POLAR CODES FOR DISTRIBUTED
SOURCE CODING

A DISSERTATION SUBMITTED TO
THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF
DOCTOR OF PHILOSOPHY
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

By
Saygun Onay
December, 2014



Polar Codes for Distributed Source Coding
By Saygun Onay
December, 2014

We certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Prof. Dr. Erdal Arikan(Advisor)

Prof. Dr. Tolga M. Duman

Asst. Prof. Dr. Ayse Melda Yiiksel Turgut

Prof. Dr. Orhan Arikan

Prof. Dr. Ugur Giidiikbay

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

i



ABSTRACT

POLAR CODES FOR DISTRIBUTED SOURCE
CODING

Saygun Onay
Ph.D. in Electrical and Electronics Engineering
Advisor: Prof. Dr. Erdal Arikan
December, 2014

Polar codes were invented by Arikan as the first “capacity achieving” codes
for binary-input discrete memoryless symmetric channels with low encoding and
decoding complexity. The “polarization phenomenon”, which is the underlying
principle of polar codes, can be applied to different source and channel coding
problems both in single-user and multi-user settings. In this work, polar coding
methods for multi-user distributed source coding problems are investigated. First,
a restricted version of lossless distributed source coding problem, which is also
referred to as the Slepian-Wolf problem, is considered. The restriction is on the
distribution of correlated sources. It is shown that if the sources are “binary sym-
metric” then single-user polar codes can be used to achieve full capacity region
without time sharing. Then, a method for two-user polar coding is considered
which is used to solve the Slepian-Wolf problem with arbitrary source distribu-
tions. This method is also extended to cover multiple-access channel problem
which is the dual of Slepian-Wolf problem.

Next, two lossy source coding problems in distributed settings are investigated.
The first problem is the distributed lossy source coding which is the lossy version
of the Slepian-Wolf problem. Although the capacity region of this problem is
not known in general, there is a good inner bound called the Berger-Tung inner
bound. A polar coding method that can achieve the whole dominant face of the
Berger-Tung region is devised. The second problem considered is the multiple
description coding problem. The capacity region for this problem is also not
known in general. El Gamal-Cover inner bound is the best known bound for this
problem. A polar coding method that can achieve any point on the dominant

face of El Gamal-Cover region is devised.

Keywords: Polar codes, distributed coding, source coding, Slepian-Wolf, channel
coding, multiple-access channel, lossy source coding, multiple descriptions, multi-

user polar codes, successive cancellation decoding, list decoding.
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OZET

DAGITIK KAYNAK KODLAMA ICIN KUTUPSAL
KODLAR

Saygun Onay
Elektrik ve Elektronik Miihendisligi, Doktora
Tez Danigmani: Prof. Dr. Erdal Arikan
Aralik, 2014

Kutupsal kodlar, ikili-girigli ayrik hafizasiz kanallarin kapasitesine ulagan ve
diisitk kodlama ve kod ¢ozme karmasgiklhigina sahip ilk kodlar olarak Arikan
tarafindan kesfedilmiglerdir. Kutupsal kodlarin temel prensibi olan “kutuplagma
hadisesi”, hem tekli hem de ¢oklu kullanicili kurgularda farkli kanal ve kaynak
problemlerine uygulanabilmektedir. Bu calismada, ¢oklu kullanicili dagitik kay-
nak kodlama problemleri i¢in kutupsal kodlama metodlar1 incelenmektedir. Ik
olarak, ayni zamanda Slepian-Wolf problemi olarak da bilinen dagitik kaynak kod-
lama probleminin kisith bir hali ele alinmaktadir. Bu kisit, iligkili kaynaklarin
dagilimi tizerinedir. Kaynaklarin “ikili simetrik” oldugu durumda tek kullanicili
kutupsal kodlar kullanilarak tiim kapasite alanina zaman paylagimsiz erisilebildigi
gosterilmektedir. Daha sonra, genel kaynak dagilimlarina sahip Slepian-Wolf
problemini ¢ozmek ic¢in kullanilan ikili kullanicili kutupsal kodlama metodu ele
alinmaktadir. Ayrica bu metod, Slepian-Wolf probleminin eglenigi olan g¢oklu
erigimli kanal problemini de igerecek sekilde genisletilmektedir.

Daha sonra, dagitik kurgulara sahip iki farkli kayiph kaynak kodlama problemi
incelenmektedir. FEle alinan ilk problem, Slepian-Wolf probleminin kayipli hali
olan kayipli dagitik kaynak kodlama problemidir. Bu problemin kapasite bolgesi
genel olarak bilinmese de Berger-Tung i¢ sinir1 olarak bilinen iyi bir i¢ sinir bulun-
maktadir. Berger-Tung bolgesinin tiimiine erigen bir kutupsal kodlama yontemi
tasarlanmaktadir. Ele alinan ikinci problem, ¢oklu tanim kodlamasi problemidir.
Bu problemin de genel kapasite alan1 bilinmemektedir. El Gamal-Cover ig siniri,
bu problem igin bilinen en iyi sinirdir. El Gamal-Cover kapasite sinirindaki her-
hangi bir noktaya erigebilen bir kutupsal kodlama yontemi geligtirilmektedir.

Anahtar sozcikler: Kutupsal kodlar, dagitik kodlama, kaynak kodlama, Slepian-
Wolf, kanal kodlama, coklu erigsimli kanal, kayipli kaynak kodlama, coklu
tanimlar, coklu kullanicih kutupsal kodlar, sirali elemeli kod ¢ozme, liste kod

¢Ozme.
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Chapter 1

Introduction

C. E. Shannon laid the foundations of information theory in his 1948 seminal pa-
per [1], where he presented the source coding and noisy channel coding theorems.
He defined a mathematical framework in which these problems can be studied
systematically. He gave the fundamental limits of both source coding and channel
coding. He also proved that source and channel coding problems may be treated

separately without any loss in system performance.

The basic model introduced by Shannon consists of a source, source encod-
ing/decoding functions, channel encoding/decoding functions and a channel. The
aim is to reconstruct the source at the sink perfectly with as few as possible chan-
nel transmissions. Source encoding makes it possible to most efficiently describe
the source by throwing away the redundancy in it. Then, if the transmission
medium is “noisy”, transmitter adds redundancy to combat its effects and re-
ceiver decodes the received vectors into message symbols. If the message symbols

are detected correctly, the source decoder decodes them into message vectors.

The source is modeled with a random process {Z,}. Shannon showed that a
source encoder can compress a source at most down to its entropy H(Z) without
a loss in fidelity. Thus, there exists an encoder that may represent a source

with R bits per symbol if and only if R > H(Z). After the source compression,
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Figure 1.1: Basic communication setting.

the message needs to be transmitted over a noisy channel. The input and output
symbols to channel are X € X and Y € ), respectively. The channel is denoted as
W : X — Y and modeled with a conditional probability Py x which is called the
channel transition probability. The channel encoder’s job is to add redundancy to
the source vector in such a way that it is recoverable at the channel decoder with
arbitrarily high probability while keeping the the number of channel uses as few as
possible. Shannon showed that these seemingly conflicting requirements may be
satisfied as long as the size of transmission blocks (K user bits or NV channel uses)
is large and rate of transmission (K/N) is below the channel capacity which is a
fundamental property of a given channel. Then, the receiver estimates the sent
message from the channel output and source decoder reconstructs the source. It
was also proven that the probability of decoding error goes to zero exponentially
with the block length N. Thus long block lengths are needed to make the error
probability low which means that encoding and decoding complexities need to be

low for practical codes.

Shannon’s proof depended on the random coding argument which considered
the average performance of ensembles of codes. Thus he proved the existence
of capacity-achieving codes without explicitly constructing any such code. His
concept of information and viewpoint of a communication system changed the
telecommunications field forever. The existence of information theory and coding
theory fields is attributed to him.

Since then, construction of capacity-achieving codes with low encoding and
decoding complexities has been the focus of coding theory. For sixty years there
has been an enormous amount of research in the area. Many different coding
methods have been developed which may be broadly categorized under two titles:
algebraic coding and probabilistic coding. Hamming [2], Golay [3], Reed-Muller
[4] [5], BCH [6] and Reed-Solomon [7] codes may be counted as the most famous
examples of algebraic codes developed. Convolutional codes [8], LDPC codes [9)]



and Turbo codes [I0] are the most important examles of probabilistic codes. In
the last two decades, with the discovery of Turbo Codes and “re-discovery” of
LDPC codes, it has been possible to practically come very close to Shannon’s
capacity bounds in certain situations. However, because of the way those codes
are constructed and decoded, it is not possible, except in very special cases, to
theoretically prove that they can achieve the capacity bounds asymptotically.

Interested reader is referred to the excellent survey by Costello and Forney [11].

Polar coding method [12], introduced by Arikan, is the first provably capacity-
achieving coding method with low encoding and decoding complexity for the class
of binary input discrete memoryless channels (B-DMC). In addition to being used
for constructing capacity achieving channel codes, the polarization concept is a
promising new theoretical advancement that may find applications in other areas

of information theory.

1.1 Polar Codes

Polar codes were introduced in [I2] as the first provably capacity achieving chan-
nel codes for symmetric binary-input discrete memoryless channels (B-DMC)
with low encoding and decoding complexity. Later, the polarization concept ex-
tended to non-binary alphabets, source coding scenarios and distributed settings.
The time complexity of both encoder and decoder is O(N log N), where N is
the block length. The primitive ideas for polar coding first appeared in Arikan’s

earlier paper [13] on channel cutoff rate improvement.

The idea of polar coding can be summarized as generating N extremal channels
from N independent uses of the same base channel W : X — ). By extremal we
mean that the channels are either perfect or completely noisy. This is achieved by
applying a transformation to the input of N independent copies of channel W and
employing successive cancellation (SC) decoding in a special order at the receiver.
The successive cancellation decoder at step ¢ not only observes the base channel

outputs but also the i — 1 previously decoded bits. These coordinate channels



experienced by successive cancellation decoding are either worse or better than
the original channel W. The interesting result proved by Arikan is that these
channels polarize to either a perfect or a completely useless channel with the
ratio of perfect channels to block length N approaching to the capacity of the
original channel W as N — oo. Then, how to use this method to construct a
capacity achieving channel code becomes obvious: just send information from
those inputs corresponding to perfect channels and fix the other ones and reveal

to both encoder and decoder.

Polarization transform is a linear operation identified with an N x N matrix
Gy, where N = 2". The construction has a recursive structure and starts with
size-2 base matrix G2 = [19]. A higher order polar transform is obtained as
Gy = GS", where “®™ denotes the n-th Kronecker power. Polar channel coding
method summarized above dictates sending information from some of the input
bits and fixing others to known values. This corresponds to selecting those rows
of Gy corresponding to information bit indexes to compose the generator matrix
of the code. Polar codes share a lot of structure with Reed-Muller (RM) codes
which was surveyed by Arikan in a later paper [I4]. The generator matrix of
RM codes is also selected from the rows of G. The difference is in the selection
rule. The selection rule for RM codes maximizes the minimum distance whereas

the selection rule for polar codes is dependent on the underlying channel and

minimizes the decoding error under successive cancellation decoding.

Shortly after polar codes were introduced a number of work has been published
on its performance and extension of its areas of applicability. In [I5] authors im-
proved the bound on the rate of polarization to O(2‘NB) for p < 1/2, from
O(N _i) bound proved in [12]. Korada made most of the early contribution to
the applicability of polar codes in his thesis [16]. He tackled lossless and lossy
source coding problems. It was also shown in that thesis that polar codes could
be used for some multi-terminal scenarios like Wyner-Ziv coding, Slepian-Wolf
coding, degraded broadcast channel and multiple-access channel. However, all
of those problems were considered under constrained assumptions like symmet-
ric distributions and accessing corner points of capacity regions. Later, other

researchers considered the same problems in their more generality.

4



Another major contribution to the theory of polarization from a single re-
searcher came from Sagoglu. Sasgoglu et al. [I7] extended polar codes to non-
binary alphabets. Polar code for multiple-access channels were first considered
by Sasoglu et al [18]. However, their joint polarization approach was not able to
reach any point on the dominant face of the capacity region. Sagoglu [19] proved
an entropy inequality which made polarization proofs much simpler and direct.
He made use of that result to prove in [20] that Arikan’s recursive transform
also polarizes ergodic Markov processes of finite order. He assembled all of these
results in his thesis [21].

Arikan [22] reassessed source coding with polar codes from a direct source
polarization approach. Systematic polar codes were introduced by Arikan [23].
Polar code construction was considered in [24] and low complexity approximations
were suggested. In [25], low complexity and efficient list decoding algorithms for
SC decoding were proposed. In addition, authors proposed augmenting polar
codes with a CRC to be used in list decoding. This approach increased the
performance considerably and generated a polar coding scheme with the best
known performance to date. Polar codes for broadcast channels were considered
in [26]. Polar coding for asymmetric distributions without alphabet extension
were considered in [27]. A new polar coding method for multi-terminal settings
were introduced in Slepian-Wolf coding context by Arikan [28]. The so called
monotone chain rule approach could reach any point on the dominant face of
Slepian-Wolf achievable rate region. In [29], authors applied this method to
multiple-access channel, built list decoders based on [25] and presented simulation
results. Multiple description problem using polar codes was considered in [30]
and [31]. Early hardware architectures for successive cancellation decoding of
polar codes were presented in [32] and [33]. Recently, hardware architectures for

successive cancellation list decoders has also emerged [34], [35], [36], [37].



1.2 Contribution of this Thesis

This thesis mostly concentrates on polar coding methods for distributed source
coding settings. We first present a technique in which single-user polar codes may
be efficiently used to achieve any point on the dominant face of the achievable
region of Slepian-Wolf coding of sources with special distributions. Then, we
review in detail the monotone chain rule technique introduced by Arikan for
general Slepian-Wolf problem. We give detailed proofs of the method as well as
explicit formulas and algorithms for decoder construction. We also include results
on multiple-access channel (MAC) which is considered as the dual of Slepian-Wolf
(SW) problem. Then we turn our attention to lossy source coding schemes. We
show that the known bounds for distributed lossy source coding and multiple-

description coding can be achieved with polar coding methods.

In the seminal paper by Slepian and Wolf [38], bounds on compression rate
pairs of the noiseless coding of two correlated information sources were proved.
The two correlated information sources (X,Y’) are obtained by repeated inde-
pendent drawings from a discrete bivariate distribution Pxy (z,y) where X € X
and Y € ). The setting comprises of two separate encoders for X and Y sources
and a joint decoder. The encoders compress the sources and the decoder’s job is
to reconstruct sources perfectly. This particular setting is the basic distributed
lossless source coding setup and has since been synonymously referred to as the
Slepian-Wolf coding problem. The details of the problem are presented in Sec-
tion [2.1 With the discovery of capacity achieving channel codes and using the
known dualities of source coding and channel coding there has been extensive
amount of work in applying channel codes in distributed source coding setup of
which we give a brief survey in Section 2.1 Most of the works mentioned in that
section assume binary symmetric sources (BSS). That is, the correlated sources
X and Y have uniform marginals. It is a restricted version of SW problem and
also what we assume in Chapter [3] Furthermore, some of the works surveyed in
Section solve asymmetric SW coding problem, i.e. the corner points of the
SW region are targeted. The common argument is that the other points on the

dominant face may achieved with time-sharing [39]. However, in practice direct



achievement of a rate-point without time-sharing is more desirable. In a previous
work by Korada [16] polar codes for BSS and asymmetric setting was considered.
In Chapter [3|, we show polar coding can be used to achieve any point on the SW

region for BSS sources without time-sharing.

In Chapter [, we show how the general Slepian-Wolf problem may be solved
using polar codes. By “general” we mean that any discrete source distribution is
allowed and any point on the dominant face of the rate region may be targeted
directly. The method was introduced by Arikan in [28]. We present an extended
treatment of the method which consists of two sources with prime-sized alphabets
and a side-information with an arbitrary alphabet. This treatment forms the
basis of our other methods in later sections for distributed settings. The method
describes a two-user joint successive cancellation (SC) decoder. This decoder
is obviously more complicated than its normal single-user counterpart which is
used in “special” SW problem investigated in Chapter [3] But in exchange of
this increase in complexity it becomes possible to solve general SW problem.
In Section 4.2, we give explicit formulas and algorithms for implementing joint
decoder. We show how joint SC list (SCL) decoder may be implemented as an
extension to single-user list decoder that was introduced in [40]. We also present
experimental results on the performance of our joint SCL decoder. Then, we move
on to multiple-access channel problem which is considered as the dual problem.
We show that polar coding may be used to achieve the whole capacity region of
MAC and not only the symmetric capacity region. Then we present experimental

results on the performance.

In Chapter [5], we consider lossy source coding problems in distributed settings.
The first problem we consider in Section [5.1]is the distributed lossy source coding
which is the lossy version of SW problem. The setting is the same as the SW
problem. The only difference is that the source reconstructions are subject to dis-
tortion constraints. Although the capacity region of this problem is not known in
general, there is a good inner bound called the Berger-Tung (BT) inner bound.
We devise the polar coding method for that problem and show that it can achieve
the whole dominant face of the BT region. Then we present simulation results.

The second problem we consider in Chapter |5 is the multiple description coding

7



(MDC) problem. There is single source in MDC setting. Two different repre-
sentations of the source is generated by two encoders. There are three different
decoders in the setting. Decoder 1, 2 and 0 has access to representation 1, 2 and
both, respectively. Each reconstruction has a different distortion constraint. The
capacity region for this problem is also not known in general. However, there is a
good inner bound called the El Gamal-Cover (EGC) inner bound. We construct
the polar coding method for this problem and prove that it can achieve any point

on the dominant face of EGC region.

1.3 Notation

In this work we follow the notation of [12] and [22]. Random variables are denoted
by upper case letters like X and its realization is denoted by lower case letter
z. ¥ or V¥ denotes a row-vector (xy,...,zy) of length N. a:f denotes the sub-
vector (z;, ..., x;) of 2 when i < j. If i > j, then 27 is a null vector. We use xfo
and xfe to denote subvectors consisting of only odd and even indices, respectively.
Alternatively, lower-case bold characters (x) also denote row vectors. Matrices
are denoted with upper-case characters such as G. We use [N] to denote set
{1,2,...,N}. For any set A, |A| denotes its cardinality. Let A C [N] be an
index set, then =4 denotes the row-vector formed by those elements of ¥ with
indices in set A in ascending order of indices, i.e. x4 denotes x;,, ... , Ti,, Where
{ix. € A :ip < ipy1}. Similarly, (G)4 denotes the sub-matrix formed by those

rows of G with indices in set A in ascending order of indices.

We also use P.(X|Y) to denote the average error probability in optimally
decoding X € X given Y € ). That is,

AL
P.(X|Y) = Z Pxy(z,y) - I[{x/e/"(:PXpf(:C’Iy)ZPX\Y(90|y)}'

reX ,yey



Chapter 2

Background

In this chapter we give some background information supplementing the main
topics of this thesis. In the first section we present lossless distributed source
coding problem also known as Slepian-Wolf problem [38]. We give a literature
survey on the practical implementation methods using channel codes. In the
second section, we present a review of polarization and polar codes for both

channel and source coding problems.

2.1 Distributed Source Coding

The well-known paper by D. Slepian and J. Wolf [38] generalizes certain well
known results on the noiseless coding of a single discrete information source to
the case of two correlated information sources. The two correlated information
sources (X,Y) are obtained by repeated independent drawings from a discrete
bivariate distribution Pxy (z,y) where X € X and Y € ). The paper analyses all
possible cases depending upon the information available to encoders and decoders.
But by far the most interesting case presents itself when the encoder of each source
is constrained to operate without knowledge of the other source, while the decoder

has available both encoded message streams as in Figure 2.1l This particular



setting has since been known as the Slepian-Wolf (SW) coding problem and used
interchangeably with distributed source coding problem, although there are other
source coding problems in distributed settings like distributed lossy source coding

or multiple-description problem which we will describe in later chapters.

XN M,
—> Encoder 1 ————>

XN yN
Decoder |——>

yN M,
—_— Encoder 2 ————>

Figure 2.1: Correlated coding of two sources.

It is well known from the results of source coding that the rate of a source
must be greater than its entropy, Ry > H(X). The same result generalizes to
joint coding of correlated random variables X and Y easily: the jointly encoded
data rate must be greater than the joint entropy, namely R > H(X,Y). This
is because a pair of random variables X, Y can be regarded as a single random
variable Z taking |X| - |)| values. The entropy of this variable is H(X,Y). The
interesting case occurs when sources are encoded separately and decoded jointly.
One might expect that the lower bound H(X,Y’) may not be reached due to the
fact that encoders not sharing information. However, the result of SW paper
proves that there is no asymptotic loss in performance due to separate encoding,
i.e. rate lower bound H (X, Y) is still achievable. This is the central and the most

surprising result presented in the paper.

Definition 1. A ((2Nf1 2VB2) N) distributed source code for the joint source

(X,Y) consists of two sets of integers My = {1,2,...,2N%} and M,y =

{1,2,...,2N%2} two encoding functions,

A XY =M (2.1)
and

for YV = M, (2.2)

and a decoding function,

g: My x My — XN x YN, (2.3)
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Figure 2.2: Admissible rate region.

Here M; = f1(X?") is the index corresponding to XV, My = fo(Y") is the

index corresponding to Y and (Ry, Ry) is the rate pair of the code.

Definition 2. The probability of error for a distributed source code is defined as
PP = Pr{g(fi(X™), L(Y™)) # (XY, Y )}, (2.4)

Definition 3. A rate pair (R, R2) is said to be achievable for a distributed
source if there exists a sequence of ((2NF1 2NF2) N distributed source codes with

Pe(N) — 0. The achievable rate region is the closure of the set of achievable rates.

Theorem 1 (Slepian-Wolf). For the distributed source coding problem for the

source (X,Y'), the achievable rate region is given by

Ry > H(Y|X), (2.5)
Ri+ Ry > H(X,Y).

The result of Slepian-Wolf paper can be presented as a two dimensional rate
region Rgw for the two encoded message streams as shown in Figure 2.2] It is
seen that both Ry can go below H(X) and Ry can go below H(Y'), while their
total Ry + Ry must stay above H(X,Y'). The line segment between points A and
B in Figure is referred to as the dominant face of the SW rate region. It is

enough for a coding scheme to show that it can reach one of the corner points
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A or B on this graph, namely Ry = H(X) and Ry = H(Y|X) or Ry = H(Y)
and Ry = H(X|Y). At these points, one source (say Y') is compressed at its
entropy rate and can therefore be reconstructed at the decoder independently of
the information received from the other source X. The source Y is called the side
information (SI) (available at the decoder only). X is compressed at a smaller
rate than its entropy. More precisely, X is compressed at the conditional entropy
H(X|Y') and can therefore be reconstructed only if Y is available at the decoder.
The sources X and Y play different roles in this scheme, and therefore the scheme

is usually referred to as asymmetric SW coding.

2.1.1 Constructive Approaches to Slepian-Wolf Coding

The proof of the SW theorem depends on random coding argument and is non-
constructive. In 1974, Wyner [39] suggested using a binary linear channel code
for construction of SW codes and showed the optimality of this construction. He
proved that if a linear block code achieves the capacity of the BSC that models
the correlation between the two sources, then this capacity achieving code can be
turned into SW bound achieving source code. His method is called the syndrome
approach. The method assumes asymmetric setting, i.e. SI Y is available at the

decoder and the problem is reduced to compressing X to H(X|Y) at the encoder.

In syndrome approach a binary (N, K) code C is constructed with size (N —
K, N) parity check matrix H. The well-known properties of such a code and
syndrome decoding are summarized in the following. The code contains all N-
vectors x such that xHT = 0. The code partitions the space of N-vectors (2%
vectors) into 2075 cosets of 2K words. Each coset is indexed by the (N — K)-
vector syndrome s. All sequences in a coset share the same syndrome Cy =
{x:s=xHT}. In addition, because of the linearity of the code, a coset results
from the translation of the code by any representative of the coset: Vv € Cs,
Cs = C @ v. The minimum Hamming weight representative of the coset is called

the coset leader. It is used for maximume-likelihood decoding of the code, which
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is formulated as follows:

x = argmin  dy(x,y),
xeC
where dg(-,-) is the Hamming distance function. This decoding procedure
is called the syndrome decoding. The decoder first calculates the syndrome
s = yHT of the received word y. Since x € C the syndrome of y equals to
the syndrome of error e where y = x®e: s = yHT = (x ® e)HT = eHT. The
function f(s) computes the coset leader for syndrome s = yHT. This coset leader

is the ML estimate of the error pattern e. Then the ML estimate of x is given
by x =y ® f(yH").

Such a code is used in the asymmetric SW problem as follows. The encoding
operation is defined as sending only the syndrome corresponding to input n-vector
x : s = xHT. The N-vector x is mapped into its corresponding (N — K)-vector
syndrome s. Therefore, a compression ratio of N:(N — K) is achieved. The
decoder, given the correlation between sources X and Y, received coset index s

and the SI y, searches for the sequence that is closest to y in s-coset Cs:

x = argmin  dgy(x,y).
x€Cs
It is important to note that the minimization may be performed over a coset
whose coset leader is not the all-zero vector (syndrome is not zero). Therefore, the
classical ML channel decoder has to be adapted in order to be able to enumerate
all vectors in a given coset C,;. Because of the linearity of the code, by adding the
syndrome of y onto s we get s @ yHT = (x @ y)HT = eHT. Therefore, the ML

estimate of the error pattern e in this case is f(s ® yHT)

Another way to look at the syndrome decoding principle is as follows. As
mentioned above, because of the linearity of the code, a coset C; can be formed
from the translation of code C by any representative of the coset. For different
representatives only the order of words are shuffled. Therefore, we can get a
codeword x' € C from x € Cg by adding any representative a of the coset Cj:

x' = x @ a. Since, y = x® e, by adding a representative a to both sides we

13



get y@a=x@ade. Settingy =yPdaand X =xPa, we get y =x"Pe.
Hence, we can do the decoding on C instead of C,, which is the normal channel
decoding operation, to find an estimate of X’ of x’. And, by adding a onto estimate

x' we get the estimate X of x.

Another approach on constructing SW codes from capacity-achieving linear
codes is called the parity approach. Although the syndrome approach is optimal,
it may be difficult to construct rate-adaptive codes by puncturing the syndrome.
The parity approach is originally proposed to get rate adjustable codes easily via

puncturing. In parity approach, parity bits are sent instead of syndrome.

Let C be an (N,2N — K) systematic binary linear code, defined by its N x
2N — K generator matrix G =[IP]: C = {[ x xp | = xC}. The compression
is achieved by only sending the parity bits x,. The systematic bits x are not
transmitted. This gives a compression ratio of N : (N — K). The correlation
between the source X and SI Y is modeled as a virtual channel in this approach,
too. The pair [ y xp | is regarded as the noisy version of [ x x, ]. Therefore,
the total channel is a parallel combination of a BSC and a perfect channel. The
decoder corrects the virtual channel noise and estimates x given the parity bits
xp and the SI y which is regarded as the noisy version of the original sequence
x. Therefore, the usual ML decoder must be adapted to take into account that

some bits (parity bits) of the received sequence are perfectly known.

2.1.2 Practical Slepian-Wolf Codes Based on Channel
Codes

Development of good channel codes spurred interest in using them in constructing
practical SW codes which started with the work of Pradhan et al. in [41]. Then,
a number of researchers developed different methods which we briefly survey in
this section. Practical Slepian-Wolf (SW) coding schemes can be divided into
two main categories: asymmetric and nonasymmetric. Asymmetric SW coding

refers to the case where one source, for example Y, is transmitted at its entropy
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rate H(Y') and is used as side information (SI) to decode the second source X,
which compressed at rate H(X|Y). Nonasymmetric SW coding refers to the case
where both sources are compressed at a rate lower than their respective entropy
rates. Both syndrome and parity approaches are used to construct asymmetric
and nonasymmetric schemes. In both of the approaches, Y is treated as a noisy
version of X, i.e. the correlation between source X and SI Y is modeled as
a “virtual” channel. If a linear block code achieves the capacity of the binary
symmetric channel that models the correlation between the two sources, then this
capacity-achieving channel code can be turned into a SW-achieving source code.
Both the LDPC and Turbo codes are used in this way to construct practical SW

codes [42].

2.1.2.1 Asymmetric SW Coding

The first practical approach to syndrome decoding appeared in a scheme called
DISCUS [41]. For convolutional codes, Viterbi decoding on a modified trellis is
proposed. The method takes advantage of the linearity of the code. For sys-
tematic convolutional codes a representative of the coset is the concatenation of
K-length all zero vector and (N — K)-vector syndrome s: [ 0 s ]. This represen-
tative is then added to all the codewords labelling the edges of the trellis. And
Viterbi decoding is done on this modified trellis. The novelty in this paper is
to apply the syndrome principle to modify the normal trellis decoder. This is

accomplished by using a systematic code.

