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ABSTRACT

OBSERVER BASED FRICTION CANCELLATION IN
MECHANICAL SYSTEMS

Caner Odabaş

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Ömer Morgül

September, 2014

In real life feedback control applications of mechanical systems, friction and time

delays are two important issues that might have direct effects on the performance

of systems. Hence, an adaptive nonlinear observer based friction compensation

for a special time delayed system is presented in this thesis. Considering ex-

isting delay, an available Coulomb observer is modified and closed loop system

is formed by using a Smith predictor based controller as if the process is delay

free. Implemented hierarchical feedback system structure provides two-degree of

freedom and controls both velocity and position separately. For this purpose,

controller parametrization method is used to extend Smith predictor structure

to the position control loop for different types of inputs and disturbance attenu-

ation. Simulation results demonstrate that without requiring much information

about friction force, the method can significantly improve the performance of a

control system in which it is applied.

Keywords: Time Delay Systems, Adaptive Coulomb Friction Observer, Smith

Predictor Based Controller, Hierarchical Position Control.
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ÖZET

MEKANİK SİSTEMLERDE GÖZLEMCİ TABANLI
SÜRTÜNME GİDERİMİ

Caner Odabaş

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Ömer Morgül

Eylül, 2014

Sürtünme ve zaman gecikmesi, mekanik sistemler için geri beslemeli kontrol

yapılarının gerçek hayat uygulamalarında performans üzerinde doğrudan etkili

olabilmektedir. Bu sebeple, bu tezde belirli zaman gecikmesi bulunan sistemlerde

adaptif doğrusal olmayan gözlemci tabanlı sürtünme giderme yöntemi sunulmak-

tadır. Gecikme göz önüne alınarak, varolan Coulomb gözlemcisi değiştirilmiş

ve sistemin zaman gecikmesi yokmuş gibi olabilmesi için kapalı döngü sisteminde

Smith kestirim tabanlı denetleyiciye yer verilmiştir. Uygulanan hiyerarşik kontrol

yapısı hem pozisyon hem de hızı ayrı ayrı kontrol etmeye imkan veren serbestliği

sağlamaktadır. Bu amaçla kontrolör parametrizasyonu kullanılarak farklı girdi

isteklerini takip edebilmek veya bozucu etki regülasyonu sağlayabilmek için hız

döngüsünde tasarlanan Smith kestirimi deneteyici yapısı pozisyon döngüsüne

genişletilebilir. Elde edilen sonuçlar önerilen yöntemin sürtünme hakkında çok fa-

zla bilgiye ihtiyaç duymaksızın uygulandığı sistemin performansını önemli ölçüde

geliştirdiğini göstermektedir.

Anahtar sözcükler : Zaman Gecikmeli Sistemler, Adaptif Coulomb Sürtünme

Gözlemcisi, Smith Kestirim Tabanlı Denetleyici, Hiyerarşik Pozisyon Kontrolü.
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comments and previous experience constituted fundamentals of this thesis.

I would also like to express my sincere gratitude to my dear friends Mehmet

Fatih Öndül, Emir Çağrı Ertürk, Deniz Gültek, Onur Sinan Köksaldı, Sina
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Chapter 1

INTRODUCTION

In real life applications, performance of mechanical systems and theory might

not completely overlap because of nonlinearities or imperfections of system mod-

els. While some of these mismatches are negligible, some of them might have

severe effects on the performance. For instance, they might result in performance

degradation or even instability. Existence of time delay leads system to be non-

ideal. Similarly, friction is one of the substantial nonlinearities in servo systems.

Thus, in order to satisfy desired performance criteria, one should also take into

consideration them in designing feedback control systems.

1.1 Motivation

In this thesis, there are two main objectives, position tracking for plants with

time delay and friction cancellation. Therefore, a hierarchical feedback structure

with adaptive friction observer is employed for position tracking. Due to the fact

that plant includes time delay, Smith predictor based controllers are utilized to

the feedback system aiming to make the controller design as if the process is delay

free. Thus, controller parametrization method is used to design the controller.

Furthermore, in order to compensate the negative effect of the friction, adaptive

observer is modified in order to estimate friction force in the presence of delay.

1



When estimated and real friction are equal to each other, complete cancellation

is achieved and performance of the closed loop feedback system is increased. The

general structure of studied system is depicted in Fig. 1.1

Figure 1.1: Block diagram of overall feedback system

In Fig. 1.1, P represents the plant, F represents the friction term whereas F̂

represents an estimation of the friction; v is the velocity output whereas p stands

for the position output. Furthermore, rp and rv represents position and velocity

command inputs respectively and d symbolizes the disturbance term acting on

the plant. Other than these signals, Cv is a controller which aims at stabilizing

the first (inner) loop, which may be called as velocity loop, while Cp is another

controller which aims at stabilizing the position loop.

In this system, if one aims at velocity control, the position loop should be

switched off. Similarly, if one aims at position control, then one should choose

rv = 0.

1.2 Related Work

Proposed structure contains solutions for two different problems, controller design

for delayed systems and friction cancellation. However, in the literature, generally

time delays and friction compensation are investigated separately.
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Firstly, time delay can appear very often in many systems due to transmission,

computation or mechanical lags. In such cases, time delay may result in reducing

system performance, or even cause instability. Since transport delay introduces

infinitely many poles to the characteristic equation of the closed loop transfer

function, in general it is more difficult to design a stabilizing controller for such

systems as compared with the delay free case. Especially, stability margins of the

closed loop system declines with increasing delay. PID controllers are preferred in

many control applications. However, they are not so efficient when the time delay

in system dynamics is sufficiently large. Hence, in 1957, Smith, [1], proposed a

particular controller structure employing a feedback loop inside the controller.

Therefore, although physically not the case, it is possible to remove time delay

from the characteristic equation of the closed loop system mathematically. Hence,

using proposed strategy one might design a controller as if the process is delay

free. In this case system can be considered as given in Fig. 1.2

Figure 1.2: Equivalent block diagram of Smith predictor in terms of transfer
function from input to output

Afterwards, many modifications have been proposed to this structure to meet

a set of performance and robustness. On the other hand, in [2], it is proved that

constant disturbance rejection cannot be achieved by using Smith predictor struc-

ture and steady state error cannot be avoided when there is a load change. Aiming

to handle the challenge of a system with integrator and delay, [3] introduced a

new form providing a separation between set point response and disturbance.

Nevertheless, although usage of three new parameters; k1, k2 and k3 in [3] in-

creases the performance, parameter tuning is difficult since there is no apparent

physical meaning. Another modification by [4] requires an extra feedback path
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from plant output and the model output to the controller input. Their strategy

provides fast disturbance suppression for constant disturbance.

Furthermore, robustness of Smith predictor based controllers is addressed by

some researchers since it is possible to destabilize the systems by minor changes

on the dynamics even if the Smith predictor is nominally stable. Therefore, in [5]

a geometric approach is proposed to diagnose influence of delay uncertainty on the

stability. Likewise, [6] proposes a robust tuning method for the Smith predictor

aiming to handle simultaneous uncertainties in all the parameters of the model.

