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ABSTRACT
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Ph.D. in Mathematics

Advisor: Asst. Prof. Dr. Ahmet Muhtar Gülog̃lu

July, 2015

Let K be a finite Galois extension of the field Q of rational numbers. In this

thesis, we derive an asymptotic formula for the number of the Piatetski-Shapiro

primes not exceeding a given quantity for which the associated Frobenius class

of automorphisms coincide with any given conjugacy class in the Galois group

of K/Q. Applying this theorem to appropriate field extensions, we conclude that

there are infinitely many Piatetski-Shapiro primes lying in a given arithmetic

progresion and furthermore there are infinitely many primes that can be expressed

as a sum of a square and a fixed positive integer multiple of another square.

Keywords: Chebotarev density theorem, Piatetski-Shapiro prime number theo-

rem, exponential sums over ideals.
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ÖZET

PIATETSKI SHAPIRO ASAL SAYI TEOREMI VE
CHEBOTAREV YOG̃UNLUK TEOREMI.

Yıldırım Akbal

Matematik Bölümü, Doktora

Tez Danışmanı: Yrd. Doç. Dr. Ahmet Muhtar Gülog̃lu

Temmuz, 2015

K rasyonel sayı cisminin bir Galois genişlemesi olsun. Bu tezde, Frobenius oto-

morfizması C konjuge sınıfına denk gelen Piatetski-Shapiro asallarının asimptotig̃i

incelenmiştir. Elde edilen asimptotik bağıntı bazı cisim genişlemelerine uygula-

narak ilk önce verilmiş bir n pozitif doğal sayısı için a2 +nb2 şeklindeki Piatetski-

Shapiro asallarının asimptotiği; sonrasinda arithmetik dizilerdeki Piatetski-

Shapiro asallarının asimptotiği hesaplanmıştır.

Anahtar sözcükler : Chebotarev yog̃unluk teoremi, Piatetski-Shapiro asal

sayıteoremi, idealler üzerine üssel toplamlar .
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Notation

Throughout this thesis, we use Vinogradov’s notation f � g to mean that

|f(x)| 6 Cg(x), where g is a positive function and C > 0 is a constant. Sim-

ilarly, we define f � g to mean |f | > Cg and f � g to mean both f � g and

f � g. We write n ∼ N to mean that n lies in a subinterval of (N, 2N ]. We will

use ε > 0 to denote a quantity which may be taken arbitrarily small and not the

same at each occurence. Morever, c > 1 is a real number, and δ = 1/c.

• For a fixed c > 1, we set

Ac(x) = {bncc 6 x| n ∈ N},

where bxc is the floor of x defined to be largest integer not exceeding x.

• For any x > 2 and 1 6 a 6 q with gcd(a, q) = 1, we set

π(x; q, a) = #{p 6 x : p prime, p ≡ a mod (q)}.

• For any function f , we put

∆f(x) = f(−(x+ 1)δ)− f(−xδ), (x > 0).

• For any subset P of primes, we denote by 〈P〉 the subset of natural numbers

that are composed solely of primes from P.

We write e(z) for exp(2πiz). We use the notation ψ(x) for x− bxc − 1
2
.

For any finite field extension L/Q, we shall write ∆L for its absolute discriminant

and dL for its degree [L : Q] = r1 +2r2, where r1 is the number of real embeddings

of L and 2r2 is the number of complex embeddings. We denote the ring of integers

of L by OL and the absolute norm of an ideal a is denoted by Na.

The letter p always denotes an ordinary prime number. Similarly, we use the

letters p, P for prime ideals.
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Chapter 1

Introduction and Statement of

Results

In 1953 Ilya Piatetski-Shapiro proved in [12] an analog of the prime number

theorem for primes of the form bncc, where n runs through positive integers and

c > 0 is fixed. He showed therein that such primes constitute a thin subset of

the primes; more precisely, that the number πc(x) of these primes not exceeding

a given number x is asymptotic to x1/c/ log x provided that c ∈ (1, 12/11). Since

then, the admissible range of c has been extended by many authors and the result

is currently known for c ∈ (1, 2817/2426) (cf. [13]).

A related question is to determine the asymptotic behavior of a particular subset

of these primes; for example, those belonging to a given arithmetic progression,

or those of the form a2 +nb2. The former was considered by Leitmann and Wolke

(cf. [8]) in 1974, and it has been used in a recent paper by Roger et al. (cf. [1])

to show the existence of infinitely many Carmichael numbers that are products

of the Piateski-Shapiro primes.

For both of the aforementioned examples, the problem can be interpreted as

counting the Piatetski-Shapiro primes that belong to a particular Chebotarev

class of some number field (see Theorem 1 and the remark following Theorem 2).

Motivated by this observation, we study in this thesis the following more general

problem:
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Take a finite Galois extension K/Q and a conjugacy class C in the Galois group

G = Gal(K/Q). Put

π(K,C) = {p prime : gcd(p,∆K) = 1; [K/Q, p] = C}

where ∆K is the discriminant of K, and the Artin symbol [K/Q, p] is defined as

the conjugacy class of the Frobenius automorphism associated with any prime

ideal P of K above p. Recall that the Frobenius automorphism is the generator

of the decomposition group of P, which is the cyclic subgroup of automorphisms

of G that fixes P. The Chebotarev Density Theorem as given by Lemma 10 below

states that the natural density of primes in π(K,C) is |C|/|G|; that is,

π(K,C, x) ∼ |C|
|G|

li(x) (x→∞)

where π(K,C, x) = #{p 6 x : p ∈ π(K,C)} and li(x) =
∫ x

2
(log t)−1dt is the

logarithmic integral.

Our intent in this thesis is to find an asymptotic formula for the number of

the Piatetski-Shapiro primes that belong to π(K,C). To this end, we define the

counting function

πc(K,C, x) = #{p 6 x : p ∈ π(K,C); p = bncc for some n ∈ N}.

The first result we prove in this direction is for abelian extensions K/Q. By the

Kronecker-Weber Theorem this problem easily reduces to counting the Piatetski-

Shapiro primes in an arithmetic progression, which was handled in [8] as we

have mentioned above. We do, however, reprove their theorem here in a slightly

different manner following a more recent method given in [4, §4.6] that utilizes

Vaughan’s identity.

Before stating our first result, we recall that the conductor f of an abelian exten-

sion K/Q is the modulus of the smallest ray class field K f containing K.

Theorem 1. Let K/Q be an abelian extension of conductor f. Take any auto-

morphism σ in the Galois group G = Gal(K/Q). Then, there exists an absolute

constant D > 0 and a constant x0(f) such that for any fixed c ∈ (1, 12/11) and

x > x0(f), we have

πc(K, {σ}, x) =
1

c|G|
li(x1/c) +O

(
x1/c exp(−D

√
log x)

)
where the implied constant depends only on c.
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Next, we consider a non-abelian Galois extension K/Q. Given a conjugacy class

C in G, take any representative σ ∈ C and put dL = [G : 〈σ〉] = [L : Q], where L

is the fixed field corresponding to the cyclic subgroup 〈σ〉 of G generated by σ.

Note that dL > 2. As in the abelian case, we obtain a similar asymptotic formula,

only this time the range of c depends on the size of dL (not on L, hence σ). This

is due to the nature of an exponential sum that appears in the estimate of one of

the error terms. In this case, we prove the following result:

Theorem 2. Let K, C, G and dL be as defined above. Then, there exists an

absolute constant D > 0, and a constant x0 which depends on the degree dK and

the discriminant ∆K of K such that for x > x0 and for c that satisfies

1 < c < 1 +

 (2dL+1dL + 1)−1 if dL 6 10,(
6(dL

3 + dL
2) log(125dL)− 1

)−1
otherwise,

we have

πc(K,C, x) =
|C|
c|G|

li(x1/c) +O(x1/c exp
(
−D|∆K |−1/2(log x)1/2)

)
where the implied constant depends on c, the degree dL and the discriminant ∆L

of the intermediate field L defined above.

