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ABSTRACT 

Modeling and forecasting has increasingly become very important in analysis of 

trends in financial markets, particularly in high frequency trades. It is difficult to 

predict the price return, i.e. profit or loss, due to many unknown variables including 

social and political unrest, catastrophic events, etc. Hence it can be said that these 

time series have different characteristics of movement, so called fluctuations. Wavelet 

analysis, multiple wavelet coherence analysis and especially scale by scale wavelet 

transform are powerful tools to investigate the series possessing different frequency 

levels. Multi fractal de-trended fluctuation analysis also reveals the different 

frequency levels of characteristics. It is realized that there is no generalized 

forecasting strategy available using these methods together. That is why, as part of 

this study, a new strategy will be proposed through application on real life data sets to 

detect highly correlated time series and forecast using vector autoregressive moving 

average and vector autoregressive fractionally integrated moving average methods in 

order to compare with real data and quantify the efficiency of forecasting. The thesis 

is composed of four independent sections. The first section covers a forecasting 

method using three dimensional multiple wavelet coherence and scale by scale 

wavelet transformation of precious metals. The second section covers the similar 

method with western and eastern markets but employs a four dimensional multiple 

wavelet coherence. The third section covers three dimensional multiple wavelet 

coherence and its multifractal de-trended fluctuation analysis at the specific scale. The 

third section utilizes two dimensional wavelet coherence and multifractal de-trended 

fluctuation analysis of the raw data for a specific determined scale. 
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ÖZET 

Modelleme ve ileri dönük fiyat tahminlerinde finansal marketlerde ki, özellikle 

yüksek frekanslı al/sat işlemlerinde, eğilimlerin analizinin yapılması artarak daha 

önemli hale gelmiştir. Fiyatlamaların karla mı yoksa zararla mı sonuçlanacağını 

tahmin etmek sosyal ve politik çalkantılar, felaketle sonuçlanan olaylar gibi 

bilinmeyen değişkenler yüzünden çok zordur. Bu yüzden bu ve bunun gibi zaman 

serileri dalgalanmalar dediğimiz farklı karakteristik hareketlere sahiptirler. Farklı 

frekans seviyeleri taşıyan zaman serilerini incelemek için wavelet (dalgacık) 

analizleri, çoklu wavelet uyumluluk analizleri ve özellikle ölçek-ölçek wavelet 

transformasyonu güçlü araçlardır. Çoklu fraktal meyilden arındırılmış dalgalanma 

analizleri de farklı frekans seviyelerinde karakteristik özellikleri ortaya çıkarır. Bu iki 

metodu birlikte kullanan bir genel stratejinin çalışılmadığı fark edildiği için bu 

çalışmanın bir parçası olarak yeni bir strateji önerilecektir. Bu metot gerçek veri 

setleri üzerinde yüksek korelasyonlu zaman serileri tespit edilerek uygulanacak ve 

vektörel özbağlanımlı hareketli ortalama ve vektörel özbağlanımlı fraksiyonlu 

bütünleşmiş hareketli ortalama yöntemleri ile ileriye dönük fiyat tahminleri gerçek 

veri ile karşılaştırılarak ve fiyat tahmini verimliliği ölçülerek yapılacaktır. Bu çalışma 

dört bağımsız bölümden oluşmaktadır. Birinci bölümde değerli metallerin üç boyutlu 

çoklu dalgacık korelasyonu ve ölçek-ölçek dalgacık dönüşümü belli bir ölçekte 

kullanılarak ileriye dönük fiyat tahmin yöntemi geliştirilmiştir. İkinci bölümde aynı 

metot batı ve doğu pazarları için dört boyutlu olarak geliştirilmiştir. Üçüncü kısım üç 

boyutlu dalgacık korelasyonu ve çoklu fraktal meyilden arındırılmış dalgalanma 

analizleri belirlenmiş bir ölçek için kullanılmıştır. Son bölüm iki boyutlu dalgacık 

analizini ve çoklu fraktal meyilden arındırılmış dalgalanma analizini ana veri üzerinde 

kullanarak sonuçlandırılmıştır.   



v 
 

  

ACKNOWLEDGEMENTS 

First of all, I would like to express my deepest gratitude to my supervisor Prof. Dr. 

Gazanfer Unal for sharing his endless enthusiasm for financial economics as well as 

research and for his inestimable support and guidance since the first day of my 

studies. 

 

I also would like to thank my lecturers for their encouraging comments.  

 

I would like to thank my friends, Tunc Oygur and Alper Kirik for their patience 

during our study hours, support and great friendship. 

 

I also would like to thank my wife and my family for their understanding and support 

until the last moment of this work, without whom I would be lost.  

 

  



vi 
 

  

TABLE OF CONTENTS 

 

List of Symbols         ix 

List of Abbreviations         x 

List of Tables          xi 

List of Figures          xii 

1. Co-Movement of Precious Metals and Forecasting using scale by scale 

wavelet transform ………………………………………………………………. 1 

1.1. Introduction …………………………………………………………………. 2 

1.2. Data and Methodology ……………………………………………………… 5 

1.2.1. Data …………………………………………………………………... 5 

1.2.2. Methodology …………………………………………………………. 6 

1.2.2.1. Continuous Wavelet Transform and Inverse CWT .................. 6 

1.2.2.2. Three Dimensional Multiple Wavelet Coherence …………… 8 

1.2.2.3. Vector Autoregressive Moving Average (VARMA) ………... 9 

1.3.  Wavelet Analysis ……………………………………………..…..…......... 11 

1.3.1. Wavelet Coherence ………………………………………....………. 11 

1.3.2. Three Dimensional Multiple Wavelet Coherence ………………...... 14 

1.4. Forecasting Results ………………………………………………………... 16 

1.5. Conclusion …………………………………………………………………. 21 

Appendix A. Forecasting Performance of Each Data for 3 Different Time  

Intervals …………………………………………………………….. 23 

 

2. Dynamic Correlation of Eastern and Western Markets and Forecasting: 

Scale by Scale Wavelet Based Approach …………………………………… 26 

2.1. Introduction …………………………………….………………………… 27 

2.2. Empirical Study ……..…….……………………………………………… 30 

2.2.1. Empirical Data ……...……………………………………………... 30 

2.2.2. Methodology ………………………………………………………. 32 

2.2.2.1. A Summary For Continuous Wavelet Transform .………… 32 

2.2.2.2. Four Dimensional Multiple Wavelet Coherence ….………. 33 

2.2.2.3. Vector Autoregressive Moving Average in 4D (VARMA) .. 35 

2.3.  Multiple Wavelet Coherence Analysis in 4D ...………………………….. 37 



vii 
 

  

2.4. Forecasting Trials, Results and Discussion …………………..…………… 41 

2.5. Conclusion …………………………………………………..…………….. 46 

Appendix A. Inversed Data of Markets and Corresponding Forecasts for the 

Next 30 Days …………………………………………..………….…… 48 

 

3. Modeling and Forecasting Multifractal Wavelet Scale: Western Market Vs 

Eastern Market ……………………………………………………….……….. 54 

3.1.  Introduction and Literature Review …………...……………….…………. 55 

3.2. Data …………………………………………………..………….………… 58 

3.3. Methodology ………………………..………………………….………….. 60 

3.3.1. Continuous Wavelet Transform (CWT) and Multiple Wavelet 

Coherence (MWC) …………………………………………………… 60 

3.3.2. Multifractal De-Trended Fluctuation Analysis (MF-DFA) ………... 61 

3.3.3. Vector Autoregressive Fractionally Integrated Moving Average 

(VARFIMA) ………………………………………………………….. 63 

3.4.  Empirical Analysis ………………………………….…………………….. 65 

3.5.  Forecasting Results ……………………………………………………….. 72 

3.6.  Discussion and Conclusion ………...……………………………………... 75 

Appendix A. Multiple Wavelet Coherence of Real Data and Inversed Data of 

Each Market with Western Markets ………………………………... 77 

Appendix B. Inversed Data and Corresponding Local Hurst Exponents …. 79 

Appendix C. Forecasting Results ………………………………………….. 82 

 

4. Modeling and Forecasting Time Series of Precious Metals: A New Approach 

to Multifractal Data ……………………………………………...…………… 90 

4.1.  Introduction ……………………………………………………………..… 91 

4.2.  Empirical Framework …..……………………………………………....…. 94 

4.2.1. Data …………………………………………………………………. 94 

4.2.2. Methodology ………………………………………………………... 97 

4.2.2.1. Summary for Continuous Wavelet Transform and Multiple 

Wavelet Coherence ………..…………………………………….. 95 

4.2.2.2. Multifractal De-Trended Fluctuation Analysis (MF-DFA) … 98 

4.2.2.3. Vector Autoregressive Fractionally Integrated Moving Average 

(VARFIMA) …………..……………………………………….. 100 



viii 
 

  

