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ABSTRACT

RISK-AVERSE OPTIMIZATION FOR MANAGING
INVENTORY IN CLOSED-LOOP SUPPLY CHAINS

Melis Beren ÖZER

M.S. in Industrial Engineering

Advisor: Emre Nadar

Co-Advisor: Özlem Çavuş İyigün

July 2016

This thesis examines a closed-loop multi-stage inventory problem with remanu-

facturing option. A random fraction of used products is returned by consumers

to the manufacturer after a certain number of stages. But the manufacturer may

or may not collect any returned item. Demand can be satisfied through two chan-

nels: manufacturing new products and remanufacturing used products (cores).

A control policy specifies the numbers of cores to collect and remanufacture, and

the number of new products to manufacture, at each stage. The state space

consists of the serviceable product and core inventory levels, and the amounts

of future returns. We study this problem from the perspectives of risk-neutral

and risk-averse decision-makers, in both cases of lost sales and backordering. We

incorporate the dynamic coherent risk measures into our risk-averse problem for-

mulation. We establish that it is always optimal to prefer remanufacturing to

manufacturing under a mild condition. Numerical results indicate that a state-

dependent threshold policy may be optimal for the core inventory. However,

such a policy need not be optimal for the serviceable product inventory. We also

conduct numerical experiments to evaluate the performance of several heuristics

that are computationally less demanding than the optimal policy: a certainty

equivalent controller (CEC), a myopic policy (MP), a no-recovery policy (NRP),

a full-collection policy (FCP), and a fixed threshold policy (FTP). CEC, MP,

and NRP have a distinct computational advantage over FCP and FTP, whereas

FCP and FTP significantly outperform all the other heuristics with respect to

objective value, in our numerical experiments.

Keywords: closed-loop supply chains, remanufacturing, inventory, risk-aversion,

random returns.
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ÖZET

KAPALI DEVRE TEDARİK ZİNCİRLERİNDE
RİSKTEN KAÇINAN ENVANTER YÖNETİMİ

OPTİMİZASYONU

Melis Beren ÖZER

Endüstri Mühendisliği, Yüksek Lisans

Tez Danışmanı: Emre Nadar

Eş-Tez Danışmanı: Özlem Çavuş İyigün

Temmuz 2016

Bu tezde yeniden imalat opsiyonu içeren çok periyotlu kapalı devre envanter prob-

lemi incelenmiştir. Kullanılmış ürünler rassal oranla üreticiye belirli süre sonra

geri dönmektedir. Talep yeni ürün üretimi ve kullanılmış ürünün yeniden imalatı

ile karşılanır. Her periyotta kullanılmış ürünlerin toplanma ve yeniden imalat

miktarları ve yeni ürün üretim miktarı belirlenmektedir. Durum uzayı satılacak

ürün ve kullanılmış ürün envanterleri ile, gelecekte geri dönecek ürün miktarlarını

içermektedir. Problem, riske duyarsız ve riskten kaçınan karar vericiler için, kayıp

satış ve ardıısmarlama durumlarında çalışılmıştır. Riskten kaçınan problemde

tutarlı dinamik risk ölçütleri kullanılmış, üretim yerine yeniden imalata öncelik

vermenin daima daha kârlı olduğu gösterilmiştir. Sayısal sonuçlar kullanılmış

ürün envanteri için duruma göre değişen eşik değeri politikasının en iyi poli-

tika olabileceğini göstermiştir. Ancak böyle bir politika satılacak ürün envanteri

için en iyi politika olmak zorunda değildir. Ayrıca, en iyi politikadan daha kısa

sürede sonuç verebilen çeşitli sezgisel politikaların performansları sayısal anali-

zlerle değerlendirilmiştir. Bu politikalar: kesinlik denkliği kontrolörü, uzakgörmez

politika, geri kazanım yapmayan politika, tamamen toplama politikası ve sabit

eşik değeri politikasıdır. Kesinlik denkliği kontrolörü, uzakgörmez politika ve

geri kazanım yapmayan politikanın, tamamen toplama ve sabit eşik değeri poli-

tikalarından belirgin bir çözüm süresi avantajı olduğu gözlemlenmiştir. Tamamen

toplama ve sabit eşik değeri politikalarının ise diğer sezgisel politikalardan objek-

tif değer yönünden önemli ölçüde avantajlılığı gözlemlenmiştir.

Anahtar sözcükler : kapalı devre tedarik zincirleri, yeniden imalat, envanter, risk-

ten kaçınma, rassal geri dönüş.
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co-advisor Asst. Prof. Özlem Çavuş for their invaluable support, understanding,

and guidance during my graduate study. It has always been a pleasure to work

with them.

I am also very grateful to Assoc. Prof. Dr. Zeynep Pelin Bayındır and Asst.
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Chapter 1

Introduction

Waste management is one of the top ten environmental issues facing humanity

(Esty and Winston 2009). Most products end up in landfills after they reach the

end of their life cycles. In order to mitigate the negative impact of those products

on the environment, sustainability has gained an increasing attention over the last

years. Closed-loop supply chains, on the other hand, have become a key aspect

of environmental sustainability. By extending the scope of their supply chains to

include used-product collection and recovery, today′s manufacturing firms aim not

only to reduce their production costs, but also to meet stringent environmental

regulations by reducing their waste of end-of-use products (Kiesmüller and Minner

2003).

Closed-loop supply chains involve the return of a used product back to the man-

ufacturer as well as the delivery of a product to the final user, whereas traditional

supply chains ignore the used product returns. The recovery of used products is

appealing to manufacturers in various industries for numerous reasons: First, the

manufacturer may greatly reduce its waste and operational costs by collecting

and recovering its used products. Second, environmental legislations may man-

date the used product recovery. Third, the manufacturer can extend its product

line by offering “cheaper branded” products. Last, the recovered products may

attract “green-sensitive” customers (Souza 2012).
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Once a product is returned by its last user to the manufacturer, it can be

reused, recovered, or disposed (Thierry et al. 1995). The well-known recovery

options include incineration, recycling, parts harvesting, resale, and remanufac-

turing: Incineration refers to the process of igniting a product when the other

options of recovery are not possible. Although the purpose is to disperse materials

into the atmosphere in a clean way, generated heat can be used to produce electric

power in some cases. Recycling refers to the process of converting waste materi-

als for manufacturing products of different functionality. It is preferred when the

returns have little economic value due to obsolescence. Parts harvesting refers to

the recovery of only specific parts of a returned product. Resale happens when

there exists a secondary market for the used product. Finally, remanufacturing

refers to restoring a product to its originally manufactured quality and is often

considered as the most profitable disposition decision (Souza 2012). This thesis

focuses on an inventory system with remanufacturing option; see Figure 1.1.

The size of remanufacturing industry in the United States is estimated to be

at least $53 billion, employing over 480,000 people (Souza 2012). Examples of

remanufactured products include mobile phone parts, domestic appliances, toner

cartridges, single-use cameras, automotive parts, and IT equipment. In addition,

remanufacturing is a common practice in fashion, aerospace and defense industries

(Dekker et al. 2004). Remanufacturing toner cartridges is a $3 billion industry

and Xerox′s remanufacturing program saved nearly $200 million in material and

part costs in less than five years (Ginsburg 2001). The annual sales volume in

automotive remanufacturing industry, on the other hand, is reported to be $2.5

billion (Souza 2012).

Although the used product recovery is often very beneficial, it is quite difficult

to effectively manage inventory in a closed-loop supply chain. This is because

the quantity, timing, and quality of returns are highly variable, and the forward

and reverse material flows of the supply chain impact each other. To handle

such complexity, many authors assume that infinitely many products exist in the

market so that the reverse material flow is not bounded by (and is independent

from) the forward material flow; see, for instance, Simpson (1978), Buchanan

and Abad (1998), and Zhou et al. (2011). But the amount of returns is in
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Figure 1.1: Illustration of an inventory system with remanufacturing option

general constrained by the total amount of past sales that is finite, especially if

the product has a finite life-cycle (Geyer et al. 2007). Another key problem with

much of the literature is that all returned products are collected; see, for instance,

Inderfurth (1997) and Kiesmüller and Minner (2003). But a huge number of

collected returns may lead to excess inventory and high disposal cost. Thus

the manufacturer may want to collect only a certain amount of returns that

will minimize its inventory costs. To our knowledge, the literature dealing with

closed-loop inventory systems has not yet developed a comprehensive modelling

framework that explicitly captures these two aspects of the problem. This thesis

is the first attempt to fill this gap.

The literature on closed-loop inventory systems has also neglected to incorpo-

rate the concept of “risk” into decision-making. However, many decision-makers

are willing to trade-off higher expected cost for protection against possible de-

mand losses, especially in high-margin markets (Chen et al. 2007, and Schweitzer

and Cachon 2000). In this thesis, we study not only the risk-neutral decision-

maker′s problem but also the risk-averse decision-maker′s problem, which we

model by employing the modern theory of risk. There are several different ways to
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incorporate risk into decision-making, such as expected utility theory and mean-

risk approach. Although many authors in the literature dealing with traditional

inventory systems use utility functions in their objectives as a measure of risk, it

is often problematic to elicit the utility function of the decision-maker in practice.

For this reason, we consider the law-invariant coherent risk measures in our study.

Specifically, we take “mean-semi-deviation” as the risk measure in our risk-averse

problem.

In this thesis we consider a single-product, closed-loop, multi-stage inventory

system. A random fraction of the sold products in any stage becomes available

for collection by the manufacturer after a certain number of stages, i.e., a market

sojourn time. We label this fraction as return rate. A unit collection cost is

incurred if the manufacturer collects a used product. But there is no cost if the

manufacturer does not collect any used product. Demand and return rate are

independent from each other and across time. The manufacturer satisfies the

demand from the serviceable product inventory. Both the newly-manufactured

and remanufactured products can be added to this inventory immediately. A

control policy specifies how many new products should be manufactured, how

many used products should be collected, and how many collected products should

be remanufactured in each state and time period.

We consider two different objectives of the manufacturer: The risk-neutral

objective is to minimize the expected total cost over a finite planning horizon

(Chapter 3.1). The risk-averse objective is to minimize the weighted sum of

the mean total cost and the expected excess from the mean total cost over a

finite planning horizon (Chapter 3.2). We analyze the problem in both cases

of backlogging and lost-sales. For both objectives and both cases, we are able

to prove that remanufacturing should always be preferred to manufacturing at

optimality if the serviceable product inventory is to be increased.

We formulate dynamic programming (DP) algorithms for both risk-neutral

and risk-averse problems. The state space consists of the inventory levels of both

serviceable and collected products, as well as the numbers of used products that

will be returned over a certain number of stages in the future (a market sojourn

4



time). Solving these DP algorithms to optimality is extremely problematic since

both state and action spaces are unmanageably large. In order to reduce the

computational burden of our DP algorithms, we develop several computationally-

efficient heuristics: the Certainty Equivalent Controller (CEC), the Myopic Policy

(MP), the No-Recovery Policy (NRP), the Full-Collection Policy (FCP), and the

Fixed Threshold Policy (FTP).

• CEC finds the optimal policy in our DP algorithms by fixing the uncertain

quantities at their “typical” values. Specifically, we set demand and return

rate equal to their expected values, thereby eliminate randomness from our

inventory system. The optimal policy within this heuristic class can be

obtained from our DP algorithms in the absence of random disturbances.

• MP is a commonly used approach in the inventory literature. For a given

state and stage, MP chooses the action that minimizes the expected total

cost in that stage by ignoring the impact of future stages on the expected

total cost. Because MP disregards the state evolution in future stages, it

has the potential to greatly reduce the solution time.

• NRP never collects used products. The optimal policy within this heuristic

class can be obtained from our DP algorithms by eliminating the collection

and remanufacturing decisions from the action space. Note that the value

of product recovery in our closed-loop inventory system can be measured

by the optimality gap of NRP.

• FCP collects all available used products in the market. The optimal policy

within this heuristic class can be obtained from our DP algorithms by set-

ting the collection amount in each stage equal to the number of available

used products in that stage.

• We describe FTP as follows: The used products (available in the market) are

collected to bring the collected product inventory as close to a fixed target

level as possible at each stage, if it is below it. And the collected products

(available in inventory) are remanufactured to bring the serviceable product

inventory up to a fixed target level in each stage, if it is below it. New
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products are manufactured only if remanufacturing is inadequate to bring

the serviceable product inventory up to the target level. The optimal policy

within this heuristic class can be obtained by running a DP algorithm under

each possible pair of target levels and choosing the pair that yields the least

cost in the first period.

We then conduct numerical experiments to provide insights into the optimal

policy structure. Our numerical results suggest that a state-dependent threshold

policy may be optimal for the core inventory in both cases of backlogging and

lost-sales. However, we could not prove discrete-convexity of our optimal cost

function, which is a standard method used in the inventory literature to establish

the optimality of threshold policies. (In the case of backlogging we have found

counter examples showing that discrete-convexity need not hold for our optimal

cost function in general.) Hence whether state-dependent threshold policies are

analytically optimal for the core inventory in our closed-loop inventory systems

remains an open research problem.

We also conduct numerical experiments to examine the performance of each of

our heuristic policies with respect to objective value and solution time. Numerical

results show that although CEC has a computational advantage over all the other

heuristics, it has the worst performance with respect to objective value. Unlike

previous work showing that MP might be preferable in many closed-loop supply

chains (Cohen 1980), MP performs worse than NRP, FCP, and FTP with respect

to objective value. Although NRP performs better than CEC and MP in terms

of objective value, it performs substantially worse than FCP and FTP, indicating

a significant loss when products are not recovered. FCP and FTP surpasses the

other heuristics and display similar performances with respect to the objective

value. Last, FTP has a distinct computational advantage over FCP.

We contribute to the literature in several important ways: First, to our knowl-

edge, our study is the first attempt to incorporate the coherent dynamic risk

measures into a closed-loop inventory management problem. Second, we take

the collection amount as a decision variable, as opposed to previous research col-

lecting all cores and taking the disposal quantity as a decision variable. Third,
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we include all the information regarding future return quantities in our state

space. We use this information to limit future collection quantities. Last, our

numerical experiments reveal the practicality of fixed threshold policies for our

closed-loop inventory problem. Our numerical results also lead to the conjecture

that state dependent threshold policies may be optimal for the core inventory in

our closed-loop inventory system.

The rest of the thesis is organized as follows. Chapter 2 reviews the literature

for the risk-neutral inventory problems with remanufacturing option and the risk-

averse inventory problems. Chapter 3 describes the inventory model under two

different objectives (risk-neutral vs. risk-averse) in the cases of backlogging and

lost-sales. Chapter 4 describes the heuristics and their formulations. Chapter 5

presents and interprets numerical results for the optimal policy structure and the

heuristics. Chapter 6 offers a summary and possible future research directions.

Proofs of all analytical results are contained in the appendix.
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Chapter 2

Literature Review

In this chapter, we review the literature dealing with the inventory control prob-

lem in closed-loop supply chains. To our knowledge, previous work has only

focused on the risk-neutral decision maker′s problem (Chapter 2.1). The risk-

sensitive decision maker′s problem has been studied in the literature only for

traditional supply chains (Chapter 2.2).

2.1 The Risk-Neutral Problem

Many authors in the field of closed-loop supply chains assume that remanufac-

tured products are the perfect substitutes of newly manufactured products. Geyer

et al. (2007) investigate the profitability of remanufacturing under the following

supply-loop constraints: collection capacity, limited component durability, and

finite product life cycle. The fraction of used products that can be collected (i.e.,

the collection rate) is constant (which may be less than one). However, the col-

lected products may have variable conditions and every collected product may not

be remanufactured. The fraction of collected products that can be remanufac-

tured and remarketed (i.e., the remanufacturing yield) is again constant (which

may be less than one). They formulate the component durability constraint as
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a function of the maximum number of times the component can be used in pro-

duction of the same kind of product, which limits the remanufacturing yield.

They also model the market demand over the product life cycle as following an

isosceles trapezoid, and relate the fraction of remarketable collected items to the

remanufacturing yield. For the problem with finite product life cycle, Geyer et

al. (2007) assume that there is a fixed time interval between the sale of a prod-

uct and its resale after being collected and remanufactured (i.e., a fixed market

sojourn time). They establish upper bounds for the average cost savings from

remanufacturing in the cases of limited component durability and finite product

life cycle. Unlike Geyer et al. (2007), we study the inventory control problem

in a closed-loop supply chain with random returns. Furthermore, we take the

numbers of used products to collect and collected products to remanufacture as

decision variables.

Whisler et al. (1967) consider an inventory system in which products are rented

to customers and returned after a stochastic market sojourn time. Any demand

that is not satisfied immediately is lost. They seek an optimal policy that specifies

the number of equipments to rent and the number of equipments to dispose over

both finite horizon and infinite horizon. They establish the optimality of a base-

stock policy with two critical levels under the assumption of linear costs: If the

inventory level of equipments on hand is less than the lower limit, the optimal

policy is to order up to the lower limit. If the inventory level is larger than the

upper limit, the optimal policy is to dispose down to the upper limit. Since all

rented equipments are returned in good condition (and thus remanufacturing is

not needed), Whisler et al. (1967) do not incorporate remanufacturing of returned

items into decision-making.

Simpson (1978) examines an inventory system with random demand and re-

turns, under the discounted cost criterion. Any excess demand is backlogged.

The state space consists of inventory levels of both the end-products and re-

pairable items. Simpson (1978) establishes the optimality of a base-stock policy

with three thresholds: repair-up-to level, purchase-up-to level, and scrap-down-to

level. It is optimal to repair up to a certain limit, purchase up to a certain limit

if repair is not possible, and finally scrap down to a certain limit if the inventory
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on hand exceeds this limit. Unlike Simpson (1978), our study takes into account

the collection capacity and non-zero market sojourn time.

Buchanan and Abad (1998) consider an inventory system for containers with

random returns and lost sales. A fixed fraction of the end products is destroyed

or becomes unavailable. The state space consists of the number of containers

available for sale and the number of containers in the field. The optimal policy

specifies the number of containers that should be ordered at the beginning of each

stage. They prove the optimality of a base-stock policy in this problem. Unlike

Buchanan and Abad (1998), we allow for a market sojourn time for returns, and

our returns are bounded by the past sales.

