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ABSTRACT

STRUCTURAL AND ELECTRONIC PROPERTIES OF
MONOLAYER AND MULTILAYER GALLIUM

NITRIDE CRYSTALS

Abdullatif Önen

M.S. in Materials Science and Nanotechnology

Advisor: Engin Durgun

September 2016

Three-dimensional (3D) Gallium Nitride (GaN) is a III-V compound semicon-

ductor with direct band gap. It is widely used in light emitting diodes (LED)

and has potential to be used numerous optoelectronic applications. In this thesis,

firstly 3D GaN in wurtzite and zincblende structures are revisited and structural,

mechanical, and electronic properties are studied and compared with the liter-

ature. Next, the mechanical and electronic properties of two-dimensional (2D)

single-layer honeycomb structure of GaN (g-GaN), its bilayer, trilayer and multi-

layer van der Waals solids are investigated using density functional theory. Based

on phonon spectrum analysis and high temperature ab initio molecular dynamics

calculations, first it is showed that g-GaN is stable and can preserve its geometry

even at high temperatures. Then a comparative study is performed to reveal how

the physical properties vary with dimensionality. While 3D GaN is a direct band

gap semiconductor, g-GaN in 2D has relatively wider indirect band gap. More-

over, 2D g-GaN displays higher Poisson’s ratio and slightly less charge transfer

from cation to anion. It is also showed that the physical properties predicted

for freestanding g-GaN are preserved when g-GaN is grown on metallic, as well

as semiconducting substrates. In particular, 3D layered blue phosphorus being

nearly lattice matched to g-GaN is found to be an excellent substrate for growing

g-GaN. Bilayer, trilayer and van der Waals crystals can be constructed by special

stacking sequence of g-GaN and they can display electronic properties which can

be controlled by the number of g-GaN layers. In particular, their fundamental

band gap decreases and changes from indirect to direct with increasing number

of g-GaN layers. It is hoped that the present work will provide helpful insights

for growing g-GaN which can be widely used in nanoelectronics applications in

low dimensions.
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ÖZET

TEK VE ÇOK ATOMİK KATMAN GALYUM NİTRÜR
KRİSTALİNİN YAPISAL VE ELEKTRONİK

ÖZELLİKLERİ

Abdullatif Önen

Malzeme Bilimi ve Nanoteknoloji, Yüksek Lisans

Tez Danışmanı: Engin Durgun

Eylül 2016

Üç boyutlu (3B) galyum nitrür direkt band aralıklı bir III-V yarı iletkenidir.

Bir çok olası optoelektronik uygulamasının yanında, ışık yayan diyod (LED)

olarak da yaygın şekilde kullanılmaktadır. Bu çalışmada ilk olarak 3B wurtzite

ve zincblende kristal yapılarındaki GaN’ün yapısal, mekanik, ve elektronik

özellikleri gelişen yöntemlerle tekrar hesaplanarak literatürdeki diğer çalışmalarla

karşılaştırıldı. Daha sonra, balpeteği örgüsüne sahip iki boyutlu (2B) tek atomik

katmanlı GaN’ün (g-GaN) elektronik ve mekanik özellikleri yoğunluk fonksiyonel

teori (YFT) kullanılarak incelendi. Buna ek olarak, yine YFT kullanılarak iki

atomik katmanlı, üç atomik katmanlı, ve çok atomik katmanlı van der Waals

yapıları incelendi. Fonon analizi ve yüksek sıcaklıkta ilk prensipler moleküler

dinamik hesaplarıyla yapının kararlı oldugu ve yüksek sıcaklıklarda yapısını ko-

ruduğu gösterildi. Devamında fiziksel özelliklerin boyuta bağli olarak değişimi

incelendi. 3B GaN direkt bant aralıklı bir yarı iletken olmasina karşılık, 2B GaN

görece daha geniş ve indirekt bir bant aralğına sahiptir. Buna ek olarak 2B

GaN daha yüksek Poisson katsayısına sahiptir ve katyondan anyona daha az yük

geçişi sergilemektedir. g-GaN icin öngörülen özelliklerini, bu yapı me- talik ya da

yarı iletken bir alttaş üzerinde büyütüldüğü takdirde de koruyacağı gösterilmiştir.

Özel olarak, g-GaN büyütmek için 3B atomik katmanlı mavi fosforun uygun bir

alttaş olacağı öngörülmüştür. Elektronik özelliklerin katman sayısına bağlı olarak

kontrol edilebildiği, ve katman sayısı arttıkça bant aralığının azaldığı ve indirekt

bant aralığından direkte geçildiği gösterilmiştir. Bu çalismanın nanoelektronik

uygulamalarda geniş bir kullanım alanı olacağı düşünülen g-GaN’ın büyütülmesi

yönünde yardımcı olması umulmaktadır.
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Chapter 1

Introduction

The replacement of a material with mechanical parts leads to smaller, more effi-

cient, and more accurate devices. The invention of mainspring, basically a ”me-

chanical battery”, enabled tower watches, which uses pendulum, shrink to pocket

sized ones. Later on using a quartz crystal and a battery led to more accurate

and yet smaller ones, and the working principles of a watch was changed. Materi-

als offer lots of different possibilities with their different properties depending on

their crystal structure, orientation, constituent atoms, and scales ranging from 3

dimensional bulk structure to 0 dimensional nanoparticles.

It had been argued that 2-dimensional (2D) crystals could not exist [6, 7, 8]

until the first 2D material, graphene, was isolated from its layered bulk crystal,

graphite, through mechanical exfoliation in 2004 [9]. Graphene is a single layer

of carbon atoms (1.1) which bond together such that they form a honeycomb

structure. Each carbon atom has sp2-hybridized orbitals forming σ bonds, and

pz orbitals forming π bonds. These σ bonds are responsible for the strong binding

between the carbon atoms in graphene, and the π bonds give rise to van-der-Waals

(vdW) interaction between the graphene layers in graphite. Due to these strong

bonds within a graphene layer, it is the strongest material known to date having

an ultimate tensile strength of 130 GPa and a Young’s modulus around 1TPa [10],

and the weak vdW interaction between the layers enables easy isolation of layers
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from each other. One peculiar property of graphene is that the dispersion relation

at the K points of the Brillouin zone is linear (1.1), which enables electrons

and holes have zero effective mass. Therefore these electrons and holes near

the K points behave like relativistic particles which are called Dirac fermions

which can be described by Dirac equation. Moreover it is endowed with other

remarkable properties including very high electrical and thermal conductivity

[9, 11, 12, 13]. Due to its remarkable properties mentioned above, graphene has

been subject to extensive studies, and it is considered as a very promising material

to be used in various fields and currently used in many applications including

energy storage [14], tarnsparent and elastic electronics [15], optical devices [16],

or electrically switchable radar-absorbing surfaces are realized by using large-area

graphene capasitors [17]. On the other hand, being a semimetal having zero band

gap, the applications in nanoelectronis are limited. The possibility of opening a

gap is investigated, however the achieved band gap is very small up to date for

desired practical applications like logical circuits at room temperature.

Unique properties of graphene, inevitably, brings a question; Whether the

single layers of other Group-IV elements, including silicon which is the ”core”

material in today’s technology, exist? Theoretical studies using first-principles

phonon and high temperature molecular dynamics (MD) calculations within Den-

sity Functional Theory (DFT), have demonstrated the stability of silicon and ger-

manium in buckled honeycomb structure [18, 19, 20], named as silicene and ger-

manene respectively, which are isovalent with graphene. They both are semimetal

with linearly crossing bands at the Fermi level similar to graphene which also has

Dirac cones in their electronic structure represented in three dimensions. Even

though they do not have a layered bulk structure, silicene and germane also re-

alized experimentally [21, 22, 23]. Considering the effect of silicon in today’s

technology, if achieved with desired properties, silicene based transistors suggest

easier integration compared to other 2D materials for nanoelectronic devices.

