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ABSTRACT

RISK-AVERSE OPTIMIZATION FOR MANAGING
INVENTORY IN CLOSED-LOOP SUPPLY CHAINS

Melis Beren OZER
M.S. in Industrial Engineering
Advisor: Emre Nadar
Co-Advisor: Ozlem Cavus Iyigiin
July 2016

This thesis examines a closed-loop multi-stage inventory problem with remanu-
facturing option. A random fraction of used products is returned by consumers
to the manufacturer after a certain number of stages. But the manufacturer may
or may not collect any returned item. Demand can be satisfied through two chan-
nels: manufacturing new products and remanufacturing used products (cores).
A control policy specifies the numbers of cores to collect and remanufacture, and
the number of new products to manufacture, at each stage. The state space
consists of the serviceable product and core inventory levels, and the amounts
of future returns. We study this problem from the perspectives of risk-neutral
and risk-averse decision-makers, in both cases of lost sales and backordering. We
incorporate the dynamic coherent risk measures into our risk-averse problem for-
mulation. We establish that it is always optimal to prefer remanufacturing to
manufacturing under a mild condition. Numerical results indicate that a state-
dependent threshold policy may be optimal for the core inventory. However,
such a policy need not be optimal for the serviceable product inventory. We also
conduct numerical experiments to evaluate the performance of several heuristics
that are computationally less demanding than the optimal policy: a certainty
equivalent controller (CEC), a myopic policy (MP), a no-recovery policy (NRP),
a full-collection policy (FCP), and a fixed threshold policy (FTP). CEC, MP,
and NRP have a distinct computational advantage over FCP and FTP, whereas
FCP and FTP significantly outperform all the other heuristics with respect to

objective value, in our numerical experiments.

Keywords: closed-loop supply chains, remanufacturing, inventory, risk-aversion,

random returns.
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OZET

KAPALI DEVRE TEDARIK ZINCIRLERINDE
RISKTEN KAQINAN ENVANTER YONETIMI

OPTIMIZASYONU

Melis Beren OZER
Endiistri Miithendisligi, Yiiksek Lisans
Tez Danigmani: Emre Nadar
Es-Tez Damigmani: Ozlem Cavus Iyigiin
Temmuz 2016

Bu tezde yeniden imalat opsiyonu igeren ¢ok periyotlu kapali devre envanter prob-
lemi incelenmigtir. Kullanilmig iirtinler rassal oranla iireticiye belirli siire sonra
geri donmektedir. Talep yeni tirtin iiretimi ve kullanilmig tirtintin yeniden imalati
ile kargilanir. Her periyotta kullanilmig triinlerin toplanma ve yeniden imalat
miktarlar1 ve yeni liriin iretim miktar1 belirlenmektedir. Durum uzay1 satilacak
tiriin ve kullanilmig tirtin envanterleri ile, gelecekte geri donecek iiriin miktarlarini
icermektedir. Problem, riske duyarsiz ve riskten kacinan karar vericiler i¢in, kayip
satiy ve ardusmarlama durumlarinda ¢aligilmigtir. Riskten kaginan problemde
tutarli dinamik risk olctitleri kullanilmig, liretim yerine yeniden imalata oncelik
vermenin daima daha karli oldugu gosterilmistir. Sayisal sonuclar kullanilmig
iriin envanteri i¢cin duruma gore degisen esik degeri politikasinin en iyi poli-
tika olabilecegini gostermistir. Ancak boyle bir politika satilacak tiriin envanteri
icin en iyi politika olmak zorunda degildir. Ayrica, en iyi politikadan daha kisa
siirede sonug verebilen cesitli sezgisel politikalarin performanslar1 sayisal anali-
zlerle degerlendirilmistir. Bu politikalar: kesinlik denkligi kontrolorii, uzakgormez
politika, geri kazanim yapmayan politika, tamamen toplama politikas1 ve sabit
esik degeri politikasidir. Kesinlik denkligi kontrolorii, uzakgormez politika ve
geri kazanim yapmayan politikanin, tamamen toplama ve sabit esik degeri poli-
tikalarindan belirgin bir ¢oziim stiresi avantaji oldugu gozlemlenmigtir. Tamamen
toplama ve sabit egik degeri politikalarinin ise diger sezgisel politikalardan objek-
tif deger yoniinden 6nemli 6lgiide avantajliligi gozlemlenmistir.

Anahtar sozciikler: kapal devre tedarik zincirleri, yeniden imalat, envanter, risk-

ten kaginma, rassal geri donitis.
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Chapter 1

Introduction

Waste management is one of the top ten environmental issues facing humanity
(Esty and Winston 2009). Most products end up in landfills after they reach the
end of their life cycles. In order to mitigate the negative impact of those products
on the environment, sustainability has gained an increasing attention over the last
years. Closed-loop supply chains, on the other hand, have become a key aspect
of environmental sustainability. By extending the scope of their supply chains to
include used-product collection and recovery, today’s manufacturing firms aim not
only to reduce their production costs, but also to meet stringent environmental
regulations by reducing their waste of end-of-use products (Kiesmiiller and Minner
2003).

Closed-loop supply chains involve the return of a used product back to the man-
ufacturer as well as the delivery of a product to the final user, whereas traditional
supply chains ignore the used product returns. The recovery of used products is
appealing to manufacturers in various industries for numerous reasons: First, the
manufacturer may greatly reduce its waste and operational costs by collecting
and recovering its used products. Second, environmental legislations may man-
date the used product recovery. Third, the manufacturer can extend its product
line by offering “cheaper branded” products. Last, the recovered products may

attract “green-sensitive” customers (Souza 2012).



Once a product is returned by its last user to the manufacturer, it can be
reused, recovered, or disposed (Thierry et al. 1995). The well-known recovery
options include incineration, recycling, parts harvesting, resale, and remanufac-
turing: Incineration refers to the process of igniting a product when the other
options of recovery are not possible. Although the purpose is to disperse materials
into the atmosphere in a clean way, generated heat can be used to produce electric
power in some cases. Recycling refers to the process of converting waste materi-
als for manufacturing products of different functionality. It is preferred when the
returns have little economic value due to obsolescence. Parts harvesting refers to
the recovery of only specific parts of a returned product. Resale happens when
there exists a secondary market for the used product. Finally, remanufacturing
refers to restoring a product to its originally manufactured quality and is often
considered as the most profitable disposition decision (Souza 2012). This thesis

focuses on an inventory system with remanufacturing option; see Figure 1.1.

The size of remanufacturing industry in the United States is estimated to be
at least $53 billion, employing over 480,000 people (Souza 2012). Examples of
remanufactured products include mobile phone parts, domestic appliances, toner
cartridges, single-use cameras, automotive parts, and I'T equipment. In addition,
remanufacturing is a common practice in fashion, aerospace and defense industries
(Dekker et al. 2004). Remanufacturing toner cartridges is a $3 billion industry
and Xerox’s remanufacturing program saved nearly $200 million in material and
part costs in less than five years (Ginsburg 2001). The annual sales volume in

automotive remanufacturing industry, on the other hand, is reported to be $2.5
billion (Souza 2012).

Although the used product recovery is often very beneficial, it is quite difficult
to effectively manage inventory in a closed-loop supply chain. This is because
the quantity, timing, and quality of returns are highly variable, and the forward
and reverse material flows of the supply chain impact each other. To handle
such complexity, many authors assume that infinitely many products exist in the
market so that the reverse material flow is not bounded by (and is independent
from) the forward material flow; see, for instance, Simpson (1978), Buchanan
and Abad (1998), and Zhou et al. (2011). But the amount of returns is in
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Figure 1.1: Illustration of an inventory system with remanufacturing option

general constrained by the total amount of past sales that is finite, especially if
the product has a finite life-cycle (Geyer et al. 2007). Another key problem with
much of the literature is that all returned products are collected; see, for instance,
Inderfurth (1997) and Kiesmiiller and Minner (2003). But a huge number of
collected returns may lead to excess inventory and high disposal cost. Thus
the manufacturer may want to collect only a certain amount of returns that
will minimize its inventory costs. To our knowledge, the literature dealing with
closed-loop inventory systems has not yet developed a comprehensive modelling
framework that explicitly captures these two aspects of the problem. This thesis

is the first attempt to fill this gap.

The literature on closed-loop inventory systems has also neglected to incorpo-
rate the concept of “risk” into decision-making. However, many decision-makers
are willing to trade-off higher expected cost for protection against possible de-
mand losses, especially in high-margin markets (Chen et al. 2007, and Schweitzer
and Cachon 2000). In this thesis, we study not only the risk-neutral decision-
maker’s problem but also the risk-averse decision-maker’s problem, which we

model by employing the modern theory of risk. There are several different ways to



incorporate risk into decision-making, such as expected utility theory and mean-
risk approach. Although many authors in the literature dealing with traditional
inventory systems use utility functions in their objectives as a measure of risk, it
is often problematic to elicit the utility function of the decision-maker in practice.
For this reason, we consider the law-invariant coherent risk measures in our study.
Specifically, we take “mean-semi-deviation” as the risk measure in our risk-averse

problem.

In this thesis we consider a single-product, closed-loop, multi-stage inventory
system. A random fraction of the sold products in any stage becomes available
for collection by the manufacturer after a certain number of stages, i.e., a market
sojourn time. We label this fraction as return rate. A unit collection cost is
incurred if the manufacturer collects a used product. But there is no cost if the
manufacturer does not collect any used product. Demand and return rate are
independent from each other and across time. The manufacturer satisfies the
demand from the serviceable product inventory. Both the newly-manufactured
and remanufactured products can be added to this inventory immediately. A
control policy specifies how many new products should be manufactured, how
many used products should be collected, and how many collected products should

be remanufactured in each state and time period.

We consider two different objectives of the manufacturer: The risk-neutral
objective is to minimize the expected total cost over a finite planning horizon
(Chapter 3.1). The risk-averse objective is to minimize the weighted sum of
the mean total cost and the expected excess from the mean total cost over a
finite planning horizon (Chapter 3.2). We analyze the problem in both cases
of backlogging and lost-sales. For both objectives and both cases, we are able
to prove that remanufacturing should always be preferred to manufacturing at

optimality if the serviceable product inventory is to be increased.

We formulate dynamic programming (DP) algorithms for both risk-neutral
and risk-averse problems. The state space consists of the inventory levels of both
serviceable and collected products, as well as the numbers of used products that

will be returned over a certain number of stages in the future (a market sojourn

4



time). Solving these DP algorithms to optimality is extremely problematic since
both state and action spaces are unmanageably large. In order to reduce the
computational burden of our DP algorithms, we develop several computationally-
efficient heuristics: the Certainty Equivalent Controller (CEC), the Myopic Policy
(MP), the No-Recovery Policy (NRP), the Full-Collection Policy (FCP), and the
Fixed Threshold Policy (FTP).

e CEC finds the optimal policy in our DP algorithms by fixing the uncertain
quantities at their “typical” values. Specifically, we set demand and return
rate equal to their expected values, thereby eliminate randomness from our
inventory system. The optimal policy within this heuristic class can be

obtained from our DP algorithms in the absence of random disturbances.

e MP is a commonly used approach in the inventory literature. For a given
state and stage, MP chooses the action that minimizes the expected total
cost in that stage by ignoring the impact of future stages on the expected
total cost. Because MP disregards the state evolution in future stages, it

has the potential to greatly reduce the solution time.

e NRP never collects used products. The optimal policy within this heuristic
class can be obtained from our DP algorithms by eliminating the collection
and remanufacturing decisions from the action space. Note that the value
of product recovery in our closed-loop inventory system can be measured

by the optimality gap of NRP.

e FCP collects all available used products in the market. The optimal policy
within this heuristic class can be obtained from our DP algorithms by set-
ting the collection amount in each stage equal to the number of available

used products in that stage.

e We describe FTP as follows: The used products (available in the market) are
collected to bring the collected product inventory as close to a fixed target
level as possible at each stage, if it is below it. And the collected products
(available in inventory) are remanufactured to bring the serviceable product

inventory up to a fixed target level in each stage, if it is below it. New

5



products are manufactured only if remanufacturing is inadequate to bring
the serviceable product inventory up to the target level. The optimal policy
within this heuristic class can be obtained by running a DP algorithm under
each possible pair of target levels and choosing the pair that yields the least

cost in the first period.

We then conduct numerical experiments to provide insights into the optimal
policy structure. Our numerical results suggest that a state-dependent threshold
policy may be optimal for the core inventory in both cases of backlogging and
lost-sales. However, we could not prove discrete-convezity of our optimal cost
function, which is a standard method used in the inventory literature to establish
the optimality of threshold policies. (In the case of backlogging we have found
counter examples showing that discrete-convexity need not hold for our optimal
cost function in general.) Hence whether state-dependent threshold policies are
analytically optimal for the core inventory in our closed-loop inventory systems

remains an open research problem.

We also conduct numerical experiments to examine the performance of each of
our heuristic policies with respect to objective value and solution time. Numerical
results show that although CEC has a computational advantage over all the other
heuristics, it has the worst performance with respect to objective value. Unlike
previous work showing that MP might be preferable in many closed-loop supply
chains (Cohen 1980), MP performs worse than NRP, FCP, and FTP with respect
to objective value. Although NRP performs better than CEC and MP in terms
of objective value, it performs substantially worse than FCP and FTP, indicating
a significant loss when products are not recovered. FCP and FTP surpasses the
other heuristics and display similar performances with respect to the objective

value. Last, FTP has a distinct computational advantage over FCP.

We contribute to the literature in several important ways: First, to our knowl-
edge, our study is the first attempt to incorporate the coherent dynamic risk
measures into a closed-loop inventory management problem. Second, we take
the collection amount as a decision variable, as opposed to previous research col-

lecting all cores and taking the disposal quantity as a decision variable. Third,

6



we include all the information regarding future return quantities in our state
space. We use this information to limit future collection quantities. Last, our
numerical experiments reveal the practicality of fixed threshold policies for our
closed-loop inventory problem. Our numerical results also lead to the conjecture
that state dependent threshold policies may be optimal for the core inventory in

our closed-loop inventory system.

The rest of the thesis is organized as follows. Chapter 2 reviews the literature
for the risk-neutral inventory problems with remanufacturing option and the risk-
averse inventory problems. Chapter 3 describes the inventory model under two
different objectives (risk-neutral vs. risk-averse) in the cases of backlogging and
lost-sales. Chapter 4 describes the heuristics and their formulations. Chapter 5
presents and interprets numerical results for the optimal policy structure and the
heuristics. Chapter 6 offers a summary and possible future research directions.

Proofs of all analytical results are contained in the appendix.



Chapter 2

Literature Review

In this chapter, we review the literature dealing with the inventory control prob-
lem in closed-loop supply chains. To our knowledge, previous work has only
focused on the risk-neutral decision maker’s problem (Chapter 2.1). The risk-
sensitive decision maker’s problem has been studied in the literature only for

traditional supply chains (Chapter 2.2).

2.1 The Risk-Neutral Problem

Many authors in the field of closed-loop supply chains assume that remanufac-
tured products are the perfect substitutes of newly manufactured products. Geyer
et al. (2007) investigate the profitability of remanufacturing under the following
supply-loop constraints: collection capacity, limited component durability, and
finite product life cycle. The fraction of used products that can be collected (i.e.,
the collection rate) is constant (which may be less than one). However, the col-
lected products may have variable conditions and every collected product may not
be remanufactured. The fraction of collected products that can be remanufac-
tured and remarketed (i.e., the remanufacturing yield) is again constant (which

may be less than one). They formulate the component durability constraint as



a function of the maximum number of times the component can be used in pro-
duction of the same kind of product, which limits the remanufacturing yield.
They also model the market demand over the product life cycle as following an
isosceles trapezoid, and relate the fraction of remarketable collected items to the
remanufacturing yield. For the problem with finite product life cycle, Geyer et
al. (2007) assume that there is a fixed time interval between the sale of a prod-
uct and its resale after being collected and remanufactured (i.e., a fixed market
sojourn time). They establish upper bounds for the average cost savings from
remanufacturing in the cases of limited component durability and finite product
life cycle. Unlike Geyer et al. (2007), we study the inventory control problem
in a closed-loop supply chain with random returns. Furthermore, we take the
numbers of used products to collect and collected products to remanufacture as

decision variables.

Whisler et al. (1967) consider an inventory system in which products are rented
to customers and returned after a stochastic market sojourn time. Any demand
that is not satisfied immediately is lost. They seek an optimal policy that specifies
the number of equipments to rent and the number of equipments to dispose over
both finite horizon and infinite horizon. They establish the optimality of a base-
stock policy with two critical levels under the assumption of linear costs: If the
inventory level of equipments on hand is less than the lower limit, the optimal
policy is to order up to the lower limit. If the inventory level is larger than the
upper limit, the optimal policy is to dispose down to the upper limit. Since all
rented equipments are returned in good condition (and thus remanufacturing is
not needed), Whisler et al. (1967) do not incorporate remanufacturing of returned

items into decision-making.

Simpson (1978) examines an inventory system with random demand and re-
turns, under the discounted cost criterion. Any excess demand is backlogged.
The state space consists of inventory levels of both the end-products and re-
pairable items. Simpson (1978) establishes the optimality of a base-stock policy
with three thresholds: repair-up-to level, purchase-up-to level, and scrap-down-to
level. It is optimal to repair up to a certain limit, purchase up to a certain limit

if repair is not possible, and finally scrap down to a certain limit if the inventory

9



on hand exceeds this limit. Unlike Simpson (1978), our study takes into account

the collection capacity and non-zero market sojourn time.