Galbreth and Blackburn (2006) consider a single-period inventory system in

the cases of deterministic demand and random demand. Returned products may

be in different conditions, which become known by the manufacturer upon col-

lection. They seek the optimal number of used items to acquire and the optimal

degree of selectivity during sorting operation after acquisition. They model the

problem in both cases of linear and non-linear acquisition costs as the standard

newsvendor problem. As the degree of selectivity increases, the remanufacturing

yield decreases since more products are scrapped, but the cost of remanufacturing

also decreases since the quality of selected products increases. They formulate the

condition of a returned product as the remanufacturing cost: Returned products

in a better condition lead to lower remanufacturing costs. Galbreth and Black-

burn (2010) extend the model in Galbreth and Blackburn (2006) to allow for

uncertain used product condition, establishing the optimal acquisition amount

and the optimal sorting policy. Zikopoulos and Tagaras (2008) also study a vari-

ation of this problem in which defects may occur in sorting operations. See also

Ferrer (2003), Guide et al. (2003), Bakal and Akcali (2006), and Zikopoulos and

Tagaras (2007) for stochastic acquisition and sorting models. Unlike these pa-

pers, we consider a multi-stage inventory model with random returns (of the same

condition) bounded by earlier sales.

Cohen (1980) considers an inventory system with random demand and lost

sales. A fixed fraction of the sold products is returned to the manufacturer after
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a fixed number of time periods, and a fixed fraction of the products on hand

decays. Cohen (1980) assumes all returned products can be resold with no re-

manufacturing effort. The state space consists of the inventory level of serviceable

items as well as the number of previously sold items. Cohen (1980) then shows

the optimality of a base-stock policy under the discounted cost criterion. Cohen

(1980) also proves the optimality of a myopic base-stock policy when the market

sojourn time is fixed at one period. Beltran et al. (2002) generalize the model in

Cohen (1980) to allow for a fixed ordering cost, showing the optimality of an (s, S)

policy. Unlike Cohen (1980) and Beltran et al (2002), our state space includes the

inventory level of the collected products, and our control policy specifies the num-

ber of used items to collect and the number of collected items to remanufacture

(in addition to the number of items to manufacture). We also allow the collection

rate to be random in each time period, making our problem more realistic.

van der Laan et al. (1996) consider an inventory model in which demand and

returns are independent from each other. Under the assumptions of backlogging

and positive leadtimes, they show the optimality of (s,Q) policy in the average

cost case. Fleischmann et al. (2002) extend this optimality result to the case

with random returns. Bayındır et al. (2005) study a similar problem under the

assumption of lost sales and zero leadtimes. Unlike these papers, in our model

the number of demand at any stage impacts the number of returns at a later

stage.

Inderfurth (1997) studies a multi-stage inventory control problem with re-

manufacturing option. The decision-maker faces stochastic demand and returns,

and has two options to fulfill demand: remanufacturing and procurement. The

decision-maker may also decide to dispose returned items. When procurement

and remanufacturing have identical leadtimes, Inderfurth (1997) shows that the

following policy is optimal at each stage: If the inventory level is below a certain

lower limit, it is optimal to dispose nothing and remanufacture (or procure if

remanufacturing is not possible or is inadequate) up to this lower limit. If the

inventory level is higher than a certain upper limit, it is optimal to dispose down

to this upper limit, remanufacture the remaining returned products, and procure

nothing. Although a base-stock policy is optimal when leadtimes are identical,
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Inderfurth (1997) states that a base-stock policy need not be optimal when lead-

times are positive and non-identical. For this reason, Inderfurth (1997) suggests

the use of heuristic algorithms that can perform well in the case of non-identical

leadtimes, inspired by the threshold policy defined above. Kiesmüller and Minner

(2003) also develop a heuristic algorithm for a periodic review inventory problem

with random demand and returns. Unlike our study, Inderfurth (1997) neglects

to consider a market sojourn time for product returns and assumes all returned

products are collected. Kiesmüller and Minner (2003), on the other hand, assume

that returns are independent from earlier sales and all returns are remanufactured.

Toktay (2000) examines a multi-stage inventory control problem in which the

end products are returned to the manufacturer after a certain market sojourn

time. Toktay (2000) studies the problem when backlogging is not allowed and

the market sojourn time is fixed at one period. The problem consists of two

decisions: how much to procure and how much to dispose. Similar to Whisler

(1967) and Cohen (1980), the state space in Toktay (2000) consists only of the

inventory level of serviceable products. Using the six-node closed queueing theory

network, Toktay (2000) shows the optimality of a base-stock policy and proposes

a heuristic procedure to construct a dynamic procurement policy.

Kiesmüller and van der Laan (2001) study an inventory model over a finite

planning horizon with positive ordering lead times, and random returns that

are dependent on demand stream. A sold item is returned to the manufacturer

with a constant probability, and a returned item is either remanufactured with a

constant probability or disposed. Any unsatisfied demand is backordered. They

show the optimality of a base-stock policy. Unlike Kiesmüller and van der Laan

(2001), in our study the state space contains two distinct inventory levels and

the collection amount is a decision variable. We also study the cases of lost

sales and backordering. Brito and van der Laan (2008) study a similar problem,

establishing the optimality of a base-stock policy over an infinite planning horizon.

Zhou et al. (2011) study a multi-stage inventory control problem with random

demand, random returns (cores), and multiple core conditions. The manufacturer

holds different inventories for serviceable products and cores, and may dispose the
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excess amount of cores. The value function in their dynamic programming formu-

lation involves two-layer optimization. They first solve the optimization problems

sequentially across all types of cores and then choose the solution that minimizes

the expected total cost. In the case of identical manufacturing and remanufac-

turing lead-times, they establish the optimality of a threshold policy with state-

dependent manufacture/remanufacture-up-to levels and state-dependent dispose-

down-to levels. They also formulate the problem in the case of non-identical lead

times, developing a simple heuristic procedure to compute a near-optimal control

policy. The main limitation of this study is that the impact of past sales on future

product returns is ignored. However, in our study, the number of products avail-

able for collection is bounded by the amount of past sales. It is also important to

note that Zhou et al. (2011) neglect to include the collection rate as a decision

variable in their model. Tao et al. (2012) extend the model in Zhou et al. (2011)

by allowing for random remanufacturing yield, in addition to random demand

and returns.

2.2 The Risk-Sensitive Problem

As far as we are aware, the prior literature has not yet studied the risk-averse

optimization of inventory systems in closed-loop supply chains. Therefore, we

below review the literature dealing with the risk-averse optimization in traditional

supply chains.

Schlesinger (1995) studies the newsvendor problem in a risk-averse setting. The

objective is to maximize the expected utility, which is increasing, concave and

thrice differentiable. Schlesinger (1995) shows that the optimal order quantity

decreases as risk-aversion increases. When the decision maker is too risk-averse,

he does not even order any newspapers due to the fear of losing money.

Agrawal and Seshadri (2000) consider a newsvendor setting in which the risk-

neutral and risk-averse objectives are to maximize the expected utility, which is

a concave function of the price. They develop two different formulations under
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two distinct assumptions: (i) a change in price affects the scale of the distribution

and (ii) a change in price only affects the location of the distribution. They find

that a risk-averse retailer prefers to charge a higher price and order less under

assumption (i) whereas it prefers to charge a lower price under assumption (ii),

in comparison with the risk-neutral case.

Chen et al. (2007) study a multi-stage inventory control problem in which the

objective is to maximize the total expected utility over a flow of consumption.

They introduce two models: In the first model, demand is exogenous, i.e., price is

not a decision variable. In the second model, demand depends on price, i.e., price

is a decision variable. Chen et al. (2007) show that when the utility function is

exponential and the financial market is partially complete, the structure of the

risk-averse optimal policy is almost identical to the structure of the risk-neutral

optimal policy.

Choi and Ruszczyński (2011) extend the model in Chen et al. (2007) by al-

lowing for multiple products, taking an exponential utility function of the profit

as their objective. They prove that when the product demands are independent,

and the ratio of the degree of risk aversion to the number of products approaches

zero, the risk-averse optimal solution converges to the risk-neutral optimal so-

lution. They also show that the risk-averse optimal order quantities are lower

under positively correlated demands than under independent demands.

Although the expected utility approach has been widely adapted in the lit-

erature on the risk-averse optimization of inventory systems, the interpretation

of such utility functions are quite difficult. An important limitation of the ex-

pected utility approach is that it is often very hard or not practical to elicit

the utility function of the decision-maker. For this reason, Ahmed et al. (2007)

examine the single-item inventory control problem with linear cost structure in

both single-stage and multi-stage settings, incorporating the coherent risk mea-

sure into the objective function. They replace the expectation operation with

the mean-absolute deviation risk measure in their objective for the multi-stage

problem, and prove the optimality of a base-stock policy. They also show that as

the risk-aversion increases, the decision-maker orders in higher amounts.
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Choi and Ruszczyński (2008) use the general mean-risk model in order to

solve the newsvendor problem. They find that the opposite results of Ahmed et

al. (2007) hold in their model. Examples of the mean-risk models include semi-

deviation (the risk model in our research) and weighted-mean-deviation from

quantile. Using general law-invariant measures of risk, Choi and Ruszczyński

(2008) show in the case of lost sales that as the newsvendor becomes more risk-

averse, he prefers to order less. Choi et al. (2011) use law-invariant coher-

ent risk measures to model the multi-product newsvendor problem in Choi and

Ruszczyński (2011), obtaining the same results as in the expected utility case.

In addition, they establish that as the number of products grows to infinity, the

optimal solution converges to the risk-neutral optimal solution, i.e., risk-aversion

becomes ineffective in the optimal policy.
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Chapter 3

Problem Formulation

We formulate the closed-loop inventory problem in both cases of backlogging and

lost-sales under two different risk-attitudes of the decision maker: (i) risk-neutral

and (ii) risk-averse.

We consider a single product, closed-loop, finite-horizon inventory system. The

manufacturer satisfies the demand through two channels: manufacturing new

products and remanufacturing its own end-of-use products (cores). Demand for

serviceable products at each stage t, Dt, is random. A random fraction Ct of the

sold products at stage t, becomes available for collection and remanufacturing by

the manufacturer after a fixed market sojourn time t∆, i.e., at stage t + t∆. We

label this fraction as return rate.

The order of the events at each stage is as follows: At the beginning of the

stage, some or all of the previously sold products become available for collection.

The decision-maker observes the serviceable product inventory, the core inventory,

and the future returns. It then decides how many products to manufacture, how

many cores to acquire (of the newly available cores at that stage), and how

many products to remanufacture (of the so far acquired cores). Both newly-

manufactured and remanufactured products are added to the serviceable product

inventory. Finally, demand is observed and satisfied from the serviceable product
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inventory. Any excess demand is either always backlogged or always lost. The

true fraction of the sold items at this stage that will be available for collection in

the future is revealed to the decision-maker at the end of this stage.

We make several assumptions for analytical convenience: (i) Demand and

return rate are independent from each other at each stage. Many papers in

the closed-loop inventory literature have made this assumption; see, for instance,

Simpson (1978), Buchanan and Abad (1998), Galbreth and Blackburn (2006), and

Zhou et al. (2011). (ii) Both manufacturing and remanufacturing lead-times are

zero. The same assumption appears in several papers; see, for instance, Inderfurth

(1997), Galbreth and Blackburn (2006), and Zhou et al. (2011). (iii) All returned

cores have the same level of quality; they are all identical. This assumption also

appears in several papers; see, for instance, Cohen (1980), Inderfurth (1997),

Galbreth and Blackburn (2006), and Geyer et al. (2007). (iv) Remanufactured

products are the perfect substitutes of newly manufactured products. This is a

standard assumption in the literature; see, for instance, Toktay (2000), Beltran

(2002), Geyer et al. (2007), and Zhou et al. (2011). (v) Last, the cores that have

been sold at stage t but have not been collected at stage t+t∆ are lost. This allows

us to keep the state space of the problem manageable. The uncollected cores

correspond to those consumers who simply choose not to return their products

and/or who dispose them (Buchanan and Abad 1998, and Geyer et al. 2007).

We define cm as the unit cost of manufacturing a serviceable product, cc as

the unit cost of collecting a core, and cr as the unit cost of remanufacturing a

product. We denote by hs and hr the unit holding costs for serviceable products

and cores per stage, respectively. We define p as the lost sale cost per unit of

unmet demand, and b as the backlogging cost per unit of unmet demand per

stage. There is no cost of having leftover items or being in shortage at the end

of the planning horizon. Last, we denote by t∆ the market sojourn time, i.e., the

time interval between the sale of a particular product and its return.

We formulate a discrete-time stochastic dynamic program with T stages that

determines the amount of products to manufacture Qt, the amount of cores to

collect Zt, and the amount of collected cores to remanufacture Rt at each stage t.
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The risk-neutral objective is to minimize the expected total cost that consists of

the manufacturing, remanufacturing, and collection costs, the inventory holding

costs, and the backordering or lost-sale costs, across all stages. The risk-averse

objective, on the other hand, is to minimize the weighted sum of the mean cost

and the expected excess from the mean cost.

The state space consists of the following state variables: Xt is the serviceable

product inventory level at the beginning of stage t. Yt is the core inventory level

at the beginning of stage t. < St−1, St−2, .., St−t∆ > is the vector of the numbers

of cores that will become available for collection t∆ stages later; St is the number

of cores that will become available at stage t + t∆. Note that the state space

grows exponentially as t∆ increases. Table 3.1 summarizes the notation that we

use throughout the thesis.

3.1 The Risk-Neutral Problem

In this section we formulate the risk-neutral inventory control problem in both

cases of backlogging and lost-sales.

3.1.1 The Case of Backlogging

We assume that any unmet demand is backlogged, incurring a unit backlog cost b

per stage. Let Vt(Xt, Yt, St−1, ..., St−t∆) denote the minimum expected total cost

from stage t to the end of the planning horizon. Then the dynamic programming

formulation of the problem for t ∈ {0, ..., T − 1} can be written as
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Table 3.1: Summary of notation.

Decision variables
Qt Number of serviceable products manufactured at stage t.
Zt Number of cores collected at stage t.
Rt Number of cores remanufactured at stage t.
State variables
St Number of serviceable products that will become available for

collection at stage t+ t∆.
Xt Serviceable product inventory level at the beginning of stage t

(Xt ≥ 0 in the case of lost sales).
Yt Core inventory level at the beginning of stage t.
Parameters
T Number of stages.
cm Unit cost for manufacturing a serviceable product.
cc Unit cost for collecting a core.
cr Unit cost for remanufacturing a core.
hs Unit holding cost for serviceable products per stage.
hr Unit holding cost for cores per stage.
p Lost sale cost per unit of unmet demand.
b Backlogging cost per unit of unmet demand per stage.
t∆ Market sojourn time.
Dt Customer demand for a serviceable product at stage t

(random variable).
Ct Return rate for stage t+ t∆ (random variable).

Vt(Xt, Yt, St−1, ..., St−t∆) = min
Qt,Rt,Zt≥0

{
cmQt + crRt + ccZt

+ E
Dt,Ct

[
hs[Xt+1]+ + hrYt+1 + b[−Xt+1]+

+ Vt+1(Xt+1, Yt+1, St, ..., St−t∆+1)
]} (3.1.1)

s.t. Xt+1 = Xt +Qt +Rt −Dt (3.1.2)

Yt+1 = Yt + Zt −Rt (3.1.3)
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St =

⌊
Ct

[
min

{
max{0, Xt +Qt +Rt}, Dt

}
+ max

{
0,min{0, Xt +Qt +Rt} −Xt

}]⌋ (3.1.4)

Zt ≤ St−t∆ (3.1.5)

Yt+1 ≥ 0 (3.1.6)

where VT is a zero function. The objective function (3.1.1) consists of the manu-

facturing, remanufacturing, and collection costs, the expected holding and back-

logging costs, and the future cost-to-go function Vt+1.

Constraint (3.1.2) ensures that the serviceable product inventory level at the

beginning of the next stage is equal to the sum of the serviceable product in-

ventory level at the beginning of the current stage and the numbers of newly-

manufactured and remanufactured products at the current stage minus demand

at the current stage. Note that the serviceable product inventory level can be

negative in the case of backlogging.

Constraint (3.1.3) ensures that the core inventory level at the beginning of the

next stage is equal to the sum of the core inventory level at the beginning of the

current stage and the number of acquired cores at the current stage minus the

number of remanufactured products at the current stage.

Constraint (3.1.4) calculates the number of sold products at the current stage

that will become available for collection t∆ stages later. The first part of the

equation corresponds to demands that are immediately satisfied at the current

stage, whereas the second part corresponds to backlogged demands that are sat-

isfied at the current stage. The sum of these two parts yields the number of items

sold at the current stage, which is multiplied by the return rate Ct to obtain the

number of cores that will be available for collection t∆ stages later.

Constraint (3.1.5) ensures that the number of acquired cores at any stage is

no greater than the number of available cores at that stage. Constraint (3.1.6)

ensures that the core inventory level is non-negative.
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We are able to establish the following structural property of the optimal cost

function Vt, under a mild condition:

Lemma 3.1. Suppose that cm ≥ cr. For the risk-neutral inventory

problem with backlogging, the following inequality holds at each stage t:

Vt(Xt, Yt, St−1, ..., St−t∆) + cm ≥ Vt(Xt, Yt − 1, St−1, ..., St−t∆) + cr.

Proof. See Appendix A.

Using Lemma 3.1, we obtain the following structural property of the optimal

policy:

Proposition 3.2. Suppose that cm ≥ cr. For the risk neutral inventory problem

with backlogging, it is optimal to prefer remanufacturing to manufacturing if the

serviceable product inventory is to be increased.

Proof. See Appendix A.

3.1.2 The Case of Lost Sales

We now assume that backlogging is not allowed and any unmet demand is lost,

incurring a unit lost-sale cost p. Then the dynamic programming formulation of

the problem for t ∈ {0, 1, ..., T − 1} can be written as

Vt(Xt, Yt, St−1, ..., St−t∆) = min
Qt,Rt,Zt≥0

{
cmQt + crRt + ccZt

+ E
Dt,Ct

[
hsXt+1 + hrYt+1 + p[Dt −Xt −Qt −Rt]+

+ Vt+1(Xt+1, Yt+1, St, ..., St−t∆+1)
]} (3.1.7)

s.t. Xt+1 = max{0, Xt +Qt +Rt −Dt} (3.1.8)

Yt+1 = Yt + Zt −Rt (3.1.9)
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St =

⌊
Ct

[
min{Xt +Qt +Rt, Dt}

]⌋
(3.1.10)

Zt ≤ St−t∆ (3.1.11)

Yt+1 ≥ 0 (3.1.12)

where VT is a zero function. Unlike the formulation in the case of backlogging,

(i) the objective function (3.1.7) includes the expected lost sale cost, disregarding

the expected backlogging cost; (ii) the serviceable product inventory level at each

stage is forced to be non-negative (constraint 3.1.8); and (iii) the amount of sales

at any stage equals the minimum of the demand and the serviceable product

inventory level at that stage (constraint 3.1.10).

Again, we are able to establish the following structural property of the optimal

cost function Vt:

Lemma 3.3. Suppose that cm ≥ cr. For the risk-neutral inventory problem with

lost sales, the following inequality holds at each stage t: Vt(Xt, Yt, St−1, ..., St−t∆)+

cm ≥ Vt(Xt, Yt − 1, St−1, ..., St−t∆) + cr.