Although it has lower mobility values when compared to graphene transistors,

silicene based transistors are also realized [24]. In search of 2D forms of group-

IV elements, going down the row, the ”last” one is tin, namely stanene. It has

also been synthesized offering a potential topological insulator behaviour in 2D

2



Figure 1.1: Top and side views of two-dimensional (a) planar (b) buckled hon-
eycomb structures. a1 and a2 represent lattice vectors, and ∆ shows buckling
distance.(c) Energy band structure of graphene[1]. (d) Three-dimensional band
structure of graphene showing Dirac cones[2].
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[25, 26].

Figure 1.2: Top view of a two-dimensional material having a honeycomb structure
composed of two different atoms A and B[2].

Transition metal dichalcogenides[27, 28, 29] (TMDs) are another ”family” of

2D materials which presents a stoichiometry in the form MX2 where M and X

correspond to a transition metal and a chalcogenide, respectively. One TMD layer

is composed of three atomic layers; one layer of metal atoms sandwiched between

two chalcogene atomic layers forming a hexagonal structure, and each M atom

is covalently bonded to the nearest X atom. They can be both metallic or semi-

conducting. The most famous one among them is molybdenum disulfide(MoS2).

Unlike the semimetallic graphene and insulating hexagonal boron nitride(h-BN),

single layer of MoS2[30, 27] is a semiconductor with a natural direct band gap of

1.90eV. Being a semiconductor and getting isolated from its layered bulk struc-

ture via mechanical exfoliation, single layer MoS2 has been subject to extensive

research, and has been an exciting candidate for electronics applications.

Another promising material for 2D electronics is phosphorene (group V) which

has been mechanically exfoliated from its bulk structure [31, 32],black phospho-

rous. It is a direct band gap semiconductor like MoS2, but phosphorene based

FETs shows higher carrier mobilities than MoS2 based counterparts [32]. Mo-

tivated with the realization of phospherene, other Group V systems (nitrogene,

antimonene, and bismuthene) are also predicted theoretically and all have been

found stable above room temperature [33, 34]. Almost continuously, new single

layer or few layer materials are synthesized, new properties of them are explored,

4



Figure 1.3: (a) Applications that utilize the different spectral ranges in electro-
magnetic spectrum,and the crystal structures of h-BN, MoS˙2, BP and graphene
are shown from left to right. The possible spectral ranges covered by different
materials are indicated using coloured polygons. Electronic band structures of
(b) single-layer h-BN (c), MoS2 (d), BP, and (e) graphene.[3]
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and new applications of them (including proof-of-concept applications) are real-

ized. The research of finding tunable band gap materials and methods continues

to succeed the exciting concept, 2D electronics. Different classes of 2D materials

and their possible applications are summarized in 1.3

In a couple of theoretical studies, it has been predicted that III-V compounds[1,

35] and also a group II-VI compound,[36] with constituent elements having s2pm

valence orbitals can form stable, graphene like, single layer (SL) honeycomb struc-

tures with 2D hexagonal lattice. Consisting of similar structure with graphene,

monolayer hexagonal boron nitride (1.2) (h-BN) sheets have vdW interaction with

each other forming layered bulk structure from which single layer h-BN can be

exfoliated mechanically [37]. Unlike other semiconducting III-V 2D compounds,

h-BN is an insulator [1, 38, 39]. It has a low lattice mismatch with graphene,

therefore it has attracted great attention because of the potential to be used as a

2D dielectric material in graphene transistors [40, 41], and found to increase de-

vice performance [40]. The second III-nitride to be mentioned here is aluminum

nitride (AlN). Earlier, it has been predicted to have stable hexagonal crystal

structure (1.2) when it is one atom thick [1], and few-layer form recently realized

experimentally via plasma assisted molecular beam epitaxy (MBE) on Ag(111)

surface [42]. With its layer and strain dependent tunable properties, 2D h-AlN

is a promising material for optoelectronic applications[43].

Being one of the III-V compounds, GaN in wurtzite structure (wz-GaN) has ex-

cellent electronic and optical properties which make it an important semiconduc-

tor with critical and wide range of technological applications in microwave com-

munications, lasers, detectors, light-emitting diodes in the UV range etc. [44, 45]

It has ∼3.4 eV direct band gap and exhibits high chemical, thermal and me-

chanical stability, which is convenient for various applications like nano-electro

mechanical systems (NEMS). Additionally, GaN and similar III-V compounds

like AlN can form heterostructures with commensurate interfaces, which offer

interesting quantum structures in lower dimensionality and display unusual de-

vice properties. Besides, 3D GaN crystal can be grown easily by various methods,

whereby the fabrication of thin films and heterostructures are achieved. However,
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so far a single-layer GaN has not been synthesized yet. In view of the recent ad-

vances in growth techniques and experiences developed through the fabrication of

GaN thin films, it is expected that the growth of SL honeycomb structure of GaN,

i.e. g-GaN can be achieved soon. Given the role of wz-GaN in device technology,

the growth of g-GaN would be a real impact in 2D flexible nano-optoelectronics.

Figure 1.4: A prototype laptop power adapter made by Cambridge Electronics
using GaN transistors. At 1.5 cubic inches in volume, this is the smallest laptop
power adapter ever made.[4].

While the positive phonon frequencies in a previous study[1] indicates stability

against small displacements, the stability at high temperature was not assured for

g-GaN. Then the main task of this study is firstly to show that g-GaN corresponds

to a deep, local minimum on the Born-Oppenheimer surface and hence remains

stable at high temperature. Having assured the stability, a comprehensive and

comparative study is performed using DFT on 3D wz-GaN and its allotrope

in cubic zinc-blende structure, namely zb-GaN, as well as on SL, honeycomb

structure together with its multilayers. The main objective is to reveal whether

g-GaN can substitute 3D wz-GaN in 2D electronics. It will be clarified how

the physical properties, in particular electronic and elastic properties can change

as the dimensionality varies from 3D to strictly 2D. In the past, the physical

properties, in particular the electronic energy structure of 3D wz-GaN and zb-

GaN have been treated by using methods similar to the one used in this study.

In a majority of these studies, the calculated band gaps of wz-GaN and zb-GaN
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were underestimated by almost 1.7 eV when compared to the experimental values.

While this discrepancy between DFT band gap and the experimental value is well

known, improving the theoretical predictions of band gaps has been a primary

motivation in recent studies including this one. Other objectives of this study

have been to explore: (i) Can bilayer, trilayer and periodic multilayer structures

be constructed by stacking of g-GaN? (ii) How do their physical properties vary

with the number of layers? (iii) Can a suitable substrate be deduced to grow

g-GaN and can the properties of g-GaN predicted in this study be modified when

it is grown on this substrate?

Important results of this thesis can be summarized as follows: (i) Large dis-

crepancies between experimentally determined fundamental band gap of 3D GaN

crystals and DFT results can be overcome by applying corrections to standard

techniques based on DFT. Such corrections appear to be necessary also for g-GaN.