4.3.  Wavelet Coherence and Local Hurst Exponents ………………………… 102 

4.4.  Forecasting Results and Analysis ………………...………………...……. 109 

4.5.  Concluding Remarks …….…………...………………………………….. 112 

Appendix A. Forecasting Results ………………………………………… 115 

Appendix B. Hurst Exponents for Real and Scale 256 Data ……………... 123 

Appendix C. Local Hurst Exponents …………………………...………... 125 

References …………………………………………………………………...…… 126 

 

 

 

  



ix 
 

  

LIST OF SYMBOLS 

C  Complex coherence 

Σ    Covariance matrix 

In   Identity matrix with n by n dimensions 

L   Lag operator 

Hloc  Local Hurst exponent 

M   Matrix of all smoothed cross-wavelet spectra 

𝜓   Mother wavelet transforming function 

𝑝𝑣
𝑛(𝑖)    nth order fitting polynomial in the segment order, v 

𝐹𝑞(𝑠)  qth order fluctuation function 

𝑆𝑖𝑗    Smoothed cross-wavelet spectra 

𝑅1(𝑞)
2    Square multiple wavelet coherency 

𝑔(𝑧)   Transfer function 

ε(t)   White noise 

 

 

  



x 
 

  

  LIST OF ABBREVIATIONS 

 

AR   Autoregressive 

ARFIMA  Autoregressive Fractionally Integrated Moving Average 

ARIMA  Autoregressive Integrated Moving Average 

ARMA  Autoregressive Moving Average 

CWT   Continuous Wavelet Transform 

DWT   Discrete Wavelet Transform 

H   Hurst Exponent 

MA   Movıng Average 

MLE   Maximum Likelihood Estimation 

MF-DFA  Multifractal De-Trended Fluctuation Analysis  

VARMA  Vector Autoregressive Moving Average 

VARFIMA Vector Autoregressive Fractionally Integrated Moving Average 

 

  



xi 
 

  

LIST OF TABLES 

1.1 Statistics of Silver, Gold and Platinum ……………………………………….. 5 

1.2 Correlation of Silver, Gold and Platinum …………………………………….. 6 

1.3 Correlation of metals within the extracted time series ………………………. 18 

 

2.1 Statistics of the markets ……………………………………………………… 31 

2.2 Correlation of the markets……………………………………………………. 32 

2.3 Correlation of inversed daily data of all markets ……………………………. 41 

 

3.1 Correlation values of each market ……………………………………........... 59 

3.2 Correlation Values of Extracted Indexes (Octave 8) ………………………... 68 

3.3 Hurst Exponent of Real and Inversed (Scale 256) Time Series …………….. 69 

3.4 Minimum and Maximum Local Hurst Exponents at Scale 256 …………….. 70 

3.5 Dates used to forecast market prices ………………………………………... 72 

 

4.1 Daily Data of Precious Metals from July 2011 to November 2016 ………… 95 

4.2 Correlation of gold, silver and platinum ……………………………………. 96 

4.3 Hurst Exponent of Real and Fluctuation function at scale 256 …………..... 105 

4.4 Minimum and Maximum Values of Local Hurst exponents at scale 256 …. 106 

4.5 Dates and couples used to forecast precious metals ……………………….. 110 

 

  



xii 
 

  

LIST OF FIGURES 

1.1 Prices of Gold, Silver and Platinum from July 2011 to June 2015 ……...……… 5 

1.2 Wavelet coherence of Silver and Gold …………………………………...…..... 12 

1.3 Wavelet coherence of platinum and silver ………………………………...…... 13 

1.4 Wavelet coherence of platinum and gold …………………………………........ 13 

1.5 Multiple wavelet coherence of silver with gold and platinum ……………….... 15 

1.6 Multiple wavelet coherence of gold with silver and platinum ………………… 15 

1.7 Multiple wavelet coherence of platinum with gold and silver ………………… 15 

1.8 Inversed data of time series 1 starting from October 20th, 2012 for 222 days … 17 

1.9 Inversed data of time series 2 starting from August 3rd, 2012 for 601 days …... 18 

1.10 Inversed data of time series 3 starting from March 23rd, 2013 for 360 days …. 18 

1.11 Forecasting performance of gold data from 3 different time series. ARMA 

forecast, VARMA forecast, ARMA upper/lower bands, VARMA upper/lower 

bands, real gold data is shown for the next 30 days …………………………… 20 

1.12 Forecasting performance of silver data from 3 different time series. ARMA 

forecast, VARMA forecast, ARMA upper/lower bands, VARMA upper/lower 

bands, real silver data is shown for the next 30 days ………………………….. 23 

1.13 Forecasting performance of platinum data from 3 different time series. ARMA 

forecast, VARMA forecast, ARMA upper/lower Bands, VARMA upper/lower 

bands, real platinum data is shown for the next 30 days ……………………… 24 

 

2.1 Western market indexes ………………………………………………………. 30 

2.2 Eastern market indexes ……………………………………………………..… 30 

2.3 Multiple wavelet coherence of Nikkei with SP500, FTSE and DAX ………… 38 

2.4 Multiple wavelet coherence of Taiex with SP500, FTSE and DAX ………….. 39 



xiii 
 

  

2.5 Multiple wavelet coherence of Kospi with SP500, FTSE and DAX …………. 39 

2.6 Inversed Daily Data of All Markets at Octave Value of 8 ……………………. 40 

2.7 Inversed data of markets starting from September 29th, 2012 for 207 days and 

forecast of Nikkei for the next 30 days ………………………………………... 44 

2.8 Inversed data of markets starting from March 22nd, 2012 for 331 days and 

forecast of Nikkei for the next 30 days ………………………………………... 45 

2.9 Inversed data of markets starting from June 12th, 2010 for 297 days and forecast 

of Nikkei for the next 30 days …………………………………………………. 46 

2.10 Inversed data of markets starting from March 22nd, 2012 for 316 days and 

forecast of Taiex for the next 30 days …………………………………………. 48 

2.11 Inversed data of markets starting from May 13th, 2010 for 333 days and forecast 

of Taiex for the next 30 days ………………………………………………….. 49 

2.12 Inversed data of markets starting from September 20th, 2010 for 413 days and 

forecast of Taiex for the next 30 days …………………………………………. 50 

2.13 Inversed data of markets starting from November 9th, 2010 for 289 days and 

forecast of Kospi for the next 30 days ………………………………………..... 51 

2.14 Inversed data of markets starting from June 21st, 2012 for 318 days and forecast 

of Kospi for the next 30 days ………………………………………………….. 52 

2.15 Inversed data of markets starting from July 7th, 2011 for 295 days and forecast of 

Kospi for the next 30 days ……………………………………………………... 53 

  

3.1 Real values of each stock market ……………………………………………… 59 

3.2 Multiple wavelet coherence of Nikkei with SP500, FTSE and DAX …………. 66 

3.3 Extracted values of indexes (scale 256) ……………………………………...... 67 



xiv 
 

  

3.4 Wavelet coherence of inversed time series between Nikkei and each western 

market at Scale 256 ……………………………………………………………. 68 

3.5 Nikkei Inverse Data (A-top) and Corresponding Local Hurst Exponents at Scale 

256 (B-bottom) ……………………………………………………………........ 70 

3.6 The time series used to calculate local Hurst Exponents at scale 256 ………… 71 

3.7 Nikkei with FTSE Forecasting Results for the next 30-days data taken from 

December 24, 2010 for 706 days ………………………………………………. 73 

3.8 Taiex with DAX Forecasting Results for the next 30-days data taken from 

November 14, 2009 for 1001 days …………………………………………...... 74 

3.9 Kospi with SP500 Forecasting Results for the next 30-days data taken from 

November 19, 2011 for 478 days ……………………………………………… 74 

3.10 Multiple wavelet coherence of Taiex with SP500, FTSE and DAX ………….. 77 

3.11 Wavelet coherence of inversed time series between Taiex and each western 

markets at Scale 256 …………………………………………………………… 77 

3.12 Multiple wavelet coherence of Kospi with SP500, FTSE and DAX ………… 78 

3.13 Wavelet coherence of inversed time series between Kospi and each western 

markets at Scale 256 ………………………………………………………….. 78 

3.14 Taiex Inverse Data and Corresponding Local Hurst Exponents at Scale 256  . 79 

3.15 Kospi Inverse Data and Corresponding Local Hurst Exponents at Scale 256 .. 79 

3.16 SP500 Inverse Data and Corresponding Local Hurst Exponents at Scale 256 . 80 

3.17 FTSE Inverse Data and Corresponding Local Hurst Exponents at Scale 256 .. 80 

3.18 DAX Inverse Data and Corresponding Local Hurst Exponents at Scale 256 .. 81 

3.19 Nikkei with SP500 Forecasting Results for the next 30-days data taken from 

December 19, 2009 for 1275 days ………………..…………………………... 82 



xv 
 

  