Proof. See Appendix A.

Using Lemma 3.3, we obtain the following structural property of the optimal

policy:

Proposition 3.4. Suppose that cm ≥ cr. For the risk-neutral inventory problem

with lost sales, it is optimal to prefer remanufacturing to manufacturing if the

serviceable product inventory is to be increased.

Proof. See Appendix A.
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3.2 The Risk-Averse Problem with Mean-Semi-

Deviation

Our purpose in this section is to employ the modern theory of risk measures

in our inventory control problem. First we briefly introduce the concept of risk

measure. Then we incorporate mean-semi-deviation as a risk measure into our

problem formulation in both cases of backlogging and lost sales.

Suppose that there exists a probability space (Ω, P ). There exists a function

F : Rn × Ω → R and a set X = {F(x, .)|x ∈ X}. A risk measure is defined as

a function ρ : X → R assigning a value corresponding to the assessment of the

risk involved in holding the position defined by x to each random variable F(x, .).

The risk averse problem has the objective:

min
x∈X

ρ(F(x, ω)).

Now let (Ω,F , P ) be the probability space, X : Ω→ R be the random outcome

(cost), and Z = Lp(Ω,F , P ) for p ∈ [1,∞] be the space of possible outcomes. A

risk measure ρ : Z → R is a coherent risk measure if it satisfies the following four

axioms (Artzner et al. 1999):

A1. Convexity : ρ(λW + (1− λ)X) ≤ λρ(W ) + (1− λ)ρ(X), ∀W,X ∈ Z and

∀λ ∈ [0, 1].

A2. Monotonicity : If X � W and X,W ∈ Z, then ρ(X) ≤ ρ(W ).

A3. Translation Invariance: ∀a ∈ R, X ∈ Z, ρ(X + a) = ρ(X) + a.

A4. Positive Homogeneity : If β ≥ 0, then ρ(βX) = βρ(X), ∀X ∈ Z.

Ruszczyński and Shapiro (2009) give a further explanation of conditional and

dynamic risk measures: Consider the probability space (Ω,F , P ) with filtration

F1 ⊂ F2 ⊂ FT ⊂ F and the adopted sequence of random costs Xt for t =

1, ..., T . Assume F1 = {Ω, ∅}. Thus X1 is deterministic. Define the spaces
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Zt = Lp(Ω,F , P ) for p ∈ [1,∞], t = 1, ..., T , and let Zt,T = Zt × ...×ZT .

A conditional risk measure is defined as a mapping ρt,T : Zt,T → Zt where

1 ≤ t ≤ T , if it satisfies the axiom of monotonicity. A dynamic risk measure is a

sequence of conditional risk measures ρt,T : Zt,T → Zt for t = 1, ..., T . One-step

conditional risk measure ρt : Zt+1 → Zt, t = 1, ..., T − 1 is defined as

ρt(Xt+1) = ρt,t+1(0, Xt+1). (3.2.1)

Using equation (3.2.1), we can retrieve the following recursive relation:

ρt,T (Zt, ..., ZT ) = Xt + ρt(Xt+1 + ρt+1(Xt+2 + ...+ ρT−2(XT−1 + ρT−1(XT )))...)

(3.2.2)

The most significant examples of one-step conditional risk measures are mean-

semi-deviation and conditional average value at risk. In our study we incorporate

the risk into our problem via mean-semi-deviation. This enables us to formulate

the problem as a parametric optimization problem and easily observe the trade-off

between mean and risk.

Conditional mean-semi-deviation ρt(Xt+1) is defined as follows (Shapiro,

Dentcheva, and Ruszczyński, 2009).

ρt(Xt+1) = E[Xt+1|Ft] + κE
[ (

(Xt+1 − E[Xt+1|Ft])+

)r |Ft]
1

r
. (3.2.3)

The above equation calculates the sum of the expected upper deviation from the

mean and the expected cost given a realization. r is the order of the one-step

conditional risk measure and κ is the risk factor. Note that equation (3.2.3)

simplifies into the risk-neutral case when κ = 0. The degree of risk-aversion rises

as r or κ increases.

In Sections (3.2.1) and (3.2.2) we reformulate our inventory control problem

for the risk-averse decision-maker, by incorporating mean-semi-deviation into the

objective function.
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3.2.1 The Case of Backlogging

The objective function of the risk-averse decision-maker with mean-semi-

deviation risk measure takes the following form:

Vt(Xt, Yt, St−1, ..., St−t∆) = min
Qt,Rt,Zt≥0

{
cmQt + crRt + ccZt

+ E
Dt,Ct

[
hs[Xt+1]+ + hrYt+1 + b[−Xt+1]+ + Vt+1(Xt+1, Yt+1, St, ..., St−t∆+1)

]
+ κ E

Dt,Ct

[[
hs[Xt+1]+ + hrYt+1 + b[−Xt+1]+ + Vt+1(Xt+1, Yt+1, St, ..., St−t∆+1)

− E
Dt,Ct

[hs[Xt+1]+ + hrYt+1 + b[−Xt+1]+ + Vt+1(Xt+1, Yt+1, St, ..., St−t∆+1)]
]r

+

]1

r
}

(3.2.4)

The dynamic programming formulation with mean-semi-deviation risk measure

can be written as

Vt(Xt, Yt, St−1, ..., St−t∆) =

min
Qt,Rt,Zt≥0

{
cmQt + crRt + ccZt + µ+ κ E

Dt,Ct

[(
[Ft+1 − µ]+

)r]1/r
}

(3.2.5)

s.t. µ = E
Dt,Ct

[
hs[Xt+1]+ + hrYt+1 + b[−Xt+1]+

+ Vt+1(Xt+1, Yt+1, St, ..., St−t∆+1)
]

(3.2.6)

Ft+1 = hs[Xt+1]+ + hrYt+1 + b[−Xt+1]+

+ Vt+1(Xt+1, Yt+1, St, ..., St−t∆+1) (3.2.7)

Xt+1 = Xt +Qt +Rt −Dt (3.2.8)

Yt+1 = Yt + Zt −Rt (3.2.9)
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St =

⌊
Ct

[
min

{
max{0, Xt +Qt +Rt}, Dt

}
+ max

{
0,min{0, Xt +Qt +Rt} −Xt

}]⌋
(3.2.10)

Zt ≤ St−t∆ (3.2.11)

Yt+1 ≥ 0 (3.2.12)

where VT is a zero function. The objective function (3.2.5) minimizes the weighted

sum of the expected cost and the expected upper deviation from the mean. Con-

straint (3.2.6) calculates the expected cost whereas constraint (3.2.7) calculates

the cost for a given realization of random demand and collection rate at stage

t. Note that the risk-averse problem in this section becomes equivalent to the

risk-neutral problem in Section 3.1.1 when κ = 0.

We are able to establish the following structural property of the value function

Vt:

Lemma 3.5. Suppose that cm ≥ cr. For the risk-averse inventory problem with

backlogging, the following inequality holds for all coherent risk measures at each

stage t: Vt(Xt, Yt, St−1, ..., St−t∆) + cm ≥ Vt(Xt, Yt − 1, St−1, ..., St−t∆) + cr.

Proof. See Appendix A.

Using Lemma 3.5, we obtain the following structural property of the optimal

policy:

Proposition 3.6. Suppose that cm ≥ cr. For the risk-averse inventory problem

with backlogging, it is optimal to prefer remanufacturing to manufacturing if the

serviceable product inventory is to be increased, and this holds for all coherent

risk measures.

Proof. See Appendix A.
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3.2.2 The Case of Lost Sales

In the case of lost-sales, the objective function with mean-semi-deviation risk

measure takes the following form:

Vt(Xt, Yt, St−1, ..., St−t∆) = min
Qt,Rt,Zt≥0

{
cmQt + crRt + ccZt

+ E
Dt,Ct

[
hsXt+1 + hrYt+1 + p[−Xt+1]+ + Vt+1(Xt+1, Yt+1, St, ..., St−t∆+1)

]
+ κ E

Dt,Ct

[[
hsXt+1 + hrYt+1 + p[−Xt+1]+ + Vt+1(Xt+1, Yt+1, St, ..., St−t∆+1)

− E
Dt,Ct

[hsXt+1 + hrYt+1 + p[−Xt+1]+ + Vt+1(Xt+1, Yt+1, St, ..., St−t∆+1)]
]r

+

]1

r
}

(3.2.13)

The dynamic programming formulation with mean-semi-deviation risk measure

can be written as

Vt(Xt, Yt, St−1, ..., St−t∆) =

min
Qt,Rt,Zt≥0

{
cmQt + crRt + ccZt + µ+ κ E

Dt,Ct

[(
[Ft+1 − µ]+

)r]1/r
}

(3.2.14)

s.t. µ = E
Dt,Ct

[
hsXt+1 + hrYt+1 + p[Dt −Xt −Qt −Rt]+

+ Vt+1(Xt+1, Yt+1, St, ..., St−t∆+1)
]

(3.2.15)

Ft+1 = hsXt+1 + hrYt+1 + p[Dt −Xt −Qt −Rt]+

+ Vt+1(Xt+1, Yt+1, St, ..., St−t∆+1) (3.2.16)

Xt+1 = max{0, Xt +Qt +Rt −Dt} (3.2.17)

Yt+1 = Yt + Zt −Rt (3.2.18)
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St =

⌊
Ct

[
min{Xt +Qt +Rt, Dt}

]⌋
(3.2.19)

Zt ≤ St−t∆ (3.2.20)

Yt+1 ≥ 0 (3.2.21)

where VT is a zero function. Again, the risk-averse problem in this section becomes

equivalent to the risk-neutral problem in Section 3.1.2 when κ = 0.

Again, we are able to establish the following structural property of the value

function Vt:

Lemma 3.7. Suppose that cm ≥ cr. For the risk-averse inventory problem with

lost sales, the following inequality holds for all coherent risk measures at each

stage t: Vt(Xt, Yt, St−1, ..., St−t∆) + cm ≥ Vt(Xt, Yt − 1, St−1, ..., St−t∆) + cr.

Proof. See Appendix A.

Using Lemma 3.7, we obtain the following structural property of the optimal

policy:

Proposition 3.8. Suppose that cm ≥ cr. For the risk-averse inventory problem

with lost sales, it is optimal to prefer remanufacturing to manufacturing if the

serviceable product inventory is to be increased, and this holds for all coherent

risk measures.

Proof. See Appendix A.

We implement Propositions 3.2, 3.4, 3.6, and 3.8 into our fixed threshold policy,

in Chapter 6.

We can solve each of the problems in Sections (3.1.1), (3.1.2), (3.2.1),

and (3.2.2) to optimality with the backward dynamic programming algo-

rithm. Let S denote the state space, and A the action space. Let
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V <Qt,Rt,Zt>
t (Xt, Yt, St−1, ..., St−t∆) denote the cost function if actions Qt, Rt, and

Zt are chosen at stage t. Also, let Vt(Xt, Yt, St−1, ..., St−t∆) denote the minimum

expected total cost at state < Xt, Yt, St−1, ..., St−t∆ >, and < Q∗t , R
∗
t , Z

∗
t > the

optimal decision at state < Xt, Yt, St−1, ..., St−t∆ >. The algorithm is initialized

with the zero function at stage T . State variables at stage T − 1 are set to their

initial values. In a given state, the expected total cost is calculated under each

feasible action. After all the expected total costs are found for all feasible ac-

tions, the action with the least cost is the optimal decision in this state. The

same procedure is repeated until the optimal decision is found in each possible

state. The optimal strategy at stage T −1 is the mapping from all possible states

to the optimal decisions. Once the optimal strategy is found at stage T − 1, the

algorithm proceeds backward in time to stage T − 2, setting the cost function

at stage T − 1 equal to the optimal cost function under the optimal strategy at

stage T − 1. Proceeding similarly, the algorithm calculates the optimal strategy

at each stage. The optimal strategies across all stages yield the optimal control

policy. The pseudo code for this algorithm is given as follows.
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Backward solution algorithm.

Initialization

Set t← T − 1

for all t ∈ {T − 1, T − 2, ..., 0}
Set Xt ← 0, Yt ← 0, St−1, ..., St−t∆ ← 0

Qt ← 0, Rt ← 0, Zt ← 0

Vt(Xt, Yt, St−1, ..., St−t∆)← 9999999

for all Xt ∈ S
for all Yt ∈ S
for all St−1 ∈ S
...

for all St−t∆ ∈ S
for all Qt ∈ A
for all Rt ∈ A
for all Zt ∈ A
do

Solve the problem

if V <Qt,Rt,Zt>
t (Xt, Yt, St−1, ..., St−t∆) is less than

Vt(Xt, Yt, St−1, ..., St−t∆) then

Vt(Xt, Yt, St−1, ..., St−t∆)← V <Qt,Rt,Zt>
t (Xt, Yt, St−1, ..., St−t∆)

Set < Q∗t , R
∗
t , Z

∗
t >←< Qt, Rt, Zt >

end if

end for all

end for all

end for all

end for all

end for all

end for all

end for all

30



Chapter 4

Heuristic Policies

Optimal solutions for our closed-loop inventory control problem are computation-

ally intractable since both the state and action spaces are extremely large. We

thus consider five different heuristics that are computationally less demanding

than the dynamic programming algorithm in Chapter 3, which can be used to

find the optimal solution. In this chapter we describe all these heuristics along

with their formulations.

First, we consider the following two heuristics that are widely used in the inven-

tory literature: the Myopic Policy (MP) and the Certainty Equivalent Controller

(CEC). MP minimizes the expected costs incurred only in the current period by

disregarding the expected costs to be incurred in future periods. CEC minimizes

the expected total cost by fixing both demand and return rate at their typical

values and thus eliminating the stochasticity of the problem.

Second, we develop the following two heuristics that are specifically tailored

to our inventory problem: the No-Recovery Policy (NRP) and the Full-Collection

Policy (FCP). NRP never collects a core so that product recovery is not an option

in fulfilment of the demand. FCP collects all available cores at each stage. Both

NRP and FCP reduce the action space of our problem by eliminating the decision

of how many cores to collect at each stage. Notice that the cost performance of
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NRP relative to the globally optimal policy can be used to evaluate the economic

viability of remanufacturing. Also, the cost performance of FCP relative to the

globally optimal policy can be used to evaluate the cost of waste minimization.

Last, inspired by our numerical experiments, we propose the Fixed Thresh-

old Policy (FTP) as a heuristic. Numerical results in Chapter 5 suggest that

a state-dependent threshold policy may be optimal for the core inventory in

our problem. But finding the optimal state-dependent threshold policy is ex-

tremely problematic due to the very large numbers of states and stages (and thus

a very large number of state-dependent thresholds). FTP is a simpler form of

a state-dependent threshold policy; it assumes fixed thresholds across all states

and stages, making it computationally much more manageable.

4.1 Myopic Policy (MP)

MP minimizes the expected costs in each stage by ignoring the future expected

costs. Myopic approach is very popular in the inventory literature since it is

computationally less demanding and structurally less complex than many other

heuristic approaches. Previous research has shown the optimality of MP in

many stochastic multi-stage inventory problems; see for instance Cohen (1980),

Cetinkaya and Parlak (1998), and Xu and Ningxiong (2013). However, ignoring

the future expected costs may lead to results far from optimality in many other

problems.

For our risk-neutral case, MP can be found by solving the following problem

at each stage:

Vt(Xt, Yt, St−1, ..., St−t∆) =

min
Qt,Rt,Zt≥0

{
cmQt + crRt + ccZt + E

Dt,Ct

[
H(Xt, Yt, Qt, Rt, Zt)

]}
s.t. (Qt, Rt, Zt) ∈ G ′B (or G ′L)

(4.1.1)

where H(Xt, Yt, Qt, Rt, Zt) denotes the holding and lost sale/backlogging cost,
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and G ′B and G ′L denote the action spaces of the risk-neutral problem in the cases

of backlogging and lost-sales, respectively.

For our risk-averse case, MP can be found by solving the following problem at

each stage:

Vt(Xt, Yt, St−1, ..., St−t∆) =

min
Qt,Rt,Zt≥0

{
cmQt + crRt + ccZt + E

Dt,Ct

[H(Xt, Yt, Qt, Rt, Zt)]

+ κ E
Dt,Ct

[(
[Ft+1 − E

Dt,Ct

[H(Xt, Yt, Qt, Rt, Zt)]]+

)r]1

r
}

s.t. (Qt, Rt, Zt) ∈ G ′′B (or G ′′L)

(4.1.2)

where Ft+1 = H(Xt, Yt, Qt, Rt, Zt), and G ′′B and G ′′L denote the action spaces of

the risk-averse problem in the cases of backlogging and lost sales, respectively.

4.2 Certainty Equivalent Controller (CEC)

Certainty equivalent controller (CEC) is a suboptimal control scheme that builds

upon the linear-quadratic control theory. CEC finds an optimal policy by fixing

the uncertain quantities at some “typical” values, i.e., it assumes that the cer-

tainty equivalence principle holds. Reducing or eliminating uncertainty makes the

problem computationally far less demanding (Bertsekas 1976). CEC is particu-

larly useful in handling uncertainty in problems with imperfect state information

(Treharne and Sox 2002).

In this study CEC fixes random demand and collection rate at their expected

values at each stage, thereby converting our stochastic inventory problem into a

deterministic inventory problem. Let Dt and Ct denote the expected values of

demand and collection rate, respectively. Then St, Xt+1, and H(Xt, Yt, Qt, Rt, Zt)

can be calculated as follows:
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• For the lost sale case: St =

⌊
Ct

[
min{Xt +Qt +Rt, Dt}

]⌋
.

H(Xt, Yt, Qt, Rt, Zt) =

hs[Xt +Qt +Rt −Dt]+ + hr(Yt + Zt −Rt) + p[Dt −Xt −Qt −Rt]+.

Xt+1 = max{0, Xt +Qt +Rt −Dt}.

• For the backlogging case: St =

⌊
Ct

[
min

{
max{0, Xt + Qt + Rt}, Dt

}
+

max
{

0,min{0, Xt +Qt +Rt} −Xt

}]⌋
.

H(Xt, Yt, Qt, Rt, Zt) =

hs[Xt +Qt +Rt −Dt]+ + hr(Yt + Zt −Rt) + b[Dt −Xt −Qt −Rt]+.

Xt+1 = Xt +Qt +Rt −Dt.

CEC can be found by solving the following deterministic problem for t ∈
{0, 1, ..., T − 1}.

