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ABSTRACT

BI-OBJECTIVE OPTIMIZATION OF
GRID-CONNECTED DECENTRALIZED ENERGY

SYSTEMS

Onur Altıntaş

M.S. in Industrial Engineering

Advisor: Özlem Karsu, Ayşe Selin Kocaman (Co-advisor)

July 2016

We present a bi-objective two stage stochastic programming model for optimal

sizing of a grid-connected hybrid renewable energy system. In this system, solar

and wind are the main electricity generation resources. National grid is assumed

to be a carbon-intense alternative to renewables and used as a backup source

to ensure reliability. Storage device is included to examine its role in reducing

the carbon emission and the intermittency of renewable sources. It is assumed

that decision maker is sensitive to both cost and carbon emission, therefore two

objectives are considered: total cost and carbon emission caused by electricity

purchased from the utility grid. A simulation optimization algorithm has been

developed for the problem.

Keywords: Multi-objective Optimization, Simulation, Renewable Energy Sys-

tems, CO2 emission, Stochastic Mixed Integer Programming.
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ÖZET

ŞEBEKEYE BAĞLI MERKEZİ OLMAYAN ENERJİ
SİSTEMLERİNİN İKİ AMAÇLI OPTİMİZASYONU

Onur Altıntaş

Endüstri Mühendisliği, Yüksek Lisans

Tez Danışmanı: Özlem Karsu, Ayşe Selin Kocaman

Temmuz 2016

Bu çalışmada şebekeye bağlı, hibrit yenilenebilir enerji sisteminin iki amaçlı-iki

aşamalı rassal modellemesi sunulmaktadır. Bu sistemde başlıca temiz enerji kay-

nakları güneş ve rüzgardır. Elektrik şebekesi karbon yoğunluğu fazla olan bir al-

ternatif olarak değerlendirilmekle birlikte, sistemin güvenilirliği için gerektiğinde

yedek kaynak görevini üstlenmektedir. Karbon salınımı ve yenilenebilir enerji

kaynaklarının aralıklılığını azaltmadaki rolünü incelemek için batarya hücreleri

sisteme dahil edilmiştir. Bahsedilen sistemde karar vericinin hem maliyet hem

de karbon salınımı konusunda hassas olduğu varsayılarak iki amaç göz önüne

alınmıştır: Toplam maliyet ve şebekeden satın alınan elektriğin karbon salınımı.

Problemin çözümü için yeni bir benzetim en iyileme algoritması geliştirilmiştir.

Anahtar sözcükler : Çok Amaçlı Eniyileme, Benzetim, Yenilenebilir Enerji Sis-

temleri, CO2 salınımı, Rassal Karma Tamsayılı Programlama.
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Chapter 1

Introduction

Global warming has become not only one of the most concerning issues of the 21st

century but also will be the issue of the following centuries. It is known that the

main reason of global warming is the increase in greenhouse gases emissions. The

latest Intergovernmental Panel on Climate Change (IPCC) report in 2013 asserted

that it is extremely likely that the human influence has been the dominant cause of

the observed warming since the mid-20th century [1]. Fossil fuel use, deforestation,

biomass burning, fertilizer use and land clearing are some of the human activities

that emit key greenhouse gases. Among all greenhouse gases, carbon dioxide

(CO2) is the most effective driver of global warming. Even though other gases

have more potent heat-trapping ability compared to CO2, rate of increase in

CO2 emission is higher than any other human caused greenhouse gases. Also,

CO2 can last for centuries in the atmosphere, which means that even if human

caused emission could be stabilized today, Earth would continue to warm for

centuries because of the CO2 residual in the atmosphere [2]. Since Industrial

Revolution, human related activities, especially fossil fuel usage, have raised CO2

levels from 280 parts per million (ppm) to 400 parts per million [3]. According to

National Oceanic and Atmospheric Administration (NOAA), the rate of increase

has accelerated, since first measurements on CO2 level were taken, from 0.7 ppm

to 2.1 ppm per year within last 10 years [4]. Unless immediate precuations are

taken to diminish the effect of global warming, greenhouse effect will cause further
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warming and irreversible changes in climate system [5].

In 1992, United Nations Framework Convention on Climate Change (UN-

FCCC) was held in order to discuss possible ways of preventing global warm-

ing and increasing awareness on climate change. In this convention, any binding

goal for stabilizing greenhouse gases emission has not been set. However, it still

disclosed the necessity of intervention. Even though developed countries were op-

posed to any intervention that might jeopardize their economies, 196 developed

countries agreed on Kyoto Protocol in 1997. With this treaty, countries had an

individual cap on emission on the greenhouse gases. Each country has to cut its

greenhouse gas emission by 8-10%. It was anticipated that this initiative would

provide a total decrease of 5% in greenhouse gases emission [6].

There are three main emission reduction mechanisms utilized in Kyoto Pro-

tocol, which are Carbon Pricing, the Clean Development Mechanism (CDM)

and Joint Implementation. Carbon pricing is the method in which emitters are

obliged to pay the price for the right of emitting one tonne of CO2 into the at-

mosphere [3]. Carbon prices are determined by either commitment on price of

carbon or commitment on emission limit (i.e. quota on emission).

Quota on emission mechanism, called cap-and-trade or emission trading, was

constructed on an international scale in Kyoto Protocol. Afterwards, countries

implemented this mechanism nationwide to satisfy their portion in the protocol.

It works in a way that companies, which can stay below that quota can sell their

surplus allowance to other companies, which need more allowance. In such a

system, the price of unit carbon emission is variable. As a result of this, it creates

a new open market for carbon emission where prices are determined accordingly.

In short supply of allowance, carbon price of permits will be high. This way,

companies are motivated to decrease their emission levels to benefit from selling

surplus allowance.

Another commonly used mechanism is carbon tax. In this system, carbon

prices are determined by authorities in advance; therefore there is no uncertainty

on the price and it is directly linked to carbon emission. In principle, all sources of
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carbon emission are taxed depending on proportion of carbon they possess. The

carbon price is a sign for economy to adjust itself to projected emission level.

Hence, projected emission level can be obtained imprecisely compared to cap-

and-trade policy [7]. Implementation of carbon pricing policies has a significant

effect on energy sector to shift electricity production on renewable resources. In

cap-and-trade system, renewable energy generators can take advantage of the

high carbon prices. In carbon tax, green energy producers are promoted by tax

deduction and elevated sale price for generated electricity.

Burning fossil fuels constitute about 90% of human produced CO2 emissions

[8]. In the United States, electricity and heat generation sector, which is the

largest source of the U.S. greenhouse gas emission, is accounted for 30% of the

total carbon dioxide emission [9]. The reason of this high carbon emission rate is

that electricity generation mostly depends on centralized energy systems, which

use fossil fuels as primary energy resource. Centralized energy systems are based

on centralized network of electricity generation and distribution. In such a system,

electricity is produced in large-scale (thermal power) plants and distributed to

end user. If we consider the growth of the world population, we can foresee

that need for electricity will increase rapidly. Ravindranath and Sathaye, assert

that greenhouse gas mitigation can be reduced to a large extent if we make

appropriate shifts towards energy efficient technologies and substitute fossil fuel

with renewable energy resources [10].

In this regard, most countries promote decentralized systems, which rely on

renewable resources in order to decrease carbon emission levels and their depen-

dence to depleting fossil fuel reserves. From the end of 2004, capacity of decen-

tralized systems grew at rates of 10-60% annually. In 2010, a third of the recently

built power generation systems is constituted by decentralized systems [11]. De-

centralized systems mostly have to be located in areas where renewable sources

are available. Such systems can be either grid-connected or stand-alone.

Stand-alone systems are mostly located in remote places where grid network

cannot penetrate. These systems have drawbacks such as low generation capacity

due to intermittency of renewable resources, energy spillage due to low energy

3



storage capacity and high storage costs. On the other hand, grid-connected de-

centralized systems can be built in large-scales as they are connected to the main

grid network. Such systems must be close to the grid in order to be connected

with the network. This connection enables system to purchase electricity from

grid network when renewable energy is not sufficient enough to meet the demand.

In other words, in decentralized grid-connected system, grid acts like storage de-

vice with unlimited capacity [12]. Moreover, such systems can feed electricity to

grid. In this way, loss of energy due to spillage is eliminated.

There are different renewable energy resources that can be utilized to de-

crease carbon emission level. They include hydropower, solar energy, wind power,

biomass, biofuel, tidal power, geothermal and wave power. Wind, solar and

hydroelectricity are emerging renewable resources. For wind power and many

other renewable technologies, the capacity growth accelerated in 2009 relative to

the previous four years [13]. More wind power capacity was added during 2009

than any other renewable technology. However, grid-connected PV increased the

fastest of all renewables technologies, with a 60% annual average growth rate [13].

All of these advancements demonstrate that there is a trend in investments on

renewable energy systems, especially on wind and solar power systems.

One of the main obstacles of shifting to renewable energy systems is that

these resources have intermittent availabilities. Due to intermittency, storage

systems should be used along with the renewable energy system. In the current

state of technology, these energy systems based on renewable resources have high

installation costs and variable generation due to stochastic nature of availability.

Therefore, the generated electricity has high costs, although it is based on clean

energy production. The electricity that is supplied by the grid is often produced

in large-scale thermal power plants using the advantages of economies of scale

and hence is less costly to use. However, since it is generated using fossil fuels, it

is associated with high levels of CO2 emission and thus harms the environment.

Policy makers and energy investors will have to make decisions on how an

envisaged energy system will satisfy demand; using either fossil fuel resources,

which are less expensive but associated with high CO2 emission or renewable
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resources with high investment cost and low carbon emission. As decentralized

systems are considered, demand satisfaction can rely on partly fossil fuels and

partly renewable resources depending on the scale of the system. High investment

amount on renewables has potential to produce more green electricity and this

mitigates the need of electricity purchased from the grid. However, the investment

decision is a complex one since multiple factors should be considered such as

availability of renewable resources, component types and carbon pricing. This

complexity reveals the need for a decision support system that determines the

scale of the energy production facilities.

Motivated by the interest in shifting from fossil fuel to renewable resources

to mitigate emissions, in this thesis, we investigate optimal sizing decision of

grid-connected decentralized system. The main aim of this study is to model

grid-connected decentralized system in a realistic way so that decision makers

can gain insight about scale of the system that they plan to build. In our setting,

we assume that decision maker is both sensitive to cost and carbon emission.

Therefore, we take into account the multiple criteria that the decision maker will

be considering when making his decision and would allow him to see the tradeoff

between cost and CO2 emission levels.

The rest of this thesis is organized as follows: In Chapter 2, we review the

literature of grid-connected and stand-alone decentralized energy systems and

the solution methodologies used for infrastructure planning problems of such

systems. In Chapter 3, we introduce our problem setting in detail. In Chapter 4,

we present a bi-objective two-stage stochastic programming model of the system

along with its single scenario and multi scenario analysis. In Chapter 5, we

propose a simulation optimization algorithm and discuss its performance. The

final chapter, Chapter 6, includes the concluding remarks.
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Chapter 2

Literature Review

In this chapter, studies on decentralized energy systems will be reviewed. Also,

solution methodologies applied on the sizing problem of such systems will be

discussed.