The asymptotic formula above follows from the effective version of the Chebotarev

density theorem (see Lemma 10) coupled with an adaptation of the method in

[4, §4.6] to our case using an analog of Vaughan’s identity for number fields (see

Lemma 2). The main difference from [4, §4.6] here is that one has to deal with

the estimate of an exponential sum that runs over the integral ideals of L (see

§3.1.0.2, §3.3) and most of chapter 4 is devoted to the estimate of this sum. The

main idea in a nutshell to handle the exponential sum in §3.1.0.2 is to split it into

ray classes, then choose an integral basis for each class, and finally use van der

Corput’s method for small values of dL, and Vinogradov’s Method for the rest on

one of the integer variables.

Although the above theorems yield non-trivial ranges for the permissible values

of c for which the associated asymptotics hold, these values are squeezed in a

small portion of (1, 2). The following theorem asserts that the exceptional set of

values of c ∈ (1, 2) for which theorems above do not hold is of measure zero in

the sense of Lebesque measure.
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Theorem 3. The conclusions of both Theorems 1 and 2 hold for almost all c ∈
(1, 2) .

1.1 Applications

We consider the ring class field Ln (see e.g., [3, §9]) of the order Z[
√
−n] in

the imaginary quadratic field K = Q(
√
−n) where n is a positive integer. It

follows from [3, Lemma 9.3] that Ln is a Galois extension of Q with Galois group

isomorphic to Gal(Ln/K) o (Z/2Z), where the non-trivial element of Z/2Z acts

on Gal(Ln/K) by sending σ to its inverse σ−1. For example, Gal(L27/Q) ' S3 is

non-abelian, while Gal(L3/Q) is abelian since L3 = Q(
√
−3). In any case, we have

from [3, Theorem 9.4] that if p is an odd prime not dividing n then p = a2 + nb2

for some integers a, b if and only if p splits completely in Ln, which occurs exactly

when [Ln/Q, p] is the identity automorphism 1G of G = Gal(Ln/Q). Therefore,

as a corollary of the theorems above we see that the number of Piatetski-Shapiro

primes up to x that are of the form a2 + nb2 is asymptotic to (c|G|)−1li(x1/c) as

x → ∞ for any c in the range given by the relevant Theorem above depending

on whether Ln/Q is abelian.
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Chapter 2

Preliminaries and Technical

Preparation

In this chapter, we state some of the core lemmas and theorems that will be

frequently used in the proof of Theorems 1 and 2. We refer the reader to [5] and

[6] for the tools that are not presented here.

2.1 Analytical Tools

We first start with the following partial summation formula whose proof may be

found in [9, §A]:

Lemma 1. Let {an}∞n=1 be a sequence of complex numbers, y positive real number,

and

A(x) =
∑
n6x

an,

where A(x) = 0 if x < y. Assume that f has a continuous derivative on the

interval [y, x]. Then, we have∑
y<n6x

anf(n) = A(x)f(x)− A(y)f(y)−
∫ x

y

A(t)f ′(t)dt.
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We next state the Siegel-Walfisz theorem. For the proof, we refer the reader to

[9, Corrollary 11.19].

Theorem 4. Let A > 0 be fixed and x > x(A). Then for q 6 logA x, and for

a < q such that (a, q) = 1, there is some D > 0 such that

π(x; q, a) =
li(x)

φ(q)
+O

(
x exp(−D

√
log x)

)
.

The following lemma lies at the heart of the proofs of Theorems 1 and 2. It allows

one to decompose Von Mangoldt function and its number field generalizations into

more amenable arithmetical functions. There are similar decompositions due to

various authors (see e.g., [5, §6]). The one that we present here is more suitable

for our purposes.

Lemma 2. Let u, v > 1. Let L/Q be a finite extension, for any ideal a ⊆ OL

with Na > u,

ΛL(a) =
∑
bc=a
Nb6v

µL(b) logNc−
∑
bcd=a

Nb6v,Nc6u
Nbc6v

µL(b)ΛL(c)

−
∑
bcd=a

Nb6v,Nc6u
Nbc>v

µL(b)ΛL(c) −
∑
ce=a

Nc>u,Ne>v

ΛL(c)
∑
bd=e
Nb6v

µL(b),

where

µL(a) =

{
(−1)k if a = p1 · · · pk,
0 otherwise,

and

ΛL(a) =

{
logNp if a = pk for some k > 1,

0 otherwise.

Proof. We use the identity

ΛL(a) =
∑
bc=a

µL(b) logNc (2.1)
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and then follow the argument preceding [5, proposition 13.4]. Finally, note that∑
bcd=a

Nb>v,Nc>u

µL(b)ΛL(c) =
∑
ce=a
Nc>u

ΛL(c)
∑
bd=e
Nb>v

µL(b)

=
∑
ce
=a

Nc>u,Ne>v

ΛL(c)

(∑
bd=e

µL(b)−
∑
bd=e
Nb6v

µL(b)

)

= −
∑
ce=a

Nc>u,Ne>v

ΛL(c)
∑
bd=e
Nb6v

µL(b).

Next, we state several lemmata needed for exponential sum estimates. The proof

of the first one can be found in [15, Theorem 2a.], and proofs of the next four can

be found in [4, Theorem 2.8], [4, Theorem 2.9] and [4, Lemma 4.13], respectively.

Lemma 3. Let n > 11. Let N and P be positive real numbers, P being large.Let

f(x) be a real function, defined for x ∈ I = [N,N + P ]. Suppose on I, f has a

continuous (n+ 1) th derivative satisfying

f (n+1)(x)

(n+ 1)!
� 1

A

where

P � A� P 2+2
1
n .

Then∑
n∈I

e(f(n))� P
1− 1

3n2 log 125n .

Lemma 4. Let q be a positive integer. Suppose that f is a real valued function

with q + 2 continuous derivatives on some interval I. Suppose also that for some

λ > 0 and for some α > 1,

λ 6 |f (q+2)(x)| 6 αλ

on I. Let Q = 2q. Then,∑
n∈I

e(f(n))� |I|(α2λ)1/(4Q−2) + |I|1−1/(2Q)α1/(2Q) + |I|1−2/Q+1/Q2

λ−1/(2Q)

where the implied constant is absolute.
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If q = 0, then Lemma 4 is readily simplified to:

Lemma 5. Suppose that f is a real valued function with two continous derivations

on I. Suppose also that there is some λ > 0 such that

|f ′′(x)| � λ

on I. Then∑
n∈I

e(f(n))� |I|λ1/2 + λ−1/2.

Here we remark that when f grows fast, Lemma 3 is superior to Lemmma 4,

since it yields a polynomial saving while Lemma 4 yields an exponential saving.

However, for slowly growing f , Lemma 4 is superior.

We next state the following lemma in order to estimate double exponential sums

(see e.g., [4, Lemma 4.13 ]).

Lemma 6. Suppose α(m) and β(n) are sequences supported on subintervals of

the intervals (X, 2X] and (Y, 2Y ] respectively. Suppose further that∑
n

|α(n)|2 � X log2AX,
∑
m

|β(n)|2 � Y log2B Y

Let j be a positive real number, and set F = jXδY δ. Finally assume that XY �
N . Then∑

n

∑
m

α(n)β(m)e(jmδnδ)

� (F 1/6X2/3Y 5/6 + NF−1/2 + XY 1/2 + Y X3/4) logA+B+1N.

The following lemma will be used to estimate exponential integrals (see e.g., [4,

Lemma 3.1. ]).

Lemma 7. Assume that f and g are differentiable on [a, b]. Assume moreover

that g/f ′ is monotonic and that
∣∣f ′(x)/g(x)

∣∣ > λ on [a, b]. Then∫ b

a

g(x)e(f(x))dx� 1

λ

where the implied constant is absolute.
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The following result due to Vaaler gives an approximation to ψ(x) (see, for ex-

ample, [4, Appendix]).

Lemma 8. Let H > 1 be a real number. Then there exists a trigonometric poly-

nomial

ψ∗(x) =
∑

16|h|6H

ahe(hx), (ah � |h|−1)

such that for any real x,

|ψ(x)− ψ∗(x)| 6
∑
|h|<H

bhe(hx), (bh � H−1).

The following lemma together with Lemma 8 is to be used in order to study

weighted sums over Piatetski-Shapiro sequences.

Lemma 9. Fix c ∈ (1, 2). Let z1, z2, ... be a uniformly bounded sequence of com-

plex numbers. Then∑
k6x

k=bncc

zk = δ
∑
k6x

zkk
δ−1 +

∑
k6x

zk∆ψ(x) +O(log x).