(ii) Ab-initio MD calculations proved that the honeycomb like structure is main-

tained stable at temperatures as high as 1000K. (iii) In 2D g-GaN structure, the

fundamental band gap increases and becomes indirect. (iv) When grown on semi-

conducting blue phosphorene, which is lattice matched, the physical properties of

the freestanding g-GaN are preserved. In this respect, layered blue phosphorus

can be an ideal substrate to grow g-GaN. (v) g-GaN can form stable bilayer, as

well as multilayers, where the interlayer binding occurs through chemical and van

der Waals (vdW) interaction. The fundamental gap is altered with the number

of layers; it decreases and is converted from indirect to direct gap as the number

of layer increases. Finally, a 3D layered periodic structure of GaN like graphite

can be constructed artificially by stacking of g-GaN.
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Chapter 2

Theoretical Background

In principle, properties of a physical system, let us say an atom or a collection of

atoms, can be derived by solving the Schrödinger equation. The time-independant

many-body Schrödinger equation can be simple written as

ĤΨ = EΨ (2.1)

where Ĥ is the Hamiltonian operator, Ψ is the state function, and E is the

eigenvalue of the Hamiltonian corresponding to that particular solution Ψ. The

Hamiltonian of a system consisting of a number of nuclei and electrons can be

written in a general form as

H =
N∑
I=1

−→
P 2
I

2MI

+
Ne∑
i=1

−→
p2i
2m

+
∑
i>j

e2

|−→ri −−→rj |
+
∑
I>J

ZIZJe
2

|
−→
RI −

−→
RJ |

−
∑
i,I

ZIe
2

|
−→
RI −−→ri |

(2.2)

where MI , ZI and RI , I = 1, ...., N correspond to nuclear masses, nuclear charges

and nuclear positions of each nuclei, respectively, and mi and ri, i = 1, ....., N cor-

respond to electrons masses and electron positions. Each term in the Hamiltonian

operator defines kinetic energy of nuclei, kinetic energy of electrons, interaction

between electrons, interaction between nuclei, and interaction between neclei and

electrons, respectively.

However it is not possible to solve Schrödinger equation for a particular system

9



except for simple cases like hydrogen atom which is only a two-particle system,

or harmonic oscillator, or particle in a box problem. Main problem is 2.2 cannot

be decoupled into a set of independent equations because it describes a many-

body system in which electrostatic correlation exist between each component.

Inevitably approximation methods should be applied.

Taking into account the fact that a nucleus has more than 1800 times the

mass of an electron, one can easily say that electrons respond ”instantaneously”

to a change compared to nuclei. Thus we can split the Hamiltonian into two

pieces: nuclear part and electronic part, and solve the electronic part for fixed

coordinates of the nuclei. This separation of nuclear part and electronic part into

separate problems is known as the Born Oppenheimer approximation [46].

The separated electronic part of the equation having electron wave function

is still too complex to solve. An approximation suggested by Hartree postulates

that the electron wave function which involves all the electrons can be thought

as product of single electron wave functions each of which satisfies single-particle

Schrödinger equation in an effective potential [47]. Defining the many-electron

wave function as product of single-electron wave functions is known as Hartree

product and can be shown as

Ψ(R, r) = Πiψ(ri) (2.3)

and single electron wave function in an effective potential is defined as

(− h̄2

2m
∇2 + V

(i)
eff (R, r))ψi(r) = εiψi(r) (2.4)

with

V
(i)
eff (R, r) = V (R, r) +

∫ ∑N
j 6=i ρj(r

′)

|r− r′|
dr’ (2.5)

where

ρj(r) = |ψj(r)|2 (2.6)

is the electronic density associated with particle j. Effective potential does not

include the charge density terms associated with i, in order to prevent self-

interaction terms. Thus the energy associated with the Hamiltonian formed with

10



2.5 is found as

EH =
N∑
i

εn −
1

2

∫ ∫
ρ(r)ρ(r′)

|r− r′|
drdr′ (2.7)

where 1/2 factor ensures that electron-electron interaction is not counted twice.

The solution of 2.4 is a single-electron wave function. This state function

gives electron density which defines the effective potential given in 2.5. But

effective potential was required to solve the single-electron wave function in the

first place. This situation may seem like a vicious cycle but the solution is to

begin with a good guess of trial wave function and then try to minimize the

energy by performing iterative calculations. This self-consistency concept will be

mentioned below while density functional theory is discussed briefly.

Pauli exclusion principle states that no two identical fermions can be in the

same quantum state. This principle requires exchange interaction to be taken into

account while dealing with electron wave function. Under these circumstances

total electron wave function must be antisymmetric which means that wave func-

tion changes sign when two arguments are exchanged as follows:

Ψ(1, .., i, .., j, .., N) = −Ψ(1, .., j, .., i, .., N) (2.8)

which can be satisfied by a determinant concept

Ψ(1, .., i, .., N) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1) . . . ψ1(ri) . . . ψ1(rN)
...

. . .
...

. . .
...

ψi(r1) . . . ψi(ri) . . . ψi(rN)
...

. . .
...

. . .
...

ψN(r1) . . . ψN(ri) . . . ψN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.9)

which is known as Slater determinant. Being an improvement of Hartree approx-

imation where electron wavefunction also satisfies Pauli exclusion principle, and

known as Hartree-Fock approximation.
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2.1 Density Functional Theory

Although Schrödinger equation provides exact solutions of a many-body system,

collection of atoms interacting with each other in this case, it is not possible to

solve. An alternative approach suggests using electron density rtaher than many-

electron wave function, which is known as density functional theory (DFT).

2.1.1 Hohenberg-Kohn Formulation and Kohn-Sham

Equations

Density functional theory rests on two fundamental theorems proposed and

proved by Hohenberg and Kohn [48].

First theorem states that the ground state energy determined by solving

Schrödinger equation is a unique functional of the electron density .

One can conclude from this theorem that there is a one-to-one correlation between

the ground state density and the ground state properties of the system. But here

there is no information about the functional.

Here, not surprisingly, the second theorem, also known as variational principle,

appears stating; The electron density that minimizes the energy of the

overall functional is the true electron density corresponding to the

full solution of the Schrödinger equation . If the functional were known,

one could vary the electron density and find the minimum of the functional which

correspond to the ground state electron density which is required. On the way to

find the functional described by the second theorem, Kohn-Sham equations [49]

come to aid.

Following Kohn and Sham, in order to get the right electron density, a set of

equations each of which involves a single electron are needed. These equations

are known as Kohn-Sham equations and can be expressed as[
− h2

2m
∇2 + Vext(ri) + VH(ri) + VXC(ri)

]
ψi(ri) = εiψi(ri) (2.10)

12



or in more compact form [
− h2

2m
∇2 + Veff

]
ψi = εiψi (2.11)

where VH is the Hartree potential defined as

VH(r) = e2
∫
d3r′

n(r′)

|r− r′|
(2.12)

and VXC is the potential term which defines exchange-correlation contributions

to 2.10.

Let us assume the ”problematic” exchange-correlation potential is known. In

order to solve the Kohn-Sham equation we need to know the Hartree potential

but the definition of Hartree potential involves electron density. To find the

electron density, single electron wave functions must be known. And this requires

solving the Kohn-Sham equations. This situation seems like a vicious cycle again

mentioned above. The solution lies in the iterative (self-consistent) approach:

Begin with a trial electron density, solve the Kohn-Sham equations and find the

wave functions, and define the new electron density. Compare the previous and

the last densities. If they are the ”same”, then it is done, but if they are ”different”

then continue iteration.

2.1.2 Exchange-Correlation Functionals

Everything seems settled but the most difficult part still remains: exchange-

correlation functional is not known. In order to solve the Kohn-Sham equations,

exchange-correlation functional must be specified. Exact derivation of this func-

tional is known only for one case which is the uniform electron gas. Uniformity

implies that its electron density is constant in space(n(r) = cst). To make use of

this for the purpose of defining a valid functional which will provide solutions that

represent the properties of real materials, one can define the exchange-correlation

potential at a given position to be the exchange-correlation potential of the uni-

form electron gas as a functional of the electron density at that position as follows:
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VXC(r) = V electron gas
XC [n(r)] (2.13)

Since this approximation uses local densities (n(r) at that position) to define

VXC(r) is called local density approximation (LDA). Although it seems a ”rough”

approximation it works well for many systems. Other than LDA, there is another

well known approximation which is called general gradient approximation (GGA).

This approximation uses both the local electron density and the local gradient

of the electron density. Whereas LDA considers uniform electron distribution,

GGA considers the evolution of the density as well.Thus GGA functional involves

more information about the physical system over LDA, which is a sign of better

representation of a real system, but the way in which the local density gradient

is included in GGA functional determines the accuracy of that functional for

that specific system, and this variability of the approach to the gradient causes

creation of different GGA functionals.