Buchanan and Abad (1998) consider an inventory system for containers with
random returns and lost sales. A fixed fraction of the end products is destroyed
or becomes unavailable. The state space consists of the number of containers
available for sale and the number of containers in the field. The optimal policy
specifies the number of containers that should be ordered at the beginning of each
stage. They prove the optimality of a base-stock policy in this problem. Unlike
Buchanan and Abad (1998), we allow for a market sojourn time for returns, and

our returns are bounded by the past sales.

Galbreth and Blackburn (2006) consider a single-period inventory system in
the cases of deterministic demand and random demand. Returned products may
be in different conditions, which become known by the manufacturer upon col-
lection. They seek the optimal number of used items to acquire and the optimal
degree of selectivity during sorting operation after acquisition. They model the
problem in both cases of linear and non-linear acquisition costs as the standard
newsvendor problem. As the degree of selectivity increases, the remanufacturing
yield decreases since more products are scrapped, but the cost of remanufacturing
also decreases since the quality of selected products increases. They formulate the
condition of a returned product as the remanufacturing cost: Returned products
in a better condition lead to lower remanufacturing costs. Galbreth and Black-
burn (2010) extend the model in Galbreth and Blackburn (2006) to allow for
uncertain used product condition, establishing the optimal acquisition amount
and the optimal sorting policy. Zikopoulos and Tagaras (2008) also study a vari-
ation of this problem in which defects may occur in sorting operations. See also
Ferrer (2003), Guide et al. (2003), Bakal and Akcali (2006), and Zikopoulos and
Tagaras (2007) for stochastic acquisition and sorting models. Unlike these pa-
pers, we consider a multi-stage inventory model with random returns (of the same

condition) bounded by earlier sales.

Cohen (1980) considers an inventory system with random demand and lost

sales. A fixed fraction of the sold products is returned to the manufacturer after
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a fixed number of time periods, and a fixed fraction of the products on hand
decays. Cohen (1980) assumes all returned products can be resold with no re-
manufacturing effort. The state space consists of the inventory level of serviceable
items as well as the number of previously sold items. Cohen (1980) then shows
the optimality of a base-stock policy under the discounted cost criterion. Cohen
(1980) also proves the optimality of a myopic base-stock policy when the market
sojourn time is fixed at one period. Beltran et al. (2002) generalize the model in
Cohen (1980) to allow for a fixed ordering cost, showing the optimality of an (s, S)
policy. Unlike Cohen (1980) and Beltran et al (2002), our state space includes the
inventory level of the collected products, and our control policy specifies the num-
ber of used items to collect and the number of collected items to remanufacture
(in addition to the number of items to manufacture). We also allow the collection

rate to be random in each time period, making our problem more realistic.

van der Laan et al. (1996) consider an inventory model in which demand and
returns are independent from each other. Under the assumptions of backlogging
and positive leadtimes, they show the optimality of (s, Q) policy in the average
cost case. Fleischmann et al. (2002) extend this optimality result to the case
with random returns. Bayindir et al. (2005) study a similar problem under the
assumption of lost sales and zero leadtimes. Unlike these papers, in our model
the number of demand at any stage impacts the number of returns at a later

stage.

Inderfurth (1997) studies a multi-stage inventory control problem with re-
manufacturing option. The decision-maker faces stochastic demand and returns,
and has two options to fulfill demand: remanufacturing and procurement. The
decision-maker may also decide to dispose returned items. When procurement
and remanufacturing have identical leadtimes, Inderfurth (1997) shows that the
following policy is optimal at each stage: If the inventory level is below a certain
lower limit, it is optimal to dispose nothing and remanufacture (or procure if
remanufacturing is not possible or is inadequate) up to this lower limit. If the
inventory level is higher than a certain upper limit, it is optimal to dispose down
to this upper limit, remanufacture the remaining returned products, and procure

nothing. Although a base-stock policy is optimal when leadtimes are identical,
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Inderfurth (1997) states that a base-stock policy need not be optimal when lead-
times are positive and non-identical. For this reason, Inderfurth (1997) suggests
the use of heuristic algorithms that can perform well in the case of non-identical
leadtimes, inspired by the threshold policy defined above. Kiesmiiller and Minner
(2003) also develop a heuristic algorithm for a periodic review inventory problem
with random demand and returns. Unlike our study, Inderfurth (1997) neglects
to consider a market sojourn time for product returns and assumes all returned
products are collected. Kiesmiiller and Minner (2003), on the other hand, assume

that returns are independent from earlier sales and all returns are remanufactured.

Toktay (2000) examines a multi-stage inventory control problem in which the
end products are returned to the manufacturer after a certain market sojourn
time. Toktay (2000) studies the problem when backlogging is not allowed and
the market sojourn time is fixed at one period. The problem consists of two
decisions: how much to procure and how much to dispose. Similar to Whisler
(1967) and Cohen (1980), the state space in Toktay (2000) consists only of the
inventory level of serviceable products. Using the six-node closed queueing theory
network, Toktay (2000) shows the optimality of a base-stock policy and proposes

a heuristic procedure to construct a dynamic procurement policy.

Kiesmiiller and van der Laan (2001) study an inventory model over a finite
planning horizon with positive ordering lead times, and random returns that
are dependent on demand stream. A sold item is returned to the manufacturer
with a constant probability, and a returned item is either remanufactured with a
constant probability or disposed. Any unsatisfied demand is backordered. They
show the optimality of a base-stock policy. Unlike Kiesmiiller and van der Laan
(2001), in our study the state space contains two distinct inventory levels and
the collection amount is a decision variable. We also study the cases of lost
sales and backordering. Brito and van der Laan (2008) study a similar problem,

establishing the optimality of a base-stock policy over an infinite planning horizon.

Zhou et al. (2011) study a multi-stage inventory control problem with random
demand, random returns (cores), and multiple core conditions. The manufacturer

holds different inventories for serviceable products and cores, and may dispose the
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excess amount of cores. The value function in their dynamic programming formu-
lation involves two-layer optimization. They first solve the optimization problems
sequentially across all types of cores and then choose the solution that minimizes
the expected total cost. In the case of identical manufacturing and remanufac-
turing lead-times, they establish the optimality of a threshold policy with state-
dependent manufacture /remanufacture-up-to levels and state-dependent dispose-
down-to levels. They also formulate the problem in the case of non-identical lead
times, developing a simple heuristic procedure to compute a near-optimal control
policy. The main limitation of this study is that the impact of past sales on future
product returns is ignored. However, in our study, the number of products avail-
able for collection is bounded by the amount of past sales. It is also important to
note that Zhou et al. (2011) neglect to include the collection rate as a decision
variable in their model. Tao et al. (2012) extend the model in Zhou et al. (2011)
by allowing for random remanufacturing yield, in addition to random demand

and returns.

2.2 The Risk-Sensitive Problem

As far as we are aware, the prior literature has not yet studied the risk-averse
optimization of inventory systems in closed-loop supply chains. Therefore, we
below review the literature dealing with the risk-averse optimization in traditional

supply chains.

Schlesinger (1995) studies the newsvendor problem in a risk-averse setting. The
objective is to maximize the expected utility, which is increasing, concave and
thrice differentiable. Schlesinger (1995) shows that the optimal order quantity
decreases as risk-aversion increases. When the decision maker is too risk-averse,

he does not even order any newspapers due to the fear of losing money.

Agrawal and Seshadri (2000) consider a newsvendor setting in which the risk-
neutral and risk-averse objectives are to maximize the expected utility, which is

a concave function of the price. They develop two different formulations under

13



two distinct assumptions: (i) a change in price affects the scale of the distribution
and (ii) a change in price only affects the location of the distribution. They find
that a risk-averse retailer prefers to charge a higher price and order less under
assumption (i) whereas it prefers to charge a lower price under assumption (ii),

in comparison with the risk-neutral case.

Chen et al. (2007) study a multi-stage inventory control problem in which the
objective is to maximize the total expected utility over a flow of consumption.
They introduce two models: In the first model, demand is exogenous, i.e., price is
not a decision variable. In the second model, demand depends on price, i.e., price
is a decision variable. Chen et al. (2007) show that when the utility function is
exponential and the financial market is partially complete, the structure of the
risk-averse optimal policy is almost identical to the structure of the risk-neutral

optimal policy.

Choi and Ruszezynski (2011) extend the model in Chen et al. (2007) by al-
lowing for multiple products, taking an exponential utility function of the profit
as their objective. They prove that when the product demands are independent,
and the ratio of the degree of risk aversion to the number of products approaches
zero, the risk-averse optimal solution converges to the risk-neutral optimal so-
lution. They also show that the risk-averse optimal order quantities are lower

under positively correlated demands than under independent demands.

Although the expected utility approach has been widely adapted in the lit-
erature on the risk-averse optimization of inventory systems, the interpretation
of such utility functions are quite difficult. An important limitation of the ex-
pected utility approach is that it is often very hard or not practical to elicit
the utility function of the decision-maker. For this reason, Ahmed et al. (2007)
examine the single-item inventory control problem with linear cost structure in
both single-stage and multi-stage settings, incorporating the coherent risk mea-
sure into the objective function. They replace the expectation operation with
the mean-absolute deviation risk measure in their objective for the multi-stage
problem, and prove the optimality of a base-stock policy. They also show that as

the risk-aversion increases, the decision-maker orders in higher amounts.
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Choi and Ruszczyniski (2008) use the general mean-risk model in order to
solve the newsvendor problem. They find that the opposite results of Ahmed et
al. (2007) hold in their model. Examples of the mean-risk models include semi-
deviation (the risk model in our research) and weighted-mean-deviation from
quantile. Using general law-invariant measures of risk, Choi and Ruszczynski
(2008) show in the case of lost sales that as the newsvendor becomes more risk-
averse, he prefers to order less. Choi et al. (2011) use law-invariant coher-
ent risk measures to model the multi-product newsvendor problem in Choi and
Ruszezyriski (2011), obtaining the same results as in the expected utility case.
In addition, they establish that as the number of products grows to infinity, the
optimal solution converges to the risk-neutral optimal solution, i.e., risk-aversion

becomes ineffective in the optimal policy.
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Chapter 3

Problem Formulation

We formulate the closed-loop inventory problem in both cases of backlogging and
lost-sales under two different risk-attitudes of the decision maker: (i) risk-neutral

and (ii) risk-averse.

We consider a single product, closed-loop, finite-horizon inventory system. The
manufacturer satisfies the demand through two channels: manufacturing new
products and remanufacturing its own end-of-use products (cores). Demand for
serviceable products at each stage t, D;, is random. A random fraction C}; of the
sold products at stage t, becomes available for collection and remanufacturing by
the manufacturer after a fixed market sojourn time ta, i.e., at stage t + tao. We

label this fraction as return rate.

The order of the events at each stage is as follows: At the beginning of the
stage, some or all of the previously sold products become available for collection.
The decision-maker observes the serviceable product inventory, the core inventory,
and the future returns. It then decides how many products to manufacture, how
many cores to acquire (of the newly available cores at that stage), and how
many products to remanufacture (of the so far acquired cores). Both newly-
manufactured and remanufactured products are added to the serviceable product

inventory. Finally, demand is observed and satisfied from the serviceable product
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inventory. Any excess demand is either always backlogged or always lost. The
true fraction of the sold items at this stage that will be available for collection in

the future is revealed to the decision-maker at the end of this stage.

We make several assumptions for analytical convenience: (i) Demand and
return rate are independent from each other at each stage. Many papers in
the closed-loop inventory literature have made this assumption; see, for instance,
Simpson (1978), Buchanan and Abad (1998), Galbreth and Blackburn (2006), and
Zhou et al. (2011). (ii) Both manufacturing and remanufacturing lead-times are
zero. The same assumption appears in several papers; see, for instance, Inderfurth
(1997), Galbreth and Blackburn (2006), and Zhou et al. (2011). (iii) All returned
cores have the same level of quality; they are all identical. This assumption also
appears in several papers; see, for instance, Cohen (1980), Inderfurth (1997),
Galbreth and Blackburn (2006), and Geyer et al. (2007). (iv) Remanufactured
products are the perfect substitutes of newly manufactured products. This is a
standard assumption in the literature; see, for instance, Toktay (2000), Beltran
(2002), Geyer et al. (2007), and Zhou et al. (2011). (v) Last, the cores that have
been sold at stage t but have not been collected at stage t+ta are lost. This allows
us to keep the state space of the problem manageable. The uncollected cores
correspond to those consumers who simply choose not to return their products
and/or who dispose them (Buchanan and Abad 1998, and Geyer et al. 2007).

We define ¢, as the unit cost of manufacturing a serviceable product, c. as
the unit cost of collecting a core, and ¢, as the unit cost of remanufacturing a
product. We denote by hs and h, the unit holding costs for serviceable products
and cores per stage, respectively. We define p as the lost sale cost per unit of
unmet demand, and b as the backlogging cost per unit of unmet demand per
stage. There is no cost of having leftover items or being in shortage at the end
of the planning horizon. Last, we denote by ¢t the market sojourn time, i.e., the

time interval between the sale of a particular product and its return.

We formulate a discrete-time stochastic dynamic program with 7" stages that
determines the amount of products to manufacture @);, the amount of cores to

collect Z;, and the amount of collected cores to remanufacture R; at each stage .
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The risk-neutral objective is to minimize the expected total cost that consists of
the manufacturing, remanufacturing, and collection costs, the inventory holding
costs, and the backordering or lost-sale costs, across all stages. The risk-averse
objective, on the other hand, is to minimize the weighted sum of the mean cost

and the expected excess from the mean cost.

The state space consists of the following state variables: X, is the serviceable
product inventory level at the beginning of stage t. Y; is the core inventory level
at the beginning of stage t. < S;_1,S;_a,..,5,—¢, > is the vector of the numbers
of cores that will become available for collection ¢ stages later; S; is the number
of cores that will become available at stage t + ta. Note that the state space
grows exponentially as ta increases. Table 3.1 summarizes the notation that we

use throughout the thesis.

3.1 The Risk-Neutral Problem

In this section we formulate the risk-neutral inventory control problem in both

cases of backlogging and lost-sales.

3.1.1 The Case of Backlogging

We assume that any unmet demand is backlogged, incurring a unit backlog cost b
per stage. Let Vi(Xy, Y:, Si—1, ..., St—¢, ) denote the minimum expected total cost
from stage ¢ to the end of the planning horizon. Then the dynamic programming

formulation of the problem for ¢ € {0,...,7 — 1} can be written as

18



Table 3.1: Summary of notation.

Decision variables

@Q; Number of serviceable products manufactured at stage t.
Z;  Number of cores collected at stage t.
R; Number of cores remanufactured at stage ¢.

State variables

S;  Number of serviceable products that will become available for
collection at stage t + ta.

X; Serviceable product inventory level at the beginning of stage ¢
(X: > 0 in the case of lost sales).

Y; Core inventory level at the beginning of stage t.

Parameters

T Number of stages.

¢m  Unit cost for manufacturing a serviceable product.

¢.  Unit cost for collecting a core.

¢ Unit cost for remanufacturing a core.

hs  Unit holding cost for serviceable products per stage.

h,  Unit holding cost for cores per stage.

p  Lost sale cost per unit of unmet demand.

b Backlogging cost per unit of unmet demand per stage.

ta Market sojourn time.

D, Customer demand for a serviceable product at stage t
(random variable).

Cy Return rate for stage t + ta (random variable).

‘/t(XlH 5/127 St—17 3] St—tA> = min {CmQt + CTRt + CCZt

Qt,Rt,Z1>0

+ E [hs X1+ + Yo +0[=X ]

Dy,Cy
(3.1.1)
+ Vi1 (Xig1, Yig1, Ses oo St—mﬂ)} }
S.t. Xt+1 = Xt + Qt + Rt — Dt (312)
}/;H_l == }/t + Zt - Rt (313)
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St = \‘Ct |:mll'l { maX{O, Xt + Qt + Rt}, Dt}

(3.1.4)
—l— max {O, min{O, Xt + Qt + Rt} — Xt}:|J

Zy < Sioia (3.1.5)

Y1 >0 (3.1.6)

where Vr is a zero function. The objective function (3.1.1) consists of the manu-
facturing, remanufacturing, and collection costs, the expected holding and back-

logging costs, and the future cost-to-go function V;,;.

Constraint (3.1.2) ensures that the serviceable product inventory level at the
beginning of the next stage is equal to the sum of the serviceable product in-
ventory level at the beginning of the current stage and the numbers of newly-
manufactured and remanufactured products at the current stage minus demand
at the current stage. Note that the serviceable product inventory level can be

negative in the case of backlogging.

Constraint (3.1.3) ensures that the core inventory level at the beginning of the
next stage is equal to the sum of the core inventory level at the beginning of the
current stage and the number of acquired cores at the current stage minus the

number of remanufactured products at the current stage.

Constraint (3.1.4) calculates the number of sold products at the current stage
that will become available for collection ¢t stages later. The first part of the
equation corresponds to demands that are immediately satisfied at the current
stage, whereas the second part corresponds to backlogged demands that are sat-
isfied at the current stage. The sum of these two parts yields the number of items
sold at the current stage, which is multiplied by the return rate C; to obtain the

number of cores that will be available for collection t5 stages later.

Constraint (3.1.5) ensures that the number of acquired cores at any stage is
no greater than the number of available cores at that stage. Constraint (3.1.6)

ensures that the core inventory level is non-negative.
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We are able to establish the following structural property of the optimal cost

function V;, under a mild condition:

Lemma 3.1. Suppose that c¢,, > c.. For the risk-neutral inventory
problem with backlogging, the following inequality holds at each stage t:
W(Xta }/157 St—17 ceey St—tA) + Cm Z ‘/;(XIH Yt - 17 St—17 ceey St—tA) + Cr.

