (2.30)-(2.31).

For the power control with signal constellation randomization approach,

the average probability of error for user k is given by Pk = E {Gk (S)} for

k = 1, . . . , K (see (2.10)). Due to the assumption in the proposition, there

does not exist any signal amplitudes that set all Gk’s to zero simultaneously.

Therefore, it is impossible to set all the Pk values to zero even in the sig-

nal constellation randomization approach. However, signal constellation ran-

domization can be used to reduce the maximum average probability of er-

ror by means of randomization/time-sharing. To explain this point, consider

joint signal constellations s
(1)
k∗ that satisfy the conditions in (2.30)-(2.31). As

discussed in the previous paragraph, these vectors result in Gk

(
s
(1)
k∗

)
= 0,

∀k ∈ {1, . . . , K} \ {k∗} and Gk∗
(
s
(1)
k∗

)
= 1/2K−1 for k∗ ∈ {1, . . . , K}. Since

the aim is to minimize max
k

E{Gk(S)} over all possible PDFs for the joint signal

constellation, the optimal solution is obtained by an equalizer rule [44], which
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sets E{G1(S)} = E{G2(S)} = · · · = E{GK(S)}. For this equalizer rule, the

optimal PDF for the joint signal constellation can be expressed as

pS(s) =
1

K

K∑
k∗=1

δ
(
s− s

(1)
k∗

)
. (2.33)

Therefore,

E{Gk(S)} =
1

K

K∑
k∗=1

Gk

(
s
(1)
k∗

)
=

1

K2K−1
(2.34)

is obtained for all k ∈ {1, . . . , K}. Hence, max
k

Pk = max
k

E {Gk (S)} =

1/(K2K−1). Since it is impossible to set all Gk (s)’s to zero for a given s due to

the assumption in the proposition and setting (K−1) of them to zero and one of

them to 1/2K−1 corresponds to the optimal scenario for a given s, the solution in

(2.33) presents the optimal solution of min
pS

max
k

Pk, which is equal to 1/(K2K−1).

Hence, Prnd = 1/(K2K−1) is obtained.

Overall, an improvement ratio of Pfix/Prnd = K2K−1/2K−1 = K is achieved

under the conditions in the proposition. Finally, it is shown that K presents

an upper limit on the asymptotical improvement ratio for the scenario in the

proposition. To that aim, let the probability distribution of the joint signal con-

stellation corresponding to the optimal power control with signal constellation

randomization approach be expressed as in (2.27). Then, the minimum value

of the maximum probability of error in the power control with signal constel-

lation randomization approach is given by Prnd = max
k

∑K
j=1 λj Gk(sj), where∑K

j=1 λj = 1. Next, the following inequalities are obtained:

Prnd = max
k

K∑
j=1

λj Gk(sj) ≥
1

K

K∑
k=1

K∑
j=1

λj Gk(sj) (2.35)

≥ 1

K

K∑
j=1

λj

(
min
s

K∑
k=1

Gk(s)

)
=

1

K
min
s

K∑
k=1

Gk(s)

(2.36)

≥ 1

K
min
s

max
k

Gk(s) =
1

K
Pfix (2.37)
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The inequalities in (2.35) and (2.37) follow from the fact that Kmax
k

yk ≥∑K
k=1 yk ≥ max

k
yk for yk ≥ 0 ∀k, and the inequality in (2.36) is obtained by per-

forming an additional minimum operation. Based on (2.35)-(2.37), Pfix/Prnd ≤ K

is obtained. �

Proposition 2.3.1 states that in interference-limited scenarios, the maximum

average probability of error can be reduced by a factor of up to K via signal

constellation randomization. This improvement ratio is related to the result in

Corollary 2.3.1, which states that a randomization among up to K joint signal

constellations can be employed to reduce the maximum average probability of

error compared to the fixed signal constellations case. By employing randomiza-

tion among multiple different joint signal constellations, the average probabilities

of error for different users can be equalized to a certain extent, which can reduce

the maximum value of the average probabilities of error. In practice, the ran-

domization operation can be implemented in the time domain via time-sharing

(or in the frequency domain for multichannel systems) by employing each joint

signal constellation for a certain fraction of time.

In Proposition 2.3.1, the upper and lower bounds on the asymptotical im-

provements that can be achieved via signal constellation randomization are pre-

sented, and the conditions under which the upper bound is achieved are specified.

In the following proposition, conditions are obtained to specify when the lower

bound in (2.29) is achieved; that is, when the use of signal constellation random-

ization does not provide any performance improvements over the use of fixed

signal constellations.

Proposition 2.3.2. Consider sign detectors and symmetric signaling, and as-

sume that there exist no signal amplitudes that satisfy (2.28). In addition, define

s∗ as a joint signal constellation that minimizes the sum of the average error

probabilities of the users. Then, if G1(s
∗) = G2(s

∗) = · · · = GK(s
∗), s∗ is

a solution of the optimal power control with signal constellation randomization
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problem, and the asymptotical improvement ratio is equal to one; that is,

lim
σ1,...,σK→0

Pfix

Prnd

= 1 . (2.38)

Proof: The joint signal constellation s∗ defined in the proposition can be

expressed as

s∗ = argmin
s

K∑
k=1

Gk(s) .

Also, by definition, Pfix = min
s

max
k

Gk(s), which can be bounded from below as

follows:

Pfix = min
s

max
k

Gk(s) ≥
1

K
min
s

K∑
k=1

Gk(s) = G1(s
∗) (2.39)

where the condition in the proposition, G1(s
∗) = G2(s

∗) = · · · = GK(s
∗), is used

to obtain the last equality in (2.39). Since min
s

max
k

Gk(s) is lower bounded by

G1(s
∗) as stated in (2.39) and this lower bound can be achieved for s = s∗, Pfix =

G1(s
∗) is obtained. Therefore, s∗ is a solution for the optimal selection of fixed

signal constellations problem, as claimed in the proposition. In addition, from

(2.35) and (2.36), Prnd ≥ 1
K
min
s

∑K
k=1Gk(s), which becomes Prnd ≥ G1(s

∗) = Pfix

under the conditions in the proposition. Since Prnd ≤ Pfix is also satisfied by

definition (as the fixed signal constellations approach is a special case of power

control with signal constellation randomization), Prnd = Pfix is obtained. �

Proposition 2.3.2 implies that if a joint signal constellation that minimizes the

sum of the average error probabilities of the users also equalizes those average er-

ror probabilities, then it is a solution of both the optimal selection of fixed signal

constellations and the optimal power control with signal constellation random-

ization problems for the scenario in the proposition. In other words, the signal

constellation randomization approach cannot provide any performance improve-

ments over the fixed signal constellations approach, and the two approaches yield

the same solution, namely, ps(s) = δ(s− s∗).
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2.4 Performance Evaluation

In this section, simulations are performed in order to compare the performance

of the power control with signal constellation randomization approach against

various approaches that employ fixed signal constellations. Namely, the following

techniques are investigated in the simulations.

Power Control with Signal Constellation Randomization: Random-

ization of signal constellations is performed in an optimal or suboptimal manner

based on the formulations in (2.15)-(2.16) or (2.20)-(2.22), respectively. In the

following, the former approach is called optimal randomization of signal constel-

lations, whereas the latter is named constellation randomization with relaxation.

Optimal randomization of signal constellations can have prohibitive computa-

tional complexity when the number of users is high. Therefore, constellation

randomization with relaxation is employed for large numbers of users in order to

reduce the computational complexity.

Optimal Fixed Signal Constellations: In this case, fixed signal constel-

lations are considered for all users, and the optimal solution is obtained from

(2.23), as discussed in Section 2.2.3.

Fixed Signal Constellations at Power Limit: Instead of obtaining the

optimal fixed signal constellations from (2.23), one can also consider a fixed

signal constellations scheme that equalizes signal-to-interference-plus-noise ra-

tios (SINRs) at different receivers, and utilizes all the available power at the

transmitter [29]. The SINR at the receiver of user k is calculated from (2.3)

as SINRk = E
{∣∣S(ik)

k

∣∣2}/(E{∣∣∑l ̸=k ρk,lS
(il)
l

∣∣2} + σ2
k

)
, which becomes SINRk =∣∣S(1)

k

∣∣2/(∑l ̸=k ρ
2
k,l

∣∣S(1)
l

∣∣2+σ2
k

)
for symmetric signaling and fixed signal constella-

tions. In the fixed signal constellations at the power limit approach, S
(1)
1 , . . . , S

(K)
k

are chosen such that SINR1 = · · · = SINRK and
∑K

k=1

∣∣S(1)
k

∣∣2 = A. Although
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this approach can provide very low complexity solutions, its performance is in-

ferior to both the optimal fixed signal constellations and optimal randomization

of signal constellations approaches in general, as investigated below.

In the following, the approaches proposed in this study, optimal random-

ization of signal constellations and constellation randomization with relaxation,

are compared to the existing approaches in the literature, optimal fixed signal

constellations and fixed signal constellations at power limit.

In the simulations, equally likely information bits are assumed, and symmetric

signaling is considered. Also, the users employ sign detectors at the receivers,

and the standard deviations of the noise at the receivers are taken to be equal,

that is, σk = σ, k = 1, . . . , K. In addition, as stated after (2.3), ρk,l’s are set to

one for k = l; that is, ρk,k = 1 for k = 1, . . . , K.

First, a 3-user scenario is considered, that is, K = 3, and the crosscorrela-

tions between the pseudo-noise signals for different users are set to ρ1,2 = 0.1,

ρ1,3 = 0.2, and ρ2,3 = 0.3. Also, the average power constraint A in (2.7) is

taken as 3. In Figure 2.2, the maximum probabilities of error are plotted versus

1/σ2 for the optimal randomization of signal constellations, constellation ran-

domization with relaxation, optimal fixed signal constellations, and fixed signal

constellations at the power limit approaches. For the optimal randomization of

signal constellations approach, the PSO algorithm is employed with 2000 iter-

ations and 50 particles in order to obtain the solution of (2.15)-(2.16) (please

refer to [52] for details of the PSO algorithms). For the constellation randomiza-

tion with relaxation approach, the possible signal values for bit 1 are selected as

32 different amplitudes equally spaced between 0 and 1.4, and the negatives of

these possible values are employed for bit 0. From the figure, it is observed that

the optimal randomization of signal constellations, the constellation randomiza-

tion with relaxation, and the optimal fixed signal constellations approaches have

almost the same performance, and the fixed signal constellations at the power
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Figure 2.2: Maximum probabilities of error versus 1/σ2 for the optimal random-
ization of signal constellations (“Optimal Randomization”), constellation ran-
domization with relaxation (“Randomization with Relaxation”), optimal fixed
signal constellations (“Optimal Fixed”), and fixed signal constellations at the
power limit (“Fixed at Power Limit”) approaches, where K = 3, ρ1,2 = 0.1,
ρ1,3 = 0.2, ρ2,3 = 0.3, and A = 3.

limit approach has higher maximum error probabilities for small values of σ2,

i.e., for low noise powers. On the other hand, all the approaches have similar

performance in the noise limited scenarios. It is concluded that it is not optimal

in general to employ fixed signal constellations that equate the SINRs of different

users.

Next, a 6-user scenario is considered, that is, K = 6, and the crosscorre-

lations between the pseudo-noise signals for different users are set to 0.21; i.e.,

ρk,l = 0.21 for k ̸= l. Also, the average power constraint A in (2.7) is taken

as 6. In Figure 2.3, the maximum probabilities of error are illustrated for the

constellation randomization with relaxation, optimal fixed signal constellations,
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Figure 2.3: Maximum probabilities of error versus 1/σ2 for the constellation ran-
domization with relaxation, optimal fixed signal constellations, and fixed signal
constellations at the power limit approaches, where K = 6, ρk,l = 0.21 for all
k ̸= l, and A = 6.

and fixed signal constellations at the power limit approaches. Since the solution

of (2.15)-(2.16) requires a search over a (K +1)2 = 49 dimensional space, global

optimization techniques may not be employed to obtain the optimal randomiza-

tion of signal constellations solution in this scenario. Therefore, randomization of

signal constellations is performed only via the constellation randomization with

relaxation approach, which is based on (2.20)-(2.22). In obtaining the solution

for this approach, the signal amplitude for information bit 1 of each user is mod-

eled to take values from 0 to 1.4 with an increment of 0.2.6 Then, the optimal

weights for these possible signal amplitudes are obtained from (2.20)-(2.22) via

CVX: Matlab Software for Disciplined Convex Programming [53]. The use of

a finite set of signal amplitudes can be justified by considering a digital system

6Since symmetric signaling is considered, the possible signal amplitudes for bit 0 are from

−1.4 to 0 with an increment of 0.2.
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in which a number of bits are used to represent each signal amplitude. In this

scenario, a 4-bit representation is considered as there are 8 possible signal values,

{0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4}, for information bit 1 and the negative of these val-

ues for information bit 0. From Figure 2.3, it is observed that the constellation

randomization with relaxation approach outperforms the approaches that em-

ploy fixed signal constellations for small noise variances; that is, for MAI limited

scenarios. In addition, the optimal fixed signal constellations approach achieves

lower maximum probabilities of error than the fixed signal constellations at the

power limit approach for medium range of σ values.7 Another important obser-

vation from the figure is that, for small values of σ, the constellation random-

ization approach achieves a 6 times improvement in the maximum probability of

error compared to the optimal fixed signal constellations approach, as claimed in

Proposition 2.3.1. In fact, it can be shown that the assumptions in the proposi-

tion are satisfied in this scenario. Namely, there exist no signal amplitudes that

satisfy (2.28), and the conditions in (2.30)-(2.31) are satisfied, for example, when

all S
(1)
k ’s are 1.2 except for one of them, which is equal to 0.8.

In addition, consider the same scenario as for Figure 2.3, but assume that

ρk,l = 0.15 for k ̸= l. In this case, the conditions in (2.28) are satisfied. Therefore,

no error floors are expected and the MAI does not become a limiting factor. The

error performances are illustrated in Figure 2.4 for this scenario. It is observed

that the maximum probabilities of error decrease towards zero as the noise vari-

ance is reduced, and all the algorithms have almost the same error performance.

As another example, the results in Figure 2.5 are presented when ρk,l = 0.25 for

k ̸= l. In this case, since the crosscorrelation is high, the MAI is very effective

and very high error probabilities are encountered. Also, it can be shown that the

7It is also observed that the error probabilities of the approaches that employ fixed con-

stellations can increase in some cases even when the noise variance decreases. This is mainly

because of the multi-modal nature of the overall noise, which is the sum of zero-mean Gaussian

background noise and MAI. Please see [5] for a detailed discussion.
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Figure 2.4: Maximum probabilities of error versus 1/σ2 for the constellation ran-
domization with relaxation, optimal fixed signal constellations, and fixed signal
constellations at the power limit approaches, where K = 6, ρk,l = 0.15 for all
k ̸= l, and A = 6.

conditions in (2.28) and those in (2.30)-(2.31) are not satisfied for this scenario.

In Figure 2.5, the constellation randomization approach provides improvements

over the approaches with fixed signal constellations, which have the same perfor-

mance. However, the improvement ratio is smaller than 6 in this scenario, which

is about 1.4 at low σ values.

In Figure 2.6, the error probabilities of the different approaches are plotted

versus ρ, where ρk,l = ρ for k ̸= l. In addition, the other parameters are set

to A = 6, K = 6, and σ = 10−3. It is observed that the constellation ran-

domization approach has lower error probabilities than the other approaches for

ρ ∈ [0.2, 0.29] and ρ ∈ [0.33, 0.57]. The improvement region and the amount of
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Figure 2.5: Maximum probabilities of error versus 1/σ2 for the constellation ran-
domization with relaxation, optimal fixed signal constellations, and fixed signal
constellations at the power limit approaches, where K = 6, ρk,l = 0.25 for all
k ̸= l, and A = 6.

improvement depend on the relation among the system parameters. For exam-

ple, as investigated in Section 2.3, an improvement ratio of K is achieved for

ρ ∈ [0.2, 0.215] (which can be obtained from the conditions in (2.30)-(2.31)), and

lower improvement ratios are observed in other regions. Also, the optimal fixed

signal constellations approach outperforms the fixed signal constellations at the

power limit approach for certain range of ρ values. However, it does not provide

significant improvements in general.

In order to compare the error performance of the three approaches for different

numbers of users, Figure 2.7 is presented, where A = 6, σ = 10−3, and ρk,l = 0.35

for k ̸= l. It is observed that the constellation randomization with relaxation

approach provides improvements over the approaches that employ fixed signal
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Figure 2.6: Maximum probabilities of error versus ρ for the constellation ran-
domization with relaxation, optimal fixed signal constellations, and fixed signal
constellations at the power limit approaches, where K = 6, A = 6, and σ = 10−3.

constellations when the number of users is larger than three, in which case the

MAI becomes a dominating factor. Also, the approaches that employ fixed signal

constellations achieve similar maximum probabilities of error in most cases. In

addition, their error performance is observed to be a non-monotonic function of

the number of users. For example, the errors are lower for K = 5 than those for

K = 4. The reason for this seemingly counterintuitive behavior can be explained

from the expression in (2.25), or more simply from (2.26) since σ is sufficiently

small. Considering the fixed signal constellations at the power limit approach,

the signal amplitudes are set to S
(1)
k = −S

(0)
k =

√
A/K for k = 1, . . . , K. Since

ρk,l = 0.35 for k ̸= l, it can be shown for K = 4 and K = 5 that there is

only one combination of the information bits of interfering users for which the

argument of the unit step function in (2.26) becomes positive. Namely, when
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Figure 2.7: Maximum probabilities of error versus the number of users, K, for the
constellation randomization with relaxation, optimal fixed signal constellations,
and fixed signal constellations at the power limit approaches, where σ = 10−3,
ρk,l = 0.35 for all k ̸= l, and A = 6.

all the interfering signals are −
√
A/K, the argument of the unit step function

becomes −
√
A/K + 0.35(K − 1)

√
A/K, which is positive for K ≥ 4. On the

other hand, when one of the interfering signals is set to
√

A/K, the argument

becomes −
√
A/K + 0.35(K − 3)

√
A/K, which is negative for K ≤ 5. (Of

course, the result is still negative when more than one interfering signals are

set to
√
A/K .) Therefore, for K = 4 and K = 5, Gk(S) in (2.26) is equal to

1/2K−1 for k = 1, . . . , K since the unit step function is 1 only for one combination

and 0 otherwise. Hence, the maximum probability of error for K = 5, is lower

than that for K = 4, as observed in Figure 2.7. However, for K = 6, there are

multiple combinations of interfering signals for which the unit step function in

(2.26) equal to one. Therefore, larger errors are observed in that case.
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Figure 2.8: Maximum probabilities of error versus 1/σ2 for the constellation ran-
domization with relaxation, optimal fixed signal constellations, and fixed signal
constellations at the power limit approaches, where K = 7, ρk,l = 0.17 for all
k ̸= l, and A = 7.

