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ABSTRACT

POLAR CODES FOR DISTRIBUTED SOURCE
CODING

Saygun Önay

Ph.D. in Electrical and Electronics Engineering

Advisor: Prof. Dr. Erdal Arıkan

December, 2014

Polar codes were invented by Arıkan as the first “capacity achieving” codes

for binary-input discrete memoryless symmetric channels with low encoding and

decoding complexity. The “polarization phenomenon”, which is the underlying

principle of polar codes, can be applied to different source and channel coding

problems both in single-user and multi-user settings. In this work, polar coding

methods for multi-user distributed source coding problems are investigated. First,

a restricted version of lossless distributed source coding problem, which is also

referred to as the Slepian-Wolf problem, is considered. The restriction is on the

distribution of correlated sources. It is shown that if the sources are “binary sym-

metric” then single-user polar codes can be used to achieve full capacity region

without time sharing. Then, a method for two-user polar coding is considered

which is used to solve the Slepian-Wolf problem with arbitrary source distribu-

tions. This method is also extended to cover multiple-access channel problem

which is the dual of Slepian-Wolf problem.

Next, two lossy source coding problems in distributed settings are investigated.

The first problem is the distributed lossy source coding which is the lossy version

of the Slepian-Wolf problem. Although the capacity region of this problem is

not known in general, there is a good inner bound called the Berger-Tung inner

bound. A polar coding method that can achieve the whole dominant face of the

Berger-Tung region is devised. The second problem considered is the multiple

description coding problem. The capacity region for this problem is also not

known in general. El Gamal-Cover inner bound is the best known bound for this

problem. A polar coding method that can achieve any point on the dominant

face of El Gamal-Cover region is devised.

Keywords: Polar codes, distributed coding, source coding, Slepian-Wolf, channel

coding, multiple-access channel, lossy source coding, multiple descriptions, multi-

user polar codes, successive cancellation decoding, list decoding.
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ÖZET

DAĞITIK KAYNAK KODLAMA İÇİN KUTUPSAL
KODLAR

Saygun Önay

Elektrik ve Elektronik Mühendisliği, Doktora

Tez Danışmanı: Prof. Dr. Erdal Arıkan

Aralık, 2014

Kutupsal kodlar, ikili-girişli ayrık hafızasız kanalların kapasitesine ulaşan ve

düşük kodlama ve kod çözme karmaşıklığına sahip ilk kodlar olarak Arıkan

tarafindan keşfedilmişlerdir. Kutupsal kodların temel prensibi olan “kutuplaşma

hadisesi”, hem tekli hem de çoklu kullanıcılı kurgularda farklı kanal ve kaynak

problemlerine uygulanabilmektedir. Bu çalışmada, çoklu kullanıcılı dağıtık kay-

nak kodlama problemleri için kutupsal kodlama metodları incelenmektedir. İlk

olarak, aynı zamanda Slepian-Wolf problemi olarak da bilinen dağıtık kaynak kod-

lama probleminin kısıtlı bir hali ele alınmaktadır. Bu kısıt, ilişkili kaynakların

dağılımı üzerinedir. Kaynakların “ikili simetrik” olduğu durumda tek kullanıcılı

kutupsal kodlar kullanılarak tüm kapasite alanına zaman paylaşımsız erişilebildiği

gösterilmektedir. Daha sonra, genel kaynak dağılımlarına sahip Slepian-Wolf

problemini çözmek için kullanılan ikili kullanıcılı kutupsal kodlama metodu ele

alınmaktadır. Ayrıca bu metod, Slepian-Wolf probleminin eşleniği olan çoklu

erişimli kanal problemini de içerecek şekilde genişletilmektedir.

Daha sonra, dağıtık kurgulara sahip iki farklı kayıplı kaynak kodlama problemi

incelenmektedir. Ele alınan ilk problem, Slepian-Wolf probleminin kayıplı hali

olan kayıplı dağıtık kaynak kodlama problemidir. Bu problemin kapasite bölgesi

genel olarak bilinmese de Berger-Tung iç sınırı olarak bilinen iyi bir iç sınır bulun-

maktadır. Berger-Tung bölgesinin tümüne erişen bir kutupsal kodlama yöntemi

tasarlanmaktadır. Ele alınan ikinci problem, çoklu tanım kodlaması problemidir.

Bu problemin de genel kapasite alanı bilinmemektedir. El Gamal-Cover iç sınırı,

bu problem için bilinen en iyi sınırdır. El Gamal-Cover kapasite sınırındaki her-

hangi bir noktaya erişebilen bir kutupsal kodlama yöntemi geliştirilmektedir.

Anahtar sözcükler : Kutupsal kodlar, dağıtık kodlama, kaynak kodlama, Slepian-

Wolf, kanal kodlama, çoklu erişimli kanal, kayıplı kaynak kodlama, çoklu

tanımlar, çoklu kullanıcılı kutupsal kodlar, sıralı elemeli kod çözme, liste kod

çözme.
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Chapter 1

Introduction

C. E. Shannon laid the foundations of information theory in his 1948 seminal pa-

per [1], where he presented the source coding and noisy channel coding theorems.

He defined a mathematical framework in which these problems can be studied

systematically. He gave the fundamental limits of both source coding and channel

coding. He also proved that source and channel coding problems may be treated

separately without any loss in system performance.

The basic model introduced by Shannon consists of a source, source encod-

ing/decoding functions, channel encoding/decoding functions and a channel. The

aim is to reconstruct the source at the sink perfectly with as few as possible chan-

nel transmissions. Source encoding makes it possible to most efficiently describe

the source by throwing away the redundancy in it. Then, if the transmission

medium is “noisy”, transmitter adds redundancy to combat its effects and re-

ceiver decodes the received vectors into message symbols. If the message symbols

are detected correctly, the source decoder decodes them into message vectors.

The source is modeled with a random process {Zn}. Shannon showed that a

source encoder can compress a source at most down to its entropy H(Z) without

a loss in fidelity. Thus, there exists an encoder that may represent a source

with R bits per symbol if and only if R > H(Z). After the source compression,
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Figure 1.1: Basic communication setting.

the message needs to be transmitted over a noisy channel. The input and output

symbols to channel are X ∈ X and Y ∈ Y , respectively. The channel is denoted as

W : X → Y and modeled with a conditional probability PY |X which is called the

channel transition probability. The channel encoder’s job is to add redundancy to

the source vector in such a way that it is recoverable at the channel decoder with

arbitrarily high probability while keeping the the number of channel uses as few as

possible. Shannon showed that these seemingly conflicting requirements may be

satisfied as long as the size of transmission blocks (K user bits or N channel uses)

is large and rate of transmission (K/N) is below the channel capacity which is a

fundamental property of a given channel. Then, the receiver estimates the sent

message from the channel output and source decoder reconstructs the source. It

was also proven that the probability of decoding error goes to zero exponentially

with the block length N . Thus long block lengths are needed to make the error

probability low which means that encoding and decoding complexities need to be

low for practical codes.

Shannon’s proof depended on the random coding argument which considered

the average performance of ensembles of codes. Thus he proved the existence

of capacity-achieving codes without explicitly constructing any such code. His

concept of information and viewpoint of a communication system changed the

telecommunications field forever. The existence of information theory and coding

theory fields is attributed to him.

Since then, construction of capacity-achieving codes with low encoding and

decoding complexities has been the focus of coding theory. For sixty years there

has been an enormous amount of research in the area. Many different coding

methods have been developed which may be broadly categorized under two titles:

algebraic coding and probabilistic coding. Hamming [2], Golay [3], Reed-Muller

[4] [5], BCH [6] and Reed-Solomon [7] codes may be counted as the most famous

examples of algebraic codes developed. Convolutional codes [8], LDPC codes [9]
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and Turbo codes [10] are the most important examles of probabilistic codes. In

the last two decades, with the discovery of Turbo Codes and “re-discovery” of

LDPC codes, it has been possible to practically come very close to Shannon’s

capacity bounds in certain situations. However, because of the way those codes

are constructed and decoded, it is not possible, except in very special cases, to

theoretically prove that they can achieve the capacity bounds asymptotically.

Interested reader is referred to the excellent survey by Costello and Forney [11].

Polar coding method [12], introduced by Arıkan, is the first provably capacity-

achieving coding method with low encoding and decoding complexity for the class

of binary input discrete memoryless channels (B-DMC). In addition to being used

for constructing capacity achieving channel codes, the polarization concept is a

promising new theoretical advancement that may find applications in other areas

of information theory.

1.1 Polar Codes

Polar codes were introduced in [12] as the first provably capacity achieving chan-

nel codes for symmetric binary-input discrete memoryless channels (B-DMC)

with low encoding and decoding complexity. Later, the polarization concept ex-

tended to non-binary alphabets, source coding scenarios and distributed settings.

The time complexity of both encoder and decoder is O(N logN), where N is

the block length. The primitive ideas for polar coding first appeared in Arıkan’s

earlier paper [13] on channel cutoff rate improvement.

The idea of polar coding can be summarized as generating N extremal channels

from N independent uses of the same base channel W : X → Y . By extremal we

mean that the channels are either perfect or completely noisy. This is achieved by

applying a transformation to the input of N independent copies of channel W and

employing successive cancellation (SC) decoding in a special order at the receiver.

The successive cancellation decoder at step i not only observes the base channel

outputs but also the i − 1 previously decoded bits. These coordinate channels

3



experienced by successive cancellation decoding are either worse or better than

the original channel W . The interesting result proved by Arıkan is that these

channels polarize to either a perfect or a completely useless channel with the

ratio of perfect channels to block length N approaching to the capacity of the

original channel W as N → ∞. Then, how to use this method to construct a

capacity achieving channel code becomes obvious: just send information from

those inputs corresponding to perfect channels and fix the other ones and reveal

to both encoder and decoder.

Polarization transform is a linear operation identified with an N × N matrix

GN , where N = 2n. The construction has a recursive structure and starts with

size-2 base matrix G2 =
[

1 0
1 1

]
. A higher order polar transform is obtained as

GN = G⊗n2 , where “⊗n” denotes the n-th Kronecker power. Polar channel coding

method summarized above dictates sending information from some of the input

bits and fixing others to known values. This corresponds to selecting those rows

of GN corresponding to information bit indexes to compose the generator matrix

of the code. Polar codes share a lot of structure with Reed-Muller (RM) codes

which was surveyed by Arıkan in a later paper [14]. The generator matrix of

RM codes is also selected from the rows of GN . The difference is in the selection

rule. The selection rule for RM codes maximizes the minimum distance whereas

the selection rule for polar codes is dependent on the underlying channel and

minimizes the decoding error under successive cancellation decoding.

Shortly after polar codes were introduced a number of work has been published

on its performance and extension of its areas of applicability. In [15] authors im-

proved the bound on the rate of polarization to O(2−N
β
) for β < 1/2, from

O(N−
1
4 ) bound proved in [12]. Korada made most of the early contribution to

the applicability of polar codes in his thesis [16]. He tackled lossless and lossy

source coding problems. It was also shown in that thesis that polar codes could

be used for some multi-terminal scenarios like Wyner-Ziv coding, Slepian-Wolf

coding, degraded broadcast channel and multiple-access channel. However, all

of those problems were considered under constrained assumptions like symmet-

ric distributions and accessing corner points of capacity regions. Later, other

researchers considered the same problems in their more generality.
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Another major contribution to the theory of polarization from a single re-

searcher came from Şaşoğlu. Şaşoğlu et al. [17] extended polar codes to non-

binary alphabets. Polar code for multiple-access channels were first considered

by Şaşoğlu et al [18]. However, their joint polarization approach was not able to

reach any point on the dominant face of the capacity region. Şaşoğlu [19] proved

an entropy inequality which made polarization proofs much simpler and direct.

He made use of that result to prove in [20] that Arıkan’s recursive transform

also polarizes ergodic Markov processes of finite order. He assembled all of these

results in his thesis [21].

Arıkan [22] reassessed source coding with polar codes from a direct source

polarization approach. Systematic polar codes were introduced by Arıkan [23].

Polar code construction was considered in [24] and low complexity approximations

were suggested. In [25], low complexity and efficient list decoding algorithms for

SC decoding were proposed. In addition, authors proposed augmenting polar

codes with a CRC to be used in list decoding. This approach increased the

performance considerably and generated a polar coding scheme with the best

known performance to date. Polar codes for broadcast channels were considered

in [26]. Polar coding for asymmetric distributions without alphabet extension

were considered in [27]. A new polar coding method for multi-terminal settings

were introduced in Slepian-Wolf coding context by Arıkan [28]. The so called

monotone chain rule approach could reach any point on the dominant face of

Slepian-Wolf achievable rate region. In [29], authors applied this method to

multiple-access channel, built list decoders based on [25] and presented simulation

results. Multiple description problem using polar codes was considered in [30]

and [31]. Early hardware architectures for successive cancellation decoding of

polar codes were presented in [32] and [33]. Recently, hardware architectures for

successive cancellation list decoders has also emerged [34], [35], [36], [37].

5



1.2 Contribution of this Thesis

This thesis mostly concentrates on polar coding methods for distributed source

coding settings. We first present a technique in which single-user polar codes may

be efficiently used to achieve any point on the dominant face of the achievable

region of Slepian-Wolf coding of sources with special distributions. Then, we

review in detail the monotone chain rule technique introduced by Arıkan for

general Slepian-Wolf problem. We give detailed proofs of the method as well as

explicit formulas and algorithms for decoder construction. We also include results

on multiple-access channel (MAC) which is considered as the dual of Slepian-Wolf

(SW) problem. Then we turn our attention to lossy source coding schemes. We

show that the known bounds for distributed lossy source coding and multiple-

description coding can be achieved with polar coding methods.

In the seminal paper by Slepian and Wolf [38], bounds on compression rate

pairs of the noiseless coding of two correlated information sources were proved.

The two correlated information sources (X, Y ) are obtained by repeated inde-

pendent drawings from a discrete bivariate distribution PXY (x, y) where X ∈ X
and Y ∈ Y . The setting comprises of two separate encoders for X and Y sources

and a joint decoder. The encoders compress the sources and the decoder’s job is

to reconstruct sources perfectly. This particular setting is the basic distributed

lossless source coding setup and has since been synonymously referred to as the

Slepian-Wolf coding problem. The details of the problem are presented in Sec-

tion 2.1. With the discovery of capacity achieving channel codes and using the

known dualities of source coding and channel coding there has been extensive

amount of work in applying channel codes in distributed source coding setup of

which we give a brief survey in Section 2.1. Most of the works mentioned in that

section assume binary symmetric sources (BSS). That is, the correlated sources

X and Y have uniform marginals. It is a restricted version of SW problem and

also what we assume in Chapter 3. Furthermore, some of the works surveyed in

Section 2.1 solve asymmetric SW coding problem, i.e. the corner points of the

SW region are targeted. The common argument is that the other points on the

dominant face may achieved with time-sharing [39]. However, in practice direct

6



achievement of a rate-point without time-sharing is more desirable. In a previous

work by Korada [16] polar codes for BSS and asymmetric setting was considered.

In Chapter 3, we show polar coding can be used to achieve any point on the SW

region for BSS sources without time-sharing.

In Chapter 4, we show how the general Slepian-Wolf problem may be solved

using polar codes. By “general” we mean that any discrete source distribution is

allowed and any point on the dominant face of the rate region may be targeted

directly. The method was introduced by Arıkan in [28]. We present an extended

treatment of the method which consists of two sources with prime-sized alphabets

and a side-information with an arbitrary alphabet. This treatment forms the

basis of our other methods in later sections for distributed settings. The method

describes a two-user joint successive cancellation (SC) decoder. This decoder

is obviously more complicated than its normal single-user counterpart which is

used in “special” SW problem investigated in Chapter 3. But in exchange of

this increase in complexity it becomes possible to solve general SW problem.

In Section 4.2, we give explicit formulas and algorithms for implementing joint

decoder. We show how joint SC list (SCL) decoder may be implemented as an

extension to single-user list decoder that was introduced in [40]. We also present

experimental results on the performance of our joint SCL decoder. Then, we move

on to multiple-access channel problem which is considered as the dual problem.

We show that polar coding may be used to achieve the whole capacity region of

MAC and not only the symmetric capacity region. Then we present experimental

results on the performance.

In Chapter 5, we consider lossy source coding problems in distributed settings.

The first problem we consider in Section 5.1 is the distributed lossy source coding

which is the lossy version of SW problem. The setting is the same as the SW

problem. The only difference is that the source reconstructions are subject to dis-

tortion constraints. Although the capacity region of this problem is not known in

general, there is a good inner bound called the Berger-Tung (BT) inner bound.

We devise the polar coding method for that problem and show that it can achieve

the whole dominant face of the BT region. Then we present simulation results.

The second problem we consider in Chapter 5 is the multiple description coding
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(MDC) problem. There is single source in MDC setting. Two different repre-

sentations of the source is generated by two encoders. There are three different

decoders in the setting. Decoder 1, 2 and 0 has access to representation 1, 2 and

both, respectively. Each reconstruction has a different distortion constraint. The

capacity region for this problem is also not known in general. However, there is a

good inner bound called the El Gamal-Cover (EGC) inner bound. We construct

the polar coding method for this problem and prove that it can achieve any point

on the dominant face of EGC region.

1.3 Notation

In this work we follow the notation of [12] and [22]. Random variables are denoted

by upper case letters like X and its realization is denoted by lower case letter

x. xN1 or xN denotes a row-vector (x1, . . . , xN) of length N . xji denotes the sub-

vector (xi, . . . , xj) of xN when i ≤ j. If i > j, then xji is a null vector. We use xji,o

and xji,e to denote subvectors consisting of only odd and even indices, respectively.

Alternatively, lower-case bold characters (x) also denote row vectors. Matrices

are denoted with upper-case characters such as G. We use [N ] to denote set

{1, 2, . . . , N}. For any set A, |A| denotes its cardinality. Let A ⊆ [N ] be an

index set, then xA denotes the row-vector formed by those elements of xN with

indices in set A in ascending order of indices, i.e. xA denotes xi1 , . . . , xi|A| where

{ik ∈ A : ik < ik+1}. Similarly, (G)A denotes the sub-matrix formed by those

rows of G with indices in set A in ascending order of indices.

We also use Pe(X|Y ) to denote the average error probability in optimally

decoding X ∈ X given Y ∈ Y . That is,

Pe(X|Y ) ,
∑

x∈X ,y∈Y

PXY (x, y) · 1{x′∈X :PX|Y (x′|y)≥PX|Y (x|y)}.
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Chapter 2

Background

In this chapter we give some background information supplementing the main

topics of this thesis. In the first section we present lossless distributed source

coding problem also known as Slepian-Wolf problem [38]. We give a literature

survey on the practical implementation methods using channel codes. In the

second section, we present a review of polarization and polar codes for both

channel and source coding problems.

2.1 Distributed Source Coding

The well-known paper by D. Slepian and J. Wolf [38] generalizes certain well

known results on the noiseless coding of a single discrete information source to

the case of two correlated information sources. The two correlated information

sources (X, Y ) are obtained by repeated independent drawings from a discrete

bivariate distribution PXY (x, y) where X ∈ X and Y ∈ Y . The paper analyses all

possible cases depending upon the information available to encoders and decoders.

But by far the most interesting case presents itself when the encoder of each source

is constrained to operate without knowledge of the other source, while the decoder

has available both encoded message streams as in Figure 2.1. This particular
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setting has since been known as the Slepian-Wolf (SW) coding problem and used

interchangeably with distributed source coding problem, although there are other

source coding problems in distributed settings like distributed lossy source coding

or multiple-description problem which we will describe in later chapters.

Figure 2.1: Correlated coding of two sources.

It is well known from the results of source coding that the rate of a source

must be greater than its entropy, R1 ≥ H(X). The same result generalizes to

joint coding of correlated random variables X and Y easily: the jointly encoded

data rate must be greater than the joint entropy, namely R > H(X, Y ). This

is because a pair of random variables X, Y can be regarded as a single random

variable Z taking |X | · |Y| values. The entropy of this variable is H(X, Y ). The

interesting case occurs when sources are encoded separately and decoded jointly.

One might expect that the lower bound H(X, Y ) may not be reached due to the

fact that encoders not sharing information. However, the result of SW paper

proves that there is no asymptotic loss in performance due to separate encoding,

i.e. rate lower bound H(X, Y ) is still achievable. This is the central and the most

surprising result presented in the paper.

Definition 1. A ((2NR1 , 2NR2), N) distributed source code for the joint source

(X, Y ) consists of two sets of integers M1 = {1, 2, . . . , 2NR1} and M2 =

{1, 2, . . . , 2NR2},two encoding functions,

f1 : XN →M1 (2.1)

and

f2 : YN →M2, (2.2)

and a decoding function,

g : M1 ×M2 → XN × YN . (2.3)
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Figure 2.2: Admissible rate region.

Here M1 = f1(XN) is the index corresponding to XN , M2 = f2(Y N) is the

index corresponding to Y N and (R1, R2) is the rate pair of the code.

Definition 2. The probability of error for a distributed source code is defined as

P (N)
e = Pr{g(f1(XN), f2(Y N)) 6= (XN , Y N)}. (2.4)

Definition 3. A rate pair (R1, R2) is said to be achievable for a distributed

source if there exists a sequence of ((2NR1 , 2NR2), N) distributed source codes with

P
(N)
e → 0. The achievable rate region is the closure of the set of achievable rates.

Theorem 1 (Slepian-Wolf). For the distributed source coding problem for the

source (X, Y ), the achievable rate region is given by

R1 ≥ H(X|Y ),

R2 ≥ H(Y |X),

R1 +R2 ≥ H(X, Y ).

(2.5)

The result of Slepian-Wolf paper can be presented as a two dimensional rate

region RSW for the two encoded message streams as shown in Figure 2.2. It is

seen that both R1 can go below H(X) and R2 can go below H(Y ), while their

total R1 +R2 must stay above H(X, Y ). The line segment between points A and

B in Figure 2.2 is referred to as the dominant face of the SW rate region. It is

enough for a coding scheme to show that it can reach one of the corner points
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A or B on this graph, namely R1 = H(X) and R2 = H(Y |X) or R2 = H(Y )

and R1 = H(X|Y ). At these points, one source (say Y ) is compressed at its

entropy rate and can therefore be reconstructed at the decoder independently of

the information received from the other source X. The source Y is called the side

information (SI) (available at the decoder only). X is compressed at a smaller

rate than its entropy. More precisely, X is compressed at the conditional entropy

H(X|Y ) and can therefore be reconstructed only if Y is available at the decoder.

The sources X and Y play different roles in this scheme, and therefore the scheme

is usually referred to as asymmetric SW coding.

2.1.1 Constructive Approaches to Slepian-Wolf Coding

The proof of the SW theorem depends on random coding argument and is non-

constructive. In 1974, Wyner [39] suggested using a binary linear channel code

for construction of SW codes and showed the optimality of this construction. He

proved that if a linear block code achieves the capacity of the BSC that models

the correlation between the two sources, then this capacity achieving code can be

turned into SW bound achieving source code. His method is called the syndrome

approach. The method assumes asymmetric setting, i.e. SI Y is available at the

decoder and the problem is reduced to compressing X to H(X|Y ) at the encoder.

In syndrome approach a binary (N,K) code C is constructed with size (N −
K,N) parity check matrix H. The well-known properties of such a code and

syndrome decoding are summarized in the following. The code contains all N -

vectors x such that xHT = 0. The code partitions the space of N -vectors (2N

vectors) into 2(N−K) cosets of 2K words. Each coset is indexed by the (N −K)-

vector syndrome s. All sequences in a coset share the same syndrome Cs =

{x : s = xHT}. In addition, because of the linearity of the code, a coset results

from the translation of the code by any representative of the coset: ∀v ∈ Cs,
Cs = C ⊕ v. The minimum Hamming weight representative of the coset is called

the coset leader. It is used for maximum-likelihood decoding of the code, which
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is formulated as follows:

x̂ = argmin
x∈C

dH(x,y),

where dH(·, ·) is the Hamming distance function. This decoding procedure

is called the syndrome decoding. The decoder first calculates the syndrome

s = yHT of the received word y. Since x ∈ C the syndrome of y equals to

the syndrome of error e where y = x⊕ e: s = yHT = (x⊕ e)HT = eHT. The

function f(s) computes the coset leader for syndrome s = yHT. This coset leader

is the ML estimate of the error pattern e. Then the ML estimate of x is given

by x̂ = y ⊕ f(yHT).

Such a code is used in the asymmetric SW problem as follows. The encoding

operation is defined as sending only the syndrome corresponding to input n-vector

x : s = xHT. The N -vector x is mapped into its corresponding (N −K)-vector

syndrome s. Therefore, a compression ratio of N :(N − K) is achieved. The

decoder, given the correlation between sources X and Y , received coset index s

and the SI y, searches for the sequence that is closest to y in s-coset Cs:

x̂ = argmin
x∈Cs

dH(x,y).

It is important to note that the minimization may be performed over a coset

whose coset leader is not the all-zero vector (syndrome is not zero). Therefore, the

classical ML channel decoder has to be adapted in order to be able to enumerate

all vectors in a given coset Cs. Because of the linearity of the code, by adding the

syndrome of y onto s we get s⊕ yHT = (x⊕ y)HT = eHT. Therefore, the ML

estimate of the error pattern e in this case is f(s⊕ yHT)

Another way to look at the syndrome decoding principle is as follows. As

mentioned above, because of the linearity of the code, a coset Cs can be formed

from the translation of code C by any representative of the coset. For different

representatives only the order of words are shuffled. Therefore, we can get a

codeword x′ ∈ C from x ∈ Cs by adding any representative a of the coset Cs:
x′ = x ⊕ a. Since, y = x⊕ e, by adding a representative a to both sides we
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get y ⊕ a = x⊕ a⊕ e. Setting y′ = y ⊕ a and x′ = x⊕ a, we get y′ = x′ ⊕ e.

Hence, we can do the decoding on C instead of Cs, which is the normal channel

decoding operation, to find an estimate of x̂′ of x′. And, by adding a onto estimate

x̂′ we get the estimate x̂ of x.

Another approach on constructing SW codes from capacity-achieving linear

codes is called the parity approach. Although the syndrome approach is optimal,

it may be difficult to construct rate-adaptive codes by puncturing the syndrome.

The parity approach is originally proposed to get rate adjustable codes easily via

puncturing. In parity approach, parity bits are sent instead of syndrome.

Let C̃ be an (N, 2N − K) systematic binary linear code, defined by its N ×
2N −K generator matrix G = [ I P ] : C̃ = {[ x xp ] = xG}. The compression

is achieved by only sending the parity bits xp. The systematic bits x are not

transmitted. This gives a compression ratio of N : (N − K). The correlation

between the source X and SI Y is modeled as a virtual channel in this approach,

too. The pair [ y xp ] is regarded as the noisy version of [ x xp ]. Therefore,

the total channel is a parallel combination of a BSC and a perfect channel. The

decoder corrects the virtual channel noise and estimates x given the parity bits

xp and the SI y which is regarded as the noisy version of the original sequence

x. Therefore, the usual ML decoder must be adapted to take into account that

some bits (parity bits) of the received sequence are perfectly known.

2.1.2 Practical Slepian-Wolf Codes Based on Channel

Codes

Development of good channel codes spurred interest in using them in constructing

practical SW codes which started with the work of Pradhan et al. in [41]. Then,

a number of researchers developed different methods which we briefly survey in

this section. Practical Slepian-Wolf (SW) coding schemes can be divided into

two main categories: asymmetric and nonasymmetric. Asymmetric SW coding

refers to the case where one source, for example Y , is transmitted at its entropy

14



rate H(Y ) and is used as side information (SI) to decode the second source X,

which compressed at rate H(X|Y ). Nonasymmetric SW coding refers to the case

where both sources are compressed at a rate lower than their respective entropy

rates. Both syndrome and parity approaches are used to construct asymmetric

and nonasymmetric schemes. In both of the approaches, Y is treated as a noisy

version of X, i.e. the correlation between source X and SI Y is modeled as

a “virtual” channel. If a linear block code achieves the capacity of the binary

symmetric channel that models the correlation between the two sources, then this

capacity-achieving channel code can be turned into a SW-achieving source code.

Both the LDPC and Turbo codes are used in this way to construct practical SW

codes [42].

2.1.2.1 Asymmetric SW Coding

The first practical approach to syndrome decoding appeared in a scheme called

DISCUS [41]. For convolutional codes, Viterbi decoding on a modified trellis is

proposed. The method takes advantage of the linearity of the code. For sys-

tematic convolutional codes a representative of the coset is the concatenation of

K-length all zero vector and (N −K)-vector syndrome s: [ 0 s ]. This represen-

tative is then added to all the codewords labelling the edges of the trellis. And

Viterbi decoding is done on this modified trellis. The novelty in this paper is

to apply the syndrome principle to modify the normal trellis decoder. This is

accomplished by using a systematic code.

Another approach to syndrome decoding of convolutional codes is proposed

in [43]. In this approach the translation by a coset representative is performed

outside the decoder. The encoder calculates the syndrome which is referred as

syndrome forming (SF). In the decoder, first, a representative is computed from

the received syndrome s (this step is called inverse syndrome forming - ISF)

and added to SI y. Since there are many representatives, ISF operation is not

unique. However, it is particularly easy to perform ISF operation when the code is

systematic. This is the same as in DISCUS [41] method, where the representative

used is [ 0 s ]. Therefore, systematic codes are assumed in this paper. Then the
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decoding is performed in usual manner using the original trellis. As a last step

the representative is added onto the output of the decoder to get the estimate of

the original stream x. The advantage of this method is that it does not modify

the decoder. This method is also applied to Turbo codes. They show a method

to get the ISF of a parallel or serially concatenated Turbo code from ISFs of its

constituent codes.

In [44] a SW scheme based on convolutional and turbo codes that can be

used for any code (not only systematic) is proposed. This scheme also uses the

syndrome approach. In this scheme the decoder is based on a syndrome trellis

rather than the usual trellis based on the generator matrix of the code. The

concept of syndrome trellis was first introduced for binary linear block codes

[45] and then extended to convolutional codes [46]. In this scheme again the

syndrome trellis is modified by the received syndrome s. The syndrome trellis

construction in this paper is new and different than the one in [46]. The states

of the trellis are marked differently than the conventional way in [46] which is

the partial syndrome value at that particular stage. The method in [44] gives a

simpler construction of the trellis in the sense that there is no need to expand

the parity check polynomial matrix into a matrix of an equivalent block code of

large dimension. Each stage k of the trellis is one of the two possible trellises

corresponding to sk = 0 and sk = 1. One of the advantages of this construction is

that it is possible to perform optimal decoding even if the syndrome is punctured.

The trellis stage corresponding to punctured syndrome bit consists of the union

of the two possible trellis stages for sk = 0 and sk = 1. This way both possibilities

are taken into account optimally and the complexity grows only linearly with the

punctured positions.

For LDPC codes, belief propagation decoder can be modified to take into

account the syndrome [47]. Here, the syndrome bits are added to the graph such

that each bit is connected to the parity check equation to which it is related.

This modification to the LDPC decoder is very natural and minimal. Only the

update rule at the check node is modified to take into account the value of the

syndrome bit.
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The parity approach is also used in constructing SW codes using turbo codes

[48][49]. In [48] a conventional turbo encoder/decoder pair is used. The system-

atic output of the encoders are not used and the parity outputs are punctured to

get the desired rates. The encoders considered in the paper are rate (N − 1)/N ,

but actually method is applicable to any encoder rate. The method described

here is the direct application of parity approach to turbo decoding. In a con-

ventional turbo encoder used for DSC, convolutional encoders are used and their

rate K/N is less than 1, i.e. K < N . The required rate for source encoding is

achieved by heavily puncturing the encoder outputs as in [48]. In [49], authors

take an alternative way to construct constituent encoders. They use two identical

finite state machine (FSM) encoders. These encoders are custom designed using

Latin squares. Their rate is greater than 1, i.e. K > N . They are used instead of

convolutional encoders in a parallel turbo encoder scheme with an interleaver in

between. There is no need for puncturing the output in this setting. The decoder

employs the turbo principle in a conventional way. Only the constituent decoders

are custom designed for these FSM encoders and they perform trellis decoding

using BCJR algorithm like in a conventional turbo decoder.

2.1.2.2 Nonasymmetric SW Coding

The methods proposed in the aforementioned works construct asymmetric SW

coding scheme which refers to source Y being encoded at its entropy rate H(Y )

and perfectly recovered at the decoder as a side-information (SI) and source X

encoded below its entropy rate at H(X|Y ) to be decoded with the help of SI

Y . Nonasymmetric SW schemes are also possible where the rate of each encoder

may vary while the total sum rate is kept constant. In this setting, the rates of

encoded streams may be varied to reach any point on the dominant face of SW

region. An asymmetric SW scheme can be turned into a nonasymmetric one using

time sharing [39]. All points of the segment between A and B of the SW rate

bound are achievable by time sharing. A fraction λ of samples (λn samples) is

coded at the vertex point A, i.e. at rates (H(Y ), H(X|Y )), and a fraction (1−λ)

of samples is coded at rates (H(X), H(Y |X)) corresponding to the corner point
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B of the SW rate region. This leads to the rates RX = λH(X) + (1− λ)H(X|Y )

and RY = (1− λ)H(Y ) + λH(Y |X).