Proof. The equality k = bncc holds precisely when k 6 nx < k+1, or equivalently,

when −(k + 1)δ 6 n < −kδ. Hence∑
k6x

k=bncc

zk =
∑
k6x

zk
(⌊
−kδ

⌋
−
⌊
−(k + 1)δ

⌋)
.

The desired result follows on recalling the fact that (k+1)δ−kδ = δkδ−1+O(kδ−2)

and that
∑

k6x zkk
δ−2 � log x.

2.2 Algebraic Tools

We first start with Chebotarev Density theorem that forms the backbone of our

motivation (see e.g., [7]).
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Lemma 10 (Chebotarev density theorem). Let K/Q be a Galois extension and

C a conjugacy class in the Galois group G. If dK > 1, there exists an absolute,

effectively computable constant D and a constant x0 = x0(dK ,∆K) such that if

x > x0, then

π(K,C, x) =
|C|
|G|

li(x) +O
(
x exp(−D|∆K |−1/2

√
log x)

)
where the implied constant is absolute.

We refer reader to [6, Statement 2.15] for the following result.

Lemma 11. Let L be a number field of degree dL, then there is a number k

depending only on L such that∑
a⊂OL
Na6x

1 = kx+O(x
1− 1

dL ).

The proof of the following result can be found in [2, Lemma 2].

Lemma 12. Let L/Q be a finite extension of degree dL and discriminant ∆L.

For each ideal a of L, there exists a basis α1, . . . , αdL such that for any embedding

τ of L,

A−dL+1
1 (Na)1/(2dL) 6 |ταj| 6 A1(Na)1/dL (2.2)

where A1 = dL
dL|∆L|1/2.

For the proof of the next lemma, see for example [6, Theorem 11.8].

Lemma 13. Let L be a finite extension and U be a nonzero ideal in the ring of

integers OL. There exists an element α 6= 0 in U such that

N(αU−1) 6
dL!

dL
dL

(
4

π

)r2
|∆L|1/2,

where 2r2 is the number of complex embeddings of L.
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Chapter 3

Proof of Theorem 2

Initial steps of our treatment for Thereoms 1, 2 and 3 are similar. Thus, most of

the calculations will be done only in this chapter and will be quoted later.

We first appeal to Lemma 9 with the obvious choice

zk =

 1 if k ∈ π(K,C),

0 otherwise.

to derive

πc(K,C, x) =
∑
p6x

p∈π(K,C)

δpδ−1 +
∑
p6x

p∈π(K,C)

∆ψ(p) +O(log x).

Using partial summation, it follows from Lemma 10 that for x > x0 =

x0(dK , |∆K |),∑
p6x

p∈π(K,C)

δpδ−1 =
|C|
c|G|

li(x1/c) +O(x1/c exp(−D|∆K |−1/2
√

log x)

where the implied constant is absolute.

The rest of this chapter deals with the estimate of the sum involving ψ. Using

dyadic division yields∑
p6x

p∈π(K,C)

∆ψ(p) =
∑

16N<x
N=2k

∑
N<p6N1

p∈π(K,C)

∆ψ(p)

13



where N1 = min(x, 2N). By Lemma 8, we can approximate ψ(x) with the function

ψ∗(x) =
∑

16|h|6H

ahe(hx),

where the coefficients satisfy ah � h−1 and the error ψ(x)−ψ∗(x)� ∆(x) holds

for some non-negative function ∆ given by

∆(x) =
∑
|h|<H

b(h)e(hx)

with b(h)� 1/H. Using definition of ∆, it follows from Lemma 5 that∑
N<p6N1

p∈π(K,C)

∆(ψ − ψ∗)(p)�
∑

N<n6N1

∆(−nδ)� NH−1 +N δ/2H1/2.

Thus, taking

H = N1−δ+ε (3.1)

yields ∑
p∈π(K,C,x)

∆(ψ − ψ∗)(p)� xδ exp(−D|∆K |−1/2
√

log x)

provided that 1 < c < 2 and ε > 0 is sufficiently small, both of which are assumed

in what follows.

Having dealt with the error term, we now turn to the sum involving ψ∗. Using

partial summation we obtain

∑
N<p6N1

p∈π(K,C)

∆ψ∗(p)� 1

logN
max

N ′∈(N,N1]

∣∣∣∣∣ ∑
N<n6N ′
n∈〈π(K,C)〉

∆ψ∗(n)Λ(n)

∣∣∣∣∣+O(
√
N).

Recalling the definition of ψ∗ above we derive that∑
N<n6N ′
n∈〈π(K,C)〉

∆ψ∗(n)Λ(n) =
∑

16|h|6H

ah
∑

N<n6N ′
n∈〈π(K,C)〉

∆e(−hnδ)Λ(n)

�
∑

16|h|6H

h−1

∣∣∣∣∣ ∑
N<n6N ′
n∈〈π(K,C)〉

e(hnδ)φh(n)Λ(n)

∣∣∣∣∣
14



where φh(x) = 1− e
(
h
(
(x+ 1)δ − xδ

))
. Using the bounds

φh(x)� hxδ−1, φ′h(x)� hxδ−2,

and partial summation yield

∑
N<n6N ′
n∈〈π(K,C)〉

e(hnδ)φh(n)Λ(n)� hN δ−1 max
N ′∈(N,N1]

∣∣∣∣∣ ∑
N<n6N ′
n∈〈π(K,C)〉

e(hnδ)Λ(n)

∣∣∣∣∣.
We note at this point that to finish the proof of Theorem 2 it is enough to show

that

∑
h

max
N ′∈(N,2N ]

∣∣∣∣∣ ∑
N<n6N ′
n∈〈π(K,C)〉

e(hnδ)Λ(n)

∣∣∣∣∣� N exp(−D|∆K |−1/2
√

logN).

Lemma 14. Take a representative σ ∈ C. Let L be the fixed field of the cyclic

group 〈σ〉 generated by σ. Then, for N ′ 6 N1 6 2N ,

∑
N<n6N ′
n∈〈π(K,C)〉

e(hnδ)Λ(n) =
|C|
|G|

∑
ψ

ψ(σ)

·
∑
a⊆OL

N<Na6N ′

ψ([K/L, a])ΛL(a)e
(
h(Na)δ

)
+ O(

√
N)

where the first summation is taken over all characters of Gal(K/L) and the second

is over powers of prime ideals of L that are unramified in K.

Proof. Since K/L is abelian we obtain by the orthogonality of characters of

Gal(K/L), the expression∑
ψ

ψ(σ)
∑
a⊆OL

N<Na6N ′

ψ([K/L, a])ΛL(a)e
(
h(Na)δ

)

equals

ordG(σ)
∑
a⊆OL

N<Na6N ′
[K/L,a]=σ

ΛL(a)e
(
h(Na)δ

)
.
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Removing prime ideals p of L with deg p > 1 and powers of prime ideals pk with

k > 1, the last sum can be written as∑
N<Np6N ′

[K/L,p]=σ
Np is prime

e
(
h(Np)δ

)
logNp +O(

√
N),

or ∑
N<p6N ′

( ∑
p⊆OL

[K/L,p]=σ
Np=p

1

)
e
(
hpδ
)

log p+O(
√
N).

If p is a prime that is unramified in K and p is a prime ideal of L above p satisfying

[K/L, p] = σ, then p remains prime in K and

[K/L, p] = σ and Np = p⇐⇒ [K/Q, pOK ] = σ.

In particular, [K/Q, p] = C. Furthermore, the number of prime ideals P of K

above such a prime p with [K/Q,P] = σ equals [CG(σ) : 〈σ〉], where CG(σ) is the

centralizer of σ in G. The result now follows by observing that |CG(σ)| = |G|/|C|
and noting that∑

N<n6N ′
n∈〈π(K,C)〉

e(hnδ)Λ(n) =
∑

p∈π(K,C)
N<p6N ′

e(hpδ) log p+O(
√
N).

Remark 1. From now on we shall write χ(a) for the composition Ψ([K/L, a]).

Note that since K/L is abelian, χ is a character of the ray class group J f/P f (see,

e.g., [10, p. 525]) where f is the conductor of the extension K/L. Furthermore,

we shall require that χ(a) = 0 whenever a is not coprime to f. This way, we can

assume that the inner sum in the lemma above runs over all integral ideals of L.