Finally, a scenario with K = 7 users is considered, where ρk,l = 0.17 for k ̸= l,

and A = 7. In Figure 2.8, the maximum probabilities of error are illustrated for

the constellation randomization with relaxation, optimal fixed signal constel-

lations, and fixed signal constellations at the power limit approaches. Similar

observations to those for Figure 2.3 can be made. In particular, it is observed

that an improvement ratio of 7 is achieved at low noise variances; that is, the

maximum probability of error is reduced by 7 times via the randomization of

signal constellations, as claimed in Proposition 2.3.1.

The main observations from the simulation results can be summarized as fol-

lows: (i) Signal constellation randomization can provide performance improve-

ments over the approaches that employ fixed signal constellations and the amount
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of improvement depends mainly on the noise level, the number of users, and the

crosscorrelations between the pseudo-noise signals. (ii) The worst-case error rate

of the optimal fixed signal constellations approach can be reduced by up to K

times via the optimal randomization of signal constellation approach. (iii) The

fixed signal constellation approach that equalizes the SINRs of the users and uti-

lizes all the available power has the worst performance among all the considered

approaches.

2.5 Concluding Remarks and Extensions

The optimal power control with signal constellation randomization has been pro-

posed for the downlink of a multiuser DS-CDMA system. After presenting a

formulation for the optimal power control with signal constellation randomiza-

tion problem, it has been shown that an optimal joint signal constellation can

be obtained by a randomization of (K + 1) or fewer distinct joint signal con-

stellations, where K denotes the number of users. In addition to the original

nonconvex formulation, an approximate solution based on convex relaxation has

been obtained. Then, detailed performance analysis has been performed when

the receivers employ symmetric signaling and sign detectors. Specifically, the

maximum asymptotical improvement ratio has been shown to be equal to the

number of users, and the conditions under which the maximum and minimum

asymptotical improvement ratios are achieved have been derived. Numerical

examples have been presented to investigate the theoretical results.

Although the problem formulation is based on the minimax approach in (2.6),

the results in this study can directly be extended to cover cases in which the users

have different levels of importance. In that case, the expression in (2.6) can be

replaced with min
pS

max
k∈{1,...,K}

wkPk, where wk’s are non-negative weighting factors

that are set according to the importance levels. Then, the definition of Gk in
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(2.11) can be updated by multiplying the expression by wk, and all the theoretical

results in the remaining parts can be extended accordingly.

Finally, the theoretical approach employed for the binary multiuser systems in

this work can also be utilized for M−ary systems with M > 2. In that case, the

definitions of the joint signal constellation in (2.5), and the auxiliary functions

in (2.9) and (2.11) should be updated. Then, the results in Section 2.2 can be

extended to M -ary systems as well.

2.6 Appendices

2.6.1 Derivation of (2.10)

For the generic decision rule in (2.4), the average probability of error for user k

can be expressed as Pk = 0.5P{Yk ∈ Γk,0 | ik = 1} + 0.5P{Yk ∈ Γk,1 | ik = 0},

which, based on (2.3), becomes

Pk = 0.5P

{
S
(1)
k +

K∑
l=1
l ̸=k

ρk,lS
(il)
l +Nk ∈ Γk,0

}
+ 0.5P

{
S
(0)
k +

K∑
l=1
l ̸=k

ρk,lS
(il)
l +Nk ∈ Γk,1

}
.

(2.40)

Since bits are equally likely, (2.40) can be expressed, by defining ik ,

[i1 · · · ik−1 ik+1 · · · iK ], as

Pk =
1

2K

∑
m∈{0,1}

∑
ik∈{0,1}K−1

P

{
S
(m)
k +

K∑
l=1
l ̸=k

ρk,lS
(il)
l +Nk ∈ Γk,1−m

}
(2.41)

In the signal constellation randomization approach, S
(ik)
k ’s are random variables.

Hence, the probability expression in (2.41) can be calculated by first conditioning

on given values of S
(ik)
k ’s and then taking the expectation with respect to the PDF
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of S; that is,

P

{
S
(m)
k +

K∑
l=1
l ̸=k

ρk,lS
(il)
l +Nk ∈ Γk,1−m

}
= E

{
P

{
Nk + S

(m)
k

+
K∑
l=1
l ̸=k

ρk,lS
(il)
l ∈ Γk,1−m

∣∣∣S}}.
(2.42)

It is noted that the probability in (2.42) is calculated according to the PDF of

Nk. By defining the expression inside the expectation in (2.42) as Gk(S), (2.10)

and (2.11) are obtained from (2.41) and (2.42). �

2.6.2 Proof of Proposition 2.2.1

The proof can be obtained based on Carathéodory’s theorem [54, 55] similarly to

the proofs in [4], [9], [12]. First, define the following set: U = {(u0, u1, . . . , uK) :

u0 = H(s), u1 = G1(s), . . . , uK = GK(s) for s ∈ S} , where S , [smin , smax]
2K ,

with smin and smax denoting the minimum and maximum signal amplitude val-

ues, respectively. Since the functions are continuous and S is a closed set, U

is closed and bounded; hence, it is a compact set. Therefore, the convex hull

of U , denoted by V , is a closed subset of RK+1 [56]. Next, define set W as

follows: W =
{
(w0, w1, . . . , wK) : w0 = E{H(S)}, w1 = E{G1(S)}, . . . , wK =

E{GK(S)}, ∀pS(s), s ∈ S
}
. Similar arguments as in [4], [9, 12, 57] can be used

to conclude that set W is equal to the convex hull of U ; that is, W = V . There-

fore, due to Carathéodory’s theorem [54, 55], any point in V (equivalently, in W )

can be expressed as the convex combination of (K+2) or fewer points in U since

the dimension of U is smaller than or equal to (K + 1). Since the optimization

problem in (2.12)-(2.13) aims to minimize the maximum of E{Gk(S)}’s, the op-

timal solution must correspond to the boundary of W . (Note that W contains

its boundary as it is a closed set.) Since any point at the boundary of W can be
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expressed as the convex combination of at most (K + 1) elements in U [54], an

optimal PDF can be represented as in (2.14). �

2.6.3 Proof of Corollary 2.3.1

As σk → 0 for k = 1, . . . , K, Gk(S)’s are expressed as in (2.26). Due to the unit

step function in (2.26), scaling a joint signal constellation by a positive value does

not affect the probabilities of error; that is, Gk(s) = Gk(c s) for all c > 0. There-

fore, for each s, there exists a positive constant c for which Gk’s are unchanged

but H(c s) = c2H(s) ≤ A (see (2.9)). Hence, the average power constraint in

(2.13) becomes ineffective in this scenario. Therefore, the proof of Proposition

2.2.1 in Appendix 2.6.2 can be applied in this case by redefining sets U and W

as U = {(u0, u1, . . . , uK−1) : u0 = G1(s), . . . , uK−1 = GK(s) for s ∈ S} and W =

{(w0, w1, . . . , wK−1) : w0 = E{G1(S)}, . . . , wK−1 = E{GK(S)}, ∀pS(s), s ∈ S},

respectively. Since the dimension of W reduces to K in this case, the optimal

PDF can be obtained as in (2.27) in this scenario based on similar arguments to

those in Appendix 2.6.2. �
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Chapter 3

Optimal Detector Randomization

for Multiuser Communications

Systems

This chapter is organized as follows. In Section 3.1, the system model is intro-

duced and receiver structures are described. In Section 3.2, the optimal detector

randomization problem is formulated, and a low-complexity approach is pre-

sented. Analysis of optimal detector randomization is performed in Section 3.3,

and lower bounds and upper bounds are obtained on the performance of opti-

mal detector randomization. In addition, various conditions for improvability

or nonimprovability via detector randomization are derived, and simple solution

is provided for equal crosscorrelations and noise powers. Numerical examples

are presented in Section 3.4. In Section 3.5, concluding remarks are made and

possible extensions to uplink scenarios and M -ary systems are discussed.
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Figure 3.1: System model. The transmitter sends information bearing signals to
K users over additive noise channels, and each user estimates the transmitted
symbol by performing detector randomization among Nd detectors.

3.1 System Model

Consider the downlink of a multiuser communications system in which the trans-

mitter (e.g., base station or access point) sends information bearing signals to

K users simultaneously via code division multiple access (CDMA). In addition,

assume that the users can perform detector randomization [6, 7] in coordina-

tion with the transmitter by employing different detectors for certain fractions of

time. In particular, suppose that each user can time-share (randomize) among

Nd detectors; namely, user k employs detector ϕ
(k)
1 for the first Ns,1 symbols,

detector ϕ
(k)
2 for the next Ns,2 symbols, . . . , and detector ϕ

(k)
Nd

for the last Ns,Nd

symbols1, where k ∈ {1, 2, . . . , K}. The described scenario is also depicted in

Figure 3.1, which illustrates a K-user system with Nd detectors for each user.

1Such a coordination can be achieved in practice by employing a communications protocol

that informs the users about this randomization (time-sharing) structure by including the

related information in the header of the communications packet [6].
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For the downlink of a DSSS binary2 communications system as in Figure 3.1,

the baseband model of the transmitted signal can be expressed as

p(t) =
K∑
k=1

S
(ik)
k,l ck(t) , (3.1)

for l ∈ {1, . . . , Nd} and ik ∈ {0, 1}, where K is the number of users, S
(ik)
k,l

denotes the transmitted signal amplitude for information bit ik that is intended

for detector l of user k, and ck(t) is the real pseudo-noise signal for user k.

Pseudo-noise signals are employed to spread the spectra of users’ signals and

provide multiple-access capability [21]. It is assumed that the prior probabilities

of bit 0 and bit 1 are equal to 0.5 for all users, and that the information bits of

different users are independent.

The signal in (3.1) is transmitted to K users over the additive noise channels

as in Figure 3.1, and the received signal at user k is modeled as

rk(t) =
K∑
j=1

S
(ij)
j,l cj(t) + nk(t) , (3.2)

for k = 1, . . . , K, where nk(t) is the noise at the receiver of user k, which is a zero-

mean white Gaussian process with spectral density σ2
k. The noise processes at

different receivers are supposed to be independent. Although a simple additive

noise model is employed in (3.2), multipath channels with slow frequency-flat

fading can also be incorporated into the model under the assumption of perfect

channel estimation by adjusting the average powers of the noise components in

(3.2), equivalently, the σ2
k terms, accordingly [4].

The receiver structure for user k is illustrated in Figure 3.2. The received

signal rk(t) in (3.2) is first correlated with the pseudo-noise signal for user k,

ck(t). Then, the correlator output is processed by one of the detectors according

to the detector randomization strategy and the transmitted bit of user k is esti-

mated. (Although Nd detectors are shown in Figure 3.2, the receiver can also be

2As mentioned in Section 3.5, the results can be extended toM -ary communications systems

as well.
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Figure 3.2: Receiver structure for user k. The received signal is first despread by
the pseudo-noise signal, and the resulting signal, Yk, is processed by one of the
detectors according to a detector randomization strategy.

implemented by adapting the parameters of one detector over time.) From (3.2)

and Figure 3.2, the correlator output for user k, Yk, can be expressed as

Yk = S
(ik)
k,l +

K∑
j=1

j ̸=k

ρk,jS
(ij)
j,l +Nk , (3.3)

for k = 1, . . . , K, where ρk,j ,
∫
ck(t)cj(t)dt denotes the crosscorrelation be-

tween the pseudo-noise signals for user k and j (it is assumed that ρk,k = 1 for

k = 1, . . . , K), and Nk ,
∫
nk(t)ck(t)dt is the noise component. The noise com-

ponents N1, . . . , NK form a sequence of independent zero-mean Gaussian random

variables with variances, σ2
1, . . . , σ

2
K , respectively. It is noted from the expression

for Yk in (3.3) that the first term corresponds to the desired signal component,

the second term denotes the multiple-access interference (MAI), and the last

term is the noise component.

As shown in Figure 3.2, the correlator output in (3.3) is processed by detectors

ϕ
(k)
1 , . . . , ϕ

(k)
Nd

according to a detector randomization strategy, and an estimate of

the transmitted information bit, îk, is generated. Mathematically, for a given

correlator output Yk = yk, the bit estimate is obtained as

îk = ϕ
(k)
l (yk) =


1 , if yk ∈ Γ

(k)
l

0 , otherwise

(3.4)

if the lth detector is employed for user k, where l ∈ {1, . . . , Nd} and k ∈

{1, . . . , K}. In (3.4), Γ
(k)
l denotes the decision region in which bit 1 is selected
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by the lth detector of user k. The receiver of user k can perform randomiza-

tion among these Nd detectors in order to optimize the error performance. Let

vl denote the randomization (or time-sharing) factor for detector ϕ
(k)
l , where∑Nd

l=1 vl = 1 and vl ≥ 0 for l = 1, . . . , Nd. In other words, user k employs detec-

tor ϕ
(k)
l for 100vl percent of the time, where l ∈ {1, . . . , Nd} and k ∈ {1, . . . , K}.3

It should be noted that employing the same randomization factors for all users

does not cause any loss of generality since the cases in which different random-

ization factors are used for different users can be covered by the preceding for-

mulation by considering an updated value of Nd with corresponding detectors

and randomization factors.

3.2 Optimal Detector Randomization

The aim in this study is to jointly optimize the randomization factors, the de-

tectors (decision regions), and the transmitted signal amplitudes for all the users

under an average power constraint. In order to formulate this generic problem,

we first define the following signal vector Sl that consists of the signal amplitudes

intended for detector l for bit 0 and bit 1 of all users: Sl =
[
S
(0)
1,l S

(1)
1,l · · ·S

(0)
K,l S

(1)
K,l

]
.

In addition, let ϕl denote the set of the l
th detectors of the users, which is defined

as ϕl =
[
ϕ
(1)
l · · ·ϕ(K)

l

]
for l ∈ {1, . . . , Nd}. For a randomization strategy specified

by randomization factors {v1, . . . , vNd
} (as described in the previous paragraph),

the system in Figure 3.1 operates as follows: For vl fraction of the time, the

transmitter sends the signal vector Sl and the users employ the corresponding

detectors in ϕl for l = 1, . . . , Nd. Therefore, the aim is to obtain the optimal

set {vl,ϕl,Sl}Nd
l=1 that optimizes the error performance of the system under an

3It is assumed that statistics of channel noise do not change during this randomization (time-

sharing) operation. Therefore, the detector randomization approach is well-suited for block

fading channels, where detector randomization can be performed for each channel realization

[58].
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average power constraint. Specifically, the following optimization problem is

proposed:

min
{vl,ϕl,Sl}

Nd
l=1

max
k∈{1,...,K}

Pk (3.5)

subject to E

{∫
|p(t)|2dt

}
≤ A (3.6)

where Pk is the average probability of error for user k, A specifies an average

power constraint, and p(t) is as in (3.1). The minimax approach is adopted for

fairness [45–48] by preventing scenarios in which the average probabilities of error

are very low for some users whereas they are (unacceptably) high for others.4

The constraint in (3.6) is defined in such a way that the average power is

limited in each bit duration. In other words, the expectation operation in (3.6)

is over the equiprobable information bits of the users. Hence, from (3.1), (3.6)

can be expressed as

K∑
k=1

K∑
j=1

ρk,j E
{
S
(ik)
k,l S

(ij)
j,l

}
≤ A , (3.7)

where E
{
S
(ik)
k,l S

(ij)
j,l

}
is given by

E
{
S
(ik)
k,l S

(ij)
j,l

}
=


0.25S

(0)
k,l S

(0)
j,l + 0.25S

(0)
k,l S

(1)
j,l

+ 0.25S
(1)
k,l S

(0)
j,l + 0.25S

(1)
k,l S

(1)
j,l , k ̸= j

0.5
∣∣S(0)

k,l

∣∣2 + 0.5
∣∣S(1)

k,l

∣∣2, k = j

(3.8)

for l ∈ {1, . . . , Nd}. If symmetric signaling is employed, (i.e., if signal ampli-

tudes are selected as S
(0)
k,l = −S

(1)
k,l for k = 1, . . . , K and l = 1, . . . , Nd), then

E
{
S
(ik)
k,l S

(ij)
j,l

}
=
∣∣S(1)

k,l

∣∣2 for k = j and E
{
S
(ik)
k,l S

(ij)
j,l

}
= 0 for k ̸= j. Then, the

expression in (3.7) becomes
∑K

k=1

∣∣S(1)
k,l

∣∣2 ≤ A. (We consider the generic case in

this study and the results for symmetric signaling can be obtained as a special

case.)

4It is possible to extend the results to cases in which different users have different levels of

importance by multiplying each Pk with a weighting factor.
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For notational simplicity in the following analysis, we define

h(Sl) ,
K∑
k=1

K∑
j=1

ρk,j E
{
S
(ik)
k,l S

(ij)
j,l

}
(3.9)

where Sl is as defined in the first paragraph of this section. Then, the average

power constraint in (3.7) (hence, in (3.6)) is given by

h(Sl) ≤ A for l ∈ {1, . . . , Nd}. (3.10)

In order to calculate the average probability of error for user k, Pk, we first

express, from (3.3) and (3.4), the error probability of the lth detector of user k

when the signal vector Sl is employed as follows:

gk,l(Sl) =

1

2K

∑
ik∈{0,1}K−1

(
P

{(
Nk + S

(1)
k,l +

K∑
j=1

j ̸=k

ρk,jS
(ij)
j,l

)
/∈ Γ

(k)
l

}

+ P

{(
Nk + S

(0)
k,l +

K∑
j=1

j ̸=k

ρk,jS
(ij)
j,l

)
∈ Γ

(k)
l

})
, (3.11)

with ik , [i1 · · · ik−1 ik+1 · · · iK ] (the vector of all the bit indices except for the

kth one), and Γ
(k)
l denoting the decision region of the lth detector of user k for in-

formation symbol 1; that is, ϕ
(k)
l , as specified in (3.4). In (3.11), the probabilities

are with respect to the distribution of the noise component Nk for a given value

of Sl. Also, it should be noted that the decision region Γ
(k)
l can be a function of

Sl in general due to the joint optimization in (3.5) and (3.6).

Since gk,l(Sl) in (3.11) denotes the error probability of the lth detector of

user k when signal vector Sl is employed, the average probability of user k for

a randomization strategy that employs signal vector Sl and detectors ϕl with

probability vl for l = 1, . . . , Nd can be expressed as

Pk =

Nd∑
l=1

vl gk,l(Sl) . (3.12)
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From (3.10) and (3.12), the optimization problem in (3.5) and (3.6) can be

stated as

min
{vl,ϕl,Sl}

Nd
l=1

max
k∈{1,...,K}

Nd∑
l=1

vl gk,l(Sl) (3.13)

subject to h(Sl) ≤ A , ∀ l ∈ {1, . . . , Nd} (3.14)

Nd∑
l=1

vl = 1 , vl ≥ 0 , ∀ l ∈ {1, . . . , Nd} . (3.15)

This problem is very challenging in general since it requires joint optimization of

the signal amplitudes, the detectors, and the detector randomization factors.