Proof. See Appendix A. m

Using Lemma 3.1, we obtain the following structural property of the optimal

policy:

Proposition 3.2. Suppose that c,, > c,. For the risk neutral inventory problem
with backlogging, it is optimal to prefer remanufacturing to manufacturing if the

serviceable product inventory is to be increased.

Proof. See Appendix A. n

3.1.2 The Case of Lost Sales

We now assume that backlogging is not allowed and any unmet demand is lost,
incurring a unit lost-sale cost p. Then the dynamic programming formulation of

the problem for ¢ € {0,1,...,7 — 1} can be written as

‘/;(Xh Yt7 St—17 L) St—tA> - min {CmQt + CTRt + Cth

Qt,Rt,Z1>0

+ E [thtH + hYi +p[Dy — X — Qe — Ryl 4+

D¢, Cy
(3.1.7)
+ Vi1 (Xes, Yir1, S, o, St—tA+1)] }
s.t. Xt+1 = maX{O, Xt -+ Qt + Rt - Dt} (318)
Y;_,_l = Y; + Zt - Rt (319)
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S, = {Ct [min{Xt L Q.+ R, Dt}H (3.1.10)

Zy < Sy, (3.1.11)

Vi1 >0 (3.1.12)

where V7 is a zero function. Unlike the formulation in the case of backlogging,
(i) the objective function (3.1.7) includes the expected lost sale cost, disregarding
the expected backlogging cost; (ii) the serviceable product inventory level at each
stage is forced to be non-negative (constraint 3.1.8); and (iii) the amount of sales
at any stage equals the minimum of the demand and the serviceable product

inventory level at that stage (constraint 3.1.10).

Again, we are able to establish the following structural property of the optimal

cost function V;:

Lemma 3.3. Suppose that c,, > c,. For the risk-neutral inventory problem with
lost sales, the following inequality holds at each stage t: Vi(X¢, Yy, Si—1, ...y St—tn)+
Cm Z ‘/;(Xta Yt - 17 St—17 ceey St—tA) + ¢

Proof. See Appendix A. n

Using Lemma 3.3, we obtain the following structural property of the optimal

policy:

Proposition 3.4. Suppose that ¢, > c,. For the risk-neutral inventory problem
with lost sales, it is optimal to prefer remanufacturing to manufacturing if the

serviceable product inventory is to be increased.

Proof. See Appendix A. n
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3.2 The Risk-Averse Problem with Mean-Semi-

Deviation

Our purpose in this section is to employ the modern theory of risk measures
in our inventory control problem. First we briefly introduce the concept of risk
measure. Then we incorporate mean-semi-deviation as a risk measure into our

problem formulation in both cases of backlogging and lost sales.

Suppose that there exists a probability space (€2, P). There exists a function
F:R"xQ — Rand aset X ={F(z,.)]lr € X}. A risk measure is defined as
a function p : X — R assigning a value corresponding to the assessment of the
risk involved in holding the position defined by x to each random variable F(z, .).
The risk averse problem has the objective:

min p(F(z,w)).

Now let (£2, F, P) be the probability space, X : 2 — R be the random outcome
(cost), and Z = L,(Q, F, P) for p € [1,00] be the space of possible outcomes. A
risk measure p : Z — R is a coherent risk measure if it satisfies the following four

axioms (Artzner et al. 1999):

A1. Convezity: p(AW + (1 = X)X) < Ap(W) + (1 = XN)p(X), VIV, X € Z and
VA e [0,1].

A2. Monotonicity: If X < W and X, W € Z, then p(X) < p(W).
A3. Translation Invariance: Ya € R, X € Z, p(X 4+ a) = p(X) + a.
A4. Positive Homogeneity: If 5> 0, then p(8X) = Bp(X), VX € Z.

Ruszcezynski and Shapiro (2009) give a further explanation of conditional and
dynamic risk measures: Consider the probability space (2, F, P) with filtration
Fi1 C Fo C Fr C F and the adopted sequence of random costs X; for t =
1,...,T. Assume F; = {Q,0}. Thus X; is deterministic. Define the spaces
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Zy=L,(Q,F,P)forpel,oo], t=1,...,T,and let Z,7 = 2Z; X ... X Zp .

A conditional risk measure is defined as a mapping p,r : Z,p — Z; where
1 <t <T,if it satisfies the axiom of monotonicity. A dynamic risk measure is a
sequence of conditional risk measures p,p : 2,0 — 2, for t = 1,...,T. One-step

conditional risk measure py : Zi1 — Z¢, t =1,...,T — 1 is defined as

Pt (Xit1) = pre+1(0, Xeyq). (3.2.1)

Using equation (3.2.1), we can retrieve the following recursive relation:

pt,T(Zta ey ZT) = X; + Pt(Xt+1 o Pt+1(Xt+2 + ...+ PT—Q(XT—l + PT—l(XT)))---)
(3.2.2)

The most significant examples of one-step conditional risk measures are mean-
semi-deviation and conditional average value at risk. In our study we incorporate
the risk into our problem via mean-semi-deviation. This enables us to formulate
the problem as a parametric optimization problem and easily observe the trade-off

between mean and risk.

Conditional mean-semi-deviation py(Xi41) is defined as follows (Shapiro,

Dentcheva, and Ruszczyniski, 2009).

1

pe(Xi1) = E[Xea|F] + £ E | (X —EXen| D))" 17| (3.2.3)

The above equation calculates the sum of the expected upper deviation from the
mean and the expected cost given a realization. r is the order of the one-step
conditional risk measure and x is the risk factor. Note that equation (3.2.3)
simplifies into the risk-neutral case when x = 0. The degree of risk-aversion rises

as r or K increases.

In Sections (3.2.1) and (3.2.2) we reformulate our inventory control problem
for the risk-averse decision-maker, by incorporating mean-semi-deviation into the

objective function.
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3.2.1 The Case of Backlogging

The objective function of the risk-averse decision-maker with mean-semi-

deviation risk measure takes the following form:

Qt,Rt,Z1>0

‘/;(Xtv )/t? St—17 teey St—tA> = min {CmQt + CTRt + CCZt

+ D]EC |:hs[Xt+1]+ + heYir + 0= Xepa)y + Vi (Xes, Yig1, St o, StftAJrl)]

+ RDEC [hs [(Xial4 + R Y + 0[— X4 + Vi1 (Xaga, Yiga, Ses oo Siiat1)
1
r|T
- DEC [hs[ Xiega]+ + R Yepr +0[—Xea]4 + Vigr (X, Yega, S, - St—tA+1)]] .
(3.2.4)

The dynamic programming formulation with mean-semi-deviation risk measure

can be written as

‘/t(Xb }/;7 St717 3] St*tA> =

7‘ 1/r
i - 2.
Qt7%}2>o{cht + R+ e+ p+ v E {([Fm M]+) } } (3.2.5)

st p= DEC [hs (Xip1)+ + MY +0[=X ]+

+ ‘/t-i-l (Xt-‘rl) Y;H-l) St7 R3] St—tA+l):| (326)

Fipr = ho[Xea]s + he Y + 0= X+

+ Vig1 (X1, Y1, Sty ooy Si—ia+1) (3.2.7)
Xt+1 - Xt + Qt + Rt - Dt (328)
Yi =Y.+ 7 — R, (3.2.9)
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St = \‘Ct |:1'I11n { maX{O, Xt + Qt + Rt}7 Dt}

+ max {o, min{0, X, + Q, + R} — Xt}” (3.2.10)
Z, < Sy, (3.2.11)
Yip1 > 0 (3.2.12)

where Vr is a zero function. The objective function (3.2.5) minimizes the weighted
sum of the expected cost and the expected upper deviation from the mean. Con-
straint (3.2.6) calculates the expected cost whereas constraint (3.2.7) calculates
the cost for a given realization of random demand and collection rate at stage
t. Note that the risk-averse problem in this section becomes equivalent to the

risk-neutral problem in Section 3.1.1 when x = 0.

We are able to establish the following structural property of the value function
Vi

Lemma 3.5. Suppose that c,, > c.. For the risk-averse inventory problem with
backlogging, the following inequality holds for all coherent risk measures at each
stage t: Vi(Xe, Ye, St—1y ooy Sttn) + Cm > Vi(Xe, Y — 1, Si-1, o0, Siety) + €

Proof. See Appendix A. m

Using Lemma 3.5, we obtain the following structural property of the optimal

policy:

Proposition 3.6. Suppose that c,, > c,.. For the risk-averse inventory problem
with backlogging, it is optimal to prefer remanufacturing to manufacturing if the
serviceable product inventory is to be increased, and this holds for all coherent

risk measures.

Proof. See Appendix A. m
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3.2.2 The Case of Lost Sales

In the case of lost-sales, the objective function with mean-semi-deviation risk

measure takes the following form:

Qt,Rt,Z1>0

‘/;(Xtv )/t? St—17 teey St—tA> = min {CmQt + CTRt + CCZt

+ DEC [thtH + heYipr + p[— X4 + Vg1 (Xig1, Yega, S, s StftAJrl)]

+ K DEC [tht—H + hYior + 0= X+ + Vi (Xiga, Yiga, Ses oo Siciat1)
1
r|T
- DEC [hs Xes1 + heYerr + p[—Xia]+ + Vigr (Xig1, Yigr, Sty ooy St—tA—f—l)]] .
(3.2.13)

The dynamic programming formulation with mean-semi-deviation risk measure

can be written as

‘/t(Xb }/;7 St717 3] St*tA> =

- 1/r
i — 2.14
Qt,%}%>0{cht toalitcditpts E [([Fm u]+) } } (3.2.14)

st = DEC [hSXt+1 +h Y +p[Dy — Xy — Qr — Ryl

+ Vi1 (Xig1, Yes1, Sty ooy St—tA+1):| (3.2.15)

Fiy1 = he X1 + 0 Yo +p[Dy — Xo — Qe — Ry«

+ Vi1 (Xig1, Y, Sty ooy St—tat1) (3.2.16)
Xt+1 = max{O, Xt + Qt + Rt - Dt} (3217)
Yin=Yi+Z —R (3.2.18)
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S, = Lct [min{Xt Y Q,+ R, Dt}H (3.2.19)

Zy < Sy, (3.2.20)

Yie1 >0 (3.2.21)

where Vr is a zero function. Again, the risk-averse problem in this section becomes

equivalent to the risk-neutral problem in Section 3.1.2 when x = 0.

Again, we are able to establish the following structural property of the value

function V;:

Lemma 3.7. Suppose that c,, > c.. For the risk-averse inventory problem with

lost sales, the following inequality holds for all coherent risk measures at each
stage t: Vi(X¢, Ya, St—1, ooy Sttn) + Cm > Vi( X, Ve — 1,81, oy Si—in) + o

Proof. See Appendix A. n

Using Lemma 3.7, we obtain the following structural property of the optimal

policy:

Proposition 3.8. Suppose that c,, > c,.. For the risk-averse inventory problem
with lost sales, it is optimal to prefer remanufacturing to manufacturing if the
serviceable product inventory is to be increased, and this holds for all coherent

risk measures.
Proof. See Appendix A. n

We implement Propositions 3.2, 3.4, 3.6, and 3.8 into our fixed threshold policy,
in Chapter 6.

We can solve each of the problems in Sections (3.1.1), (3.1.2), (3.2.1),
and (3.2.2) to optimality with the backward dynamic programming algo-
rithm. Let S denote the state space, and A the action space. Let
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1/;<Qt’Rt’Zt>(Xt, Y;, Si-1, vy St—t,) denote the cost function if actions @y, Ry, and
Z; are chosen at stage t. Also, let V;(Xy, Y, Si—1, ..., St—t, ) denote the minimum
expected total cost at state < X, Y}, Si1,...,51, >, and < QF, R}, Z; > the
optimal decision at state < X;,Y;, S;_1, ..., Si—, >. The algorithm is initialized
with the zero function at stage 7T'. State variables at stage T' — 1 are set to their
initial values. In a given state, the expected total cost is calculated under each
feasible action. After all the expected total costs are found for all feasible ac-
tions, the action with the least cost is the optimal decision in this state. The
same procedure is repeated until the optimal decision is found in each possible
state. The optimal strategy at stage T'— 1 is the mapping from all possible states
to the optimal decisions. Once the optimal strategy is found at stage T — 1, the
algorithm proceeds backward in time to stage T — 2, setting the cost function
at stage T'— 1 equal to the optimal cost function under the optimal strategy at
stage T'— 1. Proceeding similarly, the algorithm calculates the optimal strategy
at each stage. The optimal strategies across all stages yield the optimal control

policy. The pseudo code for this algorithm is given as follows.
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Backward solution algorithm.

Initialization
Sett«+ T —1
forallte{T-1,T-2,..,0}
Set X; «—0,Y; < 0,5_1,....5 -4, <0
Qi+ 0,R 0,72, +0
Vi(Xe, Yi, Sty ooy St—t ) <= 9999999
for all X; € S
for allY, € S
for all S;_, € S

for all S;_,, € S
for all Q; € A
for all R, € A
for all Z, € A
do
Solve the problem
if X/;<Qt’Rt’Zt>(Xt, Yi, Si—1, ey St—t, ) 1 less than
Vi(Xe, Vi, Sty .oy St ) then

‘/t(Xh )/;57 St—l) R3] St—tA) < ‘/;<Qt’Rt’Zt>(Xt) }/t’ St—lu

Set < Qy, Ry, Z] >< Qy, Ry, Zy >
end if
end for all
end for all
end for all
end for all
end for all
end for all

end for all

) St—tA)
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Chapter 4

Heuristic Policies

Optimal solutions for our closed-loop inventory control problem are computation-
ally intractable since both the state and action spaces are extremely large. We
thus consider five different heuristics that are computationally less demanding
than the dynamic programming algorithm in Chapter 3, which can be used to
find the optimal solution. In this chapter we describe all these heuristics along

with their formulations.

First, we consider the following two heuristics that are widely used in the inven-
tory literature: the Myopic Policy (MP) and the Certainty Equivalent Controller
(CEC). MP minimizes the expected costs incurred only in the current period by
disregarding the expected costs to be incurred in future periods. CEC minimizes
the expected total cost by fixing both demand and return rate at their typical

values and thus eliminating the stochasticity of the problem.

Second, we develop the following two heuristics that are specifically tailored
to our inventory problem: the No-Recovery Policy (NRP) and the Full-Collection
Policy (FCP). NRP never collects a core so that product recovery is not an option
in fulfilment of the demand. FCP collects all available cores at each stage. Both
NRP and FCP reduce the action space of our problem by eliminating the decision

of how many cores to collect at each stage. Notice that the cost performance of
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NRP relative to the globally optimal policy can be used to evaluate the economic
viability of remanufacturing. Also, the cost performance of FCP relative to the

globally optimal policy can be used to evaluate the cost of waste minimization.

Last, inspired by our numerical experiments, we propose the Fixed Thresh-
old Policy (FTP) as a heuristic. Numerical results in Chapter 5 suggest that
a state-dependent threshold policy may be optimal for the core inventory in
our problem. But finding the optimal state-dependent threshold policy is ex-
tremely problematic due to the very large numbers of states and stages (and thus
a very large number of state-dependent thresholds). FTP is a simpler form of
a state-dependent threshold policy; it assumes fixed thresholds across all states

and stages, making it computationally much more manageable.

4.1 Myopic Policy (MP)

MP minimizes the expected costs in each stage by ignoring the future expected
costs. Myopic approach is very popular in the inventory literature since it is
computationally less demanding and structurally less complex than many other
heuristic approaches. Previous research has shown the optimality of MP in
many stochastic multi-stage inventory problems; see for instance Cohen (1980),
Cetinkaya and Parlak (1998), and Xu and Ningxiong (2013). However, ignoring
the future expected costs may lead to results far from optimality in many other

problems.

For our risk-neutral case, MP can be found by solving the following problem

at each stage:

‘/;(Xh Yt7 St—l) ES) St—tA> -

min {CmQt + CrRt + Cth + ]E H<Xt7 tha Qt7 Rta Zt)] }

Q¢,R¢,Z1>0 t,Ct

st.  (Qy, Ry, Z,) € Gy (or G)

(4.1.1)

where H(X,,Y;, Qt, Ry, Z;) denotes the holding and lost sale/backlogging cost,
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and G and G} denote the action spaces of the risk-neutral problem in the cases

of backlogging and lost-sales, respectively.

For our risk-averse case, MP can be found by solving the following problem at

each stage:

‘/;(Xtv }/157 St—h ceey St—tA> =

Qt,Rmt,lthO{cht +c Ry + 2y + DF@ (H(X:,Y:, Qu, Ry, Zy)]

Dy,Cy t,Ct

+r E |:<[Ft+1_ E [H(Xt;Y;,Qt,Rt,Zt)”JF)T};} -

st (Qu, R, Z,) € Gy (or GY)

where Fi1 = H(X, Y, Qr, Ry, Z4), and Gj and G denote the action spaces of

the risk-averse problem in the cases of backlogging and lost sales, respectively.

4.2 Certainty Equivalent Controller (CEC)

Certainty equivalent controller (CEC) is a suboptimal control scheme that builds
upon the linear-quadratic control theory. CEC finds an optimal policy by fixing
the uncertain quantities at some “typical” values, i.e., it assumes that the cer-
tainty equivalence principle holds. Reducing or eliminating uncertainty makes the
problem computationally far less demanding (Bertsekas 1976). CEC is particu-
larly useful in handling uncertainty in problems with imperfect state information
(Treharne and Sox 2002).