With the awareness of global warming, the interest in decentralized energy

systems which mostly work with renewable energy sources has increased in the

literature. Jebaraj and Iniyan [14] and Hiremath et al. [15] have published re-

views on energy models in general and decentralized energy planning models and

their applications respectively. Most of the decentralized energy systems include

more than one type of energy resource and these systems are called hybrid en-

ergy systems. Hybrid energy systems can consist of alternative sources such as

renewables, conventional sources such as coal, natural gas or diesel generator and

energy storage components such as battery bank or fuel cells. Although each of

these components has some drawbacks individually, these can be alleviated by

the strength of another energy source so that using both or multiple of them gives

much reliable output. To illustrate, despite the unpredictable availability of al-

ternative energy sources like solar and wind, usually, they present complementary

patterns [16].

Kaundinya et al. [12] have reviewed stand-alone (SA) and grid-connected
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(GC) decentralized systems and investigated their operational differences. Grid-

connected decentralized systems and stand-alone decentralized systems are stud-

ied from various perspectives. Different solution approaches such as mathematical

programming, optimization and simulation are commonly utilized in decentral-

ized system modelling problems [17]. While modelling a decentralized system,

there are lots of decision variables that have to be considered. This increases the

computational effort to solve these problems as a result, the popularity of heuristic

and metaheuristic solution approaches increases. Genetic algorithm (GA), par-

ticle swarm optimization (PSO) are the evolutionary algorithms that are mostly

utilized in the literature both for single objective and multi-objective problems.

Genetic algorithm (GA) is an optimization method, which is inspired by the

genetic process of biological organisms [18]. Complex real life problems can be

solved by imitating this process. The main advantage of GA is that it can easily

find a local optimum and is capable of finding the global optimum. This algorithm

is one of the most suitable algorithms for optimal sizing problems, since it is

suitable for coding almost infinite number of parameters. On the other hand,

this algorithm is hard to implement due to its complexity. Also, the computation

time of this algorithm increases significantly by the increase in the number of

parameters.

Particle swarm optimization (PSO) is an optimization technique inspired by

the social behavior of fish schooling or birds flocking. Particle swarm is the

system model or social structure of basic creature which makes a group to have

some purpose such as food searching. PSO has an advantage over GA, since it

can be coded with few equations and it is easy to implement. Therefore, the

computation time is short and it requires few memory [19]. On the other hand,

only less than three objectives can easily be modeled with this technique. Also,

it is more difficult to obtain global optimum solution by using PSO. It is hard to

code PSO for more than three objectives. Multi-objective version of this method

(MOPSO) is also commonly used.

The summary of the literature review can be found in Table 2.1.
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In general, decentralized energy systems are divided into two categories based

on their extent [12]. Depending on the area of interest, these systems can be either

stand-alone or grid-connected. Stand-alone (SA) systems are more preferred when

demand point is isolated and grid cannot penetrate. For such locations, renewable

energy systems can be preferable. These systems are not connected to the grid

and as a result of this, they require storage devices to store energy for future use

when demand exceeds the production. Due to the intermittency of renewable

resources, high storage capacities may be required. It is possible to operate

such systems with relatively small storage units however, in this case, excess

energy cannot be used to satisfy future demand and has to be spilled. As a

result, local demand determines both the production and storage capacity of

a stand-alone system. Most of the papers on hybrid renewable energy system

(HRES) design and optimization are focused on stand-alone HRESs [20–36] rather

than grid-connected systems [37–45]. These studies are conducted on stand-alone

decentralized systems, which consist of one or more renewable energy system

components such as wind turbine generators, solar panels, battery cells, diesel

generators, hydro and biomass power plant and fuel cells.

In Xu et al. [20], optimal sizing of stand-alone hybrid wind and power systems

were modeled using genetic algorithms. In this model, the total capital cost was

minimized while loss of power supply probability was bounded by a limit. Time

horizon was taken as one year with one hour time step. Genetic algorithm (GA)

was used to solve the model and their studies proved that GA converges well.

Koutroulis et al. [21] worked on designing a stand-alone hybrid system with

solar panels, wind turbines and batteries with the objective of minimizing total

cost. The main purpose of the model was to present the optimal system config-

uration among a list of commercially available system devices. The model was

solved using genetic algorithm. The proposed method was applied to residential

household and the result showed that using solar and wind resources together

leads to lower system cost compared to exclusive usage of one energy source.

Senjyu et al. [22] presented optimal configuration fo power generating systems

in isolated island with renewable energy. The system consists of solar panels,
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wind turbine generators, batteries and diesel generators. The proposed method

was used to determine the optimum number of panels, wind turbine generators

and batteries. Using this method, operational costs could be decreased by 10

percent compared to cost generated when local demand is satisfied by only diesel

generators.

Yang et al. [23] studied the design of stand-alone energy systems, which consist

of solar, wind and battery cells. Required loss of power supply probability (LPSP)

was also taken into account while minimizing the annualized cost of the system.

Genetic algorithm was used to find the optimal configuration.

Kaviani et al. [24] proposed a study which analyzes an optimal design of stand-

alone hybrid renewable energy system with component outages. There were three

major components of the system, which are solar panels, wind turbine generators

and fuel cells. In this study, solar radiation, wind speed, and demand data were

assumed to be entirely deterministic. An advanced variation of Particle Swarm

Optimization algorithm is used to minimize annualized system cost. As a result

of this study, it was observed that the reliability of the AC/DC converter is an

upper limit for the system’s reliability.

Belfkira et al. [25] presented a sizing optimization method for a stand-alone

hybrid wind-solar-diesel energy system. A deterministic global optimization al-

gorithm (DIRECT) [46] was used to minimize the total system cost while guaran-

teeing the availability of the energy. A comparison between the total cost of the

hybrid system with and without batteries was represented. The results revealed

the positive impact of battery storage on total cost.

Kaabeche and Ibtiouen [26] studied on a stand-alone system setting where local

demand must be totally met. They tried to optimize the capacity sizes of stand-

alone systems with different components such as solar panels, wind turbines,

battery units and diesel generators. The objective of the study was to determine

the optimal configuration based on minimization of cost. As a result of the study,

they found out that a stand-alone system with solar/wind/diesel and battery

is more economically viable compared to solar/wind/battery system or diesel
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generator only.

Askarzadesh and dos Santos Coelho [27] developed a model for a stand-alone

system that determines three decision variables, namely, total area occupied by

solar panels, total swept area of wind turbine blades and the number of batteries.

Optimal values for these variables were found using PSO and some of its variants

were proposed.

Ekren and Ekren [28] used simulated annealing method for optimization of a

hybrid system with solar panels, wind turbines and battery storage. Simulated

annealing is a heuristic approach that uses stochastic gradient search approach for

optimization. The probabilistic distribution functions for solar radiation, wind

speed and electricity demand were fitted for each hour of a day employing ARENA

simulation software. The objective function was minimizing the total energy cost

and decision variables are the solar panel area, wind turbine rotor swept area and

battery capacity. A case study was presented for a campus area. Results from

simulated annealing were compared with the results of their earlier study which

were based on the Response Surface Methodology (RSM) [47] and it was shown

that simulated annealing performs better than RSM.

Bashir and Sadeh [29] highlighted the importance of uncertainty of wind and

solar resources for capacity sizing problem. They developed an algorithm to de-

termine the capacity of the system with wind turbine, solar panel and battery

while meeting a certain load. The objective was minimizing the cost while en-

suring that a predetermined reliability level is satisfied. Their proposed method

considered uncertainty in energy generation. The uncertainty in wind and solar

power generation was assessed using the Monte Carlo simulation technique. The

particle swarm optimization method was exploited to find the optimal component

sizes.

One of the most commonly used methods in the field of energy planning, is

Strength Pareto Evolutionary Algorithm (SPEA). This method was applied to a

stand-alone hybrid system for the first time by Bernal-Agustin et al. [30]. The
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problem that they studied was bi-objective, in which the objectives were minimiz-

ing the total cost and the pollutant emissions respectively. The hybrid system to

be designed includes photovoltaic panels, wind turbines and diesel generators. In

2008, Dufo-Lopez and Bernal-Agustin [31] used the same evolutionary algorithm

along with a genetic algorithm (GA) as a solution approach. Three objectives are

simultaneously minimized which are total cost, pollutant emissions and unmet

load. In the study, SPEA was utilized to organize the components of the system.

The secondary algorithm was a GA that determines the control strategy.

Katsigiannis et al. [32] used the NSGA-II multi-objective algorithm to design

a system which consists of solar panels, wind turbines, fuel cells, diesel genera-

tors and batteries. There are two objectives considered in the study which are

minimization of cost of energy and greenhouse gas (GHG) emission. The re-

sults of numerical study showed that solar-wind-battery is the most attractive

combination in terms of cost and environmental standpoint.

Zhao et al. [33] proposed an optimal unit sizing method for stand-alone sys-

tems, which consist of solar panels, wind turbines, battery storage units and diesel

generators. The proposed method is based on genetic algorithm. Three objectives

are considered, which are the minimization of life-cycle cost, the maximization of

renewable energy source penetration and the minimization of pollutant emissions.

In this study, component sizes and operation strategy are optimized jointly.

Sharafi and ELMekkawy [34] combined a multi-objective optimization method

(PSO algorithm) with a simulation tool which works like ε-constraint. This hybrid

method was used to model the renewable system consisting of wind turbine,

solar, diesel generator, batteries, fuel cell and hydrogen tank. The ε-constraint

method has been applied to minimize the total cost of the system, unmet load

and fuel emission. Also, PSO-simulation based method has been used to generate

non-dominated design solutions. A sensitivity analysis was conducted to see

the impact of reduced lifetime of batteries on system cost. Then, Sharafi and

ELMekkawy [35] proposed a dynamic multi-objective particle swarm optimization

(DMOPSO) method and compared the results of both methods.
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Maheri [36] developed a multi-objective optimization method for design under

uncertainty of a stand-alone wind-solar-diesel hybrid system. The probabilistic

analysis was used to quantify the system reliability since there are uncertainties in

the availability of renewable resources and electricity demand. The uncertainties

were tackled by fitting uniform distribution functions to all random parameters.

The proposed method consists of two algorithms. One of them was used to find

most reliable system under cost constraint. Another one is the most cost-effective

system under reliability constraint.

Grid-connected (GC) systems are more flexible compared to stand-alone sys-

tems. In GC systems the ineraction with the grid is in both directions: excess

electricity can be fed to the grid, also, in case of shortage to satisfy local demand,

electricity can be purchased from the grid. Correspondingly, a grid-connected

decentralized system can be utilized in two different ways. A GC system can

be used to meet local demand using renewable energy. In such cases, the system

does not have to rely on storage units to meet the local demand. When renewable

resources are unavailable, grid electricity can be purchased to meet the demand.