2.1.3 Hybrid Functionals

It is well known that DFT using either LDA or GGA methodolgy underestimates

the band gap of the semiconducting materials. The Hartree potential which is

also involved in Kohn-Sham equations defines the electrostatic interaction be-

tween one electron and the electron density to which all the electrons contribute

including that one electron interacting with this electron density. That is to say an

electron contributes to the electron density from which it is effected. This inter-

action is nonphysical, and must be eliminated. In the Hartree-Fock method, this

interaction energy is totally cancelled by including the exchange term in Hamil-

tonian. The same cancellation would be also valid for DFT if the exact form of

the functional were known. The errors caused by this situation can be partially

corrected by using hybrid functionals. The functionals which incorporates ex-

act exchange of some amount is called as hybrid functional [50]. In solving KS

equations in plane-wave basis set, screened hybrid functionals [51] are used. This

approach divide the exchange interaction into two parts; long-range and short-

range parts. The short-range part includes the exact exchange of some amount.
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HSE (Heyd-Scuseria-Ernxerhof) exchange-correlation functional [51], one of the

widely used hybrid functionals, is constructed by incorporating PBE correlation

functional, and Hartree-Fock exchange functional with a mixing parameter of 1/4

and 0.2 screening parameter for screened Coulomb potential in the short range

Hartree-Fock exchange functional, and the remaining 3/4 part of the exchange

functional comes from PBE.

EHSE
X C = αEHF short range

X +(1−α)EPBE short range
X (γ)+EHF long range

X (γ)+EPBE
C

(2.14)

where α is the mixting parameter, and γ is the screening parameter.

2.1.4 Van der Waals Interaction

Van der Waals interaction is a very weak interaction compared to covalent bond-

ing or ionic bonding, but still very important for materials. In order to define

the properties of a layered material, i.e. graphite, layered h-BN, the effect of

this interaction should be modelled accurately. DFT has a limitation in calcu-

lating the weak van der Waals interactions because the approximations made by

exchange-correlation functionals (LDA, GGA, or hybrid functionals) are not able

to describe long-range electron correlation [52]. The solution is to add a correction

energy to the result of Kohn-Sham equations. There are various methods which

calculates the correction in different ways, and among them DFT-D2 method of

Grimme [53] in VASP is used in this study.

2.1.5 Plane Waves and k-point Sampling

The systems in this study consist of atoms in periodic arrangement. If Schrödinger

equation is applied to a periodic system, the solutions which are wave functions

must satisfy a property known as Bloch’s theorem. This theorem states that the

solution of Schr”odinger equation applied to a periodic structure can be written

as a sum the terms with the form
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ψk(r) = eik.ruk(r) (2.15)

where ui(r) has the same periodicity with the crystal lattice satisfying the con-

dition ui(r) = ui(r+T). Here T is the translation vector of that lattice.

In the case of Kohn-Sahm equations Bloch’s theorem still applies and the single

electron wave-functions are in the form of Bloch functions expressed as in 2.15.

Using a basis set consisting of reciprocal lattice vectors of the crystal, electronic

wave functions can be written as a sum of plane waves

ψi(r) =
∑
G

ai,k+Gei(k+G)r (2.16)

Integrations over k requires infinite number of k-points in Brilluoin zone(BZ).

But it is possible to represent the reciprocal space with a finite number of k-

points which is required or numerical analysis. There are several methods, i.e.

Monkhorst-Pack[54], for calculations at specified k-points in the BZ with enough

accuracy. The accuracy of a calculation can be determined by the number of

k-points used, but the computational burden increases as well.

As discussed above, electron wave functions can be extended in terms of

plane wave basis sets (2.16), but evaluating the solution involves infinite num-

ber of summations. These functions have solutions with kinetic energies E =

(h̄2/2m)|k+G|2. Luckily the solutions with lower kinetic energies are more im-

portant than the higher ones. So it is possible to truncate the infinite sum by

using a particular cutoff energy Ecut = (h̄2/2m)G2
cut.

2.2 Computational Parameters used in the cal-

culations

In this thesis, first-principles calculations were performed in order to investi-

gate the ground state properties of bulk and 2D g-GaN, within spin-polarized
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density functional theory (DFT). The projector-augmented-wave potentials

(PAW) formalism [55] implemented in the Vienna ab-initio simulation package

(VASP)[56, 57, 58, 59] is used. The electron exchange and correlation potential

was described by the Perdew-Burke-Ernzerhof (PBE) form within the generalized

gradient approximation (GGA), with d-electrons also taken into account (GGA-d

XC potential).[60, 61] The plane-wave basis set was defined by an energy cutoff

at 520 eV for all calculations. Moreover, the van der Waals interactions were

accounted for the layered structures.[62] Atomic positions were optimized using

the conjugate gradient (CG) method; the total energy and atomic forces are min-

imized with an energy difference between the sequential steps set to 10−5 eV for

convergence. The maximum allowed force on each atom and Gaussian smearing

factor were taken as 0.05 eV/Å and 0.05 eV, respectively. A Γ centered 35×35×1

mesh was used for the Brillouin zone integrations of the primitive unit cell. In

order to avoid spurious interactions between the periodic images, a supercell with

∼ 20 Å vacuum space was adopted. The cohesive energies of 3D and 2D GaN

allotropes are calculated from the expression, Ec = ET [Ga] + ET [N ]− ET [GaN ]

in terms of the total energies, ET [Ga] and ET [N ] of free Ga and N atoms and the

optimized total energy, ET [GaN ] of a specific allotrope. The higher the positive

Ec, the stronger is the binding. An interionic charge transfer analysis between Ga

and N was carried out for the bulk and g-GaN, using the Bader charge analysis

method.[5]

In addition to ab-initio phonon calculations,[63, 64] the stability of the struc-

tures were tested at high temperatures by ab-initio molecular dynamics (MD)

calculations using two different approaches. In the first one, Nosé thermostat[65]

was used and Newton’s equations were integrated through Verlet algorithm with

a time step of 1 fs. In the second one, the velocities are scaled at each time step

in order to keep the temperature constant.

Subsequent to the standard-DFT results, hybrid functionals (HSE06)[66, 51,

67] and quasiparticle (QP) G0W0 corrections[68, 69, 70], where G and W were

iterated once, were undertaken in order to obtain the corrected band structures

of bulk and g-GaN.
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Chapter 3

Results

3.1 3D GaN Crystals

The thermodynamically stable phase of 3D GaN crystal has wurtzite structure,

which corresponds to a global minimum. As for zb-GaN, it can form in the

epitaxial growth of thin films on (011) planes of the cubic substrates[45] and

hence has a slightly lower cohesive energy relative to wz-GaN.

3.1.1 Crystal Structure and Energetics

wz-GaN is constructed from two interpenetrating hexagonal close packed lattices,

each having two of each constituent atoms, Ga or N. The structure has P63mc

space group symmetry, and lattice constants a=b and c. zb-GaN consists of

two interpenetrating fcc lattices each having four of the two atoms at the lat-

tice points. The cubic structure has F 4̄3m space group. Both allotropes have

tetrahedral coordination for the first nearest neighbors, but differ in the second

nearest neighbor coordination.

In the present study, we carried out structure optimization calculations of
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wz-GaN and zb-GaN crystal with GGA (using only 4s and 4p valence orbitals),

GGA+d (including also 3d orbitals), GGA-GW and GGA+d-GW potentials;

however we prefer to display and tabulate the results only given by GGA+d

potential throughout the paper, due to the reliable values given by this functional.

In Fig. 3.1 we present atomic configurations of wz-GaN and zb-GaN in their

conventional cells, which were optimized through GGA+d calculations.