3.20 Nikkei with SP500 Forecasting Results for the next 30-days data taken from 

December 24, 2010 for 215 days ………………………………………….…… 82 

3.21 Nikkei with FTSE Forecasting Results for the next 30-days data taken from 

December 24, 2010 for 199 days ………………………………………………. 83 

3.22 Nikkei with DAX Forecasting Results for the next 30-days data taken from 

November 19, 2009 for 999 days ……………………………………………… 83 

3.23 Nikkei with DAX Forecasting Results for the next 30-days data taken from 

November 19, 2009 for 1199 days …………………………………………….. 84 

3.24 Taiex with SP500 Forecasting Results for the next 30-days data taken from 

March 29, 2010 for 385 days ………………………………………………..… 84 

3.25 Taiex with SP500 Forecasting Results for the next 30-days data taken from 

December 19, 2009 for 803 days ……………………………………………… 85 

3.26 Taiex with FTSE Forecasting Results for the next 30-days data taken from 

March 29, 2010 for 372 days ………………………………………………….. 85 

3.27 Taiex with FTSE Forecasting Results for the next 30-days data taken from 

December 19, 2009 for 772 days ……………………………………………… 86 

3.28 Taiex with DAX Forecasting Results for the next 30-days data taken from 

November 14, 2009 for 501 days ……………………………………………… 86 

3.29 Kospi with SP500 Forecasting Results for the next 30-days data taken from 

Octoberr 15, 2010 for 776 days ……………………………………………….. 87 

3.30 Kospi with FTSE Forecasting Results for the next 30-days data taken from July 

07, 2010 for 576 days …………………………………………………………. 87 

3.31 Kospi with FTSE Forecasting Results for the next 30-days data taken from 

March 29, 2010 for 776 days ………………………………………………….. 88 



xvi 
 

  

3.32 Kospi with DAX Forecasting Results for the next 30-days data taken from 

December 19, 2009 for 1176 days …………………………………………… 88 

3.33 Kospi with DAX Forecasting Results for the next 30-days data taken from 

December 19, 2009 for 875 days …………………………………………….. 89 

  

4.1 The daily prices of gold, silver and platinum starting from July, 2011 to 

November, 2016 ……………………………………………………………… 95 

4.2 Multiple wavelet coherence of gold with silver and platinum ……………… 103 

4.3 Multiple wavelet coherence of silver with gold and platinum ……………… 104 

4.4 Multiple wavelet coherence of platinum with gold and silver ……………… 105 

4.5 Gold Local Hurst Exponents at Scale 256-day period ……………………… 107 

4.6 Silver local Hurst exponents at Scale 256-day period ……………………… 107 

4.7 Platinum local Hurst exponents at scale 256-day period …………………… 108 

4.8 Fraction function at scale 256 ………………………………………………. 109 

4.9 Gold and platinum data at Scale 256 from February25th, 2011 to January 11th, 

2012 ………………………………………………………………………… 111 

4.10 Forecasting for gold with platinum starting from January 11, 2012 for the next 30 

days …………………………………………………………………………. 111 

4.11 Forecasting for platinum with gold starting from January 11, 2012 for the next 30 

days …………………………………………………………………………. 112 

4.12 Gold and platinum data at Scale 256 from December 19th, 2011 to April 18th, 

2012 ……………………………………………………………………….... 115 

4.13 Forecasting for gold with platinum starting from April 18th, 2012 for the next 30 

days ……………………………………………………………………….... 115 



xvii 
 

  

4.14 Forecasting for platinum with gold starting from April 18th, 2012 for the next 30 

days ……………………………………………………………………….… 116 

4.15 Gold and silver data at Scale 256 from 25th February 2011 to  

January 6th, 2012 …………………………………………………………… 116 

4.16 Forecasting for gold with silver starting from January 6th, 2012 for the next 30 

days ………………………………………………………………………… 117 

4.17 Forecasting for silver with gold starting from January 6th, 2012 for the next 30 

days ………………………………………………………………………… 117 

4.18 Gold and silver data at Scale 256 from March 6th, 2010 to May 18th, 2012   118 

4.19 Forecasting for gold with silver starting from May 18th, 2012  

for the next 30 days ……………………………………………………….... 118 

4.20 Forecasting for silver with gold starting from May 18th, 2012  

for the next 30 days ………………………………………………………... 119 

4.21 Silver and platinum data at Scale 256 from April 19th, 2010 to  

July 21st, 2012 ……………………………………………………………... 119 

4.22 Forecasting for silver with platinum starting from July 21st, 2012 for the next 30 

days ………………………………………………………………………... 120 

4.23 Forecasting for platinum with silver starting from July 21st, 2012 for the next 30 

days ………………………………………………………………………... 120 

4.24 Silver and platinum data at Scale 256 from February 25th, 2011 to January 11th, 

2012 ……………………………………………………………………….. 121 

4.25 Forecasting for silver with platinum starting from January 11th, 2012 for the next 

30 days …………………………………………………………………….. 121 

4.26 Forecasting for platinum with silver starting from January 11th, 2012 for the next 

30 days …………………………………………………………………….. 122 



xviii 
 

  

4.27 Log-log plot of platinum real data (H=1.4714) …………………………… 123 

4.28 Log-log plot of platinum data at scale 256 (H=1.3237) …………………... 123 

4.29 Log-log plot of silver real data (H=1.4927) ………………………………. 123 

4.30 Log-log plot of silver data at scale 256 (H=1.4515) ……………………… 124 

4.31 Silver local Hurst exponents at Scale 256-day period ……………………. 125 

4.32 Platinum local Hurst exponents at scale 256-day period …………………. 125 

  

 

  



1 
 

  

CHAPTER 1 

CO-MOVEMENT OF PREVIOUS METALS AND FORECASTING USING 

SCALE BY SCALE WAVELET TRANSFORM 

 

Summary 

 

In this chapter, a new approach is proposed to improve forecasting performances. We 

analyze the co-movement of precious metals (daily data of gold, silver and platinum 

starting from July, 2011) using multiple wavelet coherence and determine the 

movement dependencies on frequency–time space. The data is split into frequencies 

using scale by scale continuous wavelet transform. All three time-series retaining the 

same frequency scale are (i) selected, (ii) inversed and (iii) forecasted using 

multivariate model, Vector Auto Regressive Moving Average (VARMA). We 

conclude that the efficiency of VARMA forecasting is substantially increased because 

of same frequency highly correlated time series obtained by using scale by scale 

wavelet transform. Moreover, the direction of price shift (increasing/decreasing trend) 

is prospected to an adequately distinguishable degree.  
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1.1. Introduction 

Economic time series are composed of different agents operating with different 

objectives over different terms. Therefore, it progresses on various frequencies. 

Investigating financial time series is one of the primary concerns of financial 

engineering. Nonetheless, all of the engineering, investigation and examination in 

financial world eventually boil down to one common goal, predicting the price on the 

next day. That is why scrutinizing time series has always been of high importance and 

numerous methods are developed and available in the literature such as Doan, T., 

Littermann, R. and Sims, C. (1984), Litterman, R. B. (1985), Stock, J. H. and Watson, 

M. W. (1999),  Stock, J. H. and Watson, M. W. (2002), Lutkepohl, H (2004), De Mol, 

C., Giannone, D. and Reichlin, L. (2006), Athanasopoulos, G. and Vahid, F. (2008), 

Carriero, A., Kapetanios, G. and Marcellino, M. (2008), Kahraman and Unal (2012), 

Barunik, J, E Kocenda and L Vacha (2013), Simionescu, M (2013), Kahraman and 

Unal (2016).  

Fourier transform is one of the methods to understand the time series with 

different frequencies. Unfortunately, since Fourier Transform losses the time 

information, it cannot be used with non-stationary financial data to analyze time and 

frequency of the financial time series simultaneously. Hence, other methods have 

been developed. Using wavelet analysis has become a common tool to analyze the 

time series. Wavelet transforms expand time series into time-frequency space and can 

therefore find localized intermittent periodicities, eliminating the weaknesses in 

Fourier transform (Gulerce and Unal, 2015). This method has started to find place in 

economic and financial applications in recent years.  

Torrence and Compo (1998), and Grinsted et al. (2004) provided a software 

package for cross-wavelet transform and wavelet coherence analysis in order to 
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effectively and efficiently examine common and coherent signals in multiple time 

series. Partial wavelet coherence and multiple wavelet coherence have wide 

applications in studies of geophysical systems and marine studies. We will utilize the 

similar methods to analyze the coherence of commodity price of precious metals; 

gold, silver and platinum. According to Ng, E. K., & Chan, J. C. (2012), partial 

wavelet coherence helps identify the resulting wavelet transform coherence (WTC) 

between two time-series after eliminating the influence of their common dependence. 