Our current objective is to prove that

∑
h

max
N ′∈(N,2N ]

∣∣∣∣∣ ∑
a⊆OL

N<Na6N ′

χ(a)ΛL(a)e
(
h(Na)δ

) ∣∣∣∣∣� N exp(−D|∆K |−1/2
√

logN).
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3.1 Exponential Sums over Ideals

At this point we appeal to Lemma 2 and assume from now onwards that u < N .

Hence ∑
a⊆OL

N<Na6N ′

χ(a)ΛL(a)e(h(Na)δ) = S1 + S2 + S3 + S4

where

S1 = −
∑
a⊆OL

N<Na6N ′

χ(a)e(h(Na)δ)
∑
ce=a

Nc>u,Ne>v

ΛL(c)
∑
bd=e
Nb6v

µL(b),

S2 =
∑
a⊆OL

N<Na6N ′

χ(a)e(h(Na)δ)
∑
bc=a
Nb6v

µL(b) logNc,

S3 = −
∑
a⊆OL

N<Na6N ′

χ(a)e(h(Na)δ)
∑
bcd=a

Nb6v,Nc6u
Nbc>u

µL(b)ΛL(c),

and

S4 = −
∑
a⊆OL

N<Na6N ′

χ(a)e(h(Na)δ)
∑
bcd=a

Nb6v,Nc6u
Nbc6u

µL(b)ΛL(c).

3.1.0.1 Estimate of S1 and S3

We first need an auxiliary result.

Lemma 15. Let X, Y be positive integers and

α(m) = −
∑
c⊆OL
Nc=m

χ(c)ΛL(c),

β(n) =
∑
e⊆OL
Ne=n

χ(e)
∑
bd=e
Nb6v

µL(b).
(3.2)

Then, ∑
X<m62X

|α(m)|2 � X log2dL−1X,
∑

Y <n62Y

|β(n)|2 � Y (log Y )4dL
2

.

17



Proof. By Cauchy-Schwartz inequality∑
Y <n62Y

|β(n)|2 6
∑

Y 6n62Y

(∑
e⊆OL
Ne=n

1

) ∑
e⊆OL
Ne=n

(∑
bd=e
Nb6v

µL(b)

)2

6
∑

Y 6n62Y

g(n)

where g(n) is the multiplicative function defined by

g(n) =

(∑
e⊆OL
Ne=n

1

) ∑
e⊆OL
Ne=n

τ 2(e)

and τ(e) is the number of integral ideals of L that divide e. Note that for any

prime p > 2, g(p) 6 4dL
2, while for k > 1 we see that the number of ideals e with

Ne = pk is bounded by(
dL + k − 1

dL − 1

)
= e

∑k
m=1 log

(
1+

dL−1

m

)
6 e

∑k
m=1

dL−1

m 6 (ek)dL−1

and τ 2(e) 6 (k + 1)2 6 4k2. Thus, g(pk) 6 4edL−1kdL+1. It follows that

log

(
1 +

g(p)

p
+
g(p2)

p2
+ · · ·

)
= log

(
1 +

g(p)

p

)
+O(1/p2)

6
4dL

2

p
+O(1/p2)

where the implied constant depends on dL. Therefore,∑
Y 6n62Y

g(n) 6 2Y
∑

Y 6n62Y

g(n)

n
6 2Y e

∑
p62Y log

(
1+

g(p)
p

+
g(p2)

p2
+···

)

6 2Y eO(1)+4dL
2∑

p62Y
1
p �dL Y (log Y )4dL

2

.

As for the other sum, we obtain∑
X<m62X

|α(m)|2 6
∑

X6m62X

∑
c⊆OL
Nc=m

1 ·
∑
c⊆OL
Nc=m

(ΛL(c))2

=
∑

X6m62X

(Λ(m))2

(∑
c⊆OL
Nc=m

1

)2

�dL (logX)2
∑

X6pk62X

k2(dL−1)

� (logX)2dL
∑

X6pk62X

1� X(logX)2dL−1,

as claimed.
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We are now ready to estimate S1. First, rewrite S1 as

S1 = −
∑
c,e

Ne>v;Nc>u
N6N(ce)6N ′

χ(e)

(∑
bd=e
Nb6v

µL(b)

)
χ(c)ΛL(c)e(h(Nce)δ)

=
∑∑
n,m

n>v;m>u
N<nm6N ′

α(m)β(n)e(h(nm)δ)

where α(m) and β(n) are given by (3.2). Let

u = v = N δ−1+η (3.3)

and split the ranges of m and n into � log2N subintervals of the form [X, 2X]

and [Y, 2Y ] such that N/4 6 XY 6 2N , v < X, Y < N ′/v. Summing over

h 6 H we conclude from Lemma 6 and Lemma 15 that the contribution of each

subinterval is

�
(
H7/6N δ/6+5/6 min(X−1/6, Y −1/6)

+HN1/2 max(X, Y )1/2
)
(logN)2dL

2+dL+1/2

�
(
N2−1/12−δ +N5/2−3δ/2−η/2

)
N8ε/6.

Finally, summing over X and Y we conclude that the estimate∑
h

|S1| �
(
N2−1/12−δ +N5/2−3δ/2−η/2

)
N2ε

� N exp(−D|∆K |−1/2
√

logN)

holds provided that

1− δ < min
( 1

12
,
η

3

)
, (3.4)

and ε > 0 is sufficiently small, both of which we shall assume in what follows.

To estimate S3, we first note that

S3 = −
∑∑

d,e
v<Ne6v2

N<N(de)6N ′

χ(d)χ(e)

( ∑
bc=e

Nb6v,Nc6u

µL(b)ΛL(c)

)
e
(
h(N(de))δ

)

=
∑∑
n,m

v<m6v2

N<nm6N ′

α(m)β(n)e
(
h(nm)δ

)
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with

α(m) =
∑
e

Ne=m

χ(e)

( ∑
bc=e

Nb6v,Nc6u

µL(b)ΛL(c)

)

β(n) =
∑
d

Nd=n

χ(d).

and split the ranges of m and n as we did for S1 with the only difference that we

now have v < X 6 v2 and N/v2 < Y < N ′/v in addition to N/4 6 XY 6 2N .

Furthermore, an analog of Lemma 15 can easily be established for the coefficients

α(m) and β(n) and will be omitted here. Using Lemma 6 once again we see that

the estimate∑
h6H

|S3| �
(
N2−δ−1/12 +N2−δv−1/2 +N3/2−δv

)
N2ε

� N exp(−D|∆K |−1/2
√

logN)

holds if we assume (3.4), that ε > 0 is sufficiently small and that

3η 6 1. (3.5)

3.1.0.2 Estimate of the sums S2 and S4

We first use the identity

logRb =
∑
d|b

ΛL(d)

to derive that

S4 = −
∑
e

Ne6v

χ(e)

( ∑
bc=e

Nb6v,Nc6u

µL(b)ΛL(c)

) ∑
d

N<N(de)6N ′

χ(d)e
(
h(N(de))δ

)

� logN max
N ′∈(N,N1]

∑
e

Ne6v

∣∣∣∣∣ ∑
d

N<N(de)6N ′

χ(d)e
(
h(N(de))δ

) ∣∣∣∣∣,
also by partial summation

S2 � logN max
N ′∈(N,N1]

∑
d

Nd6v

∣∣∣∣ ∑
c

N/Nd<Nc6N ′/Nd

χ(c)e
(
h(Ncd)δ

) ∣∣∣∣.
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Thus it is suffices to estimate one of them, say S2. To this end, we shall estimate

S =
∑
c

N/Nd<Nc6N ′/Nd

χ(c)e
(
h(Ncd)δ

)
.

for all N < N ′ 6 2N .

Recall that χ is a ray class character of modulus f. Splitting S into ray classes K

we obtain S =
∑

K χ(K)SK where

SK =
∑
c∈K

N/Nd<Nc6N ′/Nd

e
(
h(Ncd)δ

)
.

Since there are only finitely many classes it is enough to consider a fixed class

K. Let b be an integral ideal in the inverse class K−1. Any integral ideal c ∈ K is

given by αb−1 for some α ∈ b ∩ Lf,1, where

Lf,1 := {x ∈ L∗ : x ≡ 1 mod f, and x is totally positive}.