Another approach to syndrome decoding of convolutional codes is proposed
in [43]. In this approach the translation by a coset representative is performed
outside the decoder. The encoder calculates the syndrome which is referred as
syndrome forming (SF). In the decoder, first, a representative is computed from
the received syndrome s (this step is called inverse syndrome forming - ISF)
and added to SI y. Since there are many representatives, ISF operation is not
unique. However, it is particularly easy to perform ISF operation when the code is
systematic. This is the same as in DISCUS [41] method, where the representative

used is [ 0 s |. Therefore, systematic codes are assumed in this paper. Then the
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decoding is performed in usual manner using the original trellis. As a last step
the representative is added onto the output of the decoder to get the estimate of
the original stream x. The advantage of this method is that it does not modify
the decoder. This method is also applied to Turbo codes. They show a method
to get the ISF of a parallel or serially concatenated Turbo code from ISFs of its

constituent codes.

In [44] a SW scheme based on convolutional and turbo codes that can be
used for any code (not only systematic) is proposed. This scheme also uses the
syndrome approach. In this scheme the decoder is based on a syndrome trellis
rather than the usual trellis based on the generator matrix of the code. The
concept of syndrome trellis was first introduced for binary linear block codes
[45] and then extended to convolutional codes [46]. In this scheme again the
syndrome trellis is modified by the received syndrome s. The syndrome trellis
construction in this paper is new and different than the one in [46]. The states
of the trellis are marked differently than the conventional way in [46] which is
the partial syndrome value at that particular stage. The method in [44] gives a
simpler construction of the trellis in the sense that there is no need to expand
the parity check polynomial matrix into a matrix of an equivalent block code of
large dimension. Each stage k of the trellis is one of the two possible trellises
corresponding to s = 0 and s, = 1. One of the advantages of this construction is
that it is possible to perform optimal decoding even if the syndrome is punctured.
The trellis stage corresponding to punctured syndrome bit consists of the union
of the two possible trellis stages for s, = 0 and s, = 1. This way both possibilities
are taken into account optimally and the complexity grows only linearly with the

punctured positions.

For LDPC codes, belief propagation decoder can be modified to take into
account the syndrome [47]. Here, the syndrome bits are added to the graph such
that each bit is connected to the parity check equation to which it is related.
This modification to the LDPC decoder is very natural and minimal. Only the
update rule at the check node is modified to take into account the value of the

syndrome bit.
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The parity approach is also used in constructing SW codes using turbo codes
[48][49]. In [4§] a conventional turbo encoder/decoder pair is used. The system-
atic output of the encoders are not used and the parity outputs are punctured to
get the desired rates. The encoders considered in the paper are rate (N —1)/N,
but actually method is applicable to any encoder rate. The method described
here is the direct application of parity approach to turbo decoding. In a con-
ventional turbo encoder used for DSC, convolutional encoders are used and their
rate K/N is less than 1, i.e. K < N. The required rate for source encoding is
achieved by heavily puncturing the encoder outputs as in [48]. In [49], authors
take an alternative way to construct constituent encoders. They use two identical
finite state machine (FSM) encoders. These encoders are custom designed using
Latin squares. Their rate is greater than 1,i.e. K > N. They are used instead of
convolutional encoders in a parallel turbo encoder scheme with an interleaver in
between. There is no need for puncturing the output in this setting. The decoder
employs the turbo principle in a conventional way. Only the constituent decoders
are custom designed for these FSM encoders and they perform trellis decoding

using BCJR algorithm like in a conventional turbo decoder.

2.1.2.2 Nonasymmetric SW Coding

The methods proposed in the aforementioned works construct asymmetric SW
coding scheme which refers to source Y being encoded at its entropy rate H(Y)
and perfectly recovered at the decoder as a side-information (SI) and source X
encoded below its entropy rate at H(X|Y) to be decoded with the help of SI
Y. Nonasymmetric SW schemes are also possible where the rate of each encoder
may vary while the total sum rate is kept constant. In this setting, the rates of
encoded streams may be varied to reach any point on the dominant face of SW
region. An asymmetric SW scheme can be turned into a nonasymmetric one using
time sharing [39]. All points of the segment between A and B of the SW rate
bound are achievable by time sharing. A fraction A of samples (An samples) is
coded at the vertex point A, i.e. at rates (H(Y), H(X]|Y)), and a fraction (1 —\)
of samples is coded at rates (H(X), H(Y|X)) corresponding to the corner point
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B of the SW rate region. This leads to the rates Ry = AH(X) + (1 — \)H(X|Y)
and Ry = (1 - NH(Y) + AH(Y|X).

In [50] two independent Turbo encoders are used to construct nonasymmetric
coding scheme using parity approach. Here, instead of treating one of the sources
as Sl and assuming it is compressed at its entropy rate and losslessly recovered at
the decoder, both of the sources are encoded using turbo encoders independently.
In this scheme source X is input into the encoder directly while source Y is
interleaved before encoding. Half of the systematic bits of each encoder is sent
and the parity bits are punctured to get the desired rate. At the decoder, two
separate Turbo decoders perform conventional Turbo decoding with the addition

of an extra extrinsic information shared between the two Turbo decoders.

The parity approach can be modified to generate nonasymmetric schemes with-
out using time sharing [51]. This approach can be described as follows. n-

vectors X = (x1,...,2,) and y = (y1,...,y,) are partitioned into sub-sequences

X" = (21, 1), Y = Wity Un), X° = (Tig1, -5 2), and Y = (y1,...,u1).

Sequences x" and y” are compressed by independent source encoders at their
corresponding entropy rate H(X) and H(Y'). The sequences x° and y*® are en-
coded by independent systematic channel encoders, producing parity sequences

C.ZE

=(cf,....c8)and c¥ = (¢f,..., ), respectively. In the decoder, sub-sequences
x" and y" can be easily recovered by the source decoders. In order to recover
subsequence x* from ¢ and y” channel decoding of ¢® using y" as side informa-
tion is performed much as the same in normal parity approach. Similarly, y* is
recovered from ¢ and x" as SI. Because of the correlation between sources X and
Y, y" is interpreted as a corrupted version of x*. On the other hand parity bits c®
are considered to be sent through a noiseless channel. Letting a > (n—1)H(X|Y)
and b > [H(Y|X), the following compression rate pair is achieved:

l

!
Rx > —HX)+2% >
n n

H(X) + (1 - ﬁ> H(X|Y),

!

n

n—1 b l l

Ry > —HY)+—->(1——)HY)+-H(Y|X).
n n n

n

Any point on the dominant face of Slepian-Wolf region is achieved by varying the
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ratio [/n between 0 and 1. The above mentioned approach is applied to LDPC
codes for constructing a practical DSC scheme in [52]. In this paper, for the
purpose of practicality and efficiency, authors also proposed to design and use a
single type of LDPC encoder for both of the sources X and Y, assuming they
are both uniformly distributed. The paper also presents methods to construct
suitable degree distribution pairs for LDPC decoders to be used in this scheme.
In [53], the methods in [52] are extended to three correlated sources and a scheme

to handle rate-adaptation by adding more parity bits.

Nonasymmetric SW coding schemes using the syndrome approach were also
proposed recently. A syndrome approach was first proposed in [54], based on the
partitioning of a single systematic linear channel code C. The main code C is
partitioned into C! and C? with generator matrices G; and Gy. The sources are
assumed to be uniform. The generator matrices G; and Gy of the two subcodes
are formed by extracting m; and my lines, respectively, where m; +msy = k, from
the matrix G of the code C. The code construction has been extended in [55]
to the case where the sources X and Y are binary but nonuniformly distributed.
The method presented in [54] is further developed in [56] [57], for more than two
sources scenario using systematic codes. Also, methods for using this scheme for
systematic IRA and Turbo codes are proposed and performance simulations are

presented.

2.2 Polarization and Polar Codes

In this section, we give a review of polarization and polar codes for single user
channel and source coding. The treatment here is based entirely on the works of
Arikan [12], Korada [16] and Sasoglu [21].

We consider a pair of correlated discrete random variables (X, Y) with X € X
and Y € Y. X can be any discrete alphabet of prime size. In the following we
assume X = {0,1,...,¢ — 1}, where ¢ is a prime number. The alphabet ) is
an arbitrary discrete alphabet. (X,Y) is assumed to be distributed according to
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Figure 2.3: First step of polar transformation.

Pxy which is an arbitrary discrete distribution. X is considered to be the source
and Y is the side information. We use H(X|Y) to denote conditional entropy
which is given by

H(X|Y) == Pxy(z,y) log Pxy(z[y). (2.6)

reEX
yey

The value of entropy is in [0,1] [] If H(X|Y) = 0 then it means that X is

deterministic given the observation Y.

Polarization is a transformation that takes N independent copies of (X,Y)
and generates new N pairs of RVs. While all of the conditional entropy terms of
original pairs are the same and equal to H(X|Y), the conditional entropy terms of
the transformed pairs are all different and close to either 0 or 1. As the size of the
transform increases, more and more percentage of the entropy terms gets close
to extremal values and the percentage of the intermediate ones decay to zero.
Thus, the entropy terms of the transformed pairs polarize. The bigger transforms
are obtained from smaller transforms by recursive construction. At each step of
recursion, two identical size-N/2 transforms are combined to generate a size-IN
transform. Therefore, the block size of polar transform is always a power of 2, i.e.
N = 2" n € Z*. The recursive nature of the construction makes low complexity

encoders and decoders possible.
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2.2.1 Polarization

The first step of transformation is depicted in Figure [2.3] which is the basis of
polarization. Here, N = 2 and we have two identical copies of the source pair

denoted by (Xi,Y7) and (X3, Y5). The mapping generates two new variables
U1 = X1 + X2 and U2 = X27 (27)

where ‘+’ denotes modulo-¢ addition. Note that the following is true for the

conditional entropy terms
QH(X|Y) = H(X?Y?) = H(UH|Y2) + H(U|Y?U,), (2.8)

due to the chain rule of entropy. The newly generated RV pairs are thus (U, Y?)
and (Us, Y2U;). Tt is easy to see that

H(U|Y?,Uh) < HX|Y) < H(:[Y?). (2.9)

This first step shows the essence of polar transformation. The first inequality in
means that observing Y2U, gives a more reliable estimate of U, (X3) than
observing Y5 alone. But, observing Y? alone gives a less reliable estimate of U;
(X1 + X3). Thus, two new entropy terms are created, one of which is closer to 0
than the original and the other closer to 1. However, it seems that there may be
a problem which is the possibility of equality in . As we will show later, the
inequalities are strict as long as the entropies are not one of the extremal values
of 0 or 1.

Continuing with the same idea we reach at the two step transformation shown
in Figure [2.4l Here, we combine two independent first step transformations in
Figure 2.3] First define

Yi2Y?2 and Y, 2V (2.10)

'Logarithms are to the base g.
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Figure 2.4: Two steps of polar transformation.

Then, note that (Sy,Y;) and (S, Y3) are i.i.d. We combine them to yield pairs
(U, Y?) and (Us, Y2U,), where Uy = Sy + S, and U, = S5. Thus, we have the

same relation of entropies as follows

H(S5|Y?, Sy + S5) < H(S1|Y1) < H(Sy + S3|Y?),
H(Uy|Y?,Uh) < H(S$1[V1) < H(U,[Y?), (2.11)
H(U,|Y*, Uy) < H(S1|Y1) < H(UL Y.

Similarly, if we define
Y £Y2S) and Y, £ YSS,, (2.12)

we see that (T1,Y]) and (Ty, Y5) are i.i.d. We combine them to yield pairs (Us, Y?)
and (Uy, YQU;»,), where U3 = T1+15 and Uy = T5. Thus, we have the same relation
of entropies as follows
H(Ty|Y? Ty +T) < H(T1|Y)) < H(T\ + T|Y?),
H(U,|Y?,Us) < H(Th|V1) < H(Us[Y?), (2.13)
HU, Y, U?) < HT|Y) < HU|Y*, U?).

Note that the resulting entropy terms are again give the chain rule expansion on
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Figure 2.5: Polar transformation of size N (Gy).

the total entropy:

H(XYY*) =4H(X|Y) = H{U*|Y?)
= HU|Y?) + H(Uy|Y*, Uy + H(Us|Y*, U?) + H(Uy|Y*, U?).

However, these newly created entropy terms are closer to 0 or 1 than the en-
tropy of the original variable pair. At the first step, generated terms H (51]}71)
and H(Ty|Y;) were somewhat polarized as indicated with equation (2.9). Now,

with the second application of the transform to two i.i.d. copies enhances the

polarization as indicated with equations (2.11]) and (2.13]).

The general form of Arikan’s transformation is obtained by recursive applica-
tion of the the transform in to the newly created variables at each step.
There are a number of different ways this recursive nature of the transform may
be depicted, one of which is shown in Figure[2.5] The polar transform of size N is
denoted by Gy and as it can be seen from the figure, it is recursively constructed
by two half-size transforms Gy/o. Ry is called the reverse shuffle operator. It
shuffles the places of the variables so that natural ordering of UV from top to
down is the correct decoding order. It places the i.i.d. variables from the outputs

of two identical transforms (G'n/2) next to each other so that the basic transform
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can be applied again at left hand side of the figure.

The linear transform can be written as a matrix of size N x N. Then, we may

write the relation between row vectors UYN and XV as

UN = XNGy. (2.14)

F=
11

! 0] (2.15)

and Ry denote the reverse-shuffie operation matrix. Then, by direct observation,

size-N polar transform in Figure 2.5 can be algebraically written as
GN = (]N/Q ®F)RN([2 ®GN/2)7 (216)

where “®” denotes the Kronecker product of matrices. Some algebraic manipu-

lations ([12]) yield the following most used representation:
Gy = ByF®", (2.17)

where By = Ry(I> ® Bny2) and “®™” denotes the n-th Kronecker power of a
matrix. By is a symmetric permutation matrix referred to as the bit-reversal
matrix. Since it is symmetric and permutation we have By = By'. Sometimes
just F®™ may be used as polarizing transformation. By is a permutation and

thus just reordering of indices. Another useful fact is that Gy = G}

The main polarization result states that the conditional entropy terms of the
transformed variables polarize to either 0 or 1. The following theorem makes this

precise.

Theorem 2 ([19]). For all e > 0,

Nhi%o_ [{i e [N]: HU|YN,U™") > 1—¢€}| = HXY),
Aim |{z € [N]: HU|YN, U™ <e}| =1—-H(XY).
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To prove this, one may take the indirect approach as in Arikan’s original work
[12] or the direct approach of Sasoglu [21]. Here, we follow Sagoglu’s method.
First, we need the following key lemma which states that the single step trans-

formation (2.9) always enhances polarization except at the boundary cases.

Lemma 1 ([21]). Let X1, Xy € X and Y1,Ys € Y be random variables with the
following joint probability density

PX1Y1X2Y2($17 Y1, T2, y2) = Px,v, ($17 yl)PXQYQ(x% 92)- (2-18)

If H(X1|Y1), H(X5|Ys) € (6,1 —0) for some 6 > 0, then there exists and €(d) > 0
such that

H(X1 + Xo|Y1,Y2) — max {H(X:1[Y1), H(X5|Y2)} = €(d). (2.19)
Definition 4. For i.i.d. (X,Y]) and (Xy,Ys) with H = H(X,|Y1), we define

H® 2 H(X, + X,|Y?),

- , (2.20)
H - H(XQlY ,Xl +X2)

Polar transformation of length N = 2" transforms N i.i.d. copies of (Xi,Y])
with an average conditional entropy to N different pairs of the form (U;, YNU™1)
whose conditional entropy terms are closer to extremal values of 0 or 1. The N
different entropy terms can be obtained by applying the above definition repeat-
edly. At each step of transformation the number of entropy terms doubles. The

nature of transform Gy results in the following identities

H(U1|YN) — HO--~000
H(U2|YN, Ul) H0~'~001
H(USIYN; UQ) HO---OlO

(2.21)

H(UN—1’YN7 UN_2) — Hl-~10
H(UN|YN7 UN—I) — Hl--‘ll'
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For block length of N the binary vector b as the superscript of H is of length
n. Each of the N different conditional entropy terms are enumerated with the

binary vector b.

We define two related random processes. We define i.i.d. process By, Bo, . ..

where B; is distributed uniformly over {0,1}. Then, we define a [0, 1]-valued

random process Hy, Hy, ... recursively as
Hy=H(X|Y),
o =H(X[Y) (2.22)
H, = HP, n=12...

Because of the relations in (2.21]) and the fact that B; is uniformly distributed
the following is true for all n and any Z C [0, 1]:

Pr[H, €I] = % {i: HU YN, U") e T}]. (2.23)

Thus, Theorem [2]is implied with the following theorem.

Theorem 3 ([21]). H,, converges almost surely to a {0, 1}-valued random variable
H.. with Pr[Hy = 1] = H(X|Y).

Theorem 3| shows that as the block size increases to infinity the conditional

entropies of the transformed pairs approach to either 0 or 1. And combined with

(2.23)), it implies Theorem

If the entropy is 0 then the variable can be estimated given the observation
with certainty. On the other hand if the entropy is 1, then it is not possible to
reliably estimate the value of the random variable in any condition. The above
reasoning suggests the use of polarization in source coding with side information

as follows. Let’s fix € > 0 and define the set
A2 {ie[N]: HUJYN,U™Y) < e} (2.24)

From Theorem [2 the size of A must be greater than (1 — H(X|Y) — d) for some

d > 0. Then, the encoder observing a realization x¥ calculates v = NGV
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and transmits u_4c to the decoder, because those are precisely the variables which
cannot be estimated reliably using the observations. The remaining, given the
observations, can be estimated at the decoder. The decoder, observing u 4. and

side information y", generates the estimation @V bit-by-bit successively as

Uy, if 1 € AC,
u; =140, ifiedand L(yN, a1 > 1, (2.25)

1, otherwise.

The likelihoods are given as

C Pr[U;=0lYN =y U =i
C Pr[Ui=1YN =y, Uil = i1

Ly™,u'™) (2.26)

Let’s denote the error probability of optimally decoding i*® bit given the
observations as P,(U;|[YYN U*1).  Obviously H(U;|YN,U!) — 0 implies
P.(U;|[YN,U=1) — 0. We need to make € small to keep error probability small.
However, for small block lengths if we keep € too small the size of A may shrink
too much away from the ideal value of (1 — H(X|Y)). But, as the block length
goes to infinity both the error probability decay to zero and the size of A goes
to (1 — H(X|Y)). The question is how fast this decay occurs. The above results
just show that the polarization happens, but they do not give any indication of

how fast it occurs. We discuss this next.

2.2.2 Polarization Rate and Probability of Error

The choice of set A in (2.24) can be modified to include block length dependent
€ to yield codes with vanishing error probability. Define block length dependent

set Ag as
Ay 2 {z € [N]: P(UJYN, U1 < Q—W}, (2.27)

for some positive § < 1/2. Following theorem shows that we may consider Ag

instead of A for construction of capacity achieving polar codes.
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Theorem 4. For all0 < 8 < 1/2 and € > 0, there exists No = No(f3,€) such that
|Ag| > (1— H(X|Y) —¢)N (2.28)

for all N > Ny.

Theorem |4 shows that at large block lengths those bit error probabilities
P.(U;|]YN,U*1) that go to zero, go to zero exponentially fast in the square root
of the block length.

Error terms P.(U;]Y™,U™!) need to be calculated to prove the theorem. The
calculation of error terms P,(U;|Y™N, U"!) become analytically intractable as the
block size increases. Therefore, the error analysis is performed by finding good
bounds on error. For this purpose the Bhattacharyya parameter Z(X|Y) is de-
fined as [21]

1
Z(X|Y) = F ZZ\/PXY(Jf;y)PXY(x’ay)- (2.29)
zx's Yy
Az’
It is well-known that the Bhattacharyya parameter upper bounds the error prob-
ability:

Proposition 1 ([21]).
PXIY) < (g - DZ(X]Y). (2.30)
Since Z(X|Y) bounds the error probability P.(X|Y'), it is expected that

Z(X|Y) is close to 0 whenever H(X|Y') is close to 0 and it is close to 1 whenever
H(X|Y) is close to 1. Tt is made precise by the following proposition.

Proposition 2 ([21]).

ZIXY) < H(X|Y),
H(X|Y) < log(1 + (g — DZ(X]Y)).
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By the above proposition we have Z(X|Y) >1—-§ = H(X|Y) > 1 — 20 and
Z(X|Y)<d= H(X|Y) <log[l+ (¢ —1)d] < kd where k = (¢ —1)/Inq. There-
fore, Z(X|Y') is also considered as a measure of reliability. The Bhattacharyya
parameters of the newly created variables after one step transformation also po-

larize just like the entropies. We have the following relation
Z(Us|Y2,Uh) < Z(X|Y) < Z(Uh|Y?). (2.31)

As it is the case for entropies, these inequalities are strict as long as Z(X|Y) is
not one of the extremal values of 0 or 1. The following lemma gives the bounds

on these.
Lemma 2 ([21]).

Z({Uh|Y?) < (¢* —q+ 1) Z(X|Y),
Z(U|Y2, U)) < (g — D Z(X1 V)%

To prove Theorem [ we need to define a random process that tracks the
behavior of Bhattacharyya parameters under recursive polarization construction.

For that, we make the following definition in parallel with Definition [4]

Definition 5. For i.i.d. (X1,Y1) and (Xy,Ys) with Z 2 Z(X,|Y1), we define

70 & Z(X, + X,o|Y?),

. ) (2.32)
ZV A Z(X,|Y% X1 + Xo).
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With the above definition, Bhattacharyya parameters under recursive polar-

ization construction satisfy
Z(U1’YN) — ZO---OOO

Z(U2|YN, Ul) ZO-~~001
Z(Us|YN, U?)

ZO-~~010
(2.33)

Z(UN71|YN, UN*Z) — Zl---lO
Z(Un|Y N, UM =z

Just like the entropy process in (2.22)), we define two related random processes.
We define i.i.d. process By, By, ... where B; is distributed uniformly over {0, 1}.

Then, we define a [0, 1]-valued random process Zy, Z1, ... recursively as
Zy = Z(X|Y),
0= Z(X]Y) (2.34)
Zy =75, n=12,...

By proposition [1} Z(U;|Y"N,U"!) upper bounds average symbol error proba-
bility and thus, we could also have defined set Az as

Ay 2 {z e [N]: Z(UJYN, Uity < 2—N‘3} . (2.35)

Then, Theorem [4 is proved as a corollary to Lemma 2 and the following lemma.

Lemma 3 ([21]). Let By, Bs, ... be an i.i.d. binary process where B; is uniformly
distributed over {0,1}. Also let Zy, Z1, ... be a [0, 1]-valued process where Zy is

constant and

Zn+1 < KZEL Zf Bn+1 =1,
Zn+1 < KZn Zf Bn+1 = 07

for some K > 0. Suppose that {Z,} converges a.s. to a {0,1}-valued random
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variable Zo, with Pr[Z. = 0] = z. Then, for any 5 < 1/2,

lim Pr[Z, < 27" = 2.

n—oo

Random process {Z,} converges a.s. to a {0, 1}-valued random variable Z,,
with Pr[Z,, = 0] = (1 — H(X|Y")) by Proposition [2] and Theorem [3] Thus, with
Lemma [2] it satisfies the conditions of Lemma [3] Then, since by Proposition
P.(U;|YN, U1 is bounded by Z(U;|Y™,U"'), Theorem {|is implied by Lemma
[Bl This result shows that we may impose exponentially small bound on probability
of decoding error of symbols of information set A and still reach the bound
+[A] = (1 - H(X]Y)) as N — oco.

By the above results, it obvious how source coding with side information can
be done using polarization. Encoding and decoding operations were given before
in this section. However, how to perform channel coding is not so obvious. It
requires some more treatment to prove that channel capacity may be reached by

polar coding. This will be discussed next.

2.2.3 Channel Coding

Polar codes were first introduced in Arikan’s original work [12] as binary channel
codes that achieve the capacity of symmetric channels. Since then there has been
numerous work expanding the area of applicability of polarization. Previous
section presents some of the results of those work. There is no constraint on the
distribution of X and joint distribution of (X,Y) in previous results. Therefore,
we may construct polar channel codes that achieve the capacity of any discrete
channel, not only symmetric. The theoretical analysis of average probability of
error depends on randomized maps and was introduced in [27] as an extension to
Korada’s randomized rounding method in [16] which was in lossy source coding

context.

Let (X,Y) be a pair of correlated random variables with properties defined
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as in previous sections. We may consider X as input to a channel described by
conditional probability Py|x and Y as the channel’s output. We consider a block
of N = 2"i.i.d. channel uses resulting in (X, Y®). In addition, let UY = XVGy
as always. Note that the following are true for the joint distributions of the

random variables:
Pxnyn(z Moy HPXY iy i),
PUNYN(U Y ) = Pxnyn(u GNayN)‘

Also, for polar coding purposes we decompose the joint distribution as

PUNyN (’l,L]V7 yN) = PyN (yN> H PUilyN7Ui—1 (UzlyN, 'LLi_l). (236)

i=1

Similarly the following is true for Pyn:
Pyn(u) = PXN(uNGN)

Py (u HPU wiet (w|u' ™). (2.37)

We define the following polarization sets:

Hx & {i € [N]: Z(UJU") = 1= 6n},
Lxyy £ {i€ [N]: Z(U[YN,U™") < on},

where 6y = 277 for some positive f < 1/2. Then, we define the information
(Z) and frozen (F) sets as

TE=HxNLxy, F=[N\I (2.38)
Proposition 3. For all 0 < § < 1/2, there exists No = No(B, €) such that

Z| > (H(X) — H(X|Y) — )N, (2.39)
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for all N > Nj.

First, let’s elaborate on the definitions made. Arikan’s polar transform is often
considered as a transform that distills the randomness in a block of i.i.d. random
variables. By that we mean that it takes N ii.d. variables X"V with the same
mediocre distribution and creates N different variables UY with almost extremal
distributions, i.e. either almost uniform or almost deterministic distributions. Hx
represents the set of transformed variables with almost uniform distribution and
thus called the high entropy set. The entropy of each variable in this set is close
to 1. The remaining part of the variables comprise the low entropy set and have
almost deterministic distributions and thus have entropies close to 0. Therefore,
we have [Hx| ~ H(X)N. Similarly, Lx|y represents the set of transformed
variables with almost deterministic distributions under the side information Y.
The variables in this set are almost deterministic given the previous variables
and the side information. A subset of Lyy is Lx = {i € [N]: Z(U;|U1) < oy}
which is the “null set” if original variables have wuniform distribution. Thus
Lx represents the non-uniformity in distribution of X. The information set Z
is precisely those variables that have almost uniform distribution without side
information YV and almost deterministic distribution with the side information,

and thus can be estimated at the decoder.

To prove Proposition [3| we first make the following definition.

Definition 6. Let Py, x and Py, x denote two DMCs with same input alphabet
and possibly different output alphabets. We say Py,x is degraded with respect to

Py, |x, denoted as Py, x = Py, x, if there exists a distribution Py,y, such that

Py, x(y2l2) = Pryx (1) Prajys (y2lys)- (2.40)

Y1

Lemma 4 (Degradation [16]). Let Py,x and Py, x denote two DMCs with
Py2|X j Py1|X. Then,
Z(X|V)) < Z(X|Ya). (2.41)

Proof. See Appendix [A.2] O
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Proof of Proposition[3. From Theorem {4 we know that |Lx)y| > (1 — H(X]Y) —
€1)N. Define Lx = {i € [N]: Z(UJU"') < 6x}. By following similar steps to
proof of Theorem |4 we may prove |Lx| > (1 — H(X) — e2)N. Note that we
can write Z = Lxy \ {Lx U{[N]\ (Lx UHx)}}. A = {[N]\ (Lx UHx)} is
the set of partially polarized indices and its fraction goes to zero as N — oo
by polarization, i.e. % < €3. Since obviously channel Py, ;-1 is degraded with
respect to Py~ i1, we have Z(U;|[YN, U™) < Z(U;|U!). Thus, we have
Lx C Lxjy. From that the claim follows. O

2.2.3.1 Encoding

The encoder first constructs u” symbol by symbol and then calculates %V =

uNGy to be supplied to the channel. The subset of indices of «V identified by
set Z are the message symbols intended for the receiver. They are determined
uniformly. The remaining non-message indices are computed according to a set
of maps that are shared between the encoder and decoder. These maps will be
identified with \; and defined for i € Z¢. We use Azc to denote the set of maps

shared between the encoder and the decoder.

We will define two different versions of these maps. The first one will be mazi-
mum a posteriori based deterministic rules. The second one will be random maps.
In the analysis, random maps will be used for the sake of analytic tractability.

The analysis of error probability will be done as an average over all possible maps.