Vt(Xt, Yt, St−1, ..., St−t∆) =

min
Qt,Rt,Zt≥0

{
cmQt + crRt + ccZt +H(Xt, Yt, Qt, Rt, Zt)

+ Vt+1(Xt+1, Yt+1, St, ..., St−t∆+1)
}

s.t. (Qt, Rt, Zt) ∈ G ′B (or G ′L)

(4.2.1)

where VT is a zero function.
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Because uncertainty is eliminated from the problem, the risk-averse problem

is equivalent to the risk-neutral problem for this heuristic. Notice that CEC

is the same as the globally optimal policy obtained in the absence of random

disturbances.

4.3 No-Recovery Policy (NRP)

NRP focuses on fulfilling the demand from newly-manufactured products by col-

lecting and remanufacturing no core. NRP thus eliminates the decision of how

many cores to collect and remanufacture at each stage. Let H(Xt, Qt) be defined

as the following:

For the lost sale case: H(Xt, Qt) = hs[Xt +Qt −Dt]+ + p[Dt −Xt −Qt]+.

For the backlogging case: H(Xt, Qt) = hs[Xt +Qt −Dt]+ + b[Dt −Xt −Qt]+.

Then for our risk-neutral case, NRP can be found by solving the following

problem:

Vt(Xt) = min
Qt≥0

{
cmQt + E

Dt

[
H(Xt, Qt) + Vt+1(Xt+1)

]}

s.t. Xt+1 = Xt +Qt −Dt

(
or Xt+1 = max{0, Xt +Qt −Dt}

)
(4.3.1)

where VT is a zero function.

For our risk-averse case, NRP can be found by solving the following problem:

Vt(Xt) = min
Qt≥0

{
cmQt + E

Dt

[
H(Xt, Qt) + Vt+1(Xt+1)

]
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+ κ E
Dt

[([
Ft+1 − E

Dt

[
H(Xt, Qt) + Vt+1(Xt+1)

]
+

)r]1

r
}

s.t. Xt+1 = Xt +Qt −Dt

(
or Xt+1 = max{0, Xt +Qt −Dt}

)
Ft+1 = hs[Xt+1]+ + b[−Xt+1]+ + Vt+1(Xt+1)(

or Ft+1 = hsXt+1 + p[Dt −Xt −Qt]+ + Vt+1(Xt+1)

)
(4.3.2)

where VT is a zero function.

4.4 Full-Collection Policy (FCP)

FCP collects all available cores in the market at each stage; it minimizes the end-

of-use product waste of the manufacturer and provides the maximum opportunity

for remanufacturing. FCP thus eliminates the decision of how many cores to

collect at each stage. Note that Zt = St−t∆ for all t within this heuristic class.

For our risk-neutral case, FCP can be found by solving the following problem:

Vt(Xt, Yt, St−1, ..., St−t∆) =

min
Qt,Rt≥0

{
cmQt + crRt + ccSt−t∆ + E

Dt,Ct

[
H(Xt, Yt, Qt, Rt, St−t∆)

+ Vt+1(Xt+1, Yt+1, St, ..., St−t∆+1)
]}

s.t. (Qt, Rt, St−t∆) ∈ G ′B (or G ′L)

(4.4.1)

where VT is a zero function.

For the risk-averse case, FCP can be found by solving the following problem:

Vt(Xt, Yt, St−1, ..., St−t∆) = min
Qt,Rt≥0

{
cmQt + crRt + ccSt−t∆
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+ E
Dt,Ct

[H(Xt, Yt, Qt, Rt, St−t∆) + Vt+1(Xt+1, Yt+1, St, ..., St−t∆+1)]

+ κ E
Dt,Ct

[([
Ft+1 − E

Dt,Ct

[
H(Xt, Yt, Qt, Rt, Zt)

+ Vt+1(Xt+1, Yt+1, St, ..., St−t∆+1)
]

+

)r]1

r
}

s.t. (Qt, Rt, St−t∆) ∈ G ′′B (or G ′′L)

(4.4.2)

where VT is a zero function.

4.5 Fixed Threshold Policy (FTP)

We describe FTP as follows: (i) Collection decisions are governed by a fixed

(state-independent) collect-up-to level δC : the core inventory is increased as close

to δC as possible at each stage if it is below δC , by collecting the available cores

in the market. (ii) Manufacturing and remanufacturing decisions are governed

by a fixed (state-independent) produce-up-to level δP : the serviceable product

inventory is increased to δP at each stage if it is below δP , by remanufacturing

the collected cores, and by manufacturing new products in addition to remanu-

facturing if remanufacturing is inadequate. Remanufacturing takes priority over

manufacturing in this heuristic. This is in line with our analytical results in Chap-

ter 3 under the assumption of cm ≥ cr + cc. This assumption is often benign; see,

for instance Zhou et al. (2011). Thus:

Zt = min{δC , Yt + St−t∆} − Yt, t = 0, ..., N − 1.

Qt =

(
max{0, δP −Xt} −min

{
Yt + max

{
0,min{δC , Yt + St−t∆} − Yt

}
,max{0, δP −Xt}

})

Rt = min
{
Yt + max

{
0,min{δC , Yt + St−t∆} − Yt

}
,max{0, δP −Xt}

}
The following problem is solved for each combination of δP and δC in the
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risk-neutral case:

V δP ,δC
t (Xt, Yt, St−1, ..., St−t∆) = cm

(
max{0, δP −Xt}

−min
{
Yt + max

{
0,min{δC , Yt + St−t∆} − Yt

}
,max{0, δP −Xt}

})
+ cr min

{
Yt + max

{
0,min{δC , Yt + St−t∆} − Yt

}
,max{0, δP −Xt}

}
+ cc max

{
0,min{δC , Yt + St−t∆} − Yt

}
+ E

Dt,Ct

[
H(Xt, Yt, δP , δC) + V δP ,δC

t+1 (Xt+1, Yt+1, St, ..., St−t∆+1)
]

(4.5.1)

where V δP ,δC
T is a zero function.

The following problem is solved for each pair of δP and δC in the risk-averse

case:

V δP ,δC
t (Xt, Yt, St−1, ..., St−t∆) = cm

(
max{0, δP −Xt}

−min
{
Yt + max

{
0,min{δC , Yt + St−t∆} − Yt

}
,max{0, δP −Xt}

})
+ cr min

{
Yt + max

{
0,min{δC , Yt + St−t∆} − Yt

}
,max{0, δP −Xt}

}
+ cc max

{
0,min{δC , Yt + St−t∆} − Yt

}
+ E

Dt,Ct

[
H(Xt, Yt, δP , δC) + V δP ,δC

t+1 (Xt+1, Yt+1, St, ..., St−t∆+1)
]

+ κ E
Dt,Ct

[([
Ft+1 − E

Dt,Ct

[
H(Xt, Yt, δP , δC)

+ V δP ,δC
t+1 (Xt+1, Yt+1, St, ..., St−t∆+1)

]]
+

)r]1

r
}

(4.5.2)

where V δP ,δC
T is a zero function.

The thresholds that minimize the expected total cost, i.e., argmin
δP ,δC

V δP ,δC
0 (0, ..., 0)

yield the optimal FTP.
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The optimal cost of any heuristic policy can be found by solving the dynamic

programming algorithm in Chapter 3 with the decision space restricted to that

heuristic policy.
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Chapter 5

Numerical Experiments

In this section, we conduct numerical experiments to provide insights into the op-

timal policy structure and evaluate the performance of each heuristic introduced

in Chapter 4. We examine both cases of backlogging and lost-sales for different

risk preferences of the decision-maker. Our experimental set up is based on the

one proposed by Zhou et al. (2011): We consider instances in which T = 6,

cm ∈ {7, 10, 13}, cr ∈ {2, 4, 6}, cc ∈ {0.025, 1, 2}, hs ∈ {1, 2, 3}, hr ∈ {0.025, 1, 2},
p ∈ {12, 18, 24}, b ∈ {12, 18, 24}, t∆ = 2, and return rate Ct follows a discrete

uniform distribution with support
{

1
3
, 2

3
, 1
}

. We consider three different distribu-

tions for demand Dt: (i) discrete uniform distribution with support {0, 1, .., 5};
(ii) binomial distribution with parameters 5 and 0.5; and (iii) binomial distri-

bution with parameters 5 and 0.75. Notice that the maximum possible demand

is 5 at each stage under each of these distributions. In the case of lost sales

we impose that Xt ∈ {0, 1, ..., 10}, Yt ∈ {0, 1, ..., 10}, and St ∈ {0, 1, ..., 5}. In

the case of backlogging we impose that Xt ∈ {−5, ..., 5}, Yt ∈ {0, 1, ..., 10}, and

St ∈ {0, 1, ..., 10}. All computations are performed on a computer with 8 GB of

RAM, Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz and 64-bit operating system.

All the tables and Figures 5.10–5.15 are available at the end of this chapter.
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5.1 Analysis of the Optimal Policy

In this section, we aim to provide insights into the structure of optimal policy

and to examine how risk-aversion and different demand distributions affect the

optimal policy. We take cm = 10, cr = 4, cc = 1, hs = 2, hr = 1, b = p = 18,

and S−1 = S−2 = 2 in our sample problems. For the risk-averse problem, we take

κ = 1 and r ∈ {1, 2}. Note that as r increases, the decision-maker becomes more

risk averse. We then plot the optimal manufacturing quantity Q∗0, the optimal

remanufacturing quantity R∗0, and the optimal collection quantity Z∗0 versus the

serviceable product inventory level X0 and the core inventory level Y0; see Figures

5.10–5.15.

5.1.1 The Case of Lost Sales

First, we examine how Q∗0, R∗0 and Z∗0 vary depending on X0, Y0, and the degree

of risk-aversion, when demand follows a uniform distribution; see Figure 5.10.

We observe that Q∗0 is positive only when both X0 and Y0 are low. We also

note that when both X0 and Y0 are low, Q∗0 tends to increase as risk-aversion

increases. This is because the decision-maker seeks to avoid losing demand more

by manufacturing more products as risk-aversion increases.

We observe that R∗0 is higher than Q∗0 at many values of X0 and Y0. This is be-

cause the sum of the unit remanufacturing cost and the unit collection cost is less

than the unit manufacturing cost, and thus remanufacturing is a less costly chan-

nel in satisfying the demand. We also observe that R∗0 decreases as Y0 decreases

from 3 when X0 is very low: The decision-maker wants to increase its serviceable

product inventory, by giving priority to remanufacturing over manufacturing. If

sufficient core inventory exists, manufacturing is not needed to increase the ser-

viceable product inventory. But if there is no sufficient core inventory, i.e., if

Y0 < 3, manufacturing is necessary to increase the serviceable product inventory.

Thus Q∗0 increases and R∗0 decreases as Y0 decreases from 3. Last, we note that
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R∗0 decreases or stays the same as X0 increases, and R∗0 is not affected by the risk

preference.

We observe that Z∗0 tends to increase as X0 or Y0 decreases. We also note that

Z∗0 tends to increase as risk-aversion increases. This is because the decision-maker

prefers to hold more cores in the inventory to avoid losing the remanufacturing

opportunity in the upcoming stages.

Second, we examine how Q∗0, R∗0 and Z∗0 vary depending on X0, Y0, and the

degree of risk-aversion, when demand follows a binomial distribution with pa-

rameters 5 and 0.5; see Figure 5.11. We observe that Q∗0, R∗0, and Z∗0 are no

greater than in the case of uniform demand. Because demand follows a bell-

shaped distribution in Figure 5.11, medium values of demand occur with the

highest probabilities, leading to less variability than in the case of uniform de-

mand. Thus the decision-maker prefers to manufacture and remanufacture less.

We again observe that both Q∗0 and Z∗0 tend to increase as risk-aversion increases,

whereas R∗0 is not affected by the risk preference.

Last, we examine how Q∗0, R∗0 and Z∗0 vary depending on X0, Y0, and the degree

of risk-aversion, when demand follows a binomial distribution with parameters 5

and 0.75; see Figure 5.12. In this case, demand follows a left-skewed distribution

and higher values of demand occur with the highest probabilities. Thus Q∗0, R∗0,

and Z∗0 are no less than when demand follows the other two distributions. We

again observe that Z∗0 tends to increase as risk-aversion increases and R∗0 is not

affected by the risk preference. However, unlike the above two cases, Q∗0 does not

vary with the degree of risk-aversion in this case: Q∗0 is now sufficiently high so

that a high risk-averse decision-maker does not need to manufacture any further.

The structure of the optimal policy for core inventory in Figures 5.10, 5.11,

and 5.12 can be specified as following a state-dependent threshold policy. This

implies that if the core inventory level is below a state-dependent collect-up-

to level δCt (Xt, Yt, St−1, ..., St−t∆), then the core inventory level is increased to

this threshold. If the core inventory level is above this threshold, then no core

is collected. Specifically, Yt + Zt = min{δCt (Xt, Yt, St−1, ..., St−t∆), Yt + St−t∆},
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t = 0, 1, ..., T − 1. We could not find any example violating this policy structure.

However, the optimal policy for serviceable inventory need not follow a state-

dependent threshold policy: At stage 4, while the optimal serviceable inventory

level becomes X4 +Q4 +R4 = 4 at state (0, 2, 1, 2), this value becomes 5 at state

(1, 2, 1, 2).

Since we could not find any example violating the state-dependent threshold

policy for core inventory, we wanted to analytically prove the optimality of this

policy. A standard proof method to obtain such a result is to establish discrete-

convexity of the optimal cost function. Despite our best efforts, however, we

could not prove discrete-convexity of the optimal cost function. Hence whether a

state-dependent threshold policy is analytically optimal for core inventory in the

case of lost sales remains an open question in our research.

5.1.2 The Case of Backlogging

Most of the basic insights gained from the lost sales case remain valid in the

backlogging case. Unlike the case of lost sales, we observe from Figure 5.14

that when demand follows a binomial distribution with parameters 5 and 0.5,

R∗0 increases with the degree of risk-aversion. This difference between the lost

sales case and backlogging case may ensue from the fact that in the backlogging

case the decision-maker has the opportunity to fulfill a demand in the upcoming

stages. Therefore, he/she may prefer to hold less serviceable product inventory

by remanufacturing less.

The structure of the optimal policy for core inventory in Figures 5.13, 5.14, and

5.15 can again be characterized via a state-dependent threshold policy. We could

not find any example violating this policy structure. However we again observe

that the state-dependent threshold policy need not be optimal for serviceable

product inventory: At stage 4, the optimal serviceable inventory level becomes

4 at state (−5, 2, 5, 2). However, this level becomes 5 at state (1, 2, 5, 2). We

also found a counter example showing that discrete-convexity need not hold for

our optimal cost function; see Figure 5.1. As in the case of lost sales, whether a

43



state-dependent threshold policy is analytically optimal for core inventory in the

case of backordering remains an open question in our research.

Figure 5.1: Optimal cost function V0 when Y0 = 7, S−1 = 2, S−2 = 4, r = 1,
κ = 0, cm = 10, cr = 4, cc = 1, hs = 2, hr = 1, b = 18, and t∆ = 2.

5.2 The Risk-Neutral Problem

Our primary goal in this section is to evaluate the performance of each heuristic

in the risk-neutral case. We compare our heuristics with respect to (i) their

percentage deviations from the risk-neutral optimal expected total cost at the

initial stage when X0 = Y0 = S−1 = S−2 = 0 (ECPD) (ii) their percentage

deviations from the risk-neutral optimal standard deviation of the total cost at the

initial stage when X0 = Y0 = S−1 = S−2 = 0 (SDPD), and (iii) their computation

times.

5.2.1 The Case of Lost Sales

Table 5.1 exhibits our numerical results in the case of lost sales: Although CEC

has a distinct computational advantage over all the other heuristics, it has the

worst performance with respect to the expected total cost. Unlike many paper

dealing with traditional inventory problems, MP has a very poor performance in
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our closed-loop inventory problem. Despite its computational advantage, NRP

leads to an increase of 12.67% in the expected total cost. FCP outperforms all the

other heuristics with respect to the expected total cost. This is because FCP pro-

vides the maximum opportunity for remanufacturing, which takes priority over

manufacturing at optimality. However, FCP performs worse than all the other

heuristics with respect to computation time. This is because although the col-

lection decision is eliminated from the problem since all the available cores are

collected, the decision-maker still needs to decide on the amounts of manufactur-

ing and remanufacturing. High standard deviation values in Table 5.1 validate

that the risk-neutral decision-maker does not pay attention to cost variability.

5.2.2 The Case of Backlogging

Table 5.2 exhibits our numerical results in the case of backlogging: Our conclu-

sions from the case of lost sales remain valid in this case. In addition, we observe

that the solution times are much higher than in the case of lost sales. This is

because St can take larger values in the backlogging case.

5.3 The Risk-Averse Problem

Our primary goal in this section is to evaluate the performance of each heuristic

in the risk-averse case. We consider instances in which κ ∈ {0, 0.3, 0.5, 0.8, 1} and

r ∈ {1, 2, 3}. We again compare our heuristics with respect to (i) their percentage

deviations from the risk-averse optimal expected total cost at the initial stage

when X0 = Y0 = S−1 = S−2 = 0 (ECPD) (ii) their percentage deviations from

the risk-averse optimal standard deviation of the total cost at the initial stage

when X0 = Y0 = S−1 = S−2 = 0 (SDPD), and (iii) their computation times.
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5.3.1 The Case of Lost Sales

Table 5.3 exhibits our numerical results for the optimal solution in the case of

lost sales: The expected total cost gradually increases as the decision-maker be-

comes more risk-averse. This is because as the risk-aversion degree increases, the

decision-maker tends to remanufacture/manufacture more to avoid losing sales.

Also note that as risk-aversion increases, the standard deviation decreases sub-

stantially. This is because mean-semi deviation aims to minimize the difference

between the mean and the realization, and higher risk-aversion leads to a lower

standard deviation.

Figures 5.2 and 5.3 show how the expected total cost and the standard devia-

tion vary depending on r and κ.

Figure 5.2: Expected total cost vs. κ Figure 5.3: σ vs. κ

Table 5.4 exhibits our numerical results for MP in the case of lost sales. Both

ECPD and SDPD values are quite large for almost all risk-aversion degrees. Such

a poor performance of MP can be explained by the very complicated dynamics of

state transitions and the high uncertainty involved in our closed-loop inventory

problem.

Figures 5.4 and 5.5 show how the expected total cost and the standard devia-

tion for MP vary depending on r and κ.
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Figure 5.4: Expected total cost vs. κ Figure 5.5: σ vs. κ

Table 5.5 exhibits our numerical results for NRP in the case of lost sales.

We observe that NRP performs better than MP. NRP performs worse than the

optimal solution by 12.11% with respect to the expected total cost and by 38.21%

with respect to standard deviation, on average. Thus remanufacturing provides

more than 10% decrease in the expected total cost on average.