In this study CEC fixes random demand and collection rate at their expected
values at each stage, thereby converting our stochastic inventory problem into a
deterministic inventory problem. Let D; and C, denote the expected values of
demand and collection rate, respectively. Then S, X1, and H(X,, Y;, Qy, Ry, Zy)

can be calculated as follows:
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e For the lost sale case: S; = {ag [min{Xt +Q: + Rt,ﬁt}u )

H(Xta }/;fa Qt7 Rta Zt) =

he| Xy + Qi + Ry — ﬁt]+ +h,(Yy + Z, — Ry) +p[Et - X — Qi — R4

XtJrl = maX{O, Xt + Qt + Rt - ﬁt}

e For the backlogging case: S; = Ft [min { max{0, X; + Q; + Rt},ﬁt} +

max {O, min{0, X; + Q; + R} — Xt}H .

H(Xt7 }/tJ Qt7 Rta Zt) -

he[Xi + Qi+ Ry — D] + hy(Yy + Zy — Ry) + b[Dy — X, — Q, — Ry,

X1 =Xe +Qr + Ry — D;.

CEC can be found by solving the following deterministic problem for ¢ &
{0,1,...,T —1}.

W(Xtv }/157 St—la ceey St—tA) =

min {CmQt + ¢ Ry + coZy + H(Xy, Yy, Qr, Ry, Zy)

Qt,Rt,Zt >0

+‘/;H—l(Xt-i-laY;—i—l,Sh...,St_tA+1)} (421)

sit. (Qu Ry, Z) € Gy (or GJ)

where V7 is a zero function.
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Because uncertainty is eliminated from the problem, the risk-averse problem
is equivalent to the risk-neutral problem for this heuristic. Notice that CEC
is the same as the globally optimal policy obtained in the absence of random

disturbances.

4.3 No-Recovery Policy (NRP)

NRP focuses on fulfilling the demand from newly-manufactured products by col-
lecting and remanufacturing no core. NRP thus eliminates the decision of how
many cores to collect and remanufacture at each stage. Let H (X}, Q;) be defined

as the following:
For the lost sale case: H(X;, Q:) = hs|X; + Qr — D]+ + p[Dy — Xi — Q4+
For the backlogging case: H(X;, Q) = hs[X; + Q; — Dy +b[Dy — X — Q4]+

Then for our risk-neutral case, NRP can be found by solving the following

problem:

Vi(Xy) = gg%{cht + E |:H(Xt7 Q) + V%+1(Xt+1)] }

S.t. Xt+1 = Xt + Qt — Dt (01" Xt+1 = maX{O, Xt + Qt — Dt})
(4.3.1)

where Vr is a zero function.

For our risk-averse case, NRP can be found by solving the following problem:

Vi(Xy) = gtlizr(l){cht + I’E |:H(Xt7 Qi) + V;f—&-l(Xt—‘rl)]
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1

([Fm ~ E [H(X0,Q0) + Vi (Xi10) )] ;}

+kKE
Dy

S.t. Xt+1 = Xt + Qt — Dt (01" Xt+1 = maX{O, Xt + Qt — Dt})
Frr = h[Xop]4 + 0= Xi]+ 4+ Visr (X))

(01“ Fipn = heXi +p[Dy — Xy — Qi) + ‘/;5+1(Xt+1>>
(4.3.2)

where Vr is a zero function.

4.4 Full-Collection Policy (FCP)

FCP collects all available cores in the market at each stage; it minimizes the end-
of-use product waste of the manufacturer and provides the maximum opportunity
for remanufacturing. FCP thus eliminates the decision of how many cores to
collect at each stage. Note that Z, = S;_;, for all ¢ within this heuristic class.

For our risk-neutral case, FCP can be found by solving the following problem:

V;S(Xh }/;fv Stfla ceey StftA> =

Qf,r}%itnzo{cht + Ry + ¢Sty + DF@ [H(Xu Y;, Qi Rey Si—t)

+ %+1(Xt+17 }/t—i-l, St, ceey St—tA-‘rl)] } (441)

S.t. (Qt» Rt, St—tA) € gg (OI‘ gZ)
where V7 is a zero function.

For the risk-averse case, FCP can be found by solving the following problem:

‘/;(Xh Yt7 St—la ce0y St—tA> = Q%&O{Cm@t + CTRt + CcSt—tA
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+ E [H(X:,Y:, Qt, Ry, Se—tp) + Vi1 (Xig1, Yagr, Sty ooy St—tnt1)]

D¢,Ct

+rk E
Dy,Cy

<|:Ft+1 _DE |:H(Xt7}/thtaRt7Zt)
' (4.4.2)
.

}

+ Vi1 (Xig1, Yeg1, Sty oo StftA+1):| +) ]

s.t. (Qt7 Rta St—tA) € gg’ (Or gg)

where V7 is a zero function.

4.5 Fixed Threshold Policy (FTP)

We describe FTP as follows: (i) Collection decisions are governed by a fixed
(state-independent) collect-up-to level d¢: the core inventory is increased as close
to d¢ as possible at each stage if it is below d¢, by collecting the available cores
in the market. (ii) Manufacturing and remanufacturing decisions are governed
by a fixed (state-independent) produce-up-to level dp: the serviceable product
inventory is increased to dp at each stage if it is below dp, by remanufacturing
the collected cores, and by manufacturing new products in addition to remanu-
facturing if remanufacturing is inadequate. Remanufacturing takes priority over
manufacturing in this heuristic. This is in line with our analytical results in Chap-
ter 3 under the assumption of ¢,, > ¢, + c.. This assumption is often benign; see,

for instance Zhou et al. (2011). Thus:

Zt = min{dc,}/t + StftA} — }/t,t = O, PN N — 1
Q= (maX{O,ép — X} — min {Yt + max {Qmin{éc,Y} + S} — Yt}7max{0,§p — Xt}}>

R, = min {Y} + max {O, min{dc, Y + St} — Y}},max{(), op — Xt}}

The following problem is solved for each combination of dp and o in the
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risk-neutral case:

‘/;613760 (Xt7 Y%) St—17 sy St—tA) =Cm ( ma‘X{07 5P - Xt}

— min {Yt + max {O, min{dc, Y + Si—1,} — Y}}, max{0,dp — Xt}}>
+ ¢, min {Yt -+ max {O,min{5c, i+ Si—e ) — Yt}, max{0,dp — Xt}}
+ c. max {0, min{dc, Y; + Si—i, } — Y}}

+ D]EC [H(Xt7 3/;57 6137 50) + ‘/;j_Pl#SC (Xt-‘rl) }/;H-b Sta o009 St—tA+1):|

(4.5.1)
where V:,(fp 9¢ is a zero function.

The following problem is solved for each pair of dp and d¢ in the risk-averse

case:

Vtsp,csc(X“ Yi, Stc1y ey Stetn) = cm(maX{O, op — Xy}

— min {Yt + max {0, min{dc, Vs + Si—1, } — Yt}, max{0,dp — Xt}}>
+ ¢, min {Y} -+ max {O,min{5c, Y+ Sioin} — K{}, max{0,dp — Xt}}
+ ¢, max {0, min{dc, Y: + Si—i, } — Y}}

+ DEC [H(Xn Y, 6p,0c) + V;ipf(sc (Xig1, Y1, Sty oo St—tA-&-l)}

+r E

(|:Ft+1 - E |:H(Xh}/2-f76P7(SC>
Dy,Ct

t,Ct

+ ‘/Ziplﬁc (Xt+17 }/;H-b Sta XS] St—tA+l):|:| ) :| " }
+
(4.5.2)

Spdc )
where V""" is a zero function.

The thresholds that minimize the expected total cost, i.e., argminVO‘SP Ao (0,...,0)
dp,0c

yield the optimal FTP.
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The optimal cost of any heuristic policy can be found by solving the dynamic
programming algorithm in Chapter 3 with the decision space restricted to that

heuristic policy.
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Chapter 5

Numerical Experiments

In this section, we conduct numerical experiments to provide insights into the op-
timal policy structure and evaluate the performance of each heuristic introduced
in Chapter 4. We examine both cases of backlogging and lost-sales for different
risk preferences of the decision-maker. Our experimental set up is based on the
one proposed by Zhou et al. (2011): We consider instances in which 7" = 6,
cm € {7,10,13}, ¢, € {2,4,6}, c¢. € {0.025,1,2}, h, € {1,2,3}, h, € {0.025, 1,2},
p € {12,18,24}, b € {12,18,24}, to = 2, and return rate C; follows a discrete
uniform distribution with support {%, %, 1}. We consider three different distribu-
tions for demand D;: (i) discrete uniform distribution with support {0, 1,..,5};
(ii) binomial distribution with parameters 5 and 0.5; and (iii) binomial distri-
bution with parameters 5 and 0.75. Notice that the maximum possible demand
is 5 at each stage under each of these distributions. In the case of lost sales
we impose that X; € {0,1,...,10}, Y; € {0,1,...,10}, and S, € {0,1,...,5}. In
the case of backlogging we impose that X; € {—5,...,5}, ¥; € {0,1,...,10}, and
Sy € {0,1,...,10}. All computations are performed on a computer with 8 GB of
RAM, Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz and 64-bit operating system.
All the tables and Figures 5.10-5.15 are available at the end of this chapter.
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5.1 Analysis of the Optimal Policy

In this section, we aim to provide insights into the structure of optimal policy
and to examine how risk-aversion and different demand distributions affect the
optimal policy. We take ¢,, = 10, ¢, =4, c. =1, hy =2, h, =1, b =p = 18,
and S_; = S_5 = 2 in our sample problems. For the risk-averse problem, we take
k=1and r € {1,2}. Note that as r increases, the decision-maker becomes more
risk averse. We then plot the optimal manufacturing quantity ()f, the optimal
remanufacturing quantity R, and the optimal collection quantity Z; versus the
serviceable product inventory level X, and the core inventory level Yj; see Figures
5.10-5.15.

5.1.1 The Case of Lost Sales

First, we examine how @), R and Z; vary depending on X, Yj, and the degree

of risk-aversion, when demand follows a uniform distribution; see Figure 5.10.

We observe that @)f is positive only when both X, and Y[ are low. We also
note that when both X, and Y are low, () tends to increase as risk-aversion
increases. This is because the decision-maker seeks to avoid losing demand more

by manufacturing more products as risk-aversion increases.

We observe that Rj is higher than Q)f at many values of X, and Y{. This is be-
cause the sum of the unit remanufacturing cost and the unit collection cost is less
than the unit manufacturing cost, and thus remanufacturing is a less costly chan-
nel in satisfying the demand. We also observe that Rj decreases as Yj decreases
from 3 when X is very low: The decision-maker wants to increase its serviceable
product inventory, by giving priority to remanufacturing over manufacturing. If
sufficient core inventory exists, manufacturing is not needed to increase the ser-
viceable product inventory. But if there is no sufficient core inventory, i.e., if
Yy < 3, manufacturing is necessary to increase the serviceable product inventory.

Thus () increases and R decreases as Y decreases from 3. Last, we note that
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R decreases or stays the same as X increases, and R is not affected by the risk

preference.

We observe that Zj tends to increase as X or Y| decreases. We also note that
Z; tends to increase as risk-aversion increases. This is because the decision-maker
prefers to hold more cores in the inventory to avoid losing the remanufacturing

opportunity in the upcoming stages.

Second, we examine how Qf, R} and Z; vary depending on Xy, Yj, and the
degree of risk-aversion, when demand follows a binomial distribution with pa-
rameters 5 and 0.5; see Figure 5.11. We observe that ()5, R, and Z; are no
greater than in the case of uniform demand. Because demand follows a bell-
shaped distribution in Figure 5.11, medium values of demand occur with the
highest probabilities, leading to less variability than in the case of uniform de-
mand. Thus the decision-maker prefers to manufacture and remanufacture less.
We again observe that both ()§ and Zj tend to increase as risk-aversion increases,

whereas R is not affected by the risk preference.

Last, we examine how Q, Ry and Zj vary depending on X, Y{, and the degree
of risk-aversion, when demand follows a binomial distribution with parameters 5
and 0.75; see Figure 5.12. In this case, demand follows a left-skewed distribution
and higher values of demand occur with the highest probabilities. Thus Qf, R,
and Zj are no less than when demand follows the other two distributions. We
again observe that Z tends to increase as risk-aversion increases and [ is not
affected by the risk preference. However, unlike the above two cases, Jf; does not
vary with the degree of risk-aversion in this case: @} is now sufficiently high so

that a high risk-averse decision-maker does not need to manufacture any further.

The structure of the optimal policy for core inventory in Figures 5.10, 5.11,
and 5.12 can be specified as following a state-dependent threshold policy. This
implies that if the core inventory level is below a state-dependent collect-up-
to level 6% (Xy,Y:, S 1,...,Si_¢,), then the core inventory level is increased to

this threshold. If the core inventory level is above this threshold, then no core
is collected. Specifically, V; + Z; = min{d (X, Y;, Si_1, .., St—t,), Y + Si—in }
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t=0,1,...,T —1. We could not find any example violating this policy structure.
However, the optimal policy for serviceable inventory need not follow a state-
dependent threshold policy: At stage 4, while the optimal serviceable inventory
level becomes X, + Q4 + Ry = 4 at state (0,2, 1,2), this value becomes 5 at state
(1,2,1,2).

Since we could not find any example violating the state-dependent threshold
policy for core inventory, we wanted to analytically prove the optimality of this
policy. A standard proof method to obtain such a result is to establish discrete-
convexity of the optimal cost function. Despite our best efforts, however, we
could not prove discrete-convexity of the optimal cost function. Hence whether a
state-dependent threshold policy is analytically optimal for core inventory in the

case of lost sales remains an open question in our research.

5.1.2 The Case of Backlogging

Most of the basic insights gained from the lost sales case remain valid in the
backlogging case. Unlike the case of lost sales, we observe from Figure 5.14
that when demand follows a binomial distribution with parameters 5 and 0.5,
Rj increases with the degree of risk-aversion. This difference between the lost
sales case and backlogging case may ensue from the fact that in the backlogging
case the decision-maker has the opportunity to fulfill a demand in the upcoming
stages. Therefore, he/she may prefer to hold less serviceable product inventory

by remanufacturing less.

The structure of the optimal policy for core inventory in Figures 5.13, 5.14, and
5.15 can again be characterized via a state-dependent threshold policy. We could
not find any example violating this policy structure. However we again observe
that the state-dependent threshold policy need not be optimal for serviceable
product inventory: At stage 4, the optimal serviceable inventory level becomes
4 at state (—5,2,5,2). However, this level becomes 5 at state (1,2,5,2). We
also found a counter example showing that discrete-convexity need not hold for

our optimal cost function; see Figure 5.1. As in the case of lost sales, whether a
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state-dependent threshold policy is analytically optimal for core inventory in the

case of backordering remains an open question in our research.

Optimal cost function

Figure 5.1: Optimal cost function Vy when Yo =7, 51 =2, S o =4, r =1,
k=0,¢,=10,¢.=4,c. =1, hy =2, h, =1, b= 18, and tp = 2.

5.2 The Risk-Neutral Problem

Our primary goal in this section is to evaluate the performance of each heuristic
in the risk-neutral case. We compare our heuristics with respect to (i) their
percentage deviations from the risk-neutral optimal expected total cost at the
initial stage when Xy = Yy = S_; = S5 = 0 (ECPD) (ii) their percentage
deviations from the risk-neutral optimal standard deviation of the total cost at the
initial stage when Xy =Yy, = S_;1 = S_5 = 0 (SDPD), and (iii) their computation

times.

5.2.1 The Case of Lost Sales

Table 5.1 exhibits our numerical results in the case of lost sales: Although CEC
has a distinct computational advantage over all the other heuristics, it has the
worst performance with respect to the expected total cost. Unlike many paper

dealing with traditional inventory problems, MP has a very poor performance in
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our closed-loop inventory problem. Despite its computational advantage, NRP
leads to an increase of 12.67% in the expected total cost. FCP outperforms all the
other heuristics with respect to the expected total cost. This is because FCP pro-
vides the maximum opportunity for remanufacturing, which takes priority over
manufacturing at optimality. However, FCP performs worse than all the other
heuristics with respect to computation time. This is because although the col-
lection decision is eliminated from the problem since all the available cores are
collected, the decision-maker still needs to decide on the amounts of manufactur-
ing and remanufacturing. High standard deviation values in Table 5.1 validate

that the risk-neutral decision-maker does not pay attention to cost variability.

5.2.2 The Case of Backlogging

Table 5.2 exhibits our numerical results in the case of backlogging: Our conclu-
sions from the case of lost sales remain valid in this case. In addition, we observe
that the solution times are much higher than in the case of lost sales. This is

because S; can take larger values in the backlogging case.

5.3 The Risk-Averse Problem

Our primary goal in this section is to evaluate the performance of each heuristic
in the risk-averse case. We consider instances in which x € {0,0.3,0.5,0.8,1} and
r € {1,2,3}. We again compare our heuristics with respect to (i) their percentage
deviations from the risk-averse optimal expected total cost at the initial stage
when Xy =Yy, = S_;1 = S5 =0 (ECPD) (ii) their percentage deviations from
the risk-averse optimal standard deviation of the total cost at the initial stage

when Xog =Yy, =5_1=5_5=0 (SDPD), and (iii) their computation times.
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5.3.1 The Case of Lost Sales

Table 5.3 exhibits our numerical results for the optimal solution in the case of
lost sales: The expected total cost gradually increases as the decision-maker be-
comes more risk-averse. This is because as the risk-aversion degree increases, the
decision-maker tends to remanufacture/manufacture more to avoid losing sales.
Also note that as risk-aversion increases, the standard deviation decreases sub-
stantially. This is because mean-semi deviation aims to minimize the difference
between the mean and the realization, and higher risk-aversion leads to a lower

standard deviation.

Figures 5.2 and 5.3 show how the expected total cost and the standard devia-

tion vary depending on 7 and k.
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Table 5.4 exhibits our numerical results for MP in the case of lost sales. Both
ECPD and SDPD values are quite large for almost all risk-aversion degrees. Such
a poor performance of MP can be explained by the very complicated dynamics of
state transitions and the high uncertainty involved in our closed-loop inventory

problem.