We define deterministic maps \; : X! — X as

Ai(W'™) £ arg max { Py, jpi (W/[u' ™) } . (2.42)
u'eX
We also define class of random maps A; : X! — X as

M) 2 g, wop. Py (gle™). (2.43)

Maps A; are the realizations of random maps A;. Each realization of set of maps
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Aze results in different encoding and decoding protocols. The distribution over
the choice of maps is induced with the above equation (2.43). The encoder uses
the input symbols uzy and identical shared maps A; to construct the length-/N

vector u” successively as

Uj, if1 € I,
up = | (2.44)
Ai(u™1),  otherwise.

Then, 2V = uN Gy is supplied to the channel.

2.2.3.2 Decoding

Decoder decodes the sequence @V symbol by symbol using the observations .

We define the following decoding functions:

Gy, u™t) & argmax {PUilyNUi—l (u' |y, uiil)} ) (2.45)
u'eX
The decoder uses the identical shared maps \; to reconstruct the estimate @
successively as
GyN,ait), ifi e,
;= 3 N ) (2.46)
(41, otherwise.

Instead of \;, the decoder could also use \; when doing deterministic operation.
As stated before the encoder and decoder are using the same shared maps for
non-message indices. A realization of set of random maps has a probability of
occurrence induced by probabilities Py, i1 as given in (2.43). Each realization
results in different encoding / decoding protocols. We use randomized map con-
cept to bound the expected average error probability by taking expectation over
all possible set of maps, thus showing that there exists at least one good set of

maps.

For different shared maps Azc, the results of encoding operation may be differ-

ent for the same input uz. For encoder at step ¢ € Z of the process the inputs are
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inserted which are assumed to be uniformly distributed. Thus, for a realization of
set of maps Az, a particular %V occurs with a certain probability induced by in-
put distribution and maps. We define the resulting average (over uz) probability
of error of above encoding and decoding operations as P,[Az¢]. In the following we
show that for set Z defined in and encoding and decoding methods defined
in{2.2.3.1)and [2.2.3.2], there exists a set of maps Aze such that P.[Azc] < O(27N),
for 0 < 8 < 1/2. We do that by determining the ezpected average probability

of error over the ensembles of codes generated by different encoding maps Aze.
The distribution over the choices of maps is given in (2.43). That is, we take
expectation of P,[Azc] which is a random quantity. Then we show that ezpected
average probability of error decay to zero as O(2~V ﬁ). This implies that for at

least one choice of Az the average probability of error decays to zero as O(2™ B).

2.2.3.3 Total Variation Bound

To analyze the average error probability P. via the probabilistic method we define

the following probability measure

N

Q™) =[] Quilu™), (2.47)

=1

where conditional probabilities are defined as

N if i € T,
Quslu™) = ¢ * . (2.48)
Py, (u;lu™"),  otherwise.

The probability measure () defined in is a perturbation of Py~ in ([2.37)).
The difference between P and () is due to those indices in message set Z. The
following lemma provides a bound on the total variation distance between P and
. The lemma shows that by inserting uniformly distributed message bits in the

proper indices at the encoder does not perturb the statistics too much.

Lemma 5. Let probability measures P and @ be defined as (2.37) and (2.47)),
respectively. For sufficiently large N and 0 < < 1/2, the total variation distance
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between P and () is bounded as

S|Py (@) = QuM)| < 27V (2.49)
ulNexN
Proof. See Appendix [A.3] O

2.2.3.4 Average Error Probability

The encoding and decoding rules were established in Sections[2.2.3.1] and [2.2.3.2]

respectively. Consider the sequence vV formed at the encoder and observation
y~ received by the decoder. The decoder makes an SC decoding error on the i-th

symbol for the following tuples:

T 2 {(WN,y"): I € X st v #u,,
PUi|yNUi—1<Ui|y ,UZil) S PUZ,‘yNUi—l (U/’yN,Uiil)} . (250)

The set T* represents those tuples causing error at the decoder in the case u; is
inconsistent with respect to observations and the decoding rule. The complete

set of tuples causing errors is

TEJT (2.51)

i€

Assuming randomized maps shared between encoder and decoder, the average

error probability is a random quantity given as follows

Pe[AIC] = Z PyN|UN Yy |u q|I‘ H {A; (Wi =u;} (252)

(uNyN)eT i€

The expected average block error probability is calculated by averaging over the

randomness in the encoder and decoder

P. 2 Epey [P[Az]] (2.53)
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The following lemma bounds the expected average block error probability.

Lemma 6. Consider the polarization based channel code described in Sections
[2.2.53.1) and [2.2.3.3. Let the information set T be selected as in Proposition [3
Then for 0 < 8 < 1/2 and sufficiently large N,

Eagey [P[Aze]] < 27

Proof. First, note that the expectation of average probability of error is written

as

Efaze} [Pe[Aze]] = Z Pyxon(y M) |I| H P {A 1 Z}

(W yN)eT ie1e

From the definition of random mappings A; it follows that
P {Ai(ui_l) = ul} = PUZ,‘Ui—l(U,AUi_l).

Then, we may substitute the definition for Q(u”) in (2.47) into the expression of

expected average probability of error to get

Epagey [PelAz]l = ) Prwvpon(yV ) Q™).
(N yN)eT

Then we split the error into two main parts, one due to the polar decoding

function and the other due to the total variation distance between probability

measures.
E(aye) [P[Aze]] = Z Pyvion (yNu™) [Q™) — P(u™) + P(u™M)],
(uN,yN)eT
< Y Puwn (VM) + ) |QWY) = P()].
(uN yN)eT ulN

The second part of the error which is due to total variation distance is upper
bounded as O(2~ ﬁ) by Lemma . Thus, it remains to upper bound the error
term due to polar decoding. Remember that T £ U;ez7*. We may upper bound
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each error symbol by symbol. Define error probability for symbol i € Z as

€i £ Z PUNyN(UN,yN).

(uN yN)eT?

But this is the average probability of error for symbol i, i.e. €¢ = P,(U;|]YY,U*1).
Probability of error is upper bounded by the Bhattacharyya parameter by Propo-
sition Il By union bound, total average probability of error is e < Y. ¢’. Then

we have

e <) (q=DZWUIYN, U,

i1€T

This completes the proof that the expected average probability of error is upper
bounded as O(2-N"). O

Since the expected value over the random maps of average probability of error
decays to zero, there must be at least one deterministic set of maps for which
P, — 0.

2.2.3.5 Symmetric Channels and Uniform Distributions

It is well known that the capacity of a symmetric channel is achieved with uniform
distribution at its input. For uniform distributions, some of the concepts in
previous sections simplify. The random maps defined in always results
in uniform distribution: A;(u*"') = a, w.p. 1/q, Va € X. Thus instead of
sharing set of maps Az between encoder and decoder, we may generate a vector
for Z¢ uniformly at random and share that. Also, each realization of a set of
maps Aze have the same probability, which means that the expected average
error probability P, and average error probability for a realization P.[A\zc] are the
same. Thus, as proven in [I2] the value of those symbols in Z¢ don’t matter in
the sense that each selection results in the same average error probability. We

can choose any fixed vector for Z¢ and share it between encoder and decoder.
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Chapter 3

Distributed Coding of Uniform

Sources

In this chapter we present a simple method for performing Slepian-Wolf (SW)
coding using polar codes, based on [58]. [58] defines a general framework in
which a good single user channel code is used to obtain a good SW code that
can achieve any point on the dominant face of SW region. However, there is one
important limitation that the marginal distributions of the source variables must
be uniform. In exchange of this limitation the encoding/decoding operations can
be done using single user channel encoders and decoders. The method requires
syndrome calculation and channel decoder to perform coset decoding. By coset
decoding we mean that the channel decoder needs to be able to decode at an
arbitrary coset of the code. But a normal channel decoder can only decode in
a single coset (which is generally the zero syndrome one). Both coset decoding
and syndrome calculation are not trivial operations for an arbitrary good channel
code. For example, for turbo codes these operations are very hard. In this chapter
we show that polar codes fit nicely into this method in the sense that normal
channel encoders and decoders may be used and thus efficient low complexity
implementations can be achieved. The general SW coding (not limited to uniform
source marginals) using polar codes requires more complex decoders as presented
in Chapter 4| The contents of this chapter are based on our work in [59].
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3.1 Description of the Method

A method for constructing nonasymmetric SW scheme from a single channel code
restricted to the case of uniformly distributed sources using syndrome approach
was proposed in [58]. We show how this method may be applied to construct
SW coding using polar codes. We assume two correlated sources X and Y to
be binary RVs with uniform marginals. The correlation model between sources
X and Y is given as Y = X @ E, where E ~ Bernoulli(¢). Thus, H(X|Y) =
H(Y|X)=H(F)=H(e), where H(e) = —e-loge—(1—¢)-log(1—¢). Here, Y can
also be viewed as a version of X passed through a wvirtual BSC with cross—over

probability e.

XCL
Xa X3 Sx
Ky Ky N—-—K
Y, iz Sy

- >
YCL

Figure 3.1: Encoding for nonasymmetric SW.

The method of [58] can be summarized as follows. Consider two i.i.d. dis-
tributed and correlated N-vectors x = [x* x| and y = [y® y*] sampled from
source RV (X,Y). x? represents the first K bits and x® represents the last N — K
bits of vector x (the same applies to y). Also, let x* = [x{ x| and y* = [y{ y5].
x{ represents the first K bits and x§ represents the last Ky bits of x* (the
same applies to y*), where K; + Ky = K. Let G be a K X N generator ma-
trix and H a (N — K) x N parity check matrix of some block code. Assume
that H has the form [H, H,| where H, is an (N — K) x K matrix and H is an
(N — K) x (N — K) non-singular matrix. Notice that the systematic version of a
code is a special case with H, = Iy_i. The syndromes of x and y are calculated
as sx = xHT = x"H! & x’H and s, = yH' = y*H! @ y"H]', respectively.
Then, X-encoder sends (x{,sx) and Y-encoder sends (y§,sy). The partitioning

of variables may be visualized as in Figure [3.1, The total number of bits sent
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by both encoders is 2N — K yielding a sum rate R = 2 — K/N. By choosing
K/N =2—-H(X,Y) =1— H(F), this scheme results in a code operating on
the dominant face of the SW region. Then by varying K; and K, subject to

K, 4+ Ky = K, one can operate at any point on the dominant face.

The decoding of the above scheme, which is depicted in Figure [3.2 is done as
follows. Let e = x®y be the error vector. Then, s, = eH” = (xDy)H' = s,Ds,.
The method assumes that there is a syndrome decoder for the given code which
is supplied with all-zeros vector as input and s, as the coset index. The estimate
e is obtained as the output. With this estimated error pattern, x§ and y{ can
be recovered using y§ and x{, respectively, as shown in right half of Figure [3.2

Finally, x* and y® are obtained as

x" = (s, ®x"H)(H]) ™, (3.1)
y' = (sy @y Hy)(Hy) ™" (3.2)

Note that, although it is not shown explicitly in Figure [3.2] likelihood calculation
of the the all-zeros vector input to the decoder is done using the assumed cross—
over probability € of the virtual BSC between sources X and Y. Thus, the LLRs

input to the decoder are L = log %

A polar code is identified by a parameter set (N, K, A, uye), where N = 2" is
the block length, K is the code dimension, A is the information index set of size
K and ue is the frozen bits vector of size N — K. The frozen bits uy. identify
a coset of the linear block code and can be used as syndrome of the polar code
[12]. An advantage of polar codes for this scheme is that the required syndrome
decoding is readily available in SC polar decoder. The SC decoder can decode
as easily for a given uye as it can for zero syndrome. However, this standard
form of polar codes cannot be used in this method. Because, the second part of
parity check matrix (H,) of a normal polar code is not invertible, thus the second
part of decoding given by cannot be performed. But, the systematic version
of polar codes [23] can be used. Systematic polar encoding operation does the
mapping (Xp, u4c) — (Xpe, uy), where xz is the K-bit systematic vector and u4e
is the (N — K)-bit frozen bits vector.
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Figure 3.2: Decoding for nonasymmetric SW.

Now returning back to the nonasymmetric SW method of [58] described above,
we set x% = xp, X’ = Xge and sy = uye. This way we fulfill the requirements
of the method such that when x® is decoded using the estimated error vector €,
the rest, x°, can be recovered from x® and sy. Given x® = xz and sy = uye,

computing x” = xg. is nothing but a systematic polar encoding operation.

We also use CRC to improve the short block length performance of SCL de-
coder, which was originally proposed by the authors of [25] in channel coding
context. There are two ways to incorporate a CRC into the above method. The
first one is to calculate the L...—bit CRCs of N-bit source blocks and transmit
them separately. With this modification, X—encoder sends (x{,sx,cx) and Y—
encoder sends (y$,sy,cy), where cx and c, are CRCs of x and y, respectively.
Since CRC operation is linear, the CRC of error vector e = x @y is cx @ cy.
Thus, the SCL syndrome decoder can use this information when estimating the
error vector. To match the required sum rate R, the channel code is adjusted so
that K = N(2 — R) + 2L .

The second way is to complete N' = N — L., length information blocks to N
with L., bits of CRC. In this method, the CRCs are inside the N-bit x and y
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vectors. Thus, the LLR calculation for polar decoder is done differently:

log=¢, i€ {l,...,N — L.
P ¢ / (33)
0, i €{N—Lyo+1,...,N},

Note that in (3.3), while the statistics of the first (N — L) bits (correlated
source bits) are known (Ber(€)) and used for decoding, the statistics of the CRC
bits are assumed to be uniform. To match the required sum rate R, the channel
code is adjusted so that K = N(2 — R) + RL¢.. The two different methods of

adding the CRC does not make any difference performance wise.

3.2 Complexity of the Method

Source encoding is essentially a syndrome calculation. It is done using a SC polar
encoder which is of complexity O(N log N) [12]. Source decoding is done in two
stages. First, the estimate of error vector is calculated. This is the critical step of
decoding where errors are introduced. Here we use a SC list decoder with a list
size L. Hence, the complexity is O(L- N log N) [25]. The second part of decoding
involves calculation of x°(y®) from x%(y®) and s,(s,) using (3-2). However,
in practice matrix inversion and multiplication are not used. This calculation is
effectively a systematic polar encoding operation and efficiently performed using a
SC polar decoder. Thus, its complexity is O(N log N). Therefore, the total com-
plexity of the source decoder is dominated by the first step which is of complexity
O(L - NlogN).

3.3 Simulations

In this section, we present simulation results on performance of the source coding
method discussed. The correlation model between sources X and Y is given as
Y = X @ Z, where Z ~ Ber(e). In all of the plots, the rates of codes are kept
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Figure 3.3: BER plot for rate allocation Rx = 0.5, Ry = 1 (asymmetric).

at a defined constant value while € is varied to achieve different H(X|Y") points.
The plotted BER corresponds to the averaged value over X and Y sources. The
polar decoder used is the SCL decoder of [25]. To improve the performance, a
16-bit CRC (CCITT) is added. The list decoder selects the output from the final
list with the aid of CRC. Note that, for source coding, CRC is appended to the
“codeword” vector x as opposed to channel coding case where it is appended
to “information” vector uy. The list size is set to 32 for all cases. The code
construction is done via the method proposed in [24] and optimized to p = 0.09
for R = 0.5.

The performance for (Rx, Ry) = (0.5,1), which corresponds to asymmetric
rate allocation, is presented in Figure [3.3] Figure shows the BER plot with
rates allocated such that it results in symmetric setting: Rx = 0.75 and Ry =
0.75. Tt can be observed from the figure that the performance is slightly inferior
to the asymmetric case given in Figure |3.3. This is expected, since as opposed
to asymmetric case where no error is made for the source Y, in nonasymmetric

cases estimation of Y is also prone to errors, furthermore these errors propagate
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Figure 3.4: BER plot for rate allocation Rx = 0.75, Ry = 0.75 (symmetric).

to the recovery of X. Simulation result of a nonasymmetric operating point is
given in Figure|3.5] The rate allocation is such that Ry = 0.875 and Ry = 0.625.

It can be observed from the results that the performance is the same for all

nonasymmetric points.

Table 3.1: Nonasymmetrical SW performance for R = 1.5 (H(X,Y") values for a

BER of 107%).

(Rx,Ry) \ N | 2048 4096 16384 65536
(0.500,1.000) | 1.361 1.388 1.424 1.444
(0.625,0.875) | 1.321 1.349 1.402 1.435
(0.750,0.750) | 1.321 1.349 1.402 1.435

Results for three different rate allocations are given in Table A BER of
107° is considered to be lossless when determining the rate points. Figure

shows the performance of the method on SW rate region for N = 65536.
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Figure 3.5: BER plot for rate allocation Ry = 0.875, Ry = 0.625 (a nonasym-
metric point).
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Figure 3.6: Nonasymmetric method for N = 65536 together with the SW bound.
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Chapter 4

Distributed Lossless Coding

In this chapter, we present an extension of single-user polar codes to two-user
settings. The approach pursued here is based on monotone chain rule expansion
of entropy (or mutual information), which we will explain in detail later, and was
introduced in [2§] by Arikan. Before [28], a slightly different method for two-
user and multi-user generalization of polar codes were presented in [18] and [60],
respectively, in multiple-access channel (MAC) context. The basis of those works
rest on joint polarization approach that produces “extremal” channels which are
also MACs. This is in contrast to the approach in [2§] where “extremal” channels
are single-user. The authors in [I8] using joint polarization approach reached
an interesting result stating that there are five types of “extremal” channels.
However, in that work, it has also been shown that while polar coding can achieve
a certain rate point on the dominant face of MAC capacity region, it cannot

achieve an arbitrary rate point.

In Section [.1] we explore in detail, polarization for distributed setting based
on monotone chain rule approach introduced in [28]. We extend the treatment
with an addition of side-information variable and using prime sized alphabets.
Then, in Section [4.2{ we show how a Slepian-Wolf (SW) polar code may be gener-
ated that achieves full dominant face of SW rate region. Note that, the approach

used here works for arbitrary discrete source distributions, not only sources with
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uniform marginals like the approaches in [16] or Chapter [3] In addition, we ex-
plicitly write recursive formulas and give detailed successive-cancellation (SC) list
decoder implementation as a generalization of single-user list decoding introduced
in [25]. We also present simulation results giving the performance of list decoder.
Then, in Section we show how to perform MAC (dual problem of SW coding)
polar coding using the results of Section In independent and contempora-
neous works [61] and [62], authors pursue in MAC context, necessarily the same
approach introduced in [28] for polar code construction like we do in Section
However, they remain restricted to uniform rate-region (uniform input distribu-
tions). We show that full MAC rate-region may be achieved for arbitrary input
distributions. In addition, we give performance simulation results of successive

cancellation list decoding.

4.1 Polarization for Distributed Setting

In this section we present the generalization of Section to multi-user setting.
For notational convenience we study two user setting however the treatment can
easily be generalized to more than two users. This section is based on the work of
Arikan in [28]. We will denote user 1 and 2 with variables X and Y, respectively.
We will denote the side information with variable Z. The user variables are from
prime sized alphabets: X,Y € X = {0,1,...,q — 1}, where ¢ is prime. Z € Z
may be of any discrete alphabet. The variables are drawn from an arbitrary joint

distribution nyz.

The possible compression rates R; and Ry for users X and Y that can be
achieved with reliable lossless reconstruction under side information Z form a
two dimensional region. We denote the points in this region with rate vector
R = (Ry, Ry). This rate region is defined by

R={R:R > H(XI|Z)Y), R, > H(Y|Z X)), Ri+ Ry > HX,Y|Z)}. (4.1)
The subset of R consisting of points for which the sum-rate holds with equality
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is referred to as the dominant face of the rate region:
J=1{R:R >H(XI|Z)Y), Ry > H(Y|Z, X), Ri+ Ry = HX,Y|Z)}. (4.2)

The bounds of this region does not change even when the encoding of correlated
source (X,Y') is done separately and without the knowledge of side information
Z. The decoding must be done jointly with side information. This result is due
to Slepian and Wolf in their seminal work [38]. Therefore, region R is also called
Slepian-Wolf (SW) rate region.

4.1.1 Paths and Rates

Consider the i.i.d. block of random variables (X, YN Z¥) with N = 2" for some

n > 1. Let, UY and V¥ denote the polar transforms of X» and YV, respectively:
UV =xNGy, VN =Y"Gy. (4.3)

The joint distribution of (X¥, Y™ ZN) through polar transformation induces a
joint distribution on (U, VY Z¥). Since, Gy is a one-to-one mapping, we can

write the total entropy as follows
HXN, YN ZNY= NH(X,Y|Z) = H{UY, VYN |ZN). (4.4)

Recall that for single user polarization the total entropy term is expanded in
the order of increasing indices of the user vector UN: H(U;|YN U*1). This
expansion reflects the decoding order of symbols with the observations (both
Y™ and U'™!) obtained so far. At each decoding step a single symbol is decoded.
The polarization result shows that these conditional entropy terms polarize. They
approach to 0 or 1 as N — oo. Thus, we use the ones with entropy close to 0 to

convey information.

Similarly, in multi-user setting we consider expansions of entropy that preserve

the order of indices of both user vector UV and V¥. However, since there are
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Figure 4.1: Monotone chain rule expansions.

two users, there is a freedom in the choice of expansion order. To capture the
expansion order a new vector of length 2N is defined: S2NV £ 7y (UM, V).
7n(+, ) is from a special class of permutations where it takes 2 length-N vectors
and permutes the elements with special consideration such that the relative order
of indices of both vectors do not change. That is U; comes before U;;; and V;
comes before Vj,; in the permuted vector S*. For example, for N = 4 the

following is a valid permutation
58 = (U17‘/17‘/27U2a‘/3aU37U47‘/;1)~ (45)

But S® = (Uy, Vi, Vo, Us, V3, Us, Uy, V) is not a valid permutation. The allowed
permutations may be visualized with a directed path on a two dimensional “chain
rule diagram” as mentioned in [28] and shown in Figure The path on diagram
may also be represented with a path string b*V, b, € {0,1},Vk € [2N]. If b, = 0
then Sj, is the next variable from U vector. Similarly, if b, = 1 then S} is the
next variable from V¥ vector. Thus, b*" has exactly N zeros and N ones. The

expansion in (4.5)) is represented by ® = 01101001.
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The special type of expansions described above is referred to as monotone
expansions. In the rest of the discussion we always use that kind of expansions.
Then, using the S?V vector defined above, monotone expansion of total entropy
in can be written as

2N
HUN,VNZN) =Y " H(S|2ZN, 5F). (4.6)

k=1

Depending on the choice of path vector b*V, the above expression represents

2N
N

decomposed into incremental entropy terms of the form H(Si|Z",S*1). Those

all possible ( ) different particular monotone expansions. The total entropy is

incremental entropy terms are visualized by edges on chain rule diagram and thus

the variables S) are called the edge variables.

We define the following two rates for two users:

1 2N 1 2N
Ri= YHSIZY.SY, Ro=5 Y H(SZY.87).
bt bt

It is easy to see that R; attains its minimum + H(UN|ZY, V) = H(X|Z,Y) with
path v*Y = (1V0Y) (red path in Figure . Similarly, R, attains its minimum
~H(VN|ZN UN) = H(Y|Z,X) with path b*N = (0¥1V) (green path in Figure
. In any case the sum rate is constant at Ry, = Ri+Ry = ~ H(UN, VN|ZN).

The following are true for any path:
Ry > H(X|Z)Y), Ry > H(Y|Z, X), Ri+ Ry =H(X,Y|Z).

Thus, the defined rates lie on the dominant face of the rate region and span its

two end points.

However, it is not clear that if there exists paths that achieve any point on the
dominant face with arbitrary precision as N — oco. In the following we show that
it is indeed the case. To that end, we first define a distance between two paths

as follows.
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Definition 7. Let b2 and b2V be two paths with rate pairs (Ry, Re) and (Rl, Rg),

respectively. The distance between b and b2 is defined as

AN, 0*NY & Ry — Ryl

Note that, since Ry + Ry = Ry + Ry = H(X,Y|Z), the distance is also equal
to |Ry — Ry|. Then, we make a definition of neighborhood between two paths as

follows.

Definition 8. Let two paths b*N and bV be defined as neighbors if b2V can be

obtained from b*N by transposing b; with b; for some i < j such that

(1). b; # b;,

(11). the substring biyy ...b;_y is either all Os or all 1s.

The following proposition limits the distance for neighboring paths.

b2N

Proposition 4 ([28]). For neighbor paths and b*N | the following is true:

~ 1
d(*N, ) < —.
( ) ) — N
We define a class of paths as Vo = {07170V~ : 0 < i < N} similar to magenta
path in Figure [£.I] Then, the following theorem shows that we may attain any

point on the dominant face of rate region with arbitrary precision using paths

from this class as N — oo.

Theorem 5 ([28]). Let (R, R,) be any given rate point on the dominant face of
rate region R. For any given € > 0, there exists a N and a path b*Y from class

Von with rate pair (R, Ry) satisfying
|R1—Rx| SE, |R2—Ry| SE.

The theorem may be proven easily using Proposition . Let, 1/N < e. For
paths 1¥0Y (7 = 0) and ON1V (i = N) in class Vo, Ry attains H(X|Z,Y) and
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H(X|Z), respectively. Thus, it spans the two end points of values possible for R,.
For any 0 < 7 < N — 1 the distance between paths 01V0N=% and 011NN -1
is less than 1/N by Proposition 4] Thus there is an ¢ such that |[R; — R,| < e.
Also, since Ry + Ry = R, + R, |R2 — R,| < € is also true for that 1.

There may be other paths that achieve the desired rate on the dominant face.
The class Von gives a simple rule to obtain paths that achieve any point on the

dominant face as N — oo.

4.1.2 Path Scaling and Polarization

In the previous section we have seen that the total entropy term H(UN, VN|ZN)
is decomposed into 2N incremental entropy terms of the form H(Sy|ZN, S*1).
An incremental term is the entropy of single variable Sy € X. Thus, it is [0, 1]-
valued. However, we have not said anything about polarization of those incre-
mental entropy terms, yet. In this section we define the conditions under which

they polarize.

Similar to single user case we define the following information sets:

Ai(B) = {k € [2N]: by =0, Z(Si|ZV, S5 1) < 2,Ns}7
A () = {k € [2N]: by =1, Z(Sk\ZN,Skfl) < 2,Nﬂ}.

Definition 9 (Path Scaling). For any path b*™ representing a monotone chain
rule for (UNVYN) and any integer L = 2!, let Lb*™ denote

by --biby---by---bon---bon, (4.7)
1

which represents a monotone chain rule for (UFNVIN). This scaling operation

preserves the “shape” of the path.

Proposition 5 ([28]). Let (Ry, Ry) be the rate pair for a fized path b*™. Then

for any 1 > 1, (Ry, Ry) is also the rate pair for scaled path 2'0*V.
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Theorem 6 ([28]). Fiz Ny = 2™ and b*™° for some ny > 1. Let (Ry, Ry) be the
rate pair for b*No. Let N = 2Ny for | > 1 and S*V be edge variables for 26*Mo.
Then for any given 0 < B < 1/2 we have

1
lim —

. 9—N?B N gk-1 _o—NAL| _
mev{kEpM'Q < Z(Si|ZN, 1) <1 -2 }( 0,

.1 1
lllgloﬁ AL(B)] =1 = Ry, lllgloﬁ A2(B)| =1 = Rs.

To prove this theorem it is enough to realize the following simple fact. Fix

a block length Ny = 2™ and path b*Yo for (UM V™). Then consider the scaled

path 20?Mo for (U?Noy/2No) Tet S?Mo and T be edge variables for v and

202No | respectively. Let S2M be and independent copy of S2Mo. Then, polar

transformations under this one step path scaling result in the following
identities:

Tor—1 = Sk + Sk, Tor, = Sk, (4.8)

for all &k € [Ny]. This is one step polar transformation. As we increase the size
of the block length through path scaling by L = 2! times, we will be generat-
ing polarized variables from L independent copies of each of the base variables.
There are 2N, different variable pairs (S, Z¥°S*~1) and corresponding entropies
H (S| ZNo SE=1) at “base block” of length Ny. The entropy terms H (Sy|Z™0S*1)
for an arbitrary “base path” >0 are not necessarily polarized. As we scale the
path by L, we will achieve a block length of N = LN, and “scaled path” b*V.
The rate pair for the scaled path is the same as the base path. However, for each
entropy term in base block there are L entropy terms in scaled block which are

polarized.

Let the edge variables of the base path v*0 be denoted with S*M° as before
and the edge variables of [-step scaled path b*¥ be denoted with 72?¥. Let’s focus

on a single index k in the base block and make the following variable substitution:
S = S, Y = zNogk=1, (4.9)

Let S* and Y” be L ii.d. replica of S and Y, respectively. Let the transform

95



of S* be denoted with TF = S*G. Note that Lemma |I| and Theorem [3| apply.