Finally, [7, 8] integrate Smith predictor with internal model principle. Therefore,

controller has copies of the disturbance and reference signal generator. In this

thesis, structure of controllers is determined by the same strategy proposed in

[7, 8].

Secondly, friction force is one of the most important natural nonlinearities in

mechanical systems. Mainly, friction compensation techniques can be grouped

in two different ways, model based friction compensation and non-model based

friction compensation. In model based control, the main idea is to use a model

to predict the friction to compensate for it [9]. Although general approach to

compensation is to use various friction models, acceleration feedback method de-

scribed in [10] as a non-model based technique is perhaps one of the simplest and

most robust ways of eliminating friction. Furthermore, [11] presents an adap-

tive compensation method which does not require a structured nonlinear friction

model. In [12], local function estimation method is proposed for controlling a

certain class of nonlinear, uncertain systems. In model based control, one can

use a procedure proposed in [13] or [14] to estimate friction parameters. After

estimation, it is possible to add required torque, which eliminates the friction,

to the system. This approach is called fixed friction compensation. However,

it is essential to adapt the friction model since its parameters can change with

time due to temperature, lubricity, etc. or parameters cannot be identified be-

cause of model complexities or measurement errors [15]. Thus, [16] describes a

self-tuning controller for velocity controller. In this paper, recursive least squares

algorithm block estimating friction parameters and linear controller is used to-

gether. Likewise, passivity technique can be beneficial to design compensators

4



with guaranteed stability [17]. Then friction observer and friction compensation

method can be implemented with passivity based controllers as it is stated in

[18].

There are different kinds of observers described in the literature. For instance,

in [19], dual observer structure is utilized in order to identify LuGre friction pa-

rameters. Due to another approach, in [20], variable structure based observers

are developed for friction estimation with or without information of velocity and

sigmoidal functions are used instead of signum functions to reduce chattering.

Although it can be applied for various purposes such as independent joint con-

trol, sensorless torque control, and fault diagnosis, nonlinear disturbance observer

developed in [21]can be employed for friction compensation as well. However, in

this thesis, an adaptive Coulomb observer described in [22] is modified in order

to estimate the friction with the presence of delay in the process. Thanks to its

simple structure, it is easy to modify the observer for the systems with time delay.

Furthermore, no matter how complex it is, in most of friction models, Coulomb

friction is one of the fundamental components of friction force. Although direct

measurement of the velocity is assumed to be possible in this study, in [23], Fried-

land and Mentzelopoulou developed a combined observer for friction and velocity

in the absence of direct velocity measurement in the system using Tafazoli mod-

ification. This modification requires employment of a low-pass differentiator and

provides a better performance at the vicinity of zero velocity.

1.3 Contributions

A new Smith predictor based controller is presented in [7, 8] for a special class of

plants. Note that friction terms are not considered in [7, 8] and the delay terms

are not considered in the observer structure proposed in [22]. Motivated by the

results obtained during this study, a friction cancellation scheme for a class of

mechanical systems is proposed. Proposed friction cancellation scheme is based

on hierarchical closed loop feedback system structure formed by Smith predictor

based controllers and an adaptive friction observer similar to the one given in

5



[22]. Indeed, generalization of Friedlan-Park observer in [22] is presented and a

modification in the original observer structure is provided for mechanical systems

with time delay in order to estimate friction.

1.4 Organization of the Thesis

This thesis is organized as fallows. In Chapter 2, information on friction models is

presented. Then, in Chapter 3, analysis of proposed closed loop system is given.

Therefore, the structures of the plant and observer are defined. Furthermore,

procedures of Smith predictor based controller designs for velocity and position

control for different performance and robustness objectives are presented. Thus,

step and ramp input tracking, step, ramp and sinusoidal disturbance rejection

objectives are investigated. In Chapter 4, designed controllers’ performances

are evaluated under different scenarios. Especially, proposed hierarchical system

is tested under friction with time varying parameters and more complex friction

models rather than Coulomb friction. Finally, some concluding remarks are given

in Chapter 5.

Throughout the thesis, notation in Table1.1 will be used.
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Table 1.1: Notation used in the thesis

s Laplace variable
rp Position demand
rv Velocity demand
P Actual Plant
P0 Delay free plant
u Control Input
M Mass of the moving object
p Position of the moving obejct
v Velocity of the moving object
a Acceleration of the moving object
vs Stribeck velocity
σ0 Stiffness coefficient
σ1 Damping coefficient
zd Deflection of bristles
d Disturbance
µ Observer design exponent
ac Coulomb friction parameter in the observer
âc Estimated Coulomb friction parameter in the observer
k Observer gain
F Real friction
Fa Applied Force/Torque
Fs Coefficient of stick friction
Fv Coefficient of viscous frcition

F̂ Estimated friction
Tv(s) Closed loop transfer function including Smith predictor for velocity
T0v(s) Delay free part of Tv(s)
Tv−PI Closed loop transfer function including PI controller for velocity
T (s) Closed loop transfer function including Smith predictor for position
TPI Closed loop transfer function including PI controller for position
Cv(s) Smith predictor based velocity controller
Cp(s) Smith predictor based position controller
C0v(s) Internal controller in velocity control
C0p(s) Internal controller in position control
Cv−PI(s) PI controller for velocity loop
Cp−PI(s) PI controller for position loop
sgn(.) Signum function

7



Chapter 2

BACKGROUND

In a simple mechanical system, applied force is control input whereas position

and/or velocity is the output. Under the presence of friction, equation of motion

can be written as,

Mẍ = −F + u. (2.1)

where M represents the mass of the moving object, x is the position, F is the

friction force and u is the control input. In the absence of F , acceleration is

simply generated by applied u. However, presence of F leads to performance

degradation in the system. In model based compensation approach, in order to

overcome this phenomenon, it is necessary to use a proper model of friction.

In the literature, friction is modeled in various complexities. Actually, there

are mainly two different types of approaches, which are categorized as static

friction models and dynamic friction models. Static models, also can be referred

to as classical models, regard friction as static function of velocity [9].

Among all friction models, Coulomb friction is the most well known and sim-

plest one. Coulomb model assumes that friction opposes motion and the friction

force is independent of velocity and contact area. Therefore, it can be described

by

F = acsgn(v). (2.2)

In this equation ac simply represents the magnitude of existing friction. However,
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because of signum function in the equation, friction is undefined at zero velocity.

Therefore, stick friction concept is used to define the behavior of the system at

rest. Friction force at rest is higher than the Coulomb friction level, called stick

friction. Therefore, in order to trigger the motion, one should apply force more

than stiction level, called as break-away force. Until this certain level, friction

equals to applied force. In this case (2.2) can be re-written as,

F =


Fa if v = 0 and |Fa| < |Fs|,
Fs if v = 0 and |Fa| ≥ |Fs,
acsgn(Fa) otherwise.