However, a significant simplification can be achieved based on the following

proposition:

Proposition 3.2.1. The optimization problem in (3.13)-(3.15) can be expressed

as

min
{vl,Sl}

Nd
l=1

max
k∈{1,...,K}

Nd∑
l=1

vl
2

∫ ∞

−∞
min

{
p
(k)
0 (y|Sl), p

(k)
1 (y|Sl)

}
dy (3.16)

subject to h(Sl) ≤ A , ∀ l ∈ {1, . . . , Nd} (3.17)

Nd∑
l=1

vl = 1 , vl ≥ 0 , ∀ l ∈ {1, . . . , Nd} (3.18)

where p
(k)
ik
(y|Sl) is given by

p
(k)
ik
(y|Sl) =

1

σk

√
2π 2K−1

∑
ik∈{0,1}K−1

exp

{
− 1

2σ2
k

(
y − S

(ik)
k,l −

K∑
j=1

j ̸=k

ρk,jS
(ij)
j,l

)2}

(3.19)

for ik = 0, 1 with ik , [i1 · · · ik−1 ik+1 · · · iK ].

Proof: Consider the optimization problem in (3.13)-(3.15), where gk,l(Sl)

is defined as in (3.11) and represents the error probability of the lth detector

of user k when signal vector Sl is employed. Since the aim is to minimize

max
k∈{1,...,K}

∑Nd

l=1 vl gk,l(Sl) over all possible {vl,ϕl,Sl}Nd
l=1 under the specified con-

straints, optimal decision rules, ϕl, that minimize gk,l(Sl) must be employed for
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each signal vector Sl. For any signal vector, it is known that the ML detector

minimizes the error probability when the information symbols are equally likely

[44]. Therefore, it is concluded that the optimal solution to (3.13)-(3.15) results

in the use of ML detectors at the receivers. Considering the lth detector of user

k, the ML decision rule can be specified as ik = 1 if p
(k)
1 (y|Sl) ≥ p

(k)
0 (y|Sl) and

ik = 0 otherwise, where p
(k)
ik
(y|Sl) is the conditional probability density function

(PDF) of observation Yk when the information bit ik is transmitted for the lth

detector of user k (see (3.3)). Therefore, the error probability of the ML detector

can be calculated from 1
2

∫
min

{
p
(k)
0 (y|Sl), p

(k)
1 (y|Sl)

}
dy [2], which corresponds

to gk,l(Sl) when the lth detector of user k employs the ML decision rule. Hence,

the expression in (3.16) is obtained from (3.13). (It is noted that the optimization

space is reduced from {vl,ϕl,Sl}Nd
l=1 to {vl,Sl}Nd

l=1 since the error probabilities of

the optimal detectors are expressed in terms of the signal vectors.) In addition,

based on (3.3), p
(k)
ik
(y|Sl) can be expressed as in (3.19) considering equally likely

information bits. �

Based on Proposition 3.2.1, it is concluded that for the joint optimization

problem in (3.13)-(3.15), where the detectors are modeled as generic ones, the

joint optimal solution always results in the use of ML detectors at all the users.

It is also noted that the results of Proposition 3.2.1 will be valid for any non-

Gaussian PDF as well when the conditional PDF expression in (3.19) is updated

accordingly.

Comparison of the optimization problems in (3.13)-(3.15) and in (3.16)-(3.18)

reveals that Proposition 3.2.1 provides a significant simplification in obtaining

the optimal solution as it reduces the optimization space from {vl,ϕl,Sl}Nd
l=1

to {vl,Sl}Nd
l=1. Namely, instead of searching over all possible signal amplitudes,

detectors, and detector randomization factors, (3.16)-(3.18) requires a search over

possible signal amplitudes and detector randomization factors. Once the optimal
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signal amplitudes and detector randomization factors are obtained from (3.16)-

(3.18), the optimal detectors are specified by the corresponding ML decision

rules. In particular, if {Ŝl}Nd
l=1 denote the optimal signal amplitudes obtained

from (3.16)-(3.18), the lth detector of user k outputs bit 1 if p
(k)
1 (y|Ŝl) ≥ p

(k)
0 (y|Ŝl)

and bit 0 otherwise for k ∈ {1, . . . , K} and l ∈ {1, . . . , Nd}, where p(k)0 (y|Ŝl) and

p
(k)
1 (y|Ŝl) are obtained from (3.19).

Although the formulation in (3.16)-(3.18) provides a significant simplification

over that in (3.13)-(3.15), it can still have high computational complexity when

the number of detectors and/or the number of users are high. In particular, it

is noted from (3.16)-(3.18) that the optimal solution of the signal amplitudes

and the randomization factors requires a search over a (2K + 1)Nd dimensional

space ( (K +1)Nd dimensional space if symmetric signaling is employed). In the

following proposition, it is stated that employing more than K detectors at a

receiver is not needed for the optimal solution.

Proposition 3.2.2. The optimization problem in (3.16)-(3.18) achieves the same

minimum value as the following problem:

min
{vl,Sl}

min{K,Nd}
l=1

max
k∈{1,...,K}

min{K,Nd}∑
l=1

vl
2

∫ ∞

−∞
min

{
p
(k)
0 (y|Sl), p

(k)
1 (y|Sl)

}
dy (3.20)

subject to h(Sl) ≤ A , ∀ l ∈ {1, . . . ,min{K,Nd}} (3.21)

min{K,Nd}∑
l=1

vl = 1 , vl ≥ 0 , ∀ l ∈ {1, . . . ,min{K,Nd}} (3.22)

where p
(k)
ik
(y|Sl) is as in (3.19).

Proof: Define

g̃k(Sl) , 0.5

∫ ∞

−∞
min

{
p
(k)
0 (y|Sl), p

(k)
1 (y|Sl)

}
dy (3.23)

and express the objective function in (3.16) as
∑Nd

l=1 vl g̃k(Sl) = E{g̃k(S)}, where

S is a discrete random vector that takes the value of Sl with probability vl for

l = 1, . . . , Nd (cf. (3.18)). Let pS denote the probability mass function (PMF) of
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S. In addition, define PA as the set of all PMFs with Nd point masses for which

pS(S) = 0 whenever h(S) > A. Then, (3.16)-(3.18) can be expressed as

min
pS∈PA

max
k∈{1,...,K}

E{g̃k(S)} . (3.24)

Optimization problems that are in similar forms to (3.24) have been stud-

ied in the literature, such as in [12] and [11]. First, the following set is de-

fined: U = {(g̃1(S), . . . , g̃K(S)) , ∀S ∈ SA}, where SA is the set of S for

which h(S) ≤ A. Then, it can be observed that set W , defined as W =

{(E{g̃1(S)}, . . . ,E{g̃K(S)}) , ∀pS ∈ PA}, corresponds to the convex hull of set

U . Therefore, based on Carathéodory’s theorem [54], any K-tuple at the bound-

ary of set W can be obtained as the convex combination of at most K elements in

U . (The boundary is considered since a minimization operation is to performed.)

Hence, the optimal solution to (3.24) can be expressed in the form of a discrete

random vector with at most K non-zero point masses. For this reason, if Nd is

larger than K, it is sufficient to perform the search over probability distributions

with K point masses. �

Based on Proposition 3.2.2, it is concluded that there is no need for employ-

ing more than K detectors at a receiver in a K-user system for achieving the

optimal error performance. In other words, randomization among more than K

detectors cannot provide any additional performance improvements. In addition,

as observed from (3.20)-(3.22), the dimension of the search space in obtaining the

optimal solution is specified by (2K+1)min{K,Nd} (by (K+1)min{K,Nd} for

symmetric signaling). It is also noted that the results of Proposition 3.2.2 will

be valid for non-Gaussian PDFs as well when the conditional PDF expression in

(3.19) is updated accordingly.
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3.3 Analysis of Optimal Detector Randomiza-

tion

In this section, we investigate the performance of the optimal detector random-

ization approach specified by (3.20)-(3.22), and determine scenarios in which

performance improvements can be obtained over the optimal approach that does

not employ any detector randomization, which is called as the optimal single

detectors approach in the following.

The optimal single detectors approach can be considered as a special case

of the detector randomization approach when there is only one detector at each

receiver; that is, Nd = 1. Therefore, based on (3.13)-(3.15), the optimal single

detectors approach can be specified by the following optimization problem:

min
ϕ,S

max
k∈{1,...,K}

gk(S)

subject to h(S) ≤ A (3.25)

where gk(S) can be expressed as in (3.11) by removing the dependence on l in

the expressions (since there is only one detector for each user), ϕ =
[
ϕ(1) · · ·ϕ(K)

]
represents the detectors of the users, and S is the vector of signal amplitudes for

bit 0 and bit 1 of all users; i.e., S =
[
S
(0)
1 S

(1)
1 · · ·S(0)

K S
(1)
K

]
.

Since (3.25) is a special case of (3.13)-(3.15), its solution can be obtained

from Proposition 3.2.1 by setting Nd = 1 in (3.16)-(3.18). Hence, the optimal

single detectors approach can also be formulated as

min
S

max
k∈{1,...,K}

g̃k(S)

subject to h(S) ≤ A (3.26)

where g̃k(S) is as defined in (3.23). In other words, the optimal single detectors

approach requires the calculation of the optimal signal amplitudes from (3.26).

Then, each user employs the corresponding ML detector, which selects bit 1 if
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p
(k)
1 (y|S⋄) ≥ p

(k)
0 (y|S⋄) and bit 0 otherwise, where S⋄ denotes the solution of

(3.26).

Let PSD denote the optimal value achieved by the optimization problem in

(3.26) (equivalently, (3.25)); that is, the minimum worst-case (maximum) average

probability of error corresponding to the optimal single detectors approach. Sim-

ilarly, let PDR represent the solution of the optimization problem in (3.20)-(3.22)

(equivalently, (3.13)-(3.15)), which is the minimum worst-case average proba-

bility of error achieved by the optimal detector randomization approach. The

main purpose of this section is to provide bounds on PDR, and to specify various

relations between PSD and PDR. First, the following proposition is obtained to

provide a lower bound on PDR.

Proposition 3.3.1. The minimum worst-case average probability of error

achieved by the optimal detector randomization approach in (3.20)-(3.22), PDR,

is lower bounded as follows:

PDR ≥ 1

K

K∑
k=1

g̃k(S
∗) , PLB (3.27)

with

S∗ = arg min
S∈SA

K∑
k=1

g̃k(S) (3.28)

where SA is defined as SA , {S : h(S) ≤ A} and g̃k(S) is as in (3.23). In

addition, the lower bound in (3.27) is achieved; that is, PDR = PLB, if and only

if there exists feasible {vl,Sl}min{K,Nd}
l=1 (i.e., satisfying (3.21) and (3.22)) such

that
∑min{K,Nd}

l=1 vl g̃k(Sl) = PLB, ∀k ∈ {1, . . . , K}.
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Proof: Consider a modified version of the optimization problem in (3.20)-

(3.22), which is described as

min
{vl,Sl}

min{K,Nd}
l=1

1

K

K∑
k=1

min{K,Nd}∑
l=1

vl g̃k(Sl) (3.29)

subject to h(Sl) ≤ A , ∀ l ∈ {1, . . . ,min{K,Nd}} (3.30)

min{K,Nd}∑
l=1

vl = 1 , vl ≥ 0 , ∀ l ∈ {1, . . . ,min{K,Nd}} (3.31)

where g̃k(Sl) is given by (3.23). Define gavg(S) , 1
K

∑K
k=1 g̃k(S) and express the

problem in (3.29)-(3.31) as

min
{vl,Sl∈SA}min{K,Nd}

l=1

min{K,Nd}∑
l=1

vl gavg(Sl) (3.32)

subject to

min{K,Nd}∑
l=1

vl = 1, vl ≥ 0, ∀ l ∈ {1, . . . ,min{K,Nd}} (3.33)

where SA is as described in the proposition. The optimal solution of (3.32)-

(3.33) is obtained by assigning all the weight to the minimizer of gavg(S) over

SA, which corresponds to S∗ defined in (3.28). For example, v1 = 1, vl = 0

for l = 2, . . . , Nd, and S1 = S∗ achieves the minimum value of the objective

function in (3.32)-(3.33). Therefore, the minimum value achieved by the opti-

mization problem in (3.29)-(3.31) is equal to gavg(S
∗) = 1

K

∑K
k=1 g̃k(S

∗). When

the optimization problems in (3.20)-(3.22) and in (3.29)-(3.31) are compared, it

is observed that the latter provides a lower bound on the former since the average

of the error probabilities of the users is considered in (3.29) whereas the maxi-

mum of the error probabilities is employed in (3.20). (Please note the 1
K

∑K
k=1

and max
k∈{1,...,K}

operators, respectively.) Therefore, the solution of (3.29)-(3.31),

which is specified by 1
K

∑K
k=1 g̃k(S

∗), provides a lower bound on the solution of

(3.20)-(3.22), PDR. Hence, (3.27) is obtained.

In order to prove the sufficiency of the achievability condition in Proposition

3.3.1, assume that there exists feasible {vl,Sl}min{K,Nd}
l=1 (i.e., satisfying (3.21)

and (3.22)) such that
∑min{K,Nd}

l=1 vl g̃k(Sl) = PLB, ∀k ∈ {1, . . . , K}. Then, it
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is easy to verify from (3.20) and (3.23) that the summation term in (3.20) be-

comes equal to PLB, ∀k ∈ {1, . . . , K}, for the specified solution. Hence, (3.20)-

(3.22) achieves the lower bound in this case, and PDR = PLB is obtained. For

proving the necessity of the achievability condition in the proposition via contra-

diction, assume that PDR = PLB and the optimal solution of (3.20)-(3.22), de-

noted by {v̂l, Ŝl}min{K,Nd}
l=1 , results in a scenario in which the

∑min{K,Nd}
l=1 v̂l g̃k(Ŝl)

terms are not all the same. In particular, assume that ∃k′ ∈ {1, . . . , K}

such that
∑min{K,Nd}

l=1 v̂l g̃k′ (Ŝl) < PLB and that
∑min{K,Nd}

l=1 v̂l g̃k(Ŝl) = PLB,

∀k ∈ {1, . . . , K}\{k′}.5 Then, the following inequality is obtained:

1

K

K∑
k=1

min{K,Nd}∑
l=1

v̂l g̃k(Ŝl) < PLB . (3.34)

However, this implies a contradiction since

1

K

K∑
k=1

min{K,Nd}∑
l=1

v̂l g̃k(Ŝl) =

min{K,Nd}∑
l=1

v̂l

(
1

K

K∑
k=1

g̃k(Ŝl)

)
≥ PLB (3.35)

where the inequality follows from (3.27). Therefore, when the lower bound is

achieved, i.e., PDR = PLB, all the
∑min{K,Nd}

l=1 v̂l g̃k(Ŝl) terms must be equal to

PLB. Hence, in order to achieve the lower bound in (3.27), there must exist

feasible {vl,Sl}min{K,Nd}
l=1 such that

∑min{K,Nd}
l=1 vl g̃k(Sl) = PLB, ∀k ∈ {1, . . . , K},

as stated in the proposition. �

Proposition 3.3.1 presents a bound on the performance of the optimal detector

randomization approach in (3.20)-(3.22). The advantage of this lower bound

is that it is calculated based on the solution of the minimization problem in

(3.28), which is much simpler than the optimization problem in (3.20)-(3.22). In

addition, the achievability condition in Proposition 3.3.1 implies that the worst-

case average probability of error achieved by the optimal detector randomization

5Note that none of the
∑min{K,Nd}

l=1 v̂l g̃k(Ŝl) terms can be larger than PLB since it is assumed

that PDR = PLB; i.e., the maximum of these terms is equal to PLB (see (3.20) and (3.23)).

Therefore, either all these terms can be equal to PLB or some of them can be smaller than

PLB. The latter is shown to be impossible in the remaining part of the proof.
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approach attains the lower bound if and only if there exists an equalizer solution

for the optimal detector randomization problem in (3.20)-(3.22), which equates

the average error probabilities of all users to the lower bound in (3.27). As a

simple example, if S∗ in (3.28) satisfies that g̃1(S
∗) = · · · = g̃K(S

∗), then v1 = 1,

vl = 0 for l = 2, . . . ,min{K,Nd}, and S1 = S∗ results in
∑min{K,Nd}

l=1 vl g̃k(Sl) =

g̃k(S
∗) = PLB, ∀k ∈ {1, . . . , K}; hence, the lower bound is achieved in this

scenario; i.e., PDR = PLB, as a result of Proposition 3.3.1. As investigated in the

following, there also exist other scenarios in which PDR = PLB is satisfied when

all g̃k(S
∗)’s are not the same.

Next, improvements that can be achieved via the optimal detector random-

ization approach over the optimal single detectors approach are quantified in the

following proposition.

Proposition 3.3.2. Let PSD and PDR denote the minimum worst-case error

probabilities obtained from the solutions of (3.26) and (3.20)-(3.22), respectively.

Then, the following relations hold between PSD and PDR.

(i) The improvement ratio, defined as PSD/PDR, is bounded as follows:

1 ≤ PSD

PDR

≤ K . (3.36)

(ii) The maximum improvement ratio, K, is achieved if and only if PDR = PLB

(where PLB is as defined in (3.27)), and S∗ in (3.28) is the optimal solution

to the optimization problem in (3.26) with g̃k(S
∗) = 0, ∀k ∈ {1, . . . , K} \

{k∗} and g̃k∗(S
∗) > 0, where g̃k is given by (3.23) and k∗ is any value in

{1, . . . , K}.

(iii) No improvement is achieved; that is, PDR = PSD, if g̃1(S
∗) = · · · = g̃K(S

∗).

(iv) Improvement is guaranteed; that is, PDR < PSD, if PDR = PLB and g̃k(S
⋄) ̸=

g̃l(S
⋄) for some k, l ∈ {1, . . . , K}, where S⋄ denotes the solution of (3.26).
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Proof: (i) Since the optimal single detectors approach is a special case of

the detector randomization approach, PDR ≤ PSD is always satisfied; hence, the

lower bound in (3.36) is directly obtained. In order to derive the upper bound

in (3.36), the following inequalities are considered first:

PSD = max
k

g̃k(S
⋄) ≤ max

k
g̃k(S

∗) ≤
K∑
k=1

g̃k(S
∗) (3.37)

where S⋄ is the solution of (3.26), and S∗ is given by (3.28). Note that the

first inequality follows by definition since S⋄ and S∗ are the solutions of (3.26)

and (3.28), respectively, and the second inequality follows from the identity

∥x∥∞ ≤ ∥x∥1, ∀x, where ∥x∥∞ and ∥x∥1 are the maximum and Manhattan

norms, respectively. Then, the upper bound in (3.36) is obtained as follows:

PSD

PDR

≤
∑K

k=1 g̃k(S
∗)

PDR

≤
∑K

k=1 g̃k(S
∗)

PLB

= K (3.38)

where the first inequality is obtained from (3.37), and the second inequality and

the equality follow from (3.27).