Table 5.6 exhibits our numerical results for FTP in the case of lost sales. FTP

performs better than MP and NRP with respect to both expected total cost and

standard deviation. An important note here is that the optimal solution is the

same when r = 2, κ = 1 and r = 3, κ = 1. This shows that further degrees of

risk-aversion are not very crucial when r ≥ 2.

Table 5.7 exhibits our numerical results for FCP in the case of lost sales: FCP

outperforms all the other heuristics with respect to both expected total cost and

standard deviation. Our choice of parameters (cm ≥ cr + cc), limited returns

St, and the existence of an upper bound on Yt can explain the success of this

heuristic.

Note that the standard deviation when r = 3, κ = 1.0 is higher than when

r = 3, κ = 0.8. This anomaly arises from the specified intervals for Xt and Yt.

As the degree of risk-aversion increases for this specific case, the global optimal

solution goes beyond the specified bounds. For the purpose of more accurate

comparison, we prefer not to increase the bounds when r = 3, κ = 1, keeping

them the same as in the other cases.

Table 5.8 lists the average computation times for the heuristics. As stated
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before, CEC is the quickest heuristic in the risk-neutral case. MP, on the other

hand, clearly has a distinct computational advantage in the risk-averse case. Such

an advantage of MP over the other heuristics arises because it ignores the effect of

future costs on any decision at the current stage. Although FCP surpasses all the

other heuristics in terms of ECPD and SDPD, FCP has the worst performance

with respect to computation times. Recall that collecting all available cores

eliminates the collection decision but the decision-maker still needs to decide on

the manufacturing and remanufacturing amounts.

Parameter Analysis. In this subsection, we examine how the heuristics be-

have under different parameter settings. For this purpose, we generate numerical

instances by varying the value of each parameter as low, medium, and high. While

solving the problem for a specific parameter value, we fix all the remaining pa-

rameters to their medium values. We label the decision-maker with r = 1, κ = 1

as low risk-averse, and the decision-maker with r = 2, κ = 1 as high risk-averse.

Table 5.9 exhibits the numerical results for the risk-neutral case. For low

value of hs, FCP has the best performance with respect to expected total cost,

and FTP has the best performance with respect to cost variability. Although

hs = hr, the decision-maker does not prefer to hold serviceable products in the

inventory instead of cores since cm ≥ cr + cc. For high value of hs, FCP has the

best performance in terms of both criteria. Since hs > hr, the decision-maker

prefers to hold cores instead of serviceable products in the inventory. When hr

is low, FTP is the exceeding solution approach. Although hr < hs, holding cores

more than necessary causes the cost of FCP to be scattered in a wider range.

When hr = 2, FCP is the best heuristic in terms of the expected total cost.

Although hs = hr, the decision-maker prefers to hold cores instead of serviceable

products in the inventory.

When cm is low, FCP outperforms the other heuristics in both criteria. Since

we still have cm ≥ cr + cc, remanufacturing is still favored at optimality. When

cm is high, FCP again outperforms the other heuristics in terms of both criteria.
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When cr is low, FTP performs best with respect to standard deviation. Al-

though cr is now lower, holding excess cores in the inventory causes FCP instances

to be more deviated. However, FCP is better with respect to expected total cost.

When cr is high, we observe the same behaviour. Since cm > cr + cc, FCP is still

less costly. Our results for cc are similar to those for cr.

When is low, FCP performs best with respect to expected total cost. When p

is high, FCP is the best choice in both criteria. Our explanation for this result

is that the decision-maker prefers to hold more cores in the inventory to avoid

higher lost sales cost in the upcoming stages.

Next, we consider the risk-averse case in Table 5.10. Our conclusions for the

risk-neutral case are valid for the low risk-averse case. When r = 2, κ = 1, FCP

is a better choice than FTP. This is because now the decision-maker is more risk-

averse and holding more cores in the inventory helps to reduce lost sales in the

upcoming stages.

Pairwise Parameter Analysis. In this section, parameters that are thought

to be related to each other are paired and the solutions for all heuristics are

obtained for different combinations of these parameters.

Table 5.11 exhibits risk-neutral pair-wise analysis for cr and cc. For all pos-

sible combinations of cc, cr, FCP outperforms the other heuristics with respect

to expected total cost. This result is logical since cm ≥ cr + cc in every case so

it is less costly to remanufacture as much as possible. When SDPD values are

checked, FTP is the best choice. For the risk-averse cases, same intuitions follow

and FCP performs best.

Table 5.13 exhibits the risk-neutral analysis for the hr, cc pair. For all combi-

nations of hr and cc, FCP performs better than FTP. Because cm ≥ cr + cc + hr,

collecting and holding cores up to the upper bound becomes advantageous. Min-

imum SDPD values are provided by FTP in all cases. In low risk-averse case

Table 5.14 displays the same results as in the risk-neutral case. The degree of

risk-aversion may not be high enough to change the behaviours of heuristics.
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In high risk-averse case, FCP gives the best performance for all combinations.

Although the best heuristic performances did not change with increasing risk-

aversion, being high risk-averse increases the performance of FCP with respect

to standard deviation.

Table 5.15 exhibits our analysis for the hr, hs pair. Because cm ≥ cr + cc + hr

in all cases, holding cores in the inventory is less costly. Thus FCP is the best

heuristic in the risk-neutral case for all combinations. For the risk-averse cases,

FCP performs best with respect to both criteria.

Lastly, Table 5.17 exhibits the risk-neutral heuristic performances for cm, cc, cr.

For all cases where cm < cr + cc, solution of NRP becomes equal to the optimal

solution. This result is logical since collecting and remanufacturing is now more

costly than manufacturing and this makes the optimal policy equal to NRP policy.

When cm > cr+cc, FCP outperforms other heuristics. We observe the exact same

intuitions for the risk-averse cases.

5.3.2 The Case of Backlogging

In this section, we solve the risk-averse problem for the backlogging case. The

same intuitions in the lost sale case are still valid. It is easy to verify that the

expected total cost increases as the decision-maker becomes more risk-averse.

Table 5.19 shows that standard deviation gradually declines as expected. As it

is seen by the percentage changes, a little increase in the cost can effectively

decrease the percentage gap from the mean. In addition, after r = 2, κ = 1,

expected total cost remains the same for the higher values of r. Consequently,

we note that r = 2 case effectively provides the risk-averse optimal solution.

Figures 5.6 and 5.7 show how the expected total cost and the standard devia-

tion vary depending on r and κ.
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Figure 5.6: Expected total cost vs. κ Figure 5.7: σ vs. κ

Table 5.20 exhibits our numerical results for MP. As in the case of lost sales,

it is immediate that MP has a very poor performance. Both ECPD and SDPD

values are quite large for almost all risk-aversion degrees.

Figures 5.8, and 5.9 show how the expected total cost and the standard devi-

ation for MP vary depending on r and κ.

Figure 5.8: Expected total cost vs. κ Figure 5.9: σ vs. κ

Table 5.21 exhibits our numerical results for NRP in the case of backlogging.

The percentage gap from the expected total cost is 11.46 and standard deviation

increases by 39.64%, on average. This shows that although NRP performs better

than MP, absence of remanufacturing is reflected upon the expected total cost,

and standard deviation. Note that if the problem was solved as a classical in-

ventory problem with only manufacturing option, the optimal cost at first stage

would be higher.

Table 5.22 exhibits our numerical results for FTP in the case of backlogging.

In terms of the optimal solution, the optimal thresholds tend to increase with
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higher degrees of risk-aversion. An important insight is that the decision-maker

prefers to manufacture/remanufacture more as the degree of risk-aversion in-

creases. When we examine the results in terms of the expected total cost and

the standard deviation, FTP has greater benefit compared to MP. Note that the

optimal threshold levels are the same when r = 2, κ = 1 and r = 3, κ = 1. Thus

further degrees of risk-aversion are not very crucial after r ≥ 2.

Table 5.23 exhibits our numerical results for FCP in the case of backlogging.

As in the case of lost sales, FCP outperforms all the other heuristics in terms of

the expected total cost. However FTP outperforms FCP in terms of standard

deviation. Because the decision-maker may now backlog a demand, he/she may

want to increase the optimal threshold levels compared to the lost sales case.

Thus the decision-maker may take optimal decisions closer to each other and

this decreases standard deviation. Remark that the results show no change in

optimality for r = 2, κ = 1 and r = 3, κ = 1. This shows that further degrees of

risk-aversion are not very significant after reaching r > 2.

Table 5.24 lists the average computational times for the heuristics. Note that

the same intuitions as in the case of lost sales are still valid. An important

observation is that the solution times for the backlogging case are much higher

than the case of lost sales. This increase arises from the wider ranges of St (a.k.a.

future returns).

Parameter Analysis. In this section, we perform parameter analysis under

the assumption of backlogging. Tables 5.25, and 5.26 exhibit our parameter

analysis for both risk-neutral, and risk-averse cases.

When we analyze the risk-neutral results for different values of hs, FCP out-

performs other heuristics. Because hs ≥ hr, the decision-maker prefers to hold

cores in the inventory rather than stocking serviceable products.

For hr = 0.025, FCP is the best policy since hr value is low and hence, holding

returned cores in the inventory is less costly. FCP is still the best policy when

hr = 2. Because now hs = hr, holding returned cores becomes equivalent to
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holding serviceable products.

When cm is low, FCP performs best with respect to expected total cost. This

result is logical since cm > cr + cc is still ensured. FTP outperforms other heuris-

tics with respect to standard deviation. When cm high, FCP performs best.

This is because cm is now higher than cr + cc and the decision-maker prefers to

remanufacture instead.

Analysis of cr indicates that FCP performs best. Because cm ≥ cr + cc still

holds, FCP is still preferable. The same intuitions carry over to the analysis of

cc.

For different values of b, FCP outperforms other heuristics with respect to

expected total cost. Standard deviation percentages, on the other hand, show

that FTP is preferable over FCP.

When the degree of risk-aversion increases, FCP perform best in all cases.

This result is justifiable because holding more cores in the inventory is now more

appealing to the risk-averse decision-maker. In terms of SDPD, FTP values are

closer to the mean for the low risk-averse case. When risk-aversion increases,

FCP becomes preferable in terms of the standard deviation in nearly all cases.

Pairwise Parameter Analysis. Table 5.27 exhibits our numerical results

for various combinations of cr, and cc for risk-neutral case. FCP performs best

with respect to both criteria because cm < cr+cc in all cases. When the decision-

maker becomes low risk-averse, FCP outperforms other heuristics with respect

to expected total cost. However FTP performs best with respect to standard

deviation. For the high risk-averse case, FCP performs best with respect to both

criteria. The fact that the decision-maker wants to avoid backlogging any demand

causes him/her to hold more cores in the inventory.

Next, Tables 5.29, and 5.30 examine the behaviour of heuristics for various

values of hr, and cc. FCP performs best for all cases with respect to expected

total cost. However FTP outperforms other heuristics with respect to standard

deviation.
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We next analyze the results for hs, and hr combinations in Tables 5.31 and 5.32.

For the all cases, FCP outperforms other heuristics with respect to expected total

cost. This behaviour is justified by the fact that the decision-maker wants to avoid

backlogging as much as possible by holding cores in the inventory. FTP performs

best with respect to standard deviation.

Last, we analyze computational results for various value combinations of cm, cr,

and cc. The same intuitions for the case of lost sales carry over to the backlogging

case.
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Illustration of the effect of risk aversion on Q0

Risk neutral r = 1, κ = 1 r = 2, κ = 1

Illustration of the effect of risk aversion on R0

Risk neutral r = 1, κ = 1 r = 2, κ = 1

Illustration of the effect of risk aversion on Z0

Risk neutral r = 1, κ = 1 r = 2, κ = 1

Figure 5.10: Illustration of the effect of risk aversion in the case of lost sales for
Dt ∼ U(0, 5)
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Illustration of the effect of risk aversion on Q0

Risk neutral r = 1, κ = 1 r = 2, κ = 1

Illustration of the effect of risk aversion on R0

Risk neutral r = 1, κ = 1 r = 2, κ = 1

Illustration of the effect of risk aversion on Z0

Risk neutral r = 1, κ = 1 r = 2, κ = 1

Figure 5.11: Illustration of the effect of risk aversion in the case of lost sales for
Dt ∼ Bin(5, 0.5)
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Illustration of the effect of risk aversion on Q0

Risk neutral r = 1, κ = 1 r = 2, κ = 1

Illustration of the effect of risk aversion on R0

Risk neutral r = 1, κ = 1 r = 2, κ = 1

Illustration of the effect of risk aversion on Z0

Risk neutral r = 1, κ = 1 r = 2, κ = 1

Figure 5.12: Illustration of the effect of risk aversion in the case of lost sales for
Dt ∼ Bin(5, 0.75)
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Illustration of the effect of risk aversion on Q0

Risk neutral r = 1, κ = 1 r = 2, κ = 1

Illustration of the effect of risk aversion on R0

Risk neutral r = 1, κ = 1 r = 2, κ = 1

Illustration of the effect of risk aversion on Z0

Risk neutral r = 1, κ = 1 r = 2, κ = 1

Figure 5.13: Illustration of the effect of risk aversion in the case of backlogging
for Dt ∼ U(0, 5)
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Illustration of the effect of risk aversion on Q0

Risk neutral r = 1, κ = 1 r = 2, κ = 1

Illustration of the effect of risk aversion on R0

Risk neutral r = 1, κ = 1 r = 2, κ = 1

Illustration of the effect of risk aversion on Z0

Risk neutral r = 1, κ = 1 r = 2, κ = 1

Figure 5.14: Illustration of the effect of risk aversion in the case of backlogging
for Dt ∼ Bin(5, 0.5)
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Illustration of the effect of risk aversion on Q0

Risk neutral r = 1, κ = 1 r = 2, κ = 1

Illustration of the effect of risk aversion on R0

Risk neutral r = 1, κ = 1 r = 2, κ = 1

Illustration of the effect of risk aversion on Z0

Risk neutral r = 1, κ = 1 r = 2, κ = 1

Figure 5.15: Illustration of the effect of risk aversion in the case of backlogging
for Dt ∼ Bin(5, 0.75)
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Table 5.1: Numerical results for the risk-neutral problem with lost sales.

Solution Expected total ECPD Std. dev. of SDPD
Solution method times (sec) cost (%) total cost (%)

Exact 1698.34 167.644 - 32.568 -
CEC 45.02 196.192 17.03 56.116 72.31
MP 177.37 193.865 15.64 55.864 71.53
FTP 229.70 173.613 3.56 29.353 9.87
NRP 52.48 188.889 12.67 39.735 22.00
FCP 874.53 168.184 0.32 32.711 0.44

cr = 4, cc = 1, cm = 10, hr = 1, hs = 2, p = 18, t∆ = 2, T = 6, Xt ∈ {0, 1, .., 10},
Yt ∈ {0, 1, .., 10}, St ∈ {0, 1, .., 5}. Demand and collection rate follow discrete uniform

distributions with supports {0, 1, .., 5} and {1/3, 2/3, 1}, respectively.

Table 5.2: Numerical results for the risk-neutral problem with backlogging.

Solution Expected total ECPD Std. dev. of SDPD
Solution method times (sec) cost (%) total cost (%)

Exact 27311.45 171.689 - 28.414 -
CEC 63.49 239,497 39.49 76,215 168.23
MP 286.76 232.439 35.38 74.588 162.50
FTP 201.56 181.305 5.60 35.653 25.48
NRP 190.48 192.111 11.89 36.077 26.97
FCP 9832.98 172.840 0.67 28.743 1.16

cr = 4, cc = 1, cm = 10, hr = 1, hs = 2, b = 18, t∆ = 2, T = 6, Xt ∈ {−5,−4, .., 5},
Yt ∈ {0, 1, .., 10}, St ∈ {0, 1, ...10}. Demand and collection rate follow discrete uniform

distributions with supports {0, 1, .., 5} and {1/3, 2/3, 1}, respectively.
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Table 5.3: Changes in the expected total cost and standard deviation
for various values of r and κ for the case of lost sales.

Expected total ECPD Std. dev. of SDPD
cost (%) total cost (%)

Risk-neutral 167.644 - 32.568 -

r κ
1 0.3 168.229 0.35 28.865 -11.37

0.5 168.993 0.81 26.975 -17.17
0.8 170.905 1.95 23.801 -26.92
1 171.410 2.25 23.235 -28.66

2 0.3 169.650 1.20 25.838 -20.66
0.5 171.410 2.25 23.235 -28.66
0.8 174.004 3.79 21.765 -33.17
1 177.011 5.59 21.118 -35.16

3 0.3 170.028 1.42 25.359 -22.13
0.5 173.012 3.20 22.188 -31.87
0.8 177.011 5.59 21.118 -35.16
1 177.011 5.59 21.118 -35.16

Average 172.024 2.83 24.398 -27.17

cr = 4, cc = 1, cm = 10, hr = 1, hs = 2, p = 18, t∆ = 2, T = 6, Xt ∈ {0, 1, .., 10},
Yt ∈ {0, 1, .., 10}, St ∈ {0, 1, .., 5}. Demand and collection rate follow discrete

uniform distributions with supports {0, 1, .., 5} and {1/3, 2/3, 1}, respectively.
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Table 5.5: No-Recovery Policy results in the case of lost sales.

Solution Expected total Std. dev. of ECPD SDPD
times(sec) cost total cost (%) (%)

Risk-neutral 52.48 188.889 39.735 12.67 22.00

r κ
1 0.3 51.23 188.889 39.735 12.28 37.66

0.5 50.76 190.028 36.191 12.45 34.17
0.8 51.08 192.000 32.769 12.34 37.68
1 51.23 192.000 32.769 12.01 41.03

2 0.3 54.04 190.722 34.720 12.42 34.38
0.5 52.01 192.000 32.769 12.01 41.03
0.8 52.64 194.222 30.965 11.62 42.27
1 53.73 197.778 30.268 11.73 43.33

3 0.3 58.68 190.722 34.720 12.17 36.91
0.5 53.46 194.222 30.965 12.26 39.56
0.8 60.37 197.778 30.268 11.73 43.33
1 52.68 197.778 30.268 11.73 43.33

Average 53.41 192.848 33.549 12.11 38.21

cr = 4, cc = 1, cm = 10, hr = 1, hs = 2, p = 18, t∆ = 2, T = 6, Xt ∈ {0, 1, .., 10}, Yt ∈
{0, 1, .., 10}, St ∈ {0, 1, .., 5}. Demand and collection rate follow discrete uniform distributions

with supports {0, 1, .., 5} and {1/3, 2/3, 1}, respectively.
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Table 5.6: Fixed-Threshold Policy results in the case of lost sales.