Figures 5.4 and 5.5 show how the expected total cost and the standard devia-

tion for MP vary depending on r and k.
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Table 5.5 exhibits our numerical results for NRP in the case of lost sales.
We observe that NRP performs better than MP. NRP performs worse than the
optimal solution by 12.11% with respect to the expected total cost and by 38.21%
with respect to standard deviation, on average. Thus remanufacturing provides

more than 10% decrease in the expected total cost on average.

Table 5.6 exhibits our numerical results for FTP in the case of lost sales. FTP
performs better than MP and NRP with respect to both expected total cost and
standard deviation. An important note here is that the optimal solution is the
same when r = 2,k = 1 and r = 3,k = 1. This shows that further degrees of

risk-aversion are not very crucial when r > 2.

Table 5.7 exhibits our numerical results for FCP in the case of lost sales: FCP
outperforms all the other heuristics with respect to both expected total cost and
standard deviation. Our choice of parameters (¢,, > ¢, + ¢.), limited returns
S;, and the existence of an upper bound on Y; can explain the success of this

heuristic.

Note that the standard deviation when r = 3,k = 1.0 is higher than when
r = 3,k = 0.8. This anomaly arises from the specified intervals for X; and Y;.
As the degree of risk-aversion increases for this specific case, the global optimal
solution goes beyond the specified bounds. For the purpose of more accurate
comparison, we prefer not to increase the bounds when r = 3,k = 1, keeping

them the same as in the other cases.

Table 5.8 lists the average computation times for the heuristics. As stated
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before, CEC is the quickest heuristic in the risk-neutral case. MP, on the other
hand, clearly has a distinct computational advantage in the risk-averse case. Such
an advantage of MP over the other heuristics arises because it ignores the effect of
future costs on any decision at the current stage. Although FCP surpasses all the
other heuristics in terms of ECPD and SDPD, FCP has the worst performance
with respect to computation times. Recall that collecting all available cores
eliminates the collection decision but the decision-maker still needs to decide on

the manufacturing and remanufacturing amounts.

Parameter Analysis. In this subsection, we examine how the heuristics be-
have under different parameter settings. For this purpose, we generate numerical
instances by varying the value of each parameter as low, medium, and high. While
solving the problem for a specific parameter value, we fix all the remaining pa-
rameters to their medium values. We label the decision-maker with r =1,k =1

as low risk-averse, and the decision-maker with r = 2, k = 1 as high risk-averse.

Table 5.9 exhibits the numerical results for the risk-neutral case. For low
value of hy, FCP has the best performance with respect to expected total cost,
and FTP has the best performance with respect to cost variability. Although
hs = h,, the decision-maker does not prefer to hold serviceable products in the
inventory instead of cores since ¢,, > ¢, + ¢.. For high value of h,, FCP has the
best performance in terms of both criteria. Since hy, > h,, the decision-maker
prefers to hold cores instead of serviceable products in the inventory. When A,
is low, FTP is the exceeding solution approach. Although h, < hg, holding cores
more than necessary causes the cost of FCP to be scattered in a wider range.
When h, = 2, FCP is the best heuristic in terms of the expected total cost.
Although hg = h,., the decision-maker prefers to hold cores instead of serviceable

products in the inventory.

When c¢,), is low, FCP outperforms the other heuristics in both criteria. Since
we still have ¢,,, > ¢, + c., remanufacturing is still favored at optimality. When

¢m 18 high, FCP again outperforms the other heuristics in terms of both criteria.
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When ¢, is low, FTP performs best with respect to standard deviation. Al-
though ¢, is now lower, holding excess cores in the inventory causes FCP instances
to be more deviated. However, FCP is better with respect to expected total cost.
When ¢, is high, we observe the same behaviour. Since ¢, > ¢, + ¢., FCP is still

less costly. Our results for c. are similar to those for c,.

When is low, FCP performs best with respect to expected total cost. When p
is high, FCP is the best choice in both criteria. Our explanation for this result
is that the decision-maker prefers to hold more cores in the inventory to avoid

higher lost sales cost in the upcoming stages.

Next, we consider the risk-averse case in Table 5.10. Our conclusions for the
risk-neutral case are valid for the low risk-averse case. When r = 2,k = 1, FCP
is a better choice than FTP. This is because now the decision-maker is more risk-
averse and holding more cores in the inventory helps to reduce lost sales in the

upcoming stages.

Pairwise Parameter Analysis. In this section, parameters that are thought
to be related to each other are paired and the solutions for all heuristics are

obtained for different combinations of these parameters.

Table 5.11 exhibits risk-neutral pair-wise analysis for ¢, and c¢.. For all pos-
sible combinations of ¢, ¢,, FCP outperforms the other heuristics with respect
to expected total cost. This result is logical since ¢, > ¢, + ¢, in every case so
it is less costly to remanufacture as much as possible. When SDPD values are
checked, F'TP is the best choice. For the risk-averse cases, same intuitions follow
and FCP performs best.

Table 5.13 exhibits the risk-neutral analysis for the h,., c. pair. For all combi-
nations of h, and c., FCP performs better than FTP. Because ¢,, > ¢, + c. + h,,
collecting and holding cores up to the upper bound becomes advantageous. Min-
imum SDPD values are provided by FTP in all cases. In low risk-averse case
Table 5.14 displays the same results as in the risk-neutral case. The degree of

risk-aversion may not be high enough to change the behaviours of heuristics.
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In high risk-averse case, FCP gives the best performance for all combinations.
Although the best heuristic performances did not change with increasing risk-
aversion, being high risk-averse increases the performance of FCP with respect

to standard deviation.

Table 5.15 exhibits our analysis for the h,, hs pair. Because ¢,, > ¢, + ¢. + h,
in all cases, holding cores in the inventory is less costly. Thus FCP is the best
heuristic in the risk-neutral case for all combinations. For the risk-averse cases,

FCP performs best with respect to both criteria.

Lastly, Table 5.17 exhibits the risk-neutral heuristic performances for ¢,,, c., ¢,
For all cases where ¢,, < ¢, + ¢., solution of NRP becomes equal to the optimal
solution. This result is logical since collecting and remanufacturing is now more
costly than manufacturing and this makes the optimal policy equal to NRP policy.
When ¢,, > ¢, +c., FCP outperforms other heuristics. We observe the exact same

intuitions for the risk-averse cases.

5.3.2 The Case of Backlogging

In this section, we solve the risk-averse problem for the backlogging case. The
same intuitions in the lost sale case are still valid. It is easy to verify that the
expected total cost increases as the decision-maker becomes more risk-averse.
Table 5.19 shows that standard deviation gradually declines as expected. As it
is seen by the percentage changes, a little increase in the cost can effectively
decrease the percentage gap from the mean. In addition, after r = 2,k = 1,
expected total cost remains the same for the higher values of r. Consequently,

we note that r = 2 case effectively provides the risk-averse optimal solution.

Figures 5.6 and 5.7 show how the expected total cost and the standard devia-

tion vary depending on r and k.
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Table 5.20 exhibits our numerical results for MP. As in the case of lost sales,
it is immediate that MP has a very poor performance. Both ECPD and SDPD

values are quite large for almost all risk-aversion degrees.

Figures 5.8, and 5.9 show how the expected total cost and the standard devi-

ation for MP vary depending on r and k.
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Table 5.21 exhibits our numerical results for NRP in the case of backlogging.
The percentage gap from the expected total cost is 11.46 and standard deviation
increases by 39.64%, on average. This shows that although NRP performs better
than MP, absence of remanufacturing is reflected upon the expected total cost,
and standard deviation. Note that if the problem was solved as a classical in-
ventory problem with only manufacturing option, the optimal cost at first stage

would be higher.

Table 5.22 exhibits our numerical results for FTP in the case of backlogging.

In terms of the optimal solution, the optimal thresholds tend to increase with
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higher degrees of risk-aversion. An important insight is that the decision-maker
prefers to manufacture/remanufacture more as the degree of risk-aversion in-
creases. When we examine the results in terms of the expected total cost and
the standard deviation, FTP has greater benefit compared to MP. Note that the
optimal threshold levels are the same when r =2,k =1 and r = 3,k = 1. Thus

further degrees of risk-aversion are not very crucial after r > 2.

Table 5.23 exhibits our numerical results for FCP in the case of backlogging.
As in the case of lost sales, FCP outperforms all the other heuristics in terms of
the expected total cost. However FTP outperforms FCP in terms of standard
deviation. Because the decision-maker may now backlog a demand, he/she may
want to increase the optimal threshold levels compared to the lost sales case.
Thus the decision-maker may take optimal decisions closer to each other and
this decreases standard deviation. Remark that the results show no change in
optimality for r = 2,k = 1 and r = 3,k = 1. This shows that further degrees of

risk-aversion are not very significant after reaching r > 2.

Table 5.24 lists the average computational times for the heuristics. Note that
the same intuitions as in the case of lost sales are still valid. An important
observation is that the solution times for the backlogging case are much higher
than the case of lost sales. This increase arises from the wider ranges of S; (a.k.a.

future returns).

Parameter Analysis. In this section, we perform parameter analysis under
the assumption of backlogging. Tables 5.25, and 5.26 exhibit our parameter

analysis for both risk-neutral, and risk-averse cases.

When we analyze the risk-neutral results for different values of hg, FCP out-
performs other heuristics. Because hy, > h,, the decision-maker prefers to hold

cores in the inventory rather than stocking serviceable products.

For h, = 0.025, FCP is the best policy since h,. value is low and hence, holding
returned cores in the inventory is less costly. FCP is still the best policy when

h, = 2. Because now hg; = h,, holding returned cores becomes equivalent to
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holding serviceable products.

When ¢, is low, FCP performs best with respect to expected total cost. This
result is logical since ¢, > ¢, + ¢, is still ensured. FTP outperforms other heuris-
tics with respect to standard deviation. When ¢, high, FCP performs best.
This is because ¢, is now higher than ¢, + ¢, and the decision-maker prefers to

remanufacture instead.

Analysis of ¢, indicates that FCP performs best. Because ¢,, > ¢, + ¢, still
holds, FCP is still preferable. The same intuitions carry over to the analysis of

Ce.

For different values of b, FCP outperforms other heuristics with respect to
expected total cost. Standard deviation percentages, on the other hand, show
that FTP is preferable over FCP.

When the degree of risk-aversion increases, FCP perform best in all cases.
This result is justifiable because holding more cores in the inventory is now more
appealing to the risk-averse decision-maker. In terms of SDPD, FTP values are
closer to the mean for the low risk-averse case. When risk-aversion increases,

FCP becomes preferable in terms of the standard deviation in nearly all cases.

Pairwise Parameter Analysis. Table 5.27 exhibits our numerical results
for various combinations of ¢,, and c. for risk-neutral case. FCP performs best
with respect to both criteria because ¢, < ¢, +c. in all cases. When the decision-
maker becomes low risk-averse, FCP outperforms other heuristics with respect
to expected total cost. However FTP performs best with respect to standard
deviation. For the high risk-averse case, FCP performs best with respect to both
criteria. The fact that the decision-maker wants to avoid backlogging any demand

causes him/her to hold more cores in the inventory.

Next, Tables 5.29, and 5.30 examine the behaviour of heuristics for various
values of h,, and c.. FCP performs best for all cases with respect to expected
total cost. However FTP outperforms other heuristics with respect to standard

deviation.
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We next analyze the results for hy, and h, combinations in Tables 5.31 and 5.32.
For the all cases, FCP outperforms other heuristics with respect to expected total
cost. This behaviour is justified by the fact that the decision-maker wants to avoid
backlogging as much as possible by holding cores in the inventory. FTP performs

best with respect to standard deviation.

Last, we analyze computational results for various value combinations of ¢,,, ¢,,
and c.. The same intuitions for the case of lost sales carry over to the backlogging

case.
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Figure 5.10: Illustration of the effect of risk aversion in the case of lost sales for

D, ~ U(0,5)
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Figure 5.11: Illustration of the effect of risk aversion in the case of lost sales for
D; ~ Bin(5,0.5)
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Figure 5.12: Illustration of the effect of risk aversion in the case of lost sales for
Dy ~ Bin(5,0.75)
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Illustration of the effect of risk aversion on Qg
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Illustration of the effect of risk aversion on Qg
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Illustration of the effect of risk aversion on Qg
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Table 5.1: Numerical results for the risk-neutral problem with lost sales.

Solution  Expected total ECPD Std. dev. of SDPD

Solution method times (sec) cost (%) total cost (%)
Exact 1698.34 167.644 - 32.568 -
CEC 45.02 196.192 17.03 56.116 72.31
MP 177.37 193.865 15.64 55.864 71.53
FTP 229.70 173.613 3.56 29.353 9.87
NRP 52.48 188.889 12.67 39.735 22.00
FCP 874.53 168.184 0.32 32.711 0.44

=4, co=1,cm =10, hy =1, hy =2, p = 18, ta = 2, T = 6, X; € {0,1,..,10},
Y; € {0,1,..,10}, S; € {0,1,..,5}. Demand and collection rate follow discrete uniform
distributions with supports {0, 1,..,5} and {1/3,2/3,1}, respectively.

Table 5.2: Numerical results for the risk-neutral problem with backlogging.

Solution  Expected total ECPD Std. dev. of SDPD

Solution method times (sec) cost (%) total cost (%)
Exact 27311.45 171.689 - 28.414 -
CEC 63.49 239,497 39.49 76,215 168.23
MP 286.76 232.439 35.38 74.588 162.50
FTP 201.56 181.305 5.60 35.653 25.48
NRP 190.48 192.111 11.89 36.077 26.97
FCP 9832.98 172.840 0.67 28.743 1.16

e =4 co=1,cm =10, hy =1, hy =2, b =18, txn = 2, T = 6, X; € {—5,—4,..,5},
Y; € {0,1,..,10}, S; € {0,1,...10}. Demand and collection rate follow discrete uniform
distributions with supports {0,1,..,5} and {1/3,2/3,1}, respectively.

61



Table 5.3: Changes in the expected total cost and standard deviation
for various values of r and k for the case of lost sales.

Expected total ECPD Std. dev. of SDPD

cost (%) total cost (%)

Risk-neutral 167.644 - 32.568 -
r K

1 0.3 168.229 0.35 28.865 -11.37

0.5 168.993 0.81 26.975 -17.17

0.8 170.905 1.95 23.801 -26.92

1 171.410 2.25 23.235 -28.66

2 0.3 169.650 1.20 25.838 -20.66

0.5 171.410 2.25 23.235 -28.66

0.8 174.004 3.79 21.765 -33.17

1 177.011 5.59 21.118 -35.16

3 0.3 170.028 1.42 25.359 -22.13

0.5 173.012 3.20 22.188 -31.87

0.8 177.011 5.59 21.118 -35.16

1 177.011 5.59 21.118 -35.16

Average 172.024 2.83 24.398 -27.17

=4 co=1,cm=10,hy =1, hy =2, p=18, tn =2, T = 6, X; € {0,1, .., 10},
Y, € {0,1,..,10}, S; € {0,1,..,5}. Demand and collection rate follow discrete
uniform distributions with supports {0,1,..,5} and {1/3,2/3, 1}, respectively.
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Table 5.5: No-Recovery Policy results in the case of lost sales.

Solution  Expected total Std. dev. of ECPD SDPD

times(sec) cost total cost (%) (%)

Risk-neutral 52.48 188.889 39.735 12.67  22.00
r K

1 0.3 51.23 188.889 39.735 12.28 37.66

0.5 50.76 190.028 36.191 12.45 34.17

0.8 51.08 192.000 32.769 12.34 37.68

1 51.23 192.000 32.769 12.01 41.03

2 0.3 54.04 190.722 34.720 12.42 34.38

0.5 52.01 192.000 32.769 12.01 41.03

0.8 52.64 194.222 30.965 11.62 42.27

1 53.73 197.778 30.268 11.73 43.33

3 0.3 58.68 190.722 34.720 12.17 36.91

0.5 53.46 194.222 30.965 12.26 39.56

0.8 60.37 197.778 30.268 11.73 43.33

1 52.68 197.778 30.268 11.73 43.33

Average 53.41 192.848 33.549 12.11 38.21

¢r=4,¢cc=1,¢, =10, b =1, hy =2, p =18, to =2, T =6, X; € {0,1,..,10}, YV} €
{0,1,..,10}, S; € {0,1,..,5}. Demand and collection rate follow discrete uniform distributions
with supports {0,1,..,5} and {1/3,2/3,1}, respectively.

64



Table 5.6: Fixed-Threshold Policy results in the case of lost sales.

Solution  Expected total Std. dev. of ECPD SDPD

times(sec) cost total cost (%) (%)

Risk-neutral 229.70 173.613 29.353 3.956 -9.87
r K

1 0.3 243.75 173.613 29.353 3.20 1.69

0.5 267.25 173.613 29.353 2.73 8.82

0.8 204.75 173.613 29.353 1.58 23.33

1 251.60 173.613 29.353 1.29 26.33

2 0.3 226.60 173.613 29.353 2.34 13.60

0.5 265.65 173.613 29.353 1.29 26.33

0.8 195.35 183.122 21.640 5.24 -0.57

1 250.00 183.122 21.640 3.45 2.47

3 0.3 181.3 183.122 21.640 7.70 -14.67

0.5 265.65 183.122 21.640 5.84 -2.47

0.8 226.6 183.122 21.640 3.45 2.47

1 273.5 183.122 21.640 3.45 2.47

Average 237.05 178.00 25.79 3.47 6.15

¢r =4,¢cc=1,¢, =10, b =1, hy =2, p =18, tp =2, T =6, X; € {0,1,..,10}, YV} €
{0,1,..,10}, S; € {0,1,..,5}. Demand and collection rate follow discrete uniform distributions
with supports {0,1,..,5} and {1/3,2/3,1}, respectively. Produce-up-to level and collect-up-to
level values are taken in intervals dp € {2,3,4,5,6} and ¢ € {1,2,3,4,5}, respectively.
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Table 5.7: Full-Collection Policy results in the case of lost sales.