Thus we have

llirCI)lOsze H(T|Y", T >1—€}| = H(SY),
llggloz{{ze H(TIY" T <e}| =1- H(S|Y).

Note that the [-step scaling operation extends the basic step transform in (|4.8])

and we have the following relations

7_—12' = TL(k*l)Jr’L'?
YL — ZNTL(k—l)

for all i € [L]. The above is true for each k € [2Ny]. We can write the same result

in original variables as follows

lliglof HZ €| TL k—1 +z|ZN TH=DFE 1) >1- 6}‘ Sk|ZNO St 1)
lim — y{z € [L]: H(Tppo1yw| 2N, THFDH71) < e} | = 1 — H(Si| 2™, S57).
—oo L

for all k& € [2Vg]. Thus the polarization occurs through path scaling. An arbitrary
path 0?0 at base block selects an arbitrary decoding order (in the monotone
class). The entropy terms are not necessarily polarized. But, after the path
“shape” is fixed and it is scaled, each variable may be substituted as in and
the setting reduces to single user case. All of the discussions in Section[2.2.2]apply.
Using definition of Bhattacharyya parameter in we have Z(T|ZN, Tk 1)
bound symbol error probabilities. By Theorem [4] we can say that the polarization

occurs and its rate and the probability of error are order O(2-N").

Now we may employ the above polarization concept in distributed source cod-
ing setup as follows. If the entropy is 0 then the variable can be estimated given
the observations with certainty. On the other hand if the entropy is 1, then it is

not possible to reliably estimate the value of the random variable in any condition.

26



Let’s fix a path b*V, € > 0 and define the sets

Ay 2 k€ 2N]: by =0, Z(S,|ZN, 8% 1) < e},
Ay 2 {k € 2N]: by =1, Z(S,|ZN, 5% 1) < e}

(4.10)

From Theorem |§|, the size of A; must be greater than (1— R;—4) and the size of A,
must be greater than (1 — Ry —0) for some ¢ > 0, where rate pair (R;, Ry) is path
dependent and Ry > H(X|Z,Y), Ry > H(Y|Z,X) and R, + R, = H(X,Y|Z).

Definition 10. In the following discussions, we frequently need to refer to corre-
sponding indices of UN, VN and their permuted form S?N = mny(UN,VN). The
permutation is characterized by path string b~ . Thus, all indices are considered
in the context of an assumed path b*N. We define indices i and j of UN and VN

corresponding to index k of S*, respectively as

k k
i=> lo—op, = lp-. (4.11)
=1 =1

Also, let WJ(\];) denote the permutation for the first k elements as S* = WE\?)(UiVj).
Note that with this definition we have 0 < 11,5 < N andi+j =k, for1 <k < N.
Then we have

Us, if b =0,

Vi, if by =1.

Sk =

Using these definitions we define the following information sets:

Ay 2 {i € [N]: by =0, Z(Sy| 2V, 8" ) < e}

i (4.12)
Ay 2 {J e N]: by =1, Z(Si|ZN, S5 1) <€)

Ay gives the indices of U corresponding to the indices of S2V in set A;. Similarly,
Ay gives the indices of VY corresponding to the indices of S2V in set A,. Note
that, for set A; we have Z(Sy|ZN, 5% 1) = Z(U;|ZN,U~'V7) and for set Ay we
have Z(Sy|ZN, Sk = Z(V;|1ZN, UV,

The calculation of sets A; and A; may be done using the successive cancel-

lation decoder, described in the next section, in large number of Monte-Carlo
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simulations and integrating the results. Or, one may use a construction method

adapted from the single user case described in [63].

Encoding

The setting consists of two separate encoders each observing one of either zVV or
y~. The decoder receives compressed sequences from both encoders and generates

estimates 2%V and ¢V with the help of side information 2.

N = NGy and transmits

Encoder 1 observing a realization 2" calculates u
u g to the decoder. Encoder 2 observing a realization y~ calculates vV = yN Gy
and transmits v g to the decoder. Because those are precisely the variables which
cannot be estimated reliably using the observations. The remaining, given the

observations, can be estimated at the decoder.

Decoding

The decoder, receiving (u 4, v 4. ) first assembles them into sub-vector s 4c, where
1 2

A= A UA,. Then using side information 2V, generates the estimation §*V

bit-by-bit successively as

Sk ifke AC,
Sk=140 ifkeAand L(zN,51) > 1, (4.13)

1 otherwise.

The likelihoods are given as

Pr [S), = 0]ZN = zm, S = s+1]

L N k-1 — )
(27,77 Pr Sy = 1|ZN = zn, Sk=1 = gh—1]

(4.14)
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4.2 Slepian-Wolf Coding

In the previous section we have seen that polarization occurs under path scaling
and how we can use it to construct distributed source coding. Encoders just em-
ploy standard polar transforms separately and send subsets of calculated vectors.
The decoder must calculate likelihood ratios in . Likelihoods depends on
calculations of probabilities of the form Pr [S, = s;|ZY = 2", S¥! = $*71]. Sim-
ilar to single user case we need to find recursive formulas for calculation of this

probability to be able to achieve low complexity decoder implementation.

4.2.1 Recursive Formulas

First, for an i.i.d. block of variables (X~, Y ZN) transformed vectors (UN, V)
as defined in (4.3]) and permuted vector S?V = mn(UN, V), we make the follow-

ing definitions.

Py (si] 2N, s £ Pr[Sy = s 2V = 2N, S =41 (4.15)

Pr[U; =, V; = v|Z2Y =2V, U7 = VIt =071 (4.16)

We make use of the Definition [10] when we talk about vectors UV, VN, §2N
and their corresponding indices 4, j, k under assumed path . Then, we have

the following identity:

Z P](\,i’j+1)(ui,vj+1|zN,uifl,vj) if b, =0

Py(spleV, ¥y =g o (4.17)
Z P (wy, 052N w077 i by = 1
Uit 1

Now we will show that we can recursively calculate probabilities
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P (ug,v;]2Y w1t 0371). Let’s first define the following four scaling constants.

A
LA,

A 2N 2N 2i—2 2i—2 2j—2 2j—2
CQZPY[U2i_1:u2i_1|Z =z ,U =Uu ,Vj = v },

A 2N 2N 21—2 2¢—2 25—-2 2j—-2
C’gzpr[vgj,lzvgj,ﬂZ =z ,U =Uu ,VJ = v ],

A 2N 2N 7722 2i—2 1,252 2j—2
Cy =Pr [U2i—1=U2i—1,V2j—1=U2j—1|Z =z"U =u VAR =0 ]

(4.18)
The constants are calculated as follows.
Com 30 PV (i i vy o o )

U24,V25—1,V25

P (i, w9 238 02, 0772). (4.19)

_ § : (4,9) N | 2i—2 2i—2 2j—2 2j—2
03 - PN (uQi—l + Uo;, V251 + U2j|Zl y Ut + Ure V1o + Vile )

U2i—1,U24,V25

Py (i, w9 238 022, 017%). (4.20)

_ (1,5) N  2i—2 2i—2 2j—2 2j—2
Cy = E P (Ugi—1 + i, vaj 1 + vaj|2y  uy'y " 4y’ S vl 4 0T)

U24,02;

Py (i, w9 238 02, 01 7%). (4.21)

We have the following four recursive formulas depending on the indices of u?V

and v?" being odd or even:

P2(12\;_1’2j_1)(u2i—17U2j—1’Z2N7U2i_2aU2j_2) = (1/01)
—2 2j-2 2j—2

(4,9) N  2i-2 2i—2
Y P (waimy A g, o+ ol ud'? a0 02

U24,02;

’ P](\;J)(u?i? U2j|212\7]\—[i-17 u%fe_Q’ U%7;_2)7 (4'22)
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P(Zz 2j— 1)(u217v2j_1|z2N,u2i_1,v2j_2) = (1/Cs)
_ 2j—2

(4,9) N | 2i— 22 2j—2
: E :PN (ugi—1 + u2i, Va1 + vo4|27", Ui, 2+ uy 2,0y ot )
V2,

'Pj(vi’])(u2mv2j|212v]\i1au?e_2 v %), (4.23)

P (ugs oy, vy 22N w2 0% 1) = (1/Cy)
2752

E (4,9) 2j—2
’ PN <u2i—1 +u2i71}2j_1 +02j|21 aulo +u Ulo +U )
u2;

c Py (g, va | 238 w2 0?), (4.24)

P(21 2])(u2i7 U2j|Z2N, u2i—1’ U2j_1) _ (1/04)
. P](\,i’j) (uzz‘—1 + Ug4, V251 + U2j|Z{V, u%?;Q + u%f U%JO 2 + U2J 2)

P g, oy 2R o 017 (4.25)
The proofs are given in Appendix [B.1]

Note that the scaling constants are not actually needed for decoder implemen-
tation. We could also calculate slightly different types of probabilities: the total
probabilities. Then, the calculated probabilities would be of the following form:

(2i—1,2j—1) 2%-2 . 2j-2| 2N\ _
Py (Ugi—1,voj-1,u™ 07 7 [27Y) =
(4,9) 2j—2 2] 2
E Py (ugi—1 + i, Va1 +U2j7ulo +U /Ulo + v ’zl )
U24,V2;
(4,9) 2i—2  2j—=2| 2N
- Py (u2ivv2a7u1e » Ulle |ZN+1>’ (4.26)
(2i,2j—1) 2—1 2j-2| 2N\ _
Py (Ui, voj_1,u™ ", 07772 ) =
(4,9) 21— 2j-2 23 2
g Py (ugi—q + g, v25-1 + U2]7ulo >+ U, "V, T |Zl )
’UQJ'
(4.4) 2i—2  2j—2
'PN (U%U%Ule y Ute ’ZN—H) (4.27)
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(2i—1,25) 2i-2  2j—1| 2N
Py (Ui1,vaj,u™ ", 0¥ 27T =

(4,4) 2i —92  2j-2
g Py (U2171+U2i,U2j71+U2j7U1o +U1e 7U10 + 0]

u24

2j 2|Zl )

P (g, vag, 22 0P 22N ), (4.28)

P(2i,2j)

N (u%’ '02]', u2i717 U2j71|22N) _

(4,4) 2 2j-2
Py (ugi—1 + i, Vaj— 1+U217U1o +U1e V1~ 0T |21)

(4,9) 2i—2 2] 2| 2N
- Py (ugi, vag, uy's " v " en) . (4.29)

2]2

In SC decoder, either type of formulas may be used. However, in SC list
decoder the latter type must be used. This is because the list decoder makes
comparisons of alternate decoding paths and the comparisons are meaningful

over the total probabilities.

4.2.2 Decoder Implementation

In this section, we give an explicit recursive implementation of the SC decoder
for two-user monotone chain rule based polar codes. The algorithms described
in this section are generalizations of those by Tal and Vardy [40] to two-user
setting. We keep the general structure and the names of the algorithms intact. We
modify the inside of the algorithms to implement two-user monotone chain rule
based successive cancellation decoder. Similarly, we modify the data structures
to accommodate two-user probabilities and bit decisions. We first give an efficient

implementation of SC decoder and then go on to describing the list decoder.

For algorithmic purposes we use the notation in [40]. The code block length in

consideration is given by N = 2". Unlike previous treatment, here vector indices

start at zero. User 1, 2 and side information vectors are represented by uj) !, v
and z)'~!, respectively. Also we use the notation B "’)(ui,vj|zo cus vl h

instead of P](\,Hl’jﬂ)(ui,vﬂzév_l,ué_l,vg_l) defined in (4.16]). We give the high-
level algorithm for SC decoding in Algorithm[I} In each step k of the algorithm we
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calculate four probabilities of the form P,gi’j)(a, bzt ui vl for a, b € {0, 1}.
The exact form of the probability that needs to be calculated depends on the path.
Then, using the calculated probabilities we make a decision for either user 1 or

user 2, depending on the path.

Algorithm 1: High-level description of the two-user SC source decoder
bQN

input : Received vectors u Ao Vs side information 2" and decoding path

output: Decoded user bits (a, 5)

// Initialization

14 —1,5+ —1

// Main Loop

for k=0,...,2N —1do

3 if b, = 0 then

// Horizontal step

[

[V

4 14— 1+ 1

5 calculate Pff’jH)(a, blzl 1 At o))
o set Pyilla) = 32, P (a,blzg gt 60)
7 if i € A§ then

‘ set U; to the received value u;

9 else

10 if PY[i][1] > P*[i][0] then

11 ‘ set u; < 1

12 else

13 L set 4; <+ 0

14 else

// Vertical step

15 j+<—ji+1

16 calculate Pfgiﬂ’j)(a7 blzd i, o))
17 set PYLjI0] < 3, P (a, b2 i, 0371
18 if j € A5 then

19 ‘ set ¥; to the received value v;
20 else
21 if PY[j][1] > PY[4][0] then
22 ‘ set f)j +~—1
23 else
24 L, set 0; < 0
25 return (v, ")

We follow the footsteps of [40] and write the equations (4.22) through (4.25) in
slightly different form. First we define the following variables. 0 < A < n denotes
the layer for which there are 2"~ independent blocks of size A = 2*. We denote

the phases of users 1 and 2 with ¢ and @1, respectively. We combine the phases
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of users 1 and 2 into a two-tuple ¢ = (g, p1). We also use the notation ¢, for
p = 0,1 to address the individual elements of the two-tuple. As before, we use
variables ¢ and j to index uév ~1and v(])v ~1 respectively. Thus, for layer n we have
wo = ¢ and ¢ = j. Note that for layer A we have 0 < ¢y, 1 < A. We write the

following four recursive formulas using the new definitions.

P§2¢0,2¢1)<u2%7 U2y |Z(/)\717 u2¢0*17 Uzwlil) = (1/Cl>

() A/2—1 | 2¢pg—1 2¢o—1 | 29p1—1 21—1

E P (g + Uagot1s Vag, + Vg 41] % JUge Uy S Upe T U, )
U290 41
V24p1 +1

—1  2¢p—1 211—1
- P (g, a1 |23 g 0 ). (4.30)

2ho+1,2 A _
PO (g1 gy [ 207 0P, 00T = (1/Cy)-
" AJ2-1  2po—1 2po—1  2p1—1 |  2p—1
Z P>(\—)1 (u2¢0 + U2epo+15 V29 + U2yp1+1 ’ZO/ ) u()?ﬁo + UO?@O ) vojﬁl + vojﬁl )
V29141

' P§1f)1 (u2¢0+17 U2w1+1\zf\\/_217 utz)jﬁo_la U(%jﬁl_l)' (4'31)

2¢0,2¢1+1 A=1 |, 2po—1 , 2
P)S o )<u2¢0’v2¢1+1|zo » U vo U 71)1) - (1/03)'
P A/2—1 2¢p—1 2¢pg—1 2¢1—1 2¢1—1
Z P)E—)l (u2¢0 T Uggpg 415 Vg, + U2¢1+1|ZO/ 7u0ﬁ0 + quZ())O 77}0?@1 + Uo,ﬁl )

U2ipg+1

P (g, o |27 g ug ). (4.32)
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P§2w0+1,2w1+1)<u2¢0+1’ Va1 |20 H w0 0?) = (1/0y)-

A/2—-1 2 1 2 1 2 1 2 1
P)qu)l (quo + U2epy+1, V29 + V2yp1+1 |ZO/ 7“020 + g % Uoﬁl +v % )

2 1 2 1
Piw)l (u2¢0+17 U2¢1+1|ZA/2 7“0%0 Uoﬁl ) (433)

Scaling constants C,,, m = 1,2,3,4 are calculated as in (4.18). They are
calculated using the same probabilities Piw)l To calculate probabilities for level A
we need to evaluate PA(w)1 with observation (z A/2-1 ugﬁo 1—|—u2w° ! vgﬁl "l wl h
and (247, 7 ,uﬁﬁo " vgfﬁl "). Therefore, a branch number 0 < § < 2" is deﬁned to
keep track of this. At top layer A = n there is a single branch 5 = 0. For each layer
0 < X < n, consider probability Py) corresponding to branch 3 with observation
(2071wt v 1), Denote ¥ = |/2]. P/&W is calculated from probability P(d’)
at layer A— 1 evaluated with observations (z( /2 ugﬁo ! —l—uwo ! vgil ! —i—vwl B!
and (247 7o ,u?fﬂo ! vglﬁl ). They are assigned branch numbers 24 and 25 + 1,

respectively. The calculations descend down the layers recursively in this fashion.

For each layer A we define the probabilities array structure denoted as Py
indexed by 0 < k& < 2N. For a given layer A, index k will correspond to 0 <
0o, 01 <Aand 0 < B < 2" as

k= {p,B)y=wo+e1+2-2" 5. (4.34)

If for layer A, we denote the observation corresponding to branch [ as

(2071w~ v ™Y, then probability array will hold for all values of (a,b) €

{0,1} x {0,1} that

Pyl B)][a, 8] = Py (a, bl ug o). (4.35)

Also we need to keep track of the decided bit values. We use bit array structure
By indexed by 0 < k < 2N for each layer A\. Denote the user bits of P/{‘p) at branch
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B, layer A and phase ¢ with a(\, o, ) and 0(\, 1, ). Then we have

Algorithm 2: Two-user SC decoder main loop

input : Received vectors u ., v 4., side information zév 1 and decoding path b(z)N -1
1 2

output: Decoded codewords matrix ¢

// Initialization
1 Generate s 4c from (UA?UA;)
2 for 5=0,1,...,N —1do
L Po[B][0,0] <= Pxy|z(0,0]25), By[B][0,
Po[B][1,0] <= Pxy|z(1,0]z5), Po[B][1

5 ¢« (—=1,-1)

1] += Pxy|z(0,1]|25)
1] + Pxy|z(1,1]|25)

3

// Main Loop

6 for k=0,...,2N —1do
7 p < blk]

8 p e t1

o | p ¢

10 if 5 = —1 then

11 ng)ﬁ<—0

12 if k=0 or ¢, >0 then
13 L recursivelyCalcP(n, p, p)

14 calcl'(¢/, p)
15 if k € A° then

16 | CAlBllpp mod 2,p] < s

17 else

18 if T'[1] > I'[0] then

19 | CA[B]lep mod 2,p] 1
20 else

21 L CilB]lpp mod 2,p] <0

22 if ¢, mod 2 =1 then
23 L recursivelyUpdateC(n, ¢, p)

24 return & < (Co[B][0, 0], Co[B][0, 1])| 5

The space complexity is O(Nlog N) with data structures stated as above.
However, as noted in [40], we do not need to keep all of the values at each level
and the space complexity can be reduced to O(N). For probabilities array Pf\w)
we need to keep only one location per branch. The phase information is not

needed. Thus, we replace P¥[(p, 8)] with P¥[8]. The four probabilities for
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Algorithm 3: calcl’ (¢, p)

1
2
3
4
5
6

T
8
9
10

11
12

if ¢ = —1 then
for v/ = 0,1 do
if p =0 then
| T'] <+ >, Pal0][u, uw]
else
| Tl X0 Pal0][u”, ]
else
for v/ = 0,1 do
if p =0 then
‘ Du'] + Dian[O] (v, Cn[0][¢}, mod 2,p]]
else
L Tu'] + iPR[O] [Cn[0][¢) mod 2, p],u']

Algorithm 4: recursivelyCalcP(\, ¢, p)

N

10
11
12

13
14
15

16

17

18

19

20
21

// Stopping condition
if A =0 then return
¥+ /2]
// Recurse if necessary
if ¢, mod 2 =0 then recursivelyCalcP(A — 1, ¢, p)
// Perform calculation
for =0,1,...,2"* — 1 do
if o9 mod 2 =0 then // Even u index
if ¢1 mod 2 =0 then // Even v index
// Apply equation
for (v/,v") € {0,1} x {0,1} do
L Py[B][w 0] + C% Do PAm12B][W @ v @] Paoq 28 + 1[u”,0"]

else // 0dd v index
// Apply equation
v« CA[B][0, 1]
for (v/,v") € {0,1} x {0,1} do
L PG, v"] + C% S Pac128][W e u” v @] - Py 28 + 1[u”, 0]

else // 0dd u index
u’ « Cy[0]0,0]
if o1 mod 2 =0 then // Even v index
// Apply equation
for (v”,v") € {0,1} x {0,1} do
L Py[B][u", V] + C% Yoo Pac120) [ @ w0 @ "] - Pa_q[26 + 1][u”, 0"

else // 0dd v index
// Apply equation
v' < C,[8][0, 1]
for (u”,v") € {0,1} x {0,1} do
L Py[B][u,v"] + C% Py_1[28][u' @ u”,v" @ v"] - Px_1[28 + 1][u",v"]
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Algorithm 5: recursivelyUpdateC(A, ¢, p)

// Stopping condition

if A =0 then return

¥ p/2]

for 3=0,1,...,2"* —1do
C,\—l[Qm [’(/};D mod 2,])] — C)\[B][Oap] > C)\[B][lap]
Cx-1[28 + 1][¢p, mod 2,p] + Cx[B][1, p]

if 1, mod 2 =1 then

L recursivelyUpdateC(A — 1, ¥, p)

(oL

N o

each value of the user bits (a,b) € {0,1} x {0, 1} are stored as Py[5][a,b]. Thus
at each layer \, probabilities array stores 4 - 2"~ floating values. The total space
requirement becomes 4 - (N — 1). Similarly, for bit array structure we need to
keep two locations per branch as noted in [40]. Here phase information cannot
be completely thrown away but only the parity of the phase is needed. We need
to keep two separate locations corresponding to users. Denoting the user with
variable p € {0, 1}, we replace B,[(g, )] with C)\[5][¢, mod 2, p]. Thus, for user
1 (p=0)and 2 (p = 1) we keep two locations for bit values corresponding to

even and odd parity of that user’s phase.

Algorithms [2] through [5] completely describe the two-user monotone chain rule
based SC polar decoder. Algorithm [2| presents the main loop. The algorithm

accepts outputs of encoders u ., v ;. and side information 2z ! as data inputs.
Aer U As 0

In addition, decoding path b3" " is supplied as a configuration input. First, layer
0 of probabilities array is initialized with the probabilities from the conditional
distribution Pxy|z under observation of side-information vector zév ~!1. Main loop

runs over 2N steps on the decoding path. At each step either a bit from uév -t

or v}’ is decoded. The algorithm makes the necessary probability calculation
to decide the next user bit. The probabilities calculated by “recursivelyCalcP”
function recursively are of the form P{*)(a, blzd L uf ™ v ) which are func-
tions of two variables. However, we need to calculate a second probability from
these which is function of single variable which is the variable we are interested in
at this step. That calculation is done in “calcI™ function in Algorithm [3] After
probability calculation, a decision is made on the user bit value. If that bit value

is received from encoders the value is inserted here. Otherwise, a decision is made
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based on the calculated probability. For each user after odd indexed bit value is
calculated, the decisions are propagated recursively down to the lower layers by

“recursivelyUpdateC” function.

For example, let by = 0, then at the first step of algorithm we actually need
Pr[Uy = a|Z)™' = 2)7']. To calculate that probability, the algorithm first
calculates Pﬁo’o)(a, blz)'~') and then sums over b. As another example, at step 11
of the algorithm assume that by = 1 and we need to calculate Pr[Vz = b|Z) ! =

“1US = 48, V2 = ©8]. The algorithm first calculates P (a, bl "1, 43, 62)

and then gets the result as

P(63 (uﬁ,b|zN 1 , 15, 03)
dow b n (u b’|zN ! ag,@g)
(4.38)

Pr[Vs =b|Z) ' =21 US = a8, Vi = 03] =

“recursivelyCalcP” function is an extension of the one in [40]. Note that it has
four different recursive equations corresponding to indices of two users being odd

or even. The normalization constants in the formulas are given as

Cy =1
Cy= Y P2flw @u’ v @v"]- P28+ 1", 0],
Cy = Z P28 @ v, v @] - Pa_1[26 4 1][u", 0",

Cy = Z Py 120w @ u" v @ 0] - Py_1[28 + 1][u”,0"].

l/ //

The normalization constants in function “calcI™ are given as

_ an[o] [/, Cu0][p}; mod 2,p]] ,

ZP [0][¢; mod 2, p],u'] .

“recursivelyUpdateC” function updates the bits array recursively as new bit

decisions are made at layer n.
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4.2.2.1 List Decoder

In this section, we give explicit algorithms for two-user SC list (SCL) decoder
based on monotone chain rules. The algorithms given here are also generalizations
of list decoder algorithms by Tal and Vardy [40] to two-user setting. We keep the
general structure and the names of the algorithms intact. We modify the inside
of the algorithms to implement two-user monotone chain rule based SC decoder.
We already explained the two-user generalization of SC decoder in detail. In this
section, two-user SC decoder is modified to explore L parallel decoding paths. We
only make the necessary modifications to the SC decoder to achieve an efficient
list decoder which was explained in detail in [40]. Thus, we do not go into details
of describing how to implement efficient list version of a SC decoder of polar

codes.

The list decoder accepts list size L in addition to the parameters accepted
by two-user SC decoder described before. Increasing the list size both increases
the effectiveness and complexity of the decoder. SCL decoder keeps a list of
decoding paths to increase the effectiveness of the decoder. At each step of the
SC decoder for an unfrozen bit, a decision is made for either a,, or 0. List
decoder attempts to split the decoding path to inspect both options so that it
does not discard the less likely path at that step of the algorithm. However, this
means that the number of paths to be inspected grows exponentially. Therefore,
a limit to the number of decoding paths the decoder can hold is set as the list
size L. The decoder prunes the paths at each step according to their probability

and keeps the list size less than or equal to L.
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Algorithm 6: Two—user SCL decoder

oA W N

10
11
12

13
14
15

16
17
18
19

20
21

22
23

24

input : Received vectors u Aer VA side information z(])v ~1 decoding path b(Z)N ~1 and list

size L
output: Decoded codewords matrix ¢

// Initialization
| + assignInitialPath()
Py + getArrayPointerP(0,])
for 5=0,1,...,N —1do
L Py [B][0,0] + Pxy|z(0,0]z5), Po[B][0,1] + Pxy|z(0,1]|zs
Po[B][1,0] <= Pxy|z(1,0]z5), Po[B][1,1] < Pxy|z(1,1|23
90/ — [715 71]
// Main Loop
for k=0,1,...,2N —1do
p < blk]
Pp < p+1
a4
if o5 = —1 then
[ ¢5< 0

)

if k=0 or ¢, >0 then
recursivelyCalcP(n, ¢, p)
calcl'(¢/, p)

if ¢, is frozen index then

‘ continuePathsFrozenBit (¢, p)
else

L continuePathsUnfrozenBit (v, p)

if ¢, mod 2 =1 then
recursivelyUpdateC(n, ¢, p)

// Find the best codeword
[ < findBestCodeWord()
Cy < getArrayPointerC(0,1)

return ¢ < (Cy[A][0, 0], Co[B][0, 1D|]5V:_ol

)
)
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Algorithm 7: calcl’ (¢, p)

w

© 0 N O B

10
11

12
13
14
15
16
17

for[=0,1,...,L —1do

L

else

if pathIndexInactive(l) then

continue

P, + getArrayPointerP(n,l)
C,, < getArrayPointerC(n,l)

if ¢, = —1 then
for ' = 0,1 do
if p =0 then
| Tu[w'] = 30, Pal0][u, ]
else

L I Zu” P, [0)[u” ]

for v’ =0,1do
if p =0 then

‘ Iy[u'] + P,[0][w', Cy[0] [@% mod 2, pl]
else

| Tufu'] = Pa[0][Cy[0)]); mod 2, 7], o]

Algorithm 8: findBestCodeWord()

3
4

N o ow

// Find the best codeword
1U/+0,P«0

2 for[=0,1,...,L —1do

if pathIndexInactive(l) then

L

continue

C,, < getArrayPointerC(n,l)
if P’ <T[C,[0][1,p]] then

L

' <1, P' < Ty[C,[0][1, p]]

8 return !