Multiple wavelet coherence will show the effect of two factors together on the 

commodity itself which is the fundamental difference from multiple correlations.  

The wavelet transform will be utilized to extract the specific time-frequency 

data out of highly-correlated period, which is determined by the outcome of the 

multiple wavelet coherence analysis. As Yilmaz and Unal (2016) stated, analysis of 

wavelet coherence allows observing many exciting interrelationships in time–

frequency space in a much detailed way than other methods. Once this relation is well 

discovered, it may be used to model the data for forecasting purposes and it is the 

assumption that this will enhance the performance of modeling as well as forecasting 

to a new level of accuracy.  

Forecasting time series of financial assets is a trait of financial engineering and 

very important for many investors and speculators all around the world. One 

important asset in the world market is gold as well as other precious metals; silver and 

platinum. These precious metals have very high heteroskedastic, nonlinear as well as 

unit root behavior just like any other financial assets. These characteristics make it 

very challenging to forecast the future of these metal prices. 

As a result of different efforts to improve the forecasting performance, 

multivariate models have been offered instead of univariate models. The vector 
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ARMA model is employed for forecasting the correlated (interrelated) time series and 

for investigating the dynamic impact of random disturbances on the system of 

variables. The VARMA is a dynamic system of equations that examine the impacts of 

fluctuations (shocks) or correlations (interactions) between financial variables. 

 VARMA is proposed to improve the forecasting results with higher precision 

by using more information through a combination of multiple highly correlated data. 

Multivariate ARMA models were first introduced by Quenouille in 1957 and then 

improved later on after the successful application of univariate models by Box-

Jenkins in 1970s. Later on it has been improved by Dunsmuir & Hannan (1976), 

Hannan (1981), and Akaike (1988). One of the main problems with multivariate 

ARMA models is that they perform better with small numbers of variables. As the 

number of the variables increase, it creates a problem called dimension effect. Penalty 

function and factor models are two methods suggested overcoming the problem where 

VARMA models do possess these properties. It is shown that VARMA models do 

give better fit results because of having low mean squared errors compared to 

univariate models hence resulting in good forecasting performances. 

Section 2 contains the data and methodology used in this chapter. Basics of 

continuous wavelet transform, multiple wavelet coherence and VARMA are 

introduced as a summary review. In section 3, we analyze the commodity prices of 

precious metals; gold, silver and platinum, using wavelet transform as well as 

multiple wavelet coherence and understand their movement dependencies on time-

frequency space. After their co-movement period is determined for different time 

intervals, the data is split into pieces of corresponding frequency and time domain by 

using continuous wavelet transform. The same frequency domain of each series is 

extracted and inversed. Then, we use VARMA model to forecast.  In section 4, the 
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forecast results are analyzed and compared with respect to the univariate ARMA 

model. In section 5, the chapter is concluded with the discussion of results. In 

Appendix, the forecasting results for silver and platinum are presented. 

1.2. Data & Methodology 

1.2.1. Data 

The commodity prices of silver, gold and platinum are taken from Yahoo 

Finances! starting from July 2011 to June 2015 which is composed of approximately 

1400 daily data. The price values are plotted in figure 1.  

  

Figure 1.1. Prices of Gold, Silver and Platinum from July 2011 to June 2015 

The statistical analysis of the data in Table 1 shows that platinum is the one 

with the lowest standard deviation throughout the time period. Silver prices display 

high fluctuation with respect to other two metals with a considered value of volatility.  

The corresponding correlation data of the metals can be found below in Table 2. Gold 

displays higher correlation with silver with respect to its relationship with platinum. 

However, the correlation between silver and platinum is the highest at 85%.  

Table 1.1 

Statistics of silver, gold and platinum 

Silver

Platinum

Gold

2012 2013 2014 2015
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  Mean Median Std. Dev. Skewness Kurtosis 

Silver 2272.43 1992.74 723.334 0.7720 2.4518 

Gold 2478.67 2384.68 482.096 0.5140 2.4090 

Platinum 1327.16 1410.00 260.958 -0.2204 1.9512 

 

Table 1.2.  

Correlation of silver, gold and platinum 

 Silver Gold Platinum 

Silver 1   

Gold 0.6409 1  

Platinum 0.8514 0.3979 1 

In light of this section, we will reveal the relationship between these metals 

and find out the leading price and the nature of their co-movement through analysis of 

wavelet coherence. Then we will utilize wavelet transform to see if a certain specific 

range of frequency in the data within the high correlation period would help enhance 

the performance of forecasting. 

1.2.2. Methodology  

1.2.2.1. Continuous wavelet transform and inverse CWT. 

An excellent introduction of wavelet and application into the economics and 

finance has been provided by Gencay (2002). Many other applications afterwards may 

be found in Fay (2009), Aguiar-Conraria and Soares (2011), Gellegati (2011), 

Barunik, Kocenda and Vacha (2013) and Aguiar-Conraria and Soares (2014). The 

wavelet transform uses a localized function with finite support of decomposition – a 

wavelet. Discrete and continuous wavelet transforms are two fundamental transforms 

out of many different transform methods. As stated by Grinsted, A., Moore, J. C., & 

Jevrejeva, S. (2004), continuous wavelet transform (CWT) is mainly preferred for 
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feature extraction purposes.  Hence, we use CWT to extract the frequency-time 

information.  Given a time series, continuous wavelet transform is defined as (1) 

𝐶𝑊𝑇𝑥
𝜓(𝑠, 𝜏) = ⟨𝑋,⇥ 𝜓(𝑠, 𝜏)⟩ =

1

√𝑠
∫ 𝑋(𝑡)

+∞

−∞
𝜓∗ (

𝑡−𝜏

𝑠
)𝑑 (1) 

Where "𝜏" and “s” are the translation and the scale parameters, respectively. 

"𝜓" is the mother wavelet and it is the transforming function. The term translation 

corresponds with the time information in the transform domain and scale parameter is 

the frequency of the information. The scale parameter is similar to the scale used in 

maps. High scales means a global view whereas low scales mean a more specific and 

detailed view. Therefore, wavelet transform provides information on time and 

frequency domain by mapping the time series into 𝜏 and s parameters.  But one must 

note that scale and frequency have inverse relationship. As the scale decreases 

(increases), the frequency increases (decreases). As a result, the periodical span of the 

time information decreases (increases) as well.  

Since the wavelet transform is decomposing a time series into different energy 

levels, the inverse of the transform must satisfy the law of conservation of energy. 

Hence it must satisfy equation (2), 

∫ |𝑥(𝑡)|2
+∞

−∞
𝑑𝑡 =

1

𝐶𝜓 
∫ ∫ |𝑊𝑥(𝜏, 𝑠)|2

𝑑𝜏𝑑𝑠

𝑠2

+∞

−∞

+∞

−∞
  (2) 

In turn, it makes it possible to reconstruct the time series data by the formula 

(3), 

𝑥(𝑡) =
2

𝐶𝜓 
∫ [∫ 𝑊𝑥(𝜏, 𝑠)𝜓 𝜏,𝑠(𝑡)𝑑𝜏

+∞

−∞
]

𝑑𝑠

𝑠2

+∞

−∞
  (3) 

In the continuous wavelet transform, the scaling parameter s is given by equal-

tempered scale calculated by the equality in (4), 

𝑠𝑜𝑐𝑡,𝑣𝑜𝑐 = 𝛼2𝑜𝑐𝑡−12𝑣𝑜𝑐/𝑛𝑣𝑜𝑐    (4) 
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Where “oct” is the octave number, “voc” the voice number, and “α” the 

smallest wavelet scale. The octaves are used as a conversion factor of scales, and 

consequently the frequencies. Hence, from the figures, we may point out the same 

frequency interval for each time series and inverse the data with the same frequency 

value as desired. 