(ii) In order to achieve the maximum improvement ratio of K in (3.36), the

inequalities in (3.37) and (3.38) should hold with equality. Then, from (3.37),

it is concluded that S∗ in (3.28) should also be a solution of (3.26) (so that

max
k

g̃k(S
⋄) = max

k
g̃k(S

∗) ), and g̃k(S
∗) should be zero for all k except for

one of them (so that max
k

g̃k(S
∗) =

∑K
k=1 g̃k(S

∗) ). In addition, for the second

inequality in (3.38) to hold with equality, PDR = PLB should be satisfied. Hence,

the conditions in Part (ii) of Proposition 3.3.2 are obtained.

(iii) Consider a scenario in which g̃1(S
∗) = · · · = g̃K(S

∗). In order to prove

that PDR = PSD via contradiction, first suppose that max
k

g̃k(S
⋄) < max

k
g̃k(S

∗).

Then, the following relation is obtained:

K∑
k=1

g̃k(S
⋄) ≤ Kmax

k
g̃k(S

⋄) < Kmax
k

g̃k(S
∗) =

K∑
k=1

g̃k(S
∗). (3.39)

Note that the second inequality and the equality in (3.39) are due to the as-

sumptions of max
k

g̃k(S
⋄) < max

k
g̃k(S

∗) and g̃1(S
∗) = · · · = g̃K(S

∗), re-

spectively. Since (3.39) implies that
∑K

k=1 g̃k(S
⋄) <

∑K
k=1 g̃k(S

∗), it results
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in a contradiction due to the definition of S∗ in (3.28). Therefore, when

g̃1(S
∗) = · · · = g̃K(S

∗), the relation max
k

g̃k(S
⋄) < max

k
g̃k(S

∗) cannot be true.

This implies that max
k

g̃k(S
⋄) = max

k
g̃k(S

∗) must be satisfied in this scenario

since max
k

g̃k(S
⋄) ≤ max

k
g̃k(S

∗) is always satisfied by definition (as S⋄ is the

solution of (3.26)). Then, PDR = PSD is obtained as follows:

PSD = max
k

g̃k(S
⋄) = max

k
g̃k(S

∗) =
1

K

K∑
k=1

g̃k(S
∗) = PLB (3.40)

where the third equality is due to g̃1(S
∗) = · · · = g̃K(S

∗) and the last equality is

from (3.27). Since in general PLB ≤ PDR ≤ PSD holds (see (3.27) and Part (i) of

Proposition 3.3.2), (3.40) implies that PDR = PSD = PLB when g̃1(S
∗) = · · · =

g̃K(S
∗).

(iv) Assume that PDR = PLB and g̃k(S
⋄) ̸= g̃l(S

⋄) for some k, l ∈ {1, . . . , K}.

Then, the result is derived as follows:

PSD = max
k

g̃k(S
⋄) >

1

K

K∑
k=1

g̃k(S
⋄) ≥ 1

K

K∑
k=1

g̃k(S
∗) = PLB = PDR , (3.41)

where the first inequality is obtained from the assumption that g̃k(S
⋄) ̸= g̃l(S

⋄)

for some k, l ∈ {1, . . . , K}, the second inequality and the second equality follow

from Proposition 3.3.1, and the final equality is due to the assumption of PDR =

PLB. �

Proposition 3.3.2 quantifies the improvements that can be achieved via the

optimal detector randomization approach and states that the worst-case average

probability of error can be reduced by a factor of K compared to the optimal

single detectors approach that does not perform any detector randomization.

Therefore, significant gains can be possible in the presence of a large number of

users. In addition, the scenarios in which this maximum improvement ratio can

be achieved are specified based on the conditions in Part (ii) of the proposition.

It should be noted that the condition of g̃k(S
∗) = 0, ∀k ∈ {1 . . . K} \ {k∗} and

g̃k∗(S
∗) > 0 cannot hold exactly for ML detectors that operate in the presence
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of Gaussian noise, which has an infinite support. Therefore, the maximum im-

provement ratio of K may not be achieved exactly in practice; however, it can be

quite close to K in certain scenarios (see, e.g., Figure 3.3 at 28 dB). Proposition

3.3.2 also provides some simple conditions to determine if the optimal detec-

tor randomization approach can or cannot provide any improvements over the

optimal single detectors approach.

Remark 1: Although the results in Proposition 3.3.1 and Proposition 3.3.2

are obtained when all the users employ ML detectors, which are specified by the

error probability expression g̃k in (3.23), the results are also valid for other types

of detectors; e.g., the sign detector or the optimal single-threshold detector.

In other words, Proposition 3.3.1 and Proposition 3.3.2 hold for arbitrary g̃k

corresponding to any type of detectors. �

In the following proposition, the structure of the optimal detector random-

ization solution obtained from (3.20)-(3.22) is specified in the case of equal cross-

correlations and noise powers.

Proposition 3.3.3. Assume that there are at least K detectors at each receiver;

that is, Nd ≥ K. If the crosscorrelations between the pseudo-noise signals for

different users are equal; i.e., ρk,j = ρ, ∀k ̸= j, and the standard deviations of

the noise at the receivers are the same; i.e., σk = σ, ∀k, then an optimal solution

to (3.20)-(3.22), which achieves the lower bound in (3.27), can be expressed as

vl =
1

K
, Sl = CS2l−2(S

∗) for l = 1, . . . , K (3.42)

where S∗ is as in (3.28) and CS2l−2(S
∗) denotes the circular shift of the elements

of S∗ by 2l − 2 positions.6

6Since S∗ is feasible; i.e, satisfies h(S∗) ≤ A by definition (see (3.28)), CS2l(S
∗)’s are

feasible as well due to the definition of h in (3.9).
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Proof: When the solution in (3.42) is employed, the objective function in

(3.20) becomes

max
k∈{1,...,K}

1

2K

∫ ∞

−∞

K∑
l=1

min
{
p
(k)
0 (y|CS2l−2(S

∗)) , p
(k)
1 (y|CS2l−2(S

∗))
}
dy . (3.43)

In addition, for equal crosscorrelations and noise variances, p
(k)
ik
(y|Sl) in (3.19)

is given by

p
(k)
ik
(y|Sl) =

1

σ
√
2π 2K−1

∑
ik∈{0,1}K−1

exp

{
− 1

2σ2

(
y − S

(ik)
k,l − ρ

K∑
j=1

j ̸=k

S
(ij)
j,l

)2}

(3.44)

for ik = 0, 1, where Sl =
[
S
(0)
1,l S

(1)
1,l · · ·S

(0)
K,l S

(1)
K,l

]
and ik = [i1 · · · ik−1 ik+1 · · · iK ].

Then, if Sl = CS2l−2(S
∗) is employed for l = 1, . . . , K, where

S∗ , [S
(0)
1,∗ S

(1)
1,∗ · · ·S

(0)
K,∗ S

(1)
K,∗], it can be shown based on (3.44) that the∑K

l=1min
{
p
(k)
0 (y|CS2l−2(S

∗)), p
(k)
1 (y|CS2l−2(S

∗))
}
terms in (3.43) become equal

for k = 1, . . . , K.7 Therefore, the overall expression in (3.43) can be stated as

1

2K

K∑
l=1

∫ ∞

−∞
min

{
p
(k)
0 (y|CS2l−2(S

∗)) , p
(k)
1 (y|CS2l−2(S

∗))
}
dy (3.45)

for any k ∈ {1, . . . , K}. From (3.44), it is easy to verify that (3.45) is also equal

to

1

2K

K∑
k=1

∫ ∞

−∞
min

{
p
(k)
0 (y|S∗), p

(k)
1 (y|S∗)

}
dy , (3.46)

which can be expressed as 1
K

∑K
k=1 g̃k(S

∗) , PLB based on the definitions in

(3.23) and (3.27). Hence, it is observed that for the solution in (3.42), the

optimization problem in (3.20)-(3.22) achieves the lower bound in Proposition

3.3.1; i.e., (3.42) provides an optimal solution to (3.20)-(3.22) that achieves the

lower bound in (3.27), as claimed in the proposition. �
7For example, if K = 2, then CS0(S

∗) = [S
(0)
1,∗ S

(1)
1,∗ S

(0)
2,∗ S

(1)
2,∗ ] and

CS2(S
∗) = [S

(0)
2,∗ S

(1)
2,∗ S

(0)
1,∗ S

(1)
1,∗ ], for which min

{
p
(k)
0 (y|CS0(S∗)), p

(k)
1 (y|CS0(S∗))

}
+

min
{
p
(k)
0 (y|CS2(S∗)), p

(k)
1 (y|CS2(S∗))

}
is the same for k = 1 and k = 2, as can be observed

from (3.44).
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Although the optimal solution to the generic problem in (3.20)-(3.22) re-

quires a search over a (2K + 1)K dimensional space (assuming Nd ≥ K), a

significantly simpler solution can be obtained under the conditions in Proposi-

tion 3.3.3; namely, the following algorithm can be employed: (i) Calculate S∗

from (3.28). (ii) Obtain the optimal solution as in (3.42).8 It is noted that this

algorithm requires a search over a 2K dimensional space in order to calculate

S∗. In addition, if symmetric signaling is employed, the search space dimen-

sions reduce to (K + 1)K and K for the problems in (3.20)-(3.22) and in (3.28),

respectively.

Remark 2: Under the conditions in Proposition 3.3.3, if S∗ is a solution

of (3.28), any permutation of the signal amplitude pairs for different users

is a solution as well.9 For example, if S∗ =
[
S
(0)
1,∗ S

(1)
1,∗ S

(0)
2,∗ S

(1)
2,∗ S

(0)
3,∗ S

(1)
3,∗
]

= [−1 1−2 2−3 3], then [−1 1−3 3−2 2], [−2 2−1 1−3 3], [−2 2−3 3−1 1],

[−3 3−1 1−2 2], and [−3 3−2 2−1 1] are solutions of (3.28), too. �

The following proposition presents necessary and sufficient conditions for the

uniqueness of the solution in (3.42).

Proposition 3.3.4. Consider scenarios in which performance improvements are

achieved via optimal detector randomization over the optimal single detectors

approach. Under the conditions in Proposition 3.3.3, the optimal solution in

(3.42) is unique if and only if

• the solution of (3.28), S∗, is unique up to permutations of signal amplitude

pairs (see Remark 2), and

• the signal amplitude pairs in S∗ are the same except for one of them.10

8The definition of the circular shift in Proposition 3.3.3 can be a right circular shift or a

left circular shift without affecting the optimality of the solution in (3.42).
9This is implied by the proof of Proposition 3.3.3 based on the equivalence of (3.45) and

(3.46) (see (3.23) and (3.28) as well).
10The case in which S∗ is unique and the signal amplitude pairs in S∗ are all the same is

not considered since no improvement is achieved via detector randomization in that scenario
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Proof: Please see Appendix 3.6.1.

Proposition 3.3.4 guarantees the uniqueness of the optimal solution in (3.42)

based on the uniqueness of the solution S∗ of (3.28) and the structure of this

optimal solution. As an example, for K = 4, if S∗ = [−1 1−1 1−1 1−2 2] is

the unique solution of (3.28) up to permutations of signal amplitude pairs (i.e.,

the only solutions of (3.28) are [−1 1−1 1−1 1−2 2], [−1 1−1 1−2 2−1 1],

[−1 1−2 2−1 1−1 1], and [−2 2−1 1−1 1−1 1] ), then the optimal solu-

tion is unique as a result of Proposition 3.3.4 since the signal amplitude pairs

in S∗ are the same except for one of them. Also, from Proposition 3.3.3, the

optimal solution in (3.42) is given by v1 = v2 = v3 = v4 = 0.25, S1 =

[−1 1−1 1−1 1−2 2] S2 = [−2 2−1 1−1 1−1 1], S3 = [−1 1−2 2−1 1−1 1],

and S4 = [−1 1−1 1−2 2−1 1] in this example.

3.4 Performance Evaluation

In this section, numerical results are presented to investigate the theoretical

results obtained in the previous sections and to compare the proposed optimal

detector randomization approach against other approaches that do not perform

any detector randomization. Specifically, the following approaches are considered

in the simulations.

Optimal Detector Randomization: This scheme refers to the proposed

optimization problem in (3.13)-(3.15), which can be solved via (3.20)-(3.22), as

stated in Proposition 3.2.2. It is noted that when the conditions in Proposition

3.3.3 are satisfied, the optimal solution can also be obtained via (3.42), which

has significantly lower computational complexity.

(i.e., the condition in Part (iii) of Proposition 3.3.2 is satisfied). Specifically, S∗ is employed

all the time and each user runs a single ML detector corresponding to S∗.

68



Optimal Single Detectors: In this approach, a single detector is employed

by each user; hence, no detector randomization is performed. The solution is

obtained from (3.25) (equivalently, (3.26)). Namely, the optimal signals and the

corresponding single detectors (ML rules) are calculated in this approach.

Single Detectors at Power Limit: This approach employs a single de-

tector for each user, and equalizes the signal-to-interference-plus-noise ratios

(SINRs) at all the detectors. In addition, all the available power is utilized.

Specifically, in this scheme, the signal amplitudes are chosen in such a way that

SINR1 = · · · = SINRK and h(S) = A, where SINRk is the SINR for user k

and h(S) is as in (3.9). The SINR for user k can be calculated from (3.3) as

SINRk = E
{∣∣S(ik)

k

∣∣2}/(E{∣∣∑j ̸=k ρk,jS
(ij)
j

∣∣2} + σ2
k

)
for k = 1, . . . , K, which be-

comes SINRk =
∣∣S(1)

k

∣∣2/(∑j ̸=k ρ
2
k,j

∣∣S(1)
j

∣∣2 + σ2
k

)
for symmetric signaling. In gen-

eral, the single detectors at power limit approach has low computational com-

plexity compared to the other approaches; however, it can result in degraded

performance as investigated in the following.

In the simulations, symmetric signaling with equiprobable information sym-

bols is considered for all users, and the standard deviations of the noise at the

receivers are set to the same value; i.e., σk = σ, k = 1, . . . , K. In addition,

as stated after (3.3), ρk,j’s are taken as one for k = j; that is, ρk,k = 1 for

k = 1, . . . , K.

First, a 5-user scenario is considered (that is, K = 5), and the crosscorre-

lations between the pseudo-noise signals for different users are set to 0.27; i.e.,

ρk,j = 0.27 for k ̸= j. Also, the average power constraint A in (3.6) is taken

as 5. In Figure 3.3, the maximum average probability of error is plotted versus

1/σ2 for the optimal detector randomization, optimal single detectors, and sin-

gle detectors at power limit approaches. From the figure, it is observed that the

optimal detector randomization approach achieves the best performance among

all the approaches, and the optimal single detectors approach outperforms the
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Figure 3.3: Maximum average probability of error versus 1/σ2 for the optimal
detector randomization, optimal single detectors, and single detectors at power
limit approaches, where K = 5, ρk,j = 0.27 for all k ̸= j, and A = 5.

single detectors at power limit approach for small noise variances. In addition,

the calculations show that for high noise variances the nonimprovability condi-

tion in Part (iii) of Proposition 3.3.2 is satisfied, while for small noise variances

the improvability condition stated in Part (iv) of the same proposition is valid.

It is also noted that the improvement ratio, which is the ratio between the max-

imum error probabilities of the optimal single detectors and optimal detector

randomization approaches, satisfies the inequality (3.36) in Proposition 3.3.2. In

particular, the maximum improvement ratio of 5 is approximately achieved at

1/σ2 = 28 dB.

In order to investigate the results in Figure 3.3 in more detail, Table 3.1

presents the solution S⋄ of the optimal single detectors approach in (3.26) for

various noise variances, where S⋄ =
[
S
(0)
1,⋄ S

(1)
1,⋄ · · ·S

(0)
K,⋄ S

(1)
K,⋄
]
. Since symmetric sig-

naling is employed, only the signal amplitudes corresponding to bit 1 of the users
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Table 3.1: Solution of the optimal single detectors approach in (3.26) for the
scenario in Figure 3.3. (Only the signal amplitudes for bit 1 of the users are
shown due to symmetry.)

1/σ2 (dB) S
(1)
1,⋄ S

(1)
2,⋄ S

(1)
3,⋄ S

(1)
4,⋄ S

(1)
5,⋄

18 1 1 1 1 1
20 1 1 1 1 1
22 1.1167 0.9686 0.9686 0.9686 0.9686
24 1.1321 0.9642 0.9642 0.9642 0.9642
26 1.1421 0.9612 0.9612 0.9612 0.9612
28 0.1514 1.1154 1.1154 1.1154 1.1154

Table 3.2: Solution of (3.28), S∗, for the scenario in Figure 3.3. (Only the
signal amplitudes for bit 1 of the users are shown due to symmetry.) Note that
S∗ specifies the solution of the optimal detector randomization approach as in
(3.42).

1/σ2 (dB) S
(1)
1,∗ S

(1)
2,∗ S

(1)
3,∗ S

(1)
4,∗ S

(1)
5,∗

18 1 1 1 1 1
20 1 1 1 1 1
22 0.1531 1.1154 1.1154 1.1154 1.1154
24 0.1522 1.1154 1.1154 1.1154 1.1154
26 0.1516 1.1155 1.1155 1.1155 1.1155
28 0.1513 1.1155 1.1155 1.1155 1.1155
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are shown in the table. (The signal amplitudes for bit 0 are given by S
(0)
k,⋄ = −S

(1)
k,⋄

for k = 1, 2, 3, 4, 5.). In addition, Table 3.2 illustrates the solution of (3.28), S∗,

which specifies the solution of the optimal detector randomization approach as

described in (3.42) in Proposition 3.3.3. Again only the signal amplitudes cor-

responding to bit 1 of the users are shown due to symmetry. From Tables 3.1

and 3.2, it is observed that both the optimal single detectors and the optimal de-

tector randomization approaches converge to the single detectors at power limit

approach for high noise variances. This is due to the fact that the Gaussian

noise becomes dominant as the noise variance increases and the multiuser in-

terference plus noise term becomes approximately a Gaussian random variable,

in which case the optimal solution is to assign equal powers for all users at the

maximum power limit. Also, it is noted that the nonimprovability condition in

Part (iii) of Proposition 3.3.2 is satisfied for that scenario. On the other hand,

for small noise variances, the solutions become different from that of the single

detectors at power limit approach, and improvements are achieved as observed

in Figure 3.3. In addition, Table 3.2 implies that the conditions in Proposition

3.3.4 are satisfied for small noise variances; hence, the solution of the optimal

detector randomization approach specified in (3.28) is unique in those scenarios.

For example, at 1/σ2 = 24 dB, the unique solution of the optimal detector ran-

domization approach is specified by vl = 0.2 and Sl = CS2l−2([−0.1522 0.1522 −

1.1154 1.1154−1.1154 1.1154−1.1154 1.1154−1.1154 1.1154]) for l = 1, 2, 3, 4, 5.