Algorithm 9: continuePathsFrozenBit(y, p)

1 for({=0,1,...,L —1do
if pathIndexInactive(l) then continue

(S I V)

C,, + getArrayPointerC(n,l)
C,[0][¢p mod 2, p] < frozen value of user p index ¢,
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Algorithm 10: continuePathsUnfrozenBit(y, p)

N

© 0 N O oo~ W

10
11

12
13
14
15
16

17
18
19
20
21

22
23
24

25
26
27
28
29
30
31
32
33
34
35

forksArray < new (float,bit,index) — triplets of size 2L
10

// populate forksArray

for {=0,1,...,L —1do

if pathIndexInactive(l) then continue

P, < getArrayPointerP(n,l)
forksArray[2i] + (T'[0],0,1)
forksArray[2i 4+ 1] « (IY[1],1,1)
11+ 1

// Pivot forksArray
p < min(2i, L)
rearrange forksArray such that Vo < p and V3 > p we have
forksArray[a][0] > forksArray[5][0]
// Pick the best rho forks
contForks < new (boolean, boolean) — pairs of size L
forr=0,1,...,p—1do
[ < forksArray[r][2]
b < forksArray|[r|[1]
contForks[l|[b] + true

// Kill-off non-continuing paths
for[=0,1,...,L —1do
if pathIndexInactive(l) then continue

if contForks [I/][0]=false and contForks [I][1]=false then
| killPath(])

// Continue relevant paths and duplicate if necessary

for[=0,1,...,L —1do

if contForks [I][0]=false and contForks [/][1]=false then // both forks are bad
L continue

C,, < getArrayPointerC(n,l)
if contForks [I][0]=true and contForks [/][1]=true then // both forks are good
Cy[0][pp mod 2,p] + 0
I + clonePath(l)
C,, + getArrayPointerC(n,l’)
C,,[0][¢p mod 2, p] + 1
else // exactly one fork is good
if contForks [{][0]=true then
| CalO]liop mod 2,5 - 0
else
| Cal0][pp mod 2, p] 1
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Algorithm 11: recursivelyCalcP(\, ¢, p)

N

© 0 N o u A

10
11
12
13
14

15
16
17
18

19
20
21
22
23

24
25
26
27

// Stopping condition

if A =0 then return

V< p/2]

// Recurse if necessary

if ¢, mod 2 = 0 then recursivelyCalcP(A —1, 9, p)
// Perform calculation

for (| =0,1,...,L —1do

if pathIndexInactive(!) then continue

Py < getArrayPointerP (\,l)
P,_1 + getArrayPointerP(\ — 1,0)
Cy + getArrayPointerC(\,l)
for 3=0,1,...,2"* —1do
if oo mod 2 =0 then // Even u index
if o1 mod 2 =0 then // Even v index
for (v/,v") € {0,1} x {0,1} do
| BBl 0] = X o Paoa[2B][0 @ u” 0" @ 0"] - Py [26+ 1] [u”, 0"

else // 0dd v index
v' < CA[B][0, 1]
for (uv/,v") € {0,1} x {0,1} do
| PABI[W, "] = X Paca[2B][u @ w0 @ 0”] - Paa[28 + 1] [u”, 0]

else // 0dd u index
u' < C[8][0,0]
if 1 mod 2 =0 then // Even v index
for (u”,v") € {0,1} x {0,1} do
L AlBI[”, 0]« X, Paca 28] @, 0" @ 0"] - Pra[28 + 1][u”, v"]

else // 0dd v index
v’ C)\[B][0,1]
for (u”,v") € {0,1} x {0,1} do
L Py [B][u",v"] + Py_1[28][v @ w0 @] - PA_1[20 + 1][u”,v"]

Algorithm 12: recursivelyUpdateC(A, ¢, p)

© 0 N O ook~ W N

10
11

for[=0,1,...,L —1do
if pathIndexInactive(l) then continue

C) + getArrayPointerC(\,l)
Ch_1 < getArrayPointerC(\ — 1,0)
¥ p/2]
for 3=0,1,...,2"* —1do
L Cx-1[2B][thp mod 2,p] = C[B][0, p] & CA[B][1, p]
Cx-1[28 + 1][¢, mod 2, p] < CA[F][1, p|
if 1, mod 2 =1 then
L recursivelyUpdateC(\ — 1, ¥, p, )
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Algorithm 13: getArrayPointerP (), 1)

1 s + pathIndexToArraylndex|[A][{]
// Copy array if necessary
if arrayReferenceCount[)A][s] > 1 then

2
3
4
5

© o N o

10
11
12
13

s' « pop(inactiveArraylndices)
P, < arrayPointerP[\][s], Pj < arrayPointerP[\][s’]
C < arrayPointerC[\][s], C} < arrayPointerC[\][s']
for 3=0,1,...,2"* do
for (4,j) € {0,1} x {0,1} do
L P[B]li, j] <= PA[B][i, 1]
CAIBl[E, 5] < CAlBllE, ]

arrayReferenceCount[A][s] <— arrayReferenceCount[A][s] — 1
arrayReferenceCount[A][s'] + 1
pathlndexTo/—\rrayIndex[ 1] «

s ¢

// Return array pointer
return arrayPointerP[A][s]

Algorithm 14: getArrayPointerC(\, 1)

1 s + pathIndexToArraylndex|[A][]
// Copy array if necessary
if arrayReferenceCount[)A][s] > 1 then

2
3
4
5

© w0 N o

10
11
12
13

s’ < pop(inactiveArraylndices)
P, < arrayPointerP[X][s], Pj < arrayPointerP[\][s’]
C < arrayPointerC[\][s], C% < arrayPointerC[A][s']
for 3=0,1,...,2" > do
for (i,7) € {0,1} x {0,1} do
L P[B)[i, 4] < PA[B)i, J]
CAIBl[E, 51 <= CAlB]lE, ]

arrayReferenceCount[A][s] <— arrayReferenceCount[A][s] — 1
arrayReferenceCount[A][s'] + 1
pathlndexTo/—\rrayIndex[ 1[1] +

s ¢

// Return array pointer
return arrayPointerC[A][s]
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Algorithm 15: killPath({)

// First, free arrays referenced by this path
1 for A\=0,1,...,ndo
s < pathIndexToArraylndex|[A][{]
arrayReferenceCount[)\][s] « arrayReferenceCount[)\][s] — 1
if arrayReferenceCount[A][s] = 0 then
| push (inactiveArraylndices, s)

oA W N

// Then, kill path
6 activePath[l] «+ false
7 push (inactivePathIndices, 1)

Algorithm 16: clonePath(l)

// First, get a free path and activate it
" + pop(inactivePathIndices)
activePath[l'] - true
// Then, just copy references not the actual data (lazy copy)
for A\=0,1,...,n do
s « pathIndexToArrayIndex[A][!]
pathIndexToArraylndex[A][l'] < s
arrayReferenceCount[A][s] < arrayReferenceCount[A][s] + 1

N o=

[ I B
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4.2.3 Simulations

In this section, we present simulation results showing the performance of SCL de-
coder used in Slepian—Wolf distributed source coding problem. In this simulation,

the probability distribution of source is given by

0.1286 0.0175
Pxy = .
0.0175 0.8364

This distribution results in the following entropies:
H(X)=H(Y)=0.6, H(X|Y)=HY|X)=0.2.
Thus the SW achievable rate region is

{(Ry.R,)): R, >02 R, >02 R,+R,> 08}

The capacity region is shown in Figure |4.2| along with simulation results.
We adjust the rates of the codes on straight lines yielding operating rate pairs
(R, R = pa-(0.4,0.4), (RE,RE) = pp-(0.5,0.3) and (RS, RS) = pc-(0.6,0.2)
with pa, pg, pc > 1 for code classes A, B and C, respectively. The markings show
the points where the block error rate (BLER) falls down to 10™*. The list size L

used in these simulations is 32.

Figures [4.3] thru [4.5] show the detailed performance results for code classes C,
B and A, respectively. We see how the performance increases as we allow more

sum rate.
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Figure 4.2: 10~* BLER marked on SW region for n=10,12,14,16 (L=32).
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Figure 4.3: Rate point C (0.6,0.2).
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Figure 4.4: Rate point B (0.5,0.3).
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Figure 4.5: Rate point A (0.4,0.4).
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4.3 Multiple-Access Channel

A two-user multiple-access channel (MAC) communication setup is depicted in
Figure [4.6] The setup consists of two independent users trying to communicate
to a common receiver. A discrete memoryless MAC consists of three alphabets

X, Y and Z, and a probability transition matrix p(z|z,y).

My XN
—{ Encoder 1 > .
N My, M.
Channel | 7 Decoder (M, My)
M2 YN p(Z‘.I, y)
—> Encoder 2f—>

Figure 4.6: Multiple-access channel communication setup.

Definition 11. A (2N 2NF2) N} code for MAC consists of two sets of integers
My ={1,2,... 2N} and My = {1,2,...,2V12}  called the message sets, two

encoding functions,

fii My =N (4.39)
and
far My — YV, (4.40)
and a decoding function,
g: ZV = M; x M. (4.41)

Sender 1 chooses a message index M; uniformly from M, and sender 2 chooses
a message index M, uniformly from Msy. They both send their messages over the
channel. Assuming that the distribution of messages over the product set M; x
M, is uniform, we define the average probability of error for the ((2N%1 2NE2) N)

code as

1
P — Tt Z Pr{g(ZN) # (m1,my)|(m1, my) sent}. (4.42)
(m1,m2)EM1XxXMa
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Definition 12. A rate pair (Ry, Rs) is said to be achievable for the multiple-

access channel if there exists a sequence of ((2VN%1 2NB2) N} codes with P 0.

Definition 13. The capacity region Ry ac of the multiple-access channel is the

closure of the set of achievable (Ry, Ry) rate pairs.

Theorem 7 (Multiple-access channel capacity). The capacity of a multiple-access
channel (X x Y,p(z|x,y), Z) is the closure of the convex hull of all (Ry, Rs)
satisfying

Ry < I(X; Z|Y), (4.43)
Ry < I(Y; Z|X), (4.44)
Ri+ Ry <I(X,Y;2) (4.45)

for some product distribution px(x)py (y) on X x ).

4.3.1 Polar Coding

Let (X,Y,Z) be a triple of correlated random variables with properties defined
as in Section[d.1] Let X,Y € X ={0,1,...,¢q— 1}, where ¢ is prime. Let Z € Z
where Z is an arbitrary discrete alphabet. We may consider (X,Y) as input to a
multiple-access channel described by conditional probability Pz xy and Z as the
channel’s output. Note that, in MAC setting we have a special case distribution
Pxy(x,y) = Px(xz)Py(y). We consider a block of N = 2" ii.d. channel uses
resulting in (XY, YN, ZV). In addition, let UY = XVGy and VY = YVGy as
always. Note that the following are true for the joint distributions of the random

variables:

N
Pywyngn (@™ gV, 2N) = [ Pxvz(@i vi, ),
=1

PUN\/NzN(UN,UN, ZN> = PxNyNzN(UNGN,UNGN,ZN).

As in section , we use 52V and b* to denote monotone permutation on user

81



vectors (UN, V) and corresponding path vector, respectively. For polar coding

purposes we decompose the joint distribution as

2N
PUNVNZN (uN, UN, ZN) = PZN (ZN) H PSk|ZN,Sk*1(3k|ZN7 Skil). (446)
k=1

Then, monotone expansion of total mutual information is given as
2N
NI(X,Y;2) = I(UN, VN; ZN) =Y " 1(ZN; S SF7). (4.47)

k=1

The channel rates R; and R, for a given b*" and SV are defined as

1 2N

R = 1(ZN; 8|S, (4.48)
b
1 2N

Ry = 1(ZN; 8|S, (4.49)
bt

For any path on UMV the rate pair satisfies

1
Ry < I(ZN; UNVNY = 1(Z; X|Y), (4.50)
1
Ry < < 1(ZN, VNUNY = 1(Z;Y|X), (4.51)
1
Bt Ry = 1(ZN, 0N, vy = 1(Z; X,Y). (4.52)

The first inequality is satisfied with equality for Y = 1V¥0" and the second

inequality is satisfied with equality for v?¥ = 0V1V,

The rate pairs (R, R) span the dominant face of the MAC region spanning
its two end points. They also form a dense subset of the dominant face from the

results in section [4.1]

Theorem 8. Fiz a path b*No for UNVNo Let R = (Ry, Ry) be the associated
rate vector. Let, S*V be the edge variables for scaled path 2'0*No, where N = 2/ N,.
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Then, for all e > 0,

lim — Hk; e 2N]: 27 < I(ZV;Sls* ) <1-27"}| =0,
l—o00 2N

- |Za(B)] _

=y = fme m=12,

where Tn(B) = {k € N] + b = m = LI(ZY: S8 2 1= 27}, for
m € {1,2}.

Proof. Note that for MAC setting Section [£.1]and polarization theorem [6] applies.

From Theorem [6, we have the following fact:

lim {k € 2N]: 27N < H(S[$" ) <1 — 2—Nﬁ}‘ _o,
—00 2
- Ln(B)] ; B
lligloT_l_Rm’ m=1,2,

where £,,(8) = {k € [2N] : b, = m — 1, H(S,|S* 1) < 27V} and R, =
~ Zk b= 1 H(Sg|S*1), for m € {1,2}. Note that, since X and Y are inde-

pendent (without observation Z) the following is true for R} :
R, =H(X), R,=H(Y).
Sets £1(3) and L(8) are not dependent on particular path.

We also have the following fact from Theorem [6}

lim —— Hk € [2N]: 27N < H(S|ZN, 8" 1) <1 sz‘*H _o,
o0 2N

[ Ha (B _

fm =y = e m= 12,

where H,(8) = {k € [2N] : by = m — 1, H(S,|ZN, 8% 1) > 1 —2°¥} and
Rl =+ S —m_1 H (S| Z7, S¥71), for m € {1,2}. Also, the following is true
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for R!! :
H(X|Z,Y)< R{ < H(X|Z), H(Y|Z,X)< Ry <H(Y|Z).

The lower and upper bounds of first and second expressions, respectively, are
satisfied with path b2Y = 1V0V. Similarly, the upper and lower bounds of first

and second expressions, respectively, are satisfied with path 52V = 0V 1V,

First define two index sets as follows:
Kpn2{kec2N]: by=m—1}, m=1,2. (4.53)

We define complements of sets for user m with respect to the corresponding
index set K, i.e. F& £ K, \ Fm. Since H(Sy|ZN,S% 1) < H(S|S* 1), we
have L, N\ Hy = 0 and H,, € LS, Let Fpy = L, UHy,. Then, we may write
T = F¢ = (L UHp) = LS\ Hm. I, has some extra partially polarized
indices compared to Z,,. By polarization, the ratio of the size of the set of
partially polarized indices to N go to zero. Thus, the result follows by observing
|7l |Zm|

T—>TasN—>oo. L]

In the following sections we define the polarization sets and give the encoding
and decoding protocols for polar codes for two-user MAC. Then, we prove that
for those encoding and decoding rules, the average error probability goes to zero

as block size goes to infinity.

4.3.1.1 Polarization Sets

In the following discussion, we will refer to three interrelated index variables k,
i and j, repeatedly, all in the context of an assumed path ?V. k will mark the
index of edge vector S?V. i and j will mark the corresponding index of U" and
VN respectively. We will make use of the Definition (10| here.

For the purpose of polar coding, the total probability is also expanded as
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follows:

Pyvyn gy (u, o, 2N) = Pow yn (myu® o, 2N),
2N
P52NzN(S2N7 ) PZN HPSklstk 1(8k|Z 1). (454)
k=1

Similarly the following is true for Pgon and Py w:

P52N HPSk‘Sk 1 Sk‘S ), (455)

Pynyn(u®,vN) = P52N(7TN<’LLN, o). (4.56)

Let 0y = 27N for 0 < 8 < 1. We use Bhattacharyya parameters Z(-|-) in-
stead of entropies H(-|-) when defining polarization sets. Because, Z(-|-) bounds
average probability of error by Proposition (1| and Z(-|-) and H(-|-) polarize to-
gether by Proposition [2} First, we define the following general “path dependent”

polarization sets:

>

L2 {ke2N]: Z(S|S"™) < dn}, (4.57)
HE{ke[2N]: Z(Sk|ZN, ") > 1 -6y} . (4.58)

Then, we define the following related sets for users 1 and 2:

/flé{ke[QN]:bk:O,k:eﬁ}, Z2é{ke[2N]:bk=1,keZ}, (4.59)
”Hlé{kepN]:bk:o,keﬂ}, ﬂgé{ke[zN]:bkszeﬁt}. (4.60)

We define the following frozen and information sets

F2LUH, T2 2N]\ F, (4.61)
./_"1 El U Hl, :Zl é 161 \fl, (462)
Fo2 LoUHy, T, 2K\ Fo (4.63)
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and

Fi2{ie[Nl:keF}, Ti2[N]\F, (4.64)
Fo2{je[Nl:keF}, I,2[N]\F, (4.65)

where Ky and K, are as defined in (4.53).

4.3.1.2 Encoding

Encoder 1 and 2 first construct v and vV, respectively, symbol by symbol and
then calculate 2V = uNGy, y¥ = vVGy to be supplied to the channel. The
subset of indices of u”, v identified by sets Z,, I, respectively, are the message
symbols intended for the receiver. They are determined uniformly. The remaining
non-message indices are computed according to a set of maps that are shared
between the encoders and decoder. These maps will be identified with ()\1(»1), )\5-2))
and defined for i € Fi, j € Fo. We use ()\%), )\%)) to denote the set of maps

shared between the encoders and the decoder.

We will define two different versions of these maps. The first one will be maxi-
mum a posteriort based deterministic rules. The second one will be random maps.
In the analysis, random maps will be used for the sake of analytic tractability.

The analysis of error probability will be done as an average over all possible maps.
We define deterministic maps 5\51) X! - X and 5\5-2) X 5 X oas

A (1) £ arg max {Pyjpi-r (W' [u' 1)},
Y2 -1\ A v ", j—1 (4.66)
AT = argg&x {Py i (v}

We define class of random maps Agl) X — X and A§2) XTI 5 X as

AW 2, wp. Py (alui™),
1

R (4.67)

Ui
5 v Ea, wp. Pyio(alp’™),
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where a € X. Maps (A", )\5-2)) are the realizations of random maps (A", AEQ)).
Each realization of set of maps ()x%), )\%)) results in different encoding and de-
coding protocols. The distribution over the choice of maps is induced with the

above equation (4.67)).

The encoder 1 (2) uses the input symbols uz, (vz,) and identical shared maps
AW (/\52)) to construct the length-N vector u® (vV) successively as

Uy;, ifi € Il,
AW (1), otherwise.

v vy, lf] S IQ, (4 69)
j = . :
)\gz) (v/71),  otherwise.

N

Encoder 1 calculates 2V = v~ Gy and applies it to the channel. Similarly, encoder

2 calculates y¥ = vV Gy and applies it to the channel.

4.3.1.3 Decoding

Decoder decodes the sequence 52V = 7wy (@, 9") symbol by symbol using the

observations 2. We define the following decoding functions:

G2, 8571 £ arg H)l(ax { P, zver—1(s'[2N, ¥ 1)} (4.70)
s'e

The decoder uses the identical shared maps )\El) and /\§-2) to reconstruct the

N

estimate 52V successively as

AD@i-n, ifke Fy,
Se= AP, ifke R, (4.71)

Cu(2N, 8% 1), otherwise.
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Instead of )\Em), m = 1,2, the decoder could also use Xf»m) when doing determin-
istic operation. As stated before the encoder and decoder are using the same
shared maps for non-message indices. A realization of class of random maps has
a probability of occurrence induced by probabilities Py, -1 and Py, jys-1 as given
in (4.67). Each realization results in different encoding/decoding protocol. We
use randomized map concept to bound the average error probability by averaging

over all possible maps, thus showing that there exists at least one good map.

Note that the encoding operations are almost the same as single-user channel
coding: information bits are inserted into indices in Z; (Z,), the remaining bits are
determined by shared set of maps and the resulting sequence u” (vV) is passed
through polar transformation to obtain 2V (yV). The difference is that the size
of the information sets Z; (I,) may be adjusted using different paths bV while
keeping their sum at constant. That way all rate allocation pairs (R, Ry) on the
dominant face of the MAC capacity region may be reached. The decoder is very
different compared to single-user channel polar coding where a single-user polar
SC decoder was used. Here, two-user polar successive cancellation decoding is

used at the decoder.

As in the single-user case, for analysis purposes, the encoding functions are
random. The results of encoding operations may be different for the same inputs
(uz,,vr,). For encoder 1 (2) at step i € Z; (j € Zs) of the process the inputs are
inserted which are assumed to be uniformly distributed. Thus, for a realization
of set of maps ()\%), /\%)), a particular (zV,y") occurs with a certain probabil-
ity induced by input distributions and maps. We define the resulting average
(over uz,, vz,) probability of error of above encoding and decoding operations
as Pe[)\%), )\%)] In the following we show that for sets Z;, Z, defined in 4.3.1.1
and encoding and decoding methods defined in [4.3.1.2] and [4.3.1.3] there exists
maps ()\%), )\%)) such that Pe[)\%), /\%)] < O(27N), for 0 < 8 < 1/2. We do that
by determining the expected average probability of error over the ensembles of

codes generated by different encoding maps (A%), )\532)) The distribution over the

choices of maps is given in (4.67)). That is, we take expectation of Pe[A%), A(]_%Q)]
which is a random quantity. Then we show that expected average probability of

error decay to zero as O(2~N"). This implies that for at least one choice of ()\Erll),
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)\%)) the average probability of error decays to zero as O(2~ B). The following
theorem makes this precise.
Theorem 9. Let 7, I, be sets as defined in and encoding and de-

coding methods be as defined in and [{.3.1.5.  Then the expectation
of average probability of error Pe[A%),A%)] over the maps (A%), A%)) satisfy

]E{Au) ADy [PE[A%),A%)]] < 9—Nf for any (Ry, R2) € Ryac and 0 < < 1/2.
F17 " Fo

Consequently, there exists deterministic maps that satisfy the above relations.

The following sections give necessary steps for proving the theorem. We first
prove a total variation bound on two probability measures. Then, we use that

result to bound the expected average probability of error of the code.

4.3.1.4 Total Variation Bound

Assume a given path b?". Then the edge variables vector S*V is a monotone
permutation 7y (identified by b*) on UMV ie. S?N = mx(UNVY). To ana-
lyze the average error probability P. via the probabilistic method we define the

following probability measure.

2N
Qe (s°V) £ Hst|sk—1(Sk|8k_1)a (4.72)
k=1
where conditional probability measures are defined as

PUi|Ui*1 (ui]ui_l), lf ]{? c fl,
Qsyist-1 (skl8") 2 4 Py i (o507, if k € Fo, (4.73)

Q=

) otherwise.

The probability measure ) defined in (4.72]) is a perturbation of Pgan in (4.55]).
The following lemma provides a bound on the total variation distance between
P and Q.

Lemma 7 (Total Variation Bound). Let probability measures P and Q) be defined
as in (4.55) and (4.72), respectively. For 0 < < 1/2 and sufficiently large N,
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the total variation distance between P and () is bounded as

> " Peen(s2Y) — Qean (V)| < 27 (4.74)
2N
Proof. See Appendix [B.2 O

4.3.1.5 Average Error Probability

The encoding and decoding rules were established in Sections [4.3.1.2| and [4.3.1.3]
N

respectively. Consider the sequences v’ and vV formed at the encoders and

N

observation z" received by the decoder. The decoder makes an SC decoding

error on the k-th symbol for the following tuples:

T2 {(SQNaZN) 38’ € X os.t. s’ # sy,

Psklstkfl(SHZN, Skil) S PSk|ZNSk*1 (S/|ZN, Sk71>} . (475)

The set T* represents those tuples causing an error at the decoder in the case s;,
is inconsistent with respect to observations and the decoding rule. The complete

set of tuples causing an error is

T2 (4.76)

kel

Assuming randomized maps shared between encoder and decoder, the average

error probability is a random quantity given as

1
PIAY AZ = T {pZW(zN,SzN) .

(82N 2NYeT

. H ﬂ{A§1>(ui—1)=Ui} H ﬂ{A;Q)(vf—l)zvj} . (4.77)

i€ F JEF2

The expected average block error probability is calculated by averaging over the
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randomness in the encoders and decoder

1 2
P2 Eyw o) [Pe[A;j, A;;]] . (4.78)

The following lemma bounds the expected average block error probability.

Lemma 8. Consider the polarization based channel code described in Sections
[4.3.1.2 and|4.5.1.5. Let the information set Z and frozen set F be selected as in
(4.61). Then for 0 < f < 1/2 and sufficiently large N,

1 2 —N#B
B a2y PR AR <27

Proof. Note that the expectation of average probability of error is written as

1
1 2
Epeae, [RASAZ] = 3 {szsw(z%% =
(s2N NYeT
1€F1 JEF,

From the definition of random mappings AY it follows that

P{AP(w) = u@} Py s (il ™),

Then, we may substitute the definition for Qga~ (s?") in (4.72)) into the expression

of expected average probability of error to get

E{A(l) A(z)} [Pe[Ag_}l),A(}é)]] = Z PzN|5'2N( N|S2N) QS2N(82N).

(s2N 2N)e

Then we split the error into two main parts, one due to the polar decoding

function and the other due to the total variation distance between probability
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measures.

E PR AR

= Z PzN‘SQN (ZN|82N) [Q52N<S2N) - P52N<82N) + PSQN(SZN)] ,

(1) A(2)
(A% ARy

(s2N zNYeT
< Z Pgongn (SQN, ZN) + Z ’QsQN(SzN) - P52N(82N)| .
(2N 2N)eT §2N

The second part of the error which is due to total variation distance is upper
bounded as O(2~ 5) by Lemma . Thus, it remains to upper bound the error
term due to polar decoding. Remember that 7 £ Uz T*. We may upper bound
each error symbol by symbol. Define error probability for symbol k € Z as

ES
[

Z PSQNZN(S2N,Z )

(82N 2N)eTk

But this is the average probability of error for symbol k, ie. &f =

P.(Sg|ZN,S*=1). Probability of error is upper bounded by the Bhattacharyya
parameter by Proposition [l By union bound, total average probability of error

ise <3, " Then we have

e < Z(q - 1)Z(Sk’ZN7 Skil)?

kel

This completes the proof that the expected average probability of error is upper
bounded as O(2-N"). O

Since by Lemma [8| the expected value over the random maps of average prob-
ability of error decays to zero, there must be at least one deterministic class of

maps for which P, — 0.
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4.3.1.6 Uniform Distributions

Similar to single user case, different polarization regions, encoding and decoding
tasks simplify if input distributions are uniform. The random mapping functions
defined in (A.67) always results in uniform distribution: A" (ui=1) = A§2)(vj =
a, w.p. 1/q, Va € X. Thus instead of sharing set of maps (A%), A%)) between
encoders and decoder we may generate a vector for F uniformly at random and
share that. Also, each realization of a set of maps ()\%), )\%)) have the same
probability, which means that the expected average error probability P, and av-
erage error probability for a realization Pe[)\%), )\_%)] are the same. Thus, similar
to single user case the value of those symbols in F don’t matter in the sense that
each selection results in the same average error probability. We can choose any

fixed vector for F and share it between encoders and decoder.
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4.3.2 Simulations

In this section, we present simulation results showing the performance of MAC
SCL decoder. We present the performance of the decoder on a well known MAC
channel: binary erasure MAC (BE-MAC). The capacity region of this channel is
maximized with a single distribution, namely the uniform distribution in both its

inputs.

Let X € X and Y € Y denote the inputs of the channel corresponding to user
1 and 2, respectively. And let X =) = {0,1}. The channel output is given as
Z = X +Y which is of a ternary alphabet, Z € Z = {0,1,2}. The capacity
region of this channel is well known [64, Sec. 15.3] and shown in Figure
The figure shows results for three different code classes labelled by A, B and C
which target three different rate pairs (0.75,0.75), (0.625,0.875) and (0.5,1) on
the dominant face of the MAC region, respectively. Figure[d.7]shows the summary
result of the simulations. We adjust the rates of the codes on straight lines yielding
operating rate pairs (R, R}) = p4 - (0.75,0.75), (RE, RB) = pp - (0.625,0.875)
and (RS, RY) = pc - (0.5,1) with 0 < pa, pB, pc < 1 for code classes A, B and C,
respectively. The markings show the points where the block error rate (BLER)
falls down to 1074, The list size L used in these simulations is 32. Code class
B performs the best (closest to boundary). Code class A comes the second and

code class C is the worst.
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Figure 4.7: 10~* BLER marked on MAC region for n=10,12,14,16 (L=32).

4.3.2.1 Construction

The polar codes are designed by Monte-Carlo simulations using the SC MAC
decoder. Our decoder outputs soft likelihood ratios for both u" and v"¥ which
are averaged over large number of simulations and used as reliability values. The
code design is specific to the underlying MAC and involves finding a path b2V
and information index sets A, and A, for a desired target rate pair (R,, R,).
Although there may be many possible paths satisfying the required rate pair we
restricted ourselves to a class of paths of the form 0°1V0N~% for 0 < i < N. These

paths produce rate pairs that span the entire dominant face of the MAC region.

The following three figures shows the code construction simulation results for
code class C, B and A, in that order. The sorted reliability values of the coordinate
channels of users U and V are plotted. The red vertical lines mark the (0.75,0.75)
rate point for reference. The green vertical lines mark the target rate point for

that simulation.
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4.3.2.2 Performance Simulations

Here we present detailed simulation results. The following three figures compare
BLER performances of four block sizes (n = 10,12,14,16) and two list sizes
(L = 1,32) for three rate points A, B and C.
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10 T r
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—1- N=2% L=1
1| | =O-N=2% 121
10 ¢ N=2'6 | =1
—k— N=2°, =32
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*
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lo 1 1 1 1
0.8 0.9 1 1.1 1.2 1.3 1.4 15
R +R
Xy
Figure 4.11: Rate point C (0.5, 1.0).
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Figure 4.12: Rate point B (0.625,0.875).
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Figure 4.13: Rate point A (0.75,0.75).