In [50] two independent Turbo encoders are used to construct nonasymmetric

coding scheme using parity approach. Here, instead of treating one of the sources

as SI and assuming it is compressed at its entropy rate and losslessly recovered at

the decoder, both of the sources are encoded using turbo encoders independently.

In this scheme source X is input into the encoder directly while source Y is

interleaved before encoding. Half of the systematic bits of each encoder is sent

and the parity bits are punctured to get the desired rate. At the decoder, two

separate Turbo decoders perform conventional Turbo decoding with the addition

of an extra extrinsic information shared between the two Turbo decoders.

The parity approach can be modified to generate nonasymmetric schemes with-

out using time sharing [51]. This approach can be described as follows. n-

vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) are partitioned into sub-sequences

xh = (x1, . . . , xl), yh = (yl+1, . . . , yn), xs = (xl+1, . . . , xn), and ys = (y1, . . . , yl).

Sequences xh and yh are compressed by independent source encoders at their

corresponding entropy rate H(X) and H(Y ). The sequences xs and ys are en-

coded by independent systematic channel encoders, producing parity sequences

cx = (cx1 , . . . , c
x
a) and cy = (cy1, . . . , c

y
b), respectively. In the decoder, sub-sequences

xh and yh can be easily recovered by the source decoders. In order to recover

subsequence xs from cx and yh channel decoding of cx using yh as side informa-

tion is performed much as the same in normal parity approach. Similarly, ys is

recovered from cy and xh as SI. Because of the correlation between sources X and

Y , yh is interpreted as a corrupted version of xs. On the other hand parity bits cx

are considered to be sent through a noiseless channel. Letting a ≥ (n− l)H(X|Y )

and b ≥ lH(Y |X), the following compression rate pair is achieved:

RX ≥
l

n
H(X) +

a

n
≥ l

n
H(X) +

(
1− l

n

)
H(X|Y ),

RY ≥
n− l
n

H(Y ) +
b

n
≥
(

1− l

n

)
H(Y ) +

l

n
H(Y |X).

Any point on the dominant face of Slepian-Wolf region is achieved by varying the
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ratio l/n between 0 and 1. The above mentioned approach is applied to LDPC

codes for constructing a practical DSC scheme in [52]. In this paper, for the

purpose of practicality and efficiency, authors also proposed to design and use a

single type of LDPC encoder for both of the sources X and Y , assuming they

are both uniformly distributed. The paper also presents methods to construct

suitable degree distribution pairs for LDPC decoders to be used in this scheme.

In [53], the methods in [52] are extended to three correlated sources and a scheme

to handle rate-adaptation by adding more parity bits.

Nonasymmetric SW coding schemes using the syndrome approach were also

proposed recently. A syndrome approach was first proposed in [54], based on the

partitioning of a single systematic linear channel code C. The main code C is

partitioned into C1 and C2 with generator matrices G1 and G2. The sources are

assumed to be uniform. The generator matrices G1 and G2 of the two subcodes

are formed by extracting m1 and m2 lines, respectively, where m1 +m2 = k, from

the matrix G of the code C. The code construction has been extended in [55]

to the case where the sources X and Y are binary but nonuniformly distributed.

The method presented in [54] is further developed in [56] [57], for more than two

sources scenario using systematic codes. Also, methods for using this scheme for

systematic IRA and Turbo codes are proposed and performance simulations are

presented.

2.2 Polarization and Polar Codes

In this section, we give a review of polarization and polar codes for single user

channel and source coding. The treatment here is based entirely on the works of

Arıkan [12], Korada [16] and Şaşoğlu [21].

We consider a pair of correlated discrete random variables (X, Y ) with X ∈ X
and Y ∈ Y . X can be any discrete alphabet of prime size. In the following we

assume X = {0, 1, . . . , q − 1}, where q is a prime number. The alphabet Y is

an arbitrary discrete alphabet. (X, Y ) is assumed to be distributed according to
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Figure 2.3: First step of polar transformation.

PXY which is an arbitrary discrete distribution. X is considered to be the source

and Y is the side information. We use H(X|Y ) to denote conditional entropy

which is given by

H(X|Y ) = −
∑
x∈X
y∈Y

PXY (x, y) log PX|Y (x|y). (2.6)

The value of entropy is in [0, 1] 1. If H(X|Y ) = 0 then it means that X is

deterministic given the observation Y .

Polarization is a transformation that takes N independent copies of (X, Y )

and generates new N pairs of RVs. While all of the conditional entropy terms of

original pairs are the same and equal to H(X|Y ), the conditional entropy terms of

the transformed pairs are all different and close to either 0 or 1. As the size of the

transform increases, more and more percentage of the entropy terms gets close

to extremal values and the percentage of the intermediate ones decay to zero.

Thus, the entropy terms of the transformed pairs polarize. The bigger transforms

are obtained from smaller transforms by recursive construction. At each step of

recursion, two identical size-N/2 transforms are combined to generate a size-N

transform. Therefore, the block size of polar transform is always a power of 2, i.e.

N = 2n, n ∈ Z+. The recursive nature of the construction makes low complexity

encoders and decoders possible.
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2.2.1 Polarization

The first step of transformation is depicted in Figure 2.3 which is the basis of

polarization. Here, N = 2 and we have two identical copies of the source pair

denoted by (X1, Y1) and (X2, Y2). The mapping generates two new variables

U1 = X1 +X2 and U2 = X2, (2.7)

where ‘+’ denotes modulo-q addition. Note that the following is true for the

conditional entropy terms

2H(X|Y ) = H(X2|Y 2) = H(U1|Y 2) +H(U2|Y 2U1), (2.8)

due to the chain rule of entropy. The newly generated RV pairs are thus (U1, Y
2)

and (U2, Y
2U1). It is easy to see that

H(U2|Y 2, U1) ≤ H(X|Y ) ≤ H(U1|Y 2). (2.9)

This first step shows the essence of polar transformation. The first inequality in

(2.9) means that observing Y 2U1 gives a more reliable estimate of U2 (X2) than

observing Y2 alone. But, observing Y 2 alone gives a less reliable estimate of U1

(X1 +X2). Thus, two new entropy terms are created, one of which is closer to 0

than the original and the other closer to 1. However, it seems that there may be

a problem which is the possibility of equality in (2.9). As we will show later, the

inequalities are strict as long as the entropies are not one of the extremal values

of 0 or 1.

Continuing with the same idea we reach at the two step transformation shown

in Figure 2.4. Here, we combine two independent first step transformations in

Figure 2.3. First define

Ỹ1 , Y 2
1 and Ỹ2 , Y 4

3 . (2.10)

1Logarithms are to the base q.
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Figure 2.4: Two steps of polar transformation.

Then, note that (S1, Ỹ1) and (S2, Ỹ2) are i.i.d. We combine them to yield pairs

(U1, Ỹ
2) and (U2, Ỹ

2U1), where U1 = S1 + S2 and U2 = S2. Thus, we have the

same relation of entropies as follows

H(S2|Ỹ 2, S1 + S2) ≤ H(S1|Ỹ1) ≤ H(S1 + S2|Ỹ 2),

H(U2|Ỹ 2, U1) ≤ H(S1|Ỹ1) ≤ H(U1|Ỹ 2),

H(U2|Y 4, U1) ≤ H(S1|Ỹ1) ≤ H(U1|Y 4).

(2.11)

Similarly, if we define

Ȳ1 , Y 2
1 S1 and Ȳ2 , Y 4

3 S2, (2.12)

we see that (T1, Ȳ1) and (T2, Ȳ2) are i.i.d. We combine them to yield pairs (U3, Ȳ
2)

and (U4, Ȳ
2U3), where U3 = T1+T2 and U4 = T2. Thus, we have the same relation

of entropies as follows

H(T2|Ȳ 2, T1 + T2) ≤ H(T1|Ȳ1) ≤ H(T1 + T2|Ȳ 2),

H(U4|Ȳ 2, U3) ≤ H(T1|Ȳ1) ≤ H(U3|Ȳ 2),

H(U4|Y 4, U3) ≤ H(T1|Ȳ1) ≤ H(U3|Y 4, U2).

(2.13)

Note that the resulting entropy terms are again give the chain rule expansion on
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Figure 2.5: Polar transformation of size N (GN).

the total entropy:

H(X4|Y 4) = 4H(X|Y ) = H(U4|Y 4)

= H(U1|Y 4) +H(U2|Y 4, U1) +H(U3|Y 4, U2) +H(U4|Y 4, U3).

However, these newly created entropy terms are closer to 0 or 1 than the en-

tropy of the original variable pair. At the first step, generated terms H(S1|Ỹ1)

and H(T1|Ȳ1) were somewhat polarized as indicated with equation (2.9). Now,

with the second application of the transform to two i.i.d. copies enhances the

polarization as indicated with equations (2.11) and (2.13).

The general form of Arıkan’s transformation is obtained by recursive applica-

tion of the the transform in (2.9) to the newly created variables at each step.

There are a number of different ways this recursive nature of the transform may

be depicted, one of which is shown in Figure 2.5. The polar transform of size N is

denoted by GN and as it can be seen from the figure, it is recursively constructed

by two half-size transforms GN/2. RN is called the reverse shuffle operator. It

shuffles the places of the variables so that natural ordering of UN from top to

down is the correct decoding order. It places the i.i.d. variables from the outputs

of two identical transforms (GN/2) next to each other so that the basic transform
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can be applied again at left hand side of the figure.

The linear transform can be written as a matrix of size N ×N . Then, we may

write the relation between row vectors UN and XN as

UN = XNGN . (2.14)

Let

F =

[
1 0

1 1

]
(2.15)

and RN denote the reverse-shuffle operation matrix. Then, by direct observation,

size-N polar transform in Figure 2.5 can be algebraically written as

GN = (IN/2 ⊗ F )RN(I2 ⊗GN/2), (2.16)

where “⊗” denotes the Kronecker product of matrices. Some algebraic manipu-

lations ([12]) yield the following most used representation:

GN = BNF
⊗n, (2.17)

where BN = RN(I2 ⊗ BN/2) and “⊗n” denotes the n-th Kronecker power of a

matrix. BN is a symmetric permutation matrix referred to as the bit-reversal

matrix. Since it is symmetric and permutation we have BN = B−1
N . Sometimes

just F⊗n may be used as polarizing transformation. BN is a permutation and

thus just reordering of indices. Another useful fact is that GN = G−1
N .

The main polarization result states that the conditional entropy terms of the

transformed variables polarize to either 0 or 1. The following theorem makes this

precise.

Theorem 2 ([19]). For all ε > 0,

lim
N→∞

1

N

∣∣{i ∈ [N ] : H(Ui|Y N , U i−1) > 1− ε
}∣∣ = H(X|Y ),

lim
N→∞

1

N

∣∣{i ∈ [N ] : H(Ui|Y N , U i−1) < ε
}∣∣ = 1−H(X|Y ).
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To prove this, one may take the indirect approach as in Arıkan’s original work

[12] or the direct approach of Şaşoğlu [21]. Here, we follow Şaşoğlu’s method.

First, we need the following key lemma which states that the single step trans-

formation (2.9) always enhances polarization except at the boundary cases.

Lemma 1 ([21]). Let X1, X2 ∈ X and Y1, Y2 ∈ Y be random variables with the

following joint probability density

PX1Y1X2Y2(x1, y1, x2, y2) = PX1Y1(x1, y1)PX2Y2(x2, y2). (2.18)

If H(X1|Y1), H(X2|Y2) ∈ (δ, 1− δ) for some δ > 0, then there exists and ε(δ) > 0

such that

H(X1 +X2|Y1, Y2)−max {H(X1|Y1), H(X2|Y2)} ≥ ε(δ). (2.19)

Definition 4. For i.i.d. (X1, Y1) and (X2, Y2) with H , H(X1|Y1), we define

H0 , H(X1 +X2|Y 2),

H1 , H(X2|Y 2, X1 +X2).
(2.20)

Polar transformation of length N = 2n transforms N i.i.d. copies of (X1, Y1)

with an average conditional entropy to N different pairs of the form (Ui, Y
NU i−1)

whose conditional entropy terms are closer to extremal values of 0 or 1. The N

different entropy terms can be obtained by applying the above definition repeat-

edly. At each step of transformation the number of entropy terms doubles. The

nature of transform GN results in the following identities

H(U1|Y N) = H0···000

H(U2|Y N , U1) = H0···001

H(U3|Y N , U2) = H0···010

...

H(UN−1|Y N , UN−2) = H1···10

H(UN |Y N , UN−1) = H1···11.

(2.21)
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For block length of N the binary vector b as the superscript of H is of length

n. Each of the N different conditional entropy terms are enumerated with the

binary vector b.

We define two related random processes. We define i.i.d. process B1, B2, . . .

where Bi is distributed uniformly over {0, 1}. Then, we define a [0, 1]-valued

random process H0, H1, . . . recursively as

H0 = H(X|Y ),

H1 = HBn
n−1, n = 1, 2, . . .

(2.22)

Because of the relations in (2.21) and the fact that Bi is uniformly distributed

the following is true for all n and any I ⊆ [0, 1]:

Pr[Hn ∈ I] =
1

N

∣∣{i : H(Ui|Y N , U i−1) ∈ I
}∣∣ . (2.23)

Thus, Theorem 2 is implied with the following theorem.

Theorem 3 ([21]). Hn converges almost surely to a {0, 1}-valued random variable

H∞ with Pr[H∞ = 1] = H(X|Y ).

Theorem 3 shows that as the block size increases to infinity the conditional

entropies of the transformed pairs approach to either 0 or 1. And combined with

(2.23), it implies Theorem 2.

If the entropy is 0 then the variable can be estimated given the observation

with certainty. On the other hand if the entropy is 1, then it is not possible to

reliably estimate the value of the random variable in any condition. The above

reasoning suggests the use of polarization in source coding with side information

as follows. Let’s fix ε > 0 and define the set

A ,
{
i ∈ [N ] : H(Ui|Y N , U i−1) ≤ ε

}
. (2.24)

From Theorem 2, the size of A must be greater than (1−H(X|Y )− δ) for some

δ > 0. Then, the encoder observing a realization xN calculates uN = xNGN
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and transmits uAc to the decoder, because those are precisely the variables which

cannot be estimated reliably using the observations. The remaining, given the

observations, can be estimated at the decoder. The decoder, observing uAc and

side information yN , generates the estimation ûN bit-by-bit successively as

ûi =


ui, if i ∈ Ac,
0, if i ∈ A and L(yN , ûi−1) > 1,

1, otherwise.

(2.25)

The likelihoods are given as

L(yN , ui−1) =
Pr
[
Ui = 0|Y N = yn, U i−1 = ui−1

]
Pr [Ui = 1|Y N = yn, U i−1 = ui−1]

. (2.26)

Let’s denote the error probability of optimally decoding ith bit given the

observations as Pe(Ui|Y N , U i−1). Obviously H(Ui|Y N , U i−1) → 0 implies

Pe(Ui|Y N , U i−1) → 0. We need to make ε small to keep error probability small.

However, for small block lengths if we keep ε too small the size of A may shrink

too much away from the ideal value of (1 −H(X|Y )). But, as the block length

goes to infinity both the error probability decay to zero and the size of A goes

to (1−H(X|Y )). The question is how fast this decay occurs. The above results

just show that the polarization happens, but they do not give any indication of

how fast it occurs. We discuss this next.

2.2.2 Polarization Rate and Probability of Error

The choice of set A in (2.24) can be modified to include block length dependent

ε to yield codes with vanishing error probability. Define block length dependent

set Aβ as

Aβ ,
{
i ∈ [N ] : Pe(Ui|Y N , U i−1) ≤ 2−N

β
}
, (2.27)

for some positive β < 1/2. Following theorem shows that we may consider Aβ
instead of A for construction of capacity achieving polar codes.
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Theorem 4. For all 0 < β < 1/2 and ε > 0, there exists N0 = N0(β, ε) such that

|Aβ| > (1−H(X|Y )− ε)N (2.28)

for all N ≥ N0.

Theorem 4 shows that at large block lengths those bit error probabilities

Pe(Ui|Y N , U i−1) that go to zero, go to zero exponentially fast in the square root

of the block length.

Error terms Pe(Ui|Y N , U i−1) need to be calculated to prove the theorem. The

calculation of error terms Pe(Ui|Y N , U i−1) become analytically intractable as the

block size increases. Therefore, the error analysis is performed by finding good

bounds on error. For this purpose the Bhattacharyya parameter Z(X|Y ) is de-

fined as [21]

Z(X|Y ) ,
1

q − 1

∑
x,x′:
x 6=x′

∑
y

√
PXY (x, y)PXY (x′, y). (2.29)

It is well-known that the Bhattacharyya parameter upper bounds the error prob-

ability:

Proposition 1 ([21]).

Pe(X|Y ) ≤ (q − 1)Z(X|Y ). (2.30)

Since Z(X|Y ) bounds the error probability Pe(X|Y ), it is expected that

Z(X|Y ) is close to 0 whenever H(X|Y ) is close to 0 and it is close to 1 whenever

H(X|Y ) is close to 1. It is made precise by the following proposition.

Proposition 2 ([21]).

Z(X|Y )2 ≤ H(X|Y ),

H(X|Y ) ≤ log(1 + (q − 1)Z(X|Y )).
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By the above proposition we have Z(X|Y ) ≥ 1− δ ⇒ H(X|Y ) ≥ 1− 2δ and

Z(X|Y ) ≤ δ ⇒ H(X|Y ) ≤ log[1 + (q− 1)δ] ≤ κδ where κ = (q− 1)/ ln q. There-

fore, Z(X|Y ) is also considered as a measure of reliability. The Bhattacharyya

parameters of the newly created variables after one step transformation also po-

larize just like the entropies. We have the following relation

Z(U2|Y 2, U1) ≤ Z(X|Y ) ≤ Z(U1|Y 2). (2.31)

As it is the case for entropies, these inequalities are strict as long as Z(X|Y ) is

not one of the extremal values of 0 or 1. The following lemma gives the bounds

on these.

Lemma 2 ([21]).

Z(U1|Y 2) ≤ (q2 − q + 1)Z(X|Y ),

Z(U2|Y 2, U1) ≤ (q − 1)Z(X1|Y1)2.

To prove Theorem 4, we need to define a random process that tracks the

behavior of Bhattacharyya parameters under recursive polarization construction.

For that, we make the following definition in parallel with Definition 4.

Definition 5. For i.i.d. (X1, Y1) and (X2, Y2) with Z , Z(X1|Y1), we define

Z0 , Z(X1 +X2|Y 2),

Z1 , Z(X2|Y 2, X1 +X2).
(2.32)
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With the above definition, Bhattacharyya parameters under recursive polar-

ization construction satisfy

Z(U1|Y N) = Z0···000

Z(U2|Y N , U1) = Z0···001

Z(U3|Y N , U2) = Z0···010

...

Z(UN−1|Y N , UN−2) = Z1···10

Z(UN |Y N , UN−1) = Z1···11.

(2.33)

Just like the entropy process in (2.22), we define two related random processes.

We define i.i.d. process B1, B2, . . . where Bi is distributed uniformly over {0, 1}.
Then, we define a [0, 1]-valued random process Z0, Z1, . . . recursively as

Z0 = Z(X|Y ),

Z1 = ZBn
n−1, n = 1, 2, . . .

(2.34)

By proposition 1, Z(Ui|Y N , U i−1) upper bounds average symbol error proba-

bility and thus, we could also have defined set Aβ as

Aβ ,
{
i ∈ [N ] : Z(Ui|Y N , U i−1) ≤ 2−N

β
}
. (2.35)

Then, Theorem 4 is proved as a corollary to Lemma 2 and the following lemma.

Lemma 3 ([21]). Let B1, B2, . . . be an i.i.d. binary process where Bi is uniformly

distributed over {0, 1}. Also let Z0, Z1, . . . be a [0, 1]-valued process where Z0 is

constant and

Zn+1 ≤ KZ2
n if Bn+1 = 1,

Zn+1 ≤ KZn if Bn+1 = 0,

for some K > 0. Suppose that {Zn} converges a.s. to a {0, 1}-valued random
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variable Z∞ with Pr[Z∞ = 0] = z. Then, for any β < 1/2,

lim
n→∞

Pr[Zn ≤ 2−2nβ ] = z.

Random process {Zn} converges a.s. to a {0, 1}-valued random variable Z∞

with Pr[Z∞ = 0] = (1−H(X|Y )) by Proposition 2 and Theorem 3. Thus, with

Lemma 2 it satisfies the conditions of Lemma 3. Then, since by Proposition 1

Pe(Ui|Y N , U i−1) is bounded by Z(Ui|Y N , U i−1), Theorem 4 is implied by Lemma

3. This result shows that we may impose exponentially small bound on probability

of decoding error of symbols of information set A and still reach the bound
1
N
|A| → (1−H(X|Y )) as N →∞.

By the above results, it obvious how source coding with side information can

be done using polarization. Encoding and decoding operations were given before

in this section. However, how to perform channel coding is not so obvious. It

requires some more treatment to prove that channel capacity may be reached by

polar coding. This will be discussed next.

2.2.3 Channel Coding

Polar codes were first introduced in Arıkan’s original work [12] as binary channel

codes that achieve the capacity of symmetric channels. Since then there has been

numerous work expanding the area of applicability of polarization. Previous

section presents some of the results of those work. There is no constraint on the

distribution of X and joint distribution of (X, Y ) in previous results. Therefore,

we may construct polar channel codes that achieve the capacity of any discrete

channel, not only symmetric. The theoretical analysis of average probability of

error depends on randomized maps and was introduced in [27] as an extension to

Korada’s randomized rounding method in [16] which was in lossy source coding

context.

Let (X, Y ) be a pair of correlated random variables with properties defined
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as in previous sections. We may consider X as input to a channel described by

conditional probability PY |X and Y as the channel’s output. We consider a block

of N = 2n i.i.d. channel uses resulting in (XN , Y N). In addition, let UN = XNGN

as always. Note that the following are true for the joint distributions of the

random variables:

PXNY N (xN , yN) =
N∏
i=1

PXY (xi, yi),

PUNY N (uN , yN) = PXNY N (uNGN , y
N).

Also, for polar coding purposes we decompose the joint distribution as

PUNY N (uN , yN) = PY N (yN)
N∏
i=1

PUi|Y N ,U i−1(ui|yN , ui−1). (2.36)

Similarly the following is true for PUN :

PUN (uN) = PXN (uNGN),

PUN (uN) =
N∏
i=1

PUi|U i−1(ui|ui−1). (2.37)

We define the following polarization sets :

HX ,
{
i ∈ [N ] : Z(Ui|U i−1) ≥ 1− δN

}
,

LX|Y ,
{
i ∈ [N ] : Z(Ui|Y N , U i−1) ≤ δN

}
,

where δN = 2−N
β

for some positive β < 1/2. Then, we define the information

(I) and frozen (F) sets as

I , HX ∩ LX|Y , F , [N ] \ I. (2.38)

Proposition 3. For all 0 < β < 1/2, there exists N0 = N0(β, ε) such that

|I| > (H(X)−H(X|Y )− ε)N, (2.39)
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for all N > N0.

First, let’s elaborate on the definitions made. Arıkan’s polar transform is often

considered as a transform that distills the randomness in a block of i.i.d. random

variables. By that we mean that it takes N i.i.d. variables XN with the same

mediocre distribution and creates N different variables UN with almost extremal

distributions, i.e. either almost uniform or almost deterministic distributions. HX

represents the set of transformed variables with almost uniform distribution and

thus called the high entropy set. The entropy of each variable in this set is close

to 1. The remaining part of the variables comprise the low entropy set and have

almost deterministic distributions and thus have entropies close to 0. Therefore,

we have |HX | ∼ H(X)N . Similarly, LX|Y represents the set of transformed

variables with almost deterministic distributions under the side information Y N .

The variables in this set are almost deterministic given the previous variables

and the side information. A subset of LX|Y is LX , {i ∈ [N ] : Z(Ui|U i−1) ≤ δN}
which is the “null set” if original variables have uniform distribution. Thus

LX represents the non-uniformity in distribution of X. The information set I
is precisely those variables that have almost uniform distribution without side

information Y N and almost deterministic distribution with the side information,

and thus can be estimated at the decoder.

To prove Proposition 3 we first make the following definition.

Definition 6. Let PY1|X and PY2|X denote two DMCs with same input alphabet

and possibly different output alphabets. We say PY2|X is degraded with respect to

PY1|X , denoted as PY2|X � PY1|X , if there exists a distribution PY2|Y1 such that

PY2|X(y2|x) =
∑
y1

PY1|X(y1|x) PY2|Y1(y2|y1). (2.40)

Lemma 4 (Degradation [16]). Let PY1|X and PY2|X denote two DMCs with

PY2|X � PY1|X . Then,

Z(X|Y1) ≤ Z(X|Y2). (2.41)

Proof. See Appendix A.2.
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Proof of Proposition 3. From Theorem 4 we know that |LX|Y | > (1−H(X|Y )−
ε1)N . Define LX , {i ∈ [N ] : Z(Ui|U i−1) ≤ δN}. By following similar steps to

proof of Theorem 4, we may prove |LX | > (1 − H(X) − ε2)N . Note that we

can write I = LX|Y \ {LX ∪ {[N ] \ (LX ∪ HX)}}. ∆ , {[N ] \ (LX ∪ HX)} is

the set of partially polarized indices and its fraction goes to zero as N → ∞
by polarization, i.e. |∆|

N
< ε3. Since obviously channel PUi|U i−1 is degraded with

respect to PUi|Y N ,U i−1 , we have Z(Ui|Y N , U i−1) ≤ Z(Ui|U i−1). Thus, we have

LX ⊆ LX|Y . From that the claim follows.

2.2.3.1 Encoding

The encoder first constructs uN symbol by symbol and then calculates xN =

uNGN to be supplied to the channel. The subset of indices of uN identified by

set I are the message symbols intended for the receiver. They are determined

uniformly. The remaining non-message indices are computed according to a set

of maps that are shared between the encoder and decoder. These maps will be

identified with λi and defined for i ∈ Ic. We use λIc to denote the set of maps

shared between the encoder and the decoder.

We will define two different versions of these maps. The first one will be maxi-

mum a posteriori based deterministic rules. The second one will be random maps.

In the analysis, random maps will be used for the sake of analytic tractability.

The analysis of error probability will be done as an average over all possible maps.

We define deterministic maps λ̄i : X i−1 → X as

λ̄i(u
i−1) , arg max

u′∈X

{
PUi|U i−1(u′|ui−1)

}
. (2.42)

We also define class of random maps Λi : X i−1 → X as

Λi(u
i−1) , q, w.p. PUi|U i−1(q|ui−1). (2.43)

Maps λi are the realizations of random maps Λi. Each realization of set of maps
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λIc results in different encoding and decoding protocols. The distribution over

the choice of maps is induced with the above equation (2.43). The encoder uses

the input symbols uI and identical shared maps λi to construct the length-N

vector uN successively as

ui =

ui, if i ∈ I,
λi(u

i−1), otherwise.
(2.44)

Then, xN = uNGN is supplied to the channel.

2.2.3.2 Decoding

Decoder decodes the sequence ûN symbol by symbol using the observations yN .

We define the following decoding functions:

ζi(y
N , ui−1) , arg max

u′∈X

{
PUi|Y NU i−1(u′|yN , ui−1)

}
. (2.45)

The decoder uses the identical shared maps λi to reconstruct the estimate ûN

successively as

ûi =

ζi(yN , ûi−1), if i ∈ I,
λi(û

i−1), otherwise.
(2.46)

Instead of λi, the decoder could also use λ̄i when doing deterministic operation.

As stated before the encoder and decoder are using the same shared maps for

non-message indices. A realization of set of random maps has a probability of

occurrence induced by probabilities PUi|U i−1 as given in (2.43). Each realization

results in different encoding / decoding protocols. We use randomized map con-

cept to bound the expected average error probability by taking expectation over

all possible set of maps, thus showing that there exists at least one good set of

maps.

For different shared maps λIc , the results of encoding operation may be differ-

ent for the same input uI . For encoder at step i ∈ I of the process the inputs are
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inserted which are assumed to be uniformly distributed. Thus, for a realization of

set of maps λIc , a particular xN occurs with a certain probability induced by in-

put distribution and maps. We define the resulting average (over uI) probability

of error of above encoding and decoding operations as Pe[λIc ]. In the following we

show that for set I defined in (2.38) and encoding and decoding methods defined

in 2.2.3.1 and 2.2.3.2, there exists a set of maps λIc such that Pe[λIc ] ≤ O(2−N
β
),

for 0 < β < 1/2. We do that by determining the expected average probability

of error over the ensembles of codes generated by different encoding maps λIc .

The distribution over the choices of maps is given in (2.43). That is, we take

expectation of Pe[ΛIc ] which is a random quantity. Then we show that expected

average probability of error decay to zero as O(2−N
β
). This implies that for at

least one choice of λIc the average probability of error decays to zero as O(2−N
β
).

2.2.3.3 Total Variation Bound

To analyze the average error probability Pe via the probabilistic method we define

the following probability measure

Q(uN) =
N∏
i=1

Q(ui|ui−1), (2.47)

where conditional probabilities are defined as

Q(ui|ui−1) ,

1
q
, if i ∈ I,
PUi|U i−1(ui|ui−1), otherwise.

(2.48)

The probability measure Q defined in (2.47) is a perturbation of PUN in (2.37).

The difference between P and Q is due to those indices in message set I. The

following lemma provides a bound on the total variation distance between P and

Q. The lemma shows that by inserting uniformly distributed message bits in the

proper indices at the encoder does not perturb the statistics too much.

Lemma 5. Let probability measures P and Q be defined as (2.37) and (2.47),

respectively. For sufficiently large N and 0 < β < 1/2, the total variation distance
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between P and Q is bounded as

∑
uN∈XN

∣∣PUN (uN)−Q(uN)
∣∣ ≤ 2−N

β

. (2.49)

Proof. See Appendix A.3.

2.2.3.4 Average Error Probability

The encoding and decoding rules were established in Sections 2.2.3.1 and 2.2.3.2,

respectively. Consider the sequence uN formed at the encoder and observation

yN received by the decoder. The decoder makes an SC decoding error on the i-th

symbol for the following tuples:

T i ,
{

(uN , yN) : ∃u′ ∈ X s.t. u′ 6= ui,

PUi|Y NU i−1(ui|yN , ui−1) ≤ PUi|Y NU i−1(u′|yN , ui−1)
}
. (2.50)

The set T i represents those tuples causing error at the decoder in the case ui is

inconsistent with respect to observations and the decoding rule. The complete

set of tuples causing errors is

T ,
⋃
i∈I

T i. (2.51)

Assuming randomized maps shared between encoder and decoder, the average

error probability is a random quantity given as follows

Pe[ΛIc ] =
∑

(uN ,yN )∈T

[
PY N |UN (yN |uN) · 1

q|I|

∏
i∈Ic

1{Λi(ui−1)=ui}

]
(2.52)

The expected average block error probability is calculated by averaging over the

randomness in the encoder and decoder

P̄e , E{ΛIc} [Pe[ΛIc ]] . (2.53)
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The following lemma bounds the expected average block error probability.

Lemma 6. Consider the polarization based channel code described in Sections

2.2.3.1 and 2.2.3.2. Let the information set I be selected as in Proposition 3.

Then for 0 < β < 1/2 and sufficiently large N ,

E{ΛIc} [Pe[ΛIc ]] < 2−N
β

.

Proof. First, note that the expectation of average probability of error is written

as

E{ΛIc} [Pe[ΛIc ]] =
∑

(uN ,yN )∈T

[
PY N |UN (yN |uN) · 1

q|I|

∏
i∈Ic

P
{

Λi(u
i−1) = ui

}]
.

From the definition of random mappings Λi it follows that

P
{

Λi(u
i−1) = ui

}
= PUi|U i−1(ui|ui−1).

Then, we may substitute the definition for Q(uN) in (2.47) into the expression of

expected average probability of error to get

E{ΛIc} [Pe[ΛIc ]] =
∑

(uN ,yN )∈T

PY N |UN (yN |uN) Q(uN).

Then we split the error into two main parts, one due to the polar decoding

function and the other due to the total variation distance between probability

measures.

E{ΛIc} [Pe[ΛIc ]] =
∑

(uN ,yN )∈T

PY N |UN (yN |uN)
[
Q(uN)− P (uN) + P (uN)

]
,

≤
∑

(uN ,yN )∈T

PUNY N (uN , yN) +
∑
uN

∣∣Q(uN)− P (uN)
∣∣ .

The second part of the error which is due to total variation distance is upper

bounded as O(2−N
β
) by Lemma 5. Thus, it remains to upper bound the error

term due to polar decoding. Remember that T , ∪i∈IT i. We may upper bound
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each error symbol by symbol. Define error probability for symbol i ∈ I as

εi ,
∑

(uN ,yN )∈T i
PUNY N (uN , yN).

But this is the average probability of error for symbol i, i.e. εi = Pe(Ui|Y N , U i−1).

Probability of error is upper bounded by the Bhattacharyya parameter by Propo-

sition 1. By union bound, total average probability of error is ε ≤ ∑i ε
i. Then

we have

ε ≤
∑
i∈I

(q − 1)Z(Ui|Y N , U i−1),

≤ (q − 1)NδN .