Figure 3.1: Optimized atomic structures of wz-GaN and zb-GaN in their hexago-
nal and cubic conventional cells, respectively. Lattice constants and bond angles
are indicated. Larger (blue) and smaller (gray) balls stand for Ga and N atoms.

For each optimized structure, we calculated the lattice constants, Ga-N bond

length d, cohesive energy per Ga-N pair Ec, bulk modulus B, charge transfer from

cation to anion Q∗b , Born effective charge Z∗, and direct band gap between valence

and conduction bands EG−d. Our results are listed in Table 3.1 for wz-GaN and

in Table 3.2 for zb-GaN. Present calculated values can be compared with values

calculated by previous theoretical studies and measured experimentally presented

in the same tables.

While the previous LDA calculations provides overbinding, predicting a=3.17

Å and c=5.15 Å, the corresponding experimental values were measured as a=3.19

Å and c=5.19 Å. Apparently, lattice constants of wz-GaN are underestimated

by LDA calculations. The present GGA+d calculations predict a=3.22 Å and

c=5.24 Å. Also the experimental value of the cohesive energy, 9.06 eV/GaN pair is
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a c c/a d Ec B ν Q∗b Z∗ EG−d
(Å) (Å) (Å) (eV/GaN) (GPa) (%) (e) (e) (eV)

GGA+d 3.22 5.24 1.63 1.97 8.76 171 0.18 1.54 2.63 1.71
HSE06 (α=0.25/0.35) - - - - - - - - - 2.96/3.48

G0W0 - - - - - - - - - 3.03
LDA/GGA[71] 3.16/3.22 5.15/5.24 1.63 - - - - - - 2.12/1.74

LDA[72] 3.14 - 1.63 - - 215 - - 2.64 -
LDA[73] 3.20 - 1.63 - - - - - 2.72 -
LDA[74] 3.15 - 1.63 - - 195 - - - -
GGA[75] 3.19 - - - - - - - - 1.83

LDA/HSE[76] 3.15/3.18 5.14/5.17 1.63 - - - - - 2.58/2.64 -
LDA@FP-LAPW[77] 3.17 5.15 1.63 - - 207 - - - 2.22

HSE06[78] 3.20 5.20 1.63 - - - - - - 3.21
HSE06 (α=0.25/0.30)[71] 3.18/3.17 5.17/5.16 1.63 - - - - - - 3.27/3.48
G0W0@OEPx(cLDA)[79] 3.19 5.19 1.63 - - - - - - 3.24

Expt.[75, 80, 81, 82, 83, 84, 85, 86, 87] 3.19 5.19 1.63 - 9.06 188,195,205,237,245 0.20 - 2.65 3.40-3.50

Table 3.1: Lattice constants a = b and c; c/a ratio; Ga-N bond length d, cohesive
energy Ec per Ga-N pair; bulk modulus B, Poisson’s ratio ν, charge transfer Q∗b
from cation to anion through Bader analysis[5], Born effective charges Z∗, and
direct band gap EG−d of wz-GaN crystal calculated by using PBE, HSE06 (with
different mixing parameters α) andG0W0 approaches. For the sake of comparison,
values obtained from the previous theoretical studies and experiments are also
included.

predicted here as Ec=8.76 eV/GaN pair. As for the bulk modulus, the predicted

value of 171 GPa is lower than the experimentally measured values between 188-

245 GPa. Furthermore, Bader charge analysis[5] reveals that charge transfer Q∗b

from Ga to N atoms was at a value of 1.54 electrons.

a d Ec B ν Q∗b Z∗ EG−d
(Å) (Å) (eV/GaN) (GPa) (%) (e) (e) (eV)

GGA+d 4.55 1.97 8.75 170 0.34 1.52 2.68 1.55
HSE06 (α=0.25/0.35) - - - - - - - 2.74/3.30

G0W0 - - - - - - - 2.85
LDA[74] 4.46 - - 183 - - - -
LDA[72] 4.45 - - 207 - - 2.65 -
GGA[88] 4.56 - - - - - - 1.66

G0W0@LDA[89, 90, 91] 4.5 - - - - - - 2.79,2.88,3.09
Expt.[81, 92, 93, 94] 4.54,4.50 - 8.90 185-190 0.37 - - 3.30

Table 3.2: Cubic lattice constant a; Ga-N bond length d, cohesive energy Ec per
Ga-N pair; bulk modulus B, Poisson’s ratio ν, charge transfer Q∗b from cation to
anion obtained by Bader analysis[5], Born effective charge Z∗, and direct band
gap EG−d calculated by PBE, HSE06 (with different mixing parameters α) and
G0W0. For the sake of comparison values obtained from the previous theoretical
studies and experiments are also included.

For zb-GaN, GGA+d calculations provide best predictions; calculated value

of a=4.55 Å for the experimental lattice constant of a=4.54 Å. As expected, the

cohesive energy of zb-GaN calculated as Ec=8.75 eV/pair is slightly smaller than
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that of wz-GaN, which can be compared with the experimental value measured as

8.90 eV/GaN pair.[94] The bulk modulus, which is calculated to be B=170 GPa is

in good agreement with the experimental values reported as 185-190 GPa.[92, 93]

3.1.2 Electronic Structure of 3D GaN Crystals

In a simple tight binding picture of the Bond Orbital Model[95], the cation Ga

having 4s24p1 and the anion N having 2s22p3 valence orbitals each form four

sp3 hybrid orbitals, |hc > and |ha >, in the tetrahedral directions. The sp3

hybrid orbital of N has lower energy than the sp3 hybrid orbital of Ga, namely

E|hc> > E|ha>. When combined to form bond orbitals Ψb >= (|hc > +|ha >)/
√

2

along four tetrahedrally coordinated bonds, charge is transferred from cation to

anion attributing some polar character to covalent bond orbitals. As a result,

directional bond orbitals carry both polarity and covalency. According to the

Bond Orbital Model, GaN bonds have the polarity α=0.62. In compliance with

this analysis, the top of the valence band is dominated by N-2p orbital states.

Eight electrons per Ga-N pair and energy difference of E|ha> and E|hc> dictate a

wide band gap of 3D GaN crystals. With the guidance of this simple analysis,

we now examine the calculated electronic band structure of 3D GaN crystals.

In Fig. 3.2 we present the electronic band structure of wz-GaN, which was cal-

culated within GGA approximated using PBE along major symmetry directions.

It is a direct band gap semiconductor with EG−d=1.71 eV, which is underesti-

mated by 1.7 eV with respect to the reported experimental values, in the range of

3.40-3.50 eV. Our prediction agrees with the previous calculations within GGA

approximation,[71] but 0.4 eV smaller than that of LDA.[71] Present and previous

GGA calculations, as well as other previous calculations are known to underes-

timate the fundamental band gap. Here we apply corrections to present PBE

values by using HSE06 and quasiparticle GW methods. After HSE06 correction,

the direct band gap of wz-GaN increases to 2.96 eV (and even to 3.48 eV when ex-

change parameter α=0.35), yet remains ∼ 0.44 eV below the experimental value.

The GW correction slightly opens up the band gap further to 3.03 eV, which is
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Figure 3.2: Electronic energy band structure of wz-GaN calculated by PBE. The
total (TDOS) and partial (PDOS) densities of states projected to valence orbitals
are slightly shifted for clarity. The bands after the HSE corrections are shown
by the dashed lines. The fundamental band gap of PBE calculations are shaded.
The zero of energy is taken at the top of the valence band at the center of the
Brillouin zone.
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still ∼ 0.37 eV smaller than the experimental gap.
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Figure 3.3: Electronic energy band structure of zb-GaN calculated by PBE.
TDOS and PDOSs projected to valence orbitals are shifted for clarity. The bands
after the HSE corrections are shown by the dashed lines. The fundamental band
gap of PBE calculations are shaded. The zero of energy is taken at the top of the
valence band at the center of the Brillouin zone.