4.3.2.3 Performance Simulations with CRC

In this section, we present performance results with CRC. The CRC is appended
to the user bits for aid in best path selection at the end of list decoding just like
in the single-user case as presented in [40]. However, in two-user MAC there is
more freedom in the position to insert CRC. It may be appended to the infor-
mation bits of user 1, user 2 or both. In all of the figures list size is fixed at
32. We used simulations to compare performances of different CRC options. We
found that CRC of size 16 embedded into either user 1 or user 2 gave the best
results most of the time. Therefore, we used that option in the following figures.
The “CRC(16,0)” annotations in the figures means that a CRC of length 16 is
inserted into user 1 data and no CRC is inserted into user 2. Note that, inserting
CRC causes user rate to decrease a little. This is taken into account in the rate

calculation.

In the following three figures, we compare the performances with and without
CRC for rate points C, B and A, in order. In all cases list size is 32. The dotted
lines are without CRC and the solid lines are with CRC. We can see clearly
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how much CRC improves the performance for short block lengths (2'° and 2'2).
However, as the block size increases the effect of CRC on performance decreases.

This behavior is analogous to single-user case.
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Figure 4.15: Comparison of CRC performance for rate point B (0.625,0.875).
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Figure 4.16: Comparison of CRC performance for rate point A (0.75,0.75).
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Chapter 5

Distributed Lossy Coding

In this chapter, we consider two different distributed source coding setups where
reconstructions of sources are subject to distortion constraints. We prove that
the bounds of the known achievable rate-regions of both setups may be attained

by polar coding (PC) methods.

The first of these setups is the distributed lossy source coding (DLSC) setup
which we consider in Section [5.1] This setup consists of two correlated sources,
their two separate encoders and a joint decoder. The reconstructions of two
sources at the decoder are subject to different distortion constraints. The achiev-
able rate-region of this problem is not known in general but there is a good inner
bound called the Berger-Tung (BT) inner bound. The only work we are aware
of that mentions DLSC problem using polar codes is given in [65] which is inde-
pendent and contemporaneous to ours. The authors very briefly claim that PC
for DLSC setup can be done using “nested polar codes” [66]. The polar coding
method for DLSC problem described in our work is based on monotone chain
rule approach introduced in [2§] and also analyzed in detail in Section We
show that using our method, any point on the dominant face of BT region may
be achieved for arbitrary source distributions. In our method, two single user
successive-cancellation (SC) polar decoders are needed for encoding and a single

two-user joint SC polar decoder based on monotone chain rules is needed for
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decoding.

The second setup is the multiple description coding (MDC) setup which we
consider in Section [5.2] In this setup, there is a single source and two encoders
generate two different representations of the same source. Then, three decoders
that has access to representation 1, representation 2 and both, respectively, gener-
ate three different reconstructions subject to three different distortion constraints.
The achievable rate-region for this problem is not known in general but there is
an inner bound called El-Gamal Cover (EGC) inner bound. In the following we
mention other work on polar coding for MDC setup briefly. All of these work
consider achieving the EGC inner bound. Polar coding for MDC problem was
considered in [30] and two different methods were proposed. The first one is based
on joint polarization approach that was introduced in [I8]. Using this method a
certain point on the dominant face of EGC region may be achieved. However,
this method has an important drawback such that the achieved rate-pair is de-
termined by the coding scheme rather than being a design choice. The second
method is based on rate-splitting approach described in [67] and achieves any
point on the dominant face. However, the method is expensive in the sense that
it uses three successive encoding steps, each of which is a SC polar decoder. Re-
cently PC for MDC problem was also considered in [31]. The method considered
in that work is only for a special case of uniform and binary sources. Another
recent work that mentions MDC problem using polar codes is given in [65]. The
authors very briefly claim that PC for MDC setup can be done using “nested po-
lar codes”; however, they do not go into the specifics. The polar coding method
for MDC problem described in our work is based on monotone chain rule ap-
proach introduced in [28] and also analyzed in detail in Section {.1] We show
that using our method any point on the dominant face of EGC region may be
achieved for arbitrary source distributions. In our method, a single two-user joint

polar decoder based on monotone chain rules is needed for encoding.
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5.1 Distributed Lossy Source Coding

General lossy source coding setup is depicted in Figure 5.1} (X,Y) is discrete
memoryless source (DMS) and d,(z, %), dy(y, 9) are two bounded distortion mea-
sures. Encoder 1 wants to compress source X to be reconstructed with a max-
imum distortion D, and similarly encoder 2 wants to compress source Y to be
reconstructed with a maximum distortion D, at the joint decoder. This problem
obviously includes Slepian-Wolf and lossy source coding with side information
(Wyner-Ziv) problems as its special cases. However, unlike these special cases,

the rate-distortion region of this problem is not known in general.

X—) Encoder 1 % (X", D) >
Decoder

Yy M 1

~— > Encoder 2—2> ", Dy) >

Figure 5.1: Distributed lossy compression setup.

There are Berger-Tung inner and outer bounds for the rate region, none of
which is tight in general. However, there are well known specializations where
either inner or outer bound is tight. Before, giving the bound theorems let’s

define the setting formally.

Definition 14. An (n, R,, R,) source code in this setup is defined as

e Encoding function for X: fx : X"+ {1,..., 2"},
e Encoding function for Y: fy : Y {1,... 28},

e Decoding function : g : {1,...,2"M=} x {1,... 278} s X" x Y.

Let dy : X xX — R, denote the distortion function with maximum value dax.
The distortion function extends to vectors as dy(zV,2V) = % Zf\il Ay (24, ;).

The distortion function dy : ) x Y — R for Y is defined similarly.
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Definition 15. A tuple (R,, Ry, D., D,)) is said to be achievable if there exists a
sequence of (n, Ry, R,) codes such that

lim sup E[d, (X", X™)] < D,

n—oo

lim sup E[d,(Y",Y™)] < D,

n—oo

The rate-distortion region R(D,, D,) for distributed lossy source coding is the
closure of the set of all rate pairs (R,, R,) such that (R, Ry, D,, D,) is achievable.

The rate-distortion region for this problem is not known in general. However,
there is an inner bound called Berger-Tung inner bound [68], which is tight in

some special cases. In this work we focus on the Berger-Tung inner bound.

Theorem 10 (Berger-Tung Inner Bound). Let (X,Y) be a 2-DMS with joint
density p(x,y) and d,(z,z) and d,(y,y) be two distortion measures. A rate pair

(R., Ry) is achievable with distortion pair (D, D,) for distributed lossy source

coding if
R, > I(X; X|Y), (5.1
R, > 1(Y;Y|X), (5.2
R, + R, > I(X,Y;X,Y) (5.3)

for some conditional pmf p(z|z)p(yly) with | X| < |X| +4, |Y] < |Y]| +4, and
functions z(z,y) and y(z,y) such that E[dx(X,)A()] < D,, E[d,(Y, Y)] <D,.

Following are some special cases where the bound is tight.
e Suppose d, is a Hamming distortion measure and D, = 0. In this case

conditions are minimized with Y =Y. Then the Berger-Tung inner bound
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is tight and reduces to the set of rate pairs (R, R,) such that

R, > I(X; X|Y),
R, + R, > I(X;X|Y)+H(Y)=1(X;X)+ H(Y|X)

for some conditional pmf p(z|z) and function #(Z,y) that satisfy the con-
straint E[d, (X, X)] < D,.

e It reduces to the Wyner-Ziv rate-distortion function when there is no rate
limit on describing Y, i.e., R, > H(Y). In this case, the only active con-
straint is R, > I[(X; X|Y).

e It reduces to the Slepian-Wolf region when D, = 0 in addition to D, (set
X = X).

The Berger-Tung (BT) region can be defined as

Rpr 2 {(R,Ry) : Ry > I(X; X|Y), Ry > I(Y;Y|X), R + Ry > I(X,Y; X, Y)}
(5.4)
where the random variables have the joint density p(z|z)p(y|y)p(x,y). The dom-

inant face of the BT region is defined as follows

J = {(Ri,Rs) € Rpr: R+ Ry = I[(X,Y; X,Y)}. (5.5)

Because of the special distribution, the two corner points of the dominant face
are given as (I(X; X), I(Y;Y|X)) and (I(X; X|Y),1(Y;Y)). The first point can

be shown as follows

I(X,)V; X,)Y)=I(X,Y; X)+ I(X,Y;Y]|X) (5.6)
—H(X)-HX|X,Y)+H(Y|X)-HY|X,Y,X)  (5.7)
@ H(X) - HX|X) + HY|X) — HYY, X) (5.8)
=I1(X; X))+ I(Y;Y]X). (5.9)
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(a) is due to the X — X —Y —Y Markov chain dependency of the random variables
which also gives the special form of the conditional distribution p(z,y|z,y) =

p(Z|x)p(y|y). The other corner point can be shown similarly.

We can also write the corner points as (I(X;X),I(Y;Y) — I(X;Y)) and
(I(X;X)—I(X;Y),1(Y;Y)). This can be shown as follows

I[(X; X|V)=H(X|Y) - HX|X,Y) (5.10)
W H(X) — H(X|X) - [H(X) - HX|Y)] (5.11)
=I1(X;X) - I(X;Y) (5.12)

(a) is due to the Markov chain dependency of the random variables. Thus, the

sum rate can also be written as

I(X,)Y; X, Y)=1(X;X)+ I(Y;Y) - I[(X;Y). (5.13)

5.1.1 Polar Coding

Let source variables (X,Y) € X x ) be from arbitrary discrete alphabets. The
external variables are from prime sized alphabets: X, Y € X = {0,1,...,¢ — 1},
where ¢ is prime. Given the source distribution (X,Y") ~ Pxy, let the conditional

distribution Pgy|xy = Px|xPy|y give rise to the design distortions D and Dy,

i.e.
D; = EPX?xy[dX(X7i(X7Y))]a (5 14)
Dy =Epg, ., [d, (Y, 9(X,Y))], (5.15)
where
Py xy(Z,7,2,y) = Pxy(z,y)Pxx(Z|z) Pyy (3ly). (5.16)

Consider the i.i.d. block of random variables (X~ Y XN YV) with N = 2"
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for some n > 1. The joint distribution is given by

N

Pgnynxnyn (Y, g7, 2V yY) = H Pxy (v, yi) Px x (Zilz:) Pyy (4ilyi). - (5.17)
=1

Let, XV and Y” denote the polar transforms of N-vectors UV and V¥, respec-
tively, i.e.

UV = XNGy, VN =Y"Gy. (5.18)
Then we have

PUNVNXNyN (uN, UN, .T}N, yN) = PXNYNxNyN (UNGN, ?}NGN, IN, yN). (519)

Since, Gy is a one-to-one mapping, we can write the total mutual information as

follows

I(XV YN XN YN = NI(X,)Y; X,Y) = 1(XV, YN, U, vY). (5.20)

Let SN = (Sy,...,San) be a permutation on (UY,V¥) such that relative
order of elements of UY and V¥ are preserved. Then, monotone expansion of
total mutual information is given as

2N
I(XN YN UN vV =3 1N, YN S S, (5.21)
k=1
Let bV be the path string s.t. b, € {0,1} which denotes the decoding path. The

channel rates R; and R, for a given v and S?V are defined as

o
=2

R, = I(XN YN G |SF 1), (5.22)

2|~
™

o
B
Il

o

Ry = I(XN YN S |S ). (5.23)

e
Il
—

2|
M

o
kol
Il

—_
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For any path on UNV" the rate pair satisfies

1 o
R > (XN, UN|vN) = I(X; X|Y), (5.24)
1 o
Ry > (YN, v =1(Y;Y|X), (5.25)
1 o
R+ Ry = I(XN YN UN VY = [(X,YV; X,Y). (5.26)

The first inequality is satisfied with equality for v = 1Y0Y and the second

inequality is satisfied with equality for v = 0N1V.
The rate pairs (R;, R2) span the dominant face J of the Berger-Tung region

spanning its two end points. They also form a dense subset of 7.

Theorem 11. Fiz a path b*™° for UNeVNo . Let R = (Ry, Ry) be the associated
rate vector. Let, S*N be the edge variables for scaled path 2'b*™°, where N = 2'N.
Then, for all e > 0,

lim — Hk e 2N]: 27N < (XN YN 5 SF 1) < 1 Q—N"H _o,
=00 2N

- |Z.(B)] B

fm =N = B, m =12,

where T, (8) = {k € 2N] : by = m = L, I(XN, YN, 5|84 71) > 1 = 27V, for
m € {1,2}.

Proof. Note that when we define Z = XY, Section [4.1] and polarization theorem
[6] applies. From Theorem [6] we have the following fact:

lim —— {k € 2N]: 27N < H(S[$" 1) <1 2’Nﬁ}‘ —0,
—00 2

hmmzl_}%” m=1,2,

=0

where £,,(3) = {k € [2N] : by = m — 1, H(S|S* ') < 27V} and R, =
~ S p—m—1 H(Sk|S*1), for m € {1,2}. Also, the following is true for R;,:



The lower and upper bounds of first and second expressions, respectively, are
satisfied with path v* = 1V0¥. Similarly, the upper and lower bounds of first

and second expressions, respectively, are satisfied with path b2V = 0V1V.

We also have the following fact from Theorem [0}

; 1 . 9—N#8 N gk-1 -NB || _
g?oﬁ‘{ke[zm.z < H(Sy|ZN, 8" <12 H_o,

| Hm(B)]
lliglo N

where H,,(8) = {k € [2N] : by = m — 1, H(S,|ZN,5* 1) > 1 — 27N’} and
Ry, = % Ziﬁk:m_l H (S| ZN,S*1), for m € {1,2}. Note that, because of the

special total probability distribution of the problem R/ and R} are constant and

:Rxw m:1>27

not path dependent. The following is true for R} :

R = H(X|X), R!=HY|Y)

First define two index sets as follows:
Kp2{ke2N]: by=m—1}, m=1,2. (5.27)

We define complements of sets for user m with respect to the corresponding
index set Ky, i.e. FC 2 Ky \ Frn. Since H(Si|ZN, S*1) < H(Si|S*1), we have
LN Hy =0 and H,, C ﬁﬁn We may write i,’n = ([ﬁm U 7-[m)c = [',,Cn \ Hon. f;n
has some extra partially polarized indices compared to Z,,. By polarization, the

ratio of the size of the set of partially polarized indices to N go to zero. Thus,

| Zm|

NasN—>oo. OJ

the result follows by observing % —

5.1.1.1 Polarization Sets

In the following discussion, we will refer to three interrelated index variables k,
i and j, repeatedly, all in the context of an assumed path *V. k will mark the

index of edge vector S?. i and j will mark the corresponding index of UY and
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VN respectively. We will make use of Definition (10| here.

For the purpose of polar coding, the total probability is also expanded as

follows:
2N
PSQNXNYN(Ssz xNa yN) = PXNYN(xNa yN) H PSk\Sk—lXNYN(Sk’Sk_la xNa yN)
k=1

(5.28)

Let oy = 27V for 0 < 8 < 2. We use Bhattacharyya parameters Z(-|)

instead of entropies H(-|-) when defining polarization sets as we did in previous
chapters. Because, Z(+|-) bounds average probability of error by Proposition
and Z(-|-) and H(-|-) polarize together by Proposition 2] First, we define the

following general “path dependent” polarization sets:

2N]: Z(SK|S* ") < én}, (5.29)
2N]: Z(SK|S* 1, XN, YY) > 1—6n}. (5.30)

£ {ke
€

{

Then, we define the following “low entropy’

X
[I>

)

sets for user 1:

L2 {kel2N]:b=0ke L}, (5.31)
Lx2{ke2N]:b,=0,ZU|U™) < én}, (5.32)
Lxiy 2{k€2N]: by =0, Z(TJU, VN) < én}, (5.33)
and user 2:

Lo {k €2N]: by =1,k € E} , (5.34)
Ly &2 {ke2N]:by=1,Z(V;|Vi7) < dn}, (5.35)
Lyix 2 {ke2N]:by=1,Z(V;|VI"1,UY) < on}. (5.36)

The following relations hold for any path *V
Ly C L CLyy, 5.37)
Ly C Ly C Lyx (5.38)



Note that £x = £; and £ = Ly x for 5>V = 0V1¥. Similarly, Lg;y = £, and
Ly = Ly for b2V = 1NV,

Then, we define low entropy sets for users 1 and 2 in terms of ¢ and j indices:

Elé{ie[N]IkEEl}, ﬁgé{QE[N]IkEEQ}, (539)
L’Xé{iG[N]:kEZX}, ,Cyé{je[N]:k€£~y}, (5.40)
Ly = {Z €[N]: ke EXD?}, Lyx = {] €[N]: ke Eypz} (5.41)
Now we define the high entropy sets as
Hi 2 {k€2N] b, =0, Z(S|S" 1, XV, YY) > 1 —6x}, (5.42)
Hyix = {k€2N] : b, =0, Z(U|U, XN) > 1 — oy}, (5.43)
and

Ho 2 {k € 2N] : b, =1, Z(Se|S* 1, XN, V) > 1 - 6x}, (5.44)
Hyy 2 {k € 2N] 1 b, =1, Z(V;[VI7L YN) > 1 - gy ). (5.45)

Observe that the following are true for above sets
7‘2)‘(‘_}( = 7‘~[1, and 7:[3‘/‘1/ = 7:[2, (546)

for any path b2V. Similar to above sets, we define the following sets which contain

7 and j indices:

Hyix 2{i € [N]: Z(UJU XY) > 1= bn}, (5.47)
Hyy ={j € [N]: 20U, XV) > 1 -6y} (5.48)
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Figure 5.2: Polarization Sets for X.

Definition 16 (Frozen and Information Sets). The following frozen sets are de-

fined using the polarization sets defined above:

Fx =LxUHxx, Ix=[N]\Fx, (5.49)
FieLiUHgx, i =[N\ F, (5.50)
Fy £ Ly UHyy, Iy £[N])\ Fy, (5.51)
Fo 2 LyUHyy, InE [N\ F, (5.52)

and
Fx 2Ly UHgx, Ix=2Ki\Fx, (5.53)
Fi ézlu,}:{)ﬂXa T £ Ko\ F, (5.54)
Fy & Ly UHyy, Iy =K\ Fy, (5.55)
f2é£~2U7'~lY\y, I & Ko\ o, (5.56)
where Ky and Ky are as defined in (5.27). Also let

F2LUH, T2]2N]\F. (5.57)

Note that, F= ]:"1 UﬁQ and I = fl UiQ.
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5.1.1.2 Encoding

We define family of functions )\51) c X - X, Vi € Fy and )\5-2) P S
Vj € Fy. We assume that they are shared between the encoders and the decoder.

We also define the corresponding random variables Agl) and AEZ) such that

Agl)( H2a, wp. Py, i1 (a|ui_1) ,
W (5.58)

ui
AJQ)(U]; ) é a, Ww.p. PV]-|VJ'*1 (G’Ujil) s

where a € X. Maps ()\El), )\5-2)) are the realizations of random maps (Agl), A;Q)).
Each realization of set of maps ()\Erl)),{, )\gi) results in different encoding and
decoding protocols. The distribution over the choice of maps is induced with the
above equation ([5.58)). The set of maps ()\Sfl)),(, A%) are used to determine the bits
in sets Fg, Fy. The theoretical analysis of the distortions are made much easier

using the randomized maps and calculating the average distortion over maps.

The bits in information sets Zg and Zy are calculated either the deterministic

or the random rules given below.
Deterministic rules:

QZZQ)(uz'—l’ V) 2 arg max [Py pixy (W=t 2™},

uex
i e P (5.59)
¢ (YY) S argmax { Py iy (V)07 ) )
v'eXx
Random rules:
\II,EI)<U7:717$N) é a, w.p. PUi|Ui—lxN (a|ui71,$N> y (5 60)
\115.2)(Uj_1,yN) = a, Ww.p. P‘/Z.IVJ—IYN (alvj_l,yN) )

where a € X. Maps (@Di(l), 7,03(-2)) are the realizations of random maps (\Ifgl), \IIE-Q)).
In the analysis we use the random rules for tractability. This approach is called

randomized rounding [16]. The encoding operations are given as follows.
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Encoder 1 constructs the sequence u¥ bit-by-bit successively,

A (i, if i € F,
T (w™) X (5.61)

1/)1(1) (u=t 2N),  otherwise.

Encoder 2 constructs the sequence vV bit-by-bit successively,
2), i o
)\5 (i 1), if j € Fy,

: ) (5.62)
;7 (v yN),  otherwise.

Then, encoder 1 transmits the compressed message uz, and encoder 2 transmits
the compressed message vz,. The randomness in the encoding process ensures

that bits of «" and vV have the correct statistics as if drawn from the joint
distribution of (UY, V).

Remark 1. Note that although in the analysis we use randomized rounding ap-
proach and thus make use of random rules \Ifgl) and \115»2) for calculating bits in L
and Iy, in practice we use the deterministic rules. In either case, the probabili-
ties P(u;|u™', ) and P(vilvi=1,yN) have to be calculated. These are calculated
using SC decoding. Therefore, SC decoders are employed at the encoders just
like single user rate-distortion coding. Thus, we refer to this operation as SC

encoding.

Remark 2. If the distribution of X is uniform then we could determine the bits
in Fx beforehand uniformly from XVxI and the randomized maps A%),{ are not
required. In general case however, the set Fx actually comprises of two distinct

parts and we could use a simplified rule for i € Fx:

U, if 1 € Hzix,
u; = | A (5.63)
argmax, ey Py (u|u'™h), ifie Ly,

where U; is determined beforehand uniformly from X. The same reasoning applies
toY, too. However, since this rule makes the proof harder, we use the maps A%)(

for simplicity. But, in simulations, the above presented rules are used.
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5.1.1.3 Decoding

Joint decoding is performed at the decoder along the path b?Y. Decoding is
performed in 2N steps. In step k € [2N], if by = 0 then a bit from u” is decoded

else a bit from v" is decoded. We define the following decoding functions:

Ck.(sk_l) £ arg max {Psk|sk71<8/|8k_1)} , (5.64)

s'eX
for k € Z.

First, the decoder assembles the received vectors (uz,,vz,) into sz. Then, the

decoder uses the identical shared maps )\El) and A;Z) to reconstruct the estimate

52N successively as

AD @i, if ke Fy,
AP (@i it ke Fy,
o= M - (5.65)
Sk iftkel,
(Ce(8*71),  otherwise.

N

Then, 4" and oV are extracted as @V = Sg, and N = Sk, Finally, the estima-

tions are generated as 2 = 2(0NGy, 9V Gy) and § = §(aN Gy, 9V Gy).

Note that the encoding operations are almost the same as single-user rate dis-
tortion coding. The difference is that only a subset uz, (vz,) of uz, (vz,) (all
bits generated by polar successive cancellation encoding operation) is sent to the
decoder. The rest can be estimated with the combined knowledge of (uz,,vz,).
Thus, the decoder is very different compared to single-user rate-distortion polar
coding where a simple polar encoder was used. Here, two-user polar successive
cancellation decoding is used at the decoder. Therefore, in addition to bounding
the average distortions, we need to bound the average probability of decoding er-
ror, too. As in the single-user case, for analysis purposes, the encoding functions
are random. The results of encoding operations may be different for the same in-
puts (zV,y"). For encoder 1, at step i € Z¢ of the process, u; = a with probabil-

ity proportional to Py, gi-1x~ (alu’™*, 2N). Similarly for encoder 2, at step j € Zy
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of the process, v; = a with probability proportional to Py y;-1y~(alv’~",yV).

Thus, for a given pair of maps ()\%)_(, )\53;), a particular (u”,v") occurs with a

certain probability induced by the distributions of (\IJ(IB, \I/(IQY)) and maps.

We define the resulting average (over ¥, y» and randomness of the infor-

mation bits induced by the distributions of (\II(IQ, \I/(IQY)) ) distortions of above
: : . 1) (2 1) (2

encoding and decoding operations as Dz()\(ﬂ),( : )\Sri) and Dy()\(f))z, )\gri) In the

following we show that for sets Fx, Fy, Z1, Zo defined in [5.1.1.1] and encoding

and decoding methods defined in|5.1.1.2/and [5.1.1.3] there exists maps ()\%),(, )\gi)

such that DI(/\%)Z,)\(}%)) ~ D and Dy()\(]_}) ,Agfé) ~ Dy, where D, D; are the

! - s
design distortions. We do that by determining the ezpected average distortions

over the ensembles of codes generated by different encoding maps ()\Erl)),(, )\%)V)

The distribution over the choices of maps is given in (5.58)). Then we show that

expected average distortions are roughly D7 and D;. This implies that for at least

one choice of (/\gi))_(, A%) the average distortions are close to D} and D;. The

following theorem makes this precise.

Theorem 12. Let Fx, Fy, I1, Iy be sets as defined in|5.1.1.1 and encoding and
decoding methods be as defined in|5.1.1.2 and|5.1.1.5. Then the expectations of
average distortions Dx(ASTI)),(, A%), Dy(A%),(, Ag_%}),) over the maps Ag_};, Ag_%})/ satisfy

1) A@N| = —N# 1) A@N|
E{A(}};,Ag};} [DI(A]_-X,A}-?)] =D+ 0(2 ) and E{A(}};,Ag‘;} [Dy(AFX’ A]:y)] =
Dy + O27N) for any (R, Rs) € Rpr and 0 < B < 1/2. Consequently, there

exist deterministic maps that satisfy the above relations.

The following sections give necessary steps for proving the theorem. We first
prove a total variation bound on two probability measures. Then, we use that
result to bound the expected average distortions of the code. However, before
showing the average distortions are bounded, we need to show that the decoding
error is bounded, which is done in similar steps as the MAC case in Section
4.5.1.0l
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5.1.1.4 Total Variation Bound

First, we define the following probability measure:

Qg2nxvyn (52N7 95N> yN) = Qxnyn ($N7 ?JN)QS2N|XNYN (SQN’fﬂNa yN)
2N

= QxNyN (JUN, yN) H QSk|Sk—1XNYN (Skfskfla 3CN> ?/N)>
k=1

(5.66)

where Q xny~ (Y, YY) = Pynyn (2, yY). Also we have the following relation:

QUNvNXNyN (UN, UN, :EN, yN) £ QS2NXNyN (ﬂ'N(UN, UN), $N, yN). (567)
The conditional probability measures are defined as
( , =
PUi|Ui—1 (ui|u’_1), bk =0and k € .FX',
Pypieixn (wilut=t, 2N), b, =0and k € Zx,
QSk|S’“—1XNYN(Sk|Sk_1a N,yN) & b= ,| b b ~X
Py jvi-i(vg]v? ™), b, =1 and k € Fy,
| Py, jvi-iyn (00 yN), bp=1and k € Ty,

(5.68)

Lemma 9 (Total Variation Bound). Let probability measures P and Q) be defined

as in (5.28)) and (5.60), respectively. For 0 < 5 < 1/2 and sufficiently large N,
the total variation distance between P and (Q is bounded as

_NB
Z ‘PS2NXNYN(52N72UN73/N) - QS2NXNYN(52N7$N73/N)| <27V (5.69)

§2N gN yN

Proof. See Appendix O
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5.1.1.5 Average Error Probability

The encoding and decoding rules were established in Sections|5.1.1.2land [5.1.1.3]
respectively. The two-user decoder defined in Section [5.1.1.3]is used to estimate

unknown values. s; for k € {.7:" < U ]:"p} are decided using shared maps )\%),(, /\533/

sy, for k € T are received from encoders. The remaining bits in {Zg UZy} \ Z are
estimated by the joint decoder. Note that, that set is also given by £ \ {[1 U
Ly}. Consider the sequences sV = 7y (u™,v") formed at the encoders under
observations ¥ and y". The decoder makes an SC decoding error on the k-th

symbol for the following sequences:

T = {(SzNaxNaZ/N) 135’ € X sit. s' # s,
P, 501 (sk]s" ™) < Pgsra(s's")} . (5.70)

The set T* represents those tuples causing an error at the decoder in the case
Sk is inconsistent with respect to the decoding rule. The complete set of tuples
causing an error is

T | Th (5.71)

k‘EL:,\{EX Uéy}

Assuming randomized maps shared between encoder and decoder, the average

error probability is a random quantity given as follows

PAY AR = > Pewyn(@VyV)

(s?NaN yN)eT

. H Pjiimaxey (uglu’™t ) H Py iy~ (07~ y ™)

€Ty jeTy

' H ﬂ{/\ﬁn(ui*l):ui} H H{Af)(vj—l):vj}' (5.72)

ieFx JEFy

The expected average block error probability is calculated by averaging over the

randomness in the encoders

PA2E PAR AP (5.73)

(1) A(2)
(A AR}
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The following lemma bounds the expected average block error probability.