This completes the proof that the expected average probability of error is upper

bounded as O(2−N
β
).

Since the expected value over the random maps of average probability of error

decays to zero, there must be at least one deterministic set of maps for which

Pe → 0.

2.2.3.5 Symmetric Channels and Uniform Distributions

It is well known that the capacity of a symmetric channel is achieved with uniform

distribution at its input. For uniform distributions, some of the concepts in

previous sections simplify. The random maps defined in (2.43) always results

in uniform distribution: Λi(u
i−1) = a, w.p. 1/q, ∀a ∈ X . Thus instead of

sharing set of maps λIc between encoder and decoder, we may generate a vector

for Ic uniformly at random and share that. Also, each realization of a set of

maps λIc have the same probability, which means that the expected average

error probability P̄e and average error probability for a realization Pe[λIc ] are the

same. Thus, as proven in [12] the value of those symbols in Ic don’t matter in

the sense that each selection results in the same average error probability. We

can choose any fixed vector for Ic and share it between encoder and decoder.
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Chapter 3

Distributed Coding of Uniform

Sources

In this chapter we present a simple method for performing Slepian-Wolf (SW)

coding using polar codes, based on [58]. [58] defines a general framework in

which a good single user channel code is used to obtain a good SW code that

can achieve any point on the dominant face of SW region. However, there is one

important limitation that the marginal distributions of the source variables must

be uniform. In exchange of this limitation the encoding/decoding operations can

be done using single user channel encoders and decoders. The method requires

syndrome calculation and channel decoder to perform coset decoding. By coset

decoding we mean that the channel decoder needs to be able to decode at an

arbitrary coset of the code. But a normal channel decoder can only decode in

a single coset (which is generally the zero syndrome one). Both coset decoding

and syndrome calculation are not trivial operations for an arbitrary good channel

code. For example, for turbo codes these operations are very hard. In this chapter

we show that polar codes fit nicely into this method in the sense that normal

channel encoders and decoders may be used and thus efficient low complexity

implementations can be achieved. The general SW coding (not limited to uniform

source marginals) using polar codes requires more complex decoders as presented

in Chapter 4. The contents of this chapter are based on our work in [59].
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3.1 Description of the Method

A method for constructing nonasymmetric SW scheme from a single channel code

restricted to the case of uniformly distributed sources using syndrome approach

was proposed in [58]. We show how this method may be applied to construct

SW coding using polar codes. We assume two correlated sources X and Y to

be binary RVs with uniform marginals. The correlation model between sources

X and Y is given as Y = X ⊕ E, where E ∼ Bernoulli(ε). Thus, H(X|Y ) =

H(Y |X) = H(E) = H(ε), where H(ε) = −ε · log ε−(1−ε) · log(1−ε). Here, Y can

also be viewed as a version of X passed through a virtual BSC with cross–over

probability ε.

Figure 3.1: Encoding for nonasymmetric SW.

The method of [58] can be summarized as follows. Consider two i.i.d. dis-

tributed and correlated N–vectors x = [xa xb] and y = [ya yb] sampled from

source RV (X, Y ). xa represents the first K bits and xb represents the last N−K
bits of vector x (the same applies to y). Also, let xa = [xa1 xa2] and ya = [ya1 ya2].

xa1 represents the first K1 bits and xa2 represents the last K2 bits of xa (the

same applies to ya), where K1 + K2 = K. Let G be a K × N generator ma-

trix and H a (N − K) × N parity check matrix of some block code. Assume

that H has the form [Ha Hb] where Ha is an (N −K)×K matrix and Hb is an

(N −K)× (N −K) non–singular matrix. Notice that the systematic version of a

code is a special case with Hb = IN−K . The syndromes of x and y are calculated

as sx = xHT = xaHT
a ⊕ xbHT

b and sy = yHT = yaHT
a ⊕ ybHT

b , respectively.

Then, X–encoder sends (xa1, sx) and Y –encoder sends (ya2, sy). The partitioning

of variables may be visualized as in Figure 3.1. The total number of bits sent
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by both encoders is 2N − K yielding a sum rate R = 2 − K/N . By choosing

K/N = 2 − H(X, Y ) = 1 − H(E), this scheme results in a code operating on

the dominant face of the SW region. Then by varying K1 and K2 subject to

K1 +K2 = K, one can operate at any point on the dominant face.

The decoding of the above scheme, which is depicted in Figure 3.2, is done as

follows. Let e = x⊕y be the error vector. Then, se = eHT = (x⊕y)HT = sx⊕sy.

The method assumes that there is a syndrome decoder for the given code which

is supplied with all–zeros vector as input and se as the coset index. The estimate

ê is obtained as the output. With this estimated error pattern, xa2 and ya1 can

be recovered using ya2 and xa1, respectively, as shown in right half of Figure 3.2.

Finally, xb and yb are obtained as

xb = (sx ⊕ xaHT
a )(HT

b )−1, (3.1)

yb = (sy ⊕ yaHT
a )(HT

b )−1. (3.2)

Note that, although it is not shown explicitly in Figure 3.2, likelihood calculation

of the the all–zeros vector input to the decoder is done using the assumed cross–

over probability ε of the virtual BSC between sources X and Y . Thus, the LLRs

input to the decoder are L = log 1−ε
ε

.

A polar code is identified by a parameter set (N,K,A,uAc), where N = 2n is

the block length, K is the code dimension, A is the information index set of size

K and uAc is the frozen bits vector of size N −K. The frozen bits uAc identify

a coset of the linear block code and can be used as syndrome of the polar code

[12]. An advantage of polar codes for this scheme is that the required syndrome

decoding is readily available in SC polar decoder. The SC decoder can decode

as easily for a given uAc as it can for zero syndrome. However, this standard

form of polar codes cannot be used in this method. Because, the second part of

parity check matrix (Hb) of a normal polar code is not invertible, thus the second

part of decoding given by (3.1) cannot be performed. But, the systematic version

of polar codes [23] can be used. Systematic polar encoding operation does the

mapping (xB,uAc)→ (xBc ,uA), where xB is the K-bit systematic vector and uAc

is the (N −K)-bit frozen bits vector.
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Decoder

input

syndrome

0

Eqn.(3.1)

Eqn.(3.2)

Figure 3.2: Decoding for nonasymmetric SW.

Now returning back to the nonasymmetric SW method of [58] described above,

we set xa = xB, xb = xBc and sx = uAc . This way we fulfill the requirements

of the method such that when xa is decoded using the estimated error vector ê,

the rest, xb, can be recovered from xa and sx. Given xa = xB and sx = uAc ,

computing xb = xBc is nothing but a systematic polar encoding operation.

We also use CRC to improve the short block length performance of SCL de-

coder, which was originally proposed by the authors of [25] in channel coding

context. There are two ways to incorporate a CRC into the above method. The

first one is to calculate the Lcrc–bit CRCs of N–bit source blocks and transmit

them separately. With this modification, X–encoder sends (xa1, sx, cx) and Y –

encoder sends (ya2, sy, cy), where cx and cy are CRCs of x and y, respectively.

Since CRC operation is linear, the CRC of error vector e = x ⊕ y is cx ⊕ cy.

Thus, the SCL syndrome decoder can use this information when estimating the

error vector. To match the required sum rate R, the channel code is adjusted so

that K = N(2−R) + 2Lcrc.

The second way is to complete N ′ = N −Lcrc length information blocks to N

with Lcrc bits of CRC. In this method, the CRCs are inside the N -bit x and y
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vectors. Thus, the LLR calculation for polar decoder is done differently:

Li =

log 1−ε
ε
, i ∈ {1, . . . , N − Lcrc}

0, i ∈ {N − Lcrc + 1, . . . , N},
(3.3)

Note that in (3.3), while the statistics of the first (N − Lcrc) bits (correlated

source bits) are known (Ber(ε)) and used for decoding, the statistics of the CRC

bits are assumed to be uniform. To match the required sum rate R, the channel

code is adjusted so that K = N(2 − R) + RLcrc. The two different methods of

adding the CRC does not make any difference performance wise.

3.2 Complexity of the Method

Source encoding is essentially a syndrome calculation. It is done using a SC polar

encoder which is of complexity O(N logN) [12]. Source decoding is done in two

stages. First, the estimate of error vector is calculated. This is the critical step of

decoding where errors are introduced. Here we use a SC list decoder with a list

size L. Hence, the complexity is O(L ·N logN) [25]. The second part of decoding

involves calculation of xb(yb) from xa(ya) and sx(sy) using (3.1) (3.2). However,

in practice matrix inversion and multiplication are not used. This calculation is

effectively a systematic polar encoding operation and efficiently performed using a

SC polar decoder. Thus, its complexity is O(N logN). Therefore, the total com-

plexity of the source decoder is dominated by the first step which is of complexity

O(L ·N logN).

3.3 Simulations

In this section, we present simulation results on performance of the source coding

method discussed. The correlation model between sources X and Y is given as

Y = X ⊕ Z, where Z ∼ Ber(ε). In all of the plots, the rates of codes are kept
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Figure 3.3: BER plot for rate allocation RX = 0.5, RY = 1 (asymmetric).

at a defined constant value while ε is varied to achieve different H(X|Y ) points.

The plotted BER corresponds to the averaged value over X and Y sources. The

polar decoder used is the SCL decoder of [25]. To improve the performance, a

16-bit CRC (CCITT) is added. The list decoder selects the output from the final

list with the aid of CRC. Note that, for source coding, CRC is appended to the

“codeword” vector x as opposed to channel coding case where it is appended

to “information” vector uA. The list size is set to 32 for all cases. The code

construction is done via the method proposed in [24] and optimized to p = 0.09

for R = 0.5.

The performance for (RX , RY ) = (0.5, 1), which corresponds to asymmetric

rate allocation, is presented in Figure 3.3. Figure 3.4 shows the BER plot with

rates allocated such that it results in symmetric setting: RX = 0.75 and RY =

0.75. It can be observed from the figure that the performance is slightly inferior

to the asymmetric case given in Figure 3.3. This is expected, since as opposed

to asymmetric case where no error is made for the source Y , in nonasymmetric

cases estimation of Y is also prone to errors, furthermore these errors propagate
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Figure 3.4: BER plot for rate allocation RX = 0.75, RY = 0.75 (symmetric).

to the recovery of X. Simulation result of a nonasymmetric operating point is

given in Figure 3.5. The rate allocation is such that RX = 0.875 and RY = 0.625.

It can be observed from the results that the performance is the same for all

nonasymmetric points.

Table 3.1: Nonasymmetrical SW performance for R = 1.5 (H(X, Y ) values for a
BER of 10−5).

(RX,RY) \ N 2048 4096 16384 65536

(0.500, 1.000) 1.361 1.388 1.424 1.444

(0.625, 0.875) 1.321 1.349 1.402 1.435

(0.750, 0.750) 1.321 1.349 1.402 1.435

Results for three different rate allocations are given in Table 3.1. A BER of

10−5 is considered to be lossless when determining the rate points. Figure 3.6

shows the performance of the method on SW rate region for N = 65536.
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Figure 3.5: BER plot for rate allocation RX = 0.875, RY = 0.625 (a nonasym-
metric point).
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Figure 3.6: Nonasymmetric method for N = 65536 together with the SW bound.
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Chapter 4

Distributed Lossless Coding

In this chapter, we present an extension of single-user polar codes to two-user

settings. The approach pursued here is based on monotone chain rule expansion

of entropy (or mutual information), which we will explain in detail later, and was

introduced in [28] by Arıkan. Before [28], a slightly different method for two-

user and multi-user generalization of polar codes were presented in [18] and [60],

respectively, in multiple-access channel (MAC) context. The basis of those works

rest on joint polarization approach that produces “extremal” channels which are

also MACs. This is in contrast to the approach in [28] where “extremal” channels

are single-user. The authors in [18] using joint polarization approach reached

an interesting result stating that there are five types of “extremal” channels.

However, in that work, it has also been shown that while polar coding can achieve

a certain rate point on the dominant face of MAC capacity region, it cannot

achieve an arbitrary rate point.

In Section 4.1, we explore in detail, polarization for distributed setting based

on monotone chain rule approach introduced in [28]. We extend the treatment

with an addition of side-information variable and using prime sized alphabets.

Then, in Section 4.2 we show how a Slepian-Wolf (SW) polar code may be gener-

ated that achieves full dominant face of SW rate region. Note that, the approach

used here works for arbitrary discrete source distributions, not only sources with
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uniform marginals like the approaches in [16] or Chapter 3. In addition, we ex-

plicitly write recursive formulas and give detailed successive-cancellation (SC) list

decoder implementation as a generalization of single-user list decoding introduced

in [25]. We also present simulation results giving the performance of list decoder.

Then, in Section 4.3 we show how to perform MAC (dual problem of SW coding)

polar coding using the results of Section 4.1. In independent and contempora-

neous works [61] and [62], authors pursue in MAC context, necessarily the same

approach introduced in [28] for polar code construction like we do in Section 4.3.

However, they remain restricted to uniform rate-region (uniform input distribu-

tions). We show that full MAC rate-region may be achieved for arbitrary input

distributions. In addition, we give performance simulation results of successive

cancellation list decoding.

4.1 Polarization for Distributed Setting

In this section we present the generalization of Section 2.2 to multi-user setting.

For notational convenience we study two user setting however the treatment can

easily be generalized to more than two users. This section is based on the work of

Arıkan in [28]. We will denote user 1 and 2 with variables X and Y , respectively.

We will denote the side information with variable Z. The user variables are from

prime sized alphabets: X, Y ∈ X = {0, 1, . . . , q − 1}, where q is prime. Z ∈ Z
may be of any discrete alphabet. The variables are drawn from an arbitrary joint

distribution PXY Z .

The possible compression rates R1 and R2 for users X and Y that can be

achieved with reliable lossless reconstruction under side information Z form a

two dimensional region. We denote the points in this region with rate vector

R̄ , (R1, R2). This rate region is defined by

R = {R̄ : R1 ≥ H(X|Z, Y ), R2 ≥ H(Y |Z,X), R1 +R2 ≥ H(X, Y |Z)}. (4.1)

The subset of R consisting of points for which the sum-rate holds with equality
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is referred to as the dominant face of the rate region:

J = {R̄ : R1 ≥ H(X|Z, Y ), R2 ≥ H(Y |Z,X), R1 +R2 = H(X, Y |Z)}. (4.2)

The bounds of this region does not change even when the encoding of correlated

source (X, Y ) is done separately and without the knowledge of side information

Z. The decoding must be done jointly with side information. This result is due

to Slepian and Wolf in their seminal work [38]. Therefore, region R is also called

Slepian-Wolf (SW) rate region.

4.1.1 Paths and Rates

Consider the i.i.d. block of random variables (XN , Y N , ZN) with N = 2n for some

n ≥ 1. Let, UN and V N denote the polar transforms of XN and Y N , respectively:

UN = XNGN , V N = Y NGN . (4.3)

The joint distribution of (XN , Y N , ZN) through polar transformation induces a

joint distribution on (UN , V N , ZN). Since, GN is a one-to-one mapping, we can

write the total entropy as follows

H(XN , Y N |ZN) = NH(X, Y |Z) = H(UN , V N |ZN). (4.4)

Recall that for single user polarization the total entropy term is expanded in

the order of increasing indices of the user vector UN : H(Ui|Y N , U i−1). This

expansion reflects the decoding order of symbols with the observations (both

Y N and U i−1) obtained so far. At each decoding step a single symbol is decoded.

The polarization result shows that these conditional entropy terms polarize. They

approach to 0 or 1 as N →∞. Thus, we use the ones with entropy close to 0 to

convey information.

Similarly, in multi-user setting we consider expansions of entropy that preserve

the order of indices of both user vector UN and V N . However, since there are

50



Figure 4.1: Monotone chain rule expansions.

two users, there is a freedom in the choice of expansion order. To capture the

expansion order a new vector of length 2N is defined: S2N , πN(UN , V N).

πN(·, ·) is from a special class of permutations where it takes 2 length-N vectors

and permutes the elements with special consideration such that the relative order

of indices of both vectors do not change. That is Ui comes before Ui+1 and Vj

comes before Vj+1 in the permuted vector S2N . For example, for N = 4 the

following is a valid permutation

S8 = (U1, V1, V2, U2, V3, U3, U4, V4). (4.5)

But S8 = (U1, V1, V2, U3, V3, U2, U4, V4) is not a valid permutation. The allowed

permutations may be visualized with a directed path on a two dimensional “chain

rule diagram” as mentioned in [28] and shown in Figure 4.1. The path on diagram

may also be represented with a path string b2N , bk ∈ {0, 1},∀k ∈ [2N ]. If bk = 0

then Sk is the next variable from UN vector. Similarly, if bk = 1 then Sk is the

next variable from V N vector. Thus, b2N has exactly N zeros and N ones. The

expansion in (4.5) is represented by b8 = 01101001.
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The special type of expansions described above is referred to as monotone

expansions. In the rest of the discussion we always use that kind of expansions.

Then, using the S2N vector defined above, monotone expansion of total entropy

in (4.4) can be written as

H(UN , V N |ZN) =
2N∑
k=1

H(Sk|ZN , Sk−1). (4.6)

Depending on the choice of path vector b2N , the above expression represents

all possible
(

2N
N

)
different particular monotone expansions. The total entropy is

decomposed into incremental entropy terms of the form H(Sk|ZN , Sk−1). Those

incremental entropy terms are visualized by edges on chain rule diagram and thus

the variables Sk are called the edge variables.

We define the following two rates for two users:

R1 =
1

N

2N∑
k=1:
bk=0

H(Sk|ZN , Sk−1), R2 =
1

N

2N∑
k=1:
bk=1

H(Sk|ZN , Sk−1).

It is easy to see that R1 attains its minimum 1
N
H(UN |ZN , V N) = H(X|Z, Y ) with

path b2N = (1N0N) (red path in Figure 4.1). Similarly, R2 attains its minimum
1
N
H(V N |ZN , UN) = H(Y |Z,X) with path b2N = (0N1N) (green path in Figure

4.1). In any case the sum rate is constant at Rsum = R1+R2 = 1
N
H(UN , V N |ZN).

The following are true for any path:

R1 ≥ H(X|Z, Y ), R2 ≥ H(Y |Z,X), R1 +R2 = H(X, Y |Z).

Thus, the defined rates lie on the dominant face of the rate region and span its

two end points.

However, it is not clear that if there exists paths that achieve any point on the

dominant face with arbitrary precision as N →∞. In the following we show that

it is indeed the case. To that end, we first define a distance between two paths

as follows.
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Definition 7. Let b2N and b̃2N be two paths with rate pairs (R1, R2) and (R̃1, R̃2),

respectively. The distance between b2N and b̃2N is defined as

d(b2N , b̃2N) , |R1 − R̃1|.

Note that, since R1 + R2 = R̃1 + R̃2 = H(X, Y |Z), the distance is also equal

to |R2 − R̃2|. Then, we make a definition of neighborhood between two paths as

follows.

Definition 8. Let two paths b2N and b̃2N be defined as neighbors if b̃2N can be

obtained from b2N by transposing bi with bj for some i < j such that

(i). bi 6= bj,

(ii). the substring bi+1 . . . bj−1 is either all 0s or all 1s.

The following proposition limits the distance for neighboring paths.

Proposition 4 ([28]). For neighbor paths b2N and b̃2N , the following is true:

d(b2N , b̃2N) ≤ 1

N
.

We define a class of paths as V2N , {0i1N0N−i : 0 ≤ i ≤ N} similar to magenta

path in Figure 4.1. Then, the following theorem shows that we may attain any

point on the dominant face of rate region with arbitrary precision using paths

from this class as N →∞.

Theorem 5 ([28]). Let (Rx, Ry) be any given rate point on the dominant face of

rate region R. For any given ε > 0, there exists a N and a path b2N from class

V2N with rate pair (R1, R2) satisfying

|R1 −Rx| ≤ ε, |R2 −Ry| ≤ ε.

The theorem may be proven easily using Proposition 4. Let, 1/N < ε. For

paths 1N0N(i = 0) and 0N1N(i = N) in class V2N , R1 attains H(X|Z, Y ) and
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H(X|Z), respectively. Thus, it spans the two end points of values possible for Rx.

For any 0 < i < N − 1 the distance between paths 0i1N0N−i and 0i+11N0N−i−1

is less than 1/N by Proposition 4. Thus there is an i such that |R1 − Rx| < ε.

Also, since R1 +R2 = Rx +Ry, |R2 −Ry| < ε is also true for that i.

There may be other paths that achieve the desired rate on the dominant face.

The class V2N gives a simple rule to obtain paths that achieve any point on the

dominant face as N →∞.

4.1.2 Path Scaling and Polarization

In the previous section we have seen that the total entropy term H(UN , V N |ZN)

is decomposed into 2N incremental entropy terms of the form H(Sk|ZN , Sk−1).

An incremental term is the entropy of single variable Sk ∈ X . Thus, it is [0, 1]-

valued. However, we have not said anything about polarization of those incre-

mental entropy terms, yet. In this section we define the conditions under which

they polarize.

Similar to single user case we define the following information sets:

A1(β) ,
{
k ∈ [2N ] : bk = 0, Z(Sk|ZN , Sk−1) ≤ 2−N

β
}
,

A2(β) ,
{
k ∈ [2N ] : bk = 1, Z(Sk|ZN , Sk−1) ≤ 2−N

β
}
.

Definition 9 (Path Scaling). For any path b2N representing a monotone chain

rule for (UNV N) and any integer L = 2l, let Lb2N denote

b1 · · · b1︸ ︷︷ ︸
L

b2 · · · b2︸ ︷︷ ︸
L

· · · b2N · · · b2N︸ ︷︷ ︸
L

, (4.7)

which represents a monotone chain rule for (ULNV LN). This scaling operation

preserves the “shape” of the path.

Proposition 5 ([28]). Let (R1, R2) be the rate pair for a fixed path b2N . Then

for any l ≥ 1, (R1, R2) is also the rate pair for scaled path 2lb2N .
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Theorem 6 ([28]). Fix N0 = 2n0 and b2N0 for some n0 ≥ 1. Let (R1, R2) be the

rate pair for b2N0. Let N = 2lN0 for l ≥ 1 and S2N be edge variables for 2lb2N0.

Then for any given 0 < β < 1/2 we have

lim
l→∞

1

2N

∣∣∣{k ∈ [2N ] : 2−N
β

< Z(Sk|ZN , Sk−1) < 1− 2−N
β
}∣∣∣ = 0,

lim
l→∞

1

N
|A1(β)| = 1−R1, lim

l→∞

1

N
|A2(β)| = 1−R2.

To prove this theorem it is enough to realize the following simple fact. Fix

a block length N0 = 2n0 and path b2N0 for (UN0V N0). Then consider the scaled

path 2b2N0 for (U2N0V 2N0). Let S2N0 and T 4N0 be edge variables for b2N0 and

2b2N0 , respectively. Let S̃2N0 be and independent copy of S2N0 . Then, polar

transformations (4.3) under this one step path scaling result in the following

identities:

T2k−1 = Sk + S̃k, T2k = S̃k, (4.8)

for all k ∈ [N0]. This is one step polar transformation. As we increase the size

of the block length through path scaling by L = 2l times, we will be generat-

ing polarized variables from L independent copies of each of the base variables.

There are 2N0 different variable pairs (Sk, Z
N0Sk−1) and corresponding entropies

H(Sk|ZN0Sk−1) at “base block” of length N0. The entropy terms H(Sk|ZN0Sk−1)

for an arbitrary “base path” b2N0 are not necessarily polarized. As we scale the

path by L, we will achieve a block length of N = LN0 and “scaled path” b2N .

The rate pair for the scaled path is the same as the base path. However, for each

entropy term in base block there are L entropy terms in scaled block which are

polarized.

Let the edge variables of the base path b2N0 be denoted with S2N0 as before

and the edge variables of l-step scaled path b2N be denoted with T 2N . Let’s focus

on a single index k in the base block and make the following variable substitution:

S̄ = Sk, Ȳ = ZN0Sk−1. (4.9)

Let S̄L and Ȳ L be L i.i.d. replica of S̄ and Ȳ , respectively. Let the transform
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of S̄L be denoted with T̄L = S̄LGL. Note that Lemma 1 and Theorem 3 apply.

Thus we have

lim
l→∞

1

L

∣∣{i ∈ [L] : H(T̄i|Ȳ L, T̄ i−1) ≥ 1− ε
}∣∣ = H(S̄|Ȳ ),

lim
l→∞

1

L

∣∣{i ∈ [L] : H(T̄i|Ȳ L, T̄ i−1) ≤ ε
}∣∣ = 1−H(S̄|Ȳ ).

Note that the l-step scaling operation extends the basic step transform in (4.8)

and we have the following relations

T̄i = TL(k−1)+i,

Ȳ L = ZNTL(k−1),

for all i ∈ [L]. The above is true for each k ∈ [2N0]. We can write the same result

in original variables as follows

lim
l→∞

1

L

∣∣{i ∈ [L] : H(TL(k−1)+i|ZN , TL(k−1)+i−1) ≥ 1− ε
}∣∣ = H(Sk|ZN0 , Sk−1),

lim
l→∞

1

L

∣∣{i ∈ [L] : H(TL(k−1)+i|ZN , TL(k−1)+i−1) ≤ ε
}∣∣ = 1−H(Sk|ZN0 , Sk−1).

for all k ∈ [2N0]. Thus the polarization occurs through path scaling. An arbitrary

path b2N0 at base block selects an arbitrary decoding order (in the monotone

class). The entropy terms are not necessarily polarized. But, after the path

“shape” is fixed and it is scaled, each variable may be substituted as in (4.9) and

the setting reduces to single user case. All of the discussions in Section 2.2.2 apply.

Using definition of Bhattacharyya parameter in (2.29) we have Z(Tk|ZN , T k−1)

bound symbol error probabilities. By Theorem 4 we can say that the polarization

occurs and its rate and the probability of error are order O(2−N
β
).

Now we may employ the above polarization concept in distributed source cod-

ing setup as follows. If the entropy is 0 then the variable can be estimated given

the observations with certainty. On the other hand if the entropy is 1, then it is

not possible to reliably estimate the value of the random variable in any condition.
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Let’s fix a path b2N , ε > 0 and define the sets

A1 ,
{
k ∈ [2N ] : bk = 0, Z(Sk|ZN , Sk−1) ≤ ε

}
,

A2 ,
{
k ∈ [2N ] : bk = 1, Z(Sk|ZN , Sk−1) ≤ ε

}
.

(4.10)

From Theorem 6, the size ofA1 must be greater than (1−R1−δ) and the size ofA2

must be greater than (1−R2−δ) for some δ > 0, where rate pair (R1, R2) is path

dependent and R1 ≥ H(X|Z, Y ), R2 ≥ H(Y |Z,X) and R1 +R2 = H(X, Y |Z).

Definition 10. In the following discussions, we frequently need to refer to corre-

sponding indices of UN , V N and their permuted form S2N = πN(UN , V N). The

permutation is characterized by path string b2N . Thus, all indices are considered

in the context of an assumed path b2N . We define indices i and j of UN and V N

corresponding to index k of S2N , respectively as

i =
k∑
l=1

1{bl=0}, j =
k∑
l=1

1{bl=1}. (4.11)

Also, let π
(k)
N denote the permutation for the first k elements as Sk = π

(k)
N (U iV j).

Note that with this definition we have 0 ≤ i, j ≤ N and i+ j = k, for 1 ≤ k ≤ N .

Then we have

Sk =

Ui, if bk = 0,

Vj, if bk = 1.

Using these definitions we define the following information sets:

Ã1 ,
{
i ∈ [N ] : bk = 0, Z(Sk|ZN , Sk−1) ≤ ε

}
,

Ã2 ,
{
j ∈ [N ] : bk = 1, Z(Sk|ZN , Sk−1) ≤ ε

}
.

(4.12)

Ã1 gives the indices of UN corresponding to the indices of S2N in setA1. Similarly,

Ã2 gives the indices of V N corresponding to the indices of S2N in set A2. Note

that, for set Ã1 we have Z(Sk|ZN , Sk−1) = Z(Ui|ZN , U i−1V j) and for set Ã2 we

have Z(Sk|ZN , Sk−1) = Z(Vj|ZN , U iV j−1).

The calculation of sets A1 and A2 may be done using the successive cancel-

lation decoder, described in the next section, in large number of Monte-Carlo
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simulations and integrating the results. Or, one may use a construction method

adapted from the single user case described in [63].

Encoding

The setting consists of two separate encoders each observing one of either xN or

yN . The decoder receives compressed sequences from both encoders and generates

estimates x̂N and ŷN with the help of side information zN .

Encoder 1 observing a realization xN calculates uN = xNGN and transmits

uÃc1 to the decoder. Encoder 2 observing a realization yN calculates vN = yNGN

and transmits vÃc2 to the decoder. Because those are precisely the variables which

cannot be estimated reliably using the observations. The remaining, given the

observations, can be estimated at the decoder.

Decoding

The decoder, receiving (uÃc1 , vÃc2) first assembles them into sub-vector sAc , where

A , A1 ∪ A2. Then using side information zN , generates the estimation ŝ2N

bit-by-bit successively as

ŝk =


sk if k ∈ Ac,
0 if k ∈ A and L(zN , ŝk−1) > 1,

1 otherwise.

(4.13)

The likelihoods are given as

L(zN , sk−1) =
Pr
[
Sk = 0|ZN = zn, Sk−1 = sk−1

]
Pr [Sk = 1|ZN = zn, Sk−1 = sk−1]

. (4.14)
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4.2 Slepian-Wolf Coding

In the previous section we have seen that polarization occurs under path scaling

and how we can use it to construct distributed source coding. Encoders just em-

ploy standard polar transforms separately and send subsets of calculated vectors.

The decoder must calculate likelihood ratios in (4.14). Likelihoods depends on

calculations of probabilities of the form Pr
[
Sk = sk|ZN = zn, Sk−1 = sk−1

]
. Sim-

ilar to single user case we need to find recursive formulas for calculation of this

probability to be able to achieve low complexity decoder implementation.

4.2.1 Recursive Formulas

First, for an i.i.d. block of variables (XN , Y N , ZN), transformed vectors (UN , V N)

as defined in (4.3) and permuted vector S2N = πN(UN , V N), we make the follow-

ing definitions.

PN(sk|zN , sk−1) , Pr
[
Sk = sk|ZN = zN , Sk−1 = sk−1

]
, (4.15)

P
(i,j)
N (ui, vj|zN , ui−1, vj−1) ,

Pr
[
Ui = ui, Vj = vj|ZN = zN , U i−1 = ui−1, V j−1 = vj−1

]
. (4.16)

We make use of the Definition 10 when we talk about vectors UN , V N , S2N

and their corresponding indices i, j, k under assumed path b2N . Then, we have

the following identity:

PN(sk|zN , sk−1) =


∑
vj+1

P
(i,j+1)
N (ui, vj+1|zN , ui−1, vj) if bk = 0∑

ui+1

P
(i+1,j)
N (ui+1, vj|zN , ui, vj−1) if bk = 1.

(4.17)

Now we will show that we can recursively calculate probabilities
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P
(i,j)
N (ui, vj|zN , ui−1, vj−1). Let’s first define the following four scaling constants.

C1 , 1,

C2 , Pr
[
U2i−1 = u2i−1|Z2N = z2N , U2i−2 = u2i−2, V 2j−2 = v2j−2

]
,

C3 , Pr
[
V2j−1 = v2j−1|Z2N = z2N , U2i−2 = u2i−2, V 2j−2 = v2j−2

]
,

C4 , Pr
[
U2i−1 = u2i−1, V2j−1 = v2j−1|Z2N = z2N , U2i−2 = u2i−2, V 2j−2 = v2j−2

]
.

(4.18)

The constants are calculated as follows.