1.2.2.2. Three dimensional multiple wavelet coherence. 

Multiple wavelet coherence is an extension of bivariate case of wavelet 

coherence. When calculation of coherency and phase differences are concerned, the 

correlation of the interesting variable X1 and X2 with other variables is taken into 

account. The squared multiple wavelet coherency between X1 and all other series X2, 

…, Xp is defined as (5) 

𝑅1(23…𝑝)
2 = 𝑅1(𝑞)

2 = 1 −
𝑀𝑑

𝑆11𝑀11
𝑑     (5) 

Where M is the pxp matrix of all smoothed cross-wavelet spectra (denoted by 

𝑆𝑖𝑗)  

𝑆𝑖𝑗 = 𝑆(𝑊𝑋𝑖𝑋𝑗
) (𝑆𝑖𝑗 = 𝑆𝑖𝑗

∗ ,  𝑆𝑖𝑗 = 𝑆 (|𝑊𝑋𝑖
|
2
) ) 

𝑀 =

[
 
 
 
𝑆11 𝑆12

𝑆21 𝑆22
⋯

𝑆1𝑝

𝑆2𝑝

⋮ ⋱ ⋮
𝑆𝑝1 𝑆𝑝2 ⋯ 𝑆𝑝𝑝]

 
 
 

    (6) 

Complex coherence denoted by C is the pxp matrix of all smoothed complex 

wavelet coherencies as shown in equation (7), 

𝜌𝑖𝑗 =
𝑆(𝑊𝑖𝑗)

√𝑆(|𝑊𝑖|2)𝑆 (|𝑊𝑗|
2
)

 𝑎𝑛𝑑 𝜌𝑖𝑗 = 𝜌𝑗𝑖
∗  

𝐶 = [

1 𝜌12

𝜌21 1
⋯

𝜌1𝑝

𝜌2𝑝

⋮ ⋱ ⋮
𝜌𝑝1 𝜌𝑝2 ⋯ 1

]    (7) 
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𝑅1(𝑞)
2 = 1 −

𝐶𝑑

𝐶11
𝑑  

In our case of three time series, the cofactor of the complex coherence matrix 

is equal to (8) and the squared multiple wavelet coherencies become (9) 

𝐶11
𝑑 = |

1 𝜌23

𝜌32 1
| = 1 − 𝜌23𝜌32 = 1 − 𝑅23

2  

𝐶𝑑 = 1 − 𝑅23
2 − 𝑅12

2 − 𝑅13
2 + 𝜌12𝜌23𝜌31 + 𝜌13𝜌21𝜌32  

𝐶𝑑 = 1 − 𝑅23
2 − 𝑅12

2 − 𝑅13
2 + 2𝑅(𝜌12𝜌23𝜌31) 

𝐶𝑑  = 1 − 𝑅23
2 − 𝑅12

2 − 𝑅13
2 + 2𝑅(𝜌12𝜌23𝜌13

∗ )   (8) 

𝑅1(23)
2 = 1 −

1 − 𝑅23
2 − 𝑅12

2 − 𝑅13
2 + 2𝑅(𝜌12𝜌23𝜌13

∗ )

1 − 𝑅23
2  

𝑅1(23)
2 =

𝑅12
2 +𝑅13

2 −2𝑅(𝜌12𝜌23𝜌13
∗ )

1−𝑅23
2     (9) 

To calculate the partial wavelet coherence, the equations become 

𝜌123 = −
𝐶21

𝑑

√𝐶11
𝑑 𝐶22

𝑑

 

𝐶11
𝑑 = 1 − 𝑅23

2 , 𝐶22
𝑑 = 1 − 𝑅12

2  

𝐶21
𝑑 = (−1)1+2 |

𝜌12 𝜌13

𝜌32 1 | = −(𝜌12 − 𝜌13𝜌32) = −(𝜌12 − 𝜌13𝜌23
∗ ) 

Hence,  

𝜌123 =
𝜌12 − 𝜌23𝜌13

∗

√(1 − 𝑅13
2 )(1 − 𝑅23

2 )
 

1.2.2.3. Vector autoregressive moving average (VARMA) 

The ARMA (p, q) process is described by the difference equation (10) 

(𝑎0 − 𝑎1𝐿(𝑡,−1) − ⋯− 𝑎𝑝𝐿(𝑡,−𝑝))𝑦(𝑡) = 𝑐 + (𝑏0 − 𝑏1𝐿(𝑡,−1) − ⋯−

𝑏𝑝𝐿(𝑡,−𝑝))𝜀(𝑡) (10) 
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Where y(t) is the sequence of n elements, ε(t) is white noise, L the shift operator and 

the constant c is taken to be zero if not specified. An n dimensional vector ARMA 

process should have real coefficient matrices ai and bj of dimensions nxn, real vector c 

of length n, a disturbance vector of n elements determined by serially uncorrelated 

white noise processes. Hence, the covariance matrix Σ should be symmetric positive 

definite of dimensions nxn. The vector ARMA process with zero constant has transfer 

function g(z-1),   

𝑔(𝑧) = (𝑎0 − 𝑎1𝑧 − ⋯− 𝑎𝑝𝑧𝑝)
−1

. (𝑏0 − 𝑏1𝑧 − ⋯− 𝑏𝑞𝑧𝑞) 

Where a0 and b0 are the nxn identity matrices. The equation (10) can now be 

written in summary notation as  

𝐴(𝐿)𝑦(𝑡) = 𝑀(𝐿)𝜀(𝑡)     (11) 

Where L is the lag operator and A(z)=A0+A1z+ … +Apz
p and M(z)=M0+M1z+ 

… +Mqz
q are matrix values polynomials. A multivariate process of this nature is 

commonly described as a VARMA process. The equation (11) can be rewritten as 

(12) 

𝑦(𝑡) = 𝑀(𝐿){𝐴−1(𝐿)𝜀(𝑡)} = 𝑀(𝐿)𝜉(𝑡)  (12) 

This suggest a two-step procedure begins with the calculation of (13) and (14), 

𝜉(𝑡) = 𝜀(𝑡) − {𝐴1𝜉𝑡−1 + ⋯+ 𝐴𝑟𝜉𝑟−1}   (13) 

𝑦(𝑡) = 𝑀0𝜉𝑡 + 𝑀1𝜉𝑡−1 + ⋯+ 𝑀𝑟𝜉𝑡−𝑟+1  (14) 

Where r is equal to p or q whichever is the highest, if p is not equal to q. Then 

either Ai=0 for i=p+1,…,q or Mi=0 for i=q+1,…p. 

Since,  

𝜉𝑟(𝑡) = 𝜉(𝑡−𝑟+1)   

𝑎𝑛𝑑 𝜉𝑟(𝑡) = 𝜉𝑟−1(𝑡 − 1) 

, 𝑡ℎ𝑒𝑛 𝜉(𝑡−𝑟+1) = 𝜉𝑟−1(𝑡 − 1)  (15) 
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Which turn equation (14) into (16), 

𝑦(𝑡) = 𝑀0𝜉1(𝑡) + 𝑀1𝜉2(𝑡) + ⋯+ 𝑀𝑟−1𝜉𝑟(𝑡)    (16) 

It is apparent that even low order of processes, such a vector system would 

produce a large dimension of matrices in the calculation. However it also shows that 

VARMA model can be reduced in a straightforward way to a set of n interrelated 

ARMA models.  Rewriting equation (12),  

𝑦(𝑡) = 𝑀(𝐿)
1

|𝐴(𝐿)|
𝐴∗(𝐿)𝜀(𝑡)      (17) 

Where |A(L)| is the scalar-valued determinant of A(L) and A*(L) is the adjoint 

matrix. The process becomes  

|𝐴(𝐿)|𝑦(𝑡) = 𝑀(𝐿)𝐴∗(𝐿)𝜀(𝑡)      (18) 

A system of n ARMA processes with the common lag operator, L. 

1.3. Wavelet Analysis 

There are two types of wavelet transform, continuous and discrete wavelet 

transform. The discrete wavelet transform is a compact representation of the data and 

is particularly useful for noise reduction and data compression whereas the continuous 

wavelet transform is better for feature extraction purposes as Grinsted, A., Moore, J. 

C., & Jevrejeva, S. (2004) stated. In our study, continuous wavelet transform as well 

as wavelet coherence will be employed. One must note that wavelet coherence is a 

measure of two continuous-wavelet transforms to find significant coherence even 

though the common power is low (Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004)). 

1.3.1. Wavelet coherence 

The wavelet coherence plot brings out a figure with time on the x axis and 

frequency of period value on the y axis. The lower frequency values give higher scale 

values or periods of co-movement. In the right hand side, the bar indicates the power 

of the coherence. The yellow color means higher power and moving into blue color 
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means lower coherence between the terms. The thin faded section around edges 

indicates the cone of influence area. It is due to low efficient results obtained by the 

wavelet transform at the edges of the time series data. The areas that are contoured 

with black line indicate 5% significance level against red noise. The blue (cold) 

regions represent no time and frequency dependence at the 5% significance level. The 

arrows indicate the relation between two time series in phase. Arrows pointing to the 

right means positive dependence and to the left means a negative relationship. If the 

arrow is pointing up, the first series leading the second in the analysis and the down 

pointing arrows indicates the second series as leading item in that time and frequency 

region.  

As we look at the wavelet coherence of silver and gold in figure 2, the 

coherence scalogram demonstrates very high interaction. There is always a relation in 

almost every frequency during the time interval of the samples. However this seems 

to be weakening around 16-32 day period and 64-128 day periods around the last two 

years. There is very high correlation in all periods of 64-512 day from January 2012 

up to June 2014. The high relationship of phase movement on 128 and 256-512 day 

period continuous at all times.  