Thus, we have

SK =
∑
αa

α∈b∩Lf,1

P dL<N(αOL)6(P ′)dL

e
(
h(N(αad))δ

)

where a = b−1,

P =

(
N

N(ad)

)1/dL

and P ′ =

(
N ′

N(ad)

)1/dL

. (3.6)

Since f and b are coprime ideals, we can find an α0 ∈ b such that α0 ≡ 1 mod f.

Hence, the condition that α ∈ b ∩ Lf,1 is equivalent to the conditions that α ≡
α0 mod fb and that α is totally positive.

Define a linear transformation T from L to the Minkowski space LR := {(zτ ) ∈
LC : zτ = zτ} by

Tα = (τ1α, . . . , τdLα)

where LC :=
∏

τ C and τ1, . . . , τdL are the embeddings of L with the first r1 em-

beddings being real and the first r1+r2 corresponding to the different archimedean

valuations of L.
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Note that α, β ∈ b ∩ Lf,1 generate the same ideal if and only if they differ by a

unit u ∈ O∗L ∩Lf,1. Since O∗L ∩Lf,1 is of finite index in O∗L, its free part is of rank

r = r1 + r2− 1. Let ξ1, . . . , ξr be a system of fundamental units for O∗L ∩Lf,1 and

E the invertible r × r matrix whose rows are given by `(Tξ1), . . . , `(Tξr) where

` : L∗C =
∏

τ C∗ → Rr is defined by

`(z1, . . . , zdL) = (log |z1|, . . . , log |zr|).

If L contains exactly ω roots of unity, then for any t ∈ R∗, `(T (tα)) = `(T (tβ))

holds for exactly ω associates α of a given β ∈ L∗. Thus, in order to pick a

representative α ∈ b∩Lf,1 for the ideal αa ∈ K that is unique up to multiplication

by roots of unity in L, we impose the condition that `(Tα)E−1 ∈ [0, 1)r. At this

point, we define the set

Γ0 := {z ∈ L∗C : 1 < Nz 6 N ′/N ; `(z)E−1 ∈ [0, 1)r; z1, . . . , zr1 > 0}

where norm Nz = N(z1, . . . , zdL) :=
∏

i zi. Recalling the definition of SK above

and noting that NTα = NL/Q(α) for α ∈ L∗, we see that

ωSK =
∑

α∈α0+fb
Tα∈PΓ0

e
(
h(N(αad))δ

)
.

Fix a Z-basis {α1, . . . , αdL} for the integral ideal fb that satisfies (2.2) and let

M be the invertible matrix whose rows are given by Tα1, . . . , TαdL . Since for

α ∈ α0 + fb, Tα can be written as Tα0 + nM for some unique n ∈ ZdL , we see

that ωSK =
∑

n∈ZdL f(n), where f : RdL → R is given by

f(x) =

{
e
(
D(N(x0 + xM))δ

)
if x0 + xM ∈ PΓ0,

0 otherwise,

x0 = Tα0, andD = h (N(ad))δ. Partitioning RdL into a disjoint union of translates

B of [0, Y )dL , where Y > 1 is an integer to be chosen later, we obtain∑
n∈ZdL

f(n) =
∑
B

∑
n∈B∩ZdL

f(n).

Note that the condition `(z)E−1 ∈ [0, 1)r in the definition of Γ0 above implies the

existence of positive constants c1 = c1(dL,∆L) and c2 = c2(dL,∆L) such that for

any α ∈ L∗ with Tα ∈ PΓ0 and any embedding τ of L, we have

c1P < |τα| < c2P. (3.7)
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Let R be the region {(z1, . . . , zdL) ∈ LR : c1P < |zi| < c2P}. Suppose that f is

not identically zero on B ∩ ZdL for some B. If x0 + BM is partially contained

in R then it must be intersecting the boundary of R. Thus, we see that the

contribution of such B to the sum
∑

n f(n) is O(Y P dL−1). For the rest of the

boxes B for which f(B∩ZdL) 6≡ 0, we necessarily have that x0 +BM ⊆ R. From

now on, we assume that B is such a box. By the arguments in §3.3, there exist

constants C1 = C1(k, dL,∆L), C2 = C2(k, dL,∆L) and a matrix U ∈ SL(dL,Z)

such that for N > C1, 1 6 Y 6 C2P and any x = (x1, . . . , xdL) ∈ BU−1, we have∣∣∣∣ ∂k∂xk1 gU(x)

∣∣∣∣ � P δdL−k and
∂λi
∂x1

(x)� P−1 (3.8)

where gU is given by (3.14), λi’s are determined by the condition `(x0 +xUM) =

(λ1(x), . . . , λr(x))E, and the implied constants depend on k (only if relevant) and

on dL and ∆L. After a change of variable we obtain∑
n∈B∩ZdL

f(n) =
∑

n∈BU−1∩ZdL

f(nU) =
∑

. . .
∑

(n2,...,ndL )∈ZdL

∑
n1∈Z

n∈BU−1∩ZdL

f(nU) (3.9)

where n = (n1, . . . , ndL). Since f(B ∩ ZdL) 6≡ 0 there is at least one tuple

(n2, . . . , ndL) such that f(nU) 6≡ 0 for n1 ∈ Z and n ∈ BU−1 ∩ ZdL . Fix such

a tuple. It follows from (3.8) with k = 1 that both λi’s and the norm function

are monotonic and thus there is an interval I = I(n2, . . . , ndL) of length at most

O(Y ) such that the function f(x;n2, . . . , ndL) 6= 0 for x ∈ I. We are now ready to

estimate (3.9). We shall do so in what follows using different methods according

to the size of the degree dL of the extension L/Q.

3.1.0.3 Vinogradov’s Method - Large degree

Assume that dL > 11. It follows from (3.8) that there exist positive constants

C3 = C3(dL,∆L) and C4 = C4(dL,∆L) such that

1

A0

6

∣∣∣∣ ∂dL+1

∂xdL+1
1

(DgU(x))

∣∣∣∣ 6 C4

A0

,

where

A0 =
P dL(1−δ)+1

C3D
=

N1−δ+1/dL

C3h (N(ad))1+1/dL
.
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Using (3.1) and (3.3) we see that

N1/dL−ε−(1+1/dL)(η+δ−1)

C3 (N(a))1+1/dL
< A0 6

P dL(1−δ)+1

C3 (N(a))δ
.

Therefore, assuming that η < 1/(1 + dL) and ε is sufficiently small it fol-

lows from Lemma 13 that for sufficiently large N , we have A0 > 1. Put

ρ = 1/(3dL
2 log(125dL)) and take

Y = A
1/((2+2/dL)(1−ρ))
0 . (3.10)

Using equation (3.4), the upper bound for A0 above and the inequality (1 +

1/dL)(1− ρ) > 1, we obtain for sufficiently large N that

A
1/(2+2/dL)
0 < Y 6 min (C2P,A0) . (3.11)

If the interval I in (3.9) satisfies

A
1/(2+2/dL)
0 � |I|,

we derive from (3.11) and [15, Theorem 2a, p. 109] that∑
n1∈I

n∈BU−1∩ZdL

e (DgU(n))� |I|1−ρ � Y 1−ρ.

For smaller intervals I, trivially estimating the sum yields a contribution� Y 1−ρ

due to the choice of Y in (3.10). Since the number of tuples (n2, . . . , ndL) ∈ ZdL−1

such that n ∈ BU−1 ∩ ZdL is O(Y dL−1) we obtain∑
n∈B∩ZdL

f(n)� Y dL−ρ.

Therefore, the contribution to the sum in (3.9) of those B for which f(B∩ZdL) 6≡ 0

and x0 +BM ⊆ R is� P dLY −ρ, and this is already larger than the contribution

from the rest of the boxes B.

Using (3.6) and partial summation and then summing over the ray classes K we

see that the sum∑
c

N/Nd<Nc6N ′/Nd

χ(c)e
(
h(Ncd)δ

)
logNc
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is

� N

Nd

(
N1−δ+1/dL

h(Nd)1+1/dL

)− ρ
(2+2/dL)(1−ρ)

logN

= N
1− ρ(1−δ+1/dL)

(2+2/dL)(1−ρ) (Nd)
ρ

2(1−ρ)−1h
ρ

(2+2/dL)(1−ρ) logN.