C2 =
∑

u2i,v2j−1,v2j

P
(i,j)
N (u2i−1 + u2i, v2j−1 + v2j|zN1 , u2i−2

1,o + u2i−2
1,e , v2j−2

1,o + v2j−2
1,e )

P
(i,j)
N (u2i, v2j|z2N

N+1, u
2i−2
1,e , v2j−2

1,e ). (4.19)

C3 =
∑

u2i−1,u2i,v2j

P
(i,j)
N (u2i−1 + u2i, v2j−1 + v2j|zN1 , u2i−2

1,o + u2i−2
1,e , v2j−2

1,o + v2j−2
1,e )

P
(i,j)
N (u2i, v2j|z2N

N+1, u
2i−2
1,e , v2j−2

1,e ). (4.20)

C4 =
∑
u2i,v2j

P
(i,j)
N (u2i−1 + u2i, v2j−1 + v2j|zN1 , u2i−2

1,o + u2i−2
1,e , v2j−2

1,o + v2j−2
1,e )

P
(i,j)
N (u2i, v2j|z2N

N+1, u
2i−2
1,e , v2j−2

1,e ). (4.21)

We have the following four recursive formulas depending on the indices of u2N

and v2N being odd or even:

P
(2i−1,2j−1)
2N (u2i−1, v2j−1|z2N , u2i−2, v2j−2) = (1/C1)

·
∑
u2i,v2j

P
(i,j)
N (u2i−1 + u2i, v2j−1 + v2j|zN1 , u2i−2

1,o + u2i−2
1,e , v2j−2

1,o + v2j−2
1,e )

· P (i,j)
N (u2i, v2j|z2N

N+1, u
2i−2
1,e , v2j−2

1,e ), (4.22)
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P
(2i,2j−1)
2N (u2i, v2j−1|z2N , u2i−1, v2j−2) = (1/C2)

·
∑
v2j

P
(i,j)
N (u2i−1 + u2i, v2j−1 + v2j|zN1 , u2i−2

1,o + u2i−2
1,e , v2j−2

1,o + v2j−2
1,e )

· P (i,j)
N (u2i, v2j|z2N

N+1, u
2i−2
1,e , v2j−2

1,e ), (4.23)

P
(2i−1,2j)
2N (u2i−1, v2j|z2N , u2i−2, v2j−1) = (1/C3)

·
∑
u2i

P
(i,j)
N (u2i−1 + u2i, v2j−1 + v2j|zN1 , u2i−2

1,o + u2i−2
1,e , v2j−2

1,o + v2j−2
1,e )

· P (i,j)
N (u2i, v2j|z2N

N+1, u
2i−2
1,e , v2j−2

1,e ), (4.24)

P
(2i,2j)
2N (u2i, v2j|z2N , u2i−1, v2j−1) = (1/C4)

· P (i,j)
N (u2i−1 + u2i, v2j−1 + v2j|zN1 , u2i−2

1,o + u2i−2
1,e , v2j−2

1,o + v2j−2
1,e )

· P (i,j)
N (u2i, v2j|z2N

N+1, u
2i−2
1,e , v2j−2

1,e ). (4.25)

The proofs are given in Appendix B.1.

Note that the scaling constants are not actually needed for decoder implemen-

tation. We could also calculate slightly different types of probabilities: the total

probabilities. Then, the calculated probabilities would be of the following form:

P
(2i−1,2j−1)
2N (u2i−1, v2j−1, u

2i−2, v2j−2|z2N) =∑
u2i,v2j

P
(i,j)
N (u2i−1 + u2i, v2j−1 + v2j, u

2i−2
1,o + u2i−2

1,e , v2j−2
1,o + v2j−2

1,e |zN1 )

· P (i,j)
N (u2i, v2j, u

2i−2
1,e , v2j−2

1,e |z2N
N+1), (4.26)

P
(2i,2j−1)
2N (u2i, v2j−1, u

2i−1, v2j−2|z2N) =∑
v2j

P
(i,j)
N (u2i−1 + u2i, v2j−1 + v2j, u

2i−2
1,o + u2i−2

1,e , v2j−2
1,o + v2j−2

1,e |zN1 )

· P (i,j)
N (u2i, v2j, u

2i−2
1,e , v2j−2

1,e |z2N
N+1), (4.27)
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P
(2i−1,2j)
2N (u2i−1, v2j, u

2i−2, v2j−1|z2N) =∑
u2i

P
(i,j)
N (u2i−1 + u2i, v2j−1 + v2j, u

2i−2
1,o + u2i−2

1,e , v2j−2
1,o + v2j−2

1,e |zN1 )

· P (i,j)
N (u2i, v2j, u

2i−2
1,e , v2j−2

1,e |z2N
N+1), (4.28)

P
(2i,2j)
2N (u2i, v2j, u

2i−1, v2j−1|z2N) =

P
(i,j)
N (u2i−1 + u2i, v2j−1 + v2j, u

2i−2
1,o + u2i−2

1,e , v2j−2
1,o + v2j−2

1,e |zN1 )

· P (i,j)
N (u2i, v2j, u

2i−2
1,e , v2j−2

1,e |z2N
N+1). (4.29)

In SC decoder, either type of formulas may be used. However, in SC list

decoder the latter type must be used. This is because the list decoder makes

comparisons of alternate decoding paths and the comparisons are meaningful

over the total probabilities.

4.2.2 Decoder Implementation

In this section, we give an explicit recursive implementation of the SC decoder

for two-user monotone chain rule based polar codes. The algorithms described

in this section are generalizations of those by Tal and Vardy [40] to two-user

setting. We keep the general structure and the names of the algorithms intact. We

modify the inside of the algorithms to implement two-user monotone chain rule

based successive cancellation decoder. Similarly, we modify the data structures

to accommodate two-user probabilities and bit decisions. We first give an efficient

implementation of SC decoder and then go on to describing the list decoder.

For algorithmic purposes we use the notation in [40]. The code block length in

consideration is given by N = 2n. Unlike previous treatment, here vector indices

start at zero. User 1, 2 and side information vectors are represented by uN−1
0 , vN−1

0

and zN−1
0 , respectively. Also we use the notation P

(i,j)
n (ui, vj|zN−1

0 , ui−1
0 , vj−1

0 )

instead of P
(i+1,j+1)
N (ui, vj|zN−1

0 , ui−1
0 , vj−1

0 ) defined in (4.16). We give the high-

level algorithm for SC decoding in Algorithm 1. In each step k of the algorithm we
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calculate four probabilities of the form P
(i,j)
n (a, b|zN−1

0 , ui−1
0 , vj−1

0 ) for a, b ∈ {0, 1}.
The exact form of the probability that needs to be calculated depends on the path.

Then, using the calculated probabilities we make a decision for either user 1 or

user 2, depending on the path.

Algorithm 1: High-level description of the two-user SC source decoder

input : Received vectors uÃc
1
, vÃc

2
, side information zN and decoding path b2N

output: Decoded user bits (ûN , v̂N )

// Initialization

1 i← −1, j ← −1
// Main Loop

2 for k = 0, . . . , 2N − 1 do
3 if bk = 0 then

// Horizontal step

4 i← i+ 1

5 calculate P
(i,j+1)
n (a, b|zN−1

0 , ûi−1
0 , v̂j0)

6 set Pun [i][a]←∑
b P

(i,j+1)
n (a, b|zN−1

0 , ûi−1
0 , v̂j0)

7 if i ∈ Ãc1 then
8 set ûi to the received value ui
9 else

10 if Pun [i][1] > Pun [i][0] then
11 set ûi ← 1
12 else
13 set ûi ← 0

14 else
// Vertical step

15 j ← j + 1

16 calculate P
(i+1,j)
n (a, b|zN−1

0 , ûi0, v̂
j−1
0 )

17 set P vn [j][b]←∑
a P

(i+1,j)
n (a, b|zN−1

0 , ûi0, v̂
j−1
0 )

18 if j ∈ Ãc2 then
19 set v̂j to the received value vj
20 else
21 if P vn [j][1] > P vn [j][0] then
22 set v̂j ← 1
23 else
24 set v̂j ← 0

25 return (ûN , v̂N )

We follow the footsteps of [40] and write the equations (4.22) through (4.25) in

slightly different form. First we define the following variables. 0 ≤ λ ≤ n denotes

the layer for which there are 2n−λ independent blocks of size Λ = 2λ. We denote

the phases of users 1 and 2 with ϕ0 and ϕ1, respectively. We combine the phases
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of users 1 and 2 into a two-tuple ϕ = (ϕ0, ϕ1). We also use the notation ϕp for

p = 0, 1 to address the individual elements of the two-tuple. As before, we use

variables i and j to index uN−1
0 and vN−1

0 , respectively. Thus, for layer n we have

ϕ0 = i and ϕ1 = j. Note that for layer λ we have 0 ≤ ϕ0, ϕ1 < Λ. We write the

following four recursive formulas using the new definitions.

P
(2ψ0,2ψ1)
λ (u2ψ0 , v2ψ1|zΛ−1

0 , u2ψ0−1, v2ψ1−1) = (1/C1)·∑
u2ψ0+1
v2ψ1+1

P
(ψ)
λ−1(u2ψ0 + u2ψ0+1, v2ψ1 + v2ψ1+1|zΛ/2−1

0 , u2ψ0−1
0,e + u2ψ0−1

0,o , v2ψ1−1
0,e + v2ψ1−1

0,o )

· P (ψ)
λ−1(u2ψ0+1, v2ψ1+1|zΛ−1

Λ/2 , u
2ψ0−1
0,o , v2ψ1−1

0,o ). (4.30)

P
(2ψ0+1,2ψ1)
λ (u2ψ0+1, v2ψ1|zΛ−1

0 , u2ψ0 , v2ψ1−1) = (1/C2)·∑
v2ψ1+1

P
(ψ)
λ−1(u2ψ0 + u2ψ0+1, v2ψ1 + v2ψ1+1|zΛ/2−1

0 , u2ψ0−1
0,e + u2ψ0−1

0,o , v2ψ1−1
0,e + v2ψ1−1

0,o )

· P (ψ)
λ−1(u2ψ0+1, v2ψ1+1|zΛ−1

Λ/2 , u
2ψ0−1
0,o , v2ψ1−1

0,o ). (4.31)

P
(2ψ0,2ψ1+1)
λ (u2ψ0 , v2ψ1+1|zΛ−1

0 , u2ψ0−1, v2ψ1) = (1/C3)·∑
u2ψ0+1

P
(ψ)
λ−1(u2ψ0 + u2ψ0+1, v2ψ1 + v2ψ1+1|zΛ/2−1

0 , u2ψ0−1
0,e + u2ψ0−1

0,o , v2ψ1−1
0,e + v2ψ1−1

0,o )

· P (ψ)
λ−1(u2ψ0+1, v2ψ1+1|zΛ−1

Λ/2 , u
2ψ0−1
0,o , v2ψ1−1

0,o ). (4.32)
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P
(2ψ0+1,2ψ1+1)
λ (u2ψ0+1, v2ψ1+1|zΛ−1

0 , u2ψ0 , v2ψ1) = (1/C4)·
P

(ψ)
λ−1(u2ψ0 + u2ψ0+1, v2ψ1 + v2ψ1+1|zΛ/2−1

0 , u2ψ0−1
0,e + u2ψ0−1

0,o , v2ψ1−1
0,e + v2ψ1−1

0,o )

· P (ψ)
λ−1(u2ψ0+1, v2ψ1+1|zΛ−1

Λ/2 , u
2ψ0−1
0,o , v2ψ1−1

0,o ). (4.33)

Scaling constants Cm, m = 1, 2, 3, 4 are calculated as in (4.18). They are

calculated using the same probabilities P
(ψ)
λ−1. To calculate probabilities for level λ

we need to evaluate P
(ψ)
λ−1 with observation (z

Λ/2−1
0 , u2ψ0−1

0,e +u2ψ0−1
0,o , v2ψ1−1

0,e +v2ψ1−1
0,o )

and (zΛ−1
Λ/2 , u

2ψ0−1
0,o , v2ψ1−1

0,o ). Therefore, a branch number 0 ≤ β < 2n−λ is defined to

keep track of this. At top layer λ = n there is a single branch β = 0. For each layer

0 ≤ λ ≤ n, consider probability P
(ϕ)
λ corresponding to branch β with observation

(zΛ−1
0 , uϕ0−1

0 , vϕ1−1
0 ). Denote ψ = bϕ/2c. P (ϕ)

λ is calculated from probability P
(ψ)
λ−1

at layer λ−1 evaluated with observations (z
Λ/2−1
0 , u2ψ0−1

0,e +u2ψ0−1
0,o , v2ψ1−1

0,e +v2ψ1−1
0,o )

and (zΛ−1
Λ/2 , u

2ψ0−1
0,o , v2ψ1−1

0,o ). They are assigned branch numbers 2β and 2β + 1,

respectively. The calculations descend down the layers recursively in this fashion.

For each layer λ we define the probabilities array structure denoted as Pλ

indexed by 0 ≤ k < 2N . For a given layer λ, index k will correspond to 0 ≤
ϕ0, ϕ1 < Λ and 0 ≤ β < 2n−λ as

k = 〈ϕ, β〉λ = ϕ0 + ϕ1 + 2 · 2λ · β. (4.34)

If for layer λ, we denote the observation corresponding to branch β as

(zΛ−1
0 , uϕ0−1

0 , vϕ1−1
0 ), then probability array will hold for all values of (a, b) ∈

{0, 1} × {0, 1} that

Pλ[〈ϕ, β〉][a, b] = P
(ϕ)
λ (a, b|zΛ−1

0 , uϕ0−1
0 , vϕ1−1

0 ). (4.35)

Also we need to keep track of the decided bit values. We use bit array structure

Bλ indexed by 0 ≤ k < 2N for each layer λ. Denote the user bits of P
(ϕ)
λ at branch
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β, layer λ and phase ϕ with û(λ, ϕ0, β) and v̂(λ, ϕ1, β). Then we have

Bλ[〈ϕ, β〉][0] = û(λ, ϕ0, β) (4.36)

Bλ[〈ϕ, β〉][1] = v̂(λ, ϕ1, β). (4.37)

Algorithm 2: Two-user SC decoder main loop

input : Received vectors uÃc
1
, vÃc

2
, side information zN−1

0 and decoding path b2N−1
0

output: Decoded codewords matrix ĉ

// Initialization

1 Generate sAc from (uÃc
1
, vÃc

2
)

2 for β = 0, 1, . . . , N − 1 do
3 P0[β][0, 0]← PXY |Z(0, 0|zβ), P0[β][0, 1]← PXY |Z(0, 1|zβ)
4 P0[β][1, 0]← PXY |Z(1, 0|zβ), P0[β][1, 1]← PXY |Z(1, 1|zβ)

5 ϕ′ ← (−1,−1)

// Main Loop

6 for k = 0, . . . , 2N − 1 do
7 p← b[k]
8 ϕ′p ← ϕ′p + 1

9 ϕ← ϕ′

10 if ϕp̄ = −1 then
11 ϕp̄ ← 0

12 if k = 0 or ϕp > 0 then
13 recursivelyCalcP(n, ϕ, p)

14 calcΓ(ϕ′, p)
15 if k ∈ Ac then
16 Cλ[β][ϕp mod 2, p]← sk
17 else
18 if Γ[1] > Γ[0] then
19 Cλ[β][ϕp mod 2, p]← 1
20 else
21 Cλ[β][ϕp mod 2, p]← 0

22 if ϕp mod 2 = 1 then
23 recursivelyUpdateC(n, ϕ, p)

24 return ĉ← (C0[β][0, 0], C0[β][0, 1])|N−1
β=0

The space complexity is O(N logN) with data structures stated as above.

However, as noted in [40], we do not need to keep all of the values at each level

and the space complexity can be reduced to O(N). For probabilities array P
(ϕ)
λ

we need to keep only one location per branch. The phase information is not

needed. Thus, we replace P
(ϕ)
λ [〈ϕ, β〉] with P

(ϕ)
λ [β]. The four probabilities for
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Algorithm 3: calcΓ (ϕ′, p)
1 if ϕ′p̄ = −1 then
2 for u′ = 0, 1 do
3 if p = 0 then
4 Γ[u′]←

∑
u′′ Pn[0][u′, u′′]

5 else
6 Γ[u′]←

∑
u′′ Pn[0][u′′, u′]

7 else
8 for u′ = 0, 1 do
9 if p = 0 then

10 Γ[u′]← 1
D1
Pn[0]

[
u′, Cn[0][ϕ′p̄ mod 2, p̄]

]
11 else
12 Γ[u′]← 1

D2
Pn[0]

[
Cn[0][ϕ′p̄ mod 2, p̄], u′

]

Algorithm 4: recursivelyCalcP(λ, ϕ, p)

// Stopping condition

1 if λ = 0 then return
2 ψ ← bϕ/2c
// Recurse if necessary

3 if ϕp mod 2 = 0 then recursivelyCalcP(λ− 1, ψ, p)
// Perform calculation

4 for β = 0, 1, . . . , 2n−λ − 1 do
5 if ϕ0 mod 2 = 0 then // Even u index

6 if ϕ1 mod 2 = 0 then // Even v index

// Apply equation 4.30

7 for (u′, v′) ∈ {0, 1} × {0, 1} do
8 Pλ[β][u′, v′]← 1

C1

∑
u′′,v′′ Pλ−1[2β][u′⊕ u′′, v′⊕ v′′] ·Pλ−1[2β + 1][u′′, v′′]

9 else // Odd v index

// Apply equation 4.31

10 v′ ← Cλ[β][0, 1]
11 for (u′, v′′) ∈ {0, 1} × {0, 1} do
12 Pλ[β][u′, v′′]← 1

C3

∑
u′′ Pλ−1[2β][u′ ⊕ u′′, v′ ⊕ v′′] · Pλ−1[2β + 1][u′′, v′′]

13 else // Odd u index

14 u′ ← Cλ[β][0, 0]
15 if ϕ1 mod 2 = 0 then // Even v index

// Apply equation 4.32

16 for (u′′, v′) ∈ {0, 1} × {0, 1} do
17 Pλ[β][u′′, v′]← 1

C2

∑
v′′ Pλ−1[2β][u′ ⊕ u′′, v′ ⊕ v′′] · Pλ−1[2β + 1][u′′, v′′]

18 else // Odd v index

// Apply equation 4.33

19 v′ ← Cλ[β][0, 1]
20 for (u′′, v′′) ∈ {0, 1} × {0, 1} do
21 Pλ[β][u′′, v′′]← 1

C4
Pλ−1[2β][u′ ⊕ u′′, v′ ⊕ v′′] · Pλ−1[2β + 1][u′′, v′′]
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Algorithm 5: recursivelyUpdateC(λ, ϕ, p)

// Stopping condition

1 if λ = 0 then return
2 ψ ← bϕ/2c
3 for β = 0, 1, . . . , 2n−λ − 1 do
4 Cλ−1[2β][ψp mod 2, p]← Cλ[β][0, p]⊕ Cλ[β][1, p]
5 Cλ−1[2β + 1][ψp mod 2, p]← Cλ[β][1, p]

6 if ψp mod 2 = 1 then
7 recursivelyUpdateC(λ− 1, ψ, p)

each value of the user bits (a, b) ∈ {0, 1} × {0, 1} are stored as Pλ[β][a, b]. Thus

at each layer λ, probabilities array stores 4 · 2n−λ floating values. The total space

requirement becomes 4 · (N − 1). Similarly, for bit array structure we need to

keep two locations per branch as noted in [40]. Here phase information cannot

be completely thrown away but only the parity of the phase is needed. We need

to keep two separate locations corresponding to users. Denoting the user with

variable p ∈ {0, 1}, we replace Bλ[〈ϕ, β〉] with Cλ[β][ϕp mod 2, p]. Thus, for user

1 (p = 0) and 2 (p = 1) we keep two locations for bit values corresponding to

even and odd parity of that user’s phase.

Algorithms 2 through 5 completely describe the two-user monotone chain rule

based SC polar decoder. Algorithm 2 presents the main loop. The algorithm

accepts outputs of encoders uÃc1 , vÃc2 and side information zN−1
0 as data inputs.

In addition, decoding path b2N−1
0 is supplied as a configuration input. First, layer

0 of probabilities array is initialized with the probabilities from the conditional

distribution PXY |Z under observation of side-information vector zN−1
0 . Main loop

runs over 2N steps on the decoding path. At each step either a bit from uN−1
0

or vN−1
0 is decoded. The algorithm makes the necessary probability calculation

to decide the next user bit. The probabilities calculated by “recursivelyCalcP”

function recursively are of the form P
(ϕ)
n (a, b|zN−1

0 , uϕ0−1
0 , vϕ1−1

0 ) which are func-

tions of two variables. However, we need to calculate a second probability from

these which is function of single variable which is the variable we are interested in

at this step. That calculation is done in “calcΓ” function in Algorithm 3. After

probability calculation, a decision is made on the user bit value. If that bit value

is received from encoders the value is inserted here. Otherwise, a decision is made
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based on the calculated probability. For each user after odd indexed bit value is

calculated, the decisions are propagated recursively down to the lower layers by

“recursivelyUpdateC” function.

For example, let b0 = 0, then at the first step of algorithm we actually need

Pr[U0 = a|ZN−1
0 = zN−1

0 ]. To calculate that probability, the algorithm first

calculates P
(0,0)
n (a, b|zN−1

0 ) and then sums over b. As another example, at step 11

of the algorithm assume that b10 = 1 and we need to calculate Pr[V3 = b|ZN−1
0 =

zN−1
0 , U6

0 = û6
0, V

2
0 = v̂2

0]. The algorithm first calculates P
(6,3)
n (a, b|zN−1

0 , û5
0, v̂

2
0)

and then gets the result as

Pr[V3 = b|ZN−1
0 = zN−1

0 , U6
0 = û6

0, V
2

0 = v̂2
0] =

P
(6,3)
n (û6, b|zN−1

0 , û5
0, v̂

2
0)∑

b′ P
(6,3)
n (û6, b′|zN−1

0 , û5
0, v̂

2
0)
.

(4.38)

“recursivelyCalcP” function is an extension of the one in [40]. Note that it has

four different recursive equations corresponding to indices of two users being odd

or even. The normalization constants in the formulas are given as

C1 = 1,

C2 =
∑

u′′,v′,v′′

Pλ−1[2β][u′ ⊕ u′′, v′ ⊕ v′′] · Pλ−1[2β + 1][u′′, v′′],

C3 =
∑

u′,u′′,v′′

Pλ−1[2β][u′ ⊕ u′′, v′ ⊕ v′′] · Pλ−1[2β + 1][u′′, v′′],

C4 =
∑
u′′,v′′

Pλ−1[2β][u′ ⊕ u′′, v′ ⊕ v′′] · Pλ−1[2β + 1][u′′, v′′].

The normalization constants in function “calcΓ” are given as

D1 =
∑
u′

Pn[0]
[
u′, Cn[0][ϕ′p̄ mod 2, p̄]

]
,

D2 =
∑
u′

Pn[0]
[
Cn[0][ϕ′p̄ mod 2, p̄], u′

]
.

“recursivelyUpdateC” function updates the bits array recursively as new bit

decisions are made at layer n.
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4.2.2.1 List Decoder

In this section, we give explicit algorithms for two-user SC list (SCL) decoder

based on monotone chain rules. The algorithms given here are also generalizations

of list decoder algorithms by Tal and Vardy [40] to two-user setting. We keep the

general structure and the names of the algorithms intact. We modify the inside

of the algorithms to implement two-user monotone chain rule based SC decoder.

We already explained the two-user generalization of SC decoder in detail. In this

section, two-user SC decoder is modified to explore L parallel decoding paths. We

only make the necessary modifications to the SC decoder to achieve an efficient

list decoder which was explained in detail in [40]. Thus, we do not go into details

of describing how to implement efficient list version of a SC decoder of polar

codes.

The list decoder accepts list size L in addition to the parameters accepted

by two-user SC decoder described before. Increasing the list size both increases

the effectiveness and complexity of the decoder. SCL decoder keeps a list of

decoding paths to increase the effectiveness of the decoder. At each step of the

SC decoder for an unfrozen bit, a decision is made for either ûϕ0 or v̂ϕ1 . List

decoder attempts to split the decoding path to inspect both options so that it

does not discard the less likely path at that step of the algorithm. However, this

means that the number of paths to be inspected grows exponentially. Therefore,

a limit to the number of decoding paths the decoder can hold is set as the list

size L. The decoder prunes the paths at each step according to their probability

and keeps the list size less than or equal to L.
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Algorithm 6: Two–user SCL decoder

input : Received vectors uÃc
1
, vÃc

2
, side information zN−1

0 , decoding path b2N−1
0 and list

size L
output: Decoded codewords matrix ĉ

// Initialization

1 l ← assignInitialPath()

2 P 0 ← getArrayPointerP(0,l)
3 for β = 0, 1, . . . , N − 1 do
4 P0[β][0, 0]← PXY |Z(0, 0|zβ), P0[β][0, 1]← PXY |Z(0, 1|zβ)
5 P0[β][1, 0]← PXY |Z(1, 0|zβ), P0[β][1, 1]← PXY |Z(1, 1|zβ)

6 ϕ′ ← [−1,−1]
// Main Loop

7 for k = 0, 1, . . . , 2N − 1 do
8 p← b[k]
9 ϕ′p ← ϕ′p + 1

10 ϕ← ϕ′

11 if ϕp̄ = −1 then
12 ϕp̄ ← 0

13 if k = 0 or ϕp > 0 then
14 recursivelyCalcP(n, ϕ, p)
15 calcΓ(ϕ′, p)

16 if ϕp is frozen index then
17 continuePathsFrozenBit(ϕ, p)
18 else
19 continuePathsUnfrozenBit(ϕ, p)

20 if ϕp mod 2 = 1 then
21 recursivelyUpdateC(n, ϕ, p)

// Find the best codeword

22 l← findBestCodeWord()

23 C0 ← getArrayPointerC(0, l)

24 return ĉ← (C0[β][0, 0], C0[β][0, 1])|N−1
β=0
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Algorithm 7: calcΓ (ϕ′, p)

1 for l = 0, 1, . . . , L− 1 do
2 if pathIndexInactive(l) then
3 continue

4 Pn ← getArrayPointerP(n, l)
5 Cn ← getArrayPointerC(n, l)
6 if ϕ′p̄ = −1 then
7 for u′ = 0, 1 do
8 if p = 0 then
9 Γl[u

′]←∑
u′′ Pn[0][u′, u′′]

10 else
11 Γl[u

′]←∑
u′′ Pn[0][u′′, u′]

12 else
13 for u′ = 0, 1 do
14 if p = 0 then
15 Γl[u

′]← Pn[0][u′, Cn[0][ϕ′p̄ mod 2, p̄]]

16 else
17 Γl[u

′]← Pn[0][Cn[0][ϕ′p̄ mod 2, p̄], u′]

Algorithm 8: findBestCodeWord()

// Find the best codeword

1 l′ ← 0, P ′ ← 0
2 for l = 0, 1, . . . , L− 1 do
3 if pathIndexInactive(l) then
4 continue

5 Cn ← getArrayPointerC(n, l)
6 if P ′ < Γl[Cn[0][1, p]] then
7 l′ ← l, P ′ ← Γl[Cn[0][1, p]]

8 return l′

Algorithm 9: continuePathsFrozenBit(ϕ, p)

1 for l = 0, 1, . . . , L− 1 do
2 if pathIndexInactive(l) then continue
3

4 Cn ← getArrayPointerC(n, l)
5 Cn[0][ϕp mod 2, p]← frozen value of user p index ϕp

72



Algorithm 10: continuePathsUnfrozenBit(ϕ, p)

1 forksArray ← new (float,bit,index) – triplets of size 2L
2 i← 0
// populate forksArray

3 for l = 0, 1, . . . , L− 1 do
4 if pathIndexInactive(l) then continue
5

6 Pn ← getArrayPointerP(n, l)
7 forksArray[2i]← (Γl[0], 0, l)
8 forksArray[2i+ 1]← (Γl[1], 1, l)
9 i← i+ 1

// Pivot forksArray
10 ρ← min(2i, L)
11 rearrange forksArray such that ∀α < ρ and ∀β ≥ ρ we have

forksArray[α][0] ≥ forksArray[β][0]
// Pick the best rho forks

12 contForks← new(boolean, boolean) – pairs of size L
13 for r = 0, 1, . . . , ρ− 1 do
14 l← forksArray[r][2]
15 b← forksArray[r][1]
16 contForks[l][b]← true

// Kill-off non-continuing paths

17 for l = 0, 1, . . . , L− 1 do
18 if pathIndexInactive(l) then continue
19

20 if contForks [l][0]=false and contForks [l][1]=false then
21 killPath(l)

// Continue relevant paths and duplicate if necessary

22 for l = 0, 1, . . . , L− 1 do
23 if contForks [l][0]=false and contForks [l][1]=false then // both forks are bad

24 continue

25 Cn ← getArrayPointerC(n, l)
26 if contForks [l][0]=true and contForks [l][1]=true then // both forks are good

27 Cn[0][ϕp mod 2, p]← 0
28 l′ ← clonePath(l)
29 Cn ← getArrayPointerC(n, l′)
30 Cn[0][ϕp mod 2, p]← 1

31 else // exactly one fork is good

32 if contForks [l][0]=true then
33 Cn[0][ϕp mod 2, p]← 0
34 else
35 Cn[0][ϕp mod 2, p]← 1
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Algorithm 11: recursivelyCalcP(λ, ϕ, p)

// Stopping condition

1 if λ = 0 then return
2 ψ ← bϕ/2c
// Recurse if necessary

3 if ϕp mod 2 = 0 then recursivelyCalcP(λ− 1, ψ, p)
// Perform calculation

4 for l = 0, 1, . . . , L− 1 do
5 if pathIndexInactive(l) then continue
6

7 Pλ ← getArrayPointerP(λ,l)
8 Pλ−1 ← getArrayPointerP(λ− 1,l)
9 Cλ ← getArrayPointerC(λ,l)

10 for β = 0, 1, . . . , 2n−λ − 1 do
11 if ϕ0 mod 2 = 0 then // Even u index

12 if ϕ1 mod 2 = 0 then // Even v index

13 for (u′, v′) ∈ {0, 1} × {0, 1} do
14 Pλ[β][u′, v′]←∑

u′′,v′′ Pλ−1[2β][u′⊕u′′, v′⊕ v′′] ·Pλ−1[2β+ 1][u′′, v′′]

15 else // Odd v index

16 v′ ← Cλ[β][0, 1]
17 for (u′, v′′) ∈ {0, 1} × {0, 1} do
18 Pλ[β][u′, v′′]←∑

u′′ Pλ−1[2β][u′ ⊕ u′′, v′ ⊕ v′′] · Pλ−1[2β + 1][u′′, v′′]

19 else // Odd u index

20 u′ ← Cλ[β][0, 0]
21 if ϕ1 mod 2 = 0 then // Even v index

22 for (u′′, v′) ∈ {0, 1} × {0, 1} do
23 Pλ[β][u′′, v′]←∑

v′′ Pλ−1[2β][u′ ⊕ u′′, v′ ⊕ v′′] · Pλ−1[2β + 1][u′′, v′′]

24 else // Odd v index

25 v′ ← Cλ[β][0, 1]
26 for (u′′, v′′) ∈ {0, 1} × {0, 1} do
27 Pλ[β][u′′, v′′]← Pλ−1[2β][u′ ⊕ u′′, v′ ⊕ v′′] · Pλ−1[2β + 1][u′′, v′′]

Algorithm 12: recursivelyUpdateC(λ, ϕ, p)

1 for l = 0, 1, . . . , L− 1 do
2 if pathIndexInactive(l) then continue
3

4 Cλ ← getArrayPointerC(λ,l)
5 Cλ−1 ← getArrayPointerC(λ− 1,l)
6 ψ ← bϕ/2c
7 for β = 0, 1, . . . , 2n−λ − 1 do
8 Cλ−1[2β][ψp mod 2, p]← Cλ[β][0, p]⊕ Cλ[β][1, p]
9 Cλ−1[2β + 1][ψp mod 2, p]← Cλ[β][1, p]

10 if ψp mod 2 = 1 then
11 recursivelyUpdateC(λ− 1, ψ, p, l)
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Algorithm 13: getArrayPointerP(λ, l)

1 s← pathIndexToArrayIndex[λ][l]
// Copy array if necessary

2 if arrayReferenceCount[λ][s] > 1 then
3 s′ ← pop(inactiveArrayIndices)
4 Pλ ← arrayPointerP[λ][s], P ′λ ← arrayPointerP[λ][s′]
5 Cλ ← arrayPointerC[λ][s], C ′λ ← arrayPointerC[λ][s′]
6 for β = 0, 1, . . . , 2n−λ do
7 for (i, j) ∈ {0, 1} × {0, 1} do
8 P ′λ[β][i, j]← Pλ[β][i, j]
9 C ′λ[β][i, j]← Cλ[β][i, j]

10 arrayReferenceCount[λ][s]← arrayReferenceCount[λ][s]− 1
11 arrayReferenceCount[λ][s′]← 1
12 pathIndexToArrayIndex[λ][l]← s′

13 s← s′

// Return array pointer

14 return arrayPointerP[λ][s]

Algorithm 14: getArrayPointerC(λ, l)

1 s← pathIndexToArrayIndex[λ][l]
// Copy array if necessary

2 if arrayReferenceCount[λ][s] > 1 then
3 s′ ← pop(inactiveArrayIndices)
4 Pλ ← arrayPointerP[λ][s], P ′λ ← arrayPointerP[λ][s′]
5 Cλ ← arrayPointerC[λ][s], C ′λ ← arrayPointerC[λ][s′]
6 for β = 0, 1, . . . , 2n−λ do
7 for (i, j) ∈ {0, 1} × {0, 1} do
8 P ′λ[β][i, j]← Pλ[β][i, j]
9 C ′λ[β][i, j]← Cλ[β][i, j]

10 arrayReferenceCount[λ][s]← arrayReferenceCount[λ][s]− 1
11 arrayReferenceCount[λ][s′]← 1
12 pathIndexToArrayIndex[λ][l]← s′

13 s← s′

// Return array pointer

14 return arrayPointerC[λ][s]
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Algorithm 15: killPath(l)

// First, free arrays referenced by this path

1 for λ = 0, 1, . . . , n do
2 s← pathIndexToArrayIndex[λ][l]
3 arrayReferenceCount[λ][s]← arrayReferenceCount[λ][s]− 1
4 if arrayReferenceCount[λ][s] = 0 then
5 push (inactiveArrayIndices, s)

// Then, kill path

6 activePath[l]← false
7 push (inactivePathIndices, l)

Algorithm 16: clonePath(l)

// First, get a free path and activate it

1 l′ ← pop(inactivePathIndices)
2 activePath[l′]← true
// Then, just copy references not the actual data (lazy copy)

3 for λ = 0, 1, . . . , n do
4 s← pathIndexToArrayIndex[λ][l]
5 pathIndexToArrayIndex[λ][l′]← s
6 arrayReferenceCount[λ][s]← arrayReferenceCount[λ][s] + 1
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4.2.3 Simulations

In this section, we present simulation results showing the performance of SCL de-

coder used in Slepian–Wolf distributed source coding problem. In this simulation,

the probability distribution of source is given by

pXY =

[
0.1286 0.0175

0.0175 0.8364

]
.