 

Figure 1.2. Wavelet coherence of silver and gold 
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Figure 1.3. Wavelet coherence of platinum and silver 

 

Figure 1.4. Wavelet coherence of platinum and silver 

We find out the similar results of coherence around 128-512 day period when 

we examine the wavelet coherence of platinum and silver as shown in figure 3. In 

contrast with our results of high positive correlation between platinum and silver, the 

plot displays weaker levels of co-movement when compared with the silver and gold 

coherence plot. Platinum and silver displays almost no co-movement at the high 

frequencies. There is only local phase relation observed around 32 day period within 

the last year and around 64 day period between July, 2011 and 2014.  
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As expected, platinum and gold shown in Fig. 4 display minimum correlation 

with each other. There are some local regions in phase relation with high significance 

but the two metals generally do not display inter relation with each other. There are 

still co-movement regions which can be found around 64, 128, and 128-512 day 

periods from time to time. But there is no continuous relationship between two 

metals.  

1.3.2. Three Dimensional Multiple wavelet coherence 

Multiple wavelet coherence will show the effect of two factors together on the 

commodity itself. As we include the two commodities into the equation and run a 

multiple wavelet coherence analysis, the relationship between the three precious 

metals become much stronger. As you can see below in Figure 5 thru Figure 7, once 

the effect of gold and platinum is incorporated with the silver prices, one can tell that 

these metals are in phase relationship at all frequency levels at all times.  As shown in 

figure 6, it provides similar outcomes for gold as well except that the relation is not as 

strong at all frequency levels as we get closer to our current time zone.   

 Figure 7 illustrates that, with multiple wavelet coherence, the relation of the 

metals and how they affect each other can be explained better. As shown in figure 7 

below, the relation around 128-512 day period became much clear and it can be 

observed throughout the time interval. Also, there are fewer regions without phase 

relationship, shown in blue areas, compared to single wavelet coherence of platinum 

with either gold or silver alone.  
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Figure 1.5. Multiple wavelet coherence of silver with gold and platinum 

 

Figure 1.6. Multiple wavelet coherence of gold with silver and platinum 
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Figure 1.7. Multiple wavelet coherence of platinum with gold and silver 

 Hence these results help us understand the co-movement regions where there 

is high correlation. As a result, one can conclude that there is strong relationship 

around 128-256 day periods at all times. This corresponds with octave number 8 in 

the continuous wavelet transform. We will extract the data at this specific frequency 

where we observe high correlation in the time axis. The data between these periods 

(frequencies) will be used to model the time series and then their forecasting 

performances are compared accordingly.  

1.4. Forecasting Results 

As it is stated earlier, the main objective of this study is to demonstrate 

multivariate ARMA models have better forecasting results compared to other 

univariate models used. Furthermore, it is to show that extracting the data with the 

same frequency value by using wavelet transform will enhance the forecasting results 

due to new highly-correlated time-series obtained.  

One of the main problems with VARMA is that it provides better results when 

small number of variables used. To overcome this problem so called dimension effect, 

some suggestions and solutions were presented by Dias and Kapetanios (2014) such 

as using a penalty function, variable selection or a shrinkage rule in order to select or 

diminish appropriate coefficients to become zero or using a Factor Models. Both 

models help reduce the dimensionality problems and VARMA do carry properties of 

both methods.  

By using highly correlated data in a multivariate model, the data moving with 

similar frequency values will lead to a decrease in the values of the variance matrices. 

We have pointed out the high correlation regions by the multiple wavelet coherence 

analysis and the data within this period is selected from three different starting points 
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with different intervals of time series. The first data starts from October 20th 2012 

with the length of 222 days, the second data starts from August 3, 2012 with the 

length of 601 days and the third set of data is extracted from March 23rd, 2013 with 

the length of 360 days. Once the time intervals are determined, continuous wavelet 

transform is utilized to transform the data into time and frequency space. After that, 

the corresponding frequency of the data is extracted by employing inverse continuous 

wavelet transform. As we have indicated previously that all of the three precious 

metals display high coherence around 128-256 day period which is equal to octave 

value of 8 in the scalogram. As a result, we get a new time series of metals within the 

same time interval with the same frequency value.  

The values of the inversed time series data for three different periods are 

shown in Figs 8-10, respectively. One can easily notice the co-movement within each 

time series even though they are extracted from different sections of the time series 

data.  

 

Figure 1.8. Inversed data of time series 1 starting from October 20th, 2012 for 

222 days 
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Figure 1.9. Inversed data of time series 2 starting from August 3rd, 2012 for 

601 days 

 

Figure 1.10. Inversed data of time series 3 starting from March 23rd, 2013 for 

360 days 

The correlation of the extracted data is now increased remarkably as it is 

shown in the Table 3. The co-movement of the interval time series chosen is very 

much in phase relation with each other.  

Table 1.3.  

Correlation of metals within the extracted time series 

  Data 1 Data 2 Data 3 

Silver

Gold

Platinum
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Platinum
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1500

Inversed Data Frequency Band 8 Octave
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  Silver Gold Silver Gold Silver Gold 

Gold 0.9624  0.8658  0.9615  

Platinum 0.9450 0.8989 0.9169 0.7991 0.9255 0.8866 

 

After that, the model parameters have been selected based on the AIC criterion 

and the three time series data are forecasted with ARMA (1, 1) model. ARMA (1, 1) 

model is applied to each metal of the chosen interval without any extraction 

procedure. On the other hand, the VARMA (1, 1) model is applied to the data 

extracted and then forecasted. The forecasting results later on are moved upward by 

the difference of the final value of the data frame chosen and the first forecast value 

calculated. Lastly, it is plotted accordingly.  

As it can be seen from the results of gold forecasting in Figure 11, the 

forecasting data is projected in a much narrower interval once the data coherence is 

discovered and applied into the model. The forecasting follows the direction of the 

change of the price data in a much closer order as well. This is due to the behavior of 

the extracted data and high correlation between each vector of time series.  

 It is important to note that the forecasting data of a VARMA model provides a 

vector of upper and lower bands in a narrower fashion due to the low covariance 

values obtained in the matrices. Moreover, as a natural result of multivariate 

modeling, the covariance matrix gives out a vector of three arrays for each of the 

lower and upper bands calculated. We have simplified the results by selecting the 

minimum of the upper boundary and the maximum of the lower boundary values as 

they are plotted.  



20 
 

  

   

   

 

Figure 1.11. Forecasting performance of gold data from 3 different time series. 

ARMA forecast, VARMA forecast, ARMA upper/lower bands, VARMA upper/lower 

bands, real gold gata is shown for the next 30 days 
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 As shown in the figures, the forecasting precision of the model is very much 

increased by using the VARMA model and the model demonstrates significant 

accuracy on the initial days of the forecasting. The corresponding results for silver 

(Figure 12) and platinum (Figure 13) may be found in the Appendix section. 

1.5. Conclusion 

It is shown that even though the precious metals are not highly correlated 

quantitatively, the detailed phase relation between the models can easily be explored 

using multiple wavelet coherence analysis. It can be said that the three metals are 

highly correlated at low frequencies, meaning in longer periods throughout the time.  

It may also be concluded that the forecasting performance of a model is 

improved by using the VARMA model of correlated time series data. This directly 

corresponds with the results obtained by Pena and Sanchez (2007) that the 

performances of multivariate ARMA models are relatively better with respect to 

univariate models. It is also shown that the consistency in forecasting is obtained 

regardless of the size of the data set. Adequate results have been obtained with both 

small size (220 days) data sets as well as larger size (600 days) data sets which 

correspond with the results of Dias and Kapetanios (2011). 

Furthermore, it is shown that the correlated data can be extracted by using 

scale by scale wavelet transform and used to increase the efficiency of forecasting. 

Two advantages may be underlined.  Firstly, it increases the accuracy of the 

forecasting range in terms of mean squared errors and provide narrow band of upper 

and lower limits. Secondly, it increases the efficiency of the prediction of the price 

shift (increase (↑) or decrease (↓)) in the near future because of the highly correlated 

data that possess the same frequency characteristic of the movement.  
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In all, wavelet transform would allow investors to extract data with same 

periodical movement out of different assets. Thus, VARMA forecasting with higher 

accuracy can be made possible approximately for all times, once the data in co-

movement is successfully determined. Subsequently, the use of scale by scale wavelet 

transforms increases the efficiency of VARMA forecasting significantly. 
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Appendix A. Forecasting performance of each data for 3 different time  

intervals 
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Figure 1.12. Forecasting performance of silver data from 3 different time series. 

ARMA forecast, VARMA forecast, ARMA upper/lower bands, VARMA upper/lower 

bands, real silver data is shown for the next 30 days 

 

  

    



25 
 

  

    

Figure 1.13. Forecasting performance of platinum data from 3 different time series. 