(2.3)

Even in sticking regime microscopic motion occurs. This is often called pre-sliding

motion.

For most engineering applications lubrication is present in the friction inter-

face. Hence, the Coulomb friction model can be improved by adding viscous

friction. Then, (2.2) will be

F = acsgn(v) + Fvv. (2.4)

In [24], Stribeck observed that at low velocities friction decreases continuously

when velocity increases. This friction term is dominant at low velocities and called

Stribeck effect and can be formulated as

F (v) = ac + (Fs − ac)e|v/vs| + Fvv. (2.5)

In (2.5) vs, is Stribeck velocity, where the friction force is minimal. Due to the fact

that this model represents most of the key terms of existed friction, simulations

in this thesis are based on this model.

There are also more sophisticated dynamic models in the literature. One

of the most well known dynamic friction models is Dahl’s model [25]. In 1968,

Dahl developed a dynamic model for sliding and rolling friction that can be used

in simulations of control systems with friction, especially in aerospace industry.

The starting point for Dahl is modeling the stress-strain curve in classical solid

mechanics by a differential equation. In this model the friction force is a function

9



Figure 2.1: Illustrations of static friction models. a) Coulomb b)
Coulomb+Viscous c) Coulomb+Viscous+Sticktion d) Stribeck Effect

of the displacement and the sign of the velocity. In other words, it has rate

independence property. Nevertheless, it does not describe stick slip motion since

it does not capture the Stribeck effect. General form of Dahl’s friction model is,

dF

dp
= σ0

∣∣∣∣∣1− F

ac
sgn

(
dp

dt

)∣∣∣∣∣
i

sgn

(
1− F

ac
sgn

(
dp

dt

))
. (2.6)

where p is the position and i is a parameter of Dahl friction model. When

referred to in the literature the Dahl model is often simplified, using i = 1 and

(2.6) becomes
dF

dt
= σ0

(
1− F

ac
sgn

(
dp

dt

))
dp

dt
. (2.7)

Another widely used dynamic model is LuGre friction model, see [26]. In

this model, it is assumed that there is a contact between surface and rigid body

through elastic bristles. When a tangential force is applied, the bristles deflect like

springs and result in the friction force. If the force is sufficiently large randomly

10



some of the bristles deflect so much that they slip off each other. During the

motion new contacts are formed and slipped off again and again. Using this

principle, friction can be modeled as fallows,

dzd
dt

= v − σ0
|v|
g(v)

zd,

F = σ0zd + σ1(v)
dzd
dt

+ Fvv. (2.8)

In this equation, any velocity dependence can be obtained to capture Stribeck

effect by a proper choice of the function g(v) such that

g(v) =
1

σ0

(
ac + (Fs − ac)e−(v/vs)

2
)
. (2.9)

The steady-state relation between velocity and friction force for LuGre model is

Figure 2.2: The elastic bristles deflect by the amount of zd when a sufficiently
large applied force is applied

obtained when dzd
dt

= 0. In this case (2.8) becomes

F (v) = σ0g(v)sgn(v) + Fvv

= acsgn(v) + (Fs − ac)e−(v/vs)
2

+ Fvv. (2.10)

No matter how complex it is, in most of friction models, Coulomb friction is

one of the fundamental components of friction force. Hence, an adaptive Coulomb

11



observer could be utilized to estimate the friction force. In this study, an adaptive

Coulomb observer considered in [22] is modified for the systems with time delay.

Besides its simplicity, it works well enough for more complex cases and improves

the closed loop performance.
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Chapter 3

ANALYSIS OF CLOSED LOOP

FEEDBACK SYSTEM

3.1 Plant Structure

From the physics in (2.1), transfer function of the plant should include an inte-

grator. Furthermore, its velocity is inversely proportional to its mass for a fixed

input. However, generally, time delay in the system appears due to sampling,

sensor/actuator non-collocation, and signal transmission depending on the phys-

ical distance between the controller and the plant. Thus, transfer function from

input to velocity is in the form

P (s) =
1

Ms
e−Tds. (3.1)

Of course, in real systems some higher order dynamics can be occurred;

nonetheless, an input filter can be used to suppress them. Hence, simulations

are made using simple plant model in (3.1).

13



3.2 Observer Structure

In order to estimate Coulomb friction in a delay free system, an adaptive observer,

whose aim is to estimate the Coulomb friction constant , is employed. Consider

(2.1) and the controller structure given in Fig. 1.1. For simplicity, we will take

M = 1. Then, we obtain

ẋ = v, (3.2)

v̇ = −F (v, ac) + F̂ (v, âc) + u, (3.3)

where v is the velocity and F (v, ac) = acsgn(v). Note that in Fig. 1.1, we have

F̂ = F (v, âc) = âcsgn(v) and p = x. Likewise, note that in (3.3), the first term

on the right hand side is the actual Coulomb friction, the second term is the

estimated Coulomb friction which will be the output of the observer yet to be

proposed, and u is the external input, of Fig. 1.1.

To design an observer, let g(v) : R 7→ R be an appropriate differentiable

function yet to be determined. Let us propose the following observer structure

ż = g′(v)u, (3.4)

âc = z − g(v). (3.5)

Here, z is the internal state of the observer and âc is the estimation of Coulomb

friction constant. To analyze the performance of the observer given in (3.4), (3.5),

let us define the following estimation error

e = ac − âc. (3.6)

After differentiation and assuming that ac is a constant, by using (3.2)-(3.6) we

obtain:

ė = − ˙̂ac

= −ż + g′(v)v̇

= −g′(v)u+ g′(v)[F (v, âc)− F (v, ac) + u]

= −g′(v)[F (v, ac)− F (v, âc)]

= −g′(v)sgn(v)e. (3.7)
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In order to obtain a stable error dynamics, obviously we need g′(v)sgn(v) ≥ 0.

Since the graph of sgn(v) versus v is in the first and third quadrants, for this

inequality hold, the graph of g′(v) versus v should be in first and third quadrants

as well. There are a large number of functions satisfying this property. Some of

the examples are given below.

• g(v) = klog (cosh(v)) and g′(v) = ktanh(v),

Figure 3.1: Graph of g(v) = klog(cosh(v)) and g′(v) = ktanh(v) for different k
values.

• g(v) = kvtan−1(v)− 0.5klog(v2 + 1) and g′(v) = ktan−1(v),

Figure 3.2: Graph of g(v) = kvtan−1(v)− 0.5klog(v2 + 1) and g′(v) = ktan−1(v)
for different k values.
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• g(v) = kv2n and g′(v) = 2nkv2n−1, where n ∈ R+,

Figure 3.3: Graph of g(v) = kv2n and g′(v) = 2nkv2n−1 for different k and n
values.

• g(v) = k|v|µ and g′(v) = kµ|v|µ−1sgn(v) etc.