Solution Expected total Std. dev. of ECPD SDPD
times(sec) cost total cost (%) (%)

Risk-neutral 229.70 173.613 29.353 3.56 -9.87

r κ
1 0.3 243.75 173.613 29.353 3.20 1.69

0.5 267.25 173.613 29.353 2.73 8.82
0.8 204.75 173.613 29.353 1.58 23.33
1 251.60 173.613 29.353 1.29 26.33

2 0.3 226.60 173.613 29.353 2.34 13.60
0.5 265.65 173.613 29.353 1.29 26.33
0.8 195.35 183.122 21.640 5.24 -0.57
1 250.00 183.122 21.640 3.45 2.47

3 0.3 181.3 183.122 21.640 7.70 -14.67
0.5 265.65 183.122 21.640 5.84 -2.47
0.8 226.6 183.122 21.640 3.45 2.47
1 273.5 183.122 21.640 3.45 2.47

Average 237.05 178.00 25.79 3.47 6.15

cr = 4, cc = 1, cm = 10, hr = 1, hs = 2, p = 18, t∆ = 2, T = 6, Xt ∈ {0, 1, .., 10}, Yt ∈
{0, 1, .., 10}, St ∈ {0, 1, .., 5}. Demand and collection rate follow discrete uniform distributions

with supports {0, 1, .., 5} and {1/3, 2/3, 1}, respectively. Produce-up-to level and collect-up-to

level values are taken in intervals δP ∈ {2, 3, 4, 5, 6} and δC ∈ {1, 2, 3, 4, 5}, respectively.
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Table 5.7: Full-Collection Policy results in the case of lost sales.

Solution Expected total Std. dev. of ECPD SDPD
times(sec) cost total cost (%) (%)

Risk-neutral 874.53 168.184 32.711 0.32 0.44

r κ
1 0.3 896.04 168.743 29.189 0.30 1.12

0.5 880.05 169.373 27.680 0.22 2.61
0.8 904.42 171.492 24.207 0.34 1.71
1 915.60 172.218 23.628 0.47 1.69

2 0.3 912.37 169.727 26.997 0.04 4.49
0.5 911.08 172.238 23.411 0.48 0.76
0.8 868.54 175.281 22.054 0.73 1.33
1 940.76 178.409 21.172 0.79 0.26

3 0.3 991.96 170.804 25.442 0.46 0.33
0.5 890.89 174.409 22.289 0.81 0.46
0.8 879.88 178.702 21.191 0.96 0.35
1 864.99 179.016 21.349 1.13 1.09

Average 902.39 172.969 24.998 0.54 1.30

cr = 4, cc = 1, cm = 10, hr = 1, hs = 2, p = 18, t∆ = 2, T = 6, Xt ∈ {0, 1, .., 10}, Yt ∈
{0, 1, .., 10}, St ∈ {0, 1, .., 5}. Demand and collection rate follow discrete uniform distributions

with supports {0, 1, .., 5} and {1/3, 2/3, 1}, respectively.
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Table 5.8: Solution time comparison in the case of lost sales.

Exact CEC MP NRP FCP FTP
Average 1674.84 45.02 167.76 53.41 902.39 237.05
Std. Deviation 24.72 0 4.73 2.92 34.58 28.37
Min 1627.29 45.02 160.09 50.76 864.99 181.3
Max 1710.15 45.02 177.37 60.37 991.96 273.5
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Table 5.10: Parameter analysis for the case of lost sales: Risk-averse case

r κ Exact ECPD(%) SDPD(%)
1.0 1.0 ETC σ MP NRP FCP FTP MP NRP FCP FTP
hs 1 159.285 25.681 5.35 15.19 0.93 2.72 64.39 35.43 -0.47 -2.72

2 171.410 23.235 1.77 12.01 0.47 1.29 71.86 41.03 1.69 26.33
3 183.071 21.453 -1.09 9.07 0.02 0.30 76.09 62.42 4.01 24.49

hr 0.025 170.061 23.374 2.58 12.90 0.34 0.89 70.83 40.19 -0.02 27.54
1 171.410 23.235 1.77 12.01 0.47 1.29 71.86 41.03 1.69 26.33
2 172.295 23.522 1.25 11.44 0.76 1.98 69.76 39.31 1.33 23.48

cm 7 140.121 15.691 0.05 5.46 0.91 3.86 60.66 23.52 2.07 -1.96
10 171.410 23.235 1.77 12.01 0.47 1.29 71.86 41.03 1.69 26.33
13 199.749 31.153 7.17 15.84 0.06 3.32 86.36 53.43 1.16 10.95

cr 2 161.425 21.396 2.61 18.94 0.38 1.67 78.28 53.15 0.01 28.69
4 171.410 23.235 1.77 12.01 0.47 1.29 71.86 41.03 1.69 26.33
6 181.213 26.085 1.12 5.95 0.55 1.04 61.37 25.62 1.24 22.06

cc 0.025 166.356 22.278 2.28 15.42 0.35 1.24 75.10 47.09 -0.09 27.79
1 171.410 23.235 1.77 12.01 0.47 1.29 71.86 41.03 1.69 26.33
2 176.453 24.506 1.36 8.81 0.84 1.41 67.18 33.72 1.75 24.26

p 12 155.313 27.763 8.15 10.78 0.41 1.63 67.51 39.97 -0.42 9.26
18 171.410 23.235 1.77 12.01 0.47 1.29 71.86 41.03 1.69 26.33
24 177.071 21.914 2.76 12.16 0.73 3.42 57.44 40.22 -0.39 -1.25

2.0 1.0
hs 1 163.293 24.565 0.06 17.18 0.52 2.96 29.30 38.80 0.22 1.7

2 177.011 21.118 -0.59 11.73 0.79 3.45 41.62 43.33 0.26 2.47
3 188.520 18.665 -3.95 10.38 0.29 5.09 102.39 46.19 0.69 -0.13

hr 0.025 174.756 21.664 0.69 13.17 0.14 3.35 60.23 62.16 0.14 2.03
1 177.011 21.118 -0.59 11.73 0.79 3.45 41.62 43.33 0.26 2.47
2 178.760 20.971 -1.57 10.64 0.97 3.88 42.61 44.33 0.30 2.52

cm 7 140.669 15.316 -0.34 5.05 1.69 3.60 64.59 26.54 1.77 0.42
10 177.011 21.118 -0.59 11.73 0.79 3.45 41.62 43.33 0.26 2.47
13 205.997 28.015 -2.08 17.59 0.49 7.04 52.39 47.37 -0.42 1.60

cr 2 166.906 19.073 -1.12 18.50 0.21 3.68 41.11 58.70 0.29 3.42
4 177.011 21.118 -0.59 11.73 0.79 3.45 41.62 43.33 0.26 2.47
6 186.069 24.187 -1.41 6.29 0.92 3.83 33.81 25.14 1.11 1.82

cc 0.025 171.587 20.095 0.42 15.26 0.69 3.44 44.05 50.62 -0.46 2.54
1 177.011 21.118 -0.59 11.73 0.79 3.45 41.62 43.33 0.26 2.47
2 181.876 22.427 -1.19 8.74 1.08 3.86 38.49 34.96 0.64 2.65

p 12 163.502 22.675 2.74 8.80 -0.14 2.51 105.1 50.47 1.87 10.60
18 177.011 21.118 -0.59 11.73 0.79 3.45 41.62 43.33 0.26 2.47
24 178.373 21.476 0.48 11.35 0.63 2.66 53.10 43.09 0.94 0.76

While observing the effect of change for a specific parameter, all the remaining parameters are
set to their medium values.
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Table 5.19: Optimal values for the risk-averse problem in the case of
backlogging.

Expected total ECPD(%) Std. dev. SDPD(%)
cost (%) total cost (%)

Risk-neutral 171.689 - 28.414 -

r κ
1 0.3 171.975 0.17 26.333 -7.33

0.5 172.724 0.60 24.435 -14.00
0.8 173.940 1.31 22.333 -21.40
1 174.513 1.64 21.929 -22.82

2 0.3 173.439 1.02 23.386 -17.69
0.5 174.709 1.76 21.831 -23.17
0.8 175.199 2.04 21.722 -23.55
1 177.011 3.10 21.118 -25.68

3 0.3 173.969 1.91 22.977 -19.14
0.5 175.124 1.99 21.721 -23.55
0.8 177.011 3.10 21.118 -25.68
1 177.011 3.10 21.118 -25.68

Average 174.486 1.81 22.957 -20.81

cr = 4, cc = 1, cm = 10, hr = 1, hs = 2, b = 18, t∆ = 2, T = 6, Xt ∈ {−5,−4, .., 5},
Yt ∈ {0, 1, .., 10}, St ∈ {0, 1, ...10}. Demand and collection rate follow discrete uniform

distributions with supports {0, 1, .., 5} and {1/3, 2/3, 1}, respectively.
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Table 5.21: No-Recovery Policy results in the case of backlogging.

Solution Expected total Std. dev. of ECPD SDPD
times(sec) cost total cost (%) (%)

Risk-neutral 190.48 192.111 36.077 11.89 26.97

r κ
1 0.3 187.36 192.111 36.077 11.71 37.00

0.5 121.84 193.222 32.593 11.87 33.39
0.8 185.33 194.222 30.965 11.66 38.65
1 189.70 194.222 30.965 11.29 41.21

2 0.3 187.82 193.222 32.593 11.41 39.36
0.5 183.46 194.222 30.965 11.17 41.84
0.8 182.68 194.222 30.965 10.86 42.55
1 168.64 197.778 30.268 11.73 43.33

3 0.3 182.68 193.222 32.593 11.07 41.85
0.5 183.46 194.222 30.965 10.91 42.56
0.8 160.37 197.778 30.268 11.73 43.33
1 182.68 197.778 30.268 11.73 43.33

Average 177.42 194.487 34.295 11.46 39.64

cr = 4, cc = 1, cm = 10, hr = 1, hs = 2, b = 18, t∆ = 2, T = 6, Xt ∈ {−5,−4, .., 5}, Yt ∈
{0, 1, .., 10}, St ∈ {0, 1, ...10}. Demand and collection rate follow discrete uniform distributions

with supports {0, 1, .., 5} and {1/3, 2/3, 1}, respectively.
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Table 5.22: Fixed-Threshold Policy results in the case of backlogging.

Solution Expected total Std. dev. of ECPD SDPD
times(sec) cost total cost (%) (%)

Risk-neutral 201.56 181.305 35.653 5.60 25.48

r κ
1 0.3 253.13 183.122 21.640 6.48 -17.82

0.5 200.02 183.122 21.640 6.02 -11.44
0.8 215.63 183.122 21.640 5.28 -3.10
1 259.38 183.122 21.640 4.93 -1.32

2 0.3 223.44 183.122 21.640 5.58 -7.47
0.5 225.00 183.122 21.640 4.82 -0.87
0.8 243.38 183.122 21.640 4.52 -0.38
1 245.31 183.122 21.640 3.45 2.47

3 0.3 257.81 183.122 21.640 5.26 -5.82
0.5 264.06 183.122 21.640 4.57 -0.37
0.8 223.44 183.122 21.640 3.45 2.47
1 231.25 183.122 21.640 3.45 2.47

Average 234.11 182.982 22.718 4.88 -1.21

Problem parameters are specified as cr = 4, cc = 1, cm = 10, hr = 1, hs = 2, b = 18, t∆ = 2, N =

6. Bounds for the state variables are specified as Xt ∈ {−5,−4,−3, ..., 5}, Yt ∈ {0, 1, 2, ..., 10}.
The intervals for previous sales take the values as explained before. Demand and collection rate

are uniformly distributed over Dt ∈ {0, 1, 2, ..., 5} and Ct ∈ {1/3, 2/3, 1}.
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Table 5.23: Full-Collection Policy results in the case of backlogging.

Solution Expected total Std. dev. of ECPD SDPD
times(sec) cost total cost (%) (%)

Risk-neutral 9832.98 172.840 28.743 0.67 1.16

r κ
1 0.3 10072.97 173.190 26.209 0.71 -0.47

0.5 9595.96 173.664 25.145 0.54 2.91
0.8 9899.68 175.263 22.449 0.76 0.52
1 9879.95 175.477 22.300 0.55 1.69

2 0.3 9831.65 174.264 24.099 0.48 3.04
0.5 9905.55 175.866 22.119 0.66 1.32
0.8 9732.42 176.997 21.952 1.03 1.06
1 9671.64 179.016 21.349 1.13 1.09

3 0.3 9622.69 175.069 23.261 0.63 1.24
0.5 9734.17 176.997 21.952 1.07 1.06
0.8 9768.66 179.016 21.349 1.13 1.09
1 9700.36 179.016 21.349 1.13 1.09

Average 9742.67 175.898 23.252 0.81 1.29

cr = 4, cc = 1, cm = 10, hr = 1, hs = 2, b = 18, t∆ = 2, T = 6, Xt ∈ {−5,−4, .., 5}, Yt ∈
{0, 1, .., 10}, St ∈ {0, 1, ...10}. Demand and collection rate follow discrete uniform distributions

with supports {0, 1, .., 5} and {1/3, 2/3, 1}, respectively.
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Table 5.24: Solution time comparison in the case of backlogging.

Exact CEC MP NRP FCP FTP
Average 45207.52 111.8 190.94 177.42 9742.67 234.11
Std. Deviation 464.28 - 1.64 18.72 200.91 20.67
Min 44113.32 111.8 189.15 121.84 9238.98 200.02
Max 45992.90 111.8 193.07 190.48 10072.97 264.06
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Table 5.26: Parameter analysis for the case of backlogging: Risk-averse case

r κ Exact ECPD(%) SDPD(%)
1.0 1.0 ETC σ MP NRP FCP FTP MP NRP FCP FTP
hs 1 160.613 25.319 16.84 12.30 1.00 4.68 118.72 37.36 0.15 -1.33

2 174.513 21.929 1.77 11.29 0.55 4.93 71.86 41.21 1.69 -1.32
3 187.775 19.155 7.10 10.82 0.57 5.51 167.42 42.45 2.50 -2.68

hr 0.025 172.595 22.293 12.62 12.53 0.33 4.65 138.84 38.90 0.66 -0.85
1 174.513 21.929 1.77 11.29 0.55 4.93 71.86 41.21 1.69 -1.32
2 176.052 21.805 10.41 10.32 1.17 5.48 152.53 46.86 5.19 -1.40

cm 7 140.333 15.508 3.81 5.31 1.40 3.70 93.69 24.97 1.65 -0.81
10 174.513 21.929 1.77 11.29 0.55 4.93 71.86 41.21 1.69 -1.32
13 206.826 28.845 25.83 15.91 0.35 6.62 179.98 45.93 1.27 -1.32

cr 2 164.368 20.229 12.29 18.16 0.81 5.28 151.06 53.07 -0.77 -2.49
4 174.513 21.929 1.77 11.29 0.55 4.93 71.86 41.21 1.69 -1.32
6 183.735 24.956 11.13 5.71 0.93 5.15 124.58 24.08 0.75 -1.31

cc 0.025 169.649 20.868 11.76 14.48 0.12 4.62 149.19 48.39 1.48 -1.26
1 174.513 21.929 1.77 11.29 0.55 4.93 71.86 41.21 1.69 -1.32
2 179.239 23.317 11.18 8.36 1.12 5.39 134.19 32.80 1.87 -1.27

b 12 168.010 22.737 37.94 10.42 0.81 4.34 210.78 43.87 0.49 36.54
18 174.513 21.929 1.77 11.29 0.55 4.93 71.86 41.21 1.69 -1.32
24 177.469 21.814 6.76 11.91 1.00 3.19 87.88 40.86 -0.77 -0.80

2.0 1.0
hs 1 163.293 24.565 3.87 12.36 0.68 2.96 51.22 38.80 0.74 1.70

2 177.011 21.118 -3.53 11.73 1.13 3.45 47.70 43.33 1.09 2.47
3 189.105 18.679 6.34 10.04 0.71 4.77 174.23 46.08 1.60 -0.20

hr 0.025 174.756 21.664 4.98 13.17 0.46 3.35 67.05 39.72 0.52 2.03
1 177.011 21.118 -3.53 11.73 1.13 3.45 47.70 43.33 1.09 2.47
2 178.760 20.971 2.63 10.64 1.58 3.88 72.57 44.33 2.15 2.52

cm 7 140.669 15.316 3.57 5.05 1.69 3.60 96.12 26.54 1.77 0.42
10 177.011 21.118 -3.53 11.73 1.13 3.45 47.70 43.33 1.09 2.47
13 209.924 27.534 8.16 15.39 0.91 5.04 115.88 49.95 0.84 3.38

cr 2 167.828 19.091 1.85 17.85 0.43 3.11 68.43 58.55 0.30 3.33
4 177.011 21.118 -3.53 11.73 1.13 3.45 47.70 43.33 1.09 2.47
6 186.069 24.187 2.80 6.29 0.92 3.83 60.65 25.14 1.11 1.82

cc 0.025 172.142 20.073 4.36 14.89 0.72 3.11 74.83 50.79 0.19 2.65
1 177.011 21.118 -3.53 11.73 1.13 3.45 47.70 43.33 1.09 2.47
2 181.876 22.427 3.02 8.74 1.60 3.86 67.01 34.96 2.18 2.65

b 12 172.019 21.320 34.36 9.68 0.79 6.45 230.47 42.95 1.66 1.50
18 177.011 21.118 -3.53 11.73 1.13 3.45 47.70 43.33 1.09 2.47
24 178.373 21.476 3.96 11.35 0.63 2.66 79.78 43.08 0.94 0.76

While observing the effect of change for a specific parameter, all the remaining parameters are
set to their medium values.
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Chapter 6

Conclusion

In this study, we consider a closed-loop multi-stage inventory problem. Sold

products return to the manufacturer after a specific market sojourn time, and

collected based on a random collection rate. Demand is satisfied through two

channels: manufacturing and remanufacturing.

We model our problem for two base cases assuming if not satisfied upon arrival,

a demand is either backlogged or lost. We also study the problem from the

perspective of risk-neutral and risk-averse decision makers. For this purpose, we

incorporate the dynamic coherent risk measures into our problem formulation.

The risk-neutral objective is to minimize the expected total cost. The risk-averse

objective is to minimize the weighted sum of the mean total cost and the expected

excess from the mean total cost.

We next conduct detailed numerical analysis and examine the optimal policy

structure. The results indicate that a state-dependent threshold policy may be

optimal for the core inventory. However, such a policy need not be optimal for

the serviceable inventory. Although we could not find any example violating this

policy for the core inventory, we could not prove discrete-convexity of the optimal

cost function. Thus whether a state-dependent threshold policy is analytically

optimal for this specific inventory level remains an open question in our research.
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Numerical results also demonstrate the effect of risk-aversion over the optimal

policy. We indicate that as the degree of risk-aversion increases, the expected

total cost also increases.