Finally, summing over ideals d with Nd 6 v by Lemma 11 and then summing

over h with h 6 H we obtain from (3.1) and (3.3) that∑
h6H

|S| � N
1− ρ(1−δ+1/dL)

(2+2/dL)(1−ρ)v
ρ

2(1−ρ)H
1+ ρ

(2+2/dL)(1−ρ) logN � N1+q+2ε

where

q =
1

2(1− ρ)

(
− ρ

dL + 1
+ (1− δ)(2− 3ρ) + ρη

)
.

Thus, assuming (3.4) and choosing

η

3
=

ρ

2(dL + 1)
=

1

6(dL + 1)dL
2 log(125dL)

(3.12)

we see that both (3.5) and the inequality q < 0 hold. We conclude that for

sufficiently large N and sufficiently small ε > 0,∑
h6H

|S2| � N exp(−D|∆K |−1/2
√

logN)

provided that dL > 11.

3.1.0.4 Van Der Corput’s Method - Small degree

By Lemma 4 and (3.8) we obtain∑
n1

n∈BU−1∩ZdL

e (DgU(n))� Y λ1/(2k+2−2) + Y 1−1/2k+1

+ Y 1−1/2k−1+1/22kλ−1/2k+1

where λ := DP dLδ−(k+2). Note that this bound is no better than the trivial

estimate unless λ < 1. Therefore, we shall require that η < 1/(dL + 1). With

this assumption, we obtain that for k > dL − 1, for sufficiently large N and
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sufficiently small ε > 0, both of the inequalities k+2 > dLδ and λ < 1 hold, since

by (3.1), (3.3) and (3.4) we have

λ = DP dLδ−(k+2) =
h(N(ad))δ

(N/(Nad))(k+2−dLδ)/dL

� HN δ

(N/v)(k+2)/dL

� N
1+ k+2

dL
(η+δ−2)+ε

.

We derive as before that the contribution from the boxes B for which f(B∩ZdL) 6≡
0 and x0 +BM ⊆ R is

� P dL
(
λ1/(2k+2−2) + Y −1/2k+1

+ Y −1/2k−1+1/22kλ−1/2k+1
)
,

while that from the rest of the boxes B is O(Y P dL−1). Combining these estimates

yields the bound SK � P dL
(
λ1/(2k+2−2) +G(Y )

)
, where

G(Y ) = Y −1/2k+1

+ Y −1/2k−1+1/22kλ−1/2k+1

+ Y P−1.

Using [4, Lemma 2.4] it follows that for some Y ∈ [1, C2P ],

G(Y )� P−1/(1+2k+1) +
(
P−1/2k−1+1/22kλ−1/2k+1

)1/(1+1/2k−1−1/22k)

+ P−1 + P−1/2k+1

+ λ−1/2k+1

P−1/2k−1+1/22k

� P−1/(1+2k+1) +
(
P−1/2k−1+1/22kλ−1/2k+1

)1/(1+1/2k−1−1/22k)

.

Note that in order to have P−1/2k−1+1/22kλ−1/2k+1
< 1 one needs that k < dL + 2,

which can be seen using (3.1), (3.3), (3.4), (3.6) and that η < 1/(dL + 1). Using

equation (3.6), the fact that λ = DP dLδ−(k+2) and partial summation we derive

that the sum

(logN)−1
∑
c

N/Nd<Nc6N ′/Nd

χ(c)e
(
h(Ncd)δ

)
logNc

is

� h1/(2k+2−2)N(d)
k+2

dL(2k+2−2)
−1
N

1+
dLδ−(k+2)

dL(2k+2−2)

+N
1+

1+2k−1(k−2−dLδ)
dL(22k+2k+1−1) (Nd)

− 1+2k−1(k−2)

dL(22k+2k+1−1)
−1
h
− 1

2k+1+4−21−k

+ (N/Nd)
1− 1

dL(1+2k+1) .
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Summing over ideals d with Nd 6 v, followed by summation over h 6 H yields

(logN)−1
∑
h6H

|S2| � H1+1/(2k+2−2)v
k+2

dL(2k+2−2)N
1+

dLδ−(k+2)

dL(2k+2−2)

+HN
1− 1

dL(1+2k+1)v
1

dL(1+2k+1) +N
1+

1+2k−1(k−2−dLδ)
dL(22k+2k+1−1) H

1− 1

2k+1+4−21−k

� N1+q1(k)+2ε +N1+q2(k)+ε +N1+q3(k)+ε

where, assuming (3.5), it follows that the exponents qi(k) satisfy

q1(k) = (1− δ)
(

1 +
1

2k+2 − 2

)
+ (δ − 1 + η)

k + 2

dL(2k+2 − 2)
+
dLδ − (k + 2)

dL(2k+2 − 2)

<
1

dL(2k+2 − 2)

(η
3

(
dL(2k+2 − 2) + 2k + 4

)
+ dL − k − 2

)
,

q2(k) = 1− δ − 1

dL(1 + 2k+1)
+ (δ − 1 + η)

1

dL(1 + 2k+1)

<
1

dL(1 + 2k+1)

(η
3

(
dL(1 + 2k+1) + 2

)
− 1
)
,

and

q3(k) =
1 + 2k−1(k − 2− dLδ)
dL(22k + 2k+1 − 1)

+ (1− δ)
(

1− 1

2k+1 + 4− 21−k

)
<

1 + 2k−1(k − 2− dL)

dL(22k + 2k+1 − 1)
+
η

3
.

Thus, for sufficiently small ε, the estimate
∑

h |S2| � N exp(−D|∆K |−1/2
√

logN)

holds provided that for 1 6 dL − 1 6 k 6 dL + 1,

η

3
= min

(
1

3(dL + 1) + ε
,

k + 2− dL
dL(2k+2 − 2) + 2k + 4

,

1

dL(1 + 2k+1) + 2
,
2k−1(dL + 2− k)− 1

dL(22k + 2k+1 − 1)

)
.

(3.13)

3.2 Conclusion of Theorem 2

Upon comparing (3.12) and (3.13) we conclude that for 2 6 dL < 11, the maxi-

mum value for η/3 (hence the widest range for δ) is obtained via Van Der Corput’s

Method when k = dL − 1 is substituted into the function

k + 2− dL
dL(2k+2 − 2) + 2k + 4

,
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while for dL > 11 one needs to use Vinogradov’s method; in this case, we obtain

η

3
=

1

6(dL + 1)dL
2 log(125dL)

.

With the above choice of η, the claimed range for c in Theorem 2 follows easily

from (3.4).

Remark 2. To estimate S2, one may also use [14, Lemma 6.12] for dL > 7, but

the result is worse than what we have already obtained.

3.3 Derivative of the Norm Function

In this section we prove some auxiliary Lemmas used in the estimate of S2.

Lemma 16. Let V ∈ GL(dL,R), n ∈ ZdL and x,u ∈ RdL. Put

gV (x) = |N(x0 + xVM)|δ, g̃u(t) = |N(x0 + nM + tuM)|δ. (3.14)

Then, for any k > 1,

∂kgV
∂xk1

∣∣∣
x=nV −1

=
dk

dtk
g̃V1(0) =

∑
· · ·
∑

i1,...,ik
16ij6dL

Di1 . . . DikF (x0 +nM)vi1 · · · vik (3.15)

where F (z1, . . . , zdL) =
∏dL

i=1 z
δ
i , Di = ∂

∂zi
, vi is the ith component of the vector

V1M and V1 is the first row of V .

Proof. The result easily follows by induction and chain rule for derivatives.

Lemma 17. Given a ∈ R, there exists v = v(a) ∈ RdL and a positive constant

c̃1 = c̃1(k, dL,∆L) such that for any k > 1,∣∣∣∣ dkdtk g̃(0)

∣∣∣∣ > c̃1P
δdL−k

where g̃(t) = |N(a + tvM)|δ.