Therefore, there might not be a motivation to use a storage unit. Another way of

operating the grid-connected system is generating and feeding electricity to the

grid in the same way as large electricity power plants without paying attention

to local demand. Therefore, the scale of the GC decentralized system can be

independent from the local demand.

Ardakani et al. [37] proposed a grid-connected hybrid solar/wind energy system

with battery units. PSO algorithm was used to find the optimal sizing of system

components whilst minimizing the total cost. They modeled the problem in a

deterministic way and left investigation of uncertainty as future work.

A technical and economic model for the design of a grid-connected solar-battery

system is proposed by Bortolini et al. [38]. The local demand is satisfied using

solar energy and the national grid is utilized as backup source in the setting. The

purpose of this study is to analyze the proposed model, which determines optimal

rated power for solar panels along with storage capacity at minimum levelized

cost of energy. Several scenarios were tested for different solar rated power and
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capacity of batteries. As a result of this study, with optimal configuration, lev-

elized energy cost can be reduced about 24.5% compared to the grid electricity

price.

The study by González et al. [39] focused on the optimal sizing of hybrid grid-

connected solarwind power systems and genetic algorithm was used as a solution

methodology. The importance of using real hourly wind and solar irradiation

data and electricity demand is highlighted in the paper. They also utilized real

data of a rural township in Catalonia, Spain. The results suggest that integration

of HRES can save up to 40% of present cost structure throughout the next 25

years.

Kuznia et al. [40] proposed a two-stage stochastic mixed integer programming

model for a hybrid power system design, with wind turbines, storage device,

transmission network, and thermal generators. They used Benders’ decomposi-

tion algorithm to find a set of solutions. They assume that the circulation of

energy in storage device is one day. This assumption eases the problem however,

causes the importance of supply shifting to be neglected.

A methodology has been proposed by Chedid and Rahman [41] which finds the

optimal design of a decentralized system whose electricity generation depends on

solar and wind resources. Storage devices and diesel generators are also utilized

in the system as backup sources. In this study, they analyzed both stand-alone

(autonomous) and grid-connected versions of the system. The proposed analysis

employs linear programming techniques to minimize the average production cost

of electricity and takes environmental factors into consideration both in the design

and operation phases.

Wang and Singh [42] proposed a multi-criteria design setting of grid-connected

hybrid renewable energy system. This system consists of solar panels, wind tur-

bines and battery units with connection to the grid. In this setting, differently,

generated excess electricity cannot be fed back to the grid rather it has to be

spilled, which hinders the system to have large component sizes. Three con-

flicting objectives were considered in this problem, which are minimizing cost,
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emission and maximizing reliability (ratio of meeting demand by renewables) of

the system. A multi-objective particle swarm optimization (MOPSO) algorithm

has been developed and used to derive a set of non-dominated solutions.

Perera et al. [43] proposed a multi-objective optimization technique to deter-

mine the optimal design of grid-connected hybrid solar-wind energy system with

storage. Steady state ε-Multi objective optimization [48] was used as the multi-

objective optimization technique which is based ε-dominance method [49]. This

technique was utilized to find optimal component sizes with minimum levelized

energy cost and level of grid integration. Sensitivity analysis was conducted for

cost of component and cost of grid electricity. Results obtained from the multi-

objective optimization shows that levelized energy cost decreases when moving

from stand-alone mode to grid-connected mode.

Sharafi et al. [44] proposed a simulation based DMOPSO model for optimal

sizing of a grid-connected hybrid renewable energy system for residential build-

ings. Three objective functions, which are minimizing total net present cost and

CO2 emission, were utilized. The system consists of a heat pump, a biomass

boiler, wind turbines, solar heat collectors, solar panels and a heat storage tank.

Also, plug-in electric vehicles were included in the system so that vehicles could

be charged using renewable energy. Proposed model was applied on an existing

residential apartment in Canada and results are compared against two multi-

objective optimization algorithms, which are multi-objective GA and MOPSO.

Quality of Pareto front was analyzed and sensitivity analysis on parameters was

performed to investigate their impact on net present cost. In this work, uncer-

tainty in renewable resource availability was not taken into account.

Sharafi and ElMekkawy [45] included stochasticity of renewable resources and

variability in demand to the system which they proposed in [44]. Simulation

module, DMOPSO algorithm and sampling average technique were utilized to

approximate a Pareto front. Three objectives were utilized which are maximizing

renewable energy ratio, minimizing total net present cost and fuel emission. Also,

loss of load probability was taken into consideration. Randomness was incorpo-

rated in parameters were generated using synthetic data generation techniques.
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Stochastic and deterministic Pareto fronts were compared and sensitivity analysis

was conducted.

Decentralized system design projects involve multi-objectives that are con-

flicting with each other such as cost and pollution minimization. There are some

studies which consider these trade-offs and use multi-objective metaheuristics

such as MOPSO, SPEA and GA to solve their problems [30–35,41,42].

In recent years, there is a growing interest in the field of renewable energy sys-

tems. Due to the variability and intermittency of renewable resources, modelling

systems with renewable resources is a challenging task. Therefore, in most of

the optimal design of decentralized energy system model, intermittent resources

like wind and solar are modeled using hourly average values for their availabil-

ities [20, 21, 24–26, 30–35, 41–44]. Representing intermittent sources with their

average availabilities cause to overstate their value and they are considered as if

they are incredibly productive [50, 51]. Also, the variability and trend in their

availabilities cannot be captured by averages. Therefore, there is no way to gain

valuable and realistic insights from models that use average values for intermittent

sources.

Some studies in literature do not include uncertainty of these resources. These

studies mostly use one year of hourly data to capture seasonality and trends in

resource availabilities [22,23,27,33,37–39,45].

Additionally, Bashir and Sadeh stated [29] that considering uncertainty in re-

newable energy generation will create a more realistic view of reliability and cost.

Powell et al. highlights the importance of modelling uncertainty of renewable

resources and clarifies the problems that are commonly encountered while mod-

elling uncertainty by giving examples [50]. Bashir and Sadeh determined the best

probability density function for wind and solar resource availabilities every two-

hour data. Also, Ekren and Ekren [28] fitted random distribution to availabilities

for each hour of the months. They both utilized these probability distributions

to sample random parameters and used them in their simulation models. When
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simulation is run several times, they were able to analyze the outputs statisti-

cally. Each data point in resource availability data is correlated with an another

one. This kind of approach, however, causes each data point in time series to be

independent from each other.

In Kuznia et al. [40], the optimal design problem was modeled using two-stage

stochastic mixed integer programming. Due to the complexity of the problem,

one year of wind speed data was decomposed into a set of seasons where wind

speed can be considered constant. Then, the problem was solved using the variant

of Benders’ decomposition method. Even in this case, real life decision making

process cannot be captured because mathematical model was able to see future

within a spesific scenario [50].

In Sharafi and ElMekkawy [45], multi-objective nature of the problem and

stochasticity of renewable resources were considered in their setting. Addition-

ally, they utilized simulation module to mimic real-life decisions. Optimal design

decisions were made using a meta-heuristic algorithm (DMOPSO). The stochas-

ticity of renewables were handled using sampling average method.

To sum up, the two aspects that make these optimal design problem complex

(multi-objective nature and stochastic nature) should be considered in order to

obtain more realistic results. Yet, to the best of our knowledge, there is only one

study [45] in the literature that consider a multi-objective design problem of a

grid-connected decentralied energy system while handling uncertainty related to

renewable resources. This thesis aims to contribute the literature by focusing on

bi-objective optimization of grid-connected decentralized energy systems where

renewable resource availabilities are assumed to be uncertain.
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Chapter 3

Problem Definition

There is a global trend of shifting electricity generation from fossil fuel dependent

systems to renewable systems. However, the investment decisions on renewable

systems are complex decisions due to challenges such as high costs of generating

renewable energy and intermittency of renewables. For a carbon sensitive decision

maker, this investment decision is even harder since the scale of the renewable

system not only affects cost but also affects the level of carbon emission.

On one hand, there is the option of relying fully on fossil fuel based energy, i.e.

electricity from the grid, which incurs less cost but results in high emission. On

the other hand, there is another option of making high investment in renewables,

which is ideal for emission minimization. It is acknowledged that there will be

intermediate solutions between these two extreme solutions. In these intermediate

solutions, demand satisfaction will rely partly on renewables and partly on the

grid. Depending on the scale of the decentralized system, the same demand level

can be satisfied with different amount of carbon emissions at different system

costs. Therefore, this problem requires a decision support system which is based

on optimization model to determine investment amount. Also, this model should

incorporate multiple criteria that a carbon-sensitive investor will be considering

when making his decisions, namely cost and emission.
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In this study, we consider a framework in which a decision maker plans to invest

in a decentralized system where the demand point (such as a village, a campus)

is already connected to the grid network, which is assumed to supply carbon-

intense energy at a low price. The projected decentralized system is a hybrid

renewable energy system which consists of solar and wind power systems and a

storage device. Combination of renewable energy resources and a storage device

reduces the effect of intermittency while increasing the reliability of the system.

For wind power generation, three different wind turbine types are available for

investment in our problem. These turbines have different costs and rated powers,

and investors can either invest in one or multiple types. For solar power generation

and storage systems, we do not explicitly specify the technology used, rather we

simply model them as generic units. In this way, our setting can be utilized along

with any type of technology. We assume linear cost functions for the solar power

generation and storage devices (i.e. the cost of unit size of these components is

constant).

Hybrid renewable energy system (HRES) can be used either to satisfy local

demand or to make profit by selling green energy to the grid at elevated prices.

In this study we assume that the decision maker is carbon sensitive; hence the

priority of the decentralized system is to satisfy local demand using green energy

rather than feeding energy to the grid to make profit. Therefore, in this frame-

work, primary use of generated renewable energy is to satisfy local demand. If

there is a surplus of renewable energy, it can be either stored in storage device

or/and fed to the grid. We assume that storage device can only store green energy

and this energy can only be used to satisfy the demand, i.e. renewable energy

cannot be sold to the grid through the storage device so that we can prioritize

renewable energy to be used for local demand. Fossil fuel based electricity from

the grid will be used as a backup source only when renewable energy is not suffi-

cient to meet the demand. Schematic description of the decentralized system can

be found in Figure 3.1.

Governments impose different incentive policies, such as feed-in tariff pro-

grams, tax deduction, investment and operating subsidies, to promote renewable

energy investments and mitigate CO2 emission [52]. We consider a setting in
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Figure 3.1: The Decentralized System

which a feed-in tariff program is available to investors. A feed-in tariff program

is an incentive policy which aims to promote renewable energy investments by

offering higher selling prices for each renewable energy. Green energy can be sold

to the grid for higher prices for a limited time [52]. It is expected that feed-in

tariff programs will increase the ratio of clean energy fed to the grid in the long

run. This will decrease the carbon emission rate of the electricity purchased from

the grid. However, in this study it is assumed that this improvement is negligible.

In other words, clean energy that is fed to the grid will not have a diminishing

effect on carbon emission of electricity purchased from the grid.