Figure 3.4: Graph of g(v) = k |v|µ and g′(v) = kµ |v|µ−1 sgn(v) for different k
and µ values.

Actually, the last choice given above with g(v) = k|v|µ results in Friedland-

Park observer in [22]. Hence, the observer given in [22] can be considered as a

special case of the observer given by (3.4), (3.5). If we rewrite (3.4) and (3.5) for

this case, we obtain

ż = kµ |v|µ−1 sgn(v)u, (3.8)
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âc = z − k |v|µ . (3.9)

and the error dynamics (3.8) becomes the following for this particular case

ė = −kµ |v|µ−1 e, (3.10)

of [22]. For a constant friction coefficient ac, the estimation error converges to

zero provided that observer gain k > 0 and exponent µ > 0 when |v| 6= 0, see

[22].Although this result is not proven in [22], by using standard methods of

Lyapunov stability analysis, it can be proven rigorously as follows:

Lemma 1 Consider the system given by (3.2)-(3.7). Assume that |v| is bounded

and that g′(v) is a noninear function whose graph versus v is in first and third

quadrant with g(v) 6= 0 and g′(v) 6= 0 for v 6= 0. Under these constraints, if

|v| ≥ α ∀t, then the error dynamics given by (3.7) is exponentially stable, i.e.

e(t) −→ 0 with an exponential decay

Proof Let v(t) be the solution of (3.2)-(3.7) and define

G(t) = g′ (v(t)) sgn (v(t)) . (3.11)

Note that G(t) ≥ 0 and since |v| ≥ α>0 ∀t, there exists a β>0 such that

G(t) ≥ β ∀t ≥ 0. (3.12)

Note that the error dynamics given by (3.7) can be written as

ė = −G(t)e. (3.13)

Let us define the following Lyapunov function

V (e) =
e2

2
. (3.14)

Differentiating (3.14) and by using the fact −G(t) ≤ −β, we obtain

V̇ = eė (3.15)

= −G(t)e2

≤ −βe2 = −2βV.
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Hence, we have

V (t) ≤ e−2βtV (0). (3.16)

and therefore for (3.14), we have

|e(t)| ≤ e−2βt |e(0)| . (3.17)

Remark 1 Although the applicability of Lemma 1 seems to be limited since it

requires that |v| ≥ α>0; nevertheless, it could be utilized in various meaningful

applications such as unit step tracking in velocity loop, ramp tracking in position

loop. Note that in these cases, it is expected that condition |v| ≥ α hold sufficiently

long period of time.

A somewhat less restrictive assumption on v(t), which could be related to be

persistency of excitation [27], could be given as follows.

Lemma 2 Let v(t) be the solution of (3.2)-(3.7) and let G(t) be given as in

(3.11). Assume that there exist some α>0 and T>0 such that the following holds∫ t+T

t
G(s) ds ≥ α, ∀t ≥ 0 (3.18)

Then for the error dynamics given by (3.7), we have e(t) −→ 0 as t −→ ∞;

moreover, the decay is exponential.

Proof Note that the solution of (3.7) is given as

e(t) = e−
∫ t
0
G(s) dse(0). (3.19)

Since the exponential term is always positive, we can rewrite (3.19) as

|e(t)| = e−
∫ t
0
G(s) ds |e(0)| . (3.20)

Let t = nT + τ for some integer n ∈ Z+ and 0<τ<T . Then we have∫ t

0
G(s) ds =

∫ nT

0
G(s) ds+

∫ nT+τ

nT
G(s) ds ≥ nα. (3.21)
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where we used the fact that G(s) ≥ 0. Using (3.21) in (3.20), we obtain:

|e(t)| ≤ e−nα |e(0)| . (3.22)

As t −→∞, we have n −→∞, hence |e(t)| −→ 0. As it can be seen from (3.22),

the decay is exponential. In fact, since n = t−τ
T

and τ < T , we have

|e(t)| ≤ eαe−
αt
T |e(0)| . (3.23)

Remark 2 For details on persistency of excitation of signals and its application

to adaptive control systems, see e.g. [27]. Note that when |v(t)| ≥ α>0, the

condition given by (3.11) also holds. On the orher hand, when the signals are in

the sinusoidal form, the condition |v(t)| ≥ α may not hold whereas (3.11) may

hold. Hence, Lemma (2) could be utilized in the sinusoidal signal tracking and/or

rejection.

It is obvious that the solution of the first order homogeneous differential equa-

tion in 3.10 is an exponential. Thus, increasing observer gain k provides a faster

convergence. However, selecting larger values of it may result in instability. More-

over, as it is stated in [22], when high gain is combined with a relatively high value

of µ, the response tends to ”ring” somewhat. According to Friedland and Park,

this can be explained by an undesired sensitivity to disturbance signal existed

in the system. Therefore, in this thesis, performance of the observer under the

presence of high disturbance is also concerned. Simulations show that changing

estimation function, performance of the system can be improved.

Unfortunately, [22] does not provide any criteria explicitly to determine values

of k and µ. Generally, choice of these design parameters is determined by simu-

lation, or on actual system. However, when desired velocity is a periodic signal,

[28] gives a guideline for convergence rate and criteria for a choice of them. As a

result, the observer performance can be improved to be faster for a proper range

of k and µ.

Lastly, note that for the delay free case, i.e. when P (s) = 1
Ms

, block diagram

of observer given by (3.4) and (3.5) can be depicted as in Fig. 3.5. However,
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when there is a delay term, i.e. P (s) = 1
Ms
e−Tds, then this observer structure

cannot be utilized as it is since as velocity output ve−Tds is obtained instead of

v. To see that clearly, it is beneficial to consider Fig. 1.2 with a plant described

by (3.1). As it can be observed from the figure, in order to estimate friction,

observer needs to input, velocity output v and control input u. However, in delay

case, if observer depicted in Fig. 3.5 is utilized, its inputs will be ve−Tds and u.

Hence, it is reasonable to modify the observer structure given above with a delay

term as in Fig. 3.6 to make inputs synchronized and estimate friction correctly.

Figure 3.5: General structure of the Coulomb observer.

Figure 3.6: Modified Coulomb observer.
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3.3 Smith Predictor Based Controller Design

for Velocity Control

In this section, design methodology described in [7, 8] is utilized to satisfy different

performance and robustness objectives. Although some examples presented here,

it is also possible to apply this methodology to obtain controllers satisfying more

complex requirements. The structure of Cv(s) is illustrated in Fig. 3.7 and

defined as

Cv(s) =
MC0v(s)

1 + C0v(s)
1−e−Tds

s

. (3.24)

Figure 3.7: Internal structure of Cv(s)

With the defined structures of Cv(s) and P (s), characteristic equation of

closed loop system is

1 + C0v(s)
1

s
= 0, (3.25)

which implies that C0v(s) must be designed to stabilize an integrator. To find

C0v(s), controller parametrization technique, whose details are given at appendix
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part, is utilized. To make the design process simpler, inverse of the mass cascaded

after controller block and controller parametrization is implemented for the plant

with M = 1. Note that Q(s) in the following denotes a proper and stable transfer

function which is utilized in controller parametrization. For details, see appendix

or [7, 8]

• If the aim is to track the step input without any disturbance in the velocity

loop, then by using Q(s) = 0 particular choice would be

C0v(s) = Kv, (3.26)

which results in the closed loop as

Tv(s) =
Kv

s+Kv

e−Tds. (3.27)

Kv in (3.26) is determined by pole placement method considering perfor-

mance requirements.