Lemma 10. Consider the polarization based channel code described in Sections
[5.1.1.2 and|5.1.1.5. Let the sets Fx, Fy, L1, Iy be as defined in|5.1.1.1. Then
for 0 < B < 1/2 and sufficiently large N,

(1) A@) _NB
E{A%;,A(fz})?} [Pe[A}—)_{,A]_.?]] <2 N ‘

Proof. Note that the expectation of average probability of error is written as

1 2
B azy [PARAR]] = 3 Pos@¥y)

(s2NaN yN)eT

. H Pyjiimaxey (uglu'™ ) H Py jyi-ryn (07~ y™)

i€Zg J€Ly

I P {aP ) =} [T P{AP @) = v}

1eF % JEFy

From the definition of random mappings it follows that

7

P{AP ) = 0y b = By (o]0,

P{AD (W) = ui b = Py (wifu' ™),

Then, we may substitute the definition for Qgen|xvyn~ (s*™ |2, y") in (5.66) into

the expression of expected average probability of error to get

1 2
Biag a2 PAD AR = > Poves(a¥ V)

(2N 2N yN)eT

Qson xnyn (s ]z, y™).

Then we split the error into two main parts, one due to the polar decoding

function and the other due to the total variation distance between probability
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measures.

E [Pe[A%)—(a Ag?i]] = Z Py yn (2™, y")-

[Q(s*M |z, y™N) = P(s*N 2N, y™) + P(s*N 2N, y™)] .

AL 2@
(a8 ARy

Then we have

1 2
E{Ag_}; ,A(J_?})?} [PB[A_(F))gJ A_(Fg,]] S Z PSZNxN’yN (SQN, xN, yN)—|—

(2N 2N yN)eT

Z ‘Q(52N7$Nay ) - P<S2N7xNayN)‘ :

§2N gN o N

The second part of the error which is due to total variation distance is upper
bounded as O(27 B) by Lemma |§| Thus, it remains to upper bound the error
term due to polar decoding. Remember that 7 £ Ukei\{i;(uiy}Tk- We may
upper bound each error symbol by symbol. Define error probability for symbol
kGﬁ\{EXUij} as

A
€k = E Ps'QNxNyN (S2N,xN,yN),
(82N &N yN)eT*

_ ky .
= ;PSK(S ) ]]'{s" kfl(5k|5k_1)§PSk‘5kfl(5/|5k_1)}'

Lspls

But this is the average probability of decoding error for symbol k, i.e. &¥ =

P,(Sk|S*71). Probability of error is upper bounded by the Bhattacharyya pa-
rameter by Proposition [I] By union bound, the total average probability of error
ise <Y, " Then we have

c< Y (a-DZSISY,

kEE\{E,)’(U[‘,y}

The second inequality is from the definition of polarization sets in Section[5.1.1.1
This completes the proof that the expected average probability of error is upper
bounded as O(2N%). O
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Since by Lemma the expected value over the random maps of average
probability of error decays to zero, there must be at least one deterministic class

of maps for which P, — 0.

5.1.1.6 Average Distortion

For a source sequence (7, y"), random encoding maps (A, A?) and encoding
y ]:X ‘7:Y

rule (5.61)), (u™,v") appears with probability

T Pogercsoc e %) )| TT i

€Ty ieFx

H Pyyi-tys (o071 ) H ]l{A§2)(vf—1)=vj}

JETy jeFy

For random set of maps (A%)?, Ag?;), the average distortion of X is a random

quantity given by

DA ARY = 3 Ponvyn (@™, y") - de(@™, (N Gy, vV Gy))
’lLN UN

IN,yN
[T P Gl a™) || T Ao o)
1€ly i€F % !
H P\/;|Vj71,YN(Uj|Uj_1,yN) H ﬂ{A@(m_l):W}
j€Ty jery 7

(5.74)
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The expectation over maps is

1 2 A
Bap 4@y DeMEAR)] = 30 Povyn(a®, o) - da, (¥ Gy, vV Gy)

H ij|vj717YN(Uj|Uj_1>yN) H ij\vj—l(vﬂvj_l)

J€Ly JEFy

Using the probability distribution @ defined in (5.66)) we can write the expectation

as

E [DI(A;%;,A%)] — g [de( XY, 2(UNGN, VNGN))] . (5.76)

AL 2@
(%) ARy

Therefore, we get

E [DI(AS%,A%)] < Ep [de( XN, #(UNGy, VVGY))] +

AL 2@
(A% ARy

Amax|| Ps2y xnyny — Qgen xvyn||. (5.77)

Lemma @ shows that the second term of the sum is O(2~"). Therefore, there
. _— (1) @) 1) @ ;
exist deterministic sets of maps Ar_and Az’ such that Dx()\]_-),(, )\fy) = D; +

o@~n ﬁ). Similarly we can prove the same result for Y distortion.

5.1.2 Simulations

In this section, we implement the proposed polar coding scheme for distributed

lossy compression and present simulation results for binary sources with Hamming
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distortion measures. That is, d, = d, = dyg where

0, ifx=az,
dg(z,2) = (5.78)
1, otherwise.

The practical encoder implements the function in (5.63). The symbols for H x| x
and Hy |y are fixed to zero and ML encoding is used for the rest of the bits instead
of randomized rounding. The practical decoder uses joint ML SC decoding for

all of the bits except the known bits of sets H g x and Hyy.

Recall that the total probability distribution for Berger-Tung coding is of the
form Pgyxy (7,9, 2,y) = Pxx (Z|2) Pyy (§ly) Pxy (2, y). Pxy(z,y) is fixed for the
given source. Each different selection of Pg x(%|r) and Pyy(yly) distributions
result in a different achievable region. However, that selection is not totally

arbitrary; The resulting distribution must satisfy the distortion constraints:

E[d.(X", X")] = D,, E[d,(Y",Y")] = D,. (5.79)

5.1.2.1 Simulation 1

For this simulation we use the estimator functions z(z,y) = = and §(z,y) = .
For the probability distributions used in this simulation it turns out that these

estimators are optimal, i.e.

arg max Py v (2|7, 7) = 7, arg max Py iy (V'[7,9) = 7.
x/ Yy’

For our case with binary sources and Hamming distortion, above estimator

results in the following equations:

Paya(ofy) = R0 =), 550
Pe(opy = 2RO = D) (581)
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Thus, Pg x(0]0) is the only free variable in conditional distribution Pg y. The
similar result is also valid for conditional distribution Pyy . In the simulations be-
low, when selecting conditional distributions, we took this constraint into account

and optimized the sum-rate (I(X,Y; X,Y)) over these two free variables.

For this simulation, the source distribution is selected as

0.50 0.15
PXY — .
0.05 0.30

And the average distortion constraints are set to D, = 0.05 and D, = 0.05.
The conditional distributions are selected with the average distortion constraints
mentioned above and optimized to minimize the total sum rate. The graph of
sum-rate versus Pgx(0[0) and Py (0]0) is given in Figure For the sim-
ulations we select the parameters that minimize the sum rate which occurs at
Pgx(0[0) = 0.97, Pyy(0]0) = 0.96. The corresponding conditional distributions
are given in Table

Table 5.1: Conditional probabilities Pg x and Pyy.

| ab [ 00 | 01 | 1,0 | 1,1 |
Pxx(alb) | 0.9700 [ 0.0871 | 0.0300 | 0.9129
Py y(alb) | 0.9600 | 0.0622 [ 0.0400 | 0.9378

The mutual information parameters calculated for this source distribution are
given in Table As it can be seen from the table, if we were to encode X
alone we would need a rate of I(X;X) = 0.6481 and similarly for ¥ alone we
would need a rate of I(Y;Y) = 0.7064. The total rate would be 1.3545. However,
because of the correlation and joint decoding the sum rate of Berger-Tung region
is [(X,Y;X,Y) = 1.1821 which is I(X;Y) = 0.1723 less. The corner points of
the Berger-Tung region are given as (0.6481,0.5243) and (0.4758,0.7064). In the
simulations, the distortions are averaged over 1000 blocks. The tables show the

experimental rates required to obtain the target distortions approximately.
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Figure 5.3: I(X,Y;X,Y) vs. Pgx(0/0) and Py y(00).
Table 5.2: Berger-Tung parameters.
IXX) | YY) [ (X Y) | I(X,Y;X,Y) |
| 0.6481 | 0.7064 | 01723 | 11821 |
Construction

Code construction is done using two-user SC decoder in large number of Monte-
Carlo simulations and averaging the results. The joint decoder runs in two differ-
ent configurations, once for likelihoods calculated for known (X, Y®) and once
for (X, Y™) unknown. The decoder runs along the given path (b*") and calcu-
late reliability values of the bits. Figureshows results for path b2V = 0°1 1V0 T
with NV = 21 The rate allocation for this path is measured from the results of

simulations as (R, R2) = (0.5514,0.6307).
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Figure 5.4: Sorted reliability values.

The output of the first run (known (X?¥,Y?)) gives approximately 1 —
Z(Sk|SF1, XN, YN). Tt is shown with dotted plot and blue color in both fig-
ures. Figures |5.4al and [5.4b| show only those indices with b, = 0 (user 1) and

b, = 1 (user 2), respectively. We identify the sets H gy and Hyy using this
simulation. The number of indices close to 1 in those plots are expected to be

N — |Hxg x| and N — [Hyy|, which are marked with vertical blue solid lines.

The output of the second run (unknown (X%, Y¥)) gives approximately 1 —
Z(Sk|S*=1). The output is plotted with small circles and red color in both figures.
Figures[5.4a)and [5.4b|show only those indices with by = 0 (user 1) and by, = 1 (user
2), respectively. We identify the sets £; and £, using this simulation. For Figure
, the number of indices close to 1 depends on the path (b*¥) chosen and gives
the size of set £; (marked with vertical red line). The size of £, must be between
L] (0*N = 0Y1Y) and [Lxy| (b°Y = 1V0") marked with vertical magenta and
green lines, respectively. Similarly, for Figure [5.4b] the number of indices close
to 1 depends on the path (b?") chosen and gives the size of set £, (marked with
vertical red line). The size of £, must be between [Ly| (b°Y = 1V0V) and |Ly x|

(b*N = 0M1Y) marked with vertical magenta and green lines, respectively.

As the result of the code construction simulations, we are able to calculate
the sets given in previous sections which are necessary to perform encoding and

decoding such as Lx, Hx|x, L1, L1, Ly, Hyy, Lo, L.
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Results

Simulation results for path b*" = (0% IR 0%) are shown in Tables and
Table [5.3]is for list size of 1 while Table [5.4]is for list size of 32. Both tables show
two results for two different block lengths. The empirical rates (Rl, }?2) as well as
distortions (Ex, ﬁy) are shown. During the simulations we increased both of the

rates proportionally and recorded the values such that the distortion constraints

are approximately satisfied.

Table 5.3: Experimental results for b2¥ = (0°7 1V07) and list size 1.

~

(N| R | Ry [RitRe| Do | Dy |
2101 0.6943 | 0.7959 | 1.4902 | 0.0505 | 0.0464
2121 0.6785 | 0.7759 | 1.4543 | 0.0508 | 0.0483

In Table [5.3, we see that for N = 2!° the total rate is 1.4902 instead of the
theoretical limit 1.1821.

limit. The rate expansion for N = 22 is approximately 1.23 which is lower as

expected.

Table 5.4: Experimental results for b2¥ = (0’ 1V0%) and list size 32.

The rate is approximately 1.26 times the theoretical

(N R | R [Ri+Ro| Dy | Dy |

210

0.6279

0.7207

1.3486

0.0552

0.0488

212

0.6204

0.7097

1.3301

0.0497

0.0477

In Table [5.4] we see the results of same experiments only the decoders are list
of 32. As we can see from the results, the performance increases considerably as
expected. We see that for N = 210 the total rate is 1.3486 which is approximately

1.14 times the theoretical limit. The rate expansion for N = 2!2 is just 1.12,

approximately.
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5.1.2.2 Simulation 2

For this simulation the source distribution is selected as

~0.7190  0.0050
0.0050 0.2710

And we use the optimal estimator functions

#(z,y) = argmax Py xy(2'|2,9),  §(Z,9) = argmax Py xy (¥, 7).

$l yl
The average distortion constraints are set to D, = 0.05 and D, = 0.05. The con-
ditional distributions are selected as to satisfy the average distortion constraints

mentioned above. If we use simple estimator functions (7, y) = z and 9(z,y) = ¢

Table 5.5: Conditional probabilities Py x and Pyy.

| ab [ 00 ]| 01 | 1,0 | 1,1 |
Py x(alb) | 0.8880 [ 0.0685 | 0.1120 | 0.9315
Py (alb) | 0.8880 | 0.0685 | 0.1120 | 0.9315

in this setting the average distortions become D, = 0.1 and D, = 0.1, which are

twice as bad compared to optimal estimators.

The mutual information parameters calculated for this source distribution are
given in Table As it can be seen from the table, if we were to encode X
alone we would need a rate of I(X;X) = 0.4573 and similarly for Y alone we
would need a rate of I(Y;Y) = 0.4573. The total rate would be 0.9146. However,
because of the correlation and joint decoding the sum rate of Berger-Tung region
is I(X,Y;X,Y) = 0.666 which is I(X;Y) = 0.2486 less. The corner points of
the Berger-Tung region are given as (0.4573,0.2087) and (0.2087,0.4573). In the
simulations, the distortions are averaged over 1000 blocks. The tables show the

experimental rates required to obtain the target distortions approximately.
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Table 5.6: Berger-Tung parameters.

IXX) | (YY) | IXY) | (X, Y;X,Y) |

| 04573 | 04573 | 0.2486 |  0.6660 |
User 1 User 2
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Figure 5.5: Sorted reliability values.
Construction

Code construction is done using two-user SC decoder in large number of Monte-
Carlo simulations and averaging the results. The joint decoder runs in two differ-
ent configurations, once for likelihoods calculated for known (X, Y®) and once
for (X, Y™) unknown. The decoder runs along the given path (b*") and calcu-
late reliability values of the bits. Figureshows results for path b2V = 0°1 1N0 T
with V = 2. The rate allocation for this path is measured from the results of
simulations as (R, Ry) = (0.333,0.333). The interpretation of the figure is the

same as given in previous simulation section.

Results

Simulation results for path *¥ = (0°7 1¥07%) are shown in Tables [5.7 and
Table is for list size of 1 while Table 5.8 is for list size of 32. Both tables show

two results for two different block lengths. The empirical rates (Rl, 1:22) as well as
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distortions (D,, D,) are shown. During the simulations we increased both of the
rates proportionally and recorded the values such that the distortion constraints

are approximately satisfied.

Table 5.7: Experimental results for b2¥ = (0" 1¥0%) and list size 1.

' N| R, | R; [Ri+Ry| D, | D, |
210 | 0.5128 | 0.5128 | 1.0256 | 0.0516 | 0.0517
212 | 0.4829 | 0.4829 | 0.9658 | 0.0519 | 0.0520

In Table [5.7, we see that for N = 2!° the total rate is 1.0256 instead of the
theoretical limit 0.666. The rate is approximately 1.54 times the theoretical limit.

The rate expansion for N = 22 is approximately 1.45 which is lower as expected.

Table 5.8: Experimental results for 52¥ = (0 1¥07% ) and list size 32.

(N| R | Ry [Ri+Rp| Do | Dy |
2101 0.4462 | 0.4462 | 0.8924 | 0.0499 | 0.0500
2121 0.4063 | 0.4063 | 0.8126 | 0.0502 | 0.0503

In Table [5.8] we see the results of same experiments only the decoders are list
of 32. As we can see from the results, the performance increases considerably as
expected. We see that for N = 20, the total rate is 0.8924 which is approximately
1.34 times the theoretical limit. The rate expansion for N = 22 is approximately
just 1.22.
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5.2 Multiple Description Coding

Multiple description coding (MDC) problem concerns with generating two de-
scriptions of a source such that each description by itself can be used to recon-
struct the source with some desired distortion and the two descriptions together
can be used to reconstruct the source with a lower distortion. This problem is
motivated by the need to efficiently communicate multimedia content over net-
works. Suppose that there are two paths to send a picture from the source to
the viewer and the data may be lost over the paths. We may send the same
description of the image over both of the paths to the viewer. However, such
replication is inefficient and the viewer does not benefit from receiving more than
one copy of the description. Multiple description coding provides a better way
to achieve this path diversity. If a single description is received by the viewer,
the image may be reconstructed with acceptable quality, and if both are received
then the image may be reconstructed with a higher quality. Another application
emerges when we want to communicate an image with different levels of quality to
different viewers. Instead of sending different descriptions to each viewer we may
use a special case of MDC called successive refinement. The idea is to send the
common lowest quality description to all viewers and send successive refinements

of it to different viewers with increasing quality expectations.

—>» Encoder 1 Ml) Decoder 1 (X7, D1) >
n 20 D
X 5 Decoder 0 (X', Do) >
> Encoder 2 Ve Decoder 2 (X%, Do) >
2

Figure 5.6: Multiple description coding setup.

Multiple description coding setup for a source X and three distortion measures
d;(z, z;) is depicted in Figure Each encoder generates a description of X so

that decoder 1 that receives only description M; can reconstruct X with distortion
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D1, decoder 2 that receives only description M; can reconstruct X with distortion
D,, and decoder 0 that receives both descriptions can reconstruct X with dis-
tortion Dy. The problem is to find the optimal trade-off between the description
rate pair (Ri, Rs) and the distortion triple (Dy, Dy, D3). Let d; : X x X — R,
denote the distortion function with maximum value less than d,,., for j =0, 1, 2.

The distortion function extends to vectors as d;(z",2"V) = & le\il d;(z, ;).

A (27B 2nB2 p) multiple description code consists of two encoders, where
encoder 1 assigns an index my(x,) € [1 : 2"%) and encoder 2 assigns an index
ma(z™) € [1: 2"%) to each sequence z™ € X, and three decoders, where decoder
1 assigns an estimate 27 to each index m;, decoder 2 assigns an estimate 3 to

each index ms, and decoder 0 assigns an estimate Z{} to each index pair (my, ms).

A rate-distortion quintuple (Ry, Ro, Do, D1, D5) is said to be achievable (and
a rate pair (R, Ry) is said to be achievable for distortion triple (Dy, Dy, Ds)) if

there exists a sequence of (2% 2% n) codes with

lim sup E[d;(X", X")] = D, j=0,1,2. (5.82)
n—o0

The rate-distortion region R(Dy, D1, Dy) for multiple description coding is the
closure of the set of rate pairs (Ry, Ry) such that (Ry, Ry, Do, D1, D5) is achievable.
The rate-distortion region for multiple description coding is not known in general.
The difficulty is that two good individual descriptions must be close to the source
and so must be highly dependent. Thus the second description contributes little
extra information beyond the first one. At the same time, to obtain a better
reconstruction by combining two descriptions, they must be far apart and so
must be highly independent. Two independent descriptions, however, cannot be

individually good in general.

In this section, we will focus on an inner bound due to El Gamal and Cover
[68]. We will use an alternate form of this bound given in [69], which is shown to

be equivalent.

Theorem 13 (El Gamal-Cover (EGC) Inner Bound). Let X be a DMS, then
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I(X;Y) I(X,Z;Y) R>1

Figure 5.7: EGC rate region.

(R1, Ra, Do, D1, Dy) is achievable for multiple description coding if

Ry > 1(X;Y)
Ry > 1(X; Z)
R+ Ry > I(X;Y, 2)+ 1(Y; Z)

for some pmf p(x,y, z) = p(x)p(y, z|x) and deterministic mappings ¢;, j =0,1,2,
such that

Dy > Eldo(X, ¢o(Y, Z))],
Dy > Eldi (X, ¢1(Y))],

)
Dy > Eldy(X, ¢2(Z))]

EGC region can be defined as

Rpcae = {(R1,Ry) : Ry > I(X;Y),Ry > I(X; Z),
Ri+Ro > I(X;Y,2) + I(Y;Z)}. (5.83)
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The EGC region with its corner points are shown in Figure[5.7] The excess rate
is represented with /(Y; Z). If two descriptions were independent I(Y'; Z) would
be zero. Then the total rate would be given as I(X;Y) + [(X;Z) = I(X;Y, Z).
The EGC inner bound is not tight in general. However, there are some special
cases where it is tight. One particular case where the bound is tight is when
there is no excess rate, that is, when rate pair (R, Ry) satisfies the condition
R+ Ry = R(Dy) where R(Dy) is the rate-distortion function of X with distortion

measure dy evaluated at Dy.

Note the following equalities for the sum rate:

Ri+ R =1(X;Y)+I(Z;X,Y),

— I(X:2) + 1(Y; X, Z),

— I(X:;Y) + [(X; Z) + (Y Z|X),
— H(Y) + H(Z) — H(Y, Z|X).

5.2.1 Polar Coding

Let source variable X € X be from arbitrary discrete alphabet. Let external
variables Y € YV and Z € Z. We restrict the discussion to prime size alphabets
Y=2=H{0,1,...,q— 1}, where ¢ is prime, for the purpose of polar coding. We
assume ) = Z to keep notation simple, but it is trivial to show that they may
be of different size as long as their sizes are prime. Given the source distribution
X ~ Py, let the conditional distribution Py zx give rise to the design distortions
D1, D3 and Dj, i.e.

DI = ]EPXYZ [dl(X7 o1 (Y))]7 (584)
D; = EPXYZ [d2<X7 ¢2(Z))]7 (585)
DS = Enyz[dO(X> QSO(K Z))]? (586)

where Pxyz(x,y,2) = Px(x)Pyzx(y, z|x).
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Consider the i.i.d. block of random variables (X, V" ZV) with N = 2" for

some n > 1. The joint distribution is given by
N
Pywyngw (@™, y", 2N) = [ Px (i) Py zix (v, zilw:). (5.87)
i=1

Let, UY and V¥ denote the polar transforms of N-vectors Y~ and ZV, respec-
tively, i.e.
UN =yNay, VN = XNay. (5.88)

Then we have

PXNUNvN(ZL'N7UN,UN) = PXNyNzN(.TN,UNGN,UNGN). (589)

Since Gy is a one-to-one mapping, we can write the total rate for a block of

length N as follows

1
R+ Ry = N[H(YN) + H(ZNY = HYN, ZVN| X)) (5.90)
1
=H(Y)+H(Z) - NH(UN, VXM, (5.91)
Let SN = (S',...,5%Y) be a permutation 7y on (UY, V") such that relative

order of elements of UY and V¥ are preserved. Let bV be the path string s.t.
br € {0,1} which denotes the decoding path. Here, we make use of Section
and Definition [10.

Then, monotone expansion of total rate is given as
2N

Ri+Ry=H(Y)+H(Z) - %ZH(S,JXN, Sk, (5.92)

k=1
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And individual rates are given as

2N
ZH(Sk‘XNaskil)a (593)

k=1:
br=0

1

Ri=H(Y) -+

Ry=H(Z)— — Y H(S|XN ). (5.94)

Depending on the path the rate pairs span the entire dominant face of the EGC
rate region. The first corner point (I(X;Y),I(Z; X,Y)) is achieved with b* =
(ON1V). The second corner point (I(Y; X, Z),1(X;Z)) is achieved with v =
(1NOM).

For the purpose of polar coding, the total probabilities are also expanded as

follows:
PXNUNVN (.%‘N, uN, UN) = pXNSQN (l’N, WN(UN, UN)) (595)
2N
Pyvgon (x™,5*N) = Py (a™) [ [ Psyxevse- (selz™, s*71). (5.96)
k=1

5.2.1.1 Polarization Sets

In the following, we refer to three interrelated index variables k, ¢ and j, repeat-
edly, all in the context of an assumed path b?Y. We make use of Definition
here. Let 6y = 27" for 0 < b < % First, we define the following general path

dependent polarization set:

HE{ke2N]: Z(Sp| XN, S 1) > 1 —dn}. (5.97)

Then, we define the following low entropy set for Y:

Ly ={i€[N]: Z{UJU) < dn}, (5.98)
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and for Z:

Lz2{j€[N]: Z(V;|VIT) < dn}.

Similar to above sets, we define the following sets that contain k indices:

Ly = {k € [2N]: Z(U,JU) < by},
and

Lz 2{ke2N]: Z(V;|[V7™) < én}.

Now we define the high entropy sets as

Hyx 2 {i € [N]: Z(U| XV, U") > 1—én},
Hi & {i e [N]:b,=0,Z(S,| XN, 8" 1) >1-4dy},

and

Hoyx = {j € [N]: Z(V;| XY, VITh) > 1 -6y},

Ho £ {j € [N]: b =1,Z(S| XN, 5% ") >1—6x}.

Observe that the following are true for above sets

Hi € Hyx, Hy € Hyix

(5.99)

(5.100)

(5.101)

(5.102)
(5.103)

(5.104)
(5.105)

(5.106)

for any path b2V. Similar to above sets, we define the following sets which contain

k indices:

Hy 2 {k € [2N] by = 0, Z(Si| XV, S¥1) > 1 -6y},
’}—22 £ {k‘ (- [QN] . bk = 1,Z<Sk|XN,Sk71) > 1— 6N} .
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First define two index sets as follows:
Kp2{ke2N]: by=m—1}, m=1,2. (5.109)

Definition 17 (Frozen and Information Sets). The following frozen sets are de-

fined using the polarization sets defined above:

fYé»CYuHHXa Iy £ [N]\ Fy ( )
Fi2LyUH, T 2[N\F” ( )
Frz2L;UHzx, Iz=[NJ\Fz (5.112)
Fo2LzUHy, Iy 2 [N\ Fo ( )

and

FA2LxULyUH, T=2[(N|\F (5.114)
Fr 2Ly Utyx, Iy 2K \Fr (5.115)
Fi & Ly UH,, T, 2 K\ A (5.116)
Frz2LzUHzx, I72K:\Fz (5.117)
Fo2 L7 UH,, T 2 Ko\ Fo. (5.118)

Proposition 6 (Polarization). Consider the information sets defined in Defini-
tion for a fived base path b*No with rate pair (Ry, Ry). Fiz a constant T > 0.
Then there exists an N'(1) = 2'Ny, | = 1,2, ..., and the corresponding scaled path

b2N = 21p?No  such that

1
Dl < Byt (5.119)

1

for all N > N'.

Proof. Note that from standard single user polar coding we have the following
facts:

lim

Ly, . 9—N?B i—1 -NP |
l_mﬁ){ze[N].Q < HU|UY) <1-2 H_o,
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Ly
lligloT =1-H({Y),

and

l—o00

. i . . o—NP /-1 i _NB ‘7
llmN{jE[N].Q < HW[ViTly <1-2 }_0,

L]
iy = H(Z).
For the MDC setting, Section [4.1] and polarization theorem [6] apply. From
Theorem [0, we have the following fact:

1
lim —— {k: € [2N]: 27N < H(Sy| XN, S5 1) <1 — z—Nﬂ}‘ _0,
00 2N

[ Hml
lim ! — —1,2
fm N = e m=12,

where H,, = {k € [2N] : b, = m — 1, H(Si| XN, 8%1) > 1 - 2"} and R/, =
Lo H(Sy|ZN, 81, for m € {1,2}. Also, the following is true for R :

k:bp=m—1
HY|X,Z)< R <HY|X), H(Z|X,Y) < Ry, < H(Z|X).

The lower and upper bounds of first and second expressions, respectively, are
satisfied with path b2V = 1V0V. Similarly, the upper and lower bounds of first

and second expressions, respectively, are satisfied with path v*¥ = 0V1V,

We define complements of sets for user m with respect to the corresponding
index set K., i.e. F¢ 2 K, \ Frn. Since H(Sy| XN, S51) < H(S,|S*1), we have
LyNHi=0,L;NHy=0and Hy C LS, Ho C LS. And the result follows from
observing I, = (ENY U 7:[1)C = £~§/ \ H, and Z, = (ﬁz U 7:lg)c = ﬁcz \ Ho. O

5.2.1.2 Encoding

We define family of functions A" : Y™ — Y, Vi € Fy and AP - Y771 — ),
Vj € F5. We assume that they are shared between the encoders and the decoder.
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We also define the corresponding random variables AZ(»U and A§2) such that

Agl)(uifl) 2 a, w.p. Pyui— (a]uiil) ,

A®@ i1y & P -1 (5.121)
ST £ a, wop. Pyyier (alo'h)

where a € ). Maps (/\(1)

7 )

A§2)) are the realizations of random maps (Agl), A§2)).
Each realization of set of maps (/\%), )\(fQZ)) results in different encoding and de-

coding protocols. The distribution over the choice of maps is induced with the

above equation ([5.121)). The set of maps (/\%), )\%)) are used to determine the bits

in sets F1, F2. The theoretical analysis of the distortions are made much easier

using the randomized maps and calculating the average distortion over maps.