Solution  Expected total Std. dev. of ECPD SDPD

times(sec) cost total cost (%) (%)

Risk-neutral 874.53 168.184 32.711 0.32 0.44
r K

1 0.3 896.04 168.743 29.189 0.30 1.12

0.5 880.05 169.373 27.680 0.22 2.61

0.8 904.42 171.492 24.207 0.34 1.71

1 915.60 172.218 23.628 0.47 1.69

2 0.3 912.37 169.727 26.997 0.04 4.49

0.5 911.08 172.238 23.411 0.48 0.76

0.8 868.54 175.281 22.054 0.73 1.33

1 940.76 178.409 21.172 0.79 0.26

3 0.3 991.96 170.804 25.442 0.46 0.33

0.5 890.89 174.409 22.289 0.81 0.46

0.8 879.88 178.702 21.191 0.96 0.35

1 864.99 179.016 21.349 1.13 1.09

Average 902.39 172.969 24.998 0.54 1.30

¢r=4,¢cc=1,¢, =10, b =1, hy =2, p =18, tpo =2, T =6, X; € {0,1,..,10}, YV} €
{0,1,..,10}, S; € {0,1,..,5}. Demand and collection rate follow discrete uniform distributions
with supports {0,1,..,5} and {1/3,2/3,1}, respectively.
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Table 5.8: Solution time comparison in the case of lost sales.

Exact | CEC | MP | NRP | FCP FTP
Average 1674.84 | 45.02 | 167.76 | 53.41 | 902.39 | 237.05
Std. Deviation | 24.72 0 4.73 | 292 | 3458 | 28.37
Min 1627.29 | 45.02 | 160.09 | 50.76 | 864.99 | 181.3
Max 1710.15 | 45.02 | 177.37 | 60.37 | 991.96 | 273.5
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Table 5.10: Parameter analysis for the case of lost sales: Risk-averse case

K Exact ECPD(%) SDPD(%)
1.0 1.0 ETC o MP NRP FCP FTP MP NRP FCP FTP
hs 1 159.285 25.681 | 5.35 15.19 093 2.72 | 64.39 3543 -0.47 -2.72
2 171.410 23.235 | 1.77 12.01 047 129 | 71.86 41.03 1.69 26.33
3 183.071 21.453 | -1.09 9.07 0.02 0.30 | 76.09 62.42 4.01 24.49
h, 0.025 | 170.061 23.374 | 2.58 1290 0.34 0.89 | 70.83 40.19 -0.02 27.54
1 171.410 23.235 | 1.77 12.01 047 1.29 | 71.86 41.03 1.69 26.33
2 172.295 23522 | 1.25 1144 076 198 | 69.76 39.31 1.33 23.48
Cm 7 140.121 15.691 | 0.06 546 091 3.86 | 60.66 23.52 2.07 -1.96
10 171.410 23.235 | 1.77 12.01 047 129 | 71.86 41.03 1.69 26.33
13 199.749 31.153 | 7.17 1584 0.06 3.32 | 86.36 53.43 1.16 10.95
Cr 2 161.425 21.396 | 2.61 18.94 0.38 1.67 | 78.28 53.15 0.01 28.69
4 171.410 23.235 | 1.77 12.01 047 129 | 71.86 41.03 1.69 26.33
6 181.213 26.085 | 1.12 595 0.55 1.04 | 61.37 25.62 1.24 22.06
c. 0.025 | 166.356 22.278 | 2.28 1542 035 1.24 | 75.10 47.09 -0.09 27.79
1 171.410 23.235 | 1.77 12.01 047 129 | 71.86 41.03 1.69 26.33
2 176.453 24506 | 1.36 881 0.84 1.41 | 67.18 33.72 1.75 24.26
D 12 155.313 27.763 | 8.15 10.78 0.41 1.63 | 67.51 39.97 -0.42 9.26
18 171.410 23.235 | 1.77 12.01 047 129 | 71.86 41.03 1.69 26.33
24 177.071 21914 | 2.76 12.16 0.73 3.42 | 5744 40.22 -0.39 -1.25
2.0 1.0
hs 1 163.293 24.565 | 0.06 17.18 0.52 2.96 | 29.30 38.80 0.22 1.7
2 177.011 21.118 | -0.59 11.73 0.79 3.45 | 41.62 43.33 0.26 2.47
3 188.520 18.665 | -3.95 10.38 0.29 5.09 | 102.39 46.19 0.69 -0.13
h, 0.025 | 174.756 21.664 | 0.69 13.17 0.14 3.35 | 60.23 62.16 0.14 2.03
1 177.011 21.118 | -0.59 11.73 0.79 3.45 | 41.62 43.33 0.26 2.47
2 178.760 20.971 | -1.57 10.64 097 3.88 | 42.61 44.33 0.30 2.52
Cm 7 140.669 15.316 | -0.34 5.05 1.69 3.60 | 64.59 26.54 1.77 0.42
10 177.011 21.118 | -0.59 11.73 0.79 3.45 | 41.62 43.33 0.26 2.47
13 205.997 28.015 | -2.08 17.59 0.49 7.04 | 52.39 4737 -0.42 1.60
Cr 2 166.906 19.073 | -1.12 1850 0.21 3.68 | 41.11 58.70 0.29 3.42
4 177.011 21.118 | -0.59 11.73 0.79 3.45 | 41.62 43.33 0.26 2.47
6 186.069 24.187 | -1.41 6.29 0.92 3.83 | 33.81 25.14 1.11 1.82
c. 0.025 | 171.587 20.095 | 0.42 1526 0.69 3.44 | 44.05 50.62 -0.46 2.54
1 177.011 21.118 | -0.59 11.73 0.79 3.45 | 41.62 43.33 0.26 2.47
2 181.876 22.427 | -1.19 874 1.08 3.86 | 38.49 34.96 0.64 2.65
P 12 163.502 22.675 | 2.74 880 -0.14 2.,51 | 105.1 50.47 1.87 10.60
18 177.011 21.118 | -0.59 11.73 0.79 3.45 | 41.62 43.33 0.26 2.47
24 178.373 21476 | 0.48 11.35 0.63 2.66 | 53.10 43.09 0.94 0.76

While observing the effect of change for a specific parameter, all the remaining parameters are
set to their medium values.
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Table 5.19: Optimal values for the risk-averse problem in the case of
backlogging.

Expected total ECPD(%) Std. dev. SDPD(%)

cost (%) total cost (%)

Risk-neutral 171.689 - 28.414 -
r K

1 0.3 171.975 0.17 26.333 -7.33

0.5 172.724 0.60 24.435 -14.00

0.8 173.940 1.31 22.333 -21.40

1 174.513 1.64 21.929 -22.82

2 0.3 173.439 1.02 23.386 -17.69

0.5 174.709 1.76 21.831 -23.17

0.8 175.199 2.04 21.722 -23.55

1 177.011 3.10 21.118 -25.68

3 0.3 173.969 1.91 22.977 -19.14

0.5 175.124 1.99 21.721 -23.55

0.8 177.011 3.10 21.118 -25.68

1 177.011 3.10 21.118 -25.68

Average 174.486 1.81 22.957 -20.81

¢ =4, ce=1,cm =10 hy =1, hy =2,b=18,tn =2, T =6, X; € {—5,—4,..,5},
Y; € {0,1,..,10}, S; € {0,1,...10}. Demand and collection rate follow discrete uniform
distributions with supports {0,1,..,5} and {1/3,2/3, 1}, respectively.

78



‘Aroatgoadsar ‘{1 ‘¢/g‘e/1} pue {G ‘1 ‘0} syroddns yiim SUOTINQLIISIP UWLIOJTUN 9)DIISIP MOT[O] DRI UOTIID[[0D
wg\m UQ\NEQQ .AOH...nH now w ﬂm FAHOH n..ﬁl—”now w Mt\ﬂ nﬁmn..nwlhmlw w ﬂiXi nw — FH FN — qw nwl—” — Q AN — %\N\ FH — L\Q(\ nol—” — EU nﬁ — UU nw — .AU

2899 90°¢C 7 76°061 ¥0€" LS 019°60¢ 7 ¢S°L0CSy LG6°CC 98V VL1 7 SELACTN 74

6vV'1v  6¢°0T- 68°C61 681°9€¢ €IV €8T 69°67EST RIT'T¢C TTOLLT 1

06°9% v€'9- L6°C61 681°9¢ €9V €8T LLVL9GY RTT'T¢C TTOLLT 80

€8°EP R8¢ T- L0°E6T V¢ €S 8LETOEIT ¢9'9105¥ 1¢L1¢ Vel GLT <0

0L 0V L1°0- L6°C61 ¢68°€L 749°6¢¢ GG 0c0sy LL6°CC 696 €LT €0 €

0L LV €ae- 61681 68T°9¢ €9V €8T RV EVEaP RTT'TC TTOLLT 1

€8'€EY 8C'1- 07681 9yees 8LETOT CEELTVY ¢aL'1e 66T GLT 80

0L°0¥ L1°0- G1681 Q¢ €4 8LEVET 16°T1CSY 1E€]1C 60L VLT ¢0

694 e 97681 ¢68°€L ¥794°6¢¢ 06°C6657 L8E°EC 667 €LT €0 [4

98°1L LLT 08°161 ST 8LEVET 8¢ ET6TT 6¢6°1¢ eIavLl 1

LL°L9 L0°C L1681 S 8LETVET 99°901¢¥ €€e'Ce 076°€LT 80

VI°L0T  9C¥1 €061 ¢68°€L 749°6¢¢ L1 LV8VY GEV'IC oL cLl g0

8G'E6 8LVI Ga161 ¢68°€L ¥44°6¢¢C €0°acrev £€€€°9¢ GLO6'TLT €0 !
Y A

€a'1L 79°GT LG 061 884 1L 6EV CEC GL'C8VSY V1v'8¢ 689 TLIT [BIINIU-HSTY

(%) (%) (Dos)sowry 9500 [R)0) 1809 (Dos)sowry 9500 [€}0) 1800

ddds dddd | uonnog  jo "A9p ‘Pi§  [BJ0} pajoadxyy | womnjog  jo "A9p pig  [e10) pajoadxyy

yoeoxddy ordoAy 1R

"SUISSO3PR( JO 9sRD O} Ul WD[(oId 9SIoAR-YSLI o1} 10] suosLredurod s)Nsal UOnNoS :0g'S S[qel,

79



Table 5.21: No-Recovery Policy results in the case of backlogging.

Solution  Expected total Std. dev. of ECPD SDPD

times(sec) cost total cost (%) (%)

Risk-neutral 190.48 192.111 36.077 11.89  26.97
r K

1 0.3 187.36 192.111 36.077 11.71 37.00

0.5 121.84 193.222 32.593 11.87 33.39

0.8 185.33 194.222 30.965 11.66 38.65

1 189.70 194.222 30.965 11.29 41.21

2 0.3 187.82 193.222 32.593 11.41 39.36

0.5 183.46 194.222 30.965 11.17 41.84

0.8 182.68 194.222 30.965 10.86 42.55

1 168.64 197.778 30.268 11.73 43.33

3 0.3 182.68 193.222 32.593 11.07 41.85

0.5 183.46 194.222 30.965 10.91 42.56

0.8 160.37 197.778 30.268 11.73 43.33

1 182.68 197.778 30.268 11.73 43.33

Average 177.42 194.487 34.295 11.46 39.64

=4 co=1,cn =10, hy =1, hy =2, b =18, ta =2, T = 6, X; € {~5,—4,..,5}, ¥; €
{0,1,..,10}, S; € {0,1,...10}. Demand and collection rate follow discrete uniform distributions
with supports {0,1,..,5} and {1/3,2/3,1}, respectively.
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Table 5.22: Fixed-Threshold Policy results in the case of backlogging.

Solution  Expected total Std. dev. of ECPD SDPD

times(sec) cost total cost (%) (%)

Risk-neutral 201.56 181.305 35.653 5.60 25.48
r K

1 0.3 253.13 183.122 21.640 6.48 -17.82

0.5 200.02 183.122 21.640 6.02 -11.44

0.8 215.63 183.122 21.640 5.28 -3.10

1 259.38 183.122 21.640 4.93 -1.32

2 0.3 223.44 183.122 21.640 5.58 -7.47

0.5 225.00 183.122 21.640 4.82 -0.87

0.8 243.38 183.122 21.640 4.52 -0.38

1 245.31 183.122 21.640 3.45 2.47

3 0.3 257.81 183.122 21.640 5.26 -5.82

0.5 264.06 183.122 21.640 4.57 -0.37

0.8 223.44 183.122 21.640 3.45 2.47

1 231.25 183.122 21.640 3.45 2.47

Average 234.11 182.982 22.718 4.88 -1.21

Problem parameters are specified as ¢, =4,¢. = 1,¢,, =10, h. =1, hs = 2,0 =18,tpo =2, N =
6. Bounds for the state variables are specified as X; € {—5,—4,-3,...,5}, ¥; € {0,1,2,...,10}.
The intervals for previous sales take the values as explained before. Demand and collection rate
are uniformly distributed over D, € {0,1,2,...,5} and Cy € {1/3,2/3,1}.
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Table 5.23: Full-Collection Policy results in the case of backlogging.

Solution  Expected total Std. dev. of ECPD SDPD

times(sec) cost total cost (%) (%)

Risk-neutral 9832.98 172.840 28.743 0.67 1.16
r K

1 0.3 10072.97 173.190 26.209 0.71 -0.47

0.5 9595.96 173.664 25.145 0.54 2.91

0.8  9899.68 175.263 22.449 0.76 0.52

1 9879.95 175477 22.300 0.55 1.69

2 0.3 9831.65 174.264 24.099 0.48 3.04

0.5 9905.55 175.866 22.119 0.66 1.32

0.8 9732.42 176.997 21.952 1.03 1.06

1 9671.64 179.016 21.349 1.13 1.09

3 0.3 9622.69 175.069 23.261 0.63 1.24

0.5 9734.17 176.997 21.952 1.07 1.06

0.8  9768.66 179.016 21.349 1.13 1.09

1 9700.36 179.016 21.349 1.13 1.09

Average 9742.67 175.898 23.252 0.81 1.29

=4 co=1,cn =10, hy =1, hy =2, b =18, ta =2, T = 6, X; € {~5,—4,..,5}, ¥; €
{0,1,..,10}, S; € {0,1,...10}. Demand and collection rate follow discrete uniform distributions
with supports {0,1,..,5} and {1/3,2/3,1}, respectively.
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Table 5.24: Solution time comparison in the case of backlogging.

Exact | CEC | MP NRP FCP FTP

Average 45207.52 | 111.8 | 190.94 | 177.42 | 9742.67 | 234.11
Std. Deviation | 464.28 - 1.64 18.72 200.91 20.67
Min 44113.32 | 111.8 | 189.15 | 121.84 | 9238.98 | 200.02
Max 45992.90 | 111.8 | 193.07 | 190.48 | 10072.97 | 264.06
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Table 5.26: Parameter analysis for the case of backlogging: Risk-averse case

K Exact ECPD(%) SDPD(%)
1.0 1.0 ETC o MP NRP FCP FTP MP NRP FCP FTP
hs 160.613 25.319 | 16.84 12.30 1.00 4.68 | 11872 3736 0.15 -1.33

174513 21929 | 1.77 11.29 055 493 | 71.86 41.21 1.69 -1.32
187.775 19.155 | 7.10 10.82 0.57 5.51 | 167.42 4245 2.50 -2.68
172,595 22.293 | 12.62 1253 0.33 4.65 | 138.84 38.90 0.66 -0.85
174513 21929 | 1.7 11.29 055 493 | 71.86 41.21 1.69 -1.32
176.052 21.805 | 10.41 10.32 1.17 5.48 | 152.53 46.86 5.19 -1.40
140.333 15508 | 3.81 531 140 3.70 | 93.69 2497 1.65 -0.81
174513 21929 | 1.7 11.29 055 493 | 71.86 4121 1.69 -1.32
206.826 28.845 | 25.83 1591 0.35 6.62 | 179.98 4593 1.27 -1.32

>
S

o
t

CT)’ 3

cr 164.368 20.229 | 12.29 18.16 0.81 5.28 | 1561.06 53.07 -0.77 -2.49
174513 21929 | 1.7 11.29 055 493 | 71.86 4121 1.69 -1.32
183.735 24.956 | 11.13 5.71 093 5.15 | 12458 24.08 0.75 -1.31
c. 0.025 | 169.649 20.868 | 11.76 14.48 0.12 4.62 | 149.19 48.39 1.48 -1.26
174513 21.929 | 1.77 11.29 055 493 | 71.86 4121 1.69 -1.32
179.239 23.317 | 11.18 836 1.12 539 | 134.19 32.80 1.87 -1.27
b 168.010 22.737 | 37.94 10.42 0.81 4.34 | 210.78 43.87 0.49 36.54
174513 21929 | 1.77 11.29 055 493 | 71.86 41.21 1.69 -1.32
177.469 21.814 | 6.76 11.91 1.00 3.19 | 87.88 40.86 -0.77 -0.80
2.0
hs 163.293 24.565 | 3.87 1236 0.68 2.96 | 51.22 3880 0.74 1.70
177.011 21.118 | -3.53 11.73 1.13 3.45 | 47.70 4333 1.09 247
189.105 18.679 | 6.34 10.04 0.71 4.77 | 174.23 46.08 1.60 -0.20
hr 0.025 | 174.756 21.664 | 4.98 13.17 046 3.35 | 67.06 39.72 0.52 2.03
177.011 21.118 | -3.53 11.73 1.13 3.45 | 47.70 4333 1.09 2.47
178.760 20.971 | 2.63 10.64 1.58 3.88 | 72.57 44.33 2.15 2.52
Cm 140.669 15.316 | 3.57 5.05 1.69 3.60 | 96.12 26.54 1.77 0.42
177.011 21.118 | -3.53 11.73 1.13 3.45 | 47.70 4333 1.09 2.47
209.924 27534 | 816 1539 091 5.04 | 115.88 49.95 0.84 3.38
cr 167.828 19.091 | 1.85 17.85 043 3.11 | 6843 58.55 0.30 3.33

177.011 21.118 | -3.53 11.73 1.13 3.45 | 47.70 4333 1.09 2.47
186.069 24.187 | 280 6.29 092 3.83 | 60.656 25.14 1.11 1.82
172.142  20.073 | 436 14.89 0.2 3.11 | 7483 50.79 0.19 2.65
177.011 21.118 | -3.53 11.73 1.13 3.45 | 4770 4333 1.09 2.47
181.876 22.427 | 3.02 874 160 3.86 | 67.01 3496 2.18 2.65
b 12 172.019 21.320 | 34.36 9.68 0.79 6.45 | 23047 4295 1.66 1.50

18 1r77.011 21.118 | -3.53 11.73 1.13 3.45 | 47.70 4333 1.09 2.47

24 178.373 21.476 | 3.96 11.35 0.63 2.66 | 79.78 43.08 0.94 0.76

While observing the effect of change for a specific parameter, all the remaining parameters are
set to their medium values.
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Chapter 6

Conclusion

In this study, we consider a closed-loop multi-stage inventory problem. Sold
products return to the manufacturer after a specific market sojourn time, and
collected based on a random collection rate. Demand is satisfied through two

channels: manufacturing and remanufacturing.