To handle the two conflicting objectives considered (cost and CO2 emission)

we propose a solution framework, in which we determine optimal sizing of the

components and their relations and present a set of solutions rather than single

solution. The framework that we present is generic, i.e. independent of the

system scale. Thus, it is can be used for demand points of different sizes at

different locations.

The decisions to be made in such systems are of two types: investment decisions

and operational decisions. Investment decisions include the sizing decisions for

the components (solar panel area, number of wind turbines and storage size) and

are of a one-time decisions. Operational decisions, on the other hand, are made

in each time unit, such as deciding on the amount of energy to be sent to the

storage, to be purchased and/or to be sold. The decision support system we
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propose helps the decision maker to make investment decisions for such systems.

All these decisions are to be made considering both cost and emission criteria.

Note that, in addition to being bi-objective, the problem is a stochastic problem

due to the uncertainty in the availability of renewable resources. The decision

support system we propose helps the decision maker to make investment decisions

for such systems.
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Chapter 4

Bi-objective Two Stage

Stochastic Mixed Integer

Programming Model

In this chapter, first, the nature of stochastic programming methodologies will be

introduced briefly and a bi-objective two stage stochastic programming model of

our problem will be explained in detail. Then, the data used for numerical study

and analysis of the output will be introduced.

In two stage stochastic programs, decision making process is divided into two

stages. There are two different types of decision variables namely first and second

stage variables. First stage variables are decided upon before the realization

of random parameters. After uncertain events unfold, further adjustments, i.e.

operational decisions can be made. The general form of the two stage stochastic

linear program is given below:

Min cTX + E
[
Q(X, ξ(θ))

]
s.t AX = b

X ≥ 0
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where Q(X, ξ(θ)) = Min qTY

s.t tX + wY = h

Y ≥ 0

whereX and Y are first and second stage variables, respectively. The second stage

problem depends on the data (q, t, w, h) where any or all elements can be random.

Expectation of Q is taken with regards to probability of ξ. Probability of ξ can

be implemented in two ways. The first one is using a continuous probability

distribution. This approach keeps the problem size steady but it may cause

nonlinearities and computational difficulties [53]. The second one is a scenario-

based approach. In this approach, uncertainty is modeled as union of random

discrete events. There are a finite number of possible outcomes with certain

probability but problem size increases enormously depending on the number of

outcomes. Let Θ be the number of possible outcomes and pθ be the corresponding

occurance probability of scenario θ. Then, two stage stochastic program with

discrete random events becomes:

Min cTX +
Θ∑
θ=1

[
pθqθYθ

]
s.t AX = b

tθX + wθYθ = hθ θ = 1...Θ

X ≥ 0, Yθ ≥ 0 θ = 1...Θ

In our study, we model our problem using a bi-objective two stage stochas-

tic mixed integer program. Examples of stochastic programming applications in

energy systems planning are widely encountered in the literature [50]. To be

able to model random availabilities of resources, a scenario-based approach is

followed. Renewable energy generation depends on uncertain data such as wind

speed and solar radiation and sizing decision has to be made before these un-

certainties are realized. Once component sizes of the decentralized system are

determined, amount of renewable energy generation can be calculated and opera-

tional decisions (storing, outsourcing and meeting local demand) can be adjusted

accordingly.
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There are two objectives in our stochastic model. First one is minimizing total

system cost, which includes investment and operational costs. The second objec-

tive is minimizing the amount of emitted CO2 equivalent gases while satisfying

the local demand. Non-dominated solutions are found using ε-constraint method,

which is one of the most commonly used methods for bi-objective models [54].

In this method, first objective is minimized as second objective is bounded with

a constraint. For each solution, model is solved with a bound on the second

objective which gets tightened by the amount of a predetermined step size.

4.1 GCDES Model

The parameters and decision variables of our grid-connected decentralized energy

system (GCDES) model are introduced in Table 4.1 and Table 4.2.

This model decides on the capacity of renewable energy generation and storage

components to be built in the area of interest. Fixed costs (cb, cs, c
i
w) represent

cost of renewable resource investment, which includes both capital and opera-

tion & maintenance costs. Investment costs are annualized by multiplying each

component by its annualization factor. Annualization factor is calculated using

Equivalent Annual Cost (EAC) formula (4.1) considering discount rate (dr) and

the respective lifetime of a component (L) as an example. This formula is rep-

resented as an example of the calculation of annualization factor of solar panel.

For other components, the same formula is used to calculate annualization factor

for each component which is used in the mathematical model.

αs =
dr

1 + (1− dr)−Ls
(4.1)

Electricity purchase price (pg) represents the average spot price of electricity in the

market. Governments which practice feed-in tariff policy offer different elevated

sale prices (higher than the spot price of electricity) for each renewable energy

resource to renewable energy system investors [52]. This policy has different sale

prices for each renewable energy source (pw, ps) and is only available for a limited

amount of time. Therefore, incentivized prices cannot be utilized throughout the
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Table 4.1: Parameters and Sets

T time horizon
I set of wind turbine generator types
Θ set of scenarios
dr discount rate
cb investment cost of storage unit ($/kWh)
cs investment cost of solar panel ($/m2)
ciw investment cost of wind turbine generator (WTG) type i ($/unit)
αb annualization factor for storage unit
αs annualization factor for solar panel
αw annualization factor for wind turbines
αps annualization factor for sale price of solar energy
αpw annualization factor for sale price of wind energy
pg price of electricity purchased from grid (spot price) ($/kWh)
ps elevated sale price of solar energy ($/kWh)
pw elevated sale price of wind energy ($/kWh)
dt local demand in time unit t (kWh)
vθt wind speed in time unit t in scenario θ (m/s)
rθt solar radiation in time unit t in scenario θ (kW/m2)
ηs overall efficiency of solar panel (%)
ηdch discharging efficiency (%)
ηch charging efficiency (%)
dod depth of Discharge
κ electricity generation limit multiplier
M maximum unit time demand (kWh)
β CO2 equivalent emission by electricity grid (tonne/kWh)

lifespan of the system. After feed-in tariff is expired, green energy can be sold

to the market at spot price. Thus, effect of an elevated sale price (ps, pw) is

distributed across the lifetime of the system. Formula 4.2 is used to calculate the

annualization factor for the sale price of solar energy (αps), where LFT represents

the duration of the feed-in tariff policy. Same formula is also used to calculate

the annualization factor for the sale price of wind energy (αpw) by replacing (ps)

with (pw).

αps =
psLFT + pg(Lsystem − LFT )

psLsystem
(4.2)

Parameters (vθt ,r
θ
t ) represent the wind speed and solar radiation in the model.
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Table 4.2: Decision Variables

Ab size of storage unit (kWh)
As size of solar panels (m2)
Aiw number of wind turbine generators of type i
Sθt electricity generated by solar panels in time unit t in scenario θ (kWh)
SDθ

t solar electricity used to satisfy demand in time unit t in scenario θ (kWh)
SBθ

t solar electricity used to charge battery in time unit t in scenario θ (kWh)
SSθt solar electricity sold to grid in time unit t in scenario θ (kWh)
W θ
t electricity generated by WTGs in time unit t in scenario θ (kWh)

WDθ
t wind electricity used to satisfy demand in time unit t in scenario θ (kWh)

WBθ
t wind electricity used to charge battery in time unit t in scenario θ (kWh)

WSθt wind electricity sold to grid in time unit t in scenario θ (kWh)
Bθ
t state of charge at the end of time t in scenario θ (kWh)

BDθ
t discharge amount in time unit t in scenario θ (kWh)

Gθt amount of electricity supplied from grid in time unit t in scenario θ (kWh)

Xθ
t

1, if electricity is not purchased from the grid at time t in scenario θ
0, if electricity is not fed to the grid at time t in scenario θ

Notice that, uncertainty of renewable resources are taken into account by having

scenario based resource availability parameters. Also, we assume that uncertainty

in demand (dt) is negligible, therefore deterministic demand data is utilized in

the model.

Renewable energy generation depends on the efficiency of components. Effi-

ciency of solar panel (ηs) is used for the calculation of solar energy output. For

wind energy generation, the efficiency of the wind turbine is already included in

wind turbine power curve, therefore no additional parameter is added to model.

Energy losses in transmission for storage are also taken into account and effi-

ciency of transmission to the storage and from the storage are represented by the

parameters (ηch, ηdch), respectively. In energy storage systems, discharging by the

amount of total capacity of the storage device wears the device. Therefore, only

a portion of the total capacity can be actively used. This is to increase lifespan

of the storage. In our model, parameter (dod) represents the ratio of the inactive

storage capacity.
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Mathematical Model Formulation

min Z1 : αbcbAb+αscsAs+αw
∑
i∈I

ciwA
i
w+

1

|Θ|
∑
θ∈Θ

∑
t∈T

[
pgGθ

t−αpspsSSθt−αpwpwWSθt
]

(4.3)

min Z2 : β
1

|Θ|
∑
θ∈Θ

∑
t∈T

Gθ
t (4.4)

s.t

Sθt = ηsr
θ
tAs ∀t ∈ T, ∀θ ∈ Θ (4.5)

W θ
t =

∑
i∈I

f i(vθt )A
i
w ∀t ∈ T, ∀θ ∈ Θ (4.6)

Sθt = SSθt + SDθ
t + SBθ

t ∀t ∈ T, ∀θ ∈ Θ (4.7)

W θ
t = WSθt +WDθ

t +WBθ
t ∀t ∈ T, ∀θ ∈ Θ (4.8)

dt = SDθ
t +WDθ

t + ηdchBD
θ
t +Gθ

t ∀t ∈ T, ∀θ ∈ Θ (4.9)

Bθ
t = Bθ

t−1 + ηch(SB
θ
t +WBθ

t )−BDθ
t ∀t ∈ T, ∀θ ∈ Θ (4.10)

κM ≥ Sθt +W θ
t ∀t ∈ T, ∀θ ∈ Θ (4.11)

κMXθ
t ≥ SSθt +WSθt ∀t ∈ T, ∀θ ∈ Θ (4.12)

|T |MXθ
t ≥ SBθ

t +WBθ
t ∀t ∈ T, ∀θ ∈ Θ (4.13)

M(1−Xθ
t ) ≥ BDθ

t ∀t ∈ T, ∀θ ∈ Θ (4.14)

M(1−Xθ
t ) ≥ Gθ

t ∀t ∈ T, ∀θ ∈ Θ (4.15)

Ab ≥ Bθ
t ∀t ∈ T, ∀θ ∈ Θ (4.16)

Bθ
t ≥ Ab(1− dod) ∀t ∈ T, ∀θ ∈ Θ (4.17)

Bθ
0 = Ab(1− dod) ∀θ ∈ Θ (4.18)

Bθ
T = Ab(1− dod) ∀θ ∈ Θ (4.19)

Sθt , B
θ
t ,W

θ
t , G

θ
t ≥ 0 ∀t ∈ T, ∀θ ∈ Θ (4.20)

SBθ
t , SS

θ
t ,WSθt ,WBθ

t ≥ 0 ∀t ∈ T, ∀θ ∈ Θ (4.21)

As, Ab, A
i
w ≥ 0 Aiw ∈ Z≥0 (4.22)

Xθ
t ∈ {0, 1} ∀t ∈ T, ∀θ ∈ Θ (4.23)
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In our mathematical model, we have two objective functions Z1 and Z2. The

first objective represents the summation of total investment and expected oper-

ational costs which correspond to first stage and second stage decision variables.