ARMA forecast, VARMA forecast, ARMA upper/lower Bands, VARMA upper/lower 

bands, real platinum data is shown for the next 30 days 
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CHAPTER 2 

DYNAMIC CORRELATION OF EASTERN AND WESTERN MARKETS AND 

FORECASTING: SCALE BY SCALE WAVELET BASED APPROACH 

 

Summary 

In this chapter, dynamic four-dimensional (4D) correlation of eastern and western 

markets is analyzed. A wavelet based scale by scale analysis method has been 

introduced to model and forecast stock market data for strongly correlated time 

intervals. The daily data of stock markets of SP500, FTSE and DAX (western 

markets) and NIKKEI, TAIEX and KOSPI (eastern markets) are obtained from 2009 

to the end of 2016 and their co-movement dependencies on frequency-time space 

using four-dimensional (4D) multiple wavelet coherence (MWC) are determined. 

Once the data is detached into levels of different frequencies using scale by scale 

continuous wavelet transform, all of the time series possessing the same frequency 

scale are selected, inversed and forecasted using multivariate model, Vector Auto 

Regressive Moving Average (VARMA). It is concluded that the efficiency of 

forecasting is increased substantially using the same frequency highly correlated time 

series obtained by scale by scale wavelet transform. Moreover, the increasing or 

decreasing trend of prospected price shift is foreseen fairly well.  
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2.1. Introduction 

Financial time series acts on different frequencies since different investors may be 

seen to influence the price series of the assets on different scales and periods. Hence, 

it requires a thorough check of financial time series both in time and frequency space.  

Fourier transform was one of the methods to study the time series data but it 

losses the time information as it looks deep into the frequency values of the series 

therefore it could not be used successfully to study the non-stationary financial time 

series data. Instead, a new method, wavelet analysis, have been developed which does 

not depend on the assumption of stationarity (Burrus, Gopinath and Guo (1998)). The 

wavelet approach is model-free and permits a time series to be decomposed into 

different frequency components without losing time information (Revoredo and 

Miguel (2014)). As elaborated by Gulerce and Unal (2016), wavelet transform 

expands time series into time–frequency space and can therefore find localized 

intermittent periodicities, eliminating the weaknesses in Fourier transform. 

Since the influential work of Gencay (2002), wavelet tools have been extensively 

used in analyzing financial times series in many studies such as Aguiar-Conraria and 

Soares (2011), Barunik, Kocenda and Vacha (2013) and Aguiar-Conraria and Soares 

(2014). As Haven (2012) stated multi-scale analysis, estimation of unknown 

parameters, and removal of noise from raw data series may be counted as the three 

principal application of wavelet methods in finance and economics. Examples of 

multi scale analysis may be found by McCarthy and Orlov (2012) and Graham, 

Kiviaho and Nikkinen (2013) where the continuous wavelet transform and the 

wavelet coherence are specifically used in financial applications to determine 

correlation estimates across different time series and frequencies.  
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There have been many investigations studying the dynamic relation of different 

markets. Janakiramanan and Lamba (1998) and Cha and Cheung (1998) investigate 

the interrelation between Asia-Pacific equity markets and the US using vector 

autoregression (VAR) models, concluding that the US has a significant influence on 

these markets as well as strong interrelationships within the Asia-Pacific region. Rua 

and Nunes (2009) applied wavelet analysis to investigate the correlations between 

Germany and the US, two major developed markets, on an extensive stock market 

level. Graham, Kiviaho and Nikkinen (2012) continue to the analysis of emerging 

stock markets across the world and Graham and Nikkinen (2011) specifically 

compare the Finnish stock market with other markets world-wide.  

Torrance and Compo (1998) and Grinsted et al. (2004) provided a software 

package for wavelet coherence analysis in order to effectively and efficiently examine 

common and coherent signals in multiple time series. The same methodology will be 

utilized to study the correlation of Asian Markets (NIKKEI, TAIEX and KOSPI) with 

respect to developed markets (SP500, FTSE and DAX). Multiple wavelet coherence 

will show the effect of three markets from the developed countries on each of the 

Asian market itself which is the fundamental difference from multiple correlations.  

We will produce in phase movement of markets using multiple wavelet coherence. 

Then using continuous wavelet transform, the specific time and frequency domain 

will be filtered out of the time series. We are aware that analysis of multiple wavelet 

coherence allows observing many exciting interrelationships in time–frequency space 

in a much detailed way than other methods (Yilmaz and Unal (2016)). This clean 

relation of highly correlated time series may be used to model the data for forecasting 

purposes. This is the assumption of the chapter that it will improve the performance of 

modeling as well as forecasting to a new level of accuracy. 
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Predicting the market price on the next day, forecasting, has always been the 

hardest challenge for all investors and speculators in the financial world around the 

globe due to high heteroskedastic, nonlinear as well as unit root behavior that all 

markets possess. In an effort to improve forecasting performances, many different 

methods have been offered. One of the methods is to use multivariate models instead 

of univariate ones. Multivariate models were first introduced by Quenouille (1957) 

and later improved by Akaike (1974), Dunsmuir and Hannan (1976), and Hannan 

(1981). The VARMA model is employed for forecasting the correlated (interrelated) 

time series and for investigating the dynamic impact of random disturbances on the 

system of variables. The VARMA is a dynamic system of equations that examine the 

impacts of fluctuations (shocks) or correlations (interactions) between financial 

variables (Oral and Unal (2017)). It is proposed to improve the forecasting results 

with higher precision by using more information through a combination of multiple 

highly correlated data. It is shown that VARMA models do give better fit results 

because of having low mean squared errors compared to univariate models hence 

resulting in good forecasting performances (Oral and Unal (2017)).  

Section 2 contains the data and methodology used in this chapter. Basics of 

continuous wavelet transform (CWT), multiple wavelet coherence and VARMA are 

introduced as a summary review. In section 3, using multiple wavelet coherence, we 

analyze the markets interrelations and reveal their movement dependencies on time-

frequency space. Once the specific time and frequency interval is decided, VARMA 

model is used to forecast indexes. Section 4 will compare and discuss multivariate 

ARMA model with respect to univariate ARMA model and display the forecasting 

results. In section 5, the chapter will be concluded with the discussion of results. In 

Appendix, the forecasting results or TAIEX and KOSPI stock markets are presented.  



30 
 

  

2.2. Empirical Study 

2.2.1. Empirical Data 

The stock index of SP500, FTSE, DAX, NIKKEI, TAEIX and KOSPI are 

taken from Yahoo Finances! starting from March, 2009 to December, 2016. It is 

composed of 1930 daily data per market.  Fig. 1 displays the US (SP500), UK (FTSE) 

and German (DAX) stock markets and Fig. 2 displays the Japan (NIKKEI), Taiwan 

(TAIEX) and South Korea (KOSPI) stock market indexes.  

 

Figure 2.1. Western Market Indexes 

 

Figure 2.2. Eastern Market Indexes 
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The statistical analysis of the markets may be found in Table 1. According to 

these results, five markets out of six displays more flat than normal distribution 

(platykurtic) with kurtosis values less than 3 and Kospi is demonstrating more peaked 

than normal distribution (leptokurtic) with kurtosis values more than 3. Four of the 

markets are positively skewed with respect to the normal distribution; however 

Taiwanese and South Korean stock market indexes are negatively skewed where the 

mass of the distribution is concentrated on the right side of the mean.  

Table 2.1.  

Statistics of the Markets 

  Mean Median St. Dev Kurtosis Skewness 

SP500 15624.60 14641.00 4019.24 1.6055 0.0295 

FTSE 17506.10 17404.10 5470.83 1.9346 0.1345 

DAX 7933.90 7502.27 1968.09 1.9303 0.2041 

NIKKEI 13014.70 11348.20 3801.02 1.7416 0.4055 

TAIEX 10786.00 10946.60 1598.57 2.5694 -0.4556 

KOSPI 18963.70 19552.80 1857.84 5.3912 -1.5253 

 

The correlation of the markets is shown in Table 2. All of the markets except 

South Korea have correlation value more than 90% with SP500 stock market. The 

value of correlation between stock markets of Japan, Taiwan and South Korea are 

quite close to each other with US and German stock markets. UK stock market has 

slightly less correlation in comparison with the rest. It is surprising to see that South 

Korea has the highest correlation with the Taiwanese stock market rather than any 

other markets in the Asian region or in the west. KOSPI displays higher parallel 
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movement with SP500, FTSE and DAX compared to NIKKEI, a very closer market 

in the region. 

Table 2.2.  

Correlation of the Markets 

 SP500 FTSE DAX NIKKEI TAIEX KOSPI 

SP500 1 0.9689 0.9593 0.9178 0.9117 0.6675 

FTSE 0.9689 1 0.9181 0.8604 0.8589 0.6476 

DAX 0.9593 0.9181 1 0.9233 0.9102 0.6659 

NIKKEI 0.9178 0.8604 0.9233 1 0.8302 0.4743 

TAIEX 0.9117 0.8589 0.9102 0.8302 1 0.7775 

KOSPI 0.6675 0.6476 0.6659 0.4743 0.7775 1 

 

In consideration of these, we will analyze the co-movement characteristics of 

these markets using wavelet transform and multiple wavelet coherence. And then we 

will try to determine a certain frequency value that will help enhance the forecasting 

performance and compare the results accordingly.  