• If the aim is to track the ramp input without disturbance in the velocity

loop, then by using Q(s) = Kv particular choice of C0v and closed loop

transfer function would be

C0v(s) =
2Kvs+K2

v

s
, (3.28)

Tv(s) =
2Kvs+K2

v

(s+Kv)2
e−Tds. (3.29)

• To design a controller suppressing constant disturbance and tracking step

reference signal without a steady-state error, by using Q(s) = Kv(1+KvTd)

a particular choice of C0v is

C0v(s) =
(2Kv +K2

vTd)s+K2
v

s−K2
vTd

, (3.30)

and corresponding closed loop transfer function is

Tv(s) =
(2Kv +K2

vTd)s+K2
v

(s+Kv)2
e−Tds. (3.31)
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• To design a controller for step input tracking and both constant and ramp

disturbance rejection, the structure of minimum degreed Q(s) must be

Q(s) =
α1s+ α2

s+ α4

. (3.32)

In (3.32), α4 is a free parameter determined by pole placement method like

Kv whereas α2 = Q(0)α4 and α1 = Q̇(0)α4 + α2
α4

. Then, particular choice of

C0v and corresponding closed loop transfer function are

C0v(s) =
(Kv + α1)s

2 + (Kvl1 + α2)s+ al2
s2 + (l1 − α1)s+ (l2 − α2)

, (3.33)

Tv(s) =
(Kv + α1)s

2 + (Kvl1 + α2)s+ al2
(s+Kv)2(s+ α4)

e−Tds (3.34)

where l1 = Kv + α4 and l2 = Kvα4.

• To design a step input tracking and both constant and sinusoidal distur-

bance rejection, the structure of minimum degreed Q(s) must be

Q(s) =
α1s

2 + α2s+ α3

s2 + α4s+ α5

. (3.35)

In (3.35), α4, α5 > 0 are free parameters. Then, other parameters are

calculated considering frequency of periodic disturbance signal, which is wd

such that

α1 =
Re

((
jwd+Kv−Kve−jwdTd (jwd+Kv)

jwde
−jwdTd

)
(α5 + jwdα4 − w2

d)
)
− α4

−w2
d

,

α2 =
Im

((
jwd+Kv−Kve−jwdTd (jwd+Kv)

jwde
−jwdTd

)
(α5 + jwdα4 − w2

d)
)

wd
.

Then, particular choice of C0v and corresponding closed loop transfer func-

tion are

C0v(s) =
(Kv + α1)s

3 + (Kvl1 + α2)s
2 + (al2 + α3)s+Kvl3

s3 + (l1 − α1)s2 + (l2 − α2)s+Kvl3
, (3.36)

Tv(s) =
(Kv + α1)s

3 + (Kvl1 + α2)s
2 + (al2 + α3)s+Kvl3

(s+Kv)2(s2 + α4s+ α5)
e−Tds (3.37)

where l1 = Kv + α4 l2 = α5 +Kvα4 and l3 = Kvα5.
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3.4 Smith Predictor Based Controller Design

for Position Control

To design a position controller, structure of velocity controller in Fig. 3.7 is

slightly changed. Fig. 3.8 is obtained by adding delay free closed loop transfer

function for velocity loop to Fig. 3.7.

Figure 3.8: Internal structure of Cp(s)

For position controller, Cp(s) given in Fig. 3.8, same controller structure given

in previous section can be implemented according to design specifications. Let’s

consider step reference and constant disturbance rejection case presented in (3.30)

which means

C0p(s) =
(2Kp +K2

pTd)s+K2
p

s−K2
pTd

, (3.38)

where Kp is a free parameter to be chosen via pole placement like in the velocity

loop. Then corresponding transfer function of the overall closed loop feedback

system is

T (s) =
(2Kp +K2

pTd)s+K2
p

(s+Kp)2
Tv(s). (3.39)

24



Chapter 4

SIMULATIONS AND

EVALUATION

As an example we consider plant P (s) given by (3.1) with M = 5 kg and Td = 0.2

sec. Although mass is chosen arbitrarily, time delay is taken as same as in [22].

Furthermore, some of the results in this thesis also presented in [29]. Since real-

world friction may not conform to only Coulomb friction, performance of the

observer with a more representative model, (4.1), is investigated.

F (v) = (β1 + β2e
−λ|v|) + β3 |v|)sgn(v), (4.1)

where β1 term denotes Coulomb friction whereas β2e
−λ|v|) and β3 |v| denotes

Stribeck effect and viscous friction respectively. As a whole, (4.1) is a similar

expression for steady state behavior of dynamical friction model, LuGre model

given in [30].

For our simulations, let us choose β1 = 5, β2 = 1, β3 = 1 and λ = 1 for

simplicity. In this section, performances of different types of Smith predictor

based controllers, P-P and PI-PI controllers are analyzed. Firstly, step input

tracking without any disturbance, ramp input tracking without any disturbance

and step input tracking with step disturbance are analyzed. In the following

simulations, we considered three different situations.
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• When there is no friction term in (2.1), in this case friction observer is not

utilized,

• When friction exists but observer is not utilized,

• When friction exists and friction observer is also utilized.

4.1 Smith Predictor Based Position Control:

Step input without disturbance

By choosing Kv = 1 and Kp = 3 in (3.26), corresponding controllers are obtained

as

C0v(s) = 1,

C0p(s) = 3.

while closed loop transfer functions for velocity and position control are

Tv(s) =
1

s+ 1
e−0.2s,

T (s) =
3

s+ 3
Tv(s).

As a friction observer, we choose Friedland-Park observer given by (3.8) and

(3.9). Performance results of controllers for step tracking without disturbance

are plotted in Fig. 4.1 and Fig. 4.2 for k = 5 and µ = 1.2. As a result of

friction, in friction cancellation, settling time is slightly increased compared to

no friction existence case. However, as it can be observed in Fig. 4.1, without a

compensation both settling time increases a lot and an oscillation, causing steady

state error at the output, occurs.

Interestingly, although it seems that velocity becomes zero after a time in Fig.

4.3, direction of the friction in Fig. 4.2 changes. However, direction of friction

can only change the direction of the velocity changes. Actually, the reason for

this situation is modeling errors of the friction at low velocities in MATLAB. In

Fig. 4.4, it is observed that at direction reversals of the friction, sign of velocity
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Figure 4.1: Unit step response of the system

Figure 4.2: Actual and estimated friction

Figure 4.3: Velocity due to step response of the system
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changes as well; however, amount of change is so little that it can be only realized

when one zooms on it.