We model our problem for two base cases assuming if not satisfied upon arrival,
a demand is either backlogged or lost. We also study the problem from the
perspective of risk-neutral and risk-averse decision makers. For this purpose, we
incorporate the dynamic coherent risk measures into our problem formulation.
The risk-neutral objective is to minimize the expected total cost. The risk-averse
objective is to minimize the weighted sum of the mean total cost and the expected

excess from the mean total cost.

We next conduct detailed numerical analysis and examine the optimal policy
structure. The results indicate that a state-dependent threshold policy may be
optimal for the core inventory. However, such a policy need not be optimal for
the serviceable inventory. Although we could not find any example violating this
policy for the core inventory, we could not prove discrete-convexity of the optimal
cost function. Thus whether a state-dependent threshold policy is analytically

optimal for this specific inventory level remains an open question in our research.
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Numerical results also demonstrate the effect of risk-aversion over the optimal
policy. We indicate that as the degree of risk-aversion increases, the expected

total cost also increases.

We provide several heuristics that are computationally less demanding than
the optimal policy: a certainty equivalent controller (CEC), a myopic policy
(MP), a no-recovery policy (NRP), a fixed threshold policy (FTP), and a full-
collection policy (FCP). CEC is a suboptimal control scheme which seeks to find
the optimal policy by fixing the uncertain quantities at some ”typical” values.
In our problem, both demand and collection rate are fixed at their expected
values and randomness is eliminated from the problem. MP is a commonly used
approach in inventory management problems. It aims to minimize the expected
cost at each stage while ignoring the impact of future stages. NRP aims to reduce
the solution times by eliminating the collection and remanufacturing decisions.
By using NRP, we evaluate the economic viability of remanufacturing. FTP
assumes that there exist fixed (state-independent) thresholds, namely collect-up-
to level, and produce-up-to level. Last, FCP eliminates collection decision by
collecting all returned cores up to the core product inventory upper bound. FCP

performance can be used to evaluate the cost of waste minimization.

We then conduct numerical analysis to assess the performance of each heuristic.
CEC, MP, and NRP have a distinct computational advantage over FTP and FCP.
However, FCP and FTP surpass all the other heuristics with respect to objective

value.

For a future research direction, our problem can be extended by studying the
case where demand and collection rate are dependent. Second, core product
conditions can be assumed to vary instead of being in the same quality. Third,
including a finite lifetime for the product, in other words, a specific number of
times it can be remanufactured can be integrated into our problem. Assuming
that the market sojourn time is random can also be a good extension. Last,

disposal option can be introduced to the problem as another decision variable.
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Appendix A

Proofs of Analytical Results

A.1 Proof of Lemma 5.1

Suppose that ¢,, > ¢,. We want to show that Vi(Xy, Yy, Si—1, ..., Si—tn) + Cm >
‘/t(Xta}/;f - 17St717 "'7St7tA> =+ ¢Cr, Vt.

First we consider stage T' — 1:

(i) Suppose that Q%_,,R5_,,Z;_, is the optimal solution at state
(Xr—1,Yr_1,87-9,....Sr—1-4,) and Q% _,, Ry |, Z5_, is a feasible solution at
state (Xp_1,Yr—1 — 1, S7-2,...,S7—1-+,). Then it is easy to verify that the fol-

lowing inequalities hold.

Vi1 (X1, Yr—1, Sr—a, .o, S—124)) = e Q1 + & Ry + ¢ 274
+ E [h X714+ Qp_y + Ry — Droals + ho(Yroy + Zi_ — Rp_))

Dr_1,Cr 1
+p[Dr—1 — Xpo1 — Q7 — R;—1]+:|

>Qp te Ry +cdp  + E [hs X1+ Q7 + Ry
Dr_1,Cr_1

—Dr |y +he(Yror =1+ 23 — Ry ) +p[Dr1 — Xoo1 — Qo — Ry 4]y

> Vir_(Xpo1, Yro1 — 1,879, .., Sr—121y)-
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Thus,
Ve (Xr—1, Yro1, 872, ., Sro1-40) 2> Vra(Xoo1, Yro1 — 1,879, ., S1o124,)-

As we assume ¢, > ¢, we must have V1 (Xr_1,Yr_1, 572, ..., ST—1-4, ) + Cm >
Vi1 ( X1, Yroa — 1,879, o, Sroi1mes) + 64

(ii) Suppose that Q%_,,Ry_,,Z5_, is the optimal solution at state
(Xr—1,Yr_1,87-9, ..., S7—1-4,) and Q%_,, Ry, Z5_, is not a feasible solution
at state (Xr_1,Yr_1 — 1,57 9,...,97-1-4, ). Note that Q% , +1, Ry |, — 1,75,
must be a feasible solution at state (Xr_1,Yr—1 —1,S7r-9,..., S7—1-¢,). Then it

is easy to verify that the following holds.

V1 (X1, Yr—1,87—2, ..., ST—1-4,) + € = Q1 + &Ry + ¢ 274
+ E [hs[XT—l + Q71+ Ry_y — Draly + he(Yr + 254 — Rp_y)

Dr_1,Cr—y
+p[Dr—1 — Xpo1 — Q7 — Ryp_ |4 | +cm
=cn(Qr_y + 1)+ (Rpy — 1) +cZrpy

+ B [h[Xra+ Qi+ 1+ Ry — 1= Droal;
Dr_1,Cr—

+h(Yro =1+ 25 — Ry +1)
+p[Dr1 — Xro1 —Qpy — 1= Rp + 14| + o

> Vroa(Xr—1, Yror — 1,879, ., Sro124,) + 6

Next, we consider stage t < T'— 1. Assuming Vi1 (Xii1, Yit1, Sty ooy St1-4) +
Cm > Vi1 (Xig1, Yini—1, S, o, Sep1—e0 ) +6, we will show Vi(Xy, Yy, Siot, ooy Siin )+
cm > Vi( X, Y = 1,81,..., Siin) + 61

(i) Suppose that Q;, Ry, Z; is the optimal solution at state (X, Y, S;—1, ..., Si—¢,)
and Q;, R}, Z; is a feasible solution at state (X, Y; — 1,51, ..., St—¢, ). Then it
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is easy to verify that the following inequalities hold.
Vi(Xe, Yy, i1y oy Sicin) = emQf + e R 4 c 2]

+ B [hXe+Q + B = D+ ho (Y + 2 — R))

+p[Dy — Xy — QF — Ril+

+ Vi ([(Xe + Qf + By — D] Yo + Z7 — Ry, Sy, ey Seri—ta) +Cm]

>

cmQF + e Ry + ¢ 2}

+E [nslX + @ + B} = D)y + ho(Y — 1+ 2] - R})

+p[Dy — Xy — QF — Ril+

+ Vi ([(Xe +Q; + R, — D)4,V — 14+ Z7 — R}, Sy, ..., Sep11,) + cr]

Z ‘/:‘,(Xt)n - 17 Stfl) ceey StftA) + Cr

(ii) Suppose that QF, Ry, Z; is the optimal solution at state combination
(Xt Y3, St—1, ..., Sty ) and QF, Rf, Z} is not a feasible solution at state (X;,Y; —
1,S:-1,...,5¢—¢, ). Note that Qf +1, Ry —1, Z;, must be a feasible solution at state
(Xe, Yy —1,8:1,...,St—¢, ). Then it is easy to verify that the following holds.

Vi(Xe, Ys, Sty ooy Si—ty) + € =

mQf + & Rf + c.Zf +D]EC hs[X: + QF + Rf — Dy

+h(Ys + ZF — RY) +p[D; — Xt — Qf — R}y

+ Vi ([Xe +Qf + Ry — Dy, Yo + Zf —R:astw--aStJrl—tA)] + Cm

=em(Qf + ) +e(B — 1) +eZi+ B \holXe+Qf + 14+ R —1—Dily
+h(Ya =142 — R +1)+pD;— X; —Q; — 1 — Ry + 1]+

+ Vi ((Xe +Q; =1+ Ry +1 =D, Y, =1+ Z7 — Rf + 1,5, ..., Siq1-14) | + &
Z %(Xta }/;f - 1) St—17 () St—tA) + Cr

Hence we showed that Vi(X;, VY, Si1,...S8 ) + ¢ > V(XY —
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1, St—h ceny St—tA) + Cpr, Vt.

A.2 Proof of Proposition 5.2

Suppose that ¢,, > c¢.. First we consider stage 7' — 1. Pick arbitrary
decision Qp_1, Rpr_1,Z7r_1 where Rp_1 > 0. The expected cost at state

(Xr—1,Yr_1,87-9,....,r—1-1, ) under this decision is given by

CcmQr—1+ & Rp_1 + ccZp_1 + E hs[X1r—1+ Qr—1+ Rr—1 — Dp_q]+
Dr_1,Cr_1

+h,(Yr—1 + Zp—1 — Rp—1) + p[Dr—1 — Xo—1 — Q-1 — RN71]+]

Now pick another feasible decision Qr_1 — 1, Ry_1 + 1, Zr_1. The expected

cost under this decision is given by
cm(Qr—1 — 1) + ¢ (Rp—1 + 1) + ceZpy

+ E hs(Xr—1+Qr-1 — 14+ Rr_1+1— Dp_4]y
Dr_1,Cr—1

+h(Yr—1 4+ Zp-1 —Rr—y = 1) +p[Dr—y — Xp_1 —Qroa + 1 — Rp_y — 1]

As we assume ¢, > ¢,, the expected cost under decision Qr_1, Ry_1, Zp_1 is

no less than the expected cost under Qr_1 — 1, Rp_1 + 1, Zp_q:
CcmQr-1 + ¢ Ry +ccZp_y

+ E ho{X7-1 + Qr_1+ Rr—1 — Dr_4]+
Dy_1,Cr_1

+h,(Yr_1 + Zp—1 — Rp—1) + p[Dr—1 — Xo—1 — Qr—1 — R+

>

Cm(QT—l — 1) -+ CT<RT_1 + 1) + CcZT—l

+ E ho(Xr—1+Qr—1—14+ Rp_1+1—Dr_4]y
Dr_1,Cr—1

+h(Yr1+Zp1—Rp—1 — 1)+ pDr—y — Xp1 — Qr-1+1— Rp_y — 1]

Next we consider stage t < T — 1. By Lemma 5.1, we know that
Vi(Xe, Yy, Secty ooy Sectn) + 0 2> Vi(Xe, Yy — 1,504, .., Sicin ) + ¢, VE. Thus the
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expected cost under decision @, Ry, Z; is no less than the expected cost under
decision Q; — 1, Ry + 1, Z;:
Cm@t + CrRt + Cth

+ E [hs[Xt + Qi+ R: — Dyl+
D¢,Cy

+h(Yi+Zy — Ry) +p[Dy — Xy — Qr — Ry
+ Vipr ([Xe + Q¢ + Ry — Dy, Yy + Zy — Ry, St ..., Si1—t4)
> Cm(Qt — 1) + CT»(Rt + 1) + Cth

+ E [hs[Xt+Qt—1+Rt+1—Dt]+

+hT(K+Zt_Rt_1)+p[Dt_Xt_Qt+1_Rt_1]+
+Vi((Xe + Qe — 1+ R+ 1— Dy .Y+ Z; — R — 1,5, ..., Se1-14)
Z ‘/t(XhK?Stflu "'7St7tA>

A.3 Proof of Lemma 5.3

Suppose that ¢, > ¢,. We want to show that Vi(X:, Yy, Si—1, ...y Sitn) + Cm >
Vi(Xe, Y = 1,8,1,...,Si1n) + ¢, VL.

First we consider stage T' — 1:

(i) Suppose that Qh_,,Ry_,,Z5_, is the optimal solution at state

(Xr—1,Yr_1,87-9,....57—1-4,) and Qh_,, Ry |, Z5_, is a feasible solution at
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state (X7-1,Yr-1 — 1, S7r—2,..., S7—1-+,). Then it is easy to verify that the fol-
lowing inequalities hold.
VT—I(XT—la YT—I; ST—27 sy ST—l—tA> = CmQ}q + CTR§,1 + CCZ},l

+ E hs(Xp 1+ Q7+ Ry y — Droa]y +he(Yra + 25 — Ry )
T—1,T—-1

+b[Dr_1 — Xr1 — Q7 ) — R;f1]+]

>Qr +e Ry +eZp g+ E [hs[XT—l + Q71+ Ry, — D]y
Dy_1,Cr_1

4 he(Yeoy = 14 Z3y = Rpy) + 8Dy = Xooa — Qfoy — Rioal. ]

> Vi1 (X1, Y1 — 1,879, ..., Sr—1-44)-

Thus,
Vo1 (Xr—1,Yr_1, 872, .., Str—145) = Vrao(Xp—1,Yro1 — 1,87 9, ..., Sr_1-4,)-
As we assume ¢, > ¢,, we must have Vp_y (Xr_1, Y71, S7—2, ..c; ST—1-0, ) + Cm >
Vo1 (Xp_1,Yro1 — 1,879, ..., Sr—124,) + G

(ii) Suppose that Q% _,,Ry_,,Z}_, is the optimal solution at state
(Xr—1,Yr_1,87-2,....;87-1-¢,) and Q}_,, Ry_,, Z}_, is not a feasible solution
at state (Xr_1,Yr—1 —1,S7_9,..., S7—1-4,). Note that Q% _, +1, Ry | — 1,75,
must be a feasible solution at state (Xp_1,Yr—1 —1,S7_9,...,S7_1-¢,). Then it

is easy to verify that the following holds.
Vr 1(Xr 1, Yr 1,572, s ST—1-40) + Cm = Q7 + e Ry + ceZp 4

+ E [hs[XTfl + Q;’fl + R;Ll - DT71]+ + hr(YTfl + Z;‘fl - R;Ll)
Dr_1,Cr—1

+b[Dp_y — X1 — Qp_y — R}—1]+] + Cm
= Cm(Q*T—l + 1) + CT(R}—I - 1) + CCZ;“—I

+ D EC [hs[XT—l + Q1+ 1+ Ry —1—Dr]y

+he(Yroa =14 Z5_ — Ry + 1)
+ b[DT—l - XT_1 - Q;"fl —1- R;—‘,l + 1]+ + ¢y

> Vi1 ( Xy, Yro1 — 1,879, ..., Sr—124, ) + €

Next we consider stage t < T — 1. Assuming V;1(Xyy1, Yiv1, Sty ooy Str1-14) +
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Cm > Vi1 (Xig1, Yig1—1, 54, ..., Sip1—, )¢y we will show Vi( Xy, Yy, Seo1, oy Sy )+
Cm Z ‘/;(Xt, Yt — 1, St—l; P St—tA) + Cr.

(i) Suppose that Q;, Ry, Z; is the optimal solution at state (X, Y, S;—1, ..., Si—¢,)
and Q;, Ry, Z; is a feasible solution at state (X, Y; — 1,51, ..., St—¢, ). Then it
is easy to verify that the following inequalities hold.

W(Xta tha Stfb sy StftA) = Cm@;fk + C’I”R;fk + Cth*
+E [hs[Xt Y Q'+ R — D, +h(Yi+ ZF — R

D¢,Cy
+0[Dy — X; — QF — Ri]+
+ Vi ([(Xe + Q; + Ry — Do)y, Yo + Z7 — R}, Sy, .., Sevi—1n) + Cm]
>

CmQZ + CTR: + Cth*

+ B [hslXo+ @} + Ry = D)y + (Y, = 14 Z; = R))

+0[D; — X — Qf — RY]+
+ Vi ([(Xe + QF + Ry — Dy, Yy =1+ Z — R}, Sy, ..., Siq1-10) +
> Vi( Xy, Ye — 1,814, ., Siiy) + ¢

(ii) Suppose that QF, Rf, Z; is the optimal solution at state (X, Yz, St—1, ..., St—t, )
and QF, R}, Z; is not a feasible solution at state (X;,Y; — 1,5;1,..., Si—t.)-
Note that Q; + 1, Rf — 1,Z; must be a feasible solution at state (X, Y; —
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1,81,...,St—t,). Then it is easy to verify that the following holds.