We provide several heuristics that are computationally less demanding than

the optimal policy: a certainty equivalent controller (CEC), a myopic policy

(MP), a no-recovery policy (NRP), a fixed threshold policy (FTP), and a full-

collection policy (FCP). CEC is a suboptimal control scheme which seeks to find

the optimal policy by fixing the uncertain quantities at some ”typical” values.

In our problem, both demand and collection rate are fixed at their expected

values and randomness is eliminated from the problem. MP is a commonly used

approach in inventory management problems. It aims to minimize the expected

cost at each stage while ignoring the impact of future stages. NRP aims to reduce

the solution times by eliminating the collection and remanufacturing decisions.

By using NRP, we evaluate the economic viability of remanufacturing. FTP

assumes that there exist fixed (state-independent) thresholds, namely collect-up-

to level, and produce-up-to level. Last, FCP eliminates collection decision by

collecting all returned cores up to the core product inventory upper bound. FCP

performance can be used to evaluate the cost of waste minimization.

We then conduct numerical analysis to assess the performance of each heuristic.

CEC, MP, and NRP have a distinct computational advantage over FTP and FCP.

However, FCP and FTP surpass all the other heuristics with respect to objective

value.

For a future research direction, our problem can be extended by studying the

case where demand and collection rate are dependent. Second, core product

conditions can be assumed to vary instead of being in the same quality. Third,

including a finite lifetime for the product, in other words, a specific number of

times it can be remanufactured can be integrated into our problem. Assuming

that the market sojourn time is random can also be a good extension. Last,

disposal option can be introduced to the problem as another decision variable.
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Appendix A

Proofs of Analytical Results

A.1 Proof of Lemma 5.1

Suppose that cm ≥ cr. We want to show that Vt(Xt, Yt, St−1, ..., St−t∆) + cm ≥
Vt(Xt, Yt − 1, St−1, ..., St−t∆) + cr, ∀t.

First we consider stage T − 1:

(i) Suppose that Q∗T−1, R
∗
T−1, Z

∗
T−1 is the optimal solution at state

(XT−1, YT−1, ST−2, ..., ST−1−t∆) and Q∗T−1, R
∗
T−1, Z

∗
T−1 is a feasible solution at

state (XT−1, YT−1 − 1, ST−2, ..., ST−1−t∆). Then it is easy to verify that the fol-

lowing inequalities hold.

VT−1(XT−1, YT−1, ST−2, ..., ST−1−t∆) = cmQ
∗
T−1 + crR

∗
T−1 + ccZ

∗
T−1

+ E
DT−1,CT−1

[
hs[XT−1 +Q∗T−1 +R∗T−1 −DT−1]+ + hr(YT−1 + Z∗T−1 −R∗T−1)

+ p[DT−1 −XT−1 −Q∗T−1 −R∗T−1]+

]
≥ Q∗T−1 + crR

∗
T−1 + ccZ

∗
T−1 + E

DT−1,CT−1

[
hs[XT−1 +Q∗T−1 +R∗T−1

−DT−1]+ + hr(YT−1 − 1 + Z∗T−1 −R∗T−1) + p[DT−1 −XT−1 −Q∗T−1 −R∗T−1]+

]
≥ VT−1(XT−1, YT−1 − 1, ST−2, ..., ST−1−t∆).
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Thus,

VT−1(XT−1, YT−1, ST−2, ..., ST−1−t∆) ≥ VT−1(XT−1, YT−1 − 1, ST−2, ..., ST−1−t∆).

As we assume cm ≥ cr, we must have VT−1(XT−1, YT−1, ST−2, ..., ST−1−t∆) + cm ≥
VT−1(XT−1, YT−1 − 1, ST−2, ..., ST−1−t∆) + cr.

(ii) Suppose that Q∗T−1, R
∗
T−1, Z

∗
T−1 is the optimal solution at state

(XT−1, YT−1, ST−2, ..., ST−1−t∆) and Q∗T−1, R
∗
T−1, Z

∗
T−1 is not a feasible solution

at state (XT−1, YT−1 − 1, ST−2, ..., ST−1−t∆). Note that Q∗T−1 + 1, R∗T−1 − 1, Z∗T−1

must be a feasible solution at state (XT−1, YT−1 − 1, ST−2, ..., ST−1−t∆). Then it

is easy to verify that the following holds.

VT−1(XT−1, YT−1, ST−2, ..., ST−1−t∆) + cm = cmQ
∗
T−1 + crR

∗
T−1 + ccZ

∗
T−1

+ E
DT−1,CT−1

[
hs[XT−1 +Q∗T−1 +R∗T−1 −DT−1]+ + hr(YT−1 + Z∗T−1 −R∗T−1)

+ p[DT−1 −XT−1 −Q∗T−1 −R∗T−1]+

]
+ cm

= cm(Q∗T−1 + 1) + cr(R
∗
T−1 − 1) + ccZ

∗
T−1

+ E
DT−1,CT−1

[
hs[XT−1 +Q∗T−1 + 1 +R∗T−1 − 1−DT−1]+

+ hr(YT−1 − 1 + Z∗T−1 −R∗T−1 + 1)

+ p[DT−1 −XT−1 −Q∗T−1 − 1−R∗T−1 + 1]+

]
+ cr

≥ VT−1(XT−1, YT−1 − 1, ST−2, ..., ST−1−t∆) + cr.

Next, we consider stage t < T −1. Assuming Vt+1(Xt+1, Yt+1, St, ..., St+1−t∆) +

cm ≥ Vt+1(Xt+1, Yt+1−1, St, ..., St+1−t∆)+cr, we will show Vt(Xt, Yt, St−1, ..., St−t∆)+

cm ≥ Vt(Xt, Yt − 1, St−1, ..., St−t∆) + cr.

(i) Suppose thatQ∗t , R
∗
t , Z

∗
t is the optimal solution at state (Xt, Yt, St−1, ..., St−t∆)

and Q∗t , R
∗
t , Z

∗
t is a feasible solution at state (Xt, Yt − 1, St−1, ..., St−t∆). Then it
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is easy to verify that the following inequalities hold.

Vt(Xt, Yt, St−1, ..., St−t∆) = cmQ
∗
t + crR

∗
t + ccZ

∗
t

+ E
Dt,Ct

[
hs[Xt +Q∗t +R∗t −Dt]+ + hr(Yt + Z∗t −R∗t )

+ p[Dt −Xt −Q∗t −R∗t ]+

+ Vt+1([Xt +Q∗t +R∗t −Dt]+, Yt + Z∗t −R∗t , St, ..., St+1−t∆) + cm

]
≥

cmQ
∗
t + crR

∗
t + ccZ

∗
t

+ E
Dt,Ct

[
hs[Xt +Q∗t +R∗t −Dt]+ + hr(Yt − 1 + Z∗t −R∗t )

+ p[Dt −Xt −Q∗t −R∗t ]+

+ Vt+1([Xt +Q∗t +R∗t −Dt]+, Yt − 1 + Z∗t −R∗t , St, ..., St+1−t∆) + cr

]
≥ Vt(Xt, Yt − 1, St−1, ..., St−t∆) + cr

(ii) Suppose that Q∗t , R
∗
t , Z

∗
t is the optimal solution at state combination

(Xt, Yt, St−1, ..., St−t∆) and Q∗t , R
∗
t , Z

∗
t is not a feasible solution at state (Xt, Yt −

1, St−1, ..., St−t∆). Note that Q∗t +1, R∗t−1, Z∗t , must be a feasible solution at state

(Xt, Yt − 1, St−1, ..., St−t∆). Then it is easy to verify that the following holds.

Vt(Xt, Yt, St−1, ..., St−t∆) + cm =

cmQ
∗
t + crR

∗
t + ccZ

∗
t + E

Dt,Ct

[
hs[Xt +Q∗t +R∗t −Dt]+

+ hr(Yt + Z∗t −R∗t ) + p[Dt −Xt −Q∗t −R∗t ]+

+ Vt+1([Xt +Q∗t +R∗t −Dt]+, Yt + Z∗t −R∗t , St, ..., St+1−t∆)
]

+ cm

= cm(Q∗t + 1) + cr(R
∗
t − 1) + ccZ

∗
t + E

Dt,Ct

[
hs[Xt +Q∗t + 1 +R∗t − 1−Dt]+

+ hr(Yt − 1 + Z∗t −R∗t + 1) + p[Dt −Xt −Q∗t − 1−R∗t + 1]+

+ Vt+1([Xt +Q∗t − 1 +R∗t + 1−Dt]+, Yt − 1 + Z∗t −R∗t + 1, St, ..., St+1−t∆)
]

+ cr

≥ Vt(Xt, Yt − 1, St−1, ..., St−t∆) + cr

Hence we showed that Vt(Xt, Yt, St−1, ..., St−t∆) + cm ≥ Vt(Xt, Yt −
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1, St−1, ..., St−t∆) + cr, ∀t.

A.2 Proof of Proposition 5.2

Suppose that cm ≥ cr. First we consider stage T − 1. Pick arbitrary

decision QT−1, RT−1, ZT−1 where RT−1 > 0. The expected cost at state

(XT−1, YT−1, ST−2, ...,T−1−t∆ ) under this decision is given by

cmQT−1 + crRT−1 + ccZT−1 + E
DT−1,CT−1

[
hs[XT−1 +QT−1 +RT−1 −DT−1]+

+ hr(YT−1 + ZT−1 −RT−1) + p[DT−1 −XT−1 −QT−1 −RN−1]+

]
Now pick another feasible decision QT−1 − 1, RT−1 + 1, ZT−1. The expected

cost under this decision is given by

cm(QT−1 − 1) + cr(RT−1 + 1) + ccZT−1

+ E
DT−1,CT−1

[
hs[XT−1 +QT−1 − 1 +RT−1 + 1−DT−1]+

+ hr(YT−1 + ZT−1 −RT−1 − 1) + p[DT−1 −XT−1 −QT−1 + 1−RT−1 − 1]+

]
As we assume cm ≥ cr, the expected cost under decision QT−1, RT−1, ZT−1 is

no less than the expected cost under QT−1 − 1, RT−1 + 1, ZT−1:

cmQT−1 + crRT−1 + ccZT−1

+ E
DT−1,CT−1

[
hs[XT−1 +QT−1 +RT−1 −DT−1]+

+ hr(YT−1 + ZT−1 −RT−1) + p[DT−1 −XT−1 −QT−1 −RT−1]+

]
≥

cm(QT−1 − 1) + cr(RT−1 + 1) + ccZT−1

+ E
DT−1,CT−1

[
hs[XT−1 +QT−1 − 1 +RT−1 + 1−DT−1]+

+ hr(YT−1 + ZT−1 −RT−1 − 1) + p[DT−1 −XT−1 −QT−1 + 1−RT−1 − 1]+

]
Next we consider stage t < T − 1. By Lemma 5.1, we know that

Vt(Xt, Yt, St−1, ..., St−t∆) + cm ≥ Vt(Xt, Yt − 1, St−1, ..., St−t∆) + cr, ∀t. Thus the
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expected cost under decision Qt, Rt, Zt is no less than the expected cost under

decision Qt − 1, Rt + 1, Zt:

cmQt + crRt + ccZt

+ E
Dt,Ct

[
hs[Xt +Qt +Rt −Dt]+

+ hr(Yt + Zt −Rt) + p[Dt −Xt −Qt −Rt]+

+ Vt+1([Xt +Qt +Rt −Dt]+, Yt + Zt −Rt, St, ..., St+1−t∆)
]

≥ cm(Qt − 1) + cr(Rt + 1) + ccZt

+ E
Dt,Ct

[
hs[Xt +Qt − 1 +Rt + 1−Dt]+

+ hr(Yt + Zt −Rt − 1) + p[Dt −Xt −Qt + 1−Rt − 1]+

+ Vt+1([Xt +Qt − 1 +Rt + 1−Dt]+, Yt + Zt −Rt − 1, St, ..., St+1−t∆)
]

≥ Vt(Xt, Yt, St−1, ..., St−t∆)

A.3 Proof of Lemma 5.3

Suppose that cm ≥ cr. We want to show that Vt(Xt, Yt, St−1, ..., St−t∆) + cm ≥
Vt(Xt, Yt − 1, St−1, ..., St−t∆) + cr, ∀t.

First we consider stage T − 1:

(i) Suppose that Q∗T−1, R
∗
T−1, Z

∗
T−1 is the optimal solution at state

(XT−1, YT−1, ST−2, ..., ST−1−t∆) and Q∗T−1, R
∗
T−1, Z

∗
T−1 is a feasible solution at
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state (XT−1, YT−1 − 1, ST−2, ..., ST−1−t∆). Then it is easy to verify that the fol-

lowing inequalities hold.

VT−1(XT−1, YT−1, ST−2, ..., ST−1−t∆) = cmQ
∗
T−1 + crR

∗
T−1 + ccZ

∗
T−1

+ E
DT−1,CT−1

[
hs[XT−1 +Q∗T−1 +R∗T−1 −DT−1]+ + hr(YT−1 + Z∗T−1 −R∗T−1)

+ b[DT−1 −XT−1 −Q∗T−1 −R∗T−1]+

]
≥ Q∗T−1 + crR

∗
T−1 + ccZ

∗
T−1 + E

DT−1,CT−1

[
hs[XT−1 +Q∗T−1 +R∗T−1 −DT−1]+

+ hr(YT−1 − 1 + Z∗T−1 −R∗T−1) + b[DT−1 −XT−1 −Q∗T−1 −R∗T−1]+

]
≥ VT−1(XT−1, YT−1 − 1, ST−2, ..., ST−1−t∆).

Thus,

VT−1(XT−1, YT−1, ST−2, ..., ST−1−t∆) ≥ VT−1(XT−1, YT−1 − 1, ST−2, ..., ST−1−t∆).

As we assume cm ≥ cr, we must have VT−1(XT−1, YT−1, ST−2, ..., ST−1−t∆) + cm ≥
VT−1(XT−1, YT−1 − 1, ST−2, ..., ST−1−t∆) + cr.

(ii) Suppose that Q∗T−1, R
∗
T−1, Z

∗
T−1 is the optimal solution at state

(XT−1, YT−1, ST−2, ..., ST−1−t∆) and Q∗T−1, R
∗
T−1, Z

∗
T−1 is not a feasible solution

at state (XT−1, YT−1 − 1, ST−2, ..., ST−1−t∆). Note that Q∗T−1 + 1, R∗T−1 − 1, Z∗T−1

must be a feasible solution at state (XT−1, YT−1 − 1, ST−2, ..., ST−1−t∆). Then it

is easy to verify that the following holds.

VT−1(XT−1, YT−1, ST−2, ..., ST−1−t∆) + cm = cmQ
∗
T−1 + crR

∗
T−1 + ccZ

∗
T−1

+ E
DT−1,CT−1

[
hs[XT−1 +Q∗T−1 +R∗T−1 −DT−1]+ + hr(YT−1 + Z∗T−1 −R∗T−1)

+ b[DT−1 −XT−1 −Q∗T−1 −R∗T−1]+

]
+ cm

= cm(Q∗T−1 + 1) + cr(R
∗
T−1 − 1) + ccZ

∗
T−1

+ E
DT−1,CT−1

[
hs[XT−1 +Q∗T−1 + 1 +R∗T−1 − 1−DT−1]+

+ hr(YT−1 − 1 + Z∗T−1 −R∗T−1 + 1)

+ b[DT−1 −XT−1 −Q∗T−1 − 1−R∗T−1 + 1]+

]
+ cr

≥ VT−1(XT−1, YT−1 − 1, ST−2, ..., ST−1−t∆) + cr.

Next we consider stage t < T − 1. Assuming Vt+1(Xt+1, Yt+1, St, ..., St+1−t∆) +
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cm ≥ Vt+1(Xt+1, Yt+1−1, St, ..., St+1−t∆)+cr, we will show Vt(Xt, Yt, St−1, ..., St−t∆)+

cm ≥ Vt(Xt, Yt − 1, St−1, ..., St−t∆) + cr.

(i) Suppose thatQ∗t , R
∗
t , Z

∗
t is the optimal solution at state (Xt, Yt, St−1, ..., St−t∆)

and Q∗t , R
∗
t , Z

∗
t is a feasible solution at state (Xt, Yt − 1, St−1, ..., St−t∆). Then it

is easy to verify that the following inequalities hold.

Vt(Xt, Yt, St−1, ..., St−t∆) = cmQ
∗
t + crR

∗
t + ccZ

∗
t

+ E
Dt,Ct

[
hs[Xt +Q∗t +R∗t −Dt]+ + hr(Yt + Z∗t −R∗t )

+ b[Dt −Xt −Q∗t −R∗t ]+

+ Vt+1([Xt +Q∗t +R∗t −Dt]+, Yt + Z∗t −R∗t , St, ..., St+1−t∆) + cm

]
≥

cmQ
∗
t + crR

∗
t + ccZ

∗
t

+ E
Dt,Ct

[
hs[Xt +Q∗t +R∗t −Dt]+ + hr(Yt − 1 + Z∗t −R∗t )

+ b[Dt −Xt −Q∗t −R∗t ]+

+ Vt+1([Xt +Q∗t +R∗t −Dt]+, Yt − 1 + Z∗t −R∗t , St, ..., St+1−t∆) + cr

]
≥ Vt(Xt, Yt − 1, St−1, ..., St−t∆) + cr

(ii) Suppose thatQ∗t , R
∗
t , Z

∗
t is the optimal solution at state (Xt, Yt, St−1, ..., St−t∆)

and Q∗t , R
∗
t , Z

∗
t is not a feasible solution at state (Xt, Yt − 1, St−1, ..., St−t∆).

Note that Q∗t + 1, R∗t − 1, Z∗t must be a feasible solution at state (Xt, Yt −
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1, St−1, ..., St−t∆). Then it is easy to verify that the following holds.

Vt(Xt, Yt, St−1, ..., St−t∆) + cm =

cmQ
∗
t + crR

∗
t + ccZ

∗
t + E

Dt,Ct

[
hs[Xt +Q∗t +R∗t −Dt]+

+ hr(Yt + Z∗t −R∗t ) + b[Dt −Xt −Q∗t −R∗t ]+

+ Vt+1([Xt +Q∗t +R∗t −Dt]+, Yt + Z∗t −R∗t , St, ..., St+1−t∆)
]

+ cm

== cm(Q∗t + 1) + cr(R
∗
t − 1) + ccZ

∗
t + E

Dt,Ct

[
hs[Xt +Q∗t + 1 +R∗t − 1−Dt]+

+ hr(Yt − 1 + Z∗t −R∗t + 1) + b[Dt −Xt −Q∗t − 1−R∗t + 1]+

+ Vt+1([Xt +Q∗t − 1 +R∗t + 1−Dt]+, Yt − 1 + Z∗t −R∗t + 1, St, ..., St+1−t∆)
]

+ cr

≥ Vt(Xt, Yt − 1, St−1, ..., St−t∆) + cr

Hence we showed that Vt(Xt, Yt, St−1, ..., St−t∆) + cm ≥ Vt(Xt, Yt −
1, St−1, ..., St−t∆) + cr, ∀t.