This distribution results in the following entropies:

H(X) = H(Y ) = 0.6, H(X|Y ) = H(Y |X) = 0.2.

Thus the SW achievable rate region is

{(Rx, Ry) : Rx ≥ 0.2, Ry ≥ 0.2, Rx +Ry ≥ 0.8}.

The capacity region is shown in Figure 4.2 along with simulation results.

We adjust the rates of the codes on straight lines yielding operating rate pairs

(RA
x , R

A
y ) = ρA · (0.4, 0.4), (RB

x , R
B
y ) = ρB · (0.5, 0.3) and (RC

x , R
C
y ) = ρC · (0.6, 0.2)

with ρA, ρB, ρC ≥ 1 for code classes A, B and C, respectively. The markings show

the points where the block error rate (BLER) falls down to 10−4. The list size L

used in these simulations is 32.

Figures 4.3 thru 4.5 show the detailed performance results for code classes C,

B and A, respectively. We see how the performance increases as we allow more

sum rate.
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Figure 4.2: 10−4 BLER marked on SW region for n=10,12,14,16 (L=32).
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4.3 Multiple-Access Channel

A two-user multiple-access channel (MAC) communication setup is depicted in

Figure 4.6. The setup consists of two independent users trying to communicate

to a common receiver. A discrete memoryless MAC consists of three alphabets

X , Y and Z, and a probability transition matrix p(z|x, y).

Figure 4.6: Multiple-access channel communication setup.

Definition 11. A ((2NR1 , 2NR2), N) code for MAC consists of two sets of integers

M1 = {1, 2, . . . , 2NR1} and M2 = {1, 2, . . . , 2NR2}, called the message sets, two

encoding functions,

f1 : M1 → XN (4.39)

and

f2 : M2 → YN , (4.40)

and a decoding function,

g : ZN →M1 ×M2. (4.41)

Sender 1 chooses a message index M1 uniformly fromM1 and sender 2 chooses

a message index M2 uniformly fromM2. They both send their messages over the

channel. Assuming that the distribution of messages over the product set M1 ×
M2 is uniform, we define the average probability of error for the ((2NR1 , 2NR2), N)

code as

P (N)
e =

1

2N(R1+R2)

∑
(m1,m2)∈M1×M2

Pr{g(ZN) 6= (m1,m2)|(m1,m2) sent}. (4.42)
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Definition 12. A rate pair (R1, R2) is said to be achievable for the multiple-

access channel if there exists a sequence of ((2NR1 , 2NR2), N) codes with P
(N)
e → 0.

Definition 13. The capacity region RMAC of the multiple-access channel is the

closure of the set of achievable (R1, R2) rate pairs.

Theorem 7 (Multiple-access channel capacity). The capacity of a multiple-access

channel (X × Y , p(z|x, y),Z) is the closure of the convex hull of all (R1, R2)

satisfying

R1 < I(X;Z|Y ), (4.43)

R2 < I(Y ;Z|X), (4.44)

R1 +R2 < I(X, Y ;Z) (4.45)

for some product distribution pX(x)pY (y) on X × Y.

4.3.1 Polar Coding

Let (X, Y, Z) be a triple of correlated random variables with properties defined

as in Section 4.1. Let X, Y ∈ X = {0, 1, . . . , q− 1}, where q is prime. Let Z ∈ Z
where Z is an arbitrary discrete alphabet. We may consider (X, Y ) as input to a

multiple-access channel described by conditional probability PZ|XY and Z as the

channel’s output. Note that, in MAC setting we have a special case distribution

PXY (x, y) = PX(x)PY (y). We consider a block of N = 2n i.i.d. channel uses

resulting in (XN , Y N , ZN). In addition, let UN = XNGN and V N = Y NGN as

always. Note that the following are true for the joint distributions of the random

variables:

PXNY NZN (xN , yN , zN) =
N∏
i=1

PXY Z(xi, yi, zi),

PUNV NZN (uN , vN , zN) = PXNY NZN (uNGN , v
NGN , z

N).

As in section 4.1, we use S2N and b2N to denote monotone permutation on user
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vectors (UN , V N) and corresponding path vector, respectively. For polar coding

purposes we decompose the joint distribution as

PUNV NZN (uN , vN , zN) = PZN (zN)
2N∏
k=1

PSk|ZN ,Sk−1(sk|zN , sk−1). (4.46)

Then, monotone expansion of total mutual information is given as

NI(X, Y ;Z) = I(UN , V N ;ZN) =
2N∑
k=1

I(ZN ;Sk|Sk−1). (4.47)

The channel rates R1 and R2 for a given b2N and S2N are defined as

R1 =
1

N

2N∑
k=1:
bk=0

I(ZN ;Sk|Sk−1), (4.48)

R2 =
1

N

2N∑
k=1:
bk=1

I(ZN ;Sk|Sk−1). (4.49)

For any path on UNV N the rate pair satisfies

R1 ≤
1

N
I(ZN ;UN |V N) = I(Z;X|Y ), (4.50)

R2 ≤
1

N
I(ZN ;V N |UN) = I(Z;Y |X), (4.51)

R1 +R2 =
1

N
I(ZN ;UN , V N) = I(Z;X, Y ). (4.52)

The first inequality is satisfied with equality for b2N = 1N0N and the second

inequality is satisfied with equality for b2N = 0N1N .

The rate pairs (R1, R2) span the dominant face of the MAC region spanning

its two end points. They also form a dense subset of the dominant face from the

results in section 4.1.

Theorem 8. Fix a path b2N0 for UN0V N0. Let R̄ = (R1, R2) be the associated

rate vector. Let, S2N be the edge variables for scaled path 2lb2N0, where N = 2lN0.

82



Then, for all ε > 0,

lim
l→∞

1

2N

∣∣∣{k ∈ [2N ] : 2−N
β

< I(ZN ;Sk|Sk−1) < 1− 2−N
β
}∣∣∣ = 0,

lim
l→∞

|Ĩm(β)|
N

= Rm, m = 1, 2,

where Ĩm(β) = {k ∈ [2N ] : bk = m − 1, I(ZN ;Sk|Sk−1) ≥ 1 − 2−N
β}, for

m ∈ {1, 2}.

Proof. Note that for MAC setting Section 4.1 and polarization theorem 6 applies.

From Theorem 6, we have the following fact:

lim
l→∞

1

2N

∣∣∣{k ∈ [2N ] : 2−N
β

< H(Sk|Sk−1) < 1− 2−N
β
}∣∣∣ = 0,

lim
l→∞

|L̃m(β)|
N

= 1−R′m, m = 1, 2,

where L̃m(β) = {k ∈ [2N ] : bk = m − 1, H(Sk|Sk−1) ≤ 2−N
β} and R′m =

1
N

∑2N
k:bk=m−1H(Sk|Sk−1), for m ∈ {1, 2}. Note that, since X and Y are inde-

pendent (without observation Z) the following is true for R′m:

R′1 = H(X), R′2 = H(Y ).

Sets L̃1(β) and L̃2(β) are not dependent on particular path.

We also have the following fact from Theorem 6:

lim
l→∞

1

2N

∣∣∣{k ∈ [2N ] : 2−N
β

< H(Sk|ZN , Sk−1) < 1− 2−N
β
}∣∣∣ = 0,

lim
l→∞

|H̃m(β)|
N

= R′′m, m = 1, 2,

where H̃m(β) = {k ∈ [2N ] : bk = m − 1, H(Sk|ZN , Sk−1) > 1 − 2−N
β} and

R′′m = 1
N

∑2N
k:bk=m−1H(Sk|ZN , Sk−1), for m ∈ {1, 2}. Also, the following is true
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for R′′m:

H(X|Z, Y ) ≤ R′′1 ≤ H(X|Z), H(Y |Z,X) ≤ R′′2 ≤ H(Y |Z).

The lower and upper bounds of first and second expressions, respectively, are

satisfied with path b2N = 1N0N . Similarly, the upper and lower bounds of first

and second expressions, respectively, are satisfied with path b2N = 0N1N .

First define two index sets as follows:

K̃m , {k ∈ [2N ] : bk = m− 1} , m = 1, 2. (4.53)

We define complements of sets for user m with respect to the corresponding

index set K̃m, i.e. F̃ cm , K̃m \ F̃m. Since H(Sk|ZN , Sk−1) ≤ H(Sk|Sk−1), we

have L̃m ∩ H̃m = ∅ and H̃m ⊆ L̃cm. Let F̃m = L̃m ∪ H̃m. Then, we may write

Ĩ ′m = F̃ cm = (L̃m ∪ H̃m)c = L̃cm \ H̃m. Ĩ ′m has some extra partially polarized

indices compared to Ĩm. By polarization, the ratio of the size of the set of

partially polarized indices to N go to zero. Thus, the result follows by observing
|Ĩ′m|
N
→ |Ĩm|

N
as N →∞.

In the following sections we define the polarization sets and give the encoding

and decoding protocols for polar codes for two-user MAC. Then, we prove that

for those encoding and decoding rules, the average error probability goes to zero

as block size goes to infinity.

4.3.1.1 Polarization Sets

In the following discussion, we will refer to three interrelated index variables k,

i and j, repeatedly, all in the context of an assumed path b2N . k will mark the

index of edge vector S2N . i and j will mark the corresponding index of UN and

V N , respectively. We will make use of the Definition 10 here.

For the purpose of polar coding, the total probability is also expanded as
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follows:

PUNV NZN (uN , vN , zN) = PS2NZN (πNu
N , vN , zN),

PS2NZN (s2N , zN) = PZN (zN)
2N∏
k=1

PSk|ZNSk−1(sk|zN , sk−1). (4.54)

Similarly the following is true for PS2N and PUNV N :

PS2N (s2N) =
2N∏
k=1

PSk|Sk−1(sk|sk−1), (4.55)

PUNV N (uN , vN) = PS2N (πN(uN , vN)). (4.56)

Let δN = 2−N
β

for 0 < β < 1
2
. We use Bhattacharyya parameters Z(·|·) in-

stead of entropies H(·|·) when defining polarization sets. Because, Z(·|·) bounds

average probability of error by Proposition 1 and Z(·|·) and H(·|·) polarize to-

gether by Proposition 2. First, we define the following general “path dependent”

polarization sets:

L̃ ,
{
k ∈ [2N ] : Z(Sk|Sk−1) ≤ δN

}
, (4.57)

H̃ ,
{
k ∈ [2N ] : Z(Sk|ZN , Sk−1) ≥ 1− δN

}
. (4.58)

Then, we define the following related sets for users 1 and 2:

L̃1 ,
{
k ∈ [2N ] : bk = 0, k ∈ L̃

}
, L̃2 ,

{
k ∈ [2N ] : bk = 1, k ∈ L̃

}
, (4.59)

H̃1 ,
{
k ∈ [2N ] : bk = 0, k ∈ H̃

}
, H̃2 ,

{
k ∈ [2N ] : bk = 1, k ∈ H̃

}
. (4.60)

We define the following frozen and information sets

F̃ , L̃ ∪ H̃, Ĩ , [2N ] \ F̃ , (4.61)

F̃1 , L̃1 ∪ H̃1, Ĩ1 , K̃1 \ F̃1, (4.62)

F̃2 , L̃2 ∪ H̃2, Ĩ2 , K̃2 \ F̃2. (4.63)
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and

F1 , {i ∈ [N ] : k ∈ F̃1}, I1 , [N ] \ F1, (4.64)

F2 , {j ∈ [N ] : k ∈ F̃2}, I2 , [N ] \ F2, (4.65)

where K̃1 and K̃2 are as defined in (4.53).

4.3.1.2 Encoding

Encoder 1 and 2 first construct uN and vN , respectively, symbol by symbol and

then calculate xN = uNGN , yN = vNGN to be supplied to the channel. The

subset of indices of uN , vN identified by sets I1, I2, respectively, are the message

symbols intended for the receiver. They are determined uniformly. The remaining

non-message indices are computed according to a set of maps that are shared

between the encoders and decoder. These maps will be identified with (λ
(1)
i , λ

(2)
j )

and defined for i ∈ F1, j ∈ F2. We use (λ
(1)
F1

, λ
(2)
F2

) to denote the set of maps

shared between the encoders and the decoder.

We will define two different versions of these maps. The first one will be maxi-

mum a posteriori based deterministic rules. The second one will be random maps.

In the analysis, random maps will be used for the sake of analytic tractability.

The analysis of error probability will be done as an average over all possible maps.

We define deterministic maps λ̄
(1)
i : X i−1 → X and λ̄

(2)
j : X j−1 → X as

λ̄
(1)
i (ui−1) , arg max

u′∈X

{
PUi|U i−1(u′|ui−1)

}
,

λ̄
(2)
j (vj−1) , arg max

v′∈X

{
PVj |V j−1(v′|vj−1)

}
.

(4.66)

We define class of random maps Λ
(1)
i : X i−1 → X and Λ

(2)
j : X j−1 → X as

Λ
(1)
i (ui−1) , a, w.p. PUi|U i−1(a|ui−1),

Λ
(2)
j (vj−1) , a, w.p. PVj |V j−1(a|vj−1),

(4.67)
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where a ∈ X . Maps (λ
(1)
i , λ

(2)
j ) are the realizations of random maps (Λ

(1)
i , Λ

(2)
j ).

Each realization of set of maps (λ
(1)
F1

, λ
(2)
F2

) results in different encoding and de-

coding protocols. The distribution over the choice of maps is induced with the

above equation (4.67).

The encoder 1 (2) uses the input symbols uI1 (vI2) and identical shared maps

λ
(1)
i (λ

(2)
j ) to construct the length-N vector uN (vN) successively as

ui =

ui, if i ∈ I1,

λ
(1)
i (ui−1), otherwise.

(4.68)

vj =

vj, if j ∈ I2,

λ
(2)
j (vj−1), otherwise.

(4.69)

Encoder 1 calculates xN = uNGN and applies it to the channel. Similarly, encoder

2 calculates yN = vNGN and applies it to the channel.

4.3.1.3 Decoding

Decoder decodes the sequence ŝ2N = πN(ûN , v̂N) symbol by symbol using the

observations zN . We define the following decoding functions:

ζk(z
N , sk−1) , arg max

s′∈X

{
PSk|ZNSk−1(s′|zN , sk−1)

}
. (4.70)

The decoder uses the identical shared maps λ
(1)
i and λ

(2)
j to reconstruct the

estimate ŝ2N successively as

ŝk =


λ

(1)
i (ûi−1), if k ∈ F̃1,

λ
(2)
j (v̂j−1), if k ∈ F̃2,

ζk(z
N , ŝk−1), otherwise.

(4.71)
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Instead of λ
(m)
i , m = 1, 2, the decoder could also use λ̄

(m)
i when doing determin-

istic operation. As stated before the encoder and decoder are using the same

shared maps for non-message indices. A realization of class of random maps has

a probability of occurrence induced by probabilities PUi|U i−1 and PVj |V j−1 as given

in (4.67). Each realization results in different encoding/decoding protocol. We

use randomized map concept to bound the average error probability by averaging

over all possible maps, thus showing that there exists at least one good map.

Note that the encoding operations are almost the same as single-user channel

coding: information bits are inserted into indices in I1 (I2), the remaining bits are

determined by shared set of maps and the resulting sequence uN (vN) is passed

through polar transformation to obtain xN (yN). The difference is that the size

of the information sets I1 (I2) may be adjusted using different paths b2N while

keeping their sum at constant. That way all rate allocation pairs (R1, R2) on the

dominant face of the MAC capacity region may be reached. The decoder is very

different compared to single-user channel polar coding where a single-user polar

SC decoder was used. Here, two-user polar successive cancellation decoding is

used at the decoder.

As in the single-user case, for analysis purposes, the encoding functions are

random. The results of encoding operations may be different for the same inputs

(uI1 , vI2). For encoder 1 (2) at step i ∈ I1 (j ∈ I2) of the process the inputs are

inserted which are assumed to be uniformly distributed. Thus, for a realization

of set of maps (λ
(1)
F1

, λ
(2)
F2

), a particular (xN , yN) occurs with a certain probabil-

ity induced by input distributions and maps. We define the resulting average

(over uI1 , vI2) probability of error of above encoding and decoding operations

as Pe[λ
(1)
F1
, λ

(2)
F2

]. In the following we show that for sets I1, I2 defined in 4.3.1.1

and encoding and decoding methods defined in 4.3.1.2 and 4.3.1.3, there exists

maps (λ
(1)
F1

, λ
(2)
F2

) such that Pe[λ
(1)
F1
, λ

(2)
F2

] ≤ O(2−N
β
), for 0 < β < 1/2. We do that

by determining the expected average probability of error over the ensembles of

codes generated by different encoding maps (λ
(1)
F1

, λ
(2)
F2

). The distribution over the

choices of maps is given in (4.67). That is, we take expectation of Pe[Λ
(1)
F1
,Λ

(2)
F2

]

which is a random quantity. Then we show that expected average probability of

error decay to zero as O(2−N
β
). This implies that for at least one choice of (λ

(1)
F1

,
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λ
(2)
F2

) the average probability of error decays to zero as O(2−N
β
). The following

theorem makes this precise.

Theorem 9. Let I1, I2 be sets as defined in 4.3.1.1 and encoding and de-

coding methods be as defined in 4.3.1.2 and 4.3.1.3. Then the expectation

of average probability of error Pe[Λ
(1)
F1
,Λ

(2)
F2

] over the maps (Λ
(1)
F1

, Λ
(2)
F2

) satisfy

E{Λ(1)
F1
,Λ

(2)
F2
}

[
Pe[Λ

(1)
F1
,Λ

(2)
F2

]
]
≤ 2−N

β
for any (R1, R2) ∈ RMAC and 0 < β < 1/2.

Consequently, there exists deterministic maps that satisfy the above relations.

The following sections give necessary steps for proving the theorem. We first

prove a total variation bound on two probability measures. Then, we use that

result to bound the expected average probability of error of the code.

4.3.1.4 Total Variation Bound

Assume a given path b2N . Then the edge variables vector S2N is a monotone

permutation πN (identified by b2N) on UNV N , i.e. S2N = πN(UNV N). To ana-

lyze the average error probability Pe via the probabilistic method we define the

following probability measure.

QS2N (s2N) ,
2N∏
k=1

QSk|Sk−1(sk|sk−1), (4.72)

where conditional probability measures are defined as

QSk|Sk−1(sk|sk−1) ,


PUi|U i−1(ui|ui−1), if k ∈ F̃1,

PVj |V j−1(vj|vj−1), if k ∈ F̃2,

1
q
, otherwise.

(4.73)

The probability measure Q defined in (4.72) is a perturbation of PS2N in (4.55).

The following lemma provides a bound on the total variation distance between

P and Q.

Lemma 7 (Total Variation Bound). Let probability measures P and Q be defined

as in (4.55) and (4.72), respectively. For 0 < β < 1/2 and sufficiently large N ,
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the total variation distance between P and Q is bounded as

∑
s2N

∣∣PS2N (s2N)−QS2N (s2N)
∣∣ ≤ 2−N

β

. (4.74)

Proof. See Appendix B.2.

4.3.1.5 Average Error Probability

The encoding and decoding rules were established in Sections 4.3.1.2 and 4.3.1.3,

respectively. Consider the sequences uN and vN formed at the encoders and

observation zN received by the decoder. The decoder makes an SC decoding

error on the k-th symbol for the following tuples:

T k ,
{

(s2N , zN) : ∃s′ ∈ X s.t. s′ 6= sk,

PSk|ZNSk−1(sk|zN , sk−1) ≤ PSk|ZNSk−1(s′|zN , sk−1)
}
. (4.75)

The set T k represents those tuples causing an error at the decoder in the case sk

is inconsistent with respect to observations and the decoding rule. The complete

set of tuples causing an error is

T ,
⋃
k∈Ĩ

T k. (4.76)

Assuming randomized maps shared between encoder and decoder, the average

error probability is a random quantity given as

Pe[Λ
(1)
F1
,Λ

(2)
F2

] =
∑

(s2N ,zN )∈T

[
PZN |S2N (zN |s2N) · 1

q|I|

·
∏
i∈F1

1{
Λ

(1)
i (ui−1)=ui

} ∏
j∈F2

1{
Λ

(2)
j (vj−1)=vj

}
]
. (4.77)

The expected average block error probability is calculated by averaging over the
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randomness in the encoders and decoder

P̄e , E{Λ(1)
F1
,Λ

(2)
F2
}

[
Pe[Λ

(1)
F1
,Λ

(2)
F2

]
]
. (4.78)

The following lemma bounds the expected average block error probability.

Lemma 8. Consider the polarization based channel code described in Sections

4.3.1.2 and 4.3.1.3. Let the information set I and frozen set F be selected as in

(4.61). Then for 0 < β < 1/2 and sufficiently large N ,

E{Λ(1)
F1
,Λ

(2)
F2
}

[
Pe[Λ

(1)
F1
,Λ

(2)
F2

]
]
≤ 2−N

β

.

Proof. Note that the expectation of average probability of error is written as

E{Λ(1)
F1
,Λ

(2)
F2
}

[
Pe[Λ

(1)
F1
,Λ

(2)
F2

]
]

=
∑

(s2N ,zN )∈T

[
PZN |S2N (zN |s2N) · 1

q|I|

·
∏
i∈F1

P

{
Λ

(1)
i (ui−1) = ui

} ∏
j∈F2

P

{
Λ

(2)
j (vj−1) = vj

}]
.

From the definition of random mappings Λ
(i)
m it follows that

P

{
Λ

(1)
i (ui−1) = ui

}
= PUi|U i−1(ui|ui−1),

P

{
Λ

(2)
j (vj−1) = vj

}
= PVj |V j−1(vj|vj−1).

Then, we may substitute the definition for QS2N (s2N) in (4.72) into the expression

of expected average probability of error to get

E{Λ(1)
F1
,Λ

(2)
F2
}

[
Pe[Λ

(1)
F1
,Λ

(2)
F2

]
]

=
∑

(s2N ,zN )∈T

PZN |S2N (zN |s2N) QS2N (s2N).

Then we split the error into two main parts, one due to the polar decoding

function and the other due to the total variation distance between probability
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measures.

E{Λ(1)
F1
,Λ

(2)
F2
}

[
Pe[Λ

(1)
F1
,Λ

(2)
F2

]
]

=
∑

(s2N ,zN )∈T

PZN |S2N (zN |s2N)
[
QS2N (s2N)− PS2N (s2N) + PS2N (s2N)

]
,

≤
∑

(s2N ,zN )∈T

PS2NZN (s2N , zN) +
∑
s2N

∣∣QS2N (s2N)− PS2N (s2N)
∣∣ .

The second part of the error which is due to total variation distance is upper

bounded as O(2−N
β
) by Lemma 7. Thus, it remains to upper bound the error

term due to polar decoding. Remember that T , ∪k∈IT k. We may upper bound

each error symbol by symbol. Define error probability for symbol k ∈ Ĩ as

εk ,
∑

(s2N ,zN )∈T k
PS2NZN (s2N , zN).

But this is the average probability of error for symbol k, i.e. εk =

Pe(Sk|ZN , Sk−1). Probability of error is upper bounded by the Bhattacharyya

parameter by Proposition 1. By union bound, total average probability of error

is ε ≤∑k ε
k. Then we have

ε ≤
∑
k∈Ĩ

(q − 1)Z(Sk|ZN , Sk−1),

≤ (q − 1)2NδN .

This completes the proof that the expected average probability of error is upper

bounded as O(2−N
β
).

Since by Lemma 8 the expected value over the random maps of average prob-

ability of error decays to zero, there must be at least one deterministic class of

maps for which Pe → 0.
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4.3.1.6 Uniform Distributions

Similar to single user case, different polarization regions, encoding and decoding

tasks simplify if input distributions are uniform. The random mapping functions

defined in (4.67) always results in uniform distribution: Λ
(1)
i (ui−1) = Λ

(2)
j (vj−1) =

a, w.p. 1/q, ∀a ∈ X . Thus instead of sharing set of maps (Λ
(1)
F1

, Λ
(2)
F2

) between

encoders and decoder we may generate a vector for F̃ uniformly at random and

share that. Also, each realization of a set of maps (λ
(1)
F1

, λ
(2)
F2

) have the same

probability, which means that the expected average error probability P̄e and av-

erage error probability for a realization Pe[λ
(1)
F1
, λ

(2)
F2

] are the same. Thus, similar

to single user case the value of those symbols in F̃ don’t matter in the sense that

each selection results in the same average error probability. We can choose any

fixed vector for F̃ and share it between encoders and decoder.
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4.3.2 Simulations

In this section, we present simulation results showing the performance of MAC

SCL decoder. We present the performance of the decoder on a well known MAC

channel: binary erasure MAC (BE-MAC). The capacity region of this channel is

maximized with a single distribution, namely the uniform distribution in both its

inputs.

Let X ∈ X and Y ∈ Y denote the inputs of the channel corresponding to user

1 and 2, respectively. And let X = Y = {0, 1}. The channel output is given as

Z = X + Y which is of a ternary alphabet, Z ∈ Z = {0, 1, 2}. The capacity

region of this channel is well known [64, Sec. 15.3] and shown in Figure 4.7.

The figure shows results for three different code classes labelled by A, B and C

which target three different rate pairs (0.75, 0.75), (0.625, 0.875) and (0.5, 1) on

the dominant face of the MAC region, respectively. Figure 4.7 shows the summary

result of the simulations. We adjust the rates of the codes on straight lines yielding

operating rate pairs (RA
u , R

A
v ) = ρA · (0.75, 0.75), (RB

u , R
B
v ) = ρB · (0.625, 0.875)

and (RC
u , R

C
v ) = ρC · (0.5, 1) with 0 ≤ ρA, ρB, ρC ≤ 1 for code classes A, B and C,

respectively. The markings show the points where the block error rate (BLER)

falls down to 10−4. The list size L used in these simulations is 32. Code class

B performs the best (closest to boundary). Code class A comes the second and

code class C is the worst.
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Figure 4.7: 10−4 BLER marked on MAC region for n=10,12,14,16 (L=32).

4.3.2.1 Construction

The polar codes are designed by Monte-Carlo simulations using the SC MAC

decoder. Our decoder outputs soft likelihood ratios for both uN and vN which

are averaged over large number of simulations and used as reliability values. The

code design is specific to the underlying MAC and involves finding a path b2N

and information index sets Au and Av for a desired target rate pair (Rx, Ry).

Although there may be many possible paths satisfying the required rate pair we

restricted ourselves to a class of paths of the form 0i1N0N−i for 0 ≤ i ≤ N . These

paths produce rate pairs that span the entire dominant face of the MAC region.

The following three figures shows the code construction simulation results for

code class C, B and A, in that order. The sorted reliability values of the coordinate

channels of users U and V are plotted. The red vertical lines mark the (0.75, 0.75)

rate point for reference. The green vertical lines mark the target rate point for

that simulation.
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Figure 4.8: N = 210, Path = 0N1N , Rate C = (0.5, 1.0).
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Figure 4.9: N = 210, Path = 0N/21N0N/2, Rate B = (0.625, 0.875).
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Figure 4.10: N = 210, Path = 017N/641N047N/64, Rate A = (0.75, 0.75).
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4.3.2.2 Performance Simulations

Here we present detailed simulation results. The following three figures compare

BLER performances of four block sizes (n = 10, 12, 14, 16) and two list sizes

(L = 1, 32) for three rate points A, B and C.
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Figure 4.11: Rate point C (0.5, 1.0).
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Figure 4.12: Rate point B (0.625, 0.875).
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Figure 4.13: Rate point A (0.75, 0.75).

4.3.2.3 Performance Simulations with CRC

In this section, we present performance results with CRC. The CRC is appended

to the user bits for aid in best path selection at the end of list decoding just like

in the single-user case as presented in [40]. However, in two-user MAC there is

more freedom in the position to insert CRC. It may be appended to the infor-

mation bits of user 1, user 2 or both. In all of the figures list size is fixed at

32. We used simulations to compare performances of different CRC options. We

found that CRC of size 16 embedded into either user 1 or user 2 gave the best

results most of the time. Therefore, we used that option in the following figures.

The “CRC(16,0)” annotations in the figures means that a CRC of length 16 is

inserted into user 1 data and no CRC is inserted into user 2. Note that, inserting

CRC causes user rate to decrease a little. This is taken into account in the rate

calculation.

In the following three figures, we compare the performances with and without

CRC for rate points C, B and A, in order. In all cases list size is 32. The dotted

lines are without CRC and the solid lines are with CRC. We can see clearly
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how much CRC improves the performance for short block lengths (210 and 212).

However, as the block size increases the effect of CRC on performance decreases.

This behavior is analogous to single-user case.
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Figure 4.14: Comparison of CRC performance for rate point C (0.5, 1.0).
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Figure 4.15: Comparison of CRC performance for rate point B (0.625, 0.875).
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Chapter 5

Distributed Lossy Coding

In this chapter, we consider two different distributed source coding setups where

reconstructions of sources are subject to distortion constraints. We prove that

the bounds of the known achievable rate-regions of both setups may be attained

by polar coding (PC) methods.

The first of these setups is the distributed lossy source coding (DLSC) setup

which we consider in Section 5.1. This setup consists of two correlated sources,

their two separate encoders and a joint decoder. The reconstructions of two

sources at the decoder are subject to different distortion constraints. The achiev-

able rate-region of this problem is not known in general but there is a good inner

bound called the Berger-Tung (BT) inner bound. The only work we are aware

of that mentions DLSC problem using polar codes is given in [65] which is inde-

pendent and contemporaneous to ours. The authors very briefly claim that PC

for DLSC setup can be done using “nested polar codes” [66]. The polar coding

method for DLSC problem described in our work is based on monotone chain

rule approach introduced in [28] and also analyzed in detail in Section 4.1. We

show that using our method, any point on the dominant face of BT region may

be achieved for arbitrary source distributions. In our method, two single user

successive-cancellation (SC) polar decoders are needed for encoding and a single

two-user joint SC polar decoder based on monotone chain rules is needed for

101



decoding.

The second setup is the multiple description coding (MDC) setup which we

consider in Section 5.2. In this setup, there is a single source and two encoders

generate two different representations of the same source. Then, three decoders

that has access to representation 1, representation 2 and both, respectively, gener-

ate three different reconstructions subject to three different distortion constraints.

The achievable rate-region for this problem is not known in general but there is

an inner bound called El-Gamal Cover (EGC) inner bound. In the following we

mention other work on polar coding for MDC setup briefly. All of these work

consider achieving the EGC inner bound. Polar coding for MDC problem was

considered in [30] and two different methods were proposed. The first one is based

on joint polarization approach that was introduced in [18]. Using this method a

certain point on the dominant face of EGC region may be achieved. However,

this method has an important drawback such that the achieved rate-pair is de-

termined by the coding scheme rather than being a design choice. The second

method is based on rate-splitting approach described in [67] and achieves any

point on the dominant face. However, the method is expensive in the sense that

it uses three successive encoding steps, each of which is a SC polar decoder. Re-

cently PC for MDC problem was also considered in [31]. The method considered

in that work is only for a special case of uniform and binary sources. Another

recent work that mentions MDC problem using polar codes is given in [65]. The

authors very briefly claim that PC for MDC setup can be done using “nested po-

lar codes”; however, they do not go into the specifics. The polar coding method

for MDC problem described in our work is based on monotone chain rule ap-

proach introduced in [28] and also analyzed in detail in Section 4.1. We show

that using our method any point on the dominant face of EGC region may be

achieved for arbitrary source distributions. In our method, a single two-user joint

polar decoder based on monotone chain rules is needed for encoding.
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5.1 Distributed Lossy Source Coding

General lossy source coding setup is depicted in Figure 5.1. (X, Y ) is discrete

memoryless source (DMS) and dx(x, x̂), dy(y, ŷ) are two bounded distortion mea-

sures. Encoder 1 wants to compress source X to be reconstructed with a max-

imum distortion Dx and similarly encoder 2 wants to compress source Y to be

reconstructed with a maximum distortion Dy at the joint decoder. This problem

obviously includes Slepian-Wolf and lossy source coding with side information

(Wyner-Ziv) problems as its special cases. However, unlike these special cases,

the rate-distortion region of this problem is not known in general.

Figure 5.1: Distributed lossy compression setup.

There are Berger-Tung inner and outer bounds for the rate region, none of

which is tight in general. However, there are well known specializations where

either inner or outer bound is tight. Before, giving the bound theorems let’s

define the setting formally.