Another important observation can be made from Table 3.2 regarding the sig-

nal values for the optimal detector randomization approach. When the noise

variance is smaller than a certain value, the optimal solution does not vary sig-

nificantly with the noise level. Hence, perfect knowledge of the noise level may

not be required for achieving a near optimal performance. Finally, it is observed

from Tables 3.1 and 3.2 that the optimal signal values are the same for many (or,

all) of the users at a given noise variance, which is mainly due to the the struc-

tures of the optimization problems in (3.26) and (3.28), and the facts that the
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Figure 3.4: Maximum average probability of error versus 1/σ2 for the optimal
detector randomization, optimal single detectors, and single detectors at power
limit approaches, where K = 5, ρk,j = 0.35 for all k ̸= j, and A = 5.

crosscorrelations between the pseudo-noise signals for different users are equal,

and the standard deviations of the noise at the receivers are the same. In other

words, the optimization problems in (3.26) and (3.28) tend to yield equalizer

rules (for all or some of the users) in the considered scenario.

Next, another scenario with K = 5 users is considered, where ρk,j = 0.35

for k ̸= j, and A = 5. In Figure 3.4, the maximum average probability of error

is illustrated for the optimal detector randomization, optimal single detectors,

and single detectors at power limit approaches. Similar observations to those for

Figure 3.3 can be made. The main difference is that improvements are achieved

for a larger range of noise variances in this scenario. In addition, the solutions of

the optimal single detectors and the optimal detector randomization approaches

are specified in Tables 3.3 and 3.4 for the scenario in Figure 3.4 for some values
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Table 3.3: Solution of the optimal single detectors approach in (3.26) for the
scenario in Figure 3.4.

1/σ2 (dB) S
(1)
1,⋄ S

(1)
2,⋄ S

(1)
3,⋄ S

(1)
4,⋄ S

(1)
5,⋄

15 1 1 1 1 1
20 1.1099 1.1099 0.9195 0.9195 0.9195
25 0.2180 0.2180 1.2787 1.2787 1.2787
30 0.2218 0.2218 1.2782 1.2782 1.2782

Table 3.4: Solution of (3.28), S∗, for the scenario in Figure 3.4. Note that S∗

specifies the solution of the optimal detector randomization approach as in (3.42).

1/σ2 (dB) S
(1)
1,∗ S

(1)
2,∗ S

(1)
3,∗ S

(1)
4,∗ S

(1)
5,∗

15 1 1 1 1 1
20 0.2084 0.2084 1.2797 1.2797 1.2797
25 0.2180 0.2180 1.2787 1.2787 1.2787
30 0.2218 0.2218 1.2782 1.2782 1.2782

of 1/σ2. Again similar observations to those in the previous scenario can be

made. However, in this case, the solution in (3.28) is not unique since the

second uniqueness condition in Proposition 3.3.4 is not satisfied, as observed

from Table 3.4.

Then, a scenario with K = 6 users is considered, where ρk,j = 0.21 for

k ̸= j, and A = 6. In Figure 3.5, the maximum average probability of error

is illustrated for the optimal detector randomization, optimal single detectors,

and single detectors at power limit approaches. Similar observations as in the

previous scenarios are made. The main difference in this scenario is that the

improvement ratio is smaller than those in Figure 3.3 and Figure 3.4. Also, the

solutions of the optimal single detectors and the optimal detector randomization

approaches are specified in Tables 3.5 and 3.6 for the scenario in Figure 3.5 for

some values of 1/σ2.
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Figure 3.5: Maximum average probability of error versus 1/σ2 for the optimal
detector randomization, optimal single detectors, and single detectors at power
limit approaches, where K = 6, ρk,j = 0.21 for all k ̸= j, and A = 6.

Table 3.5: Solution of the optimal single detectors approach in (3.26) for the
scenario in Figure 3.5.

1/σ2 (dB) S
(1)
1,⋄ S

(1)
2,⋄ S

(1)
3,⋄ S

(1)
4,⋄ S

(1)
5,⋄ S

(1)
6,⋄

18 1 1 1 1 1 1
20 1 1 1 1 1 1
22 1.0662 0.9862 0.9862 0.9862 0.9862 0.9862
24 1.0978 0.9793 0.9793 0.9793 0.9793 0.9793
26 1.1353 0.9707 0.9707 0.9707 0.9707 0.9707
28 1.1602 0.9648 0.9648 0.9648 0.9648 0.9648
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Table 3.6: Solution of (3.28), S∗, for the scenario in Figure 3.5. Note that S∗

specifies the solution of the optimal detector randomization approach as in (3.42).

1/σ2 (dB) S
(1)
1,∗ S

(1)
2,∗ S

(1)
3,∗ S

(1)
4,∗ S

(1)
5,∗ S

(1)
6,∗

18 1 1 1 1 1 1
20 1 1 1 1 1 1
22 1.1117 0.9761 0.9761 0.9761 0.9761 0.9761
24 1.1283 0.9723 0.9723 0.9723 0.9723 0.9723
26 1.1430 0.9689 0.9689 0.9689 0.9689 0.9689
28 1.1606 0.9647 0.9647 0.9647 0.9647 0.9647

3.5 Conclusions and Extensions

Optimal detector randomization has been studied for the downlink of a DSSS

system. An optimization problem has been formulated in order to obtain the

optimal signal amplitudes, detectors, and detector randomization factors. Since

this joint optimization problem is quite challenging in general, a simplified prob-

lem has been proposed, in which the search is performed over signal amplitudes

and detector randomization factors only, and then the ML detectors correspond-

ing to the optimal signal amplitudes are employed at the receivers. It has been

shown that this simplified approach provides the optimal solution to the generic

problem when detector randomization is performed over at most min{K,Nd}

detector sets, where K is the number of users and Nd is the number of detectors

at each receiver. Then, the performance of the optimal detector randomization

approach has been investigated, and a lower bound has been obtained for the

minimum worst-case average probability of error. Also, it has been shown that

the optimal detector randomization approach can improve the performance of

the optimal single detectors approach by up to K times. In addition, various

sufficient conditions have been obtained for the improvability and nonimprov-

ability via detector randomization. Furthermore, in the special case of equal
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crosscorrelations and noise powers, a simple solution has been provided for the

optimal detector randomization problem, and necessary and sufficient conditions

have been presented for the uniqueness of that solution. Finally, numerical ex-

amples have been presented in order to illustrate the improvements achieved via

detector randomization.

Although the downlink of a DSSS system is considered in this study, the

results can also be applied to the uplink of a synchronous DSSS under certain

assumptions. Specifically, suppose that the receiver (the base station or the

access point) employs a bank of K correlators corresponding to the pseudo-noise

signals of the users and then performs the bit decision for user k based on the

kth correlator output via detector randomization among Nd detectors, where k ∈

{1, . . . , K}. In this scenario, the theoretical results in Section 3.2 and Section 3.3

can be extended to the uplink as well. However, when an asynchronous system

is considered or when the receiver employs multiuser detection approaches [21],

the results in this study cannot be directly applied. Therefore, optimal detector

randomization in such scenarios is considered as a future work.

The results in this study can also be extended to cover scenarios in which

each user performs M -ary modulation for M > 2. In that case, the definitions of

ϕ
(k)
l in (3.4), Sl at the beginning of Section 3.2, h in (3.9), gk,l in (3.11), and g̃k

in (3.23) can be updated accordingly, and the theoretical results in the previous

sections can still be employed based on these new definitions.
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3.6 Appendices

3.6.1 Proof of Proposition 3.3.4

First, it is shown that the optimal solution in (3.42) is unique if the conditions

in the proposition are satisfied. To that aim, define the following sets

Sequ =

{
S ∈ SA :

K∑
k=1

g̃k(S) =
K∑
k=1

g̃k(S
∗)

}
(3.47)

Slar =

{
S ∈ SA :

K∑
k=1

g̃k(S) >
K∑
k=1

g̃k(S
∗)

}
(3.48)

where g̃k is given by (3.23) and SA is as defined in Proposition 3.3.1. Note that

each S ∈ SA must belong to either Sequ or Slar due to the definition of S∗ in

(3.28). Let {vl,Sl}Kl=1 denote the optimal solution of (3.20)-(3.22). Then, it is

proved that Sl ∈ Sequ must hold for all l ∈ {1, . . . , K} since it would otherwise

lead to a scenario in which the optimal solution of (3.20)-(3.22), PDR, could not

achieve the lower bound in (3.27) as shown below:

PDR = max
k∈{1,...,K}

K∑
l=1

vlg̃k(Sl) ≥
1

K

K∑
l=1

vl

K∑
k=1

g̃k(Sl)

>
1

K

K∑
l=1

vl

K∑
k=1

g̃k(S
∗) = PLB . (3.49)

Here, the strict inequality is obtained under the assumption that there exists

l ∈ {1, . . . , K} such that Sl /∈ Sequ (i.e., Sl ∈ Slar). However, as stated in

Proposition 3.3.3, the lower bound must be achieved in the considered scenario.

Therefore, (3.49) presents a contradiction, implying that Sl ∈ Sequ must hold for

all l ∈ {1, . . . , K}.

Next, define set Sper as follows: Sper = {S ∈ SA : S is a permutation of signal

amplitude pairs in S∗}. From Remark 2, it is noted that the elements of Sper cor-

respond to all possible S ∈ SA that satisfy
∑K

k=1 g̃k(S) =
∑K

k=1 g̃k(S
∗); hence,

Sper = Sequ. Then, based on the argument in the previous paragraph, it is
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concluded that the optimal solution of (3.20)-(3.22), {vl,Sl}Kl=1, must satisfy

Sl ∈ Sper for all l ∈ {1, . . . , K}. If the conditions in the proposition are satisfied

(i.e., S∗ is unique up to permutations of the signal amplitude pairs, which are

the same except for one of them), there exist exactly K elements in Sper, which

correspond to the circular shifts of S∗ by 2l−2 elements for l = 1, . . . , K; that is,

Sper = {CS2l−2(S
∗), l = 1, . . . , K}. In order to specify the randomization factors,

v1, . . . , vK , of the optimal solution in this scenario, define v as v = [v1 · · · vK ]T

and G as a K×K matrix with its element in row k and column l being equal to

g̃k(CS2l−2(S
∗)).11 Then, based on Proposition 3.3.1, the optimal weights must

satisfy

Gv = pLB and 1Tv = 1 , (3.50)

where 1 , [1 · · · 1]T and pLB , [PLB · · ·PLB]
T with PLB = 1

K

∑K
k=1 g̃k(S

∗) as in

(3.27). Note that each element ofGv corresponds to the average error probability

of a user, which should be equal to PLB, since the lower bound in (3.27) is

achieved, i.e., PDR = PLB, in this scenario (see the achievability condition in

Proposition 3.3.1). It can be shown that G is a circulant matrix [59] based on

the following lemma:

Lemma 3.6.1. Under the conditions in Proposition 3.3.3, g̃k(CS2l−2(S
∗)) =

g̃j(CS2m−2(S
∗)) if (l − k)modK = (m− j)modK for k, l, j,m ∈ {1, . . . , K}.

Proof: From (3.23), g̃k(CS2l−2(S
∗)) can be expressed as

g̃k(CS2l−2(S
∗)) = 0.5

∫ ∞

−∞
min

{
p
(k)
0 (y|CS2l−2(S

∗)) , p
(k)
1 (y|CS2l−2(S

∗))
}
dy

(3.51)

where p
(k)
ik

is given by (3.44) under the conditions in Proposition 3.3.3. From

(3.44) and (3.51), it is observed that g̃k(CS2l−2(S
∗)) and g̃j(CS2m−2(S

∗)) are

equal if the kth signal amplitude pair in CS2l−2(S
∗) is the same as the jth signal

11Note that the elements of G are strictly positive based on (3.23) and (3.44).
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amplitude pair in CS2m−2(S
∗). Since the kth and the jth signal amplitude pairs

in CS2l−2(S
∗) and CS2m−2(S

∗), respectively, become the same for (l− k)modK =

(m − j)modK due to the nature of the circular shift operator, g̃k(CS2l−2(S
∗)) =

g̃j(CS2m−2(S
∗)) is obtained for (l − k)modK = (m − j)modK , where k, l, j,m ∈

{1, . . . , K}. �

In addition to being a circulant matrix, G also has the property that its

elements in each row are either all the same or the same except for one of them

under the second condition in the proposition (i.e., when the signal amplitude

pairs in S∗ are the same except for one of them). This observation follows

directly from (3.23) and (3.44). Therefore, one of the rows of G, say the first

one, is in the form of [a b · · · b], and the other rows are the circular shifts of

this row in such a way that G is a circulant matrix. First consider the case in

which a ̸= b. Then, it is concluded that G is nonsingular since its eigenvalues

are all nonzero. (In particular, one eigenvalue is a+ (K − 1)b and the remaining

ones are a − b.) Hence, there exists a unique solution of (3.50). Based on

the fact that 1
K

∑K
l=1 g̃k(CS2l−2(S

∗)) = 1
K

∑K
j=1 g̃j(S

∗) for each k ∈ {1, . . . , K}

(which can be verified from (3.23) and (3.44)), the unique solution of (3.50) is

obtained as v =
[
1
K
· · · 1

K

]T
. For a = b, all the elements of G; hence, all the

g̃k(CS2l−2(S
∗)) terms, are the same. Therefore, no improvement is achieved via

detector randomization in that scenario, and the optimal solution can be achieved

by employing S∗ all the time. Hence, this trivial scenario is excluded as stated

at the beginning of Proposition 3.3.4; that is, a = b does not hold for scenarios

considered in the proposition.

In order to prove the necessity of the conditions in the proposition, first as-

sume that S∗ is not unique up to permutations of signal amplitude pairs. Then,

a different solution can be obtained for each distinct S∗ as described above.

Namely, a distinct solution is calculated as in (3.42) for each S∗. Therefore, the

solution is not unique if the first condition in Proposition 3.3.4 is not satisfied.
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Next, assume that S∗ is unique up to permutations of signal amplitude pairs

but it does not satisfy the second condition in the proposition; that is, there

are at least three distinct signal amplitude pairs in S∗ or two distinct signal

amplitude pairs each with multiple repetitions. Then, the permutations of the

signal amplitude pairs in S∗ result in more than K different signal vectors; i.e.,

there exist more than K elements in set Sper, which is as defined above. (In

particular, if there exist Np distinct signal amplitude pairs in S∗, each of which

has R1, . . . , RNp repetitions, respectively, then there are K!/(R1! · · ·RNp !) differ-

ent permutations of signal amplitude pairs; i.e., |Sper| = K!/(R1! · · ·RNp !).) In

this case, there exist at least two distinct signal vectors S∗
x1

and S∗
x2
, which are

not circular shifts of each other. Then, the circular shifts of S∗
x1

and S∗
x2

can

be employed in order to obtain two distinct solutions based on (3.42). Hence,

it is concluded that the solution is not unique if the second condition in the

proposition is not satisfied. �
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Chapter 4

Optimal Signaling and Detector

Design for M−ary

Communications Systems in the

Presence of Multiple Additive

Noise Channels

This chapter is organized as follows. In Section 4.1, the optimal signaling and

detection problem is formulated in the presence of multiple additive noise chan-

nels under an average transmit power constraint, and the form of the solution

to this optimization problem is obtained. Numerical examples are presented in

Section 4.2, which is followed by some concluding remarks in Section 4.3.
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4.1 Stochastic Signaling and Channel Switching

Consider an M -ary communications system, in which the information can be

conveyed between the transmitter and receiver over K additive non-varying and

independent noise channels as illustrated in Figure 4.1. The transmitter is al-

lowed to switch or time share among these K channels to improve the correct

decision performance at the receiver. A relay at the transmitter controls access

to the channels so that only one of the channels can be used for symbol transmis-

sion at any given time. Furthermore, a stochastic signaling approach is adopted

by treating the signal transmitted from each channel for each information symbol

as a random vector instead of a constant value [4, 6]. In other words, the trans-

mitter can perform randomization of signal values for each information symbol,

which also corresponds to a form of constellation randomization [5, 15, 16]. The

transmitter and the receiver are assumed to be synchronized so that the receiver

knows which channel is currently in use, and employs the optimal decision rule

for the corresponding channel and the stochastic signaling scheme. In practice,

this assumption can be realized by employing a communications protocol that

allocates the first Ns,1 symbols in the payload for channel 1, the next Ns,2 sym-

bols in the payload for channel 2, and so on. The information on the numbers of

symbols for different channels can be included in the header of a communications

packet [6].

Multiple channels can be available between a transmitter and a receiver, for

example, in cognitive radio systems, where secondary users sense the spectrum

in order to determine available frequency bands for communications [60, 61].

In the presence of multiple available frequency bands between a transmitter-

receiver pair in a cognitive radio system (see, e.g., [62]), channel switching can

be performed in order to improve the error performance of the secondary system.

Therefore, one application of the scenario in Figure 4.1 can be the communica-

tions of secondary users in a cognitive radio system.
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Figure 4.1: M -ary communications system that employs stochastic signaling and
channel switching.

As pointed out in [2], for a binary-valued scalar communications system that

employs antipodal signaling and the corresponding optimal MAP detector at the

receiver, error probability is a nonincreasing convex function of the signal-to-noise

ratio (SNR) when the channel has a continuously differentiable unimodal noise

PDF with a finite variance. The more general case of arbitrary signal constel-

lations is investigated in [3] by concentrating on the maximum likelihood (ML)

detection over additive white Gaussian noise (AWGN) channels. The symbol

error rate (SER) is shown to be always convex in SNR for 1-D and 2-D constel-

lations, and also for higher dimensional constellations at high SNR regime. As a

result, it is impossible to improve the error performance of an optimal detector

via stochastic signaling under an average transmit power constraint in the above

mentioned cases due to the convexity of the error probability. On the other hand,

nonconvexity can be observed at low to intermediate SNRs in the presence of
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multimodal noise and even unimodal (including Gaussian) noise for high dimen-

sional constellations.1 As an example, it is reported in [4] and [5] that employing

stochastic signaling; that is, modeling signals for different symbols as random

variables instead of deterministic quantities, can provide significant performance

improvements under Gaussian mixture noise. Motivated by this observation, we

consider additive noise channels with generic PDFs and aim to obtain the op-

timal signaling and detection strategy when multiple channels are available for

symbol transmission and stochastic signaling can be performed over each chan-

nel. In this scenario, the noisy observation vector Y received by the detector

corresponding to the ith channel can be modeled as follows.

Y = S
(i)
j +N(i) , j ∈ {0, 1, . . . ,M − 1} and i ∈ {1, . . . , K} , (4.1)

where S
(i)
j represents the N -dimensional signal vector transmitted for symbol

j over channel i, and N(i) is the noise component of the ith channel that is

independent of S
(i)
j and all the noise components of the remaining channels.

It should be emphasized that S
(i)
j is modeled as a random vector to employ

stochastic signaling. Also, the prior probabilities of the symbols, denoted by

π0, π1, . . . , πM−1, are assumed to be known. The vector channel model given

above provides the discrete-time equivalent representation of a continuous-time

system that processes the received signal by an orthonormal set of linear filters,

samples the output of each filter once per symbol interval and concatenates the

sampled values into a vector, thereby capturing the effects of modulator, additive

noise channel and receiver front-end processing on the noisy observation signal.