As a justification, same closed loop feedback system is utilized with an ob-

server structure illustrated in Fig. 3.5. As it can be observed in Fig.4.5, without

inclusion of time delay to the observer structure, it is not possible to estimate

friction correctly and that is why system becomes unstable.

Moreover, from Fig. 4.2 it can be deduced that although actual friction does

not only include Coulomb friction, observer is capable of estimating it reasonably

well enough with a small amount of transition time. In observer parameters, gain

k determines the speed of estimation. However, increasing it too much results

in larger oscillations at the transient; therefore, it might cause to system to be

unstable. Effects of the choices of these parameters on the tracking performance

are investigated without any disturbance and plotted in Fig. 4.6 and Fig. 4.9.

Firstly, as it can be observed in Fig. 4.6, for a fixed value of µ, increasing

observer gain k results in faster rise time. Nevertheless, it also makes deformations

on the output when its value is so high.

Secondly, it is clear in Fig. 4.9 that, for a fixed value of k, increasing observer

exponent µ provides a smoother transient response. When k is so large, at the

transient response is not smooth. Thus, in order to make it smoother, µ should

be also increased.

Although Fig. 4.6 and Fig. 4.9 give an insight into physical meanings of k and

µ, there is not exactly one to one relationship. In Fig. 4.12, it can be deduced

that settling time might change nonlinearly. Therefore, one should determine

appropriate values of k and µ to obtain a region of desired settling time or change

the estimation function g(v) in (3.5).
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Figure 4.4: Zoomed version of Fig. 4.3

Figure 4.5: Friction estimation of an observer that does not include time delay

Figure 4.6: Effect of observer gain k to the position output when µ = 1 is fixed.
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Figure 4.7: Effect of observer gain k to the velocity when µ = 1 is fixed.

Figure 4.8: Effect of observer gain k to friction estimation when µ = 1 is fixed.

Figure 4.9: Effect of observer exponent µ to the position output when k = 10 is
fixed.
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Figure 4.10: Effect of observer gain k to the velocity when k = 10 is fixed.

Figure 4.11: Effect of observer gain k to friction estimation when k = 10 is fixed.

Figure 4.12: Settling time of the system desribed by (4.2) for different k and µ
values.
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4.2 P-P Controller Based Position Control:

Step input without disturbance

Actually, controller designed to track step input without any disturbance is in the

form of proportional controller. Therefore, it might be worthy to investigate the

performance of modified observer with ordinary proportional controllers. Note

that Cv−P and Cp−P are in the form of

Cv−P (s) = Pv, (4.2)

Cp−P (s) = Pp. (4.3)

If proportional controllers were utilized in a hierarchical feedback structure

instead of designed Smith predictors to control an ordinary integrator, transfer

functions of velocity and position loops without any delay would be

Tv−P (s) =
Pv

s+ Pv
, (4.4)

T (s) =
PvPp

s2 + Pvs+ PvPp
(4.5)

When (4.4) and (4.2) are compared, it can be observed that it is possible to obtain

exactly same poles choosing parameters appropriately. Therefore, Pv = 4 and

Pp = 3/4 are determined in order to compare the performance of the controller

with Smith predictor when Kv = 1 and Kp = 3 with g(v) = 5 ∗ ‖v‖1.2. In this

situation, although time delay is considered in the observer structure, gain of

position and velocity controllers are designated without any delay concerns. In

fact, when time delay is taken into consideration, (4.4) turns into

Tv−P (s) =
Pve

−Tds

s+ Pve−Tds
, (4.6)

T (s) =
PvPpe

−Tds

s2 + PveTd s(s+ Pp)
. (4.7)

Clearly, compared to (4.4), (4.6) represents system dynamics much more realisti-

cally. Nonetheless, it is a more sophisticated expression with respect to (4.2) as

well.
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Figure 4.13: Position comparison of proportional controller and Smith Predictor.

Figure 4.14: Velocity comparison of proportional controller and Smith Predictor.

As it can be observed in Fig. 4.13, similar position responses are obtained for

Td = 0.2 and F = (5 + e−|v| + |v|)sgn(v) while K = 5 and m = 1.2 again.

At first, it might be seemed that Smith predictor does not have much superi-

ority than a standard position control; however, proportional controllers become

unstable after a certain level of gain. Since increasing poles of the controller

also leads to increase in magnitude of open loop transfer function of the system

directly, stablity might be violated as in Fig. 4.16. In other words, gains of pro-

portional controllers cannot be increased arbitrarily that is why one should pay

attention to pole locations. On the other hand, Smith predictor assures freedom

while determining pole locations.
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Figure 4.15: Friction comparison of proportional controller and Smith Predictor.

Figure 4.16: Nyquist Diagram of proportional controller for different poles.

4.3 Smith Predictor Based Position Control:

Ramp input without disturbance

Likewise, tracking performance of proposed system for periodic triangular input

with period of 20 sec. is considered with Kp = 5, Kv = 1, k = 5 and µ = 1.2.

Utilized controllers in velocity and position loops are

C0v(s) =
2s+ 1

s
,

C0p(s) =
10s+ 25

s
.
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Therefore, transfer functions for closed loop velocity and position control are

Tv(s) =
2s+ 1

s2 + 2s+ 1
e−0.2s,

T (s) =
10s+ 25

s2 + 10s+ 25
Tv(s).

In Fig. 4.17 it is clear that after an oscillatory transient, cancellation matches

desired output and as expected, output is 0.2 sec shifted version of the input.

However, at direction reversals it needs some time to track the signal in new

direction. Nevertheless, without any cancellation there is an oscillatory output

causing steady state errors again.

Figure 4.17: Position output when triangular input is applied

Figure 4.18: Velocity when triangular input is applied
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Figure 4.19: Friction estimation when triangular input is applied

4.4 PI-PI Controller Based Position Control:

Ramp input without disturbance

Previously, performances of proportional controllers and Smith predictor based

controllers are compared. Similarly, Smith predictor based controller designed

to track ramp input without any disturbance can be compared to proportional-

integral (PI) controllers. Note that Cv−PI and Cp−PI are in the form of

Cv−PI(s) =
Pvs+ Iv

s
, (4.8)

Cp−PI(s) =
Pps+ Ip

s
. (4.9)

Afterwards, ignoring delay, corresponding closed loop transfer functions can be

obtained as

Tv−PI(s) =
Pvs+ Iv

s2 + Pvs+ Iv
, (4.10)

TPI =
(Pvs+ I)(Pps+ Ip)

s4 + Pvs3 + (Iv + PvPp)s2 + (IpPv + IvPps+ IvIp
. (4.11)

Nevertheless, locating poles via pole placement method is much more difficult

in this case. In order to obtain same pole locations with Smith predictor case,

one should choose poles within a small range. When poles are so large, system

becomes unstable due to time delay since closed loop transfer functions including
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time delay are

Tv−PI(s) =
(Pvs+ Iv)e

−Tds

s2 + (Pvs+ Iv)e−Tds
, (4.12)

TPI =
(Pvs+ I)(Pps+ Ip)e

−Tds

s4 + (Pvs+ Iv)(s2 + Pps+ Ip)e−Tds
. (4.13)

Although, controllers are designed without concerning friction and delay, it is

necessary to utilize an observer in order to track the input precisely. Otherwise,

performance of the system degrades dramatically due to friction. Moreover, delay

term must be included in observer structure in order to estimate friction correctly

even if controllers are designed without regarding time delay. Simulation results

are obtained for an ordinary PI-PI control tuned to Pv = 25.212, Iv = 2.225, Pp =

0.842 and Ip = 0.276 by MATLAB in Fig. 4.20 for g(v) = 5 ∗ ‖v‖.
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Figure 4.20: Step response of PI-PI control.