Definition 14. An (n,Rx, Ry) source code in this setup is defined as

� Encoding function for X: fX : X n 7→ {1, . . . , 2nRx}.

� Encoding function for Y : fY : Yn 7→ {1, . . . , 2nRy}.

� Decoding function : g : {1, . . . , 2nRx} × {1, . . . , 2nRy} 7→ X n × Yn.

Let dx : X×X → R+ denote the distortion function with maximum value dmax.

The distortion function extends to vectors as dx(xN , x̂N) = 1
N

∑N
i=1 dx(xi, x̂i).

The distortion function dy : Y × Y → R+ for Y is defined similarly.
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Definition 15. A tuple (Rx, Ry, Dx, Dy) is said to be achievable if there exists a

sequence of (n,Rx, Ry) codes such that

lim sup
n→∞

E[dx(X
n, X̂n)] ≤ Dx

lim sup
n→∞

E[dy(Y
n, Ŷ n)] ≤ Dy

The rate–distortion region R(Dx, Dy) for distributed lossy source coding is the

closure of the set of all rate pairs (Rx, Ry) such that (Rx, Ry, Dx, Dy) is achievable.

The rate-distortion region for this problem is not known in general. However,

there is an inner bound called Berger-Tung inner bound [68], which is tight in

some special cases. In this work we focus on the Berger-Tung inner bound.

Theorem 10 (Berger-Tung Inner Bound). Let (X, Y ) be a 2-DMS with joint

density p(x, y) and dx(x, x̂) and dy(y, ŷ) be two distortion measures. A rate pair

(Rx, Ry) is achievable with distortion pair (Dx, Dy) for distributed lossy source

coding if

Rx ≥ I(X; X̄|Ȳ ), (5.1)

Ry ≥ I(Y ; Ȳ |X̄), (5.2)

Rx +Ry ≥ I(X, Y ; X̄, Ȳ ) (5.3)

for some conditional pmf p(x̄|x)p(ȳ|y) with |X̄| ≤ |X| + 4, |Ȳ | ≤ |Y | + 4, and

functions x̂(x̄, ȳ) and ŷ(x̄, ȳ) such that E[dx(X, X̂)] ≤ Dx, E[dy(Y, Ŷ )] ≤ Dy.

Following are some special cases where the bound is tight.

� Suppose dy is a Hamming distortion measure and Dy = 0. In this case

conditions are minimized with Ȳ = Y . Then the Berger-Tung inner bound
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is tight and reduces to the set of rate pairs (Rx, Rx) such that

Rx ≥ I(X; X̄|Y ),

Ry ≥ H(Y |X̄),

Rx +Ry ≥ I(X; X̄|Y ) +H(Y ) = I(X; X̄) +H(Y |X̄)

for some conditional pmf p(x̄|x) and function x̂(x̄, y) that satisfy the con-

straint E[dx(X, X̂)] ≤ Dx.

� It reduces to the Wyner-Ziv rate-distortion function when there is no rate

limit on describing Y , i.e., Ry ≥ H(Y ). In this case, the only active con-

straint is Rx ≥ I(X; X̄|Y ).

� It reduces to the Slepian-Wolf region when Dx = 0 in addition to Dy (set

X̄ = X).

The Berger-Tung (BT) region can be defined as

RBT , {(R1, R2) : R1 ≥ I(X; X̄|Ȳ ), R2 ≥ I(Y ; Ȳ |X̄), R1 +R2 ≥ I(X, Y ; X̄, Ȳ )}
(5.4)

where the random variables have the joint density p(x̄|x)p(ȳ|y)p(x, y). The dom-

inant face of the BT region is defined as follows

J , {(R1, R2) ∈ RBT : R1 +R2 = I(X, Y ; X̄, Ȳ )}. (5.5)

Because of the special distribution, the two corner points of the dominant face

are given as (I(X; X̄), I(Y ; Ȳ |X̄)) and (I(X; X̄|Ȳ ), I(Y ; Ȳ )). The first point can

be shown as follows

I(X, Y ; X̄, Ȳ ) = I(X, Y ; X̄) + I(X, Y ; Ȳ |X̄) (5.6)

= H(X̄)−H(X̄|X, Y ) +H(Ȳ |X̄)−H(Ȳ |X, Y, X̄) (5.7)

(a)
= H(X̄)−H(X̄|X) +H(Ȳ |X̄)−H(Ȳ |Y, X̄) (5.8)

= I(X; X̄) + I(Y ; Ȳ |X̄). (5.9)
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(a) is due to the X̄−X−Y −Ȳ Markov chain dependency of the random variables

which also gives the special form of the conditional distribution p(x̄, ȳ|x, y) =

p(x̄|x)p(ȳ|y). The other corner point can be shown similarly.

We can also write the corner points as (I(X; X̄), I(Y ; Ȳ ) − I(X̄; Ȳ )) and

(I(X; X̄)− I(X̄; Ȳ ), I(Y ; Ȳ )). This can be shown as follows

I(X; X̄|Ȳ )) = H(X̄|Ȳ )−H(X̄|X, Ȳ ) (5.10)

(a)
= H(X̄)−H(X̄|X)− [H(X̄)−H(X̄|Ȳ )] (5.11)

= I(X; X̄)− I(X̄; Ȳ ). (5.12)

(a) is due to the Markov chain dependency of the random variables. Thus, the

sum rate can also be written as

I(X, Y ; X̄, Ȳ ) = I(X; X̄) + I(Y ; Ȳ )− I(X̄; Ȳ ). (5.13)

5.1.1 Polar Coding

Let source variables (X, Y ) ∈ X × Y be from arbitrary discrete alphabets. The

external variables are from prime sized alphabets: X̄, Ȳ ∈ X̄ = {0, 1, . . . , q − 1},
where q is prime. Given the source distribution (X, Y ) ∼ PXY , let the conditional

distribution PX̄Ȳ |XY = PX̄|XPȲ |Y give rise to the design distortions D∗x and D∗y,

i.e.

D∗x = EPX̄Ȳ XY [dx(X, x̂(X̄, Ȳ ))], (5.14)

D∗y = EPX̄Ȳ XY [dy(Y, ŷ(X̄, Ȳ ))], (5.15)

where

PX̄Ȳ XY (x̄, ȳ, x, y) = PXY (x, y)PX̄|X(x̄|x)PȲ |Y (ȳ|y). (5.16)

Consider the i.i.d. block of random variables (X̄N , Ȳ N , XN , Y N) with N = 2n
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for some n ≥ 1. The joint distribution is given by

PX̄N Ȳ NXNY N (x̄N , ȳN , xN , yN) =
N∏
i=1

PXY (xi, yi)PX̄|X(x̄i|xi)PȲ |Y (ȳi|yi). (5.17)

Let, X̄N and Ȳ N denote the polar transforms of N -vectors UN and V N , respec-

tively, i.e.

UN = X̄NGN , V N = Ȳ NGN . (5.18)

Then we have

PUNV NXNY N (uN , vN , xN , yN) = PX̄N Ȳ NXNY N (uNGN , vNGN , x
N , yN). (5.19)

Since, GN is a one-to-one mapping, we can write the total mutual information as

follows

I(XN , Y N ; X̄N , Ȳ N) = NI(X, Y ; X̄, Ȳ ) = I(XN , Y N ;UN , V N). (5.20)

Let S2N = (S1, . . . , S2N) be a permutation on (UN , V N) such that relative

order of elements of UN and V N are preserved. Then, monotone expansion of

total mutual information is given as

I(XN , Y N ;UN , V N) =
2N∑
k=1

I(XN , Y N ;Sk|Sk−1). (5.21)

Let b2N be the path string s.t. bk ∈ {0, 1} which denotes the decoding path. The

channel rates R1 and R2 for a given b2N and S2N are defined as

R1 =
1

N

2N∑
k=1:
bk=0

I(XN , Y N ;Sk|Sk−1), (5.22)

R2 =
1

N

2N∑
k=1:
bk=1

I(XN , Y N ;Sk|Sk−1). (5.23)
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For any path on UNV N the rate pair satisfies

R1 ≥
1

N
I(XN ;UN |V N) = I(X; X̄|Ȳ ), (5.24)

R2 ≥
1

N
I(Y N ;V N |UN) = I(Y ; Ȳ |X̄), (5.25)

R1 +R2 =
1

N
I(XN , Y N ;UN , V N) = I(X, Y ; X̄, Ȳ ). (5.26)

The first inequality is satisfied with equality for b2N = 1N0N and the second

inequality is satisfied with equality for b2N = 0N1N .

The rate pairs (R1, R2) span the dominant face J of the Berger-Tung region

spanning its two end points. They also form a dense subset of J .

Theorem 11. Fix a path b2N0 for UN0V N0. Let R̄ = (R1, R2) be the associated

rate vector. Let, S2N be the edge variables for scaled path 2lb2N0, where N = 2lN0.

Then, for all ε > 0,

lim
l→∞

1

2N

∣∣∣{k ∈ [2N ] : 2−N
β

< I(XN , Y N ;Sk|Sk−1) < 1− 2−N
β
}∣∣∣ = 0,

lim
l→∞

|Ĩm(β)|
N

= Rm, m = 1, 2,

where Ĩm(β) = {k ∈ [2N ] : bk = m − 1, I(XN , Y N ;Sk|Sk−1) ≥ 1 − 2−N
β}, for

m ∈ {1, 2}.

Proof. Note that when we define Z = XY , Section 4.1 and polarization theorem

6 applies. From Theorem 6 we have the following fact:

lim
l→∞

1

2N

∣∣∣{k ∈ [2N ] : 2−N
β

< H(Sk|Sk−1) < 1− 2−N
β
}∣∣∣ = 0,

lim
l→∞

|L̃m(β)|
N

= 1−R′m, m = 1, 2,

where L̃m(β) = {k ∈ [2N ] : bk = m − 1, H(Sk|Sk−1) ≤ 2−N
β} and R′m =

1
N

∑2N
k:bk=m−1H(Sk|Sk−1), for m ∈ {1, 2}. Also, the following is true for R′m:

H(X̄|Ȳ ) ≤ R′1 ≤ H(X̄), H(Ȳ |X̄) ≤ R′2 ≤ H(Ȳ ).
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The lower and upper bounds of first and second expressions, respectively, are

satisfied with path b2N = 1N0N . Similarly, the upper and lower bounds of first

and second expressions, respectively, are satisfied with path b2N = 0N1N .

We also have the following fact from Theorem 6:

lim
l→∞

1

2N

∣∣∣{k ∈ [2N ] : 2−N
β

< H(Sk|ZN , Sk−1) < 1− 2−N
β
}∣∣∣ = 0,

lim
l→∞

|H̃m(β)|
N

= R′′m, m = 1, 2,

where H̃m(β) = {k ∈ [2N ] : bk = m − 1, H(Sk|ZN , Sk−1) ≥ 1 − 2−N
β} and

R′′m = 1
N

∑2N
k:bk=m−1H(Sk|ZN , Sk−1), for m ∈ {1, 2}. Note that, because of the

special total probability distribution of the problem R′′1 and R′′2 are constant and

not path dependent. The following is true for R′′m:

R′′1 = H(X̄|X), R′′2 = H(Ȳ |Y ).

First define two index sets as follows:

K̃m , {k ∈ [2N ] : bk = m− 1} , m = 1, 2. (5.27)

We define complements of sets for user m with respect to the corresponding

index set K̃m, i.e. F̃ cm , K̃m \ F̃m. Since H(Sk|ZN , Sk−1) ≤ H(Sk|Sk−1), we have

L̃m ∩ H̃m = ∅ and H̃m ⊆ L̃cm. We may write Ĩ ′m = (L̃m ∪ H̃m)c = L̃cm \ H̃m. Ĩ ′m
has some extra partially polarized indices compared to Ĩm. By polarization, the

ratio of the size of the set of partially polarized indices to N go to zero. Thus,

the result follows by observing |Ĩ
′
m|
N
→ |Ĩm|

N
as N →∞.

5.1.1.1 Polarization Sets

In the following discussion, we will refer to three interrelated index variables k,

i and j, repeatedly, all in the context of an assumed path b2N . k will mark the

index of edge vector S2N . i and j will mark the corresponding index of UN and
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V N , respectively. We will make use of Definition 10 here.

For the purpose of polar coding, the total probability is also expanded as

follows:

PS2NXNY N (s2N , xN , yN) = PXNY N (xN , yN)
2N∏
k=1

PSk|Sk−1XNY N (sk|sk−1, xN , yN).

(5.28)

Let δN = 2−N
β

for 0 < β < 1
2
. We use Bhattacharyya parameters Z(·|·)

instead of entropies H(·|·) when defining polarization sets as we did in previous

chapters. Because, Z(·|·) bounds average probability of error by Proposition 1

and Z(·|·) and H(·|·) polarize together by Proposition 2. First, we define the

following general “path dependent” polarization sets:

L̃ ,
{
k ∈ [2N ] : Z(Sk|Sk−1) ≤ δN

}
, (5.29)

H̃ ,
{
k ∈ [2N ] : Z(Sk|Sk−1, XN , Y N) ≥ 1− δN

}
. (5.30)

Then, we define the following “low entropy” sets for user 1:

L̃1 ,
{
k ∈ [2N ] : bk = 0, k ∈ L̃

}
, (5.31)

L̃X̄ ,
{
k ∈ [2N ] : bk = 0, Z(Ui|U i−1) ≤ δN

}
, (5.32)

L̃X̄|Ȳ ,
{
k ∈ [2N ] : bk = 0, Z(Ui|U i−1, V N) ≤ δN

}
, (5.33)

and user 2:

L̃2 ,
{
k ∈ [2N ] : bk = 1, k ∈ L̃

}
, (5.34)

L̃Ȳ ,
{
k ∈ [2N ] : bk = 1, Z(Vj|V j−1) ≤ δN

}
, (5.35)

L̃Ȳ |X̄ ,
{
k ∈ [2N ] : bk = 1, Z(Vj|V j−1, UN) ≤ δN

}
. (5.36)

The following relations hold for any path b2N

L̃X̄ ⊆ L̃1 ⊆ L̃X̄|Ȳ , (5.37)

L̃Ȳ ⊆ L̃2 ⊆ L̃Ȳ |X̄ . (5.38)

110



Note that L̃X̄ = L̃1 and L̃2 = L̃Ȳ |X̄ for b2N = 0N1N . Similarly, L̃X̄|Ȳ = L̃1 and

L̃2 = L̃Ȳ for b2N = 1N0N .

Then, we define low entropy sets for users 1 and 2 in terms of i and j indices:

L1 ,
{
i ∈ [N ] : k ∈ L̃1

}
, L2 ,

{
j ∈ [N ] : k ∈ L̃2

}
, (5.39)

LX̄ ,
{
i ∈ [N ] : k ∈ L̃X̄

}
, LȲ ,

{
j ∈ [N ] : k ∈ L̃Ȳ

}
, (5.40)

LX̄|Ȳ ,
{
i ∈ [N ] : k ∈ L̃X̄|Ȳ

}
, LȲ |X̄ ,

{
j ∈ [N ] : k ∈ L̃Ȳ |X̄

}
. (5.41)

Now we define the high entropy sets as

H̃1 ,
{
k ∈ [2N ] : bk = 0, Z(Sk|Sk−1, XN , Y N) ≥ 1− δN

}
, (5.42)

H̃X̄|X ,
{
k ∈ [2N ] : bk = 0, Z(Ui|U i−1, XN) ≥ 1− δN

}
, (5.43)

and

H̃2 ,
{
k ∈ [2N ] : bk = 1, Z(Sk|Sk−1, XN , Y N) ≥ 1− δN

}
, (5.44)

H̃Ȳ |Y ,
{
k ∈ [2N ] : bk = 1, Z(Vj|V j−1, Y N) ≥ 1− δN

}
. (5.45)

Observe that the following are true for above sets

H̃X̄|X = H̃1, and H̃Ȳ |Y = H̃2, (5.46)

for any path b2N . Similar to above sets, we define the following sets which contain

i and j indices:

HX̄|X ,
{
i ∈ [N ] : Z(Ui|U i−1, XN) ≥ 1− δN

}
, (5.47)

HȲ |Y ,
{
j ∈ [N ] : Z(Ui|U i−1, XN) ≥ 1− δN

}
. (5.48)
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Figure 5.2: Polarization Sets for X̄.

Definition 16 (Frozen and Information Sets). The following frozen sets are de-

fined using the polarization sets defined above:

FX̄ , LX̄ ∪HX̄|X , IX̄ , [N ] \ FX̄ , (5.49)

F1 , L1 ∪HX̄|X , I1 , [N ] \ F1, (5.50)

FȲ , LȲ ∪HȲ |Y , IȲ , [N ] \ FȲ , (5.51)

F2 , L2 ∪HȲ |Y , I2 , [N ] \ F2, (5.52)

and

F̃X̄ , L̃X̄ ∪ H̃X̄|X , ĨX̄ , K̃1 \ F̃X̄ , (5.53)

F̃1 , L̃1 ∪ H̃X̄|X , Ĩ1 , K̃1 \ F̃1, (5.54)

F̃Ȳ , L̃Ȳ ∪ H̃Ȳ |Y , ĨȲ , K̃2 \ F̃Ȳ , (5.55)

F̃2 , L̃2 ∪ H̃Ȳ |Y , Ĩ2 , K̃2 \ F̃2, (5.56)

where K̃1 and K̃2 are as defined in (5.27). Also let

F̃ , L̃ ∪ H̃, I , [2N ] \ F̃ . (5.57)

Note that, F̃ = F̃1 ∪ F̃2 and Ĩ = Ĩ1 ∪ Ĩ2.
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5.1.1.2 Encoding

We define family of functions λ
(1)
i : X̄ i−1 → X̄ , ∀i ∈ FX̄ and λ

(2)
j : X̄ j−1 → X̄ ,

∀j ∈ FȲ . We assume that they are shared between the encoders and the decoder.

We also define the corresponding random variables Λ
(1)
i and Λ

(2)
j such that

Λ
(1)
i (ui−1) , a, w.p. PUi|U i−1

(
a|ui−1

)
,

Λ
(2)
j (vj−1) , a, w.p. PVj |V j−1

(
a|vj−1

)
,

(5.58)

where a ∈ X̄ . Maps (λ
(1)
i , λ

(2)
j ) are the realizations of random maps (Λ

(1)
i , Λ

(2)
j ).

Each realization of set of maps (λ
(1)
FX̄

, λ
(2)
FȲ

) results in different encoding and

decoding protocols. The distribution over the choice of maps is induced with the

above equation (5.58). The set of maps (λ
(1)
FX̄

, λ
(2)
FȲ

) are used to determine the bits

in sets FX̄ , FȲ . The theoretical analysis of the distortions are made much easier

using the randomized maps and calculating the average distortion over maps.

The bits in information sets IX̄ and IȲ are calculated either the deterministic

or the random rules given below.

Deterministic rules:

ψ̄
(1)
i (ui−1, xN) , arg max

u′∈X̄

{
PUi|U i−1XN

(
u′|ui−1, xN

)}
,

ψ̄
(2)
j (vj−1, yN) , arg max

v′∈X̄

{
PVj |V j−1Y N

(
v′|vj−1, yN

)}
.

(5.59)

Random rules:

Ψ
(1)
i (ui−1, xN) , a, w.p. PUi|U i−1XN

(
a|ui−1, xN

)
,

Ψ
(2)
j (vj−1, yN) , a, w.p. PVi|V j−1Y N

(
a|vj−1, yN

)
,

(5.60)

where a ∈ X̄ . Maps (ψ
(1)
i , ψ

(2)
j ) are the realizations of random maps (Ψ

(1)
i , Ψ

(2)
j ).

In the analysis we use the random rules for tractability. This approach is called

randomized rounding [16]. The encoding operations are given as follows.
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Encoder 1 constructs the sequence uN bit-by-bit successively,

ui =

λ
(1)
i (ui−1), if i ∈ FX̄ ,
ψ

(1)
i (ui−1, xN), otherwise.

(5.61)

Encoder 2 constructs the sequence vN bit-by-bit successively,

vj =

λ
(2)
j (vj−1), if j ∈ FȲ ,
ψ

(2)
j (vj−1, yN), otherwise.

(5.62)

Then, encoder 1 transmits the compressed message uI1 and encoder 2 transmits

the compressed message vI2 . The randomness in the encoding process ensures

that bits of uN and vN have the correct statistics as if drawn from the joint

distribution of (UN , V N).

Remark 1. Note that although in the analysis we use randomized rounding ap-

proach and thus make use of random rules Ψ
(1)
i and Ψ

(2)
j for calculating bits in IX̄

and IȲ , in practice we use the deterministic rules. In either case, the probabili-

ties P (ui|ui−1, xN) and P (vj|vj−1, yN) have to be calculated. These are calculated

using SC decoding. Therefore, SC decoders are employed at the encoders just

like single user rate-distortion coding. Thus, we refer to this operation as SC

encoding.

Remark 2. If the distribution of X̄ is uniform then we could determine the bits

in FX̄ beforehand uniformly from X̄ |FX̄ | and the randomized maps Λ
(1)
FX̄

are not

required. In general case however, the set FX̄ actually comprises of two distinct

parts and we could use a simplified rule for i ∈ FX̄ :

ui =

ūi, if i ∈ HX̄|X ,

arg maxu′∈X̄ PUi|U i−1 (u′|ui−1) , if i ∈ LX̄ ,
(5.63)

where ūi is determined beforehand uniformly from X̄ . The same reasoning applies

to Ȳ , too. However, since this rule makes the proof harder, we use the maps Λ
(1)
FX̄

for simplicity. But, in simulations, the above presented rules are used.
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5.1.1.3 Decoding

Joint decoding is performed at the decoder along the path b2N . Decoding is

performed in 2N steps. In step k ∈ [2N ], if bk = 0 then a bit from uN is decoded

else a bit from vN is decoded. We define the following decoding functions:

ζk(s
k−1) , arg max

s′∈X̄

{
PSk|Sk−1(s′|sk−1)

}
, (5.64)

for k ∈ Ĩ.

First, the decoder assembles the received vectors (uI1 , vI2) into sĨ . Then, the

decoder uses the identical shared maps λ
(1)
i and λ

(2)
j to reconstruct the estimate

ŝ2N successively as

ŝk =



λ
(1)
i (ûi−1), if k ∈ F̃X̄ ,
λ

(2)
j (v̂j−1), if k ∈ F̃Ȳ ,
sk, if k ∈ Ĩ,
ζk(ŝ

k−1), otherwise.

(5.65)

Then, ûN and v̂N are extracted as ûN = ŝK̃1
and v̂N = ŝK̃2

. Finally, the estima-

tions are generated as x̂N = x̂(ûNGN , v̂
NGN) and ŷN = ŷ(ûNGN , v̂

NGN).

Note that the encoding operations are almost the same as single-user rate dis-

tortion coding. The difference is that only a subset uI1 (vI2) of uIX̄ (vIȲ ) (all

bits generated by polar successive cancellation encoding operation) is sent to the

decoder. The rest can be estimated with the combined knowledge of (uI1 , vI2).

Thus, the decoder is very different compared to single-user rate-distortion polar

coding where a simple polar encoder was used. Here, two-user polar successive

cancellation decoding is used at the decoder. Therefore, in addition to bounding

the average distortions, we need to bound the average probability of decoding er-

ror, too. As in the single-user case, for analysis purposes, the encoding functions

are random. The results of encoding operations may be different for the same in-

puts (xN , yN). For encoder 1, at step i ∈ IX̄ of the process, ui = a with probabil-

ity proportional to PUi|U i−1XN (a|ui−1, xN). Similarly for encoder 2, at step j ∈ IȲ
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of the process, vj = a with probability proportional to PVj |V j−1Y N (a|vj−1, yN).

Thus, for a given pair of maps (λ
(1)
FX̄

, λ
(2)
FȲ

), a particular (uN , vN) occurs with a

certain probability induced by the distributions of (Ψ
(1)
IX̄

, Ψ
(2)
IȲ

) and maps.

We define the resulting average (over xN , yN and randomness of the infor-

mation bits induced by the distributions of (Ψ
(1)
IX̄

, Ψ
(2)
IȲ

) ) distortions of above

encoding and decoding operations as Dx(λ
(1)
FX̄
, λ

(2)
FȲ

) and Dy(λ
(1)
FX̄
, λ

(2)
FȲ

). In the

following we show that for sets FX̄ , FȲ , I1, I2 defined in 5.1.1.1 and encoding

and decoding methods defined in 5.1.1.2 and 5.1.1.3, there exists maps (λ
(1)
FX̄

, λ
(2)
FȲ

)

such that Dx(λ
(1)
FX̄
, λ

(2)
FȲ

) ∼ D∗x and Dy(λ
(1)
FX̄
, λ

(2)
FȲ

) ∼ D∗y, where D∗x, D
∗
y are the

design distortions. We do that by determining the expected average distortions

over the ensembles of codes generated by different encoding maps (λ
(1)
FX̄

, λ
(2)
FȲ

).

The distribution over the choices of maps is given in (5.58). Then we show that

expected average distortions are roughly D∗x and D∗y. This implies that for at least

one choice of (λ
(1)
FX̄

, λ
(2)
FȲ

) the average distortions are close to D∗x and D∗y. The

following theorem makes this precise.

Theorem 12. Let FX̄ , FȲ , I1, I2 be sets as defined in 5.1.1.1 and encoding and

decoding methods be as defined in 5.1.1.2 and 5.1.1.3. Then the expectations of

average distortions Dx(Λ
(1)
FX̄
,Λ

(2)
FȲ

), Dy(Λ
(1)
FX̄
,Λ

(2)
FȲ

) over the maps Λ
(1)
FX̄

, Λ
(2)
FȲ

satisfy

E{Λ(1)
FX̄

,Λ
(2)
FȲ
}

[
Dx(Λ

(1)
FX̄
,Λ

(2)
FȲ

)
]

= D∗x +O(2−N
β
) and E{Λ(1)

FX̄
,Λ

(2)
FȲ
}

[
Dy(Λ

(1)
FX̄
,Λ

(2)
FȲ

)
]

=

D∗y + O(2−N
β
) for any (R1, R2) ∈ RBT and 0 < β < 1/2. Consequently, there

exist deterministic maps that satisfy the above relations.

The following sections give necessary steps for proving the theorem. We first

prove a total variation bound on two probability measures. Then, we use that

result to bound the expected average distortions of the code. However, before

showing the average distortions are bounded, we need to show that the decoding

error is bounded, which is done in similar steps as the MAC case in Section

4.3.1.5.
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5.1.1.4 Total Variation Bound

First, we define the following probability measure:

QS2NXNY N (s2N , xN , yN) , QXNY N (xN , yN)QS2N |XNY N (s2N |xN , yN)

= QXNY N (xN , yN)
2N∏
k=1

QSk|Sk−1XNY N (sk|sk−1, xN , yN),

(5.66)

where QXNY N (xN , yN) = PXNY N (xN , yN). Also we have the following relation:

QUNV NXNY N (uN , vN , xN , yN) , QS2NXNY N (πN(uN , vN), xN , yN). (5.67)

The conditional probability measures are defined as

QSk|Sk−1XNY N (sk|sk−1, xN , yN) ,



PUi|U i−1(ui|ui−1), bk = 0 and k ∈ F̃X̄ ,
PUi|U i−1XN (ui|ui−1, xN), bk = 0 and k ∈ ĨX̄ ,
PVj |V j−1(vj|vj−1), bk = 1 and k ∈ F̃Ȳ ,
PVj |V j−1Y N (vj|vj−1, yN), bk = 1 and k ∈ ĨȲ ,

(5.68)

Lemma 9 (Total Variation Bound). Let probability measures P and Q be defined

as in (5.28) and (5.66), respectively. For 0 < β < 1/2 and sufficiently large N ,

the total variation distance between P and Q is bounded as

∑
s2N ,xN ,yN

∣∣PS2NXNY N (s2N , xN , yN)−QS2NXNY N (s2N , xN , yN)
∣∣ ≤ 2−N

β

. (5.69)

Proof. See Appendix C.1.
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5.1.1.5 Average Error Probability

The encoding and decoding rules were established in Sections 5.1.1.2 and 5.1.1.3,

respectively. The two-user decoder defined in Section 5.1.1.3 is used to estimate

unknown values. sk for k ∈ {F̃X̄ ∪ F̃Ȳ } are decided using shared maps λ
(1)
FX̄

, λ
(2)
FȲ

.

sk for k ∈ Ĩ are received from encoders. The remaining bits in {ĨX̄ ∪ ĨȲ } \ Ĩ are

estimated by the joint decoder. Note that, that set is also given by L̃ \ {L̃X̄ ∪
L̃Ȳ }. Consider the sequences s2N = πN(uN , vN) formed at the encoders under

observations xN and yN . The decoder makes an SC decoding error on the k-th

symbol for the following sequences:

T k ,
{

(s2N , xN , yN) : ∃s′ ∈ X̄ s.t. s′ 6= sk,

PSk|Sk−1(sk|sk−1) ≤ PSk|Sk−1(s′|sk−1)
}
. (5.70)

The set T k represents those tuples causing an error at the decoder in the case

sk is inconsistent with respect to the decoding rule. The complete set of tuples

causing an error is

T ,
⋃

k∈L̃\{L̃X̄∪L̃Ȳ }

T k. (5.71)

Assuming randomized maps shared between encoder and decoder, the average

error probability is a random quantity given as follows

Pe[Λ
(1)
FX̄
,Λ

(2)
FȲ

] =
∑

(s2N ,xN ,yN )∈T

PXN ,Y N (xN , yN)

·
∏
i∈IX̄

PUi|U i−1XN (ui|ui−1, xN)
∏
j∈IȲ

PVj |V j−1Y N (vj|vj−1, yN)

·
∏
i∈FX̄

1{
Λ

(1)
i (ui−1)=ui

} ∏
j∈FȲ

1{
Λ

(2)
j (vj−1)=vj

}. (5.72)

The expected average block error probability is calculated by averaging over the

randomness in the encoders

P̄e , E{Λ(1)
FX̄

,Λ
(2)
FȲ
}

[
Pe[Λ

(1)
FX̄
,Λ

(2)
FȲ

]
]
. (5.73)
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The following lemma bounds the expected average block error probability.

Lemma 10. Consider the polarization based channel code described in Sections

5.1.1.2 and 5.1.1.3. Let the sets FX̄ , FȲ , I1, I2 be as defined in 5.1.1.1. Then

for 0 < β < 1/2 and sufficiently large N ,

E{Λ(1)
FX̄

,Λ
(2)
FȲ
}

[
Pe[Λ

(1)
FX̄
,Λ

(2)
FȲ

]
]
≤ 2−N

β

.

Proof. Note that the expectation of average probability of error is written as

E{Λ(1)
FX̄

,Λ
(2)
FȲ
}

[
Pe[Λ

(1)
FX̄
,Λ

(2)
FȲ

]
]

=
∑

(s2N ,xN ,yN )∈T

PXN ,Y N (xN , yN)

·
∏
i∈IX̄

PUi|U i−1XN (ui|ui−1, xN)
∏
j∈IȲ

PVj |V j−1Y N (vj|vj−1, yN)

·
∏
i∈FX̄

P

{
Λ

(1)
i (ui−1) = ui

} ∏
j∈FȲ

P

{
Λ

(2)
j (vj−1) = vj

}
.

From the definition of random mappings it follows that

P

{
Λ

(1)
i (ui−1) = ui

}
= PUi|U i−1(ui|ui−1),

P

{
Λ

(2)
j (vj−1) = vj

}
= PVj |V j−1(vj|vj−1).

Then, we may substitute the definition for QS2N |XNY N (s2N |xN , yN) in (5.66) into

the expression of expected average probability of error to get

E{Λ(1)
FX̄

,Λ
(2)
FȲ
}

[
Pe[Λ

(1)
FX̄
,Λ

(2)
FȲ

]
]

=
∑

(s2N ,xN ,yN )∈T

PXN ,Y N (xN , yN)·

QS2N |XNY N (s2N |xN , yN).

Then we split the error into two main parts, one due to the polar decoding

function and the other due to the total variation distance between probability
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measures.

E{Λ(1)
FX̄

,Λ
(2)
FȲ
}

[
Pe[Λ

(1)
FX̄
,Λ

(2)
FȲ

]
]

=
∑

(s2N ,xN ,yN )∈T

PXN ,Y N (xN , yN)·

[
Q(s2N |xN , yN)− P (s2N |xN , yN) + P (s2N |xN , yN)

]
.

Then we have

E{Λ(1)
FX̄

,Λ
(2)
FȲ
}

[
Pe[Λ

(1)
FX̄
,Λ

(2)
FȲ

]
]
≤

∑
(s2N ,xN ,yN )∈T

PS2NXN ,Y N (s2N , xN , yN)+

∑
s2N ,xN ,yN

∣∣Q(s2N , xN , yN)− P (s2N , xN , yN)
∣∣ .

The second part of the error which is due to total variation distance is upper

bounded as O(2−N
β
) by Lemma 9. Thus, it remains to upper bound the error

term due to polar decoding. Remember that T , ∪k∈L̃\{L̃X̄∪L̃Ȳ }T
k. We may

upper bound each error symbol by symbol. Define error probability for symbol

k ∈ L̃ \ {L̃X̄ ∪ L̃Ȳ } as

εk ,
∑

(s2N ,xN ,yN )∈T k
PS2NXNY N (s2N , xN , yN),

=
∑
sk

PSK (sk) · 1{
s′:P

Sk|Sk−1 (sk|sk−1)≤P
Sk|Sk−1 (s′|sk−1)

}.