The resulting digital signal vector is fed to the designated detector to finalize

the demodulation task. In addition, although the signal model in (4.1) is in the

form of a simple additive noise channel, it is sufficient to incorporate various

effects such as thermal noise, multiple-access interference, and jamming [2]. It is

also valid in the case of flat-fading channels assuming perfect channel estimation

1Non-Gaussian and multimodal noise distributions are observed in some practical systems

due to effects such as interference and jamming [21, 63, 64].
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[4]. Note that the probability distribution of the noise component in (4.1) is not

necessarily Gaussian since it is modeled to include the effects of interference and

jamming as well. Hence, the noise component can have a significantly different

probability distribution from the Gaussian distribution [21, 63, 64].

The receiver uses the observation in (4.1) in order to determine the transmit-

ted information symbol. For that purpose, a generic decision rule (detector) is

considered for each channel making a total of K detectors getting utilized at the

receiver. That is, for a given observation vector Y = y, the detector of the ith

channel ϕ(i)(y) can be characterized as

ϕ(i)(y) = j , if y ∈ Γ
(i)
j , (4.2)

for j ∈ {0, 1, . . . ,M − 1} , where Γ(i)
0 ,Γ

(i)
1 , . . . ,Γ

(i)
M−1 are the decision regions (i.e.,

a partition of the observation space RN) for the detector of the ith channel [44].

The transmitter and the receiver can switch between these K channels in any

manner in order to optimize the probability of error performance. Let vi denote

the probability that channel i is selected for a given symbol transmission by the

communications system. In the remainder of this study, vi is called the channel

switching factor for channel i, where
∑K

i=1 vi = 1 and vi ≥ 0 for i = 1, . . . , K. In

the context of time sharing, the transmitter and the receiver communicate over

channel i for 100vi percent of the time.

The aim of this study is to jointly optimize the channel switching strategy

(v1, . . . , vK), stochastic signals, and detectors in order to achieve the minimum

average probability of error, or equivalently, the maximum average probability of

correct decision. The average probability of correct decision can be expressed as

Pc =
∑K

i=1 vi P
(i)
c , where P

(i)
c represents the corresponding probability of correct

decision for channel i under M -ary signaling; that is

P(i)
c =

M−1∑
j=0

πj

∫
Γ
(i)
j

p
(i)
j (y) dy (4.3)
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for i = 1, 2, . . . , K, with p
(i)
j (y) denoting the conditional PDF of the observation

when the jth symbol is transmitted over the ith channel. Since stochastic signal-

ing is considered, S
(i)
j in (4.1) is modeled as a random vector. Recalling that the

signals and the noise are independent, the conditional PDF of the observation

can be calculated as p
(i)
j (y) =

∫
RN p

S
(i)
j
(x) pN(i)(y−x) dx = E

{
pN(i)

(
y − S

(i)
j

)}
,

where the expectation is over the PDF of S
(i)
j . Then, the average probability of

correct decision can be expressed as

Pc =
K∑
i=1

vi

(
M−1∑
j=0

∫
Γ
(i)
j

πj E
{
pN(i)

(
y − S

(i)
j

)}
dy

)
. (4.4)

In practical systems, there is a constraint on the average power emitted from

the transmitter. Under the framework of stochastic signaling and channel switch-

ing, this constraint on the average power can be expressed in the following form

[44].

K∑
i=1

vi

(
M−1∑
j=0

πj E
{∥∥S(i)

j

∥∥2
2

})
≤ A , (4.5)

where A denotes the average power limit.

In this study, we primarily concentrate on obtaining the optimal signaling

and detection strategy in terms of the correct decision probability for an M -ary

communications system in the presence of multiple channels. The novelty of

the problem introduced here arises from the following two aspects: (i) signals

transmitted over each channel corresponding to different symbols are modeled as

random vectors subject to an overall average power constraint, (ii) no restrictions

are imposed on the noise PDFs of the channels available for switching, and (iii)

optimal detectors are designed jointly with the optimal signaling and switching

strategies. This formulation, in turn translates into a design problem over the

channel switching factors {vi}Ki=1, channel specific signal PDFs employed at the

transmitter
{
p
S
(i)
0
, p

S
(i)
1
, . . . , p

S
(i)
M−1

}K

i=1
, and the corresponding optimal detec-

tors used at the receiver
{
ϕ(i)
}K
i=1

. Stated more formally, the aim is to solve the
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following optimization problem.

max{
ϕ(i), vi, p

S
(i)
0

, p
S
(i)
1

, ... , p
S
(i)
M−1

}K

i=1

K∑
i=1

vi

(
M−1∑
j=0

∫
Γ
(i)
j

πj E
{
pN(i)

(
y − S

(i)
j

)}
dy

)

subject to
K∑
i=1

vi

(
M−1∑
j=0

πj E
{∥∥S(i)

j

∥∥2
2

})
≤ A ,

K∑
i=1

vi = 1 , vi ≥ 0 , ∀ i ∈ {1, 2, . . . , K} . (4.6)

Included in the above statement are the implicit assumptions stating that

each p
S
(i)
j
(·) should represent a PDF. Therefore, p

S
(i)
j
(x) ≥ 0 , ∀x ∈ RN , and∫

RN p
S
(i)
j
(x) dx = 1 are required ∀ j ∈ {0, 1, . . . ,M − 1} and ∀ i ∈ {1, . . . , K}.

The signals for all the M symbols that are transmitted over channel i

can be expressed as the elements of a random vector as follows: S(i) ,[
S
(i)
0 S

(i)
1 . . . S

(i)
M−1

]
∈ RMN , where S

(i)
j ’s are N -dimensional row vectors ∀j ∈

{0, 1, . . . ,M − 1} . More explicitly, each realization of S(i) represents a signal

constellation for M -ary symbol transmission in an N -dimensional space. Then,

the optimization problem in (4.6) can be expressed in a more compact form as

follows:

max
{ϕ(i), vi, pS(i)}K

i=1

K∑
i=1

vi E
{
Gi(S

(i))
}

subject to
K∑
i=1

vi E
{
H(S(i))

}
≤ A ,

K∑
i=1

vi = 1 , vi ≥ 0 , ∀ i ∈ {1, 2, . . . , K} ,

(4.7)

where Gi(S
(i)) =

∑M−1
j=0

∫
Γ
(i)
j
πj pN(i)

(
y − S

(i)
j

)
dy, H(S(i)) =

∑M−1
j=0 πj

∥∥S(i)
j

∥∥2
2
,

and each expectation is taken with respect to pS(i)(·), which denotes the PDF of

the signal constellation employed for symbol transmission over channel i. Specif-

ically, Gi(s
(i)) represents the probability of correct decision when the signal con-

stellation represented by the deterministic vector s(i) is used for the transmission

of M symbols over the additive noise channel i and the corresponding detec-

tor ϕ(i) is employed at the receiver. Then, E{Gi(S
(i))} can be interpreted as
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the probability of correct decision for a generic stochastic signaling scheme over

channel i. The exact number of signal constellations employed by this scheme

is determined by the number of distinct values that the random vector S(i) can

take. The expression for H(·) is the same irrespective of which channel is used,

and an explicit reference to the channel number as in the subscript of Gi(·) is

not necessary.

Let P†
c denote the maximum average probability of correct decision obtained

as the solution of the optimization problem in (4.7). To provide a simpler for-

mulation of this problem, an upper bound on P†
c will be derived first, and then

the achievability of that bound will be investigated.

Suppose that G(x) denotes the maximum of the probabilities of correct

decision when the deterministic signal constellation x is used for the trans-

mission of M symbols over the additive noise channels i = 1, 2, . . . , K and

the corresponding detectors for all K channels are employed at the receiver.

That is, G(x) = max {Gi(x) : i = 1, 2, . . . , K and x ∈ RMN
}
, from which

G(x) ≥ Gi(x) follows ∀ i ∈ {1, 2, . . . , K} and ∀x ∈ RMN . This inequality

can be applied to the objective function in (4.7) to obtain a new optimization

problem that provides an upper bound on the solution of the optimization prob-

lem in (4.7) as follows.

max
{ϕ(i), vi, pS(i)}K

i=1

K∑
i=1

vi E
{
G(S(i))

}
subject to

K∑
i=1

vi E
{
H(S(i))

}
≤ A ,

K∑
i=1

vi = 1 , vi ≥ 0 , ∀ i ∈ {1, 2, . . . , K} ,

(4.8)

where the expectations are taken with respect to pS(i)(·)’s. Note that by replacing

Gi(S
(i)) with G(S(i)), the reference to individual channels inside the expectation

operator is dropped which will prove useful in the foregoing analysis.
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Let P⋆
c denote the maximum average probability of correct decision ob-

tained as the solution to the optimization problem in (4.8). From the def-

inition of function G(·), P⋆
c ≥ P†

c is always satisfied. In order to achieve

further simplification of the problem in (4.8), define pS̆(s̆) ,
∑K

i=1 vi pS(i)(s̆) ,

where s̆ , [ s̆0 s̆1 · · · s̆M−1] ∈ RMN , and s̆j’s are N -dimensional row vectors

∀j ∈ {0, 1, . . . ,M − 1} . Since
∑K

i=1 vi = 1 , vi ≥ 0 ∀i , and pS(i)(·)’s are valid

PDFs on RMN , pS̆(s̆) satisfies the conditions to be a PDF. Then, the optimization

problem in (4.8) can be written in the following equivalent form.

max
pS̆,{ϕ(i)}K

i=1

E{G(S̆)} subject to E{H(S̆)} ≤ A , (4.9)

where G(s̆) = max
{
Gi(s̆) : i = 1, 2, . . . , K and s̆ ∈ RMN

}
, and the expecta-

tions are taken with respect to pS̆(·), which denotes the PDF of the signal con-

stellation employed for transmission of symbols {0, 1, . . . ,M − 1} .

In (4.9), G(s̆) represents the maximum of the probabilities of correct decision

when the deterministic signal constellation s̆ is used for the transmission of M

symbols over the additive noise channels i = 1, 2, . . . , K and the corresponding

detectors are employed at the receiver. Then, E{G(S̆)} can be interpreted as a

randomization among channels with respect to the PDF pS̆(·), where the prob-

ability of correct decision corresponding to each component of pS̆ (i.e., for each

signal constellation s̆ in the support of pS̆) is maximized by transmitting it over

the most favorable channel (i.e., the channel with the highest probability of cor-

rect decision for the given signal constellation s̆), and altogether they maximize

the average probability of correct decision.

Optimization problems in the form of (4.9) have been investigated in various

studies in the literature [4–9, 11, 12, 37, 65]. Assume that Gi(s) in (4.7) is

a continuous function ∀ i ∈ {1, 2, . . . , K} and a ≼ s ≼ b where a and b are

finite real vectors in RMN . Then, G(s) = max {Gi(s) : i = 1, 2, . . . , K} is also

continuous on [a, b], and the optimal solution of (4.9) can be represented by a

randomization of at most two signal constellations as a result of Carathéodory’s
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theorem [54]; that is, popt
S̆

(s̆) = λ δ(s̆ − s1) + (1 − λ) δ(s̆ − s2). Therefore, the

problem in (4.9) can be solved over such signal PDFs resulting in the following

optimization problem.

max{
λ, s1, s2,{ϕ(i)}K

i=1

} λG(s1) + (1− λ)G(s2)

subject to λH(s1) + (1− λ)H(s2) ≤ A , λ ∈ [0, 1] (4.10)

where G(sk) = max
{
Gi(sk) : Gi(sk) =

∑M−1
j=0

∫
Γ
(i)
j
πj pN(i) (y − sk,j) dy and

i = 1, 2, . . . , K
}
, H(sk) =

∑M−1
j=0 πj

∥∥sk,j∥∥22, and sk = [ sk,0 sk,1 · · · sk,M−1] ∈

RMN with sk,j denoting the N -dimensional vector representing the jth symbol in

constellation k. Therefore, optimal performance can be achieved by randomizing

between at most two signal constellations, s1 and s2. From (4.10), it is deduced

that the objective function is maximized under the specified constraints by either

one of the following strategies:

1. transmitting exclusively over a single channel via deterministic signaling,

i.e., λ ∈ {0, 1},

2. randomizing (time sharing) between two signal constellations over a single

channel, i.e., λ ∈ (0, 1) and arg max
i∈{1, 2, ... ,K}

Gi(s1) = arg max
i∈{1, 2, ... ,K}

Gi(s2),

3. switching (time sharing) between two channels and deterministic signaling

over each channel, i.e., λ ∈ (0, 1) and arg max
i∈{1, 2, ... ,K}

Gi(s1) ̸= arg max
i∈{1, 2, ... ,K}

Gi(s2).

Three distinct cases mentioned above can also be grouped under two overlapping

cases as follows:

1. randomizing between at most two signal constellations over a single chan-

nel,

2. switching between at most two channels and deterministic signaling over

each channel.
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It is noted that randomizing between at most two signal constellations over

a single channel covers deterministic signaling since the former reduces to the

latter for λ ∈ {0, 1}. Similarly, switching between at most two channels and

deterministic signaling over each channel also reduces to deterministic signaling

over a single channel when λ ∈ {0, 1}. This form is introduced because it provides

an ease of notation in the following analysis.

The last step in the simplification of the optimization problem in (4.10) comes

from an observation about the structure of optimal detectors. For a given chan-

nel i and the corresponding signaling scheme over the channel (deterministic or

randomization between two signal constellations), the conditional probability of

the observation y given that symbol j is transmitted can be expressed as

p
(i)
j (y) = E

{
pN(i)(y − S

(i)
j )
}

=


pN(i)

(
y − s

(i)
j

)
, if deterministic

λ pN(i)

(
y − s

(i)
1,j

)
+ (1− λ) pN(i)

(
y − s

(i)
2,j

)
, if randomized

.

(4.11)

When deciding among M symbols based on observation y at detector i, the MAP

decision rule selects symbol j if j = arg max
l∈{0, 1, ... ,M−1}

πl p
(i)
l (y) , and it maximizes the

probability of correct decision [44]. Therefore, it is not necessary to search over

all decision rules in (4.10); only the MAP decision rule should be determined for

the detector of each channel and its corresponding probability of correct decision

should be considered. The probability of correct decision for a generic decision

rule is given in (4.3). Using the decision regions corresponding to the MAP

detector, i.e., Γ
(i)
j = {y ∈ RN | πj p

(i)
j (y) ≥ πl p

(i)
l (y) , ∀l ̸= j}, the average
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probability of correct decision for ith channel becomes

P
(i)
c,MAP =

∫
RN

max
j ∈{0, 1, ... ,M−1}

{
πj p

(i)
j (y)

}
dy

=

∫
RN

max
j ∈{0, 1, ... ,M−1}

{
πj E

{
pN(i)

(
y − S

(i)
j

)}}
dy

=



∫
RN

max
j ∈{0, 1, ... ,M−1}

{
πj pN(i)

(
y − s

(i)
j

)}
dy, if deterministic∫

RN

max
j ∈{0, 1, ... ,M−1}

{
πj

(
λ pN(i)

(
y − s

(i)
1,j

)
+ (1− λ) pN(i)

(
y − s

(i)
2,j

))}
dy, if randomized

(4.12)

Below, more explicit forms of the optimization problem stated in (4.10) are

given for all possible scenarios mentioned previously.

1. Transmitting exclusively over a single channel via deterministic

signaling:

In this case, a single channel is utilized exclusively, and the transmitted signal

for each symbol is deterministic, i.e., a fixed signal constellation is employed for

symbol transmission over the channel. Without loss of generality, channel i is

considered. The optimization problem in (4.10) becomes

max
{s(i), ϕ(i)}

M−1∑
j=0

∫
Γ
(i)
j

πj pN(i)

(
y − s

(i)
j

)
dy subject to

M−1∑
j=0

πj

∥∥s(i)j

∥∥2
2

≤ A .

(4.13)

Using the result given in (4.12) for the deterministic case, the equivalent opti-

mization problem can be written as follows.

max
s(i)

∫
RN

max
j ∈{0, 1, ... ,M−1}

{
πj pN(i)

(
y − s

(i)
j

)}
dy subject to

M−1∑
j=0

πj

∥∥s(i)j

∥∥2
2
≤ A

(4.14)

2. Randomizing (time sharing) between at most two signal constella-

tions over a single channel:
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Similarly to the previous case, the transmission occurs over a single channel exclu-

sively, but in this case the transmitted signal for each symbol is a randomization

between at most two different signal vectors. Without loss of generality, channel

i is considered. The optimization problem in (4.10) is expressed as follows.

max{
λ, s

(i)
1 , s

(i)
2 , ϕ(i)

} λGi(s
(i)
1 ) + (1− λ)Gi(s

(i)
2 )

subject to λH(s
(i)
1 ) + (1− λ)H(s

(i)
2 ) ≤ A , λ ∈ [0, 1] (4.15)

where Gi(s
(i)
k ) =

∑M−1
j=0

∫
Γ
(i)
j
πj pN(i)(y−s

(i)
k,j) dy , H(sk) =

∑M−1
j=0 πj

∥∥s(i)k,j

∥∥2
2
, and

k ∈ {1, 2}. As stated earlier, it is assumed that a single detector is employed

for each channel at the receiver. Using the result for randomized signaling case

given in (4.12), the equivalent optimization problem can be written as

max{
λ, s

(i)
1 , s

(i)
2

}
∫
RN

max
j ∈{0, 1, ... ,M−1}

{
πj p

(i)
j (y)

}
dy

subject to λ

(
M−1∑
j=0

πj

∥∥s(i)1,j

∥∥2
2

)
+ (1− λ)

(
M−1∑
j=0

πj

∥∥s(i)2,j

∥∥2
2

)
≤ A , λ ∈ [0, 1]

(4.16)

where p
(i)
j (y) = λ pN(i)

(
y − s

(i)
1,j

)
+ (1 − λ) pN(i)

(
y − s

(i)
2,j

)
. It is recalled that the

optimization problem in (4.16) reduces to that of (4.14) when λ ∈ {0, 1}.

3. Switching (time sharing) between at most two channels and deter-

ministic signaling over each channel:

In this case, optimum performance is investigated while transmitting over at

most two channels and the transmission over each channel is deterministic, i.e., a

fixed signal constellation is employed for symbol transmission over each channel

but the channels are switched in time. Without loss of generality, channels i and

l are considered (i ̸= l and i , l ∈ {1, 2, . . . , K}). The optimization problem in

(4.10) takes the following form.

max
{λ, s(i), s(l), ϕ(i), ϕ(l)}

λGi(s
(i)) + (1− λ)Gl(s

(l))

subject to λH(s(i)) + (1− λ)H(s(l)) ≤ A , λ ∈ [0, 1] (4.17)
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where Gi(s
(i)) =

∑M−1
j=0

∫
Γ
(i)
j
πj pN(i)(y − s

(i)
j ) dy, H(s(i)) =

∑M−1
j=0 πj

∥∥s(i)j

∥∥2
2
,

Gl(s
(l)) and H(s(l)) are defined similarly by replacing i with l in the preceding

equations. Since deterministic signaling is employed in each channel, the result

given in (4.12) for the deterministic case should be applied for each channel.