As mentioned before, investment decision has to be made before uncertainty is

revealed. Once uncertainty is resolved, operational decisions can be made de-

pending on first stage variables. At the stage of investment decision, expectation

is taken over all realizations. The second objective function, Z2, is for CO2 equiv-

alent emission amount. This amount can be represented by using different forms

of functions. In this setting, a linear function of electricity purchased from grid

is used as an objective function. Rate of emission (β) depends on the proportion

of fossil fuel based electricity in the grid network. It increases as the proportion

of the fossil fuel increases.

For each scenario θ and time unit t, generated solar and wind energy are

calculated in constraints (4.5) and (4.6), respectively. In constraint (4.6), wind

energy output at time t in scenario θ is calculated using f i, the piecewice linear

function of wind turbine generator type i. In our system, the generated wind and

solar energy can be used to meet the local demand or sold to the grid directly or

can be stored. Constraints (4.7) and (4.8) are used to represent the distribution

of generated energy. Constraint (4.9) guarantees that the demand is met in

each time unit. Demand can be met by generated renewable energy, energy in

storage device and electricity from the grid. Amount of discharged energy from

storage device cannot be used for demand totally due to the technical lost. Only

portion of discharged energy (ηdchBD
θ
t ) can be transmitted to demand points.

Constraint (4.10) is the flow balance of the storage device. The state of charge

can be increased by renewable energy sent to the storage unit and discharging

energy cause storage level to decrease. Portion of the renewable energy sent to the

storage is lost, therefore amount of renewable energy sent to the storage device

is multiplied by the charging efficiency parameter (ηch). Energy production has

to be limited with a bound, due to the physical limitations of the area. With

constraint (4.11), total energy production within a unit time is limited by κM

where M can be considered as a very big number and κ is a constant multiplier.

For this study, M is taken as maximum of demand observed during the planning
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horizon. By changing κ, dependency of optimal sizes to physical limitations can

be investigated.

Binary variable Xθ
t is used in constraints (4.12–4.15) in order to ensure that

local demand has priority over storage and selling, i.e. only excess energy can be

sold or stored. In our setting, we use storage and grid network as backup compo-

nents. Therefore, only in case of an energy deficit, grid can be used by purchasing

electricity and storage can be used by discharging energy to satisfy demand. If

the system is able to sell or/and charge energy then purchasing and discharging

operations should not take place since we use grid network and storage as backup.

These constraints (4.12–4.15) guarantee that generated renewable energy will be

to used on satisfy local demand. In constraint (4.16), it is ensured that state of

charge at time unit t cannot exceed nominal capacity of the storage. The storage

unit is protected from over-discharging in order to increase the lifespan. Con-

straint (4.17) prevents storage units to be over-discharged. The storage unit is

protected from over-discharging in order to increase the lifespan, that is there is

a predetermined maximum allowable depth of discharge (dod). Constraint (4.17)

prevents storage unit to be over-discharged by guaranteeing that at least a cer-

tain amount of energy is always available in storage. It is also assumed that the

storage level is the same at the beginning and at the end of the horizon, i.e.,

the energy stored at the storage unit is equal to a predetermined amount (1-dod

of the capacity), which is ensured by constraints (4.18) and (4.19). In this way,

all generated renewable energy must be used throughout the horizon and cycle

of storage device is bounded by the length of the horizon. Non-negativity of

variables is satisfied with (4.20–4.22).

4.2 Numerical Study

In this part of the study, the main aim is to analyze the trade off between CO2

emission and total system cost. Our model determines optimal sizing of renewable

system components for any given location. Therefore, different data sets are used

in order to analyze the effect of location differences. Three different levels of

29



resource availability are determined (high, medium and low) both for solar and

wind energy. Solar radiation and wind speed data are gathered using Hybrid

Optimization of Multiple Energy Resources (HOMER) software [55]. Statistics

of three levels of availability data can be found in Table 4.3. Also, to illustrate,

wind speed and solar radiation profiles for medium resource availability level are

represented in Figures 4.1 and 4.2, respectively.

Table 4.3: Statistics of Renewable Resources Availability Data

Wind Speed (m/s) Solar Radiation (kW/m2)

Data Set Min Mean Max Min Mean Max

High 0.21 7.81 29.90 0 0.24 1.09

Medium 0.13 5.14 19.35 0 0.17 0.97

Low 0.02 3.33 11.92 0 0.08 0.66

Figure 4.1: Wind Speed Profile for Medium Availability Level

30



Figure 4.2: Solar Irradiation Profile for Medium Availability Level

The GCDES Model is independent from scale therefore it can be utilized for

small scale demand points such as residential areas with a few houses as well as

large scale points such as a whole city. For our numerical study, we consider a

medium-scale demand point like a university campus. To generate an illustrative

data set, one month of hourly average electricity consumption data of Bilkent

University campus is attained. By preserving the electricity consumption charac-

teristics of Bilkent University campus, hourly consumption profile for one year is

generated using HOMER software. The average hourly and monthly electricity

consumption of Bilkent University campus can be found in Figure 4.3 and Figure

4.4, respectively.
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Figure 4.3: Hourly Average of Campus Demand Profile

Figure 4.4: Monthly Average of Campus Demand Profile

Three different wind turbine types with different rated power are used in the

analysis. These turbines are specified as Enercon E44 (900kW), E82 (2MW),

E101 (3MW). Wind energy generation calculations are made based on respective

power curve of each turbine [56]. The parameters for the numerical analysis

along with their references are provided in Table 4.4. The model and algorithm

are coded in MATLAB 9.0 and solved by a dual core (Intel Core i3 3.3 GHz)

computer with 10 GB RAM. The model is solved by CPLEX 12.6. The solution
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times are expressed in central processing unit seconds.

Table 4.4: Parameters for Numerical Study

cb 330 $/kWh [57] pg 0.06 $/kWh [58]

cs 300 $/m2 [59] ps 0.13 $/kWh [60]

c900kW
w 1.77 M $ [61] pw 0.07 $/kWh [60]

c2MW
w 4.3 M $ [61] ηs 12 [51]

c3MW
w 5.49 M $ [62] ηdch 89.5 [38]

r 0.05 [51] ηch 89.5 [38]

Lb 10 years [42] dod 1

Ls 30 years [51] κ 2

Lw 20 years [42, 62] β 0.0004836 [63–65]

Lsystem 30 years T 8760 (hours)

LFT 10 years [60]

4.2.1 Single Scenario Analysis

First, bi-objective two-stage stochastic mixed integer model is solved with single

scenario data for nine different cases in order to analyze how component sizes and

investment amount change with respect to different availability levels of renewable

sources. For this purpose, nine cases are generated using the combinations of low,

medium and high availability levels for both wind and solar. Pareto solutions

are obtained for each case by implementing ε-constraint method. The pareto

solutions of the medium solar-medium wind case obtained by the parameters and

the data discussed above is provided below (Figure 4.5). The pareto solutions for

the rest of the cases can be found in Appendix A.
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Figure 4.5: Pareto Solution Set of Medium Availability Case

The numbers above the solution points represent the percentage of demand

satisfied by using grid electricity. Step size used in the CO2 emission limit is

determined as the emission amount that is released when 5 percent of the total

demand is satisfied by the grid. Therefore, in the rest of the thesis CO2 emission

limit will be measured as the percentage of energy purchased from the grid to

meet the local demand.

Table 4.5: Unit Cost ($) of Solar and Wind Energy Generation

Av. Level Wind(900kW) Wind(2MW) Wind(3MW) Solar

High 0.055 0.046 0.039 0.076

Medium 0.145 0.107 0.092 0.106

Low 0.567 0.382 0.331 0.222

Based on the cost parameters obtained from the literature, wind speed and

solar radiation data, the unit costs of renewable energy for each component are

calculated as in Table 4.5. When these units costs are compared to the price of
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electricity purchased from the grid, which we calculated as 6 cents/kWh, we can

see that generating electricity can be less expensive than purchasing electricity

from the grid in a highly sunny or windy place. As the trade-off between CO2

and the cost disappears in this case, an investor would like to invest on renewable

sources as much as possible and can also sell excess energy to the grid at an

incentivized price. In the low and medium solar and wind cases, however, the

unit cost of renewables are higher than the grid electricity price and the only

motivation an investor might have to invest on renewables is to reduce the CO2.

In Table 4.6, number of pareto solutions found, solution times, minimum level of

carbon emission that can be achieved depending on the availability of renewable

sources and the percentage of demand that is satisfied using grid electricity for

the first and the last pareto solution are reported separately for each case. For

locations with high wind speed, low CO2 emission values can be achieved without

a limitation on the emission (as seen in Table 4.6, around 70% of the demand can

be satisfied by renewable resources in the Pareto solution with minimum cost).

In other words, decision maker does not have to be carbon sensitive to invest

in renewables when resource availability is high, since the unit cost of renewable

energy becomes less than the cost of grid electricity in such cases. In this way,

total system cost can be decreased by using green electricity to satisfy demand

and selling it to the grid and making profit.
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Table 4.6: Single Scenario GCDES Model Output

Solar Av. Level Wind Av. Level # Soln Soln Time (s) Start GP End GP

High High 7 6309 33.3% 3.3%

Medium High 7 3395 33.3% 3.3%

Low High 7 3384 33.3% 3.3%

High Medium 13 12273 100.0% 31.7%

Medium Medium 12 4628 100.0% 45.0%

Low Medium 8 3167 100.0% 49.6%

High Low 13 8088 100.0% 33.0%

Medium Low 13 2546 100.0% 40.0%

Low Low 10 1451 100.0% 55.0%

Start/End GP: Percentage of demand satisfied by the grid for the first/last

pareto solution.

In low and medium cases, unit costs are higher than annualized selling prices

(pw, ps), therefore there is no profit margin to exploit (see Table 4.5). There-

fore, the only way to increase investment in renewables is using a CO2 emission

limit (limit on the grid electricity usage), which can be seen in Figure 4.6. As

CO2 emission limit gets tighter, sizes of renewable system components enlarge

until the physical limitation is reached, which is represented as maximum hourly

production limit. It is necessary to use storage device to shift the supply af-

ter renewable energy production reaches the limit. Storage size and maximum

of hourly renewable energy production (for medium solar-medium wind resource

availability case) can be found in Figure 4.7 for different Pareto solutions.
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Figure 4.6: Total Renewable Electricity Generation for Medium Resources Avail-
abilities

Figure 4.7: Hourly Production and Storage Capacity Behavior under Grid Usage

Limitation for Medium Resource Availabilities
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4.2.2 Multi Scenario Analysis

In this part, stochasticity of renewable availabilities of a location is also taken

into consideration. Scenario generation is handled by two different techniques.