The electronic energy structure of zb-GaN calculated by PBE is presented in

Fig. 3.3. Similar to wz-GaN, zb-GaN is a direct band gap semiconductor with

PBE band gap EG−d= 1.55 eV, which is 1.75 eV smaller than the experimentally

measured values averaged at 3.30 eV. After HSE06 corrections the calculated

value raises to 2.74 eV, yet it is ∼ 0.56 eV smaller than experimental values.

The G0W0 correction opens up the band gap further to 2.85 eV, which is still

∼ 0.45 eV smaller than the experimental gap. Nonetheless, fundamental band

gaps of both wz-GaN and zb-GaN can be further closed by HSE06 by tuning the

exchange parameter α as 0.35, to 3.48 eV and 3.30 eV, respectively.
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3.2 2D g-GaN

Using LDA approximation within DFT, the earlier study addressing the ques-

tion whether IV-IV elemental and III-V and II-VI compound semiconductors can

form stable 2D crystalline structures, found that GaN can form a stable, planar,

single-layer, honeycomb structure.[1, 35, 36] In the present paper, we name this

structure as g-GaN and we first examine its stability, which was proven earlier

by phonon calculations.[1] Here, we repeat phonon frequency calculations using

GGA and perform also finite temperature MD calculations in order to assure that

the equilibrium structure is not a shallow minimum in the Born-Oppenheimer

surface. Furthermore, we investigate the properties of g-GaN by using different

methods within DFT and apply HSE06 corrections to the fundamental band gap.

In doing that, we are able to provide a consistent comparison with the 3D crystals

to reveal the effect of the dimensionality.

Figure 3.4: Left: Top and side views of the optimized atomic structure of g-
GaN. 2D hexagonal primitive unit cell is delineated by dashed lines. The lattice
constants a=b and Ga-N bond length are indicated. Large (blue) and relatively
smaller (gray) balls denote Ga and N atoms, respectively. Middle: Isosurfaces of
the total charge density of the hexagon. Right: Charge density contour plots of
Ga-N bond in a horizontal plane passing through Ga-N bond and corresponding
color scale. Bond charge of σ-bond is shown.

3.2.1 Structure, Energetics and Mechanical Properties

In g-GaN structure, Ga-sp2 and N-sp2 hybrid orbitals form σ-bonds along Ga-N

bonds arranged as a hexagon. Due to the planar sp2 bonding, the bond angle
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a d Ec C ν Q∗b Z∗ EG−i
(Å) (Å) (eV/GaN) (N/m) (%) (e) (e) (eV)

GGA+d 3.21 1.85 8.04 109.8 0.43 1.50 3.08 2.16
HSE06 - - - - - - - 3.42
G0W0 - - - - - - - 4.55

LDA[1] 3.20 1.85 12.74 110 0.48 1.70 - 2.27 (GW0: 5.0)
LDA[96] 3.21 1.85 - 109.4 0.43 - - -
LDA[97] - 1.85 8.38 - - - - 2.17
GGA[98] - 1.87 8.06 - - - - 1.87 (GW0: 4.14)
G0W0[99] 3.17 - - - - - - 4.27 (LDA: 2.36)

PBE/HSE/G0W0[100] 3.25 - - - - 1.34 3.23 3.23 (HSE06)/4.00 (G0W0)

Table 3.3: Optimized lattice constant a; Ga-N bond length d, cohesive energy Ec

per Ga-N pair; in-plane stiffness C, Poisson’s ratio ν, charge transfer Q∗b from Ga
to N, Born effective charge Z∗, and indirect band gap EG−i of g-GaN.

between Ga-N bonds is 120o. In addition to three sp2 hybrid orbitals of each

constituents, Ga and N, their pz orbitals are perpendicular to the plane of g-

GaN. While the σ-bonds attain the strength of g-GaN, the π-bonds between

nearest Ga-pz and N-pz orbitals maintain the planar geometry of g-GaN. It is

known that graphene like compounds are not buckled but are rather planar, if

one of the constituents is from the first row of the Periodic Table, like graphene,

BN, BP and AlN monolayers with honeycomb structure. Due to the electronic

charge transfer from Ga to N, in addition to σ- and π-bonding, an ionic bonding

with Madelung energy contributes to the cohesive energy.

The atomic structure of g-GaN was optimized by using the CG method. The

equilibrium structure of free standing g-GaN is planar honeycomb structure with

2D hexagonal lattice. The optimized atomic structure together with the prim-

itive cell and its lattice constants is shown in Fig. 3.4. In the same figure, the

schematic description of the bonding in compliance with the above discussion is

presented. Charge density contour plots of Ga-N bond in a horizontal plane (in

the atomic plane of g-GaN) is also shown. The isosurfaces of the total charge

density mimic the electron distribution over the hexagons, where Ga and N atoms

are alternatingly placed at the corners. It is noted that Ga-N bonds in 3D wz(zb)-

GaN, which is constructed from tetrahedrally coordinated sp3 hybrid orbitals is

0.12 Å longer than the Ga-N bonds of g-GaN constructed from planar sp2 hybrid

orbitals + pz orbitals. This indicates that Ga-N bonds in g-GaN is stronger than

those in wz(zb)-GaN. Despite the stronger bonding in planar g-GaN, the cohesive
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energy of 3D wz-GaN crystal, which is four-fold coordinated is 0.70 eV higher

than that of g-GaN. Accordingly, g-GaN corresponds to a local minimum in the

Born-Oppenheimer surface.

Lattice constants a=b, bond length d, cohesive energy Ec, in-plane stiffness

C, charge transfer, Born effective charge values and fundamental band gaps EG

calculated by different methods are presented in Table 3.3. In the same Table,

we included results of the previous studies for the sake of comparison.

For g-GaN, our PBE calculation predicts a and d values (3.21 and 1.85 Å, re-

spectively) which are in good agreement with previous theoretical results.[1, 96]

While cohesive energy per GaN pair is generally overestimated by LDA calcu-

lation, values of in-plane stiffness and Poisson’s ratio agree better with previous

LDA calculation.[1] Finally, Bader analysis yielding a charge transfer of 1.5 elec-

trons from Ga to N indicates significant ionic contribution in the binding.

3.2.2 Stability: Phonon Spectra and MD Simulations

Even if the structure optimization by CG method indicates the equilibrium struc-

ture, it is not necessarily stable under the displacements of atoms in g-GaN. In

order to check whether the free-standing g-GaN in honeycomb structure remains

stable under the displacements of the constituent atoms, we carry out the calcula-

tions of the frequencies of crystal vibrations and determine the phonon frequency

spectrum. It is well known that if the vibration frequency of specific modes, Ω(k)

were imaginary, the corresponding displacements would result in an instability,

since displacement cannot be restored. In Fig. 3.5(a), the calculated frequencies

of phonon modes are positive and indicate stability. The phonon dispersions cal-

culated here are similar to those calculated earlier by using LDA,[1] except for

some shifts of the optical branches.

Although the calculated frequencies of the phonon modes are all positive, in-

stabilities can be induced through thermal excitations. This situation occurs

when the local minimum of a given phase is shallow and the structure dissociates
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Figure 3.5: (a) Calculated phonon dispersion curves, Ω versus k, along major
symmetry directions of the Brillouin zone shown by the inset. (b) Snapshots of
the atomic configurations in MD simulations at 0K, 600K and 1000K, in which
honeycomb like structures are maintained.

at low temperatures. In order to show that g-GaN can survive at high tempera-

tures and is suitable for technological applications above the room temperature,

we carried out ab-initio finite temperature calculations in the temperature range

from 0K to 1000K. The honeycomb structure did not dissociate even after 3 pi-

coseconds simulation at 1000K. This indicates that g-GaN is rather stable in a

deep minimum on the BO surface and hence devices fabricated from g-GaN can

sustain operations above the room temperature. In Fig. 3.5(b) we present snap-

shots of the atomic configurations obtained from the MD simulations at different

temperatures.