Proof. Assume first that L has no real embeddings and that the first two coor-

dinates in LR correspond to conjugate embeddings. Write a = (a1, a2, . . . , adL)
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and take v(a) =
(
a1
|a1| ,

a2
|a2| , 0, . . . , 0

)
M−1. Note that a1 = a2 since a ∈ LR. Using

Lemma 16 with V1 = v and x0 + nM = a we see that

dk

dtk
g̃(0) =

∑
i1,...,ik

16ij6dL

Di1 . . . DikF (a)vi1 . . . vik

=
k∑
j=0

k!

j!(k − j)!
Dj

1D
k−j
2 F (a)

(
a1

|a1|

)j (
a2

|a2|

)k−j

=
k!F (a)

|a1|k
∑
j

(
δ

j

)(
δ

k − j

)
=
k!F (a)

|a1|k

(
2δ

k

)

where
(
δ
j

)
is the coefficient of xj in the Taylor series expansion of (1 + x)δ and

the last equality follows by writing (1 + x)2δ = (1 + x)δ · (1 + x)δ in two ways as

series and comparing the coefficients of xk. Since a ∈ R, c1P < |ai| < c2P for

each i. We thus obtain∣∣∣∣ dkdtk g̃(0)

∣∣∣∣ > cδdL1 c−k2 P δdL−kk!

∣∣∣∣
(

2δ

k

)∣∣∣∣.
If L has at least one real embedding, take v = (1, 0, . . . , 0)M−1. In this case,

Lemma 16 gives∣∣∣∣ dkdtk g̃(0)

∣∣∣∣ =
∣∣δ(δ − 1) · · · (δ − k + 1)F (a)a−k1

∣∣ > cδdL1 c−k2 P δdL−kk!

∣∣∣∣
(
δ

k

)∣∣∣∣.
Since δ ∈ (1/2, 1) and is fixed, we obtain the claimed lower bound.

Lemma 18. Given a = x0 + nM ∈ R where n ∈ ZdL, there exists a matrix

U ∈ SL(dL,Z) such that for any k > 1,

∂kgU(nU−1)

∂xk1
� P δdL−k, and

∂λi(nU
−1)

∂x1

� P−1 ∀i = 1, . . . , r

where gU is given by (3.15) and the implied constants depend on dL and ∆L, with

the first one also depending on k.

Proof. Using Lemma 17 we find a vector ṽ = (ṽ1, . . . , ṽdL) ∈ RdL . Put v = ṽM =

(v1, . . . , vdL). Suppose that for some Q > 0, there exists ũ = (ũ1, . . . , ũdL) ∈ ZdL
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such that |ũi − Qṽi| < 1. Put u = ũM and w = u − Qv = (w1, . . . , wdL). By

Lemma 16 we see that

dk

dtk
g̃ũ(0) =

∑
i1,...,ik

16ij6dL

Di1 . . . DikF (a)
k∏
l=1

(Qvil + wil)

=
∑
i1,...,ik

16ij6dL

Di1 . . . DikF (a)
(
Qkvi1 · · · vik +

k∑
l=1

Qk−lAl(v,w)
)

= Qk d
k

dtk
g̃ṽ(0) +

k∑
l=1

Qk−l
∑
i1,...,ik

16ij6dL

Di1 . . . DikF (a)Al(v,w).

Let’s write Di1 . . . DikF (a) by grouping the same indices as Dl1
j1
. . . Dlr

jr
F (a) with

ji’s distinct and
∑

i li = k. Since a ∈ R, c1P < |ai| < c2P for each i. Thus, we

have

|Dl1
j1
. . . Dlr

jr
F (a)| = |F (a)|

∏
i

|δ(δ − 1) · · · (δ − li + 1)|
|ai|li

6 (c2P )δdL
∏
i

|δ(δ − 1) · · · (δ − li + 1)|
(c1P )li

6 c3P
δdL−k

for some constant c3 = c3(k, dL,∆L) > 0. Owing to the way ṽ is constructed

in Lemma 17, each |vi| 6 1. Furthermore, each wi is bounded only in terms

of dL and ∆L. Therefore, there exists a constant c4 = c4(k, dL,∆L) such that

|Al(v,w)| 6 c4. We thus conclude from Lemma 17 that∣∣∣∣ dkdtk g̃ũ(0)

∣∣∣∣ > Qk

∣∣∣∣ dkdtk g̃ṽ(0)

∣∣∣∣− k∑
l=1

Qk−l

∣∣∣∣∣ ∑
i1,...,ik

16ij6dL

Di1 . . . DikF (a)Al(v,w)

∣∣∣∣∣
> P δdL−k

(
c̃1Q

k − Ck−1Q
k−1 − . . .− C1Q− C0

)
for some constants Ci = Ci(k, dL,∆L) > 0.

Next, let GU(x) = `(x0 +xUM)E−1. Note that λi(x) is the ith coordinate of this

function. Writing a = (a1, . . . , adL) and u = (u1, . . . , udL) we derive that

∂GU(x)

∂x1

∣∣∣
x=nU−1

=
(

Re
(u1

a1

)
, . . . ,Re

(ur
ar

))
E−1

where Re(z) denotes the real part of z. Recalling that ui = Qvi +wi we conclude

as before that∣∣∣∣∂λi(nU−1)

∂x1

∣∣∣∣ > P−1(C̃1Q− C̃0)
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for some positive constants C̃1 and C̃0 that depend only on dL and ∆L.

It follows that there exists a constant Q0 = Q0(k, dL,∆L) > 0 such that both

polynomials in Q above are positive for Q > Q0. If all the components of ṽ are

equal we fix some Q > Q0 and let ũ1 = dQṽ1e and ũi = bQṽ1c ( if any ũi turns

out to be zero, we can instead choose all ũi = 1). Otherwise, find the first index i0

such that |ṽi0| = maxi |ṽi| and choose Q = (p− 1/2)/|ṽi0|, where p is the smallest

prime > Q0|ṽi0|. Choose ũi0 = ±p depending on the sign of ṽi0 , and the rest of

the ũj’s as either the ceiling or the floor of Qṽj so that 0 < |ũj| < |ũi0| = p for

j 6= i0. In either case, we can find a vector ũ ∈ ZdL that satisfies |ũi − Qṽi| < 1

and that gcd(ũ1, . . . , ũdL) = 1. It follows from [11, Corollary II.1] that ũ then

can be completed to a matrix U ∈ SL(dL,Z) with ũ as the first row. Thus, the

claimed lower bound follows by noting that s

∂kgU(nU−1)

∂xk1
=

dk

dtk
g̃ũ(0)� P δdL−k.

Suppose now that x0 +nM ∈ PΓ0 for some n ∈ B ∩ZdL . It follows from Lemma

18 with a = x0 + nM that there exists a matrix U such that the inequality∣∣∣∣ ∂k∂xk1 gU(x)

∣∣∣∣ > c3P
δdL−k

holds for some positive constant c3 = c3(k, dL,∆L) where x = nU−1. If x′ is

any other point in BU−1 it follows from the Mean Value Theorem for integrals,

Lemma 16 and the fact that x0 +BM ⊆ R that

∂k

∂xk1
gU(x)− ∂k

∂xk1
gU(x′) =

∫ 1

0

d

dt

(
∂k

∂xk1
gU (tx + (1− t)x′)

)
dt

� Y P δdL−k−1

where the implied constant, say c4, depends on k, dL, and ∆L. In particular, it

does not depend on the choice of x′ ∈ BU−1. Thus, for any point x′ ∈ BU−1, the

lower bound∣∣∣∣ ∂k∂xk1 gU(x′)

∣∣∣∣ > c3

2
P δdL−k

holds provided that 1 6 Y 6 c3P/(2c4). This condition imposes a further restric-

tion on N ; namely, that N2−δ−η > Na(2c4/c3)dL . Assuming η < 1/dL and that
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Na is bounded (follows from Lemma 13), it follows that for sufficiently large N ,

and all x′ ∈ BU−1,

∂k

∂xk1
gU(x′) � P δdL−k

where the implied constants depend only on k, dL and ∆L provided 1 6 Y � P .

Using the same argument we can also show that λi’s are monotonic in the first

variable on BU−1.

32



Chapter 4

Proof of Theorem 1

By the definition of the conductor (cf. [10, Ch. VI - 6.3 and 6.4]), K f/K is

the smallest ray class field containing the abelian extension K/Q. Furthermore,

every ray class field over Q corresponds to a cyclotomic extension. In particular,

it follows from [10, Proposition 6.7] that there is an integer q such that f = (q)

and K f is the qth cyclotomic extension of Q.