Then, an equivalent optimization problem can be written as

max
{λ, s(i), s(l)}

λGi,MAP(s
(i)) + (1− λ)Gl,MAP(s

(l))

subject to λH(s(i)) + (1− λ)H(s(l)) ≤ A , λ ∈ [0, 1] (4.18)

where Gi,MAP(s
(i)) =

∫
RN max

j ∈{0, 1, ... ,M−1}

{
πj pN(i)(y − s

(i)
j )
}

dy, H(s(i)) =∑M−1
j=0 πj

∥∥s(i)j

∥∥2
2
, Gl(s

(l)) and H(s(l)) are defined similarly by replacing i with

l in the respective equations.

It is noted that the optimization space is considerably reduced in (4.14),

(4.16) and (4.18) compared to those in (4.13), (4.15) and (4.17), respectively

since there is no need to search over the detectors in (4.14), (4.16) and (4.18).

In the rest of the analysis, only the second and third cases will be investigated

since they cover deterministic signaling over a single channel as a special case.

In the view of the above analysis, the solution of the optimization problem in

(4.10) can be decomposed into two parts. First, randomizing between at most

two signal constellations over a single channel is considered. Let P
(i)
c,Opt be the

solution of the optimization problem in (4.16) for ith channel; that is, P
(i)
c,Opt de-

notes the maximum average probability of correct decision that can be achieved

by stochastic signaling over channel i under the average power constraint. Sec-

ondly, switching between at most two channels with deterministic signaling over

each channel is considered. Let P
(i, l)
c,Opt be the solution of the optimization problem

in (4.18) for channels i and l; that is, P
(i, l)
c,Opt denotes the maximum average prob-

ability of correct decision that can be achieved by switching between channels i

and l under the average power constraint. Then, the solution of the optimization

problem in (4.10) can be obtained by solving the following set of optimization
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problems and computing their maximum.

PStoc
c = max

{
P
(i)
c,Opt : i ∈ {1, 2, . . . , K}

}
(4.19)

PCS
c = max

{
P
(i, l)
c,Opt : i ∈ {1, 2, . . . , K}, l ∈ {1, 2, . . . , K}, and i < l

}
(4.20)

P⋆
c = max

{
PStoc

c , PCS
c

}
(4.21)

where the superscript Stoc denotes stochastic signaling over a single channel and

CS abbreviates channel switching. Note that the preceding results are obtained

without assuming any specific form on the noise PDFs pN(i)’s of the channels

present in the communications system. For example, when the noise PDFs on

all the channels are different, the solution of the optimization problem is given

by (4.21) without any further simplifications. Namely, K(K + 1)/2 optimization

problems must be solved in total to obtain the optimal set of parameters and the

resulting performance score. In the cases where some channels share the same

noise PDF, the results are still valid but the optimization sets given in (4.19)

and (4.20) over which the maximum values are computed can be refined to avoid

repeated computations of the same expressions.2

The following proposition states that the expressions in (4.19)-(4.21) provides

the solution of the generic problem in (4.7).

Proposition 4.1.1. The maximum average probabilities of correct decision

achieved by the solutions of the optimization problems in (4.7) and (4.21) are

equal, i.e., P†
c = P⋆

c.

Proof: First, consider the optimization problem in (4.7) when K = 2 chan-

nels are used, and deterministic signaling is employed for each channel, i.e.,

pS(1)(s(1)) = δ(s(1) − s1) and pS(2)(s(2)) = δ(s(2) − s2) . Suppose also that

2Detector randomization as discussed in [6, 7] can also be analyzed using our framework.

Specifically, it can be modeled by assuming that some channels have identical noise distribu-

tions. That is, each channel appears in the system model with a certain multiplicity.
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the symbols transmitted over each channel are decoded using the MAP de-

tector corresponding to that channel. In that case, (4.7) reduces to the opti-

mization problem in (4.18); hence, (4.7) covers (4.18) as a special case. Sec-

ondly, consider the optimization problem in (4.7) when K = 1 channel is

used, and a randomization between at most two signal constellations is em-

ployed, i.e., pS(s) = λ δ(s − s1) + (1 − λ) δ(s − s2). Suppose also that a single

MAP detector is employed at the receiver. Then, (4.7) reduces to the opti-

mization problem in (4.16); hence, (4.7) covers (4.16) as a special case. Since

both (4.16) and (4.18) are special cases of (4.7) for any choice of the channels

i ∈ {1, 2, . . . , K}, l ∈ {1, 2, . . . , K} and i ̸= l, the maximum value of the ob-

jective function in (4.7) should be larger than or equal to the maximum given by

(4.21). This, in turn, implies that P†
c ≥ P⋆

c. On the other hand, the optimization

problem in (4.7) has been replaced with the upper bound given in (4.8), the

solution of which is shown to reduce to that given in (4.21); that is, P†
c ≤ P⋆

c .

Therefore, it is concluded that P†
c = P⋆

c. �

Proposition 4.1.1 implies that the solution of the original optimization prob-

lem stated in (4.7), which considers the joint optimization of switching factors

among channels, channel specific signal PDFs employed at the transmitter and

the corresponding detectors used at the receiver, can be obtained as the solu-

tion of the much simpler optimization problem specified in (4.21). Formally,

when multiple channels are available for signal transmission (i.e., K ≥ 2), it is

sufficient to either employ switching between two channels with deterministic

signaling over each channel (i.e., there is no need to employ stochastic signal-

ing over a channel to achieve the optimal solution while switching channels);

or randomize between at most two signal constellations over a single channel,

whichever results in the highest average probability of correct decision.

The solution of the optimization problem in (4.21) can be obtained via global

optimization techniques (since it is a nonlinear nonconvex optimization problem
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in general due to arbitrary noise PDFs), or a convex relaxation approach as in

[12] can be employed to obtain approximate solutions in polynomial time.

4.2 Numerical Results

In this section, numerical examples are presented to evaluate the performance

of the proposed signaling strategies in the presence of multiple channels. A

scalar binary communications system with equiprobable information symbols is

considered and the average power limit is set to A = 1. It is assumed that

K ≥ 2 channels are available between the transmitter and the receiver, and only

one of them can be used for transmission at any given time. The following four

strategies are considered for performance comparison.

Gaussian solution over the best channel: In this approach, antipodal

signals
{
−

√
A,

√
A
}
are transmitted for binary information symbols over the

most favorable channel, i.e., the one that yields the highest probability of correct

decision, and the corresponding MAP detector is employed at the receiver. Since

deterministic antipodal signaling is optimal in the presence of Gaussian noise

(not necessarily optimal for other types of noise), this approach is called Gaussian

solution over the best channel.

Optimal deterministic solution over the best channel: In this scheme,

the optimal deterministic signal constellation and the corresponding MAP de-

cision rule are obtained to maximize the probability of correct decision in the

absence of stochastic signaling and channel switching. K optimization problems

in the form of (4.14) are solved and the most favorable channel is employed for

symbol transmission.

Optimal stochastic solution over the best channel: This scheme em-

ploys a single MAP detector at the receiver and randomizes between at most
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two signal constellations. The optimization problem in (4.16) is solved for all K

channels and the most favorable channel is selected for symbol transmission as

shown in (4.19).

Optimal channel switching with deterministic signaling: In this

scheme, switching is performed between at most two channels with determin-

istic signaling over each channel. K(K−1)/2 optimization problems in the form

of (4.18) are solved and the most favorable channel pair is selected as shown in

(4.20).

It should be noted that the maximum of the last two strategies constitute the

solution to the optimal signaling and detector design problem in the presence of

multiple channels, as stated in (4.21).

In the following numerical examples, it is assumed that the channel noise is

modeled by a Gaussian mixture distribution [9, 12, 63, 64], which is represented

by

pN(i)(n) =
1√

2πσiLi

Li∑
l=1

exp

−

(
n− µ

(i)
l

)2
2σ2

i

 (4.22)

for i ∈ {1 . . . K}, where Li is the number of components in the mixture for

channel i. As noted from (4.22), the components of the Gaussian mixture noise

have the same weight 1/Li and the same variance σ2
i . For notational simplicity,

the component means of the Gaussian mixture for channel i are collected in the

vector µ(i) =
[
µ
(i)
1 . . . µ

(i)
Li

]
. Based on (4.22), the average noise power of the ith

channel can be calculated as E
{
|N(i)|2

}
= σ2

i +
1
Li
∥µ(i)∥22, where ∥µ(i)∥2 denotes

the L2 norm of vector µ(i).

First, we consider a scenario in which K ≥ 2 identical channels (i.e., channels

with the same noise PDF) are available; i.e., σi = σ, Li = L, and µ(i) = µ,

∀i ∈ {1 . . . K}, where µ = [µ1 . . . µL]. Since identical channels are considered

and at most two channels are required for the optimum solution as discussed in
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Figure 4.2: Average probability of error versus A/σ2 for various strategies, where
L = 3 and µ = [−0.9 0 0.9] for the Gaussian mixture noise.

Section 4.1, K can be any number that is larger than or equal to 2. Hence, the

results in this part are valid for all K ≥ 2. In Figure 4.2, the average proba-

bilities of error corresponding to the four strategies discussed above are plotted

versus A/σ2 for L = 3 and µ = [−0.9 0 0.9]. From the figure, it is observed that

the Gaussian solution has the worst performance among all the approaches as

expected since it is optimized for Gaussian noise and is not expected to achieve

good performance in the presence of multimodal channel noise. When optimal

deterministic signaling is employed, significant gains can be achieved over the

Gaussian solution in this example. In addition, further improvements are pos-

sible when stochastic signaling is used instead of deterministic signaling. How-

ever, the best performance is achieved when switching is performed between two

MAP detectors corresponding to two signal constellations. Since identical chan-

nels are considered in this example, channel switching can also be regarded as

100



Table 4.1: Optimal signal parameters for the scenario in Figure 4.2.

Deterministic Sig. Stochastic Signaling Channel Switching

A/σ2 (dB) s1 λ s1,1 s2,1 λ s
(1)
1 s

(2)
1

10 1 N/A 1 1 0.1533 0.7271 1.0418
15 0.7239 0.7885 0.7160 1.6783 0.4492 0.7060 1.1870
20 0.6904 0.7650 0.6894 1.6456 0.4254 0.6880 1.1790
25 0.6799 0.7482 0.6798 1.6120 0.3843 0.6796 1.1558

detector randomization via time-sharing for this scenario [6]. Furthermore, the

performance of detector randomization is guaranteed to exceed that of stochastic

signaling in the case of identical channels, which is also evident from Figure 4.2.3

In order to further investigate the results in Figure 4.2, the parameters for

the proposed strategies are presented in Table 4.1 for some values of A/σ2. Due

to the symmetry of the Gaussian mixture noise, antipodal signaling is employed

for binary communications. More explicitly, for optimal deterministic signal-

ing, s0 and s1 denote the signals transmitted for information symbols 0 and

1, respectively, and we have s0 = −s1. For optimal stochastic signaling, the

optimal signal for information symbol i ∈ {0, 1} is expressed in the form of

pSi
(s) = λ δ(s−s1,i)+(1−λ) δ(s−s2,i) with s1,0 = −s1,1 and s2,0 = −s2,1. Finally,

the optimal channel switching solution employs the signal pair
{
−s

(1)
1 , s

(1)
1

}
and the corresponding MAP detector with probability λ, and the signal pair{
−s

(2)
1 , s

(2)
1

}
and the corresponding MAP detector with probability 1−λ . From

Table 4.1, it is observed that all the solutions converge to the Gaussian solution

as the noise variance increases. This is due to the fact that the Gaussian mixture

noise approximates a unimodal PDF at high values of the variance for which

the Gaussian solution is optimal. However, as the noise variance decreases (i.e.,

A/σ2 increases), the multimodal nature of the noise PDF prevails and the best

performance is achieved by the optimal channel switching solution.

3Additional examples are obtained for µ = [−0.9 − 0.2 0.2 0.9], µ = [−0.9 − 0.2 0 0.2 0.9],

and µ = [−1.2 − 0.6 − 0.1 0.1 0.6 1.2] as well, and similar observations to those for Figure 4.2

are made. The resulting figures are not presented since they are quite similar to Figure 4.2.
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The results depicted in Figure 4.2 and Table 4.1 can also be verified by

plotting the error probability of the optimal MAP detector as a function of

the signal power in the presence of deterministic antipodal signaling, i.e., s1 =

−s0 = s. This is shown in Figure 4.3 for the channel characterized by the

parameters L = 3, µ = [−0.9 0 0.9] and A/σ2 = 15 dB, where A = 1 as specified

before. Due to multimodal noise, the error probability is a nonmonotonic and

nonconvex function of the signal power [5, 7]. From Figure 4.3, it is seen that the

optimal deterministic solution is obtained as s1 = −s0 =
√
0.524 = 0.7239, which

corresponds to the minimum value (0.0948) of the error probability curve for s2 ≤

1. The best performance is achieved by switching between two power levels 0.4984

and 1.409 using the corresponding antipodal signal pairs {−0.7060, 0.7060} and

{−1.1870, 1.1870}, which are in compliance with Table 4.1. Also, the switching

factor λ can be calculated based on the average power limit, A = 1, as follows:

0.4984λ + 1.409(1 − λ) = 1, which yields λ = 0.4492 as in Table 4.1. It is

observed from Figure 4.3 that switching between two MAP detectors can reduce

the average probability of error down to nearly 0.05, which is indicated by the

red circle in the figure.

Next, we consider a scenario in which all the channels have distinct noise

PDFs. In this case, the best performance can be achieved by either the optimal

channel switching with deterministic signaling approach or the optimal stochastic

solution over the best channel approach. For the Gaussian mixture noise model

in (4.22), it is assumed that σi = σ and Li = L, ∀i ∈ {1, . . . , K}, and that the

component means of the Gaussian mixture are chosen as

µ(i) =
√
E

vi

∥vi∥2
(4.23)

for i = 1, . . . , K, where E is a constant and vi’s are L-dimensional distinct

vectors. It is noted that ∥µ(i)∥22 = E. Hence, the average noise power is the same

for all the channels. Namely, E
{
|N(i)|2

}
= σ2+E

L
, ∀i ∈ {1, . . . , K}. In Figure 4.4,

the average probabilities of error for the four strategies are plotted versus A/σ2 for
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Figure 4.3: Error probability versus signal power s2 for the channel characterized
by the parameters L = 3 and µ = [−0.9 0 0.9] and A/σ2 = 15 dB (cf. Figure 4.2
and Table 4.1).

K = 3, v1 = [−3 −2 0 2 3], v2 = [−4 −3 0 3 4], v3 = [−5 −3 0 3 5], and E = 3.

From Figure 4.4, it is concluded that the optimal channel switching strategy

achieves the lowest average probability of error and the Gaussian solution has

the worst performance over the whole range of A/σ2 values.

The optimal parameters of the strategies in Figure 4.4 are shown for some

values of A/σ2 in Table 4.2. For the Gaussian solution and the optimal deter-

ministic solution, the channel that results in the lowest probability of error is

indicated in the first column of the respective area in the table and the second

column specifies the scalar signal value employed for the transmission of informa-

tion symbol 1. Again, antipodal signals are considered for symbol 0 and symbol

1. It is observed that either channel 2 or channel 3 is employed for these so-

lutions depending on the noise level. For the optimal stochastic solution, the
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Figure 4.4: Average probability of error versus A/σ2 for various approaches,
where K = 3, v1 = [−3 − 2 0 2 3], v2 = [−4 − 3 0 3 4], v3 = [−5 − 3 0 3 5],
and E = 3 (see (4.23)).

same notation is employed as in Table 4.1 together with the channel index em-

ployed for communications. In the case of optimal channel switching, Table 4.2

shows the two channels between which switching is performed (the “X” mark

indicates that the corresponding channel is not utilized). As an example, for

A/σ2 = 20 dB in Figure 4.4, the optimal channel switching strategy transmits

over channel 1 using the constellation {−1.2108, 1.2108} with probability 0.5614

(i.e., 56.14% of the time), and transmits over channel 2 using the constellation

{−0.6353, 0.6353} with probability 0.4386. Since the average noise power is

the same for all channels, the optimal parameters for each strategy are deter-

mined by the variance and the means of the Gaussian mixture components. As

A/σ2 increases, the overlap between the class conditional PDFs corresponding
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Table 4.2: Optimal signal parameters for the scenario in Figure 4.4.

Gaussian solution Deterministic Sig. Stochastic Signaling Channel Switching

A/σ2 (dB) Channel s1 Channel s1 Channel λ s1,1 s2,1 λ s
(1)
1 s

(2)
1 s

(3)
1

10 2 1 2 1 2 N/A 1 1 0.8450 1.0601 0.5697 X
15 2 1 2 1 2 0.0502 1.0078 0.9996 0.5642 1.202 0.6509 X
20 3 1 2 0.6405 2 0.7547 0.6381 1.6805 0.5614 1.2108 0.6353 X
25 3 1 2 0.6213 2 0.7348 0.6210 1.6439 0.6023 1.1848 0.6206 X
30 3 1 2 0.6152 2 0.7222 0.6152 1.6174 0.6369 1.1638 0.6151 X

to symbols i ∈ {0, 1} decreases and there is more room in the signal space for

performance improvement via randomized approaches.
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Figure 4.5: Error probability versus signal power s2 for the three channels when
A/σ2 = 15 dB (cf. Figure 4.4 and Table 4.2).

In order to illustrate the improvements via channel switching, Figure 4.5

presents the error probabilities of the three channels considered in Figure 4.4

and Table 4.2 as a function of the signal power in the presence of antipodal

signaling when A/σ2 = 15 dB. As shown in the figure, the optimal channel
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Figure 4.6: Average probability of error versus A/σ2
1 for various approaches,

where the first channel is characterized by the parameters K = 2, v1 = [−6 −
3 −2 2 3 6 ], E = 4 (see (4.23)), and the second channel has zero-mean Gaussian
noise with the same average power as the first channel.

switching strategy performs time sharing between Channel 1 and Channel 2

with power levels 1.445 and 0.4238 (i.e., signal constellations {−1.202, 1.202}

and {−0.6509, 0.6509}), respectively. The results are in compliance with Ta-

ble 4.2, as expected. It should also be noted that a lower average probability

of error can be achieved for the scenario in Figure 4.5 if detector randomization

is allowed for each channel; that is, if multiple detectors can be implemented

and time shared for the detection of symbols acquired over each channel. In

that case, a randomization between two constellations and the corresponding

MAP detectors over Channel 2 can result in a lower average probability of error.

Fortunately, as previously stated in Footnote 2, such scenarios can be covered

using the proposed framework in this study by considering multiple channels

with identical distributions.
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Table 4.3: Optimal signal parameters for the scenario in Figure 4.6.