3.2.3 Electronic Structure

Since antibonding π∗-bond is separated from π-bond by a significant energy, the π

and π∗-bands derived from these bonds open a significant band gap. Accordingly,

g-GaN is a nonmagnetic, wide band gap semiconductor. In Fig. 3.6(a) and (b),

the electronic energy band structure of g-GaN in the symmetry directions of the

hexagonal Brillouin zone, as well as the corresponding total (TDOS) and orbital
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projected (PDOS) densities of states are shown. While the maximum of the

valence band occurs at the K-point, minimum conduction band appears at the Γ-

point. Accordingly, the energy bands calculated by PBE marks an indirect band

gap from K- to Γ-point, EG−i=2.16 eV. This is a dramatic deviation from the bulk

3D wz(zb)-GaN, which has a PBE direct band gap of EG−d=1.71. Apparently, the

fundamental band gap increased by 0.45 eV as one goes from 3D to monolayer

2D. While the lowest conduction band near the center of the Brillouin zone is

derived from the Ga-pz orbitals, the flat band at maximum of the valence band

along K-M direction originates from the N-pz orbital states. Further to the PBE

calculations of the band structure, we applied corrections by using HSE06 and

G0W0 methods. The corrected band gaps are shown in Fig. 3.6. The indirect PBE

band gap increased to 3.42 eV after the HSE06 correction. This corresponds to

a correction of 1.26 eV. On the other hand, the correction induced by the G0W0

method is larger than that of HSE06 method by nearly 1 eV, revealing a band

gap of 4.55 eV. Spin-orbit coupling (SOC) at the top of the valence band at the

Γ-point leads to the splitting of the degenerate bands by only 11 meV.

The response of the conduction and valence bands to the applied strain ε, and

the resulting changes of the fundamental gap is of interest from the fabrication

of devices operating under strain. Here we examined the effect of the strain on

the fundamental band gap of g-GaN. Within PBE calculations, the band gap of

g-GaN was found to monotonically decrease from 2.16 eV to 0.21 eV as going

from ε=0 to ε=10%. Furthermore, the gap seemed to close and lead to a metallic

band structure when biaxial tensile strain was further increased, up to 16%. The

shifts of the conduction and valence bands under strain and the variation of the

fundamental band gap is shown in Fig. 3.7(a) and (b), respectively. This is an

important result predicting dramatic changes in the electronic structure with

applied strain, once εx = εy ≤ 10% is affordable in g-GaN system.

As for TDOS and orbital projected PDOS, one also finds modifications by

going from 3D to 2D. In particular, flattening of the bands near the edge of the

conduction band gives rise to strong peaks in TDOS and PDOS.
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Figure 3.6: Electronic energy band structure of the optimized structure of g-GaN
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is set to the top of the valence band. Fundamental band gap between conduction
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3.2.4 g-GaN on Substrates

Since 3D layered GaN does not exist in nature, the freestanding g-GaN cannot

be exfoliated; it should be grown on a substrate. Under these circumstances, the

grown overlayer and substrate can be strong and hence the properties calculated

for SL g-GaN undergo significant modifications. Here we examined the properties

of g-GaN overlayer grown on two different substrates. These are metallic Al(111)

surface and semiconducting blue phosphorene. Our models of g-GaN+substrate

are presented in Fig. 3.8.

Al(111) surface is rather reactive and hence can establish strong interac-

tions with the g-GaN overlayer. In this respect, Al(111) surface is a stringent

test substrate. The Al(111) surface is represented by an Al(111) slab consist-

ing of four Al(111) planes. Since Al(111) surface is not lattice matched to g-

GaN, we elongated the Al(111) lattice by 15%. This allows us to treat the g-

GaN+substrate system using periodic boundary conditions. Since the electronic
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Figure 3.8: (a) Optimized atomic structure of g-GaN overlayer on Al(111) slab
represented by four Al(111) atomic planes. Calculated total and local densities of
states on the overlayer as well as on Al(111) slab. (b) Optimized atomic structure
of g-GaN overlayer on a SL blue phosphorene. Calculated total and local densities
of states on the overlayer as well as on SL blue phosphorene.
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density of Al(111) is increased upon compression, the reactivity of Al(111) sur-

face can increase to enhance overlayer-substrate interaction. This way our test

is realized in even more severe conditions. The effect of Al(111) substrate on

g-GaN is analyzed by determining the height of g-GaN from the substrate and

by calculating the density of states localized on the overlayer. In Fig. 3.8(a), the

optimized height h=3.17 Å, which is larger than the sum of the covalent atomic

radii of either rGa +rN=1.76 Å or rN +rAl=1.76 Å.[101] The common Fermi level

is shifted up by ∼ 1 eV from the top of the valence band of g-GaN. The density

of states projected onto the g-GaN overlayer is reminiscent of the state density

presented in Fig. 3.6 with peaks -1 eV < E < -2 eV and -3 eV < E < -4 eV. Low

densities of states in the gap region of g-GaN for energies -1 eV < E < 1.5 eV is

partly due to the numerical accuracy and weak substrate-overlayer interaction.

Interestingly, blue phosphorene, i.e. SL buckled honeycomb structure of phos-

phorus, is nearly lattice matched to g-GaN and hence is an ideal substrate to

examine substrate-overlayer interaction. While we consider a single layer of blue

phosphorene in order to examine its interaction with g-GaN, the same interaction

with the multilayer phosphorene or layered 3D blue phosphorus is not expected

to change in any essential manner owing to the weak vdW interlayer interaction

within phosphorene. However, because of the semiconducting surface and its lat-

tice constants nearly matching to g-GaN, 3D layered blue phosphorene appears

to be an ideal substrate to grow single and multilayer structures of g-GaN. In

Fig. 3.6(b), the height of the g-GaN overlayer from blue phosphorene surface

is h=2.97 Å, which is rather large and larger than the sums of covalent radii

rGa + rP=2.36 Å. The density of states projected onto g-GaN is similar to that in

Fig. 3.6 with the peaks at ∼-1 eV, -2.5 eV and -6 eV. The fundamental band gap

of the g-GaN+phosphorene system partly overlaps with that of g-GaN, whereas

the conduction bands of blue phosphorene occur in the upper energy region of

g-GaN overlayer. Briefly the density of states analysis suggests that the inter-

action between overlayer g-GaN and the underlying blue phosphorene is minute

and does not allow any significant modification of the electronic structure of the

freestanding g-GaN.
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Figure 3.9: Phonon dispersion curves calculated for the bilayer of g-GaN.
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Figure 3.10: Construction of van der Waals solids by g-GaN. (a) Left: Energy
band structure of bilayer b-GaN calculated using PBE with AA

′
stacking. Right:

Optimized atomic configuration. (b) Same as (a) for trilayer t-GaN with AA
′
A.

(c) Same as (a) for 3D periodic layered structure p-GaN with AA
′
AA

′
... stacking.

The primitive unit cell is delineated by dashed lines. Zero of energy is set to the
top of the valence bands. Fundamental band gaps are shown by arrows.
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3.2.5 GaN Bilayer and Multilayer Structures

Previous studies have shown that the physical properties of bilayer and multilayers

of SL honeycomb structures vary slowly.[102, 103] Like SL structures, bilayer and

multilayers correspond to local minima on BO surface. Growth of multilayers

as well as the 3D periodic structure allow us to construct artificial materials

with novel properties like van der Waals solids.[104] We explored this aspect of

g-GaN and revealed their properties. Of course, we started by determining the

most energetic stacking sequence, since there are a few stacking configurations.