‘/t(XlH 1/127 St—17 ceey St—tA> + Cm =

cmQf + & Ry + ¢ Zy + E ho| X, + Qf + R — D]+

+h (Y + Z7 — Ry) +0[Dy — Xy — Qf — Rf]+

Vit ([Xo 4+ Q; + By = D, Yk 27 = R, Sivos Sevi0a)| + m

==cn(Qf +1)+c (R — 1) +cZf + DF’@ h(Xe +Qf + 14+ Ry — 1 — D]+
+h (Y =1+ Z —Rf+1)+bD; — Xy —Qf — 1 — R + 1],

Ve ([(Xe +Qf =1+ R+ 1 - Dy, Vi =1+ Zf — R; + 1,5, ..., Sts1-1,) | + Cr
> VX, Y, = 1,8 1,....84,) +cr

Hence we showed that Vi(X;,Y:, Sic1,..,Si¢0) + e > V(X Vi —
17‘St—17"';St—tA)+CT7 Vt.

A.4 Proof of Proposition 5.4

Suppose that ¢, > c¢.. First we consider stage 7" — 1. Pick an arbi-
trary decision Qr_1, Rr_1, Z7_1 where Rpy_y > 0. The expected cost at state

(X7r-1,Yr_1,S7_9,..., S7—1-1,) under this decision is given by

cmQ@Qr—1+ &, Rp_1 4+ ccZp_1 + E hs[X1r—1+ Qr—1+ Rr—1 — Dp_q]+
Dr_1,Cr 1

+h,(Yr_1 + Zp—1 — Rp—1) + b[ Dy — Xoo1 — Qr—1 — RT—1]+]

Now, pick another feasible decision Qr_1 — 1, Rr_1 + 1, Zy_1. The expected
cost under this decision is given by

em(Qr—1— 1)+ ¢ (Rroq + 1) + ccZpy

+ E hs X1+ Qr-1 =14+ Rr_1+1— Dp_4]y

Dr_1,Cr_1

+h(Yro1+Zry —Rpoa — 1) +0[Droqy — Xpoy —Qroan + 1 — Rpoy — 14
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As we assume ¢, > ¢,, the expected cost under decision Qr_1Rr_1, Zr_1 is

no less than the expected cost under Qr_1 — 1Ry + 1, Zp_q:

cmQr_1 + e Ry + ccZpy

+ E hs(X7r—1 + Qr—1+ Rr—1 — Dr_1]+
Dr_1,Cr—1

+h(Yr—1+ Zp—1 — Rr—1) +b[Dr—1 — Xp—1 — Qr—1 — Rr_1]+
>
n(Qr—1— 1)+ e (Rpo1 + 1) + e Zpy

+ E ho|Xr—1+ Qr-1—1+Rpr_1+1—Drp_4]y
Dr_1,Cr—1

+h(Yro1 +Zp—1 — Rp—y — 1) +b0[Dpy — Xpo1 — Qr_1 +1 — Rp_y — 1]4

Next we consider stage ¢t < T — 1. By Lemma 5.3, we know that
W(Xta }/ta Stfla 00 StftA) + Cm 2 W(Xta }/t - 17 Stfla ceey StftA) + Cr, Vt. Thus the
expected cost under decision @y, Ry, Z; is no less than the expected cost under
decision Q; — 1, Ry + 1, Z;:

Cm@t + CrRt + Cth
+ E [hs[Xt + Qi+ R — D]+

Dy,Cy

+h(Yi+Z, — R) +b[D; — X; — Q, — Ry

+ Vi ((Xe + Qe + Re — Dy] ., Vs + Zy — Ry, Sty ooey St1-14)
> Cn(Qr — 1)+ e (R + 1) + ¢ Zy

+ E [hs[Xt+Qt—1+Rt+1—Dt]+

Dy,Cy
+h(Yi+ 2 — R —1)+b0Dy— Xy — Qe +1— Ry — 1]
+ VtH([Xt +Q;—1+R+1-— Dt]Jr,Y} +Z;— R — 1,5, ..., StH,tA)
> W(Xh}/;fvst*la "'7St*tA>
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A.5 Proof of Lemma 5.5

Suppose that ¢,, > ¢,. We want to show that V;(Xy, Yy, Si—1,..., Si—in) + Cm =
W(Xta}/t - ]-7St—17 ceey St—tA> + Cr, Vt

In order to show that this inequality holds for the risk-averse inven-
tory problem in the case of lost sales, we use dual representation of co-
herent risk measures (cf.  Shapiro, Dentcheva and Ruszczynski).  Let
A represent a set of probability measures. Suppose the probabilities

for the occurrences of demand and collection rate are given as below:
p; - Probability of which demand ¢ occurs, i =0,1,...,5

q; - Probability of which collection rate j occurs, j = 1,2, 3 for three different

values of 33 and 1.

Assuming that both demand and collection rate are independent, the

joint probability of which demand ¢ and collection rate j occurs becomes:
ri; Probability of which demand ¢ and collection rate j occurs, i =0,1,...,5

and j =1,2,3.

Finally let p;; be a function of r;.

Then the risk measure p(F') is represented as:

)= <, F >
pF) = max < p,

First we consider stage T — 1.

(i) Suppose that Q% _,,Rs_,,Z5_; is the optimal solution at state
(Xr-1,Yr—1,587-9,...,57-1-+,) and Qh_,, Ry_,,Z5_, is a feasible solution at
state (Xr—_1,Yr_1 — 1,S7_9,...,97_1-1,). Then it is easy to verify that the fol-

lowing inequalities hold.

Virea(Xr—1, Yro1,S7—2, ..; S1—1-45) = cmQp 1 + & Ry + e Zp_+ < ', Fp_y >
Z CmQ;—l + CTR’?_l + CCZ;:—l_‘_ < ﬁ, FT_l >
> Vi1 (Xp—1, Y1 — 1,879, ..., Sr—1-4,)-
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Thus,
Ve (Xr—1, Yro1, 872, ., Sro1-40) 2> Vra(Xoo1, Yro1 — 1,879, ., S1o124,)-

As we assume ¢, > ¢, we must have V1 (Xr_1,Yr_1, 572, ..., ST—1-4, ) + Cm >
Vi1 ( X1, Yroa — 1,879, o, Sroi1mes) + 64

(ii) Suppose that Q%_,,Ry_,,Z5_, is the optimal solution at state
(Xr—1,Yr_1,87-9, ..., S7—1-4,) and Q%_,, Ry, Z5_, is not a feasible solution
at state (Xr_1,Yr_1 — 1,57 9,...,97-1-4, ). Note that Q% , +1, Ry |, — 1,75,
must be a feasible solution at state (Xr_1,Yr—1 —1,S7r-9,..., S7—1-¢,). Then it

is easy to verify that the following holds.

Vo1 (Xop—1, Yro1, Sr—a, oo, S1—1214) = Q1 + & Ry + ccZp_+ < ', Fp_y >
= cn(Qr + 1)+ e (Rpoy — 1) + e Zp_+ <, Froy >
> Vi1 (Xpo1,Yr—1 — 1,872, ..., Sr—1-t4)-

Next we consider stage t < T — 1. Assuming Vi1 (Xit1, Yir1, Sty ooy Str1-14) +
Cm > Vg1 (Xeg1, Yarr — 1, St ooy Sey1-10 ) + ¢, we will show that
Vi( X4, Ye, Stc1y ooy Stmtp) +Cm > Vi( Xy, Yo — 1,501, o, Siin) + 61

(i) Suppose that Q;, Ry, Z; is the optimal solution at state (X, Y, Si—1, ..., Si—¢,)
and Q;, R}, Z; is a feasible solution at state (X, Y; — 1,51, ..., St—¢, ). Then it
is easy to verify that the following inequalities hold.

V;S(Xtv Y;fv Stfla teey StftA> + Cm = ch: + CTR: + cht*

5 3
+Iggj<2§2% [hs[Xt +Qi + R =il +h(Y, =1+ Zf — RY)
i=0 j=

+pli — Xy — QF — Ry
+ Vi1 ([Xe +QF + R — ], Yo — 1+ ZF — R}, Sty .., Stv1-14) + Cr

Z ‘/t(Xt?}/; - 17 St*h LERE) StftA) + ¢

(ii) Suppose that Q;, R}, Z; is the optimal solution at state (Xy, Y3, S;_1, ..., St—¢, )
and Q7, Ry, Z; is not a feasible solution at state (X;Y; — 1,5i-1,..., St—¢,)-
Note that Q; + 1, Rf — 1,Z; must be a feasible solution at state (X, Y; —
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1,81,...,St—t,). Then it is easy to verify that the following holds.

Vi( X, Yy, Sicay o, Sicin) =
emQf + & Ry + e Zi+ < 1 F} > +cp
=cn(QF+ 1)+ (R — 1) +c.Zi+ <, Fy > +c,
> Vi(Xe,Ys — 1,8 1, ..., Si_t,) + cr

Hence we showed that Vi(Xy Yy Sio1,.,Sitn) + em > Vi( Xy, Yy —
17‘St—17""St—tA)+CT7 Vt.

A.6 Proof of Proposition 5.6

Suppose that ¢, > c¢.. First we consider stage 7" — 1. Pick an arbi-
trary decision Qr_1, Rr_1, Z7_1 where Rpy_1 > 0. The expected cost at state

(X7—1,Yr_1,S7-9,57-1-+,) under this decision is given by

CmQTfl + CTRTfl + CcZTfl

5 3
+ max Z Z fij [hs[XT—l + Qr—1+ Rp—1 — i)+

i=0 j=1
+h(Yr—1 + Zp—1 — Rp—1) +pli — Xp—1 — Qr—1 — RT—1]+]
> Ve (Xp—1, Yro1, Sr—g, ooy ST—1-44)
Now, pick another feasible decision Qr_1 — 1, Rr_1 + 1, Zy_1. The expected
cost under this decision is given by

cm(Qr-—1— 1)+ c.(Rr—1 + 1) 4+ ¢.Zp1

5
+ maxz Z L [hs[XTq +Qr-1—1+Rr1+1—iy

ned T4
+he(Yr14+Zpy =Ry — 1) +pli = Xpy = Qry + 1 — Rpy — 1]

> Vo1 (Xp—1, Yro1, Sr—2, ..y Sr—1-14)
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As we assume ¢, > ¢,, the expected cost under decision Qr_1, Ry_1, Z7_1 is

no less than the expected cost under Qr_1 — 1, Rp_1 + 1, Zp_q:

cmQr-1+ & Rp_1 + ccZpa+ < p*, Fr_y >
> en(Qro1 — 1)+ ¢ (Rr_1 + 1) + ceZr 1+ < 11, Fr_y >

Next we consider stage T — 1. By Lemma 5.1, we know that
Vi(Xt, Yey Stc1y ooy St—tp) +0m > Vi(Xy, Y — 1,81, .00y St ) + ¢, VE. Thus the
expected cost under decision Q, R;, Z; is no less than the expected cost under
decision Q; — 1, Ry + 1, Z;:

emQi + o Ry + ceZy+ < i, EF >> cp(Qr — 1)+ co(Ry + 1) + ce Zy+ < T, Fy >

A.7 Proof of Lemma 5.7

Suppose that ¢,, > ¢,. We want to show that Vi(Xy, Yy, Si—1, ..., Si—tn) + Cm =
Vt<Xt7Y;t - 17St717 "'7St*tA> + Cr, Vit.

First we consider stage 7' — 1.

(i) Suppose that @k i, Ry_,,Z5_, is the optimal solution at state
(Xr—1,Yr_1,S87-9,...,Sr—1-4,) and Q% _,, Ry |, Z5_, is a feasible solution at
state (X7-1,Yr-1 — 1, S7r-2,..., S7—1-+,). Then it is easy to verify that the fol-

lowing inequalities hold.

Vo1 (Xp—1, Yro1, Sr—g, oy S1o1214) = €@y + & Ry + ceZp_+ < ', Fp_y >
> Vi1 (Xp—1, Y1 — 1,879, ., Sro1244)-

Thus
Vi1 (X1, Yro1, Sr—ay oo, Str—124,) 2> Vo (Xop—1, Yo — 1,879, o, Sr—124,)-
As we assume ¢, > ¢, Vri(Xr_1,Yr 1,572, Sr—1-44) + Cm >
Vi1 (Xp—1,Yro1 — 1,879, ..., Sr—124,) + €.
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(ii) Suppose that Q% _,, Ry _,,Z5_, is the optimal solution at state
(Xr-1,Yr_1,87-9, ..., Sr—1-4,) and Q%_,, Ry, Z5_, is not a feasible solution
at state (Xr_1,Yr_1 —1,S7_9,...,97-1-4, ). Note that Q% _, +1, Ry |, — 1,75
must be a feasible solution at state (Xr_1,Yr—1 —1,S7r-2,..., S7—1-¢,). Then it
is easy to verify that the following holds.

Ve i( X1, Y71, 87 2, s Sro1-4,) =

nQr_y + &Ry + ceZp_y+ < W' Froy > 4
=en(Qra+ 1)+ e(Bry — 1) +eZp i+ <[ Froa > 4o
> Vra(Xp—1,Yro1 — 1,879, ..., Sr—1-¢,) + ¢

Next we consider stage t < T7. Assuming Vi1 (Xei1, Yii1, Sty oory Stp1-t4) +
Cm 2> V£+1(Xt+1, Yig—1,5, ..., St+1—tA)+cra we will show Vt(Xt, Y, Si1, e St—tA)+
Cm Z ‘/t(Xta Y;t - 17 Stfla ) StftA) + Cp.

(i) Suppose that Q;, R}, Z; is the optimal solution at state (X¢, Y, Si—1, ..., St—t,)
and QF, R}, Z; is a feasible solution at state (X;,Y; —1,5:-1,..., S¢—¢, ). Then it

is easy to show that the following inequalities hold.

W(Xta Y;fa St—17 [RRS} St—tA) + Cm = Csz( + CTR: + Cth*

5 3
+%1€aj<;;mj [hs[Xt +Q; + R, —i|ly +h (Y, =1+ 2 — Ry)
+0[i — X — QF — Ri]+
F Vi ([(Xe +QF + Ry — |, Yy = 1+ Z7 — R{, Sy, ..., Sep1-10) +

2 ‘/;(XI‘JY;‘/ - 17 Stfla ceey StftA) + Cr

(ii) Suppose that QF, Rf, Z; is the optimal solution at state (X, Yz, St—1, ..., St—t, )
and QF, R;,Z; is not a feasible solution at state (X; Y; — 1,S5i-1,..., St—¢,)-
Note that Q; + 1, Rf — 1,Z; must be a feasible solution at state (X, Y; —
1,S:-1,...,5¢—¢,). Then it is easy to verify that the following holds.

Vi( X, Ye, Sty ooy Sictn) = Q) + ¢ Ry + e Z7+ < u*, Ff > +cp,
=cn(Qf + 1)+ (R — 1) +c.Zi+ <1, Fy > +c,
> Vi( X, Y — 1,81, oy Si—tn) + €
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Hence we showed that Vi(X, Yy, Sio1,y.,Sitny) + cm > Vi( Xy, Y —
17575—17'--;St—tA)+CT’7 Vt.

A.8 Proof of Proposition 5.8

Suppose that ¢,, > ¢,. First we consider stage 7" — 1. Pick arbitrary decision
combination Qr_1, Rr_1,Zr_1 where Rr_; > 0. The expected cost at state

(X7r—1,Yr_1,57_9, ..., S7—1-4, ) under this decision is given by

cmQ@Qr—1 + c&rRp_1 + ccZp—

5 3
+ ng{ Z; 2; [hij [hs [ X711+ Qr—1+ Rr_1 — i+
=0 j=

+h(Yr1+Zp 1 — Rpr1) +b[i — X1 — Qr_1 — Rr_1]+

> Vo1 (Xp—1, Yro1, Sr—2, ..., ST—1-1,)

Now, pick another feasible decision Qr_1 — 1, Rr_1 + 1, Zy_1. The expected

cost under this decision is given by

m(Qro1 — 1) + ¢ (Rr—1 + 1) + ¢ Zry
5 3
+ IESAXZ Z i [hs[XT—l +Qr-1—1+Rp1+1—iy

i=0 j=1
+h(Yr1+Zp1y—Rp1— 1)+ b[i — Xp1 —Qr—1+1— Ry — 1]4

> Vi1 (X1, Yro1, Sr—a, ooy Sr—1-44)

As we assume ¢, > ¢,, the expected cost under decision Qr_1, Rp_1, Z1r_1 is

no less than the expected cost under Qr_1 — 1, Rp_1 + 1, Zp_q:

cmQr_1 + &, Ry_y + ccZp+ < p*, Fy_y > +cp
> cp(Qr-1— 1) + co(Rr—1 + 1) + c.Zr_1+ < i, Fr_1 > +e,

Next we consider stage ¢t < T — 1. By Lemma 5.7, we know that
Vi(Xe, Ye, Secty ooy Sectn) + 0 2> Vi(Xe, Yy — 1,504, ..., Seei ) + ¢, VE. Thus the
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expected cost under decision @, Ry, Z; is no less than the expected cost under
decision Q; — 1, Ry + 1, Z;:

CmQt -+ CrRt + CCZt+ < IM*, F;k >> Cm(Qt — 1) + CT<R1§ + 1) + CCZt+ < ﬁ, Ft >
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