Fix σ0 ∈ G and put A0 = {σ ∈ Gal(L/Q) : σ|K = σ0}, where σ|K is the restriction

of σ to K. Then, it follows from [6, Ch. 3, Property 2.4] that the set π(K, {σ0}) is

the disjoint union of the sets π(L, {σ}) for σ ∈ A0. Therefore, we conclude that

πc(K, {σ0}, x) =
∑
σ∈A0

πc(L, {σ}, x).

Since each σ ∈ A0 corresponds to some aσ ∈
(
Z/qZ

)∗
, we have πc(L, {σ}, x) =

πc(x; q, aσ), where the latter counts the Piatetski-Shapiro primes not exceeding x

that are congruent to aσ modulo q.

By Theorem 4 and partial summation, there exists an absolute constant D > 0

and a constant x0(f) such that for x > x0(f), we have∑
p6x

p≡aσ mod q

(
(p+ 1)δ − pδ

)
=

δ

ϕ(q)
li(xδ) +O

(
xδ exp(−D

√
log x)

)
where the implied constant is absolute. Furthermore, as in the proof of Theorem
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2, choosing H = N1−δ+ε we derive that the difference

πc(x; q, aσ)−
∑
p6x

p≡aσ mod q

(
(p+ 1)δ − pδ

)
is

�
∑

16N<x
N=2k

N δ−1 max
N ′∈(N,N1]

∑
h6H

∣∣∣∣∣ ∑
N<n6N ′

n≡aσ mod q

e(hnδ)Λ(n)

∣∣∣∣∣+ xδ exp(−D
√

log x)

where D is the same constant above. Thus, to finish the proof it suffices to show

that for any N ′ ∈ (N,N1],∑
h6H

∣∣∣∣∣ ∑
N<n6N ′

n≡aσ mod q

e(hnδ)Λ(n)

∣∣∣∣∣� N exp(−D
√

logN).

Using Lemma 2 with L = Q and assuming that v = u < N , we obtain∑
N<n6N ′

n≡aσ mod q

e(hnδ)Λ(n) = S1 + S2 + S3 + S4

where

S1 = −
∑

N<n6N ′
n≡aσ mod q

e(hnδ)
∑
n=cd
c,d>v

Λ(c)
∑
d=ab
b6v

µ(b),

S2 =
∑

N<n6N ′
n≡aσ mod q

e(hnδ)
∑
n=ab
b6v

µ(b) log a,

S3 = −
∑

N<n6N ′
n≡aσ mod q

e(hnδ)
∑
n=abc
b,c6v
bc6v

µ(b)Λ(c),

and

S4 = −
∑

N<n6N ′
n≡aσ mod q

e(hnδ)
∑
n=abc
b,c6v
bc>v

µ(b)Λ(c).

Using Dirichlet characters χ modulo q (for a concrete definition of Dirichlet char-

acters see [9, §4]) we obtain

S1 = − 1

ϕ(q)

∑
χ mod q

χ(aσ)
∑

N<cd6N ′
c,d>v

χ(d)

(∑
d=ab
b6v

µ(b)

)
χ(c)Λ(c)e(h(cd)δ),
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where ϕ is Euler’s totient function. By Lemma 6, we conclude as in the non-

abelian case that

N−4ε/3
∑
h

|S1| � N2−1/12−δ +N2−δv−1/2.

Similarly, applying Lemma 6 once again we conclude as we did for S1 above that

N−4ε/3
∑
h

|S3| � N2−δ−1/12 +N2−δv−1/2 +N3/2−δv.

To estimate S2, we use additive characters modulo q to obtain

S2 =
1

q

q−1∑
k=0

e(−kaσ/q)
∑
b6v

µ(b)
∑
a

N/b<a6N ′/b

e(f(a)) log a,

where f(x) = hbδxδ + kbx/q. Since |f ′′(x)| � hb2N δ−2 for N/b < x 6 N ′/b we

conclude by Lemma 5 that∑
a

N/b<a6N ′/b

e(h(ab)δ + kab/q)� N δ/2h1/2 + h−1/2b−1N1−δ/2.

Using partial summation and then summing over b 6 v followed by h 6 H we

obtain∑
h

|S2| �
(
N δ/2H3/2v +H1/2N1−δ/2

)
log2N � N3/2−δ+2εv.

Finally, as indicated in Theorem 2, S4 can be handled exactly the same way as

S2. Choosing v = N δ−1/2−3ε with a sufficiently small ε and combining all the

estimates obtained above we see that

∑
h6H

∣∣∣∣∣ ∑
N<n6N ′

n≡aσ mod q

e(hnδ)Λ(n)

∣∣∣∣∣� N exp(−D
√

logN),

as desired, provided that c ∈ (1, 12/11).

The proof of Theorem 1 is thus completed by noting that the number of elements

in A0 equals |Gal(L/K)| = ϕ(q)|∆K |−1.
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Chapter 5

Proof of Theorem 3

We start with a simple but useful lemma of which the proof of Theorem 3 is an

immediate corrollary.

Lemma 19. Let {cn}∞n=1 be a bounded sequence of complex numbers. Let c > 0

and 0 6 β < 1/4 be fixed. Then, for almost all δ ∈ (1/2 + 2β, 1) one has∑
n∈Ac(x)

cn = δ
∑
n≤x

cnn
δ−1 + o

(
xδ−βexp

(
−c
√

log x
))

. (5.1)

Here we note that Theorem 3 now follows by taking cn to be the indicator function

of the related set of primes either in Theorem 2 or in Theorem 1.

Proof of Lemma 19. Let A denote the subset of (1/2+2β, 1) for which (5.1) holds.

We shall prove that the complement of A has Lebesque measure zero. Note that

it is enough to work on the smaller interval

I = (1/2 + 2β + ε, 1)

for any ε > 0 fixed. Following the same methodology in Theorem 2, choosing

HN = N1−δ+βexp
(
c
√

logN
)

logN , we see that∑
n∈Ac(x)

cn − δ
∑
n≤x

cnn
δ−1

is
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� o
(
xδ−βexp

(
−c
√

log x
))

+ y

+
∑

y<N6x
N=2k

∑
16|h|6H

h−1

∣∣∣∣∣ ∑
N<n6N ′

e(hnδ)φh(n)cn

∣∣∣∣∣ (5.2)

where N ′ = min{2N, x}, and 1 6 y < x is an arbitrary number.

Put E = exp
(
c
√

logN
)

logN . Defining the sets

A(N) =

{
δ ∈ I :

∑
16|h|6H

h−1

∣∣∣∣∣ ∑
N<n6N ′

cne(hn
δ)φh(n)

∣∣∣∣∣ > N δ−βE−1

}
,

we observe that

I \
⋃

y<N6x

A(N) ⊆ A ∩ I.

Thus, it is sufficient to show that for arbitrary y > 1,∑
N=2l>y

µ(A(N))�S y−ε (5.3)

where µ denotes the Lebesque measure.

Observe that

µ(A(N)) < N2β−2δE2

∫
I

 ∑
16|h|6H

h−1

∣∣∣∣∣ ∑
N<n6N ′

cne(hn
δ)φh(n)

∣∣∣∣∣
2

dδ.

The bounds φh(x)� hxδ−1 and δ > 1/2 + 2β + ε, together with a proper use of

Cauchy-Schwartz inequality yield

µ(A(N))� N−2εE3 +N3β−1−δE3
∑
h

∑
m,n
m>n

∣∣∣∣ ∫
I
e(h(mδ − nδ))dδ

∣∣∣∣.
We set m = n+ q for some q, to derive∑

h

∑
m,n
m>n

∣∣∣∣ ∫
I
e(h(mδ − nδ))dδ

∣∣∣∣ =
∑
h

∑
n

∑
16q6N−n

∣∣∣∣ ∫
I
e(h((n+ q)δ − nδ))dδ

∣∣∣∣.
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Using Lemma 7, one gets∫
I
e(h((n+ q)δ − nδ))dδ � 1

q|h|N δ logN
,

and thus

µ(A(N))� N−ε.

Setting N = 2k and summing over k, we arrive at (5.3), hence Lemma 19 follows.
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