Gaussian solution Deterministic sig. Stochastic Signaling Channel Switching

A/σ2
1 (dB) Channel s1 Channel s1 Channel λ s1,1 s2,1 λ s

(1)
1 s

(2)
1

15 2 1 2 1 2 N/A 1 1 0.1823 0.6683 1.0599
20 1 1 1 1 1 0.0857 0.2068 1.0439 0.9134 1.0266 0.6576
25 1 1 1 0.6963 1 0.6725 0.6964 1.4344 0.8810 0.6961 2.1951
30 1 1 1 0.7037 1 0.6378 0.7037 1.3743 0.9495 0.7037 3.2388

Finally, a scenario with just two channels is considered. The parameters of

the first channel are given by v1 = [−6 − 3 − 2 2 3 6], L1 = 6, and E = 4 (see

(4.23)). The second channel is modeled to have zero-mean Gaussian noise with

the same average power as the first one; i.e., L2 = 1, µ(2) = 0, and σ2
2 = σ2

1+
E
L1

in

(4.22). The average probabilities of error for the proposed strategies are plotted

versus A/σ2
1 in Figure 4.6. Unlike the cases in Figure 4.2 and Figure 4.4, the

best performance is achieved by stochastic signaling over the best channel in this

scenario. It should be emphasized that the possibility of an optimal solution in

the form of stochastic signaling is stated in Section 4.1 (see (4.19)-(4.21)). It is

also observed that the optimal channel switching strategy performs very closely to

the optimal deterministic signaling strategy. In other words, channel switching

does not provide significant performance improvements due to the poor error

performance of Channel 2 with respect to that of Channel 1 over the given range

of A/σ2
1 values. The optimal parameters of the strategies depicted in Figure 4.6

are presented for some values of A/σ2
1 in Table 4.3.

4.3 Concluding Remarks

Optimal signaling and detector design has been studied under an average trans-

mit power constraint for generic noise distributions in the presence of multiple

channels and stochastic signaling. It has been shown that the optimal solution

to the joint channel switching, stochastic signaling, and detector design problem
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corresponds to one of the following strategies: (i) deterministic signaling over

a single channel, (ii) randomizing (time sharing) between at most two signal

constellations over a single channel, or (iii) switching (time sharing) between

at most two channels with deterministic signaling over each channel. For all

cases, the optimal strategies employ the corresponding MAP detectors at the

receiver. Optimization problems have been formulated to obtain the parameters

of the proposed strategies. In addition, sufficient conditions have been provided

to specify whether the proposed strategy can or cannot improve the error perfor-

mance over the conventional approach, in which a single channel is employed with

deterministic signaling at the average power limit. Various numerical examples

have been presented to illustrate the theoretical results. It has been observed

that significant performance improvements can be achieved in some cases via the

proposed optimal approach in the presence of multimodal noise.
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Chapter 5

Conclusions and Future Work

In this dissertation, single-user and multiuser communications systems subject

to average power constraints have been studied. In Chapter 2, the downlink of

a multiuser communications system has been considered under the assumptions

that the transmitter can randomize among different signal constellations and a

fixed decision rule is employed at the receiver of each user. It has been shown

that the optimal strategy is to randomize among at most (K+1) different signal

constellations, where K is the number of users. Since the original optimization

problem is nonconvex, an approximate solution based on convex relaxation has

been obtained. In the case of binary symmetric signaling and employment of sign

detectors at the receiver of each user, the maximum improvement ratio achieved

via the proposed approach compared to the conventional approach has been cal-

culated in the interference limited scenario as K. Sufficient conditions have been

provided for the maximum and minimum improvement ratios. In Chapter 3,

the scenario in Chapter 2 has been reconsidered under the assumption that each

user has Nd detectors and the receiver can switch among them according to some

probability distribution. In that scenario, the objective has been the joint op-

timization of signal constellations, detector randomization factors and detectors

under an average power constraint. It has been noted that the power is limited
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in any bit duration as opposed to the previous scenario, in which the time aver-

age power constraint is considered. The conditions under which the maximum

and minimum improvement ratios are achieved have been provided. It has been

shown that the optimal detector randomization approach has a lower bound, and

a simple solution to achieve that bound has been presented in the case of equal

crosscorrelations and noise powers. The extensions to M -ary communications

systems and uplink scenarios have been discussed for both scenarios in Chapters

2 and 3.

In Chapter 4, single user systems have been considered in the presence of mul-

tiple channels where each channel can have any arbitrary noise PDF. It has been

assumed that at any given time only one channel can be used for transmission

and the receiver knows which channel is in use. Stochastic signaling has been con-

sidered at the transmitter for each channel. In other words, the two approaches,

stochastic signaling and channel switching, have been considered jointly for sin-

gle user M -ary communications systems subject to an average power constraint.

The objective has been to jointly optimize stochastic signals, channel switching

factors, and detectors to minimize the average probability of error. It has been

shown that the optimal solution is to randomize among two distinct signal levels

over the same channel (stochastic signaling) or to switch among two channels

with deterministic signaling over each channel (channel switching). Therefore, it

has been concluded that considering the two approaches jointly does not provide

any further improvement.

For the first part of this dissertation, a future work can be to consider the

downlink of a multiuser communications system in block fading channels. For the

second part of the dissertation, a possible future work is to study a multichannel

scenario, where each channel has a transmission cost and the objective is to

minimize the average transmission cost under average power and average error

probability constraints.

110



Bibliography

[1] B. Dulek, M. E. Tutay, S. Gezici, and P. K. Varshney, “Optimal signal-

ing and detector design for M-ary communication systems in the pres-

ence of multiple additive noise channels,” Digital Signal Processing, DOI:

10.1016/j.dsp.2013.10.012, 2014.

[2] M. Azizoglu, “Convexity properties in binary detection problems,” IEEE

Trans. Inform. Theory, vol. 42, no. 4, pp. 1316–1321, July 1996.

[3] S. Loyka, V. Kostina, and F. Gagnon, “Error rates of the maximum-

likelihood detector for arbitrary constellations: Convex/concave behavior

and applications,” IEEE Trans. Information Theory, vol. 56, no. 4, pp.

1948–1960, April 2010.

[4] C. Goken, S. Gezici, and O. Arikan, “Optimal stochastic signaling for power-

constrained binary communications systems,” IEEE Trans. Wireless Com-

mun., vol. 9, no. 12, pp. 3650–3661, Dec. 2010.

[5] ——, “Optimal signaling and detector design for power-constrained binary

communications systems over non-Gaussian channels,” IEEE Commun. Let-

ters, vol. 14, no. 2, pp. 100–102, Feb. 2010.

[6] B. Dulek and S. Gezici, “Detector randomization and stochastic signaling

for minimum probability of error receivers,” IEEE Trans. Commun., vol. 60,

no. 4, pp. 923–928, Apr. 2012.

111



[7] A. Patel and B. Kosko, “Optimal noise benefits in Neyman-Pearson

and inequality-constrained signal detection,” IEEE Trans. Sig. Processing,

vol. 57, no. 5, pp. 1655–1669, May 2009.

[8] H. Chen, P. K. Varshney, S. M. Kay, and J. H. Michels, “Theory of the

stochastic resonance effect in signal detection: Part II–Variable detectors,”

IEEE Trans. Sig. Processing, vol. 56, no. 10, pp. 5031–5041, Oct. 2007.

[9] ——, “Theory of the stochastic resonance effect in signal detection: Part I–

Fixed detectors,” IEEE Trans. Sig. Processing, vol. 55, no. 7, pp. 3172–3184,

July 2007.

[10] H. Chen, P. K. Varshney, and J. H. Michels, “Noise enhanced parameter

estimation,” IEEE Trans. Sig. Processing, vol. 56, no. 10, pp. 5074–5081,

Oct. 2008.

[11] S. Bayram and S. Gezici, “Noise-enhanced M -ary hypothesis-testing in the

minimax framework,” in Proc. International Conference on Signal Process-

ing and Commun. Systems, Omaha, Nebraska, Sep. 2009, pp. 31–36.

[12] S. Bayram, S. Gezici, and H. V. Poor, “Noise enhanced hypothesis-testing

in the restricted Bayesian framework,” IEEE Trans. Sig. Processing, vol. 58,

no. 8, pp. 3972–3989, Aug. 2010.

[13] M. D. McDonnell, “Is electrical noise useful?” Proceedings of the IEEE,

vol. 99, no. 2, pp. 242–246, Feb. 2011.

[14] G. Guo, M. Mandal, and Y. Jing, “A robust detector of known signal in

non-Gaussian noise using threshold systems,” Signal Processing, vol. 92, pp.

2676–2688, 2012.

[15] E. G. Larsson, “Improving the frame-error-rate of spatial multiplexing in

block fading by randomly rotating the signal constellation,” IEEE Commun.

Letters, vol. 8, no. 8, pp. 514–516, Aug. 2004.

112



[16] ——, “Constellation randomization (CoRa) for outage performance im-

provement on MIMO channels,” in IEEE Global Telecommunications Con-

ference, vol. 1, Nov.-Dec. 2004, pp. 386–390.

[17] Y. Li, C. N. Georghiades, and G. Huang, “Transmit diversity over quasi-

static fading channels using multiple antennas and random signal mapping,”

IEEE Trans. Commun., vol. 51, no. 11, pp. 1918–1926, Nov. 2003.

[18] C. Lamy and J. Boutros, “On random rotations diversity and minimum

MSE decoding of lattices,” IEEE Trans. Information Theory, vol. 46, pp.

1584–1589, July 2000.

[19] A. Hiroike, F. Adachi, and N. Nakajima, “Combined effects of phase sweep-

ing transmitter diversity and channel coding,” IEEE Trans. Vehicular Tech.,

vol. 41, pp. 170–176, May 1992.

[20] X. Ma and G. B. Giannakis, “Space-time-multipath coding using digital

phase sweeping,” in IEEE Global Communications Conference, vol. 1, Nov.

2002, pp. 384–388.

[21] S. Verdu, Multiuser Detection. 1st ed. Cambridge, UK: Cambridge Univer-

sity Press, 1998.

[22] Y. Shi, R. K. Mallik, and K. B. Letaief, “Randomized power control for

two-hop interference channels,” IEEE Commun. Letters, vol. 14, no. 12, pp.

1128–1130, Dec. 2010.

[23] N. Tarhuni, M. Elmusrati, and A. Abouda, “Two-state discretized transmit

power control for ad-hoc sensor networks,” in 3rd International Congress

on Ultra Modern Telecommunications and Control Systems and Workshops

(ICUMT), Oct. 2011, pp. 1–6.

[24] T.-S. Kim and S.-L. Kim, “Random power control in wireless ad hoc net-

works,” IEEE Commun. Letters, vol. 9, no. 12, pp. 1046–1048, Dec. 2005.

113



[25] M. Elmusrati, N. Tarhuni, and R. Jantti, “Performance analysis of random

uniform power allocation for wireless networks in Rayleigh fading channels,”

Eur. Trans. Telecomms., vol. 20, pp. 457–462, 2009.

[26] ——, “Random power control for uncorrelated Rayleigh fading channels,” in

IEEE International Conference on Signal Processing and Communications

(ICSPC), Nov. 2007, pp. 360–363.

[27] Y. Zhu, Y. Xu, S. Guan, and J. He, “Connectivity analysis of random power

control in wireless sensor networks,” in 12th IEEE International Conference

on Communication Technology (ICCT), Nov. 2010, pp. 1248–1251.

[28] D. M. Novakovic and M. L. Dukic, “Evolution of the power control tech-

niques for DS-CDMA toward 3G wireless communication systems,” IEEE

Communications Surveys, vol. 3, no. 4, pp. 2–15, 2010.

[29] S. Koskie and Z. Gajic, “SIR-based power control algorithms wireless CDMA

networks: An overview,” Dynamics of Continuous, Discrete and Impulsive

Systems B: Applications and Algorithms, no. 10-S, p. 286, 2003.

[30] M. Chiang, P. Hande, T. Lan, and C. W. Tan, “Power control in wireless

cellular networks,” Foundations and Trends in Networking, now Publishers

Inc., 2008.

[31] Z. Han, D. Niyato, W. Saad, T. Basar, and A. Hjorungnes, Game Theory in

Wireless and Communication Networks: Theory, Models, and Applications.

Cambridge University Press, 2012.

[32] K. Akkarajitsakul, E. Hossain, D. Niyato, and D. I. Kim, “Game theoretic

approaches for multiple access in wireless networks: A Survey,” IEEE Com-

munications Surveys Tutorials, vol. 13, no. 3, pp. 372–395, Quarter 2011.

[33] S. Ulukus and R. D. Yates, “Stochastic power control for cellular radio

systems,” IEEE Transactions on Communications, vol. 46, no. 6, pp. 784–

798, 1998.

114



[34] J. Luo, S. Ulukus, and A. Ephremides, “Standard and quasi-standard

stochastic power control algorithms,” IEEE Transactions on Information

Theory, vol. 51, no. 7, pp. 2612–2624, July 2005.

[35] C. Goken, S. Gezici, and O. Arikan, “On the optimality of stochastic sig-

naling under an average power constraint,” in Proc. 48th Annual Allerton

Conference on Communication, Control, and Computing, Monticello, IL,

Sep. 29-Oct. 1 2010, pp. 1158–1164.

[36] R. K. Mallik, R. A. Scholtz, and G. P. Papavassilopoulos, “Analysis of an on-

off jamming situation as a dynamic game,” IEEE Trans. Commun, vol. 48,

no. 8, pp. 1360–1373, Aug. 2000.

[37] B. Dulek and S. Gezici, “Optimal stochastic signal design and detector ran-

domization in the Neyman-Pearson framework,” in 37th IEEE Int. Conf.

Acoustics, Speech and Signal Process. (ICASSP’12), Kyoto, Japan, March

2012.

[38] E. L. Lehmann, Testing Statistical Hypotheses, 2nd ed. New York: Chap-

man & Hall, 1986.

[39] S. M. Kay, “Noise enhanced detection as a special case of randomization,”

IEEE Sig. Processing Lett., vol. 15, pp. 709–712, 2008.

[40] Y. Ma and C. C. Chai, “Unified error probability analysis for generalized

selection combining in Nakagami fading channels,” IEEE Jour. Select. Areas

Commun., vol. 18, no. 11, pp. 2198–2210, Nov. 2000.

[41] J. A. Ritcey and M. Azizoglu, “Performance analysis of generalized selection

combining with switching constraints,” IEEE Commun. Letters, vol. 4, no. 5,

pp. 152–154, May 2000.

[42] M. E. Tutay, S. Gezici, and O. Arikan, “Optimal randomization of signal

constellations on the downlink of a multiuser DS-CDMA system,” IEEE

Trans. Wireless Commun., vol. 12, no. 10, pp. 4878–4891, 2013.

115



[43] ——, “Optimal detector randomization for multiuser communications sys-

tems,” IEEE Trans. Commun., vol. 61, no. 7, pp. 2876–2889, 2013.

[44] H. V. Poor, An Introduction to Signal Detection and Estimation. New

York: Springer-Verlag, 1994.

[45] S. A. Grandhi, J. Zander, and R. Yates, “Constrained power control,” Wire-

less Personal Communications, vol. 1, no. 4, pp. 257–270, 1995.

[46] C. W. Tan, M. Chiang, and R. Srikant, “Maximizing sum rate and mini-

mizing MSE on multiuser downlink: Optimality, fast algorithms and equiv-

alence via max-min SINR,” IEEE Trans. on Signal Proc., vol. 59, no. 12,

pp. 6127–6143, Dec. 2011.

[47] C. Yang and J. Li, “Mixed-strategy based discrete power control approach

for cognitive radios: A matrix game-theoretic framework,” in International

Conference on Future Computer and Communication, vol. 3, May 2010, pp.

V3–806–V3–810.

[48] T. Heikkinen, “A minimax game of power control in a wireless network un-

der incomplete information,” DIMACS Technical Report 99-43, Tech. Rep.,

1999.

[49] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK:

Cambridge University Press, 2004.

[50] S. Bayram and S. Gezici, “On the performance of single-threshold detectors

for binary communications in the presence of Gaussian mixture noise,” IEEE

Trans. Commun., vol. 58, no. 11, pp. 3047–3053, Nov. 2010.

[51] J.-J. Xiao and Z.-Q. Luo, “Universal decentralized detection in a bandwidth-

constrained sensor network,” IEEE Trans. on Signal Processing, vol. 53,

no. 8, pp. 2617–2624, aug. 2005.

116



[52] K. E. Parsopoulos and M. N. Vrahatis, Particle swarm optimization method

for constrained optimization problems. IOS Press, 2002, pp. 214–220, in

Intelligent Technologies–Theory and Applications: New Trends in Intelligent

Technologies.

[53] “CVX: Matlab software for disciplined convex programming, Version 1.21

(April 2011, Build 808).” [Online]. Available: http://cvxr.com/cvx

[54] R. T. Rockafellar, Convex Analysis. Princeton, NJ: Princeton University

Press, 1968.

[55] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar, Convex Analysis and Opti-

mization. Boston, MA: Athena Specific, 2003.

[56] C. C. Pugh, Real Mathematical Analysis. New York: Springer-Verlag, 2002.

[57] L. Huang and M. J. Neely, “The optimality of two prices: Maximizing rev-

enue in a stochastic network,” in Proc. 45th Annual Allerton Conference on

Communication, Control, and Computing, Monticello, IL, Sep. 2007.

[58] A. Goldsmith, Wireless Communications. Cambridge University Press,

2005.

[59] I. Kra and S. Simanca, “On circulant matrices,” Notices of the American

Mathematical Society, vol. 59, no. 3, March 2012.

[60] J. Mitola and J. Maguire, G.Q., “Cognitive radio: making software radios

more personal,” Personal Communications, IEEE, vol. 6, no. 4, pp. 13–18,

1999.

[61] S. Haykin, “Cognitive radio: brain-empowered wireless communications,”

Selected Areas in Communications, IEEE Journal on, vol. 23, no. 2, pp.

201–220, 2005.

117



[62] S. Gezici, H. Celebi, H. Poor, and H. Arslan, “Fundamental limits on time

delay estimation in dispersed spectrum cognitive radio systems,” Wireless

Communications, IEEE Transactions on, vol. 8, no. 1, pp. 78–83, 2009.

[63] V. Bhatia and B. Mulgrew, “Non-parametric likelihood based channel es-

timator for Gaussian mixture noise,” Signal Processing, vol. 87, pp. 2569–

2586, Nov. 2007.

[64] T. Erseghe, V. Cellini, and G. Dona, “On UWB impulse radio receivers

derived by modeling MAI as a Gaussian mixture process,” IEEE Trans.

Wireless Commun., vol. 7, no. 6, pp. 2388–2396, June 2008.

[65] B. Dulek and S. Gezici, “Optimal signaling and detector design for power

constrained on-off keying systems in Neyman-Pearson framework,” in Proc.

16th IEEE Wksp. Stat. Signal Process. (SSP’11), Nice, France, June 2011,

pp. 93–96.

118