Figure 4.21: Velocity of PI-PI control.

Figure 4.22: Friction estimation of PI-PI control.
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4.5 Smith Predictor Based Position Control:

Step input with step disturbance

In real mechanical systems, it is highly possible that some more disturbance

signals other than friction having effects on the system performance. Hence, for

a unit disturbance rejection and step input tracking controller given by (3.30)

taking Kp = 3, Kv = 2, k = 3 and µ = 1.8 is considered. With these design

parameters, obtained controllers are

C0v(s) =
4.8s+ 4

s− 0.8
,

C0p(s) =
7.8s+ 9

s− 1.8
.

Then, closed loop transfer functions for velocity and position control loops are

Tv(s) =
4.8s+ 4

s2 + 4s+ 4
e−0.2s,

T (s) =
7.8s+ 9

s2 + 6s+ 9
Tv(s).

When a relatively large value of k is combined with a large value µ, some

”rings” occur at the output. This situation can be explained by an undesirable

sensitivity to disturbance. Thus, considering step tracking case without distur-

bance, µ is slightly increased whereas k is decreased. From Fig. 4.23, it is clear

that friction cancellation increases system performance under friction because

without any compensation, both settling time increases and oscillation at the

response occurs similar to 4.1. Compared to Fig. 4.1, overshoot at the transient

time is observed due to the fact that controller structure is changed. In order to

overcome this overshoot, a prefilter H(s) can be utilized to cancel some of the

higher dynamics in the closed loop transfer function as it is proposed in [7, 8].

Basically, a stable and strictly proper first order H(s) with H(0) = 1 can be

chosen for this purpose. Nonetheless, diminution of the cut-off frequency affects

the rising time negatively.
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Figure 4.23: Step response of the system with unit disturbance

Figure 4.24: Velocity of the system for step input with step disturbance

Figure 4.25: Estimated friction of the system for step input with step disturbance
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4.6 Smith Predictor Based Position Control:

Step input with step disturbance and gen-

eral friction observer

Another approach might be changing estimation function in the observer struc-

ture. As it explained in 3.2, it is possible to use another function whose derivative

is defined on first and third quadrant of the coordinate axis to estimate the fric-

tion instead of k|v|µ in (3.9). Hence, performance of the same system is tested

when estimation function in (3.5) is g(v) = klog (cosh(v)). For unit disturbance

and unit step tracking case, performance of two functions are plotted in Fig. 4.26

and Fig. 4.29.

As it can be seen in Fig. 4.26, function g(v) = 1 ∗ |v|1.8 provides better

performance compared to g(v) = log (cosh(v)). However, when k=5, as in Fig.

4.29 some rings occur for and g(v) = 5log (cosh(v)) provides a better perfor-

mance. In other words, by changing estimation function g(v), one can still have a

well enough performance. Nonetheless, changing function may require changing

observer gain as well for a smoother output. In fact, when magnitude of distur-

bance is getting larger for a fixed k and µ, ktanh suppresses disturbance better

and provides a better performance compared to classical estimation function.

41



Figure 4.26: Comparisons of step responses of two estimation functions with unit
disturbance when k=1

Figure 4.27: Velocity of g(v) = log (cosh(v))for step tracking with unit step
disturbance

Figure 4.28: Friction estimation of g(v) = log (cosh(v))for step tracking with unit
step disturbance
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Figure 4.29: Comparisons of step responses of two estimation functions with unit
disturbance when k=5

Figure 4.30: Velocity of g(v) = 5log (cosh(v))for step tracking with unit step
disturbance

Figure 4.31: Estimated Friction of g(v) = 5log (cosh(v))for step tracking with
unit step disturbance
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4.7 Smith Predictor Based Position Control:

Step input with triangular disturbance

Likewise, a triangular disturbance signal, whose amplitude is 1 and period is 20

sec., is applied to the system. In order to track step input in this case, controllers

are designed using (3.33). For velocity loop Kv = 1 and α4 = 0.5 are selected

whereas Kp = 3.5 and α4 = 1.5 are selected for position loop. Then, obtained

controllers are

C0v(s) =
2.91s2 + 2.1s+ 0.5

s2 − 0.41s− 0.1
,

C0p(s) =
13.42s2 + 26.43s+ 18.38

s2 − 4.918s− 3.675
,

and corresponding closed loop transfer functions are

Tv(s) =
2.91s2 + 2.1s+ 0.5

s3 + 2.5s2 + 2s+ 0.5
e−0.2s,

T (s) =
13.42s2 + 26.43s+ 18.38

s3 + 8.5s2 + 22.75s+ 18.375
Tv(s).

For µ = 1.9 and k = 1.5, obtained results are plotted in Fig. 4.32.
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Figure 4.32: Step response of the system when disturbance is a triangular wave
with the period of 20 sec and unit amplitude.

Figure 4.33: Velocity of the system when disturbance is a triangular wave with
the period of 20 sec and unit amplitude.

Figure 4.34: Estimeted friction of the system when disturbance is a triangular
wave with the period of 20 sec and unit amplitude.
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4.8 Smith Predictor Based Position Control:

Step input with sinusoidal disturbance

Lastly, performance of the controller designed to track step input with suppressing

sinusoidal disturbance is analyzed with d = sin(1.5t). Using (3.36) controller for

the velocity loop is designed for Kv = 1, α4 = 2 and α5 = 3. Similarly, another

controller is designed in order to control position loop when Kp = 4, α4 = 3 and

α5 = 5. Utilized controllers are

C0v(s) =
5.117s3 + 5.356s2 + 8.6s+ 3

s3 − 1.117s2 + 2.644s− 0.6
,

C0p(s) =
20.78s3 + 54.89s2 + 104s+ 80

s3 − 9.78s2 − 9.89s− 16
.

Hence, closed loop transfer functions are

Tv(s) =
5.117s3 + 5.356s2 + 8.6s+ 3

s4 + 4s3 + 8s2 + 8s+ 3
e−0.2s,

T (s) =
20.78s3 + 54.89s2 + 104s+ 80

s4 + 11s3 + 45s2 + 88s+ 80
Tv(s).