A.4 Proof of Proposition 5.4

Suppose that cm ≥ cr. First we consider stage T − 1. Pick an arbi-

trary decision QT−1, RT−1, ZT−1 where RT−1 > 0. The expected cost at state

(XT−1, YT−1, ST−2, ..., ST−1−t∆) under this decision is given by

cmQT−1 + crRT−1 + ccZT−1 + E
DT−1,CT−1

[
hs[XT−1 +QT−1 +RT−1 −DT−1]+

+ hr(YT−1 + ZT−1 −RT−1) + b[DT−1 −XT−1 −QT−1 −RT−1]+

]

Now, pick another feasible decision QT−1 − 1, RT−1 + 1, ZT−1. The expected

cost under this decision is given by

cm(QT−1 − 1) + cr(RT−1 + 1) + ccZT−1

+ E
DT−1,CT−1

[
hs[XT−1 +QT−1 − 1 +RT−1 + 1−DT−1]+

+ hr(YT−1 + ZT−1 −RT−1 − 1) + b[DT−1 −XT−1 −QT−1 + 1−RT−1 − 1]+

]
107



As we assume cm ≥ cr, the expected cost under decision QT−1RT−1, ZT−1 is

no less than the expected cost under QT−1 − 1RT−1 + 1, ZT−1:

cmQT−1 + crRT−1 + ccZT−1

+ E
DT−1,CT−1

[
hs[XT−1 +QT−1 +RT−1 −DT−1]+

+ hr(YT−1 + ZT−1 −RT−1) + b[DT−1 −XT−1 −QT−1 −RT−1]+

]
≥

cm(QT−1 − 1) + cr(RT−1 + 1) + ccZT−1

+ E
DT−1,CT−1

[
hs[XT−1 +QT−1 − 1 +RT−1 + 1−DT−1]+

+ hr(YT−1 + ZT−1 −RT−1 − 1) + b[DT−1 −XT−1 −QT−1 + 1−RT−1 − 1]+

]

Next we consider stage t < T − 1. By Lemma 5.3, we know that

Vt(Xt, Yt, St−1, ..., St−t∆) + cm ≥ Vt(Xt, Yt − 1, St−1, ..., St−t∆) + cr, ∀t. Thus the

expected cost under decision Qt, Rt, Zt is no less than the expected cost under

decision Qt − 1, Rt + 1, Zt:

cmQt + crRt + ccZt

+ E
Dt,Ct

[
hs[Xt +Qt +Rt −Dt]+

+ hr(Yt + Zt −Rt) + b[Dt −Xt −Qt −Rt]+

+ Vt+1([Xt +Qt +Rt −Dt]+, Yt + Zt −Rt, St, ..., St+1−t∆)
]

≥ cm(Qt − 1) + cr(Rt + 1) + ccZt

+ E
Dt,Ct

[
hs[Xt +Qt − 1 +Rt + 1−Dt]+

+ hr(Yt + Zt −Rt − 1) + b[Dt −Xt −Qt + 1−Rt − 1]+

+ Vt+1([Xt +Qt − 1 +Rt + 1−Dt]+, Yt + Zt −Rt − 1, St, ..., St+1−t∆)
]

≥ Vt(Xt, Yt, St−1, ..., St−t∆)
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A.5 Proof of Lemma 5.5

Suppose that cm ≥ cr. We want to show that Vt(Xt, Yt, St−1, ..., St−t∆) + cm ≥
Vt(Xt, Yt − 1, St−1, ..., St−t∆) + cr, ∀t.

In order to show that this inequality holds for the risk-averse inven-

tory problem in the case of lost sales, we use dual representation of co-

herent risk measures (cf. Shapiro, Dentcheva and Ruszczyński). Let

A represent a set of probability measures. Suppose the probabilities

for the occurrences of demand and collection rate are given as below:

pi : Probability of which demand i occurs, i = 0, 1, ..., 5

qj : Probability of which collection rate j occurs, j = 1, 2, 3 for three different

values of
1

3
,
2

3
, and 1.

Assuming that both demand and collection rate are independent, the

joint probability of which demand i and collection rate j occurs becomes:

rij : Probability of which demand i and collection rate j occurs, i = 0, 1, ..., 5

and j = 1, 2, 3.

Finally let µij be a function of rij.

Then the risk measure ρ(F ) is represented as:

ρ(F ) = max
µ∈A

< µ,F > .

First we consider stage T − 1.

(i) Suppose that Q∗T−1, R
∗
T−1, Z

∗
T−1 is the optimal solution at state

(XT−1, YT−1, ST−2, ..., ST−1−t∆) and Q∗T−1, R
∗
T−1, Z

∗
T−1 is a feasible solution at

state (XT−1, YT−1 − 1, ST−2, ..., ST−1−t∆). Then it is easy to verify that the fol-

lowing inequalities hold.

VT−1(XT−1, YT−1, ST−2, ..., ST−1−t∆) = cmQ
∗
T−1 + crR

∗
T−1 + ccZ

∗
T−1+ < µ∗, F ∗T−1 >

≥ cmQ
∗
T−1 + crR

∗
T−1 + ccZ

∗
T−1+ < µ, F T−1 >

≥ VT−1(XT−1, YT−1 − 1, ST−2, ..., ST−1−t∆).
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Thus,

VT−1(XT−1, YT−1, ST−2, ..., ST−1−t∆) ≥ VT−1(XT−1, YT−1 − 1, ST−2, ..., ST−1−t∆).

As we assume cm ≥ cr, we must have VT−1(XT−1, YT−1, ST−2, ..., ST−1−t∆) + cm ≥
VT−1(XT−1, YT−1 − 1, ST−2, ..., ST−1−t∆) + cr.

(ii) Suppose that Q∗T−1, R
∗
T−1, Z

∗
T−1 is the optimal solution at state

(XT−1, YT−1, ST−2, ..., ST−1−t∆) and Q∗T−1, R
∗
T−1, Z

∗
T−1 is not a feasible solution

at state (XT−1, YT−1 − 1, ST−2, ..., ST−1−t∆). Note that Q∗T−1 + 1, R∗T−1 − 1, Z∗T−1

must be a feasible solution at state (XT−1, YT−1 − 1, ST−2, ..., ST−1−t∆). Then it

is easy to verify that the following holds.

VT−1(XT−1, YT−1, ST−2, ..., ST−1−t∆) = cmQ
∗
T−1 + crR

∗
T−1 + ccZ

∗
T−1+ < µ∗, F ∗T−1 >

= cm(Q∗T−1 + 1) + cr(R
∗
T−1 − 1) + ccZ

∗
T−1+ < µ, F T−1 >

≥ VT−1(XT−1, YT−1 − 1, ST−2, ..., ST−1−t∆).

Next we consider stage t < T − 1. Assuming Vt+1(Xt+1, Yt+1, St, ..., St+1−t∆) +

cm ≥ Vt+1(Xt+1, Yt+1 − 1, St, ..., St+1−t∆) + cr, we will show that

Vt(Xt, Yt, St−1, ..., St−t∆) + cm ≥ Vt(Xt, Yt − 1, St−1, ..., St−t∆) + cr.

(i) Suppose thatQ∗t , R
∗
t , Z

∗
t is the optimal solution at state (Xt, Yt, St−1, ..., St−t∆)

and Q∗t , R
∗
t , Z

∗
t is a feasible solution at state (Xt, Yt − 1, St−1, ..., St−t∆). Then it

is easy to verify that the following inequalities hold.

Vt(Xt, Yt, St−1, ..., St−t∆) + cm = cmQ
∗
t + crR

∗
t + ccZ

∗
t

+ max
µ∈A

5∑
i=0

3∑
j=1

µij

[
hs[Xt +Q∗t +R∗t − i]+ + hr(Yt − 1 + Z∗t −R∗t )

+ p[i−Xt −Q∗t −R∗t ]+

+ Vt+1([Xt +Q∗t +R∗t − i]+, Yt − 1 + Z∗t −R∗t , St, ..., St+1−t∆) + cr

]
≥ Vt(Xt, Yt − 1, St−1, ..., St−t∆) + cr

(ii) Suppose thatQ∗t , R
∗
t , Z

∗
t is the optimal solution at state (Xt, Yt, St−1, ..., St−t∆)

and Q∗t , R
∗
t , Z

∗
t is not a feasible solution at state (Xt, Yt − 1, St−1, ..., St−t∆).

Note that Q∗t + 1, R∗t − 1, Z∗t must be a feasible solution at state (Xt, Yt −
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1, St−1, ..., St−t∆). Then it is easy to verify that the following holds.

Vt(Xt, Yt, St−1, ..., St−t∆) =

cmQ
∗
t + crR

∗
t + ccZ

∗
t + < µ∗, F ∗t > +cm

= cm(Q∗t + 1) + cr(R
∗
t − 1) + ccZ

∗
t + < µ, F t > +cr

≥ Vt(Xt, Yt − 1, St−1, ..., St−t∆) + cr.

Hence we showed that Vt(Xt, Yt, St−1, ..., St−t∆) + cm ≥ Vt(Xt, Yt −
1, St−1, ..., St−t∆) + cr, ∀t.

A.6 Proof of Proposition 5.6

Suppose that cm ≥ cr. First we consider stage T − 1. Pick an arbi-

trary decision QT−1, RT−1, ZT−1 where RT−1 > 0. The expected cost at state

(XT−1, YT−1, ST−2, ST−1−t∆) under this decision is given by

cmQT−1 + crRT−1 + ccZT−1

+ max
µ∈A

5∑
i=0

3∑
j=1

µij

[
hs[XT−1 +QT−1 +RT−1 − i]+

+ hr(YT−1 + ZT−1 −RT−1) + p[i−XT−1 −QT−1 −RT−1]+

]
≥ VT−1(XT−1, YT−1, ST−2, ..., ST−1−t∆)

Now, pick another feasible decision QT−1 − 1, RT−1 + 1, ZT−1. The expected

cost under this decision is given by

cm(QT−1 − 1) + cr(RT−1 + 1) + ccZT−1

+ max
µ∈A

5∑
i=0

3∑
j=1

µij

[
hs[XT−1 +QT−1 − 1 +RT−1 + 1− i]+

+ hr(YT−1 + ZT−1 −RT−1 − 1) + p[i−XT−1 −QT−1 + 1−RT−1 − 1]+

]
≥ VT−1(XT−1, YT−1, ST−2, ..., ST−1−t∆)
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As we assume cm ≥ cr, the expected cost under decision QT−1, RT−1, ZT−1 is

no less than the expected cost under QT−1 − 1, RT−1 + 1, ZT−1:

cmQT−1 + crRT−1 + ccZT−1+ < µ∗, F ∗T−1 >

≥ cm(QT−1 − 1) + cr(RT−1 + 1) + ccZT−1+ < µ, F T−1 >

Next we consider stage T − 1. By Lemma 5.1, we know that

Vt(Xt, Yt, St−1, ..., St−t∆) + cm ≥ Vt(Xt, Yt − 1, St−1, ..., St−t∆) + cr, ∀t. Thus the

expected cost under decision Qt, Rt, Zt is no less than the expected cost under

decision Qt − 1, Rt + 1, Zt:

cmQt + crRt + ccZt+ < µ∗, F ∗t >≥ cm(Qt − 1) + cr(Rt + 1) + ccZt+ < µ, F t >

A.7 Proof of Lemma 5.7

Suppose that cm ≥ cr. We want to show that Vt(Xt, Yt, St−1, ..., St−t∆) + cm ≥
Vt(Xt, Yt − 1, St−1, ..., St−t∆) + cr, ∀t.

First we consider stage T − 1.

(i) Suppose that Q∗T−1, R
∗
T−1, Z

∗
T−1 is the optimal solution at state

(XT−1, YT−1, ST−2, ..., ST−1−t∆) and Q∗T−1, R
∗
T−1, Z

∗
T−1 is a feasible solution at

state (XT−1, YT−1 − 1, ST−2, ..., ST−1−t∆). Then it is easy to verify that the fol-

lowing inequalities hold.

VT−1(XT−1, YT−1, ST−2, ..., ST−1−t∆) = cmQ
∗
T−1 + crR

∗
T−1 + ccZ

∗
T−1+ < µ∗, F ∗T−1 >

≥ cmQ
∗
T−1 + crR

∗
T−1 + ccZ

∗
T−1+ < µ, F T−1 >

≥ VT−1(XT−1, YT−1 − 1, ST−2, ..., ST−1−t∆).

Thus

VT−1(XT−1, YT−1, ST−2, ..., ST−1−t∆) ≥ VT−1(XT−1, YT−1 − 1, ST−2, ..., ST−1−t∆).

As we assume cm ≥ cr, VT−1(XT−1, YT−1, ST−2, ..., ST−1−t∆) + cm ≥
VT−1(XT−1, YT−1 − 1, ST−2, ..., ST−1−t∆) + cr.
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(ii) Suppose that Q∗T−1, R
∗
T−1, Z

∗
T−1 is the optimal solution at state

(XT−1, YT−1, ST−2, ..., ST−1−t∆) and Q∗T−1, R
∗
T−1, Z

∗
T−1 is not a feasible solution

at state (XT−1, YT−1 − 1, ST−2, ..., ST−1−t∆). Note that Q∗T−1 + 1, R∗T−1 − 1, Z∗T−1

must be a feasible solution at state (XT−1, YT−1 − 1, ST−2, ..., ST−1−t∆). Then it

is easy to verify that the following holds.

VT−1(XT−1, YT−1, ST−2, ..., ST−1−t∆) =

cmQ
∗
T−1 + crR

∗
T−1 + ccZ

∗
T−1+ < µ∗, F ∗T−1 > +cm

= cm(Q∗T−1 + 1) + cr(R
∗
T−1 − 1) + ccZ

∗
T−1+ < µ, F T−1 > +cr

≥ VT−1(XT−1, YT−1 − 1, ST−2, ..., ST−1−t∆) + cr.

Next we consider stage t < T1. Assuming Vt+1(Xt+1, Yt+1, St, ..., St+1−t∆) +

cm ≥ Vt+1(Xt+1, Yt+1−1, St, ..., St+1−t∆)+cr, we will show Vt(Xt, Yt, St−1, ..., St−t∆)+

cm ≥ Vt(Xt, Yt − 1, St−1, ..., St−t∆) + cr.

(i) Suppose thatQ∗t , R
∗
t , Z

∗
t is the optimal solution at state (Xt, Yt, St−1, ..., St−t∆)

and Q∗t , R
∗
t , Z

∗
t is a feasible solution at state (Xt, Yt − 1, St−1, ..., St−t∆). Then it

is easy to show that the following inequalities hold.

Vt(Xt, Yt, St−1, ..., St−t∆) + cm = cmQ
∗
t + crR

∗
t + ccZ

∗
t

+ max
µ∈A

5∑
i=0

3∑
j=1

µij

[
hs[Xt +Q∗t +R∗t − i]+ + hr(Yt − 1 + Z∗t −R∗t )

+ b[i−Xt −Q∗t −R∗t ]+

+ Vt+1([Xt +Q∗t +R∗t − i]+, Yt − 1 + Z∗t −R∗t , St, ..., St+1−t∆) + cr

]
≥ Vt(Xt, Yt − 1, St−1, ..., St−t∆) + cr

(ii) Suppose thatQ∗t , R
∗
t , Z

∗
t is the optimal solution at state (Xt, Yt, St−1, ..., St−t∆)

and Q∗t , R
∗
t , Z

∗
t is not a feasible solution at state (Xt, Yt − 1, St−1, ..., St−t∆).

Note that Q∗t + 1, R∗t − 1, Z∗t must be a feasible solution at state (Xt, Yt −
1, St−1, ..., St−t∆). Then it is easy to verify that the following holds.

Vt(Xt, Yt, St−1, ..., St−t∆) = cmQ
∗
t + crR

∗
t + ccZ

∗
t + < µ∗, F ∗t > +cm

= cm(Q∗t + 1) + cr(R
∗
t − 1) + ccZ

∗
t + < µ, F t > +cr

≥ Vt(Xt, Yt − 1, St−1, ..., St−t∆) + cr.

113



Hence we showed that Vt(Xt, Yt, St−1, ..., St−t∆) + cm ≥ Vt(Xt, Yt −
1, St−1, ..., St−t∆) + cr, ∀t.

A.8 Proof of Proposition 5.8

Suppose that cm ≥ cr. First we consider stage T − 1. Pick arbitrary decision

combination QT−1, RT−1, ZT−1 where RT−1 > 0. The expected cost at state

(XT−1, YT−1, ST−2, ..., ST−1−t∆) under this decision is given by

cmQT−1 + crRT−1 + ccZT−1

+ max
µ∈A

5∑
i=0

3∑
j=1

µij

[
hs[XT−1 +QT−1 +RT−1 − i]+

+ hr(YT−1 + ZT−1 −RT−1) + b[i−XT−1 −QT−1 −RT−1]+

]
≥ VT−1(XT−1, YT−1, ST−2, ..., ST−1−t∆)

Now, pick another feasible decision QT−1 − 1, RT−1 + 1, ZT−1. The expected

cost under this decision is given by

cm(QT−1 − 1) + cr(RT−1 + 1) + ccZT−1

+ max
µ∈A

5∑
i=0

3∑
j=1

µij

[
hs[XT−1 +QT−1 − 1 +RT−1 + 1− i]+

+ hr(YT−1 + ZT−1 −RT−1 − 1) + b[i−XT−1 −QT−1 + 1−RT−1 − 1]+

]
≥ VT−1(XT−1, YT−1, ST−2, ..., ST−1−t∆)

As we assume cm ≥ cr, the expected cost under decision QT−1, RT−1, ZT−1 is

no less than the expected cost under QT−1 − 1, RT−1 + 1, ZT−1:

cmQT−1 + crRT−1 + ccZT−1+ < µ∗, F ∗N−1 > +cm

≥ cm(QT−1 − 1) + cr(RT−1 + 1) + ccZT−1+ < µ, F T−1 > +cr

Next we consider stage t < T − 1. By Lemma 5.7, we know that

Vt(Xt, Yt, St−1, ..., St−t∆) + cm ≥ Vt(Xt, Yt − 1, St−1, ..., St−t∆) + cr, ∀t. Thus the
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expected cost under decision Qt, Rt, Zt is no less than the expected cost under

decision Qt − 1, Rt + 1, Zt:

cmQt + crRt + ccZt+ < µ∗, F ∗t >≥ cm(Qt − 1) + cr(Rt + 1) + ccZt+ < µ, F t >
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