Here are the stacking sequences and (their optimized cohesive energies per Ga-

N pair) for bilayer GaN i.e. b-GaN: AA
′

(i.e. hexagons on top of each other

with Ga atom being above N) [EC=8.57 eV]; AA (Ga on Ga) [EC=8.29 eV];

AB(GaN) (Bernal type, Ga above N) [EC=8.49 eV ]; AB(NN) which is equivalent

to AB(GaGa) [EC=8.40 eV]. Accordingly, AA
′

sequence is found energetically

favorable. The total interlayer interaction being only 280 meV, 120 meV of it

is chemical interaction and remaining 160 meV has vdW character. A similar

analysis has been performed for several types of stacking sequences of trilayer

GaN (t-GaN) and it was found that the sequence, which is energetically most

favorable is AA
′
A, with cohesive energy EC=8.69 eV per Ga-N pair. Here the

cohesive energy is larger than that of g-GaN and b-GaN, due to the increasing

interlayer interaction. Note that in the cohesive energy calculation of wz- and

zb-GaN, the vdW interaction is not taken into account within 3D bulk structures.

Therefore, the bulk cohesive energies are slightly underestimated relative to those

of the multilayer structures. The average interlayer interaction energy is 200 meV.

The cohesive energies calculated for b- and t-GaN are in agreement with those

of Xu etal.[97] The extension of b- and t-GaN is the formation of multilayer m-

GaN or 3D layered p-GaN, which is periodic in the direction perpendicular to

the atomic planes. We carried out calculations for the structure optimization of

p-GaN. We found the stacking sequence, AA
′
AA

′
... energetically most favorable

with EC=8.94 eV per Ga-N pair.

Having determined the most energetic stacking sequence, we next tested the

stability of b-GaN. Normally, if the interlayer distance is larger than the Ga-N
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bond distance and the interaction among them is weak, the stability is strength-

ened in b-GaN. The calculation of the phonon frequencies presented in Fig. 3.9

demonstrate the stability of b-GaN and hence confirmed this conjecture.

Finally, the calculated electronic structure of b-, t-, and p-GaN are presented

in Fig. 3.10, together with their optimized structures with structural parameters,

such as interlayer spacing h, lattice constants a=b (c). The indirect band gap of

g-GaN decreases to 1.98 eV in b-GaN and to 1.83 eV in t-GaN. Interlayer spacing

h also shows this trend where it decreases with number of layers increasing, since

the total interlayer interaction also increases. However, bond lengths and lattice

constants display the opposite trend.

In p-GaN, the total interlayer interaction is maximized. An important outcome

of this study is that, as the number of layers increases, the fundamental band gap

of g-GaN decreases from 2.26 eV to 1.98 eV in b-GaN and to 1.83 eV in t-GaN.

These three band gaps are indirect. However, in p-GaN, the fundamental band

gap decreases to 1.23 eV and changes from indirect to direct, like in 3D wz- and

zb-GaN. The crossover from indirect to direct is expected to occur in multilayer

structures having less than 10 layers. It is important to note that 3D p-GaN

has a direct band gap like 3D wz- and zb-GaN, nonetheless the band gap of this

predicted structure is smaller by ∼ 0.5 eV.
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Chapter 4

Conclusions

In conclusion, in this paper we present an extensive comparative study of the

3D bulk GaN crystals and 2D graphene like single-layer honeycomb g-GaN, as

well as its multilayer van der Waals solids carried out using first-principles DFT

methods. While DFT provides predictions on the atomic structure, lattice con-

stants, cohesive energy and elastic properties of 3D wz-GaN and zb-GaN crystals,

it underestimates the experimentally determined fundamental band gaps by 1.5-

2 eV. Here we placed an emphasis on the energetics and electronic structures,

by applying state-of-the-art methods in order to improve their band gaps. For

g-GaN, we performed high temperature ab-initio MD simulations showing that

the stability deduced by ab-initio phonon calculations does not correspond to a

shallow minimum, but the structure resists to thermal excitations by remaining

stable at high temperatures. We also found that by going from 3D to 2D g-GaN,

the band gap increases and is converted from direct to indirect. Additionally,

state distribution in the conduction band exhibits significant changes relative to

3D wz-GaN and zb-GaN crystals. This situation is reflected to the absorption

spectrum of 2D g-GaN, which is blueshifted and displays dramatic differences at

higher photon energies. Finally, we found that the interaction between g-GaN

and specific metallic and semiconducting substrates is weak and allows the phys-

ical properties predicted for the freestanding g-GaN to be preserved, once g-GaN

is grown on such substrates. In particular, blue phosphorene is nearly lattice
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matched to g-GaN, which can set weak chemical and van der Waals interactions.

Accordingly, layered blue phosphorus can serve as an excellent substrate to grow

single-layer or multilayer g-GaN. We hope that the present work will be insightful

for growing g-GaN.
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[34] O. U. Aktürk, V. O. Özçelik, and S. Ciraci, “Single-layer crystalline phases

of antimony: Antimonenes,” Phys. Rev. B, vol. 91, p. 235446, Jun 2015.

[35] E. Bekaroglu, M. Topsakal, S. Cahangirov, and S. Ciraci, “First-principles

study of defects and adatoms in silicon carbide honeycomb structures,”

Phys. Rev. B, vol. 81, p. 075433, Feb 2010.

[36] M. Topsakal, S. Cahangirov, E. Bekaroglu, and S. Ciraci, “First-principles

study of zinc oxide honeycomb structures,” Phys. Rev. B, vol. 80, p. 235119,

Dec 2009.

42



[37] D. Paciele, J. C. Meyer, c. O. Girit, and A. Zettl, “The two-dimensional

phase of boron nitride: Few-atomic-layer sheets and suspended mem-

branes,” Applied Physics Letters, vol. 92, no. 13, pp. 24–27, 2008.

[38] Y. Kubota, K. Watanabe, O. Tsuda, and T. Taniguchi, “Deep ultravio-

let light-emitting hexagonal boron nitride synthesized at atmospheric pres-

sure,” Science, vol. 317, no. 5840, pp. 932–934, 2007.

[39] K. Watanabe, T. Taniguchi, and H. Kanda, “Direct-bandgap properties and

evidence for ultraviolet lasing of hexagonal boron nitride single crystal,” Nat

Mater, vol. 3, pp. 404–409, Jun 2004.

[40] D. R., Y. F., MericI., LeeC., WangL., SorgenfreiS., WatanabeK., Tanigu-

chiT., KimP., S. L., and HoneJ., “Boron nitride substrates for high-quality

graphene electronics,” Nat Nano, vol. 5, pp. 722–726, Oct 2010.

[41] J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande,

K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and B. J. LeRoy, “Scanning

tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal

boron nitride,” Nat Mater, vol. 10, pp. 282–285, Apr 2011.

[42] P. Tsipas, S. Kassavetis, D. Tsoutsou, E. Xenogiannopoulou, E. Golias,

S. A. Giamini, C. Grazianetti, D. Chiappe, A. Molle, M. Fanciulli, and

A. Dimoulas, “Evidence for graphite-like hexagonal aln nanosheets epitax-

ially grown on single crystal ag(111),” Applied Physics Letters, vol. 103,

no. 25, 2013.

[43] D. Kecik, C. Bacaksiz, R. T. Senger, and E. Durgun, “Layer- and strain-

dependent optoelectronic properties of hexagonal aln,” Phys. Rev. B,

vol. 92, p. 165408, Oct 2015.

[44] S. Nakamura, “Nobel lecture: Background story of the invention of efficient

blue ingan light emitting diodes*,” Rev. Mod. Phys., vol. 87, pp. 1139–1151,

Oct 2015.
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[102] S. Cahangirov, V. O. Özçelik, L. Xian, J. Avila, S. Cho, M. C. Asensio,

S. Ciraci, and A. Rubio, “Atomic structure of the
√

3×
√

3 phase of silicene

on ag(111),” Phys. Rev. B, vol. 90, p. 035448, Jul 2014.
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