For solar data, scenarios are generated via perturbation of the data used for single

scenario analysis by 5%. For wind data, techniques that are introduced by [66]

and [67] are used to generate scenarios. In the literature, Weibull distribution

is commonly used to generate synthetic wind speed data [68]. In this technique,

different states are constructed and wind speed is generated using Markov Transi-

tion Matrix, which is constructed using Weibull distribution. Wind speed values

are centered around the given mean value and correlation between time units are

handled by a decreasing exponential function.

For each of our low, medium and high solar and wind case, three scenarios

are generated and the statistics of these scenarios are provided in Table 4.7. Our

GCDES Model is solved with the nine scenarios, which are the combinations of

generated three scenarios for each case and the outputs of the model can be found

in Table 4.8. It is seen that the model can not be solved in reasonable time. We

observed that the binary variables introduced in the model have an effect on this

difficulty and that the complexity of the problem increases enormously with the

number of scenarios.

Table 4.7: Attributes of Generated Scenarios

Solar Radiation (kW/m2)

Scenario 1 Scenario 2 Scenario 3

Av. Level Min Mean Max Min Mean Max Min Mean Max

High 0 0.2442 1.1108 0 0.244 1.1412 0 0.2441 1.1354

Medium 0 0.1748 0.9987 0 0.1749 1.0029 0 0.1748 0.9916

Low 0 0.0835 0.6757 0 0.0835 0.6634 0 0.0835 0.6872

Wind Speed (m/s)

Scenario 1 Scenario 2 Scenario 3

Av. Level Min Mean Max Min Mean Max Min Mean Max

High 0 7.3669 26.9398 0.0066 7.5248 26.6697 0.0309 7.3283 24.5682

Medium 0.0001 4.6157 17.3236 0.0025 4.6938 17.6675 0.0004 4.6461 18.5492

Low 0.0019 3.0054 9.6265 0.0048 3.0585 10.6093 0.0014 2.9368 10.7751
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Table 4.8: Multi Scenario GCDES Model Output

Solar Av. Level Wind Av. Level # Solns Soln Time Start GP End GP Gap

High High 1 18000* 100.0% 100.0% 42.7%

Medium High 1 18000* 100.0% 100.0% 42.7%

Low High 1 18000* 100.0% 100.0% 42.7%

High Medium 2 34110* 100.0% 95.0% 7.3%

Medium Medium 2 46156* 100.0% 95.0% 246.3%

Low Medium 2 29042* 100.0% 95.0% 4.8%

High Low 2 33210* 100.0% 95.0% 0.06%

Medium Low 5 71996* 100.0% 80.0% NA

Low Low 5 65446* 100.0% 75.0% 42.2%

Start/End GP: Percentage of demand satisfied by the grid for the first/last
found solution
Gap: The optimality gap of the last solution
(*) indicates that computational time limit has been reached for the last
solution (18000 seconds)
NA: No integer solution has been found for the last iteration

In addition to intractable solution times, another drawback of our bi-objective

two stage stochastic mixed integer model is the scenario based approach, which

violates non-ancipativity constraints, i.e. it makes operational decisions assuming

that the availability pattern reflected in each scenario is known in advance (e.g.

knowing what the hourly wind speed will be for the whole planning horizon),

which is not the case in real life. In real life, operators observe the availabil-

ity of renewables in a time period and make operational decisions accordingly,

following a given policy. With the hope of addressing this multi-stage decision

making process in a computationally tractable way, we introduce a simulation

optimization algorithm in the next chapter, which includes variations of the two

stage stochastic programming model and a simulation module, where simulation

module handles non-ancipativity issues.
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Chapter 5

Simulation Optimization

Approach

In this chapter, the simulation optimization algorithm that we propose as a so-

lution methodology to our problem, will be explained in detail. Then, numerical

study conducted using the algorithm and the outcomes will be discussed.

5.1 Algorithm

We propose a simulation optimization algorithm which can handle the multi-

stage nature of our problem. The simulation optimization algorithm consists of

two variants of the GCDES Model (a reduced version, called Module 1, and a

restricted version, called Module 3) and a simulation module (Module 2). The

overall algorithm works as a variant of the ε-constraint method which is one of

the widely used methods, especially for bi-objective problems [54]. The method is

based on solving single objective models iteratively, limiting the second objective

function value by a constraint. In our system, we minimize cost while limiting

the total CO2 emission value iteratively. The result of the algorithm is a set of

solutions with varying levels of cost and CO2 emission amount, which enables
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decision maker to evaluate different investment options. The flow diagram of this

simulation optimization algorithm can be seen in Figure 5.1

Figure 5.1: Simulation Optimization Algorithm

5.1.1 Module 1 - Reduced Version of the GCDES Model

Our algorithm starts with solving the reduced version of the GCDES Model. The

main purpose of using reduced version is to obtain the initial component sizes to

be fed into the simulation model. In this version, constraints (4.14–4.17), which

include binary variable Xθ
t , are relaxed in order to reduce the computational

effort. This enables model to obtain the optimal component sizes of a setting in

which renewable energy can be sold to the grid while meeting the demand using

the electricity purchased from the grid. The results of this model (the number of

wind turbines, the solar panel area and the storage size) are used as an input for

the simulation model. The mathematical formulation of the reduced model can

be found below:
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Reduced Version of the GCDES Model

min Z1 : αbcbAb+αscsAs+αw
∑
i∈I

ciwA
i
w+

1

|Θ|
∑
θ∈Θ

∑
t∈T

[
pgGθ

t−αpspsSSθt−αpwpwWSθt
]

(5.1)

s.t

Sθt = ηsr
θ
tAs ∀t ∈ T, ∀θ ∈ Θ (5.2)

W θ
t =

∑
i∈I

f i(vθt )A
i
w ∀t ∈ T, ∀θ ∈ Θ (5.3)

Sθt = SSθt + SDθ
t + SBθ

t ∀t ∈ T, ∀θ ∈ Θ (5.4)

W θ
t = WSθt +WDθ

t +WBθ
t ∀t ∈ T, ∀θ ∈ Θ (5.5)

dt = SDθ
t +WDθ

t + ηdchBD
θ
t +Gθ

t ∀t ∈ T, ∀θ ∈ Θ (5.6)

Bθ
t = Bθ

t−1 + ηch(SB
θ
t +WBθ

t )−BDθ
t ∀t ∈ T, ∀θ ∈ Θ (5.7)

κM ≥ Sθt +W θ
t ∀t ∈ T, ∀θ ∈ Θ (5.8)

Ab ≥ Bθ
t ∀t ∈ T, ∀θ ∈ Θ (5.9)

Bθ
t ≥ Ab(1− dod) ∀t ∈ T, ∀θ ∈ Θ (5.10)

Bθ
0 = Ab(1− dod) ∀θ ∈ Θ (5.11)

Bθ
T = Ab(1− dod) ∀θ ∈ Θ (5.12)

Sθt , B
θ
t ,W

θ
t , G

θ
t ≥ 0 ∀t ∈ T, ∀θ ∈ Θ (5.13)

SBθ
t , SS

θ
t ,WSθt ,WBθ

t ≥ 0 ∀t ∈ T, ∀θ ∈ Θ (5.14)

As, Ab, A
i
w ≥ 0 Aiw ∈ Z≥0 (5.15)

5.1.2 Module 2 - Simulation Model

Taking the component sizes (first stage decision variables) as an input, in the

simulation module, operator follows a policy to make operational decisions (sec-

ond stage decision variables) without the knowledge of future availability of wind

and solar resources. The policy is designed to prioritize renewable sources while

meeting local demand, which is in line with the objective of minimizing CO2
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emission value. This module takes the investment decisions (the number of wind

turbines, the solar panel area and the storage size) obtained from the reduced ver-

sion of the GCDES Model and calculates the renewable energy generated at each

time period of the planning horizon for each scenario. First, the local demand is

satisfied using less profitable renewable energy source and then excess energy is

stored in storage unit (until it is fully charged). If there is still excess energy, it

is fed to the grid. If there is not enough renewable energy to meet local demand,

the deficit amount is purchased from the grid. In this way, the simulation model

determines whether to sell renewable energy or outsource fossil-fuel based elec-

tricity from the grid, which corresponds to binary variables in the GCDES Model

(Xθ
t ). The resulting total CO2 emission value and related binary variables (Xθ

t )

are used as an input in Module 3 (the restricted version of the GCDES Model).

5.1.3 Module 3 - Restricted Version of the GCDES Model

In the restricted version, the output of the simulation module is used to dictate

purchase-sell decisions. These decisions are conveyed to the model by fixing bi-

nary variables (Xθ
t ) in constraints (4.14–4.17). Moreover, the total CO2 emission

value observed in the simulation model is used to update the CO2 limit in the re-

stricted model. This restricted model is solved and the new investment decisions

are fed back to the simulation model which now applies the policy using the new

component sizes. In this way, both the component sizes and selling/outsourcing

decisions can be adjusted iteratively. This adjustment continues until decisions

made in Module 2 and Module 3 are in line and the (adjustment) loop terminates

when the improvement in cost is less than 0.1%. Note that, since the restricted

model (Module 3), which makes investment decisions, uses the CO2 limit deter-

mined by the simulation model (Module 2), which dictates the operational policy,

both investment and operational decisions made are in line with the correspond-

ing CO2 limit. Each such loop provides a solution with corresponding cost and

CO2 level. In order to move to next (neighbour) solution, we further restrict the

CO2 limit by subtracting a predetermined amount (step size) from the CO2 level

of the latest solution found. A new (Pareto) loop is initiated by solving Module
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1 with this new CO2 limit (see the outer loop in Figure 5.1). In order to move

to next (neighbour) solution, we further restrict the CO2 limit by subtracting a

predetermined amount (step size) from the CO2 level of the latest solution found.

A new Pareto loop is initiated by solving Module 1 with this new CO2 limit (see

the outer loop in Figure 5.1).

We now summarize the overall process. The simulation optimization algorithm

starts with solving the reduced version of the two-stage stochastic programming

model (relaxing constraints with the binary variables) which determines optimal

component sizes of a setting where selling and outsourcing can take place at the

same time. Then, optimal component sizes are fed into the simulation module,

which makes operational decisions based on our policy. Simulation module de-

cides on whether to sell renewable energy or outsource fossil-fuel based electricity

from the grid at each time unit t. As an output of the simulation, sell or outsource

decisions which correspond to binary variables (Xθ
t ) and total CO2 emission value

are fed into the restricted version of the GCDES Model. This restricted model

is solved with this input and the new investment decisions are made based on

fixed binary variables and CO2 emission limit. Then, new component sizes are

fed back to the simulation module. Again, the simulation module makes new

sell or to outsource decision based on new component sizes. This adjustment

loop terminates when improvement on total system cost obtained at the end of

Module 3 is less than 0.1%. Then, CO2 emission value determined by Module 3

is tightened by the amount of the step size and fed into the Module 1 in order to

move a neighbour solution (Pareto Loop).