But this is the average probability of decoding error for symbol k, i.e. εk =

Pe(Sk|Sk−1). Probability of error is upper bounded by the Bhattacharyya pa-

rameter by Proposition 1. By union bound, the total average probability of error

is ε ≤∑k ε
k. Then we have

ε ≤
∑

k∈L̃\{L̃X̄∪L̃Ȳ }

(q − 1)Z(Sk|Sk−1),

≤ (q − 1)2NδN .

The second inequality is from the definition of polarization sets in Section 5.1.1.1.

This completes the proof that the expected average probability of error is upper

bounded as O(2−N
β
).
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Since by Lemma 10 the expected value over the random maps of average

probability of error decays to zero, there must be at least one deterministic class

of maps for which Pe → 0.

5.1.1.6 Average Distortion

For a source sequence (xN , yN), random encoding maps (Λ
(1)
FX̄

, Λ
(2)
FȲ

) and encoding

rule (5.61), (uN , vN) appears with probability

∏
i∈IX̄

PUi|U i−1,XN (ui|ui−1, xN)

∏
i∈FX̄

1{
Λ

(1)
i (ui−1)=ui

}
 ·

∏
j∈IȲ

PVj |V j−1,Y N (vj|vj−1, yN)

∏
j∈FȲ

1{
Λ

(2)
j (vj−1)=vj

}
 .

For random set of maps (Λ
(1)
FX̄

, Λ
(2)
FȲ

), the average distortion of X is a random

quantity given by

Dx(Λ
(1)
FX̄
,Λ

(2)
FȲ

) =
∑
uN ,vN

xN ,yN

PXNY N (xN , yN) · dx(xN , x̂(uNGN , v
NGN))

∏
i∈IX̄

PUi|U i−1,XN (ui|ui−1, xN)

∏
i∈FX̄

1{
Λ

(1)
i (ui−1)=ui

}
 ·

∏
j∈IȲ

PVj |V j−1,Y N (vj|vj−1, yN)

∏
j∈FȲ

1{
Λ

(2)
j (vj−1)=vj

}
 .

(5.74)
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The expectation over maps is

E{Λ(1)
FX̄

,Λ
(2)
FȲ
}[Dx(Λ

(1)
FX̄
,Λ

(2)
FȲ

)] =
∑
uN ,vN

xN ,yN

PXNY N (xN , yN) · dx(xN , x̂(uNGN , v
NGN))·

∏
i∈IX̄

PUi|U i−1,XN (ui|ui−1, xN)

∏
i∈FX̄

PUi|U i−1(ui|ui−1)

 ·
∏
j∈IȲ

PVj |V j−1,Y N (vj|vj−1, yN)

∏
j∈FȲ

PVj |V j−1(vj|vj−1)

 .

(5.75)

Using the probability distributionQ defined in (5.66) we can write the expectation

as

E{Λ(1)
FX̄

,Λ
(2)
FȲ
}

[
Dx(Λ

(1)
FX̄
,Λ

(2)
FȲ

)
]

= EQ

[
dx(XN , x̂(UNGN , V

NGN))
]
. (5.76)

Therefore, we get

E{Λ(1)
FX̄

,Λ
(2)
FȲ
}

[
Dx(Λ

(1)
FX̄
,Λ

(2)
FȲ

)
]
≤ EP

[
dx(XN , x̂(UNGN , V

NGN))
]

+

dmax||PS2NXNY N −QS2NXNY N ||. (5.77)

Lemma 9 shows that the second term of the sum is O(2−N
β
). Therefore, there

exist deterministic sets of maps λ
(1)
FX̄

and λ
(2)
FȲ

such that Dx(λ
(1)
FX̄
, λ

(2)
FȲ

) = D∗x +

O(2−N
β
). Similarly we can prove the same result for Y distortion.

5.1.2 Simulations

In this section, we implement the proposed polar coding scheme for distributed

lossy compression and present simulation results for binary sources with Hamming
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distortion measures. That is, dx = dy = dH where

dH(x, x̂) =

0, if x = x̂,

1, otherwise.
(5.78)

The practical encoder implements the function in (5.63). The symbols for HX̄|X

andHȲ |Y are fixed to zero and ML encoding is used for the rest of the bits instead

of randomized rounding. The practical decoder uses joint ML SC decoding for

all of the bits except the known bits of sets HX̄|X and HȲ |Y .

Recall that the total probability distribution for Berger-Tung coding is of the

form PX̄Ȳ XY (x̄, ȳ, x, y) = PX̄|X(x̄|x)PȲ |Y (ȳ|y)PXY (x, y). PXY (x, y) is fixed for the

given source. Each different selection of PX̄|X(x̄|x) and PȲ |Y (ȳ|y) distributions

result in a different achievable region. However, that selection is not totally

arbitrary; The resulting distribution must satisfy the distortion constraints:

E[dx(X
n, X̂n)] = Dx, E[dy(Y

n, Ŷ n)] = Dy. (5.79)

5.1.2.1 Simulation 1

For this simulation we use the estimator functions x̂(x̄, ȳ) = x̄ and ŷ(x̄, ȳ) = ȳ.

For the probability distributions used in this simulation it turns out that these

estimators are optimal, i.e.

arg max
x′

PX|X̄Ȳ (x′|x̄, ȳ) = x̄, arg max
y′

PY |X̄Ȳ (y′|x̄, ȳ) = ȳ.

For our case with binary sources and Hamming distortion, above estimator

results in the following equations:

PX̄|X(0|1) =
Dx + PX(0)(PX̄|X(0|0)− 1)

1− PX(0)
, (5.80)

PȲ |Y (0|1) =
Dy + PY (0)(PȲ |Y (0|0)− 1)

1− PY (0)
. (5.81)
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Thus, PX̄|X(0|0) is the only free variable in conditional distribution PX̄|X . The

similar result is also valid for conditional distribution PȲ |Y . In the simulations be-

low, when selecting conditional distributions, we took this constraint into account

and optimized the sum-rate (I(X̄, Ȳ ;X, Y )) over these two free variables.

For this simulation, the source distribution is selected as

PXY =

[
0.50 0.15

0.05 0.30

]
.

And the average distortion constraints are set to Dx = 0.05 and Dy = 0.05.

The conditional distributions are selected with the average distortion constraints

mentioned above and optimized to minimize the total sum rate. The graph of

sum-rate versus PX̄|X(0|0) and PȲ |Y (0|0) is given in Figure 5.3. For the sim-

ulations we select the parameters that minimize the sum rate which occurs at

PX̄|X(0|0) = 0.97, PȲ |Y (0|0) = 0.96. The corresponding conditional distributions

are given in Table 5.1.

Table 5.1: Conditional probabilities PX̄|X and PȲ |Y .

a,b 0,0 0,1 1,0 1,1

PX̄|X(a|b) 0.9700 0.0871 0.0300 0.9129

PȲ|Y(a|b) 0.9600 0.0622 0.0400 0.9378

The mutual information parameters calculated for this source distribution are

given in Table 5.2. As it can be seen from the table, if we were to encode X

alone we would need a rate of I(X; X̄) = 0.6481 and similarly for Y alone we

would need a rate of I(Y ; Ȳ ) = 0.7064. The total rate would be 1.3545. However,

because of the correlation and joint decoding the sum rate of Berger-Tung region

is I(X̄, Ȳ ;X, Y ) = 1.1821 which is I(X̄; Ȳ ) = 0.1723 less. The corner points of

the Berger-Tung region are given as (0.6481, 0.5243) and (0.4758, 0.7064). In the

simulations, the distortions are averaged over 1000 blocks. The tables show the

experimental rates required to obtain the target distortions approximately.
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Figure 5.3: I(X̄, Ȳ ;X, Y ) vs. PX̄|X(0|0) and PȲ |Y (0|0).

Table 5.2: Berger-Tung parameters.

I(X; X̄) I(Y; Ȳ) I(X̄; Ȳ) I(X̄, Ȳ; X,Y)

0.6481 0.7064 0.1723 1.1821

Construction

Code construction is done using two-user SC decoder in large number of Monte-

Carlo simulations and averaging the results. The joint decoder runs in two differ-

ent configurations, once for likelihoods calculated for known (XN , Y N) and once

for (XN , Y N) unknown. The decoder runs along the given path (b2N) and calcu-

late reliability values of the bits. Figure 5.4 shows results for path b2N = 0
3N
4 1N0

N
4

with N = 210. The rate allocation for this path is measured from the results of

simulations as (R1, R2) = (0.5514, 0.6307).
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Figure 5.4: Sorted reliability values.

The output of the first run (known (XN , Y N)) gives approximately 1 −
Z(Sk|Sk−1, XN , Y N). It is shown with dotted plot and blue color in both fig-

ures. Figures 5.4a and 5.4b show only those indices with bk = 0 (user 1) and

bk = 1 (user 2), respectively. We identify the sets HX̄|X and HȲ |Y using this

simulation. The number of indices close to 1 in those plots are expected to be

N − |HX̄|X | and N − |HȲ |Y |, which are marked with vertical blue solid lines.

The output of the second run (unknown (XN , Y N)) gives approximately 1 −
Z(Sk|Sk−1). The output is plotted with small circles and red color in both figures.

Figures 5.4a and 5.4b show only those indices with bk = 0 (user 1) and bk = 1 (user

2), respectively. We identify the sets L1 and L2 using this simulation. For Figure

5.4a, the number of indices close to 1 depends on the path (b2N) chosen and gives

the size of set L1 (marked with vertical red line). The size of L1 must be between

|LX̄ | (b2N = 0N1N) and |LX̄|Ȳ | (b2N = 1N0N) marked with vertical magenta and

green lines, respectively. Similarly, for Figure 5.4b, the number of indices close

to 1 depends on the path (b2N) chosen and gives the size of set L2 (marked with

vertical red line). The size of L2 must be between |LȲ | (b2N = 1N0N) and |LȲ |X̄ |
(b2N = 0N1N) marked with vertical magenta and green lines, respectively.

As the result of the code construction simulations, we are able to calculate

the sets given in previous sections which are necessary to perform encoding and

decoding such as LX̄ , HX̄|X , L1, I1, LȲ , HȲ |Y , L2, I2.
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Results

Simulation results for path b2N = (0
3N
4 1N0

N
4 ) are shown in Tables 5.3 and 5.4.

Table 5.3 is for list size of 1 while Table 5.4 is for list size of 32. Both tables show

two results for two different block lengths. The empirical rates (R̂1, R̂2) as well as

distortions (D̂x, D̂y) are shown. During the simulations we increased both of the

rates proportionally and recorded the values such that the distortion constraints

are approximately satisfied.

Table 5.3: Experimental results for b2N = (0
3N
4 1N0

N
4 ) and list size 1.

N R̂1 R̂2 R̂1 + R̂2 D̂x D̂y

210 0.6943 0.7959 1.4902 0.0505 0.0464

212 0.6785 0.7759 1.4543 0.0508 0.0483

In Table 5.3, we see that for N = 210, the total rate is 1.4902 instead of the

theoretical limit 1.1821. The rate is approximately 1.26 times the theoretical

limit. The rate expansion for N = 212 is approximately 1.23 which is lower as

expected.

Table 5.4: Experimental results for b2N = (0
3N
4 1N0

N
4 ) and list size 32.

N R̂1 R̂2 R̂1 + R̂2 D̂x D̂y

210 0.6279 0.7207 1.3486 0.0552 0.0488

212 0.6204 0.7097 1.3301 0.0497 0.0477

In Table 5.4, we see the results of same experiments only the decoders are list

of 32. As we can see from the results, the performance increases considerably as

expected. We see that for N = 210, the total rate is 1.3486 which is approximately

1.14 times the theoretical limit. The rate expansion for N = 212 is just 1.12,

approximately.
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5.1.2.2 Simulation 2

For this simulation the source distribution is selected as

PXY =

[
0.7190 0.0050

0.0050 0.2710

]
.

And we use the optimal estimator functions

x̂(x̄, ȳ) = arg max
x′

PX|X̄Ȳ (x′|x̄, ȳ), ŷ(x̄, ȳ) = arg max
y′

PY |X̄Ȳ (y′|x̄, ȳ).

The average distortion constraints are set to Dx = 0.05 and Dy = 0.05. The con-

ditional distributions are selected as to satisfy the average distortion constraints

mentioned above. If we use simple estimator functions x̂(x̄, ȳ) = x̄ and ŷ(x̄, ȳ) = ȳ

Table 5.5: Conditional probabilities PX̄|X and PȲ |Y .

a,b 0,0 0,1 1,0 1,1

PX̄|X(a|b) 0.8880 0.0685 0.1120 0.9315

PȲ|Y(a|b) 0.8880 0.0685 0.1120 0.9315

in this setting the average distortions become Dx = 0.1 and Dy = 0.1, which are

twice as bad compared to optimal estimators.

The mutual information parameters calculated for this source distribution are

given in Table 5.6. As it can be seen from the table, if we were to encode X

alone we would need a rate of I(X; X̄) = 0.4573 and similarly for Y alone we

would need a rate of I(Y ; Ȳ ) = 0.4573. The total rate would be 0.9146. However,

because of the correlation and joint decoding the sum rate of Berger-Tung region

is I(X̄, Ȳ ;X, Y ) = 0.666 which is I(X̄; Ȳ ) = 0.2486 less. The corner points of

the Berger-Tung region are given as (0.4573, 0.2087) and (0.2087, 0.4573). In the

simulations, the distortions are averaged over 1000 blocks. The tables show the

experimental rates required to obtain the target distortions approximately.
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Table 5.6: Berger-Tung parameters.

I(X; X̄) I(Y; Ȳ) I(X̄; Ȳ) I(X̄, Ȳ; X,Y)

0.4573 0.4573 0.2486 0.6660
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Figure 5.5: Sorted reliability values.

Construction

Code construction is done using two-user SC decoder in large number of Monte-

Carlo simulations and averaging the results. The joint decoder runs in two differ-

ent configurations, once for likelihoods calculated for known (XN , Y N) and once

for (XN , Y N) unknown. The decoder runs along the given path (b2N) and calcu-

late reliability values of the bits. Figure 5.5 shows results for path b2N = 0
3N
4 1N0

N
4

with N = 210. The rate allocation for this path is measured from the results of

simulations as (R1, R2) = (0.333, 0.333). The interpretation of the figure is the

same as given in previous simulation section.

Results

Simulation results for path b2N = (0
3N
4 1N0

N
4 ) are shown in Tables 5.7 and 5.8.

Table 5.7 is for list size of 1 while Table 5.8 is for list size of 32. Both tables show

two results for two different block lengths. The empirical rates (R̂1, R̂2) as well as
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distortions (D̂x, D̂y) are shown. During the simulations we increased both of the

rates proportionally and recorded the values such that the distortion constraints

are approximately satisfied.

Table 5.7: Experimental results for b2N = (0
3N
4 1N0

N
4 ) and list size 1.

N R̂1 R̂2 R̂1 + R̂2 D̂x D̂y

210 0.5128 0.5128 1.0256 0.0516 0.0517

212 0.4829 0.4829 0.9658 0.0519 0.0520

In Table 5.7, we see that for N = 210, the total rate is 1.0256 instead of the

theoretical limit 0.666. The rate is approximately 1.54 times the theoretical limit.

The rate expansion for N = 212 is approximately 1.45 which is lower as expected.

Table 5.8: Experimental results for b2N = (0
3N
4 1N0

N
4 ) and list size 32.

N R̂1 R̂2 R̂1 + R̂2 D̂x D̂y

210 0.4462 0.4462 0.8924 0.0499 0.0500

212 0.4063 0.4063 0.8126 0.0502 0.0503

In Table 5.8, we see the results of same experiments only the decoders are list

of 32. As we can see from the results, the performance increases considerably as

expected. We see that for N = 210, the total rate is 0.8924 which is approximately

1.34 times the theoretical limit. The rate expansion for N = 212 is approximately

just 1.22.

130



5.2 Multiple Description Coding

Multiple description coding (MDC) problem concerns with generating two de-

scriptions of a source such that each description by itself can be used to recon-

struct the source with some desired distortion and the two descriptions together

can be used to reconstruct the source with a lower distortion. This problem is

motivated by the need to efficiently communicate multimedia content over net-

works. Suppose that there are two paths to send a picture from the source to

the viewer and the data may be lost over the paths. We may send the same

description of the image over both of the paths to the viewer. However, such

replication is inefficient and the viewer does not benefit from receiving more than

one copy of the description. Multiple description coding provides a better way

to achieve this path diversity. If a single description is received by the viewer,

the image may be reconstructed with acceptable quality, and if both are received

then the image may be reconstructed with a higher quality. Another application

emerges when we want to communicate an image with different levels of quality to

different viewers. Instead of sending different descriptions to each viewer we may

use a special case of MDC called successive refinement. The idea is to send the

common lowest quality description to all viewers and send successive refinements

of it to different viewers with increasing quality expectations.

Figure 5.6: Multiple description coding setup.

Multiple description coding setup for a source X and three distortion measures

dj(x, x̂j) is depicted in Figure 5.6. Each encoder generates a description of X so

that decoder 1 that receives only descriptionM1 can reconstructX with distortion
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D1, decoder 2 that receives only description M2 can reconstruct X with distortion

D2, and decoder 0 that receives both descriptions can reconstruct X with dis-

tortion D0. The problem is to find the optimal trade-off between the description

rate pair (R1, R2) and the distortion triple (D0, D1, D2). Let dj : X × X → R+

denote the distortion function with maximum value less than dmax, for j = 0, 1, 2.

The distortion function extends to vectors as dj(x
N , x̂N) = 1

N

∑N
i=1 dj(xi, x̂i).

A (2nR1 , 2nR2 , n) multiple description code consists of two encoders, where

encoder 1 assigns an index m1(xn) ∈ [1 : 2nR1) and encoder 2 assigns an index

m2(xn) ∈ [1 : 2nR2) to each sequence xn ∈ X n, and three decoders, where decoder

1 assigns an estimate x̂n1 to each index m1, decoder 2 assigns an estimate x̂n2 to

each index m2, and decoder 0 assigns an estimate x̂n0 to each index pair (m1,m2).

A rate-distortion quintuple (R1, R2, D0, D1, D2) is said to be achievable (and

a rate pair (R1, R2) is said to be achievable for distortion triple (D0, D1, D2)) if

there exists a sequence of (2nR1 , 2nR2 , n) codes with

lim sup
n→∞

E[dj(X
n, X̂n

j )] = Dj, j = 0, 1, 2. (5.82)

The rate-distortion region R(D0, D1, D2) for multiple description coding is the

closure of the set of rate pairs (R1, R2) such that (R1, R2, D0, D1, D2) is achievable.

The rate-distortion region for multiple description coding is not known in general.

The difficulty is that two good individual descriptions must be close to the source

and so must be highly dependent. Thus the second description contributes little

extra information beyond the first one. At the same time, to obtain a better

reconstruction by combining two descriptions, they must be far apart and so

must be highly independent. Two independent descriptions, however, cannot be

individually good in general.

In this section, we will focus on an inner bound due to El Gamal and Cover

[68]. We will use an alternate form of this bound given in [69], which is shown to

be equivalent.

Theorem 13 (El Gamal-Cover (EGC) Inner Bound). Let X be a DMS, then
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Figure 5.7: EGC rate region.

(R1, R2, D0, D1, D2) is achievable for multiple description coding if

R1 ≥ I(X;Y )

R2 ≥ I(X;Z)

R1 +R2 ≥ I(X;Y, Z) + I(Y ;Z)

for some pmf p(x, y, z) = p(x)p(y, z|x) and deterministic mappings φj, j = 0, 1, 2,

such that

D0 ≥ E[d0(X,φ0(Y, Z))],

D1 ≥ E[d1(X,φ1(Y ))],

D2 ≥ E[d2(X,φ2(Z))].

EGC region can be defined as

REGC , {(R1, R2) : R1 ≥ I(X;Y ), R2 ≥ I(X;Z),

R1 +R2 ≥ I(X;Y, Z) + I(Y ;Z)}. (5.83)
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The EGC region with its corner points are shown in Figure 5.7. The excess rate

is represented with I(Y ;Z). If two descriptions were independent I(Y ;Z) would

be zero. Then the total rate would be given as I(X;Y ) + I(X;Z) = I(X;Y, Z).

The EGC inner bound is not tight in general. However, there are some special

cases where it is tight. One particular case where the bound is tight is when

there is no excess rate, that is, when rate pair (R1, R2) satisfies the condition

R1+R2 = R(D0) where R(D0) is the rate-distortion function of X with distortion

measure d0 evaluated at D0.

Note the following equalities for the sum rate:

R1 +R2 = I(X;Y ) + I(Z;X, Y ),

= I(X;Z) + I(Y ;X,Z),

= I(X;Y ) + I(X;Z) + I(Y ;Z|X),

= H(Y ) +H(Z)−H(Y, Z|X).

5.2.1 Polar Coding

Let source variable X ∈ X be from arbitrary discrete alphabet. Let external

variables Y ∈ Y and Z ∈ Z. We restrict the discussion to prime size alphabets

Y = Z = {0, 1, . . . , q− 1}, where q is prime, for the purpose of polar coding. We

assume Y = Z to keep notation simple, but it is trivial to show that they may

be of different size as long as their sizes are prime. Given the source distribution

X ∼ PX , let the conditional distribution PY Z|X give rise to the design distortions

D∗1, D∗2 and D∗0, i.e.

D∗1 = EPXY Z [d1(X,φ1(Y ))], (5.84)

D∗2 = EPXY Z [d2(X,φ2(Z))], (5.85)

D∗0 = EPXY Z [d0(X,φ0(Y, Z))], (5.86)

where PXY Z(x, y, z) = PX(x)PY Z|X(y, z|x).
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Consider the i.i.d. block of random variables (XN , Y N , ZN) with N = 2n for

some n ≥ 1. The joint distribution is given by

PXNY NZN (xN , yN , zN) =
N∏
i=1

PX(xi)PY Z|X(yi, zi|xi). (5.87)

Let, UN and V N denote the polar transforms of N -vectors Y N and ZN , respec-

tively, i.e.

UN = Y NGN , V N = XNGN . (5.88)

Then we have

PXNUNV N (xN , uN , vN) = PXNY NZN (xN , uNGN , vNGN). (5.89)

Since GN is a one-to-one mapping, we can write the total rate for a block of

length N as follows

R1 +R2 =
1

N
[H(Y N) +H(ZN)−H(Y N , ZN |XN)] (5.90)

= H(Y ) +H(Z)− 1

N
H(UN , V N |XN). (5.91)

Let S2N = (S1, . . . , S2N) be a permutation πN on (UN , V N) such that relative

order of elements of UN and V N are preserved. Let b2N be the path string s.t.

bk ∈ {0, 1} which denotes the decoding path. Here, we make use of Section 4.1

and Definition 10.

Then, monotone expansion of total rate is given as

R1 +R2 = H(Y ) +H(Z)− 1

N

2N∑
k=1

H(Sk|XN , Sk−1). (5.92)
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And individual rates are given as

R1 = H(Y )− 1

N

2N∑
k=1:
bk=0

H(Sk|XN , Sk−1), (5.93)

R2 = H(Z)− 1

N

2N∑
k=1:
bk=1

H(Sk|XN , Sk−1). (5.94)

Depending on the path the rate pairs span the entire dominant face of the EGC

rate region. The first corner point (I(X;Y ), I(Z;X, Y )) is achieved with b2N =

(0N1N). The second corner point (I(Y ;X,Z), I(X;Z)) is achieved with b2N =

(1N0N).

For the purpose of polar coding, the total probabilities are also expanded as

follows:

PXNUNV N (xN , uN , vN) = PXNS2N (xN , πN(uN , vN)) (5.95)

PXNS2N (xN , s2N) = PXN (xN)
2N∏
k=1

PSk|XNSk−1(sk|xN , sk−1). (5.96)

5.2.1.1 Polarization Sets

In the following, we refer to three interrelated index variables k, i and j, repeat-

edly, all in the context of an assumed path b2N . We make use of Definition 10

here. Let δN = 2−N
β

for 0 < β < 1
2
. First, we define the following general path

dependent polarization set:

H̃ ,
{
k ∈ [2N ] : Z(Sk|XN , Sk−1) ≥ 1− δN

}
. (5.97)

Then, we define the following low entropy set for Y :

LY =
{
i ∈ [N ] : Z(Ui|U i−1) ≤ δN

}
, (5.98)
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and for Z:

LZ ,
{
j ∈ [N ] : Z(Vj|V j−1) ≤ δN

}
. (5.99)

Similar to above sets, we define the following sets that contain k indices:

L̃Y =
{
k ∈ [2N ] : Z(Ui|U i−1) ≤ δN

}
, (5.100)

and

L̃Z ,
{
k ∈ [2N ] : Z(Vj|V j−1) ≤ δN

}
. (5.101)

Now we define the high entropy sets as

HY |X ,
{
i ∈ [N ] : Z(Ui|XN , U i−1) ≥ 1− δN

}
, (5.102)

H1 ,
{
i ∈ [N ] : bk = 0, Z(Sk|XN , Sk−1) ≥ 1− δN

}
, (5.103)

and

HZ|X ,
{
j ∈ [N ] : Z(Vj|XN , V j−1) ≥ 1− δN

}
, (5.104)

H2 ,
{
j ∈ [N ] : bk = 1, Z(Sk|XN , Sk−1) ≥ 1− δN

}
. (5.105)

Observe that the following are true for above sets

H1 ⊆ HY |X , H2 ⊆ HZ|X (5.106)

for any path b2N . Similar to above sets, we define the following sets which contain

k indices:

H̃1 ,
{
k ∈ [2N ] : bk = 0, Z(Sk|XN , Sk−1) ≥ 1− δN

}
, (5.107)

H̃2 ,
{
k ∈ [2N ] : bk = 1, Z(Sk|XN , Sk−1) ≥ 1− δN

}
. (5.108)
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First define two index sets as follows:

K̃m , {k ∈ [2N ] : bk = m− 1} , m = 1, 2. (5.109)

Definition 17 (Frozen and Information Sets). The following frozen sets are de-

fined using the polarization sets defined above:

FY , LY ∪HY |X , IY , [N ] \ FY (5.110)

F1 , LY ∪H1, I1 , [N ] \ F1 (5.111)

FZ , LZ ∪HZ|X , IZ , [N ] \ FZ (5.112)

F2 , LZ ∪H2, I2 , [N ] \ F2. (5.113)

and

F̃ , L̃X ∪ L̃Y ∪ H̃, Ĩ , [2N ] \ F̃ (5.114)

F̃Y , L̃Y ∪ H̃Y |X , ĨY , K̃1 \ F̃Y (5.115)

F̃1 , L̃Y ∪ H̃1, Ĩ1 , K̃1 \ F̃1 (5.116)

F̃Z , L̃Z ∪ H̃Z|X , ĨZ , K̃2 \ F̃Z (5.117)

F̃2 , L̃Z ∪ H̃2, Ĩ2 , K̃2 \ F̃2. (5.118)

Proposition 6 (Polarization). Consider the information sets defined in Defini-

tion 17 for a fixed base path b2N0 with rate pair (R1, R2). Fix a constant τ > 0.

Then there exists an N ′(τ) = 2lN0, l = 1, 2, . . ., and the corresponding scaled path

b2N = 2lb2N0, such that

1

N
|I1| ≤ R1 + τ, (5.119)

1

N
|I2| ≤ R2 + τ, (5.120)

for all N > N ′.

Proof. Note that from standard single user polar coding we have the following

facts:

lim
l→∞

1

N

∣∣∣{i ∈ [N ] : 2−N
β

< H(Ui|U i−1) < 1− 2−N
β
}∣∣∣ = 0,
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lim
l→∞

|LY |
N

= 1−H(Y ),

and

lim
l→∞

1

N

∣∣∣{j ∈ [N ] : 2−N
β

< H(Vj|V j−1) < 1− 2−N
β
}∣∣∣ = 0,

lim
l→∞

|LZ |
N

= 1−H(Z).

For the MDC setting, Section 4.1 and polarization theorem 6 apply. From

Theorem 6, we have the following fact:

lim
l→∞

1

2N

∣∣∣{k ∈ [2N ] : 2−N
β

< H(Sk|XN , Sk−1) < 1− 2−N
β
}∣∣∣ = 0,

lim
l→∞

|H̃m|
N

= R′m, m = 1, 2,

where H̃m = {k ∈ [2N ] : bk = m − 1, H(Sk|XN , Sk−1) ≥ 1 − 2−N
β} and R′m =

1
N

∑2N
k:bk=m−1H(Sk|ZN , Sk−1), for m ∈ {1, 2}. Also, the following is true for R′m:

H(Y |X,Z) ≤ R′1 ≤ H(Y |X), H(Z|X, Y ) ≤ R′2 ≤ H(Z|X).

The lower and upper bounds of first and second expressions, respectively, are

satisfied with path b2N = 1N0N . Similarly, the upper and lower bounds of first

and second expressions, respectively, are satisfied with path b2N = 0N1N .

We define complements of sets for user m with respect to the corresponding

index set K̃m, i.e. F̃ cm , K̃m \ F̃m. Since H(Sk|XN , Sk−1) ≤ H(Sk|Sk−1), we have

L̃Y ∩ H̃1 = ∅, L̃Z ∩ H̃2 = ∅ and H̃1 ⊆ L̃cY , H̃2 ⊆ L̃cZ . And the result follows from

observing Ĩ1 = (L̃Y ∪ H̃1)c = L̃cY \ H̃1 and Ĩ2 = (L̃Z ∪ H̃2)c = L̃cZ \ H̃2.

5.2.1.2 Encoding

We define family of functions λ
(1)
i : Y i−1 → Y , ∀i ∈ F1 and λ

(2)
j : Yj−1 → Y ,

∀j ∈ F2. We assume that they are shared between the encoders and the decoder.
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We also define the corresponding random variables Λ
(1)
i and Λ

(2)
j such that

Λ
(1)
i (ui−1) , a, w.p. PUi|U i−1

(
a|ui−1

)
,

Λ
(2)
j (vj−1) , a, w.p. PVj |V j−1

(
a|vj−1

)
,

(5.121)

where a ∈ Y . Maps (λ
(1)
i , λ

(2)
j ) are the realizations of random maps (Λ

(1)
i , Λ

(2)
j ).

Each realization of set of maps (λ
(1)
F1

, λ
(2)
F2

) results in different encoding and de-

coding protocols. The distribution over the choice of maps is induced with the

above equation (5.121). The set of maps (λ
(1)
F1

, λ
(1)
F2

) are used to determine the bits

in sets F1, F2. The theoretical analysis of the distortions are made much easier

using the randomized maps and calculating the average distortion over maps.

The bits in information sets Ĩ are calculated either the deterministic or the

random rules given below.

Deterministic rules:

ψ̄k(s
k−1, xN) , arg max

s′∈Y

{
PSk|XNSk−1

(
s′|xN , sk−1

)}
. (5.122)

Random rules:

Ψk(s
k−1, xN) , a, w.p. PSk|XNSk−1

(
a|xN , sk−1

)
, (5.123)

where a ∈ Y . Maps ψk are the realizations of random maps Ψk. In the analysis

we use the random rules for tractability. This approach is called randomized

rounding [16]. The encoding operations are given as follows.

The encoders construct the sequence s2N bit-by-bit successively,

sk =


λ

(1)
i (ui−1), if k ∈ F̃1,

λ
(2)
j (vj−1), if k ∈ F̃2,

ψk(s
k−1, xN), otherwise.

(5.124)

Then, encoder 1 transmits the compressed message uI1 = sĨ1 and encoder 2
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transmits the compressed message vI2 = sĨ2 .

Remark 3. Note that although in the analysis we use randomized rounding ap-

proach and thus make use of random rules Ψk for calculating bits in I1 and

I2, in practice we use the deterministic rules. In either case, the probabilities

P (sk|xN , sk−1) have to be calculated. These are calculated using two-user joint

SC decoding. Therefore, two-user joint SC decoders are employed at the encoders.

Thus, we refer to this operation as SC encoding.

Remark 4. The set F̃ actually comprises of two distinct parts and we could use

a simplified rule for k ∈ F̃ :

sk =


s̄k, if k ∈ H̃,
arg max
s′∈Y

PSk|Sk−1

(
s′|sk−1

)
, if k ∈ L̃Y ∪ L̃Z ,

(5.125)

where s̄k is determined beforehand uniformly from Y. However, since this rule

makes the proof harder, we use the random maps (Λ
(1)
F1

, Λ
(2)
F2

) for simplicity.

5.2.1.3 Decoding

Three different decoding operations are performed at Decoders 1, 2 and 0. De-

coder 1 has access to only uI1 , decoder 1 has access to only vI2 and decoder 0

has access to both.

Decoder 1 first calculates:

ûi =

λ
(1)
i (ûi−1), if i ∈ F1,

ui, otherwise.
(5.126)

Then, calculates the estimate as ŷN = ûNGN and x̂N1 = φ1(ŷN).