For g(v) = klog (cosh(v)) and k = 5, obtained results are plotted in Fig. 4.35.

From the figure, it is clear that without any compensation, sinusoidal distur-

bance induces larger oscillations and steady state error at the output compared

to constant disturbance. However, with a cancellation it is possible to improve

the performance pretty much.
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Figure 4.35: Step response of the system when disturbance is sin(1.5t)

Figure 4.36: Velocity of the system for step tracking when disturbance is sin(1.5t)

Figure 4.37: Estimated friction of the system for step tracking when disturbance
is sin(1.5t)
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4.9 Effect of Changing Friction Coefficients

For different reasons such as temperature or lubricity, friction coefficients can

be time varying. Hence, observer performance under a friction force whose

coefficients are slowly time-varying is also considered. Clearly, parameters of

friction can change in time differently in different systems. Hence, in order

to illustrate the response for time varying parameters in (4.1) is modified to

F = (6 + sin(0.05t))sgn(v). Step tracking without disturbance case is considered

with Kp = 4, Kv = 2, k = 4 and µ = 1. In Fig. 4.38, it is seen that adaptive

observer can estimate time varying parameters as well.

4.10 Fixed Compensation versus Adaptive Com-

pensation

Performances of fixed and adaptive friction compensation is compared. As it is

stated, friction parameters change with time because of some physical reasons.

Moreover, during identification process of friction parameters, some measurement

or modeling errors can occur. Therefore, in Fig. 4.39, it is assumed that all

parameters are estimated with a percentage error when controller designed to

track step input without any disturbance with Kv = 1 and Kp = 5 is used. In Fig.

4.39, particularly cancellation with a positive identification error causes overshoot

and steady state error. Furthermore, both negative and positive identification

error lead to a larger settling time. Thus, simulation result verifies that adaptive

compensation provides a better performance especially for small Kv.
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4.11 Smith Predictor Based Velocity Control:

Step input without disturbance

In velocity control case, velocity does not change its sign. Thus, Coulomb friction

behaves like a constant disturbance. Hence, one aims only velocity control, he

simply utilize a Smith predictor based controller rejecting constant disturbance

without requiring any observer. Choosing Kv = 1 in (3.30), obtained results

plotted in Fig. 4.41

However, note that this a special case for velocity control, as it is showed in

above simulations, for position control, velocity may change its sign and observer

may improve systems performance.
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Figure 4.38: Actual and estimated friction with time varying parameters
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Figure 4.39: Position output when fixed friction cancellation with an error is
applied

Figure 4.40: Velocity plot when fixed friction cancellation with an error is applied
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Figure 4.41: Velocity output and Friction Torque for velocity control
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Chapter 5

CONCLUSION

In this thesis, in order to handle mechanical systems with time delay, Smith

predictor based controllers, combined with an adaptive Coulomb observer, are

employed. Based on interpolation conditions imposed by constant, ramp or si-

nusoidal disturbance rejection, internal controllers are designed. The order of

resulting controllers changes according to robustness and performance demands.

In this hierarchical structure, one should first design a controller for the velocity

loops. Afterwards, it is easy to extend it to the position loop. Free parameters

of these designs determine the closed loop system poles.

Compared to ordinary PI and P controllers, proposed Simith predictor based

controllers make design process simpler. Using pole placement method freely,

proposed design approach provides stable closed loop feedback systems. Further-

more, the main advantage of Smith predictor based controller is that it makes the

process as if the process is delay free. In some of controller designs, overshoots

are observed. Although it is not used in this work, a first order low pass filter

might be used to filter reference signal. Therefore, tracking response is improved

by eliminating overshoot without affecting disturbance attenuation.

As expected the mere inclusion of the delay in the modified observer works

well when time delay exists in system dynamics. Simulations demonstrate that

with a proper observer parameter selection it is possible to amend performance
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criterion such as steady state error or settling time. What is more, generalization

of the original observer shows that, it is possible to change estimation function

to obtain better performances especially when magnitude of disturbance is high.

Besides, modified observer can work with other controller structures and capable

of estimating friction parameters varying with time. Due to the fact that friction

parameters can change because of some physical reasons, using such an observer

to compensate friction is a plus. What is more, although it is designed to estimate

Coulomb friction, results confirm that observer can work well enough for friction

models rather than Coulomb friction. Thus, the compensator is predicated on the

ability to the control system to generate a force exactly opposite to the estimated

friction.

As a future work, other observer structures in the literature might be modified

in order to capture more sophisticated friction models. In other words, more than

a single friction parameter or a dynamical model might be estimated by improving

observer structure. Furthermore, friction model should be improved especially to

capture the behavior of friction at low velocities in a better way since model used

in MATLAB simulations is limited at low velocities.
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Appendix A

Controller Parametrization

Method

Controller parametrization method is an useful algorithm proposed by [31] in

order to find all controllers C(s) stabilizing plant P (s) in a feedback system.

Design procedure is as follows:

• Given transfer function of a plant can be written in terms of coprime rational

and stable transfer functions, Np(s) and Dp(s) such that

P (s) =
Np(s)

Dp(s)
. (A.1)

• These Np(s) and Dp(s) must satisfy fallowing equation (Bezout equation).

X(s)Np(s) + Y (s)Dp(s) = 1, (A.2)

whereX(s) and Y (s) are two other stable functions. Suppose thatDp(s) has

n zeros at s = z1, z2, ..., zn then, X(z1) = 1
Np(z1)

, X(z2) = 1
Np(z2)

, ..., X(zn) =
1

Np(zn)
.

• After finding X(s) satisfying these conditions, Y (s) can be found from

Y (s) =
1−Np(s)X(s)

Dp(s)
. (A.3)
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• Then, the set of all controllers are given by

C(s) =
X(s) +Dp(s)Q(s)

Y (s)−Np(s)Q(s)
. (A.4)

where Q(s) is a proper and stable transfer function such that Q(s) 6=
Y (s)Np(s)

−1.

In (A.4), depending on Q(s), it is possible to obtain a controller satisfying

different robustness and performance objectives. For instance, if one only con-

cerns stability of feedback system without any additional objective, then Q(s) is

simply chosen as 0. Otherwise, minimum degree of Q(s) satisfying interpolation

conditions requirement is found such that

min degree of Q(s)= Number of interpolations-1.

After controller parametrization prosecure is applied, transfer function from

input to output will be

Trp(s) = Np(s) (X(s) +Dp(s)Q(s)) . (A.5)

and transfer function from disturbance to output will be

Tdp(s) = Np(s) (Y (s)−Np(s)Q(s)) . (A.6)

Therefore, using final value theorem one can find the desired Q(s) satisfying

required conditions with zero steady state error such that

ess = lim
s→0

[(1− Trp)Rp(s)− Tdp(s)D(s)] . (A.7)

60