5.2 Numerical Study

In this part, single scenario data, introduced in Section 4.2 and nine scenario

data, introduced in Section 4.2.2, are used for the analysis of the simulation

optimization. Also, the same three types of wind turbine generators and the

parameters in Table 4.4 are utilized. In single scenario analysis, the solution set

of the GCDES Model is used as a benchmark to examine the performance of the
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simulation optimization algorithm. In multi scenario analysis, since the solution

set of the GCDES Model cannot be found in reasonable time (the time limit is

reached after finding the first few Pareto solutions), such a comparison is not

possible. Therefore, in the multi-scenario case, output of the algorithm and the

value of stochasticity will be analyzed.

5.2.1 Single Scenario Analysis

First, the simulation optimization algorithm is solved with one scenario and its

output is compared with the solution of the GCDES Model. Even though these

two models do not reflect the same framework, their comparison might give some

valuable information about the quality of the simulation optimization algorithm

solutions as the results of the GCDES Model will always provide a lower bound

for the solutions of the simulation model. As an example, the set of solutions of

both the GCDES Model and simulation optimization algorithm is represented in

Figure 5.2 for medium solar low wind case. The rest of the single scenario pareto

solutions of simulation optimization algoritm can be found in Appendix B.

Due to the non-anticipativity violation (i.e. assuming that future availability

of the renewable resources is known), the GCDES Model is able to adjust its op-

erational variables so that the best operational policies are determined for each

scenario benefiting from future availability information. On the other hand, in

the simulation optimization algorithm, we follow a predetermined policy with-

out knowing the future (in the simulation module). Hence, in the simulation

optimization algorithm selling or purchasing decision variables (Xθ
t ), values of

which are determined by the simulation module, are fixed in the GCDES Model

(the restricted model). In this way, the feasible region of the GCDES Model

is restricted. As a result, the output of the model sets a lower bound for the

output of our simulation optimization algorithm. For the cases where no storage

is used in the Pareto solutions of the GCDES Model, both the model and the

simulation optimization algorithm (the policy) give the same solutions. This is

because, both the GCDES Model (which assumes future availability is known)
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Figure 5.2: Total System Cost vs CO2 Emission Limit Solutions of the GCDES
Model and Simulation for Medium Solar-Low Wind Case

and the simulation policy (which does not make this assumption) make the same

operational decisions for the same solar and wind investment levels. This result is

expected since for fixed solar and wind investment level, once energy is produced

at each time unit, the only way the GCDES Model can assign operational decision

variables optimally is to send the produced energy to local demand first and sell

any excess energy or purchase any deficit energy from the grid, which is exactly

the policy followed in the simulation optimization algorithm. Note however that

when storage unit is used in the system, the above result is not valid anymore

and the set of solutions returned by the simulation optimization algorithm may

not coincide with the solutions of the GCDES Model. This is because while

the GCDES Model uses storage in the most cost-effective way, the simulation

optimization algorithm cannot (as decisions are made without knowing future

availability, which is the case in real life). When we compare the outcomes of

both the model and simulation optimization algorithm (Table 5.1), we can see

that simulation algorithm generates less number of solutions compared to the

GCDES Model for the same step size value for most cases. The main reason is
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Table 5.1: Single Scenario Simulation Optimization Algorithm and GCDES
Model Outputs

Solar Wind Simulation Optimization GCDES Model

Level Level
#

Solns
Soln
Time

Start GP End GP
#

Solns
Soln
Time

Start GP End GP

High High 6 325 31.6% 6.6% 7 6309 33.3% 3.3%

Medium High 6 274 33.3% 8.3% 7 3395 33.3% 3.3%

Low High 6 1740 33.3% 8.3% 7 3384 33.3% 3.3%

High Medium 5 585 53.0% 31.7% 13 12273 100.0% 31.7%

Medium Medium 12 2406 100.0% 42.8% 12 4628 100.0% 45.0%

Low Medium 7 2179 100.0% 49.6% 8 3167 100.0% 49.6%

High Low 5 248 53.0% 33.0% 13 8088 100.0% 33.0%

Medium Low 13 555 100.0% 40.0% 13 2546 100.0% 40.0%

Low Low 10 404 100.0% 55.0% 10 1451 100.0% 55.0%

Start/End GP: Percentage of demand satisfied by the grid of first/last candidate

solution.

that simulation optimization algorithm dictates the policy outputs and this re-

stricts the feasible region. Apart from the difference in the number of solutions,

the algorithm might find solutions with different percentages and costs compared

to the outputs of the GCDES Model, as in high solar-high wind case represented

in Figure 5.3. Note, however, that the number of solutions may be increased by

reducing the step size value.

As in high solar-high wind case represented in Figure 5.3, the algorithm might

find solutions with different percentages and costs compared to the outputs of

the GCDES Model. Even though that is the case, the number of solutions can

be increased by shrinking the step size value. The solution sets of the GCDES

Model and Simulation optimization with small step size (1% of the total demand)

for high solar-high wind case are represented in Figure 5.4. Also, the models are

solved with the same CO2 emission limit in order to compare the outputs. It can

be seen that the difference between solution sets of the GCDES Model and the

simulation optimization is negligible. For single scenario analysis, our algorithm

is able to find solutions that are close to lower bound value. For multi scenario

cases, the difference between the GCDES Model and simulation optimization

algorithm might increase.
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Figure 5.3: Total System Cost Comparison of Solutions of Simulation Algorithm
and the GCDES Model for High Solar-High Wind Case

Figure 5.4: Total System Cost of the GCDES Model and Simulation Optimization

with Step Size equals to 1% of the Total Demand
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When we analyze storage usage as in Section 4.2.1, the output indicates that

storage is needed the most when maximum production limit is reached as in the

GCDES Model outputs. In such cases, storage is used to shift the supply (in

order to meet the local demand in the upcoming periods). Maximum hourly pro-

duction and storage capacity outputs of both the GCDES Model and simulation

optimization for medium solar-low wind are represented in Figure 5.5 and Figure

5.6.

Figure 5.5: Maximum Hourly Production Output of GCDES Model and Simula-
tion Optimization for Medium Solar-Low Wind Case
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Figure 5.6: Storage Capacity Output of GCDES Model and Simulation Opti-

mization for Medium Solar-Low Wind Case

At a location with highly available renewable resources, investors tend to in-

vest in renewable systems. Our simulation algorithm works in line with this

behavior. First, Module 1 determines the optimal component sizes for a reduced

model (without the binary variables). Recall that, this module may return un-

realistically large component sizes as it allows investors to sell and outsource at

the same time. This is partly rectified in the simulation module. Also note that

the simulation module uses a carbon sensitive policy and does not allow to sell

renewable energy unless the local demand is met and storage unit is filled. This

means, the algorithm tends to return solutions which are on the low CO2 emis-

sion side of the frontier. An example is seen in Figure 5.7, where the outputs of

the GCDES Model and the simulation optimization algorithm are shown for the

high solar-medium wind case. In this case, the simulation algorithm returns only

the highest five carbon sensitive solutions. However, it is possible to find other

solutions lying on the high CO2 emission edge if needed. One can change the

initial component sizes the simulation optimization algorithm starts with or the

policy that the operator follows in order to explore other parts of the solution
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set.

Figure 5.7: Total System Cost vs CO2 Emission Limit Solutions of GCDES Model

and Simulation for High Solar-Medium Wind Case

5.2.2 Multi Scenario Analysis

In this part, the simulation optimization algorithm is run for nine different lo-

cations (combinations of high-medium-low resource availability levels) using nine

different scenarios (combinations of three solar and three wind scenarios) whose

data are introduced in Section 4.2.2. Output of the algorithm can be found in

Table 5.2. Our simulation optimization algorithm is able to handle problems with

nine scenarios and returns a wide range of solutions. The solution set of medium

solar-medium wind case is represented in Figure 5.8 as an example. The outputs

of other cases can be found in Appendix C.
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Table 5.2: Nine Scenario Simulation Optimization Algorithm Output

Solar Av. Level Wind Av. Level # Solns Soln Time (s) Start GP End GP

High High 7 13085 35.9% 4.7%

Medium High 8 12491 37.9% 1.5%

Low High 7 8323 37.9% 5.1%

High Medium 4 3319 53.5% 35.5%

Medium Medium 11 36043 100.0% 48.7%

Low Medium 9 49073 100.0% 52.7%

High Low 4 3964 53.5% 37.1%

Medium Low 11 4310 100.0% 48.9%

Low Low 9 3912 100.0% 58.7%

Start/End GP: Percentage of demand satisfied by the grid for the first/last

candidate solution.

Figure 5.8: Solution Set of Nine Scenario Simulation Optimization Algorithm

and GDES Model for Medium Solar-Medium Wind Case
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It can be seen in the table that the algorithm finds more carbon sensitive

solutions for high resource availability cases. This is mainly due to the reasons

discussed in Section 5.2.1 before. Note also that the solution times that are

shown in the table are for the generation of whole set of solutions. Therefore, the

algorithm outperforms the GCDES Model in terms of both solution time and the

range of solutions found.

Considering only three scenarios for the availability of renewable resources

(nine scenarios in total) may seem too restrictive to model a real life setting.

However, even with this relatively low number of scenarios, it is possible to make

more informed decisions compared to a setting where the problem is handled

in a deterministic manner. We performed further analysis in order to observe

the contribution of taking stochasticity into account while making investment

decisions, i.e. we calculated the value of stochasticity (VSS).

As the name implies, this value points out the possible gain from solving a

stochastic problem rather than a deterministic problem, which uses mean values

of the random parameters only. The formulation of VSS is given below:

For minimization, V SS = EEV −RP (5.16)

where EEV (expected outcome of expected value solution) represents the solution

of the deterministic model where mean values of random parameters are used. RP

(recourse problem) is the solution of stochastic problem. The difference between

these solutions gives the value of stochastic solution.

The calculation of EEV is not straightforward in our setting due to a number

of technical reasons, one of which is the existence of capacity limit constraints.

We, however, calculated an adjusted EEV and showed that the solutions of RP

might dominate the solutions of EEV. An example analysis can be found in Figure

5.9. The solutions of RP in dashed ellipses dominate the solutions of EEV in the

ellipses with straight line (they give lower values for both objective functions).

We expect the difference between these two sets of solutions, hence the value of

stochasticity to increase as the number of scenarios used increases. We believe

that, finding ways to handle the computational challenges of considering larger
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number of scenarios and investigating VSS for these cases, is a future research

topic worth exploring.

Figure 5.9: Comparison of Outputs of EEV and RP for High Solar-Medium Wind

Case
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Chapter 6

Conclusion

Motivated by the interest in shifting from fossil fuel based energy systems to re-

newable energy systems to mitigate emissions, we consider the sizing problem of a

grid-connected decentralized system which can include solar and wind generation

and an energy storage components. Our main aim is to give insights to decision

makers about the optimal scale of the decentralized system they plan to invest in.