Decoder 2 first calculates:

v̂j =

λ
(2)
j (v̂j−1), if j ∈ F2,

vj, otherwise.
(5.127)
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Then, calculates the estimate as ẑN = v̂NGN and x̂N2 = φ2(ẑN).

Decoder 0 first calculates:

ŝk =


λ

(1)
i (ûi−1), if k ∈ F̃1,

λ
(2)
j (v̂j−1), if k ∈ F̃2,

sk, otherwise.

(5.128)

Then, the decoder extracts ûN = ŝK̃1
and v̂N = ŝK̃2

. Finally, it calculates the

estimate as ŷN = ûNGN , ẑN = v̂NGN and x̂N0 = φ0(ŷN , ẑN).

Note that although in Figure 5.6 two separate encoders are shown, the infor-

mation available to both of the encoders is the same which is the source sequence

xN . They are not “separate” encoders in the sense that both can generate the

other’s output. Thus, we defined a single successive cancellation encoding op-

eration in Section 5.2.1.2. Encoders 1 and 2 get differentiated at the last step

where they transmit different subsets of the sequence s2N formed by the single

SC encoding operation. Even if encoders 1 and 2 are implemented separately

they would generate the same s2N for the same input xN . The encoders use a

two-user successive-cancellation polar decoder to calculate s2N given the source

xN and path b2N . The particular choice of b2N results in a specific rate allocation

pair (R1, R2) corresponding to the sizes of sets I1 and I2. For analysis purposes,

we assume random encoding functions. The results of encoding operation may be

different for the same input xN . For encoder, at step k ∈ Ĩ of the process, sk = a

with probability proportional to PSk|XNSk−1(a|xN , sk−1). Thus, for a given pair of

maps (λ
(1)
F1

, λ
(2)
F2

), a particular s2N occurs with a certain probability induced by

the distributions of ΨĨ and maps.

We define the resulting average (over xN and randomness of the “information”

bits induced by the distribution of ΨĨ) distortions of above encoding and decoding

operations as D1(λ
(1)
F1
, λ

(2)
F2

), D2(λ
(1)
F1
, λ

(2)
F2

) and D0(λ
(1)
F1
, λ

(2)
F2

). In the following we

show that for sets F1, F2, I1, I2 defined in 5.2.1.1 and encoding and decoding

methods defined in 5.2.1.2 and 5.2.1.3, there exist maps (λ
(1)
F1

, λ
(2)
F2

) such that

D1(λ
(1)
F1
, λ

(2)
F2

) ∼ D∗1, D2(λ
(1)
F1
, λ

(2)
F2

) ∼ D∗2 and D0(λ
(1)
F1
, λ

(2)
F2

) ∼ D∗0, where D∗1, D∗2

142



andD∗0 are the design distortions. We do that by determining the expected average

distortions over the ensembles of codes generated by different encoding maps (λ
(1)
F1

,

λ
(2)
F2

). The distribution over the choices of maps is given in (5.121). Then we show

that the expected average distortions are roughly D∗1, D∗2 and D∗0. This implies

that for at least one choice of (λ
(1)
F1

, λ
(2)
F2

) the average distortions are close to D∗1,

D∗2 and D∗0. The following theorem makes this precise.

Theorem 14. Let F1, F2, I1, I2 be sets as defined in 5.2.1.1 and encod-

ing and decoding methods be as defined in 5.2.1.2 and 5.2.1.3. Then the

expectations of average distortions D1(Λ
(1)
F1
,Λ

(2)
F2

), D2(Λ
(1)
F1
,Λ

(2)
F2

), D0(Λ
(1)
F1
,Λ

(2)
F2

)

over the maps Λ
(1)
F1

, Λ
(2)
F2

satisfy E{Λ(1)
F1
,Λ

(2)
F2
}

[
D1(Λ

(1)
F1
,Λ

(2)
F2

)
]

= D∗1 + O(2−N
β
),

E{Λ(1)
F1
,Λ

(2)
F2
}

[
D2(Λ

(1)
F1
,Λ

(2)
F2

)
]

= D∗2 + O(2−N
β
) and E{Λ(1)

F1
,Λ

(2)
F2
}

[
D0(Λ

(1)
F1
,Λ

(2)
F2

)
]

=

D∗0 + O(2−N
β
) for any (R1, R2) ∈ REGC and β < 1/2. Consequently, there

exist deterministic maps that satisfy the above relations.

The following sections give necessary steps for proving the theorem. We first

prove a total variation bound on two probability measures. Then, we use that

result to bound the expected average distortions of the code.

5.2.1.4 Total Variation Bound

Define the following probability measure.

QXNS2N (xN , s2N) , QXN (xN)
2N∏
k=1

QSk|XNSk−1(sk|xN , sk−1), (5.129)

where QXN (xN) = PXN (xN). The conditional probability measures are defined

as

QSk|XNSk−1(sk|xN , sk−1) ,


PUi|U i−1(ui|ui−1), k ∈ F̃1,

PVj |V j−1(vj|vj−1), k ∈ F̃2,

PSk|XNSk−1(sk|xN , sk−1), otherwise.

(5.130)
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Also, note the following

QXNUNV N (xN , uN , vN) = QXNS2N (xN , πN(uN , vN)). (5.131)

Lemma 11 (Total Variation Bound). Let probability measures P and Q be defined

as in (5.96) and (5.129), respectively. For 0 < β < 1/2 and sufficiently large N ,

the total variation distance between P and Q is bounded as

∑
s2N ,xN

∣∣PXNS2N (xN , s2N)−QXNS2N (xN , s2N)
∣∣ ≤ 2−N

β

. (5.132)

Proof. See Appendix C.2.

5.2.1.5 Average Distortion

For a source sequence xN , random encoding maps (Λ
(1)
F1

, Λ
(2)
F2

) and encoding rule

(5.124), (uN , vN) appears with probability

(∏
i∈I1

PUi|XNU i−1V j(ui|xN , ui−1, vj)

)(∏
i∈F1

1{
Λ

(1)
i (ui−1)=ui

}
)
·(∏

j∈I2

PVj |XN ,V j−1,U i(vj|yN , vj−1, ui)

)(∏
j∈F2

1{
Λ

(2)
j (vj−1)=vj

}
)
.

For random sets of maps (Λ
(1)
F1

, Λ
(2)
F2

), the average distortions are random quantities

given by

D0(Λ
(1)
F1
,Λ

(2)
F2

) =
∑
xN

PXN (xN)
∑
uN ,vN

d0(xN , φ0(uNGN , v
NGN))·(∏

i∈I1

PUi|XNU i−1V j(ui|xN , ui−1, vj)

)(∏
i∈F1

1{
Λ

(1)
i (ui−1)=ui

}
)
·(∏

j∈I2

PVj |XN ,V j−1,U i(vj|yN , vj−1, ui)

)(∏
j∈F2

1{
Λ

(2)
j (vj−1)=vj

}
)
,

(5.133)
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D1(Λ
(1)
F1
,Λ

(2)
F2

) =
∑
xN

PXN (xN)
∑
uN

d1(xN , φ1(uNGN))·

∑
vN

(∏
i∈I1

PUi|XNU i−1V j(ui|xN , ui−1, vj)

)(∏
i∈F1

1{
Λ

(1)
i (ui−1)=ui

}
)
·(∏

j∈I2

PVj |XN ,V j−1,U i(vj|yN , vj−1, ui)

)(∏
j∈F2

1{
Λ

(2)
j (vj−1)=vj

}
)
,

(5.134)

D2(Λ
(1)
F1
,Λ

(2)
F2

) =
∑
xN

PXN (xN)
∑
vN

d2(xN , φ2(vNGN))·

∑
uN

(∏
i∈I1

PUi|XNU i−1V j(ui|xN , ui−1, vj)

)(∏
i∈F1

1{
Λ

(1)
i (ui−1)=ui

}
)
·(∏

j∈I2

PVj |XN ,V j−1,U i(vj|yN , vj−1, ui)

)(∏
j∈F2

1{
Λ

(2)
j (vj−1)=vj

}
)
.

(5.135)

The expectations over maps are

E{Λ(1)
F1
,Λ

(2)
F2
}

[
D0(Λ

(1)
F1
,Λ

(2)
F2

)
]

=
∑
xN

PXN (xN)
∑
uN ,vN

d0(xN , φ0(uNGN , v
NGN))·(∏

i∈I1

PUi|XNU i−1V j(ui|xN , ui−1, vj)

)(∏
i∈F1

PUi|U i−1(ui|ui−1)

)
·(∏

j∈I2

PVj |XN ,V j−1,U i(vj|yN , vj−1, ui)

)(∏
j∈F2

PVj |V j−1(vj|vj−1)

)
,

E{Λ(1)
F1
,Λ

(2)
F2
}

[
D1(Λ

(1)
F1
,Λ

(2)
F2

)
]

=
∑
xN

PXN (xN)
∑
uN ,vN

d1(xN , φ1(uNGN))·(∏
i∈I1

PUi|XNU i−1V j(ui|xN , ui−1, vj)

)(∏
i∈F1

PUi|U i−1(ui|ui−1)

)
·(∏

j∈I2

PVj |XN ,V j−1,U i(vj|yN , vj−1, ui)

)(∏
j∈F2

PVj |V j−1(vj|vj−1)

)
,
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E{Λ(1)
F1
,Λ

(2)
F2
}

[
D2(Λ

(1)
F1
,Λ

(2)
F2

)
]

=
∑
xN

PXN (xN)
∑
uN ,vN

d2(xN , φ2(vNGN))·(∏
i∈I1

PUi|XNU i−1V j(ui|xN , ui−1, vj)

)(∏
i∈F1

PUi|U i−1(ui|ui−1)

)
·(∏

j∈I2

PVj |XN ,V j−1,U i(vj|yN , vj−1, ui)

)(∏
j∈F2

PVj |V j−1(vj|vj−1)

)

Using the probability distribution Q defined in (5.129) we can write the expecta-

tions as

E{Λ(1)
F1
,Λ

(2)
F2
}

[
D0(Λ

(1)
F1
,Λ

(2)
F2

)
]

= EQ

[
d0(XN , φ0(UNGN , V

NGN))
]
, (5.136)

E{Λ(1)
F1
,Λ

(2)
F2
}

[
D1(Λ

(1)
F1
,Λ

(2)
F2

)
]

= EQ

[
d1(XN , φ1(UNGN))

]
, (5.137)

E{Λ(1)
F1
,Λ

(2)
F2
}

[
D2(Λ

(1)
F1
,Λ

(2)
F2

)
]

= EQ

[
d2(XN , φ2(V NGN))

]
. (5.138)

Therefore, we get

E{Λ(1)
F1
,Λ

(2)
F2
}

[
D0(Λ

(1)
F1
,Λ

(2)
F2

)
]
≤ EP

[
d0(XN , φ0(UNGN , V

NGN))
]

+

dmax||PXNS2N −QXNS2N ||, (5.139)

E{Λ(1)
F1
,Λ

(2)
F2
}

[
D1(Λ

(1)
F1
,Λ

(2)
F2

)
]
≤ EP

[
d1(XN , φ1(UNGN))

]
+

dmax||PXNS2N −QXNS2N ||, (5.140)

E{Λ(1)
F1
,Λ

(2)
F2
}

[
D2(Λ

(1)
F1
,Λ

(2)
F2

)
]
≤ EP

[
d2(XN , φ2(V NGN))

]
+

dmax||PXNS2N −QXNS2N ||. (5.141)

Lemma 11 shows that second term of the sum is O(2−N
β
). Therefore, there exist

deterministic sets of maps λ
(1)
F1

and λ
(2)
F2

such that D0(λ
(1)
F1
, λ

(2)
F2

) = D∗0 +O(2−N
β
),

D1(λ
(1)
F1
, λ

(2)
F2

) = D∗1 +O(2−N
β
) and D2(λ

(1)
F1
, λ

(2)
F2

) = D∗2 +O(2−N
β
).
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Chapter 6

Conclusion

Although polar codes were invented as channel codes that can achieve capacity

of binary-input symmetric channels, their underlying polarization principle was

shown to be applicable to various channel and source coding problems. In this

thesis, we extended previous results on polar codes and devised methods that

can achieve known bounds for diverse distributed lossless and lossy source coding

problems.

In Chapter 3, we considered a restricted version of the Slepian-Wolf (SW)

problem. We showed how single-user polar codes can be used to achieve any point

on the SW region for binary symmetric sources (BSS) without time-sharing. In

exchange for this special source distribution, it was possible to use single-user

polar successive-cancellation decoder as source decoder. Thus, the complexity of

the method was very low.

In Chapter 4, we first discussed “monotone chain rule based” polarization

approach which extends polar coding to multi-user settings. This method was

introduced by Arıkan [28]. We presented an extended treatment of the method

which consisted of two sources with prime-sized alphabets and a side-information

with an arbitrary alphabet. This treatment formed the basis of our other polar

coding schemes for distributed settings in later sections. We derived recursive
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formulas for two-user polar decoder implementation and gave explicit algorithms

for implementing successive-cancellation list (SCL) decoder based on single-user

SCL decoder [40]. This two-user SC decoder was used as the source decoder

in SW setting. We also presented the performance of the decoder by giving

experimental results. The method in this chapter solves the general SW problem

with arbitrary source distributions, and its complexity is higher compared to

the method in Chapter 3 in exchange. Lastly, we moved on to multiple-access

channel (MAC) problem, which is considered as the dual of the SW problem. We

devised polarization sets, encoding and decoding methods for this problem, too.

We proved that our method can achieve not only the uniform capacity region

but the whole MAC capacity region. By uniform capacity region, we mean that

the capacity region when distributions of variables at the inputs of the MAC are

uniform. We used randomized methods to prove this extended result. Then, we

gave simulation results presenting the performance of the devised polar coding

scheme for MAC.

In Chapter 5, we considered two different lossy source coding problems in

distributed settings. The treatment of distributed polar codes in Chapter 4 com-

prised the basis of analysis in this chapter. The first problem we considered was

the distributed lossy source coding which is the lossy version of the SW prob-

lem. We devised a polar coding method for the problem and showed that it

can achieve the whole dominant face of the Berger-Tung (BT) region, which is

the best known capacity region for this problem. Then, we presented simulation

results on the performance of our method for distributed lossy source coding.

The second problem we considered in this chapter was the multiple description

coding problem. The setting consists of a single source and two different rep-

resentations of the source generated by two encoders. Three different decoders

that has access to first, second and both representations, generate three differ-

ent reconstructions. Each reconstruction has a different distortion constraint.

We considered the El Gamal-Cover (EGC) inner bound which is the best known

bound for this problem. We constructed a polar coding method that can achieve

the whole dominant face of the for EGC region. Similar to the MAC problem in

Chapter 4, we used randomized approach for proving that our polarization based
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encoding and decoding methods achieve the capacity bounds of the problems in

this chapter.

Our treatment in this thesis shows that polar codes based on monotone chain

rules can achieve known bounds of diverse lossless and lossy distributed source

coding problems. Similar proof principles were used to achieve the results for

each problem considered in this thesis. It seems that the known bounds of many

distributed channel and source coding problems in information theory may be

achieved using similar techniques. Investigating this conjecture and possibly de-

vising a general polarization proof framework is left for future study.
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Appendix A

Chapter 2

A.1 Useful Lemmas

Lemma 12 (Pinsker’s Inequality). Let P (y) and Q(y) be two discrete probability

measures where y ∈ Y. The following inequality holds

∑
y∈Y

|P (y)−Q(y)| ≤
√
κ D(P (y)||Q(y)),

where D(·||·) is the Kullback-Leibler distance and κ , 2 ln 2.
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A.2 Proof of Lemma 4

Z(X|Y2) ,
1

q − 1

∑
x,x′:
x 6=x′

∑
y2

√
pXY2(x, y2)pXY2(x′, y2)

=
1

q − 1

∑
x,x′:
x 6=x′

√
pX(x)pX(x′)

∑
y2

√
pY2|X(y2|x)pY2|X(y2|x′)

=
1

q − 1

∑
x,x′:
x 6=x′

√
pX(x)pX(x′)

∑
y2

√∑
y1

pY1|X(y1|x)pY2|Y1(y2|y1)

·
√∑

y1

pY1|X(y1|x′)pY2|Y1(y2|y1)

 .
Using Cauchy-Schwartz inequality gives

Z(X|Y2) ≥ 1

q − 1

∑
x,x′:
x6=x′

√
pX(x)pX(x′)

∑
y2

[∑
y1

√
pY1|X(y1|x)pY2|Y1(y2|y1)

·
∑
y1

√
pY1|X(y1|x′)pY2|Y1(y2|y1)

]

≥ 1

q − 1

∑
x,x′:
x6=x′

√
pX(x)pX(x′)

∑
y2

[∑
y1

pY2|Y1(y2|y1)
√
pY1|X(y1|x)pY1|X(y1|x′)

]

=
1

q − 1

∑
x,x′:
x 6=x′

√
pX(x)pX(x′)

∑
y1

√
pY1|X(y1|x)pY1|X(y1|x′)

= Z(X|Y1).
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A.3 Proof of Lemma 5

By Lemma 12, it is enough to bound the Kullback-Leibler distance between P

and Q. Note that the Kullback-Leibler distance between two discrete probability

measures can be expanded using chain-rule as

D(P (xN)||Q(xN)) =
N∑
i=1

D(P (xi|xi−1)||Q(xi|xi−1)).

Using the chain rule of Kullback-Leibler distance, we may write

D(PUN (uN)||Q(uN)) =
N∑
i=1

D(PUi|U i−1(ui|ui−1)||Q(ui|ui−1)),

(a)
=
∑
i∈I

D(PUi|U i−1(ui|ui−1)||Q(ui|ui−1)),

(b)
=
∑
i∈I

[
1−H(Ui|U i−1)

]
,

(c)

≤ 2|I|δN .

(a) is due to the fact that Q(ui|ui−1) = PUi|U i−1(ui|ui−1) for i 6∈ I by definition in

(2.47). (b) follows from the standard definition of the Kullback-Leibler distance:

D(PUi|U i−1(ui|ui−1)||Q(ui|ui−1)) =
∑
ui

PU i(u
i) log

PUi|U i−1(ui|ui−1)

Q(ui|ui−1)
,

=
∑
ui

PU i(u
i) log

1

Q(ui|ui−1)
−H(Ui|U i−1),

= 1−H(Ui|U i−1).

The first equality is the definition of the Kullback-Leibler distance. The second

equality is from the definition of entropy. Last equality follows from the fact that

Q(ui|ui−1) = 1/q for i ∈ I. (c) follows from Proposition 2 and the fact that

Z(Ui|U i−1) ≥ 1− δN for i ∈ I by definition.
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Now, the proof of Lemma 5 may be completed as

∑
uN∈XN

∣∣PUN (uN)−Q(uN)
∣∣ (a)

≤
√
κ D(PUN (uN)||Q(uN)),

(b)

≤
√

2κ · |I| · δN ,

≤
√

2κ ·N · 2−Nβ′ .

(a) is due to Pinsker’s inequality in Lemma 12. (b) was proven above.√
2κ ·N · 2−Nβ′ < 2−N

β
is true for β′ ∈ (β, 1

2
) and sufficiently large N . Thus,

the total variation distance is bounded by O(2−N
β
) for any 0 < β < 1/2.
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Appendix B

Chapter 4

B.1 Recursive Formulas for SC Decoder

We use the following notation for joint probability for a block size of 2N :

P2N(u2i−1, u2i, v2j−1, v2j|z2N , u2i−2, v2j−2) ,

Pr [U2i−1 = u2i−1, U2i = u2i, V2j−1 = v2j−1, V2j = v2j|
ZN = zn, U2i−2 = u2i−2, V 2j−2 = v2j−2

]
.

Note that we can write the following from the structure of polar transform:

P2N(u2i−1, u2i, v2j−1, v2j|z2N , u2i−2, v2j−2) =

P
(i,j)
N (u2i−1 + u2i, v2j−1 + v2j|zN1 , u2i−2

1,o + u2i−2
1,e , v2j−2

1,o + v2j−2
1,e )·

P
(i,j)
N (u2i, v2j|z2N

N+1, u
2i−2
1,e , v2j−2

1,e ).
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Proof of (4.22).

P
(2i−1,2j−1)
2N (u2i−1, v2j−1|z2N , u2i−2, v2j−2) =∑

u2i,v2j

P2N(u2i−1, u2i, v2j−1, v2j|z2N , u2i−2, v2j−2).

Proof of (4.23).

P
(2i,2j−1)
2N (u2i, v2j−1|z2N , u2i−1, v2j−2) =∑

v2j
P2N(u2i−1, u2i, v2j−1, v2j|z2N , u2i−2, v2j−2)

Pr [U2i−1 = u2i−1|Z2N = z2N , U2i−2 = u2i−2, V 2j−2 = v2j−2]
.

The denominator is expanded as:

Pr
[
U2i−1 = u2i−1|ZN = zn, U2i−2 = u2i−2, V 2j−2 = v2j−2

]
=∑

u2i,v2j−1,v2j

P2N(u2i−1, u2i, v2j−1, v2j|z2N , u2i−2, v2j−2).

Noting that this is equal to constant C2 in (4.19) completes the proof.

Proof of (4.24).

P
(2i−1,2j)
2N (u2i−1, v2j|z2N , u2i−2, v2j−1) =∑

u2i
P2N(u2i−1, u2i, v2j−1, v2j|z2N , u2i−2, v2j−2)

Pr [V2j−1 = v2j−1|ZN = zn, U2i−2 = u2i−2, V 2j−2 = v2j−2]
.

The denominator is expanded as:

Pr
[
V2j−1 = v2j−1|ZN = zn, U2i−2 = u2i−2, V 2j−2 = v2j−2

]
=∑

u2i−1,u2i,v2j

P2N(u2i−1, u2i, v2j−1, v2j|z2N , u2i−2, v2j−2).

Noting that this is equal to constant C3 in (4.20) completes the proof.
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Proof of (4.25).

P
(2i,2j)
2N (u2i, v2j|z2N , u2i−1, v2j−1) =

P2N(u2i−1, u2i, v2j−1, v2j|z2N , u2i−2, v2j−2)

Pr [U2i−1 = u2i−1, V2j−1 = v2j−1|ZN = zn, U2i−2 = u2i−2, V 2j−2 = v2j−2]
.

The denominator is expanded as:

Pr
[
U2i−1 = u2i−1, V2j−1 = v2j−1|ZN = zn, U2i−2 = u2i−2, V 2j−2 = v2j−2

]
=∑

u2i,v2j

P2N(u2i−1, u2i, v2j−1, v2j|z2N , u2i−2, v2j−2).

Noting that this is equal to constant C4 in (4.21) completes the proof.

B.2 Proof of Lemma 7

In the following, we make use of Definition 10 when we talk about vectors UN ,

V N , S2N and their respective indices i, j, k under assumed path b2N . By Lemma

12 it is enough to bound the Kullback-Leibler distance. Using the chain rule of

Kullback-Leibler distance, we may decompose the total term into sets as follows

D(P (s2N)||Q(s2N)) =
2N∑
k=1

D(P (sk|sk−1)||Q(sk|sk−1))

=
∑
k∈Ĩ

D(P (sk|sk−1)||Q(sk|sk−1))+ (B.1)

∑
k∈F̃1

D(P (sk|sk−1)||Q(sk|sk−1))+ (B.2)

∑
k∈F̃2

D(P (sk|sk−1)||Q(sk|sk−1)). (B.3)
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The first term (B.1) can be bounded by the standard definition of the Kullback-

Leibler distance:

D(P (sk|sk−1)||Q(sk|sk−1)) =
∑
sk

P (sk) log
P (sk|sk−1)

Q(sk|sk−1)
,

=
∑
sk

P (sk) log
1

Q(sk|sk−1)
−H(Sk|Sk−1),

= 1−H(Sk|Sk−1),

≤ 2δN .

The first equality is the definition of the Kullback-Leibler distance. The second

equality is from the definition of entropy. The last equality follows from the fact

that Q(sk|sk−1) = 1/q for k ∈ Ĩ. The last inequality is from Proposition 2 and

the fact that Z(Ui|U i−1) ≥ 1− δN for k ∈ Ĩ by definition. Then we have

∑
k∈Ĩ

D(P (sk|sk−1)||Q(sk|sk−1)) ≤ 2|I| · 2−Nβ′

,

≤ 2N · 2−Nβ′

.

Thus, (B.1) is bounded by O(2−N
β
).

Now, we upper bound the second term (B.2). Note that the following is true

for k ∈ F̃1 (i ∈ F1 and bk = 0):

D(P (sk|sk−1)||Q(sk|sk−1)) =
∑
sk

P (sk) log
P (sk|sk−1)

Q(sk|sk−1)
,

(a)
=
∑
ui,vj

P (ui, vj) log
P (ui|ui−1, vj)

P (ui|ui−1)
,

= H(Ui|U i−1)−H(Ui|U i−1, V j).

(a) is from the definition of probability measure Q in (4.72). Then, observe that
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for i ∈ F1 we have

H(Ui|U i−1)−H(Ui|U i−1, V j)
(a)

≤ min{κZ(Ui|U i−1), 1− Z(Ui|U i−1, V j)2}
(b)

≤ max{2, κ} · δN ,

where κ = (q− 1)/ ln q. (a) is from Proposition 2 and due to the fact that H(·|·),
Z(·|·) ∈ [0, 1]. (b) is because of definition of F1 in (4.64). Defining κ′ , max{2, κ}
we get

∑
k∈F̃1

D(P (sk|sk−1)||Q(sk|sk−1)) ≤ κ′|F̃1| · 2−N
β′

,

≤ κ′N · 2−Nβ′

.

Thus, (B.2) is also bounded by O(2−N
β
).

The last term (B.3) in the summation can be proven similarly. Combining the

result with Lemma 12 gives the desired result that the total variation distance is

bounded by O(2−N
β
) for any 0 < β < 1/2.
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Appendix C

Chapter 5

C.1 Proof of Lemma 9

In the following, we make use of Definition 10 when we talk about vectors UN ,

V N , S2N and their corresponding indices i, j, k under assumed path b2N . By

Lemma 12, it is enough to bound the Kullback-Leibler distance. First note that

since Q(xN , yN) = P (xN , yN),

D(P (s2N , xN , yN)||Q(s2N , xN , yN)) = D(P (s2N |xN , yN)||Q(s2N |xN , yN)).

Furthermore, we can use the chain rule for the Kullback-Leibler distance to write

D(P (s2N |xN , yN)||Q(s2N |xN , yN)) =

2N∑
k=1

D(P (sk|sk−1, xN , yN)||Q(sk|sk−1, xN , yN)).
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Using the chain rule of the Kullback-Leibler distance, we may decompose the

total term into sets as follows

D(P (s2N , xN , yN)||Q (s2N , xN , yN))

=
2N∑
k=1

D(P (sk|sk−1, xN , yN)||Q(sk|sk−1, xN , yN))

=
∑
k∈F̃X̄

D(P (sk|sk−1, xN , yN)||Q(sk|sk−1, xN , yN))+ (C.1)

∑
k∈ĨX̄

D(P (sk|sk−1, xN , yN)||Q(sk|sk−1, xN , yN))+ (C.2)

∑
k∈F̃Ȳ

D(P (sk|sk−1, xN , yN)||Q(sk|sk−1, xN , yN))+ (C.3)

∑
k∈ĨȲ

D(P (sk|sk−1, xN , yN)||Q(sk|sk−1, xN , yN)). (C.4)

We upper bound the first term (C.1) as follows. Note that the following is true

for k ∈ F̃X̄ (i ∈ FX̄ and bk = 0):

D(P (sk|sk−1, xN , yN)||Q(sk|sk−1, xN , yN))

=
∑

sk,xN ,yN

P (sk, xN , yN) log
P (sk|sk−1, xN , yN)

Q(sk|sk−1, xN , yN)
,

(a)
=

∑
ui,vj ,xN ,yN

P (ui, vj, xN , yN) log
P (ui|ui−1, vj, xN , yN)

P (ui|ui−1)
,

(b)
= H(Ui|U i−1)−H(Ui|U i−1, V j, XN , Y N),

(c)
= H(Ui|U i−1)−H(Ui|U i−1, XN).

(a) is from the definition of probability measure Q in (5.66). (b) is from the

definition of entropy. (c) is due to the special Markov distribution of the random

variables. Then, observe that for i ∈ FX̄ we have

H(Ui|U i−1)−H(Ui|U i−1, XN)
(a)

≤ κZ(Ui|U i−1)

(b)

≤ κ · δN ,
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where κ = (q − 1)/ ln q. (a) is from Proposition 2 and due to the fact that

H(·|·), Z(·|·) ∈ [0, 1]. Also, the term is positive from the fact that H(Ui|U i−1) ≥
H(Ui|U i−1, XN). (b) is because of definition of FX̄ in (5.49). Thus, we get

∑
k∈F̃X̄

D(P (sk|sk−1, xN , yN)||Q(sk|sk−1, xN , yN)) ≤ κ|F̃X̄ | · 2−N
β′

,

≤ κN · 2−Nβ′

.

Thus, (C.1) is bounded by O(2−N
β
).

For the second term (C.2), the following is true

D(P (sk|sk−1, xN , yN)||Q(sk|sk−1, xN , yN))

=
∑

sk,xN ,yN

P (sk, xN , yN) log
P (sk|sk−1, xN , yN)

Q(sk|sk−1, xN , yN)
,

(a)
=

∑
ui,vj ,xN ,yN

P (ui, vj, xN , yN) log
P (ui|ui−1, vj, xN , yN)

P (ui|ui−1, xN)
,

(b)
=
∑
ui,xN

P (ui, xN) log
P (ui|ui−1, xN)

P (ui|ui−1, xN)
,

= 0.

(a) is from the definition of probability measure Q in (5.66). (b) is from the fact

that P (ui|ui−1, vj, xN , yN) = P (ui|ui−1, xN) which is due to the Markov chain

probability distribution of the problem.

Other terms (C.3) and (C.4) in the summation can be proven similar to (C.1)

and (C.2), respectively. Combining the result with Lemma 12 gives the desired

result that the total variation distance is bounded by O(2−N
β
) for any 0 < β <

1/2.
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C.2 Proof of Lemma 11

In the following, we make use of Definition 10 when we talk about vectors UN ,

V N , S2N and their corresponding indices i, j, k under assumed path b2N . By

Lemma 12, it is enough to bound the Kullback-Leibler distance. First note that

since QXN (xN) = PXN (xN),

D(P (xN , s2N)||Q(xN , s2N)) = D(P (s2N |xN)||Q(s2N |xN)).

Furthermore, we can use the chain rule for Kullback-Leibler distance to write

D(P (s2N |xN)||Q(s2N |xN)) =
2N∑
k=1

D(P (sk|xN , sk−1)||Q(sk|xN , sk−1)).

Using the chain rule of the Kullback-Leibler distance, we may decompose the

total term into sets as follows:

D(P (s2N , xN)||Q (s2N , xN))

=
2N∑
k=1

D(P (sk|xN , sk−1)||Q(sk|xN , sk−1))

=
∑
k∈Ĩ1

D(P (sk|xN , sk−1)||Q(sk|xN , sk−1))+ (C.5)

∑
k∈F̃1

D(P (sk|xN , sk−1)||Q(sk|xN , sk−1))+ (C.6)

∑
k∈Ĩ2

D(P (sk|xN , sk−1)||Q(sk|xN , sk−1))+ (C.7)

∑
k∈F̃2

D(P (sk|xN , sk−1)||Q(sk|xN , sk−1)). (C.8)

Note that, since Q(sk|xN , sk−1) = P (sk|xN , sk−1) for k ∈ Ĩ1 and k ∈ Ĩ2, the first

(C.5) and third (C.7) terms are zero.

We upper bound the second term (C.6) as follows. Note that the following is
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true for k ∈ F̃1 (i ∈ F1 and bk = 0):

D(P (sk|xN , sk−1)||Q(sk|xN , sk−1))

=
∑
sk,xN

P (sk, xN) log
P (sk|xN , sk−1)

Q(sk|xN , sk−1)
,

(a)
=

∑
ui,vj ,xN

P (ui, vj, xN) log
P (ui|xN , ui−1, vj)

P (ui|ui−1)
,

= H(Ui|U i−1)−H(Ui|XN , U i−1, V j).

(a) is from the definition of probability measure Q in (5.129). Then, observe that

for i ∈ F1 we have

H(Ui|U i−1)−H(Ui|XN , U i−1, V j)
(a)

≤ min{κZ(Ui|U i−1), 1− Z(Ui|XN , U i−1, V j)2}
(b)

≤ max{2, κ} · δN ,

where κ = (q − 1)/ ln q. (a) is from Proposition 2 and due to the fact that

H(·|·), Z(·|·) ∈ [0, 1]. (b) is because of definition of F1 in (5.111). Defining

κ′ , max{2, κ}, we get

∑
k∈F̃1

D(P (sk|xN , sk−1)||Q(sk|xN , sk−1)) ≤ κ′|F̃1| · 2−N
β′

,

≤ κ′N · 2−Nβ′

.

Thus, (C.6) is also bounded by O(2−N
β
).

The fourth term (C.8) in the summation can be proven similarly. Combining

the result with Lemma 12 gives the desired result that the total variation distance

is bounded by O(2−N
β
) for any 0 < β < 1/2.
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