The bits in information sets 7 are calculated either the deterministic or the

random rules given below.

Deterministic rules:

V("1 2Y) £ argmax { Pg, xvgr (]2, s*71) }. (5.122)
s'ey

Random rules:
Uy (s" 1 aN) & a, wop. Pg, |x~gk-1 (a|a7N, sk_l) , (5.123)

where a € ). Maps v are the realizations of random maps Wy. In the analysis
we use the random rules for tractability. This approach is called randomized

rounding [16]. The encoding operations are given as follows.

The encoders construct the sequence s2V bit-by-bit successively,

W (i1, if k e F,
se= AP W), ifke R, (5.124)

Yp(sF71 ), otherwise.
Then, encoder 1 transmits the compressed message uz, = sz and encoder 2
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transmits the compressed message vz, = sz, .

Remark 3. Note that although in the analysis we use randomized rounding ap-
proach and thus make use of random rules V. for calculating bits in I; and
I, in practice we use the deterministic rules. In either case, the probabilities
P(sp|zN, s*71) have to be calculated. These are calculated using two-user joint
SC decoding. Therefore, two-user joint SC decoders are employed at the encoders.

Thus, we refer to this operation as SC' encoding.

Remark 4. The set F actually comprises of two distinct parts and we could use

a simplified rule for k € F:

gka ka < 7:[,

argmax Pg, |gk—1 (S’\sk_l) . ifke Ly ULy,
s'ey

(5.125)

S —

where S, is determined beforehand uniformly from Y. However, since this rule

makes the proof harder, we use the random maps (A%), A%)) for simplicity.

5.2.1.3 Decoding

Three different decoding operations are performed at Decoders 1, 2 and 0. De-
coder 1 has access to only uz,, decoder 1 has access to only vz, and decoder 0

has access to both.

Decoder 1 first calculates:

A AV (@i, ifie A,
U; = (5.126)
U;, otherwise.

Then, calculates the estimate as ¥ = 4Gy and 2 = ¢ (§").

Decoder 2 first calculates:

o AP (@971, if j e Fa, (5.127)
J .
vj, otherwise.
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Then, calculates the estimate as 2V = 9V Gy and 25 = ¢o(2V).

Decoder 0 first calculates:

AV (@Y, if ke A,
Se= AP @), if ke B, (5.128)

Sk, otherwise.

Then, the decoder extracts @V = Sg, and N = Sk, Finally, it calculates the

estimate as g = 4V Gy, ¥ = 0VGy and 3 = ¢o(g7, 2V).

Note that although in Figure two separate encoders are shown, the infor-
mation available to both of the encoders is the same which is the source sequence
V. They are not “separate” encoders in the sense that both can generate the
other’s output. Thus, we defined a single successive cancellation encoding op-
eration in Section [5.2.1.2] Encoders 1 and 2 get differentiated at the last step
where they transmit different subsets of the sequence sV formed by the single
SC encoding operation. Even if encoders 1 and 2 are implemented separately
they would generate the same s*V for the same input V. The encoders use a
two-user successive-cancellation polar decoder to calculate sV given the source
2™V and path b?V. The particular choice of b?V results in a specific rate allocation
pair (R, Rs) corresponding to the sizes of sets Z; and Z,. For analysis purposes,
we assume random encoding functions. The results of encoding operation may be
different for the same input zV. For encoder, at step k € T of the process, s, = a

with probability proportional to Pg, x~gk-1 (a]zN, sF71)

maps ()\Erll), )\%)), a particular sV occurs with a certain probability induced by

. Thus, for a given pair of

the distributions of Uz and maps.

We define the resulting average (over ¥ and randomness of the “information”
bits induced by the distribution of U3) distortions of above encoding and decoding
operations as Dl()\%), )\%)), Dg()\%), )\%)) and DO()\%), )\532)) In the following we
show that for sets Fi, Fo, Z;, Zy defined in [5.2.1.1| and encoding and decoding
methods defined in [5.2.1.2| and [5.2.1.3, there exist maps ()\%), /\%)) such that
DI AR ~ D, Dy AR ~ Dj and Do(AR), D)) ~ Dy, where Dy, Dj
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and D are the design distortions. We do that by determining the expected average
distortions over the ensembles of codes generated by different encoding maps ()\(]_%1),
)\%)) The distribution over the choices of maps is given in . Then we show
that the ezpected average distortions are roughly D7, Dj and D{. This implies
that for at least one choice of (/\%), )\%)) the average distortions are close to D7,

D3 and Dj. The following theorem makes this precise.

Theorem 14. Let Fy, Fo, Iy, I, be sets as defined in [5.2.1.1] and encod-
ing and decoding methods be as defined in [5.2.1.2 and [5.2.1.5.  Then the
expectations of average distortions Dl(A%),A%)), DQ(ASTlI),A%)), DO(A%),A%)
(AP A2y Dl(A%)vA%))] = Dj + 027,
By a0y |D2(ARLAED] = D5+ 027) and By o, [ Do(AR. AR)] =
D§ + 0(2_NB) for any (Ry,Rs) € Rpge and < 1/2. Consequently, there

exist deterministic maps that satisfy the above relations.

over the maps A%), A%) satisfy E

The following sections give necessary steps for proving the theorem. We first
prove a total variation bound on two probability measures. Then, we use that

result to bound the expected average distortions of the code.

5.2.1.4 Total Variation Bound

Define the following probability measure.
2N

QXstzv (a:N, SQN) £ QXN (.QZN) H st|XNsk—l (Sk‘iL‘N, Sk_l), (5.129)
k=1

where Qxn~(2V) = Py~ (z"). The conditional probability measures are defined

as

PUi|Ui*1(ui|ui_1)7 ke F,
st‘XNSk—1(3k|$N, Sk_l) é P‘/}lvj—l('l]j"l)j_l), k - ﬁQ’ (5130)

Ps, |xvgr-1(sp|z™, s"71),  otherwise.
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Also, note the following

Qx~vuvyn (2™, uN o) = Qxvgen (2, Ty (W™, ™). (5.131)

Lemma 11 (Total Variation Bound). Let probability measures P and Q) be defined
as in (5.96) and (5.129), respectively. For 0 < 5 < 1/2 and sufficiently large N,

the total variation distance between P and @) is bounded as

7 | Prngen (@, 52Y) — Qungan (2, s2V)| < 27N (5.132)
s2N N
Proof. See Appendix O

5.2.1.5 Average Distortion

For a source sequence zVV, random encoding maps (A%), A%)) and encoding rule

(5.124), (uV,v"N) appears with probability

<H PUilXNUiflvj(UﬂxNin_ U ) <H H{A(l) wi=1) }) :
i€l i€F1
(H PVJ"XN:Vj_l,U"(rUj’vavji y U ) <H ]l{/\(2)(v] 1) }) :

JEL JEF2

For random sets of maps (A%), A%)), the average distortions are random quantities

given by

Dy(AR, AR)) ZPXN ) 2 o™, g0 G, v G)):

uN N

<H Py, x~yi-ivi (sl u' ™t v ) (H ]1{/\(1) wi=1)=u; }) '
1€ 1€F1
(H Pyjxen, v, (vsly™ 07w ) (H LOa® @in)=, }>’
JET> JEF2

(5.133)
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DA A = TP ) T e "G

Z (H PUilXNUiflvj(uiMNaui_ U ) (H 1{A<1> wi—1)=u; }) :

vV i€y 1€F1
(H ij|XN,VJ'—1,U7?(Uj‘Z/N>U » U > (H H{A (vi—1)=v, }) ’

JET> JEF:
(5.134)

Da(A) AP ZPXN Zdz ¥, 62 (v G))-

Z <H PUi|XNUiflvj(u7j|ng,u , U ) <H ﬂ{A(l) i) }> .
i€F

ulV €17
<H Py xn i pi(oly 07w ) (H LA (1), }) :
JETLs JEF2
(5.135)

The expectations over maps are

E{Aﬁif,A%)} [DO(A_(;BaA.(?-%Q))} = XN:PXN Z do(z, go(u™ Gy, vV Gy))-

ulN N

(H PUi|XNUi‘1Vj(Ui‘xNan1>Uj>> (H PUiUil(ui‘uil)> )

i€y i€F1

(H PVj'XN’Vj17Ui(vj|yN,vj‘1,ui)> <H ijv.m(vjlvj‘l)> :

JELs JEF2

E{AQ,AQ} [D1(A%)7A%))} = ZNPXN ) Y di(@, (N Gy)):

ulN N

(H Py, ixvui-tvi (ui|xNa u't, Uj)) (H PUiUi—l(ui|Ui_1)> .

i€l i€ F

<H PleXN’Vj_l’Ui(“J'WNanl,ui>> (H PWle(vj|Uj1>> ;

JEL2 jEF2
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Baw a2, [Dz AR AP } ZPXN ) Y da(a™, o (0VG))-

ulV N
(H PUi|XNUi*1Vj(ui|xN7 ui_lv Uj)) (H PUiUil(uiWi_l)) )
i€l i€F
(H Pyypxen v, (v5ly™, vjl,ui)) (H PVJ-VM(UJ'IU“)>
JET JEF2
Using the probability distribution @) defined in ((5.129)) we can write the expecta-
tions as
) P
By a@) _DO(AQ,AQ)_ = Eg [do(XY, 00(UNGN, VNGN))],  (5.136)
- 0
E 01 _Dl(A;f,A;Q))_ = Eq [di(XY, 01 (UNGN))] (5.137)
- 0]
E 0@, _DQ(A;I),A;Z))_ = Eq [do( XY, 0o(VVGN))] - (5.138)

Therefore, we get

E [DO(AQ,A;?)} < Ep [do(XY, 6o(UN Gy, VN Gy))] +

(1) A(2)
(A A2y

Amax||[Px~vgey — Qxngen||, (5.139)

E [Dl(Aﬁij,Agig)} < Ep [di(XY, 61 (UNGN))] +

(1) A(2)
(A% ARy

dmaxHPXNSQN - QxN52NH, (5140)

]E{A;ll),A%)} [DQ(A%),A%))} < Ep [do(XY, 0o(VYGN))] +

x| [Pxx ey — Qxwgan]. (5.141)

Lemma shows that second term of the sum is O(27V B). Therefore, there exist
deterministic sets of maps )\Erll) and )\%) such that Do()\%), )\%)) = D;+02 N,
DiAD NG = Dy +0(27Y") and D,(AF, AE)) = D5 + 0(27Y7).
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Chapter 6

Conclusion

Although polar codes were invented as channel codes that can achieve capacity
of binary-input symmetric channels, their underlying polarization principle was
shown to be applicable to various channel and source coding problems. In this
thesis, we extended previous results on polar codes and devised methods that
can achieve known bounds for diverse distributed lossless and lossy source coding

problems.

In Chapter [3] we considered a restricted version of the Slepian-Wolf (SW)
problem. We showed how single-user polar codes can be used to achieve any point
on the SW region for binary symmetric sources (BSS) without time-sharing. In
exchange for this special source distribution, it was possible to use single-user
polar successive-cancellation decoder as source decoder. Thus, the complexity of

the method was very low.

In Chapter [4, we first discussed “monotone chain rule based” polarization
approach which extends polar coding to multi-user settings. This method was
introduced by Arikan [28]. We presented an extended treatment of the method
which consisted of two sources with prime-sized alphabets and a side-information
with an arbitrary alphabet. This treatment formed the basis of our other polar

coding schemes for distributed settings in later sections. We derived recursive
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formulas for two-user polar decoder implementation and gave explicit algorithms
for implementing successive-cancellation list (SCL) decoder based on single-user
SCL decoder [40]. This two-user SC decoder was used as the source decoder
in SW setting. We also presented the performance of the decoder by giving
experimental results. The method in this chapter solves the general SW problem
with arbitrary source distributions, and its complexity is higher compared to
the method in Chapter [3| in exchange. Lastly, we moved on to multiple-access
channel (MAC) problem, which is considered as the dual of the SW problem. We
devised polarization sets, encoding and decoding methods for this problem, too.
We proved that our method can achieve not only the uniform capacity region
but the whole MAC capacity region. By uniform capacity region, we mean that
the capacity region when distributions of variables at the inputs of the MAC are
uniform. We used randomized methods to prove this extended result. Then, we
gave simulation results presenting the performance of the devised polar coding
scheme for MAC.

In Chapter [5, we considered two different lossy source coding problems in
distributed settings. The treatment of distributed polar codes in Chapter |4] com-
prised the basis of analysis in this chapter. The first problem we considered was
the distributed lossy source coding which is the lossy version of the SW prob-
lem. We devised a polar coding method for the problem and showed that it
can achieve the whole dominant face of the Berger-Tung (BT) region, which is
the best known capacity region for this problem. Then, we presented simulation
results on the performance of our method for distributed lossy source coding.
The second problem we considered in this chapter was the multiple description
coding problem. The setting consists of a single source and two different rep-
resentations of the source generated by two encoders. Three different decoders
that has access to first, second and both representations, generate three differ-
ent reconstructions. Each reconstruction has a different distortion constraint.
We considered the El Gamal-Cover (EGC) inner bound which is the best known
bound for this problem. We constructed a polar coding method that can achieve
the whole dominant face of the for EGC region. Similar to the MAC problem in

Chapter [4] we used randomized approach for proving that our polarization based
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encoding and decoding methods achieve the capacity bounds of the problems in

this chapter.

Our treatment in this thesis shows that polar codes based on monotone chain
rules can achieve known bounds of diverse lossless and lossy distributed source
coding problems. Similar proof principles were used to achieve the results for
each problem considered in this thesis. It seems that the known bounds of many
distributed channel and source coding problems in information theory may be
achieved using similar techniques. Investigating this conjecture and possibly de-

vising a general polarization proof framework is left for future study.
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Appendix A

Chapter

A.1 Useful Lemmas

Lemma 12 (Pinsker’s Inequality). Let P(y) and Q(y) be two discrete probability
measures where y € ). The following inequality holds

> IP(y) — Q)| < Vs D(P(y)]IQ(y)),

yey

where D(-||-) is the Kullback-Leibler distance and k = 21In 2.
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A.2 Proof of Lemma (4

Z(X[Y2) 2 q—% Z Z \/pXYg(xay2)pXY2(xl7y2)

z,x': Y2
x#x’
1
T -1 Z Vpx(x)px(2) Z \/pYQ\X(?JQ|$)PY2|X(y2|$’)
q 2’ Y2
r#x’
1
=-—7 > Vox@px (@)D | Y pvix walz)pvapy; (v2ly)
q z,z’: Y2 Y1
rHx’

- > x| i (vsly1)
Y1

Using Cauchy-Schwartz inequality gives

ZX1%) 2 = 3 Vos @) 3 [Z Vo i lo)pr (velon)

x;éx}
3 v ey <y2|y1>]
Y1

L Vox(@)px (@)Y [Z Pyaly; (Y2|y1) \/PY1\X(91 )Py 1x (31 2)

= 1
= o v2 Lu
rH#x’
1

= -1 Z Vpx (2)px (2') Z \/pYﬂX(yl’x)pYﬂX(?/lW')
z,x': Y1
x#x’

= Z(X1).
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A.3 Proof of Lemma [5

By Lemma |12} it is enough to bound the Kullback-Leibler distance between P
and (). Note that the Kullback-Leibler distance between two discrete probability

measures can be expanded using chain-rule as
N
D(PEM)||Q(x™)) = Y D(P(wila")||Q(x:|)).
i=1
Using the chain rule of Kullback-Leibler distance, we may write
N

D(Pyn (u™M)|Q(u™)) = D D(Puyjur-1 (uslu' ™) [|Quiu™)),

i=1
(a) i— i—
=Y DRy (wila ™ M]|Q(uwilu ™)),
OS5 - HOUUTY],
(c)
< 2|Z|é.

(a) is due to the fact that Q(u;|u'™") = Py, jpi-1 (us|u'"") for i & T by definition in
(2.47). (b) follows from the standard definition of the Kullback-Leibler distance:

i PZ. i—1(u,~|uifl)
D(Pyqs Q™) = 3 Pos(u) log — a1
1 .
=Y Puu') log ————— — HU|U™),
Z U g Q(uz’|uz_1) ( | )
=1—H(U]|U™).

The first equality is the definition of the Kullback-Leibler distance. The second

equality is from the definition of entropy. Last equality follows from the fact that
Qu;|u=t) = 1/q for i € Z. (c) follows from Proposition [2| and the fact that
Z(UJUY > 1 — 6y for i € T by definition.
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Now, the proof of Lemma [5 may be completed as

S | Pow(e®) — Q)| £ V/k DB (@) 1Q(aN)),

b

(b)
S \/2/%3' |I| '(SN7
< V2 N.2-N7

(a) is due to Pinsker’s inequality in Lemma (b) was proven above.
Vo - N-2-N" < 27N ig true for 8’ € (3, 5) and sufficiently large N. Thus,
the total variation distance is bounded by O(2~N") for any 0 < 8 < 1/2. O
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Appendix B

Chapter

B.1 Recursive Formulas for SC Decoder

We use the following notation for joint probability for a block size of 2/N:

2N 0 2i—2  2j—2\ A
P2N<u2i—17u2i>U2j—1aU2j’Z , U , v ):

Pr [UQi—l = Ugi—1, Uy = uy;, V2j—1 = V21, V2j = U2j|

N = o U2 22 2 ij*Q} '
Note that we can write the following from the structure of polar transform:

IN  2i—2 22
Py (ugi1, U, Vaj_1, Ugj| 2= ,u™ ™7 077)

(%)) N  2i-2 2i—2 2j-2 2j—2
Py (ugi—1 + i, vaj—1 + U2j|z1 y UL, - T UL, TV, T U ):

(4,9) 2N 2i-2 252
Py (u2i7v2j’ZN+17ul,e »Ule )-
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Proof of .

(2i—1,2j—1) ON | 2i-2  2j-2
Py (Uzi—1,V2j-1]2™" , u™ "= 0¥ 77)

IN  2i-2 22
E Py (ugi1, U, Vaj_1, Ugj|2°" ,u™ ™% 0 77).

U24,V2;

Proof of .

(2i,2j—1) 2N | 2i—1  2j-2
P2N (U2i>U2j—1|2 , U , 0 )

ON |, 2i—2  2j—2
Zw].PZN(UZi—hUQiyU2j—1a02j|z S Ut v )

Pr [UZi—l — u2i_1|ZQN — Z2N’ U2i—2 = 11’27,—27 V2i-2 = ,UZJ—2]

The denominator is expanded as:

Pr |:U2i71 _ UQZ',1|ZN — Zn, U2172 — u21727 V2_772 —_ U2]72] —
2N | 2i—2 22
E P2N(U2i—17U2iaU2j—1aU2j|z y U , v )

U24,V2;5—1,V2;5

Noting that this is equal to constant Cs in (4.19)) completes the proof.

Proof of .

(2i—1,2)) IN  2i-2  2j—1
Py (Ugi—1, Vo) 2", u™ " 0¥ T0) =

2N 2i—2 ,.2j—2
ZWPzN(U2171,U2i,U2j71,U2j|2 s ut s v )

Pr [‘/23,_1 — U2j_1|ZN = 2", U2i-2 = u21—2, V-2 = UZ]—Q]

The denominator is expanded as:

N n 2i—2 2i—2 2j—2 2j—2
Pr[%j_lzvgj_ﬂZ :Z,U =Uu ,V‘? = v }:

oN  2i—2 2j-2
E P2N(U2i71,uzi,?12j71,Uzj’Z , U , U )

U2i—1,U24,V25

Noting that this is equal to constant Cj in (4.20]) completes the proof.
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Proof of .

(2’L',2j) 2N 2i—1 27—1\ __
Py ™ (i, vaj] 2™, u™ 0V 70) =

2N
P2N(“2i—1>U2i7U2j—laUQj|Z y U

22, U2j72)

Pr{Usi_1 = ugi1, Vaj_1 = 712j—1|ZN =2, U%=2 = 272 V272 = U2j_2]'

The denominator is expanded as:

N n 72—
Pr [U2¢—1 = Ugi_1, Voj_1 = UQj—1|Z =2"U

2 _ U2z—27 V2j—2 — v?]—?} —

2i—2 2j72>'

2N
E P2N(U2171,U27;7U2j71,Uzj|Z , U y U

U24,V25

Noting that this is equal to constant Cy in (4.21]) completes the proof. O

B.2 Proof of Lemma [T

In the following, we make use of Definition [L0] when we talk about vectors UV,

VN, S2N and their respective indices 4, j, k under assumed path b*". By Lemma
it is enough to bound the Kullback-Leibler distance. Using the chain rule of

Kullback-Leibler distance, we may decompose the total term into sets as follows

D(P(s*)[|Q(s*") ZD

_ZD

kel

> D(P(

k€f1

> D(P(

keF2

(sls* IQ(skls*))

(sels" 1Q(sels" 1)+ (B.1)
(sels" 1@ (sls" 1))+ (B.2)
(sels" D1Q(sels" ™). (B.3)



The first term (B.1]) can be bounded by the standard definition of the Kullback-

Leibler distance:

DP(sls Qo) = P M

Q(sels 1)’
1 ko1
—ZP 1OgW—H(Sk|S )

=1 H(Si|S*™),

< 20n.

The first equality is the definition of the Kullback-Leibler distance. The second
equality is from the definition of entropy. The last equality follows from the fact
that Q(sg|s* ') = 1/q for k € 7. The last inequality is from Proposition [2| and
the fact that Z(U;|U""') > 1 — dy for k € Z by definition. Then we have

_ _NB
> D(P(skls" 1Qsels* 1)) < 2] - 27V,
kel

<N .2 N

Thus, (B.1) is bounded by O(2~N).

Now, we upper bound the second term (B.2)). Note that the following is true
for k € F, (i € F, and by, = 0):

D(P(sls")I1Q(s ZP 10gM

Sk|8k 1)

= H(U;|U™") — H(U;|U, V).

(a) is from the definition of probability measure @ in (4.72)). Then, observe that
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for 1 € F; we have

] ) (a) < ; j
H(UU') = HUJU™, V) < min{sZ(U|U"), 1 - 20U, V9)%}

(b)
< max{2,k} - Iy,

where k = (¢—1)/Ingq. (a) is from Proposition [2{ and due to the fact that H(:|),
Z(:|-) € [0,1]. (b) is because of definition of F; in (4.64)). Defining x’ = max{2, x}

we get

3" D(P(sels*M1Qsils* ) < #/|F| - 27N,

k€.7:1
_nNB
< KN-27N".

Thus, (B.2) is also bounded by O(2~N").

The last term (B.3)) in the summation can be proven similarly. Combining the
result with Lemma [12] gives the desired result that the total variation distance is
bounded by O(2~N) for any 0 < 8 < 1/2. O
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Appendix C

Chapter

C.1 Proof of Lemma

In the following, we make use of Definition [10| when we talk about vectors UY,
VN S2N and their corresponding indices 7, j, k under assumed path b*V. By
Lemma [12] it is enough to bound the Kullback-Leibler distance. First note that
since Q(z™,y") = P(a™, y"),

D(P(s*™, 2™, yM)Q(s*™, 2™, y")) = D(P(s*" |2, y™)[|Q(s*V ]2, y™)).
Furthermore, we can use the chain rule for the Kullback-Leibler distance to write

D(P(s*™ |2, y™)|Q(s*™ 2™, y™)) =
2N

D D(P(sils™ 2™ y™M)[Q(sils" 2™ yN)).

k=1
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Using the chain rule of the Kullback-Leibler distance, we may decompose the

total term into sets as follows
D(P(s*", 2™, yM)|Q (s QN, 2™, y"))
ZZD(P(Sklsk_l,xN,yN)IIQ(SkISk_l,xN,yN))
= Z P(sils" 2™ y™M)Q(skls* 1 2V, ™))+ (C.1)

keFg

Y D(P(sils* eV yMIQskls* eV y M)+ (C.2)

kei)—(

Y D(P(sils* e yM)IQ(skls* 2 gV )+ (C3)

ke]j—{/

> D(P(sls* 2™ yM1Qsl s 2N,y ™). (C4)

kely

We upper bound the first term ((C.1)) as follows. Note that the following is true
for k € Fg (i € Fg and by, = 0):

D(P(sils*, 2™, y™)[|Q(sls" ", 2™, y™))

k-1 ,.N , N
= Z p(sk’xN N) log P(syls" 2™, y")

sk aN yN Q(sk|s* 1, 2N, yN)’
(a) i j N N Pluglu=" o7 2N yN)

= P J | ‘
> ) (u', v, 2™, y") log Plaa 1) :

i 3 N
ut vl Ty

Y H@UY) - HUT, Vv, XN, YY),

QD HU U - BOUUT, XY,
(a) is from the definition of probability measure @ in (5.66)). (b) is from the

definition of entropy. (¢) is due to the special Markov distribution of the random

variables. Then, observe that for ¢ € Fg we have

. . (a) )
HUJ|U™ — HU;| U, XN < wZ(U;|UTY)

(b)
S K/'5N7
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where k = (¢ — 1)/Ing. (a) is from Proposition [2| and due to the fact that
H(:|-), Z(-]-) € [0,1]. Also, the term is positive from the fact that H(U;|Ut) >
H(U;| U, XN, (b) is because of definition of Fg in (5.49). Thus, we get

Z D(P(Sk|5k71,£€N,yN)HQ(SHSkil,iL‘N,yN)) < K,’f)-{‘ .2,N,B”
kE]:—X

< kN 27N
Thus, is bounded by O(2~N").
For the second term , the following is true
D(P(sils" 1 2™, y™)1Q(sels" 1 2™, y™))
= X P g A

P(ug|ut=t 09 2Ny
P(ului=t,aN)y 7

2N Pl e, yY) log

N

ut vl Ny
(b) ;N P(ug|ui=1, z)
2 Z P(u',2™) log Plasai T, oY)’

ul, N

= 0.

(a) is from the definition of probability measure @ in (5.66|). (b) is from the fact
that P(ugu'=1, 07, 2V, yN) = P(u;|u"!,2™) which is due to the Markov chain

probability distribution of the problem.

Other terms and in the summation can be proven similar to ((C.1))
and , respectively. Combining the result with Lemma (12| gives the desired
result that the total variation distance is bounded by O(2~V B) for any 0 < 8 <
1/2. O
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C.2 Proof of Lemma 11

In the following, we make use of Definition [L0] when we talk about vectors UY,
VN, 82N and their corresponding indices 4, j, k under assumed path »*V. By
Lemma [12] it is enough to bound the Kullback-Leibler distance. First note that
since Qxn (zV) = Pxn (2V),

D(P(z", s*)|Q(z", s*™)) = D(P(s*" |2™)[|Q(s*" |2™)).

Furthermore, we can use the chain rule for Kullback-Leibler distance to write

2N

D(P(a)|Q(*]a™)) = 3 D(P(sila™, s+ ) |Q(sl”, 1))

k=1

Using the chain rule of the Kullback-Leibler distance, we may decompose the

total term into sets as follows:
D(P(s*,2M)[|Q (s*V, z™))

—ZD (sul2, )1 Q(sla™, s57))
—ZD (sila™, S 1Qsele™, )+ (C.5)

kel

S D(P(sila™, N 1Q(sele™, )+ (C.6)

k€.7:1

3" D(P(sele™, S IQsela™, )+ (C)

k EIQ

Y D(P(sila™, 85 H1Qsila™, 871)). (C.8)

keFs

Note that, since Q(sgx|z, ¥ 1) = P(sg|zN, s*1) for k € 7, and k € Iy, the first

(C.5) and third (C.7)) terms are zero.

We upper bound the second term ((C.6|) as follows. Note that the following is
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true for k € Fy (i € Fy and by = 0):

D(P(sila™, " D1Q(skla™, s"71))

P(sg]z™, sF71)
= P(s*, 2 1o d ,
2 P Lo o o )

(a) z : i .7 N P(ui|mN7ui717vj)
= P J 1 -
Rt (u 7U 727 ) Og P(ui|uz_1) Y

= H(U U™ — HU| XN, U Vi),

(a) is from the definition of probability measure @ in (5.129)). Then, observe that

for 1 € F; we have

) . . (a) . . )
H(U{U™Y) = HUIXY, ULV < min{wZ(UU), 1 - ZU|XN, U, V)2

()
< max{2,K} - oy,

where k = (¢ — 1)/Ing. (a) is from Proposition |2 and due to the fact that
H(-), Z(-|-) € [0,1]. (b) is because of definition of F; in (5.111). Defining

k' 2 max{2,k}, we get
S D(P(sela, 1 Qsele™, s71)) < w|Fi| 27N,
k€.7:—1
< Kk'N - 9N

Thus, (C.6) is also bounded by O(2~N%).

The fourth term (C.8)) in the summation can be proven similarly. Combining
the result with Lemma [12| gives the desired result that the total variation distance
is bounded by O(2N") for any 0 < 8 < 1/2. O
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