The optimal sizing decision problem includes two important aspects, which are

stochasticity (intermittency of renewable resources) and multi-objective structure

(having concerns for multiple criteria such as cost and emission). In our study,

we considered these two aspects elaborately by assuming that the decision maker

is sensitive to both cost and carbon emission and by modeling the problem as a

stochastic problem, using random resource availabilities. In the literature, there

are some studies that deal with multi-objective optimal design problem of de-

centralized energy systems. However, in these studies, the problem is modeled

and solved using deterministic approaches. The drawbacks of using deterministic

tools for stochastic environments were explained explicitly by Powell et al. [50].

Using deterministic tools cause outputs of these models to be far from the real

cases. As stochastic elements are increased in the model, output of the optimal

design problem give more valuable insights.
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To the best of our knowledge, our study is the first one that provides a mathe-

matical programming formulation along with a novel solution approach for multi-

objective design of a grid-connected decentralized energy system while incorpo-

rating uncertainty of renewable resources. The system considered is a special type

of a hybrid decentralized system consisting of renewable (solar and wind) energy

generation units and a storage unit, and is connected to the main grid, hence

can purchase energy from and sell energy to the grid as opposed to a stand-alone

system. We presented two different solution approaches to our problem. First,

we modeled the problem using a bi-objective two stage stochastic mixed integer

program. Our grid-connected decentralized energy system (GCDES) model has

two objective functions, which are minimizing the annualized system cost and the

amount of emitted CO2 equivalent gases while satisfying the local demand. Non-

dominated solutions of this model are generated using the ε-constraint method.

This model does not only decide on the optimal component sizes for a predeter-

mined CO2 emission limit but also determines the optimal operational decisions

such as selling, outsourcing and storing energy in each time unit. Uncertainty

in solar radiation and wind speed are included in the system as scenarios. We

provided and analyzed the results of an illustrative case study using the energy

consumption data of Bilkent University campus.

Motivated by the fact that the GCDES Model fails to address the multi-stage

nature of the problem and provide solutions in reasonable time when multiple

scenarios are used, we developed a simulation optimization algorithm which can

handle both multi-stage and multi-objective nature of the problem. This algo-

rithm consists of two variants of the GCDES Model and a simulation algorithm.

Two variants of the GCDES Model (reduced and restricted versions) are used to

decide optimal component sizes where the simulation algorithm determines oper-

ational decisions by following a predetermined policy. In our system, we minimize

cost while limiting the total CO2 emission value iteratively. Therefore, the overall

algorithm works as a variant of the ε-constraint method.

The numerical studies were conducted using three levels of wind and solar re-

source availabilities in order to investigate the impact of different resource avail-

abilities on investment decision. Also, numerical analysis of both methods (the
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GCDES Model and the simulation optimization algorithm) was performed for

single and multiple scenario cases. For single scenario analysis, hourly time se-

ries data for solar and wind for one year were obtained by HOMER software and

synthetic multiple scenario time series are generated based on this data. The out-

puts of the study indicate that even if a decision maker is not carbon sensitive,

still, low carbon emission levels can be attained where the location has high solar

and/or wind potential. Also, we observed that storage device is utilized only if a

decision maker has high carbon sensitivity. Outputs of the GCDES Model and

simulation optimization algorithm were compared for both single and multiple

scenario problems. In the single scenario analysis, solution set of the GCDES

Model is used as a benchmark for observing the quality of the solution set re-

turned by our simulation optimization algorithm, since solutions of the GCDES

Model can be considered as a lower bound for solutions of the simulation opti-

mization algorithm. For multiple scenario case, the GCDES Model cannot find

the whole pareto set in reasonable time while simulation optimization algorithm

finds a wide range of solutions.

As future research, this study can be extended in multiple directions. One ex-

tension could be considering more objectives such as reliability, social acceptance

and efficiency maximization. Interaction of these objectives can provide valuable

insights for the decision maker. Another research direction worth exploring is

considering ways to increase the uncertainty in the problem. We envisage two

potential extensions in this direction: One can assume that the other parame-

ters such as demand and electricity price are also uncertain and/or increase the

number of scenarios considered. As the number of uncertain parameters and the

number of scenarios increase the models will become more realistic, yet harder to

solve. This gives an opportunity to investigate methodologies to tackle the com-

putational challenges as well as to demonstrate the value of stochasticity in such

cases. It is also worthwhile to investigate how different solution approaches such

as particle swarm optimization, genetic algorithm and evolutionary algorithms

would perform for this problem and any of its extensions.
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Appendix A

Single Scenario Outputs of the

GCDES Model
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(a) Total System Cost vs Grid Percentage (b) Battery Capacity vs Grid Percentage

(c) Solar Area vs Grid Percentage (d) Energy Production vs Grid Percent.

Figure A.1: Output of High Solar-High Wind Case
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(a) Total System Cost vs Grid Percentage (b) Battery Capacity vs Grid Percentage

(c) Solar Area vs Grid Percentage (d) Energy Production vs Grid Percent.

Figure A.2: Output of High Solar-Medium Wind Case
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(a) Total System Cost vs Grid Percentage (b) Battery Capacity vs Grid Percentage

(c) Solar Area vs Grid Percentage (d) Energy Production vs Grid Percent.

Figure A.3: Output of High Solar-Low Wind Case

69



(a) Total System Cost vs Grid Percentage (b) Battery Capacity vs Grid Percentage

(c) Solar Area vs Grid Percentage (d) Energy Production vs Grid Percent.

Figure A.4: Output of Medium Solar-High Wind Case
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(a) Total System Cost vs Grid Percentage (b) Battery Capacity vs Grid Percentage

(c) Solar Area vs Grid Percentage (d) Energy Production vs Grid Percent.

Figure A.5: Output of Medium Solar-Medium Wind Case
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(a) Total System Cost vs Grid Percentage (b) Battery Capacity vs Grid Percentage

(c) Solar Area vs Grid Percentage (d) Energy Production vs Grid Percent.

Figure A.6: Output of Medium Solar-Low Wind Case
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(a) Total System Cost vs Grid Percentage (b) Battery Capacity vs Grid Percentage

(c) Solar Area vs Grid Percentage (d) Energy Production vs Grid Percent.

Figure A.7: Output of Low Solar-High Wind Case
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(a) Total System Cost vs Grid Percentage (b) Battery Capacity vs Grid Percentage

(c) Solar Area vs Grid Percentage (d) Energy Production vs Grid Percent.

Figure A.8: Output of Low Solar-Medium Wind Case
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(a) Total System Cost vs Grid Percentage (b) Battery Capacity vs Grid Percentage

(c) Solar Area vs Grid Percentage (d) Energy Production vs Grid Percent.

Figure A.9: Output of Low Solar-Low Wind Case
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Appendix B

Single Scenario Outputs of the

Simulation Optimization

Approach
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(a) Total System Cost vs Grid Percentage (b) Battery Capacity vs Grid Percentage

(c) Solar Area vs Grid Percentage (d) Energy Production vs Grid Percent.

Figure B.1: Output of High Solar-High Wind Case
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(a) Total System Cost vs Grid Percentage (b) Battery Capacity vs Grid Percentage

(c) Solar Area vs Grid Percentage (d) Energy Production vs Grid Percent.

Figure B.2: Output of High Solar-Medium Wind Case

78



(a) Total System Cost vs Grid Percentage (b) Battery Capacity vs Grid Percentage

(c) Solar Area vs Grid Percentage (d) Energy Production vs Grid Percent.

Figure B.3: Output of High Solar-Low Wind Case
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(a) Total System Cost vs Grid Percentage (b) Battery Capacity vs Grid Percentage

(c) Solar Area vs Grid Percentage (d) Energy Production vs Grid Percent.

Figure B.4: Output of Medium Solar-High Wind Case
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(a) Total System Cost vs Grid Percentage (b) Battery Capacity vs Grid Percentage

(c) Solar Area vs Grid Percentage (d) Energy Production vs Grid Percent.

Figure B.5: Output of Medium Solar-Medium Wind Case
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(a) Total System Cost vs Grid Percentage (b) Battery Capacity vs Grid Percentage

(c) Solar Area vs Grid Percentage (d) Energy Production vs Grid Percent.

Figure B.6: Output of Medium Solar-Low Wind Case

82



(a) Total System Cost vs Grid Percentage (b) Battery Capacity vs Grid Percentage

(c) Solar Area vs Grid Percentage (d) Energy Production vs Grid Percent.

Figure B.7: Output of Low Solar-High Wind Case
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(a) Total System Cost vs Grid Percentage (b) Battery Capacity vs Grid Percentage

(c) Solar Area vs Grid Percentage (d) Energy Production vs Grid Percent.

Figure B.8: Output of Low Solar-Medium Wind Case
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(a) Total System Cost vs Grid Percentage (b) Battery Capacity vs Grid Percentage

(c) Solar Area vs Grid Percentage (d) Energy Production vs Grid Percent.

Figure B.9: Output of Low Solar-Low Wind Case
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Appendix C

Multiple Scenario Output of the

Simulation Optimization

Approach
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(a) Total System Cost vs Grid Percentage (b) Battery Capacity vs Grid Percentage

(c) Solar Area vs Grid Percentage (d) Energy Production vs Grid Percent.

Figure C.1: Output of High Solar-High Wind Case
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(a) Total System Cost vs Grid Percentage (b) Battery Capacity vs Grid Percentage

(c) Solar Area vs Grid Percentage (d) Energy Production vs Grid Percent.

Figure C.2: Output of High Solar-Medium Wind Case
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(a) Total System Cost vs Grid Percentage (b) Battery Capacity vs Grid Percentage

(c) Solar Area vs Grid Percentage (d) Energy Production vs Grid Percent.

Figure C.3: Output of High Solar-Low Wind Case
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(a) Total System Cost vs Grid Percentage (b) Battery Capacity vs Grid Percentage

(c) Solar Area vs Grid Percentage (d) Energy Production vs Grid Percent.

Figure C.4: Output of Medium Solar-High Wind Case
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(a) Total System Cost vs Grid Percentage (b) Battery Capacity vs Grid Percentage

(c) Solar Area vs Grid Percentage (d) Energy Production vs Grid Percent.

Figure C.5: Output of Medium Solar-Medium Wind Case
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(a) Total System Cost vs Grid Percentage (b) Battery Capacity vs Grid Percentage

(c) Solar Area vs Grid Percentage (d) Energy Production vs Grid Percent.

Figure C.6: Output of Medium Solar-Low Wind Case
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(a) Total System Cost vs Grid Percentage (b) Battery Capacity vs Grid Percentage

(c) Solar Area vs Grid Percentage (d) Energy Production vs Grid Percent.

Figure C.7: Output of Low Solar-High Wind Case
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(a) Total System Cost vs Grid Percentage (b) Battery Capacity vs Grid Percentage

(c) Solar Area vs Grid Percentage (d) Energy Production vs Grid Percent.

Figure C.8: Output of Low Solar-Medium Wind Case
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(a) Total System Cost vs Grid Percentage (b) Battery Capacity vs Grid Percentage

(c) Solar Area vs Grid Percentage (d) Energy Production vs Grid Percent.

Figure C.9: Output of Low Solar-Low Wind Case
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