2.2.2. Methodology 

2.2.2.1. A summary for continuous wavelet transform 

An excellent way of wavelet application in finance and economics has been 

introduced by Gencay (2002). Other application afterwards have been utilized by 

Aguiar-Conraria and Soares (2011), Barunik, Kocenda and Vacha (2013) and Aguiar-

Conraria and Soares (2013), Yilmaz and Unal (2017). A wavelet is a localized 

function with finite support of decomposition. There are many different wavelet 

transform methods. Out of many, discrete and continuous wavelet transforms are two 

fundamental ones where continuous wavelet transform (CWT) is mainly preferred for 
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feature extraction purposes as Grisnted, Moore and Jevrejeva (2004) stated. 

Therefore, we use CWT to extract the frequency-time information of the data. Given a 

times series, continuous wavelet transform is defined as (1) 

𝐶𝑊𝑇𝑥
𝜓(𝑠, 𝜏) = ⟨𝑋,⇥ 𝜓(𝑠, 𝜏)⟩ =

1

√𝑠
∫ 𝑋(𝑡)

+∞

−∞
𝜓∗ (

𝑡−𝜏

𝑠
)𝑑 (1) 

Where "𝜏" is the translation which corresponds with the time information and “s” 

is the scale parameter which corresponds with the frequency information in the 

transform domain. "𝜓" is the transforming function also known as the mother wavelet. 

Similar to the scale used in maps, high scale value means a global view and low scale 

value means a more specific and detailed view. Henceforth, by mapping the time 

series into 𝜏 and s parameters, wavelet transform provides information on time and 

frequency domain but one must note that there is an inverse relationship exist between 

scale and frequency. As the scale increases (decreases), the periodical span of the time 

information increases (decreases) but the frequency decreases (increases).  

Since the wavelet transform is, by some means, a matter of decomposing a time series 

into different energy levels, the inverse of the transform must also satisfy the law of 

conservation of energy. Hence it must satisfy equation (2), 

∫ |𝑥(𝑡)|2
+∞

−∞
𝑑𝑡 =

1

𝐶𝜓 
∫ ∫ |𝑊𝑥(𝜏, 𝑠)|

2 𝑑𝜏𝑑𝑠

𝑠2

+∞

−∞

+∞

−∞
  (2) 

In turn, it makes it possible to reconstruct the time series data by the formula (3), 

𝑥(𝑡) =
2

𝐶𝜓 
∫ [∫ 𝑊𝑥(𝜏, 𝑠)𝜓 𝜏,𝑠(𝑡)𝑑𝜏

+∞

−∞
]

𝑑𝑠

𝑠2

+∞

−∞
  (3) 

In the continuous wavelet transform, the scaling parameter s is given by equal-

tempered scale calculated by the equality in (4), 

𝑠𝑜𝑐𝑡,𝑣𝑜𝑐 = 𝛼2𝑜𝑐𝑡−12𝑣𝑜𝑐/𝑛𝑣𝑜𝑐    (4) 

Where “oct” is the octave number which is used as a conversion factor of scales, 

consequently the frequencies, “voc” is the voice number, and “α” is the smallest 
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wavelet scale. Hence, from the figures, we may point out the same frequency interval 

for each time series and inverse the data with the same frequency value as desired. 

2.2.2.2. Four dimensional multiple wavelet coherence. 

Bivariate case of wavelet coherence may be extended into multivariate wavelet 

coherence as the number of series increase. The correlation of interesting variables X1 

and X2 with other variables is taken into account as the calculation of coherency and 

phase differences are the matter of concern. The squared multiple wavelet coherency 

between X1 and all other series X2, …, Xp is defined as (5) 

𝑅1(23…𝑝)
2 = 𝑅1(𝑞)

2 = 1 −
𝑀𝑑

𝑆11𝑀11
𝑑   (5) 

Where M is the pxp matrix of all smoothed cross-wavelet spectra (denoted by 

𝑆𝑖𝑗)  

𝑆𝑖𝑗 = 𝑆(𝑊𝑋𝑖𝑋𝑗
) (𝑆𝑖𝑗 = 𝑆𝑖𝑗

∗ ,  𝑆𝑖𝑗 = 𝑆 (|𝑊𝑋𝑖
|
2
) ) 

𝑀 =

[
 
 
 
𝑆11 𝑆12

𝑆21 𝑆22
⋯

𝑆1𝑝

𝑆2𝑝

⋮ ⋱ ⋮
𝑆𝑝1 𝑆𝑝2 ⋯ 𝑆𝑝𝑝]

 
 
 

  (6) 

The pxp matrix of all smoothed complex wavelet coherencies is complex 

coherence denoted by C as shown in equation (7), 

𝜌𝑖𝑗 =
𝑆(𝑊𝑖𝑗)

√𝑆(|𝑊𝑖|2)𝑆 (|𝑊𝑗|
2
)

 𝑎𝑛𝑑 𝜌𝑖𝑗 = 𝜌𝑗𝑖
∗  

𝐶 = [

1 𝜌12

𝜌21 1
⋯

𝜌1𝑝

𝜌2𝑝

⋮ ⋱ ⋮
𝜌𝑝1 𝜌𝑝2 ⋯ 1

]   (7) 

𝑅1(𝑞)
2 = 1 −

𝐶𝑑

𝐶11
𝑑  

In our case of four time series, the cofactor of the complex coherence matrix is 

equal to (8)  
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𝐶11
𝑑 = |

1 𝜌23 𝜌24

𝜌32 1 𝜌34

𝜌42 𝜌43 1
| 

= 1 − 𝜌23𝜌32 − 𝜌24𝜌42 + 𝜌23𝜌34𝜌42 + 𝜌24𝜌32𝜌43 − 𝜌34𝜌43 

= 1 − 𝑅23
2 − 𝑅24

2 − 𝑅34
2 + 2𝑅(𝜌23𝜌34𝜌24

∗ ) 

𝐶𝑑 = 𝐶11
𝑑 − 𝜌12𝐶12

𝑑 +𝜌13𝐶13
𝑑 − 𝜌14𝐶14

𝑑   (8) 

Eq. 8 can be expressed in details as following. 

𝐶𝑑 = 1 − 𝜌12𝜌21 − 𝜌13𝜌31 − 𝜌24𝜌42 − 𝜌23𝜌32 − 𝜌14𝜌41 − 𝜌34𝜌43 + 𝜌12𝜌23𝜌31

+ 𝜌13𝜌21𝜌32 + 𝜌12𝜌24𝜌41 + 𝜌14𝜌23𝜌32𝜌41 − 𝜌13𝜌24𝜌32𝜌41

+ 𝜌13𝜌24𝜌41 − 𝜌12𝜌23𝜌34𝜌41 + 𝜌14𝜌21𝜌42 − 𝜌14𝜌23𝜌31𝜌42

+ 𝜌13𝜌24𝜌31𝜌42 − 𝜌13𝜌22𝜌34𝜌42 + 𝜌23𝜌34𝜌42 + 𝜌14𝜌31𝜌43

− 𝜌12𝜌24𝜌31𝜌43 − 𝜌14𝜌21𝜌32𝜌43 + 𝜌24𝜌32𝜌43 + 𝜌12𝜌21𝜌34𝜌43  

Or it can be written as the following, 

𝐶𝑑 = 1 − 𝑅12
2 − 𝑅13

2 − 𝑅23
2 − 𝑅14

2 − 𝑅24
2 − 𝑅34

2 + 𝜌12𝜌23𝜌31 + 𝜌13𝜌21𝜌32

+ 𝜌12𝜌24𝜌41 + 𝜌14𝜌21𝜌42 + 𝜌23𝜌34𝜌42 + 𝜌24𝜌32𝜌43 + 𝜌14𝜌31𝜌43

+ 𝜌13𝜌24𝜌41 + 𝜌14𝜌23𝜌32𝜌41 − 𝜌13𝜌24𝜌32𝜌41 − 𝜌12𝜌23𝜌34𝜌41

− 𝜌14𝜌23𝜌31𝜌42 + 𝜌13𝜌24𝜌31𝜌42 − 𝜌13𝜌22𝜌34𝜌42 − 𝜌12𝜌24𝜌31𝜌43

− 𝜌14𝜌21𝜌32𝜌43 + 𝜌12𝜌21𝜌34𝜌43 

And the squared multiple wavelet coherencies become (9). 

𝑅1(234)
2 = 1 −

𝐶𝑑

𝐶11
𝑑  (9) 

2.2.2.3. Vector autoregressive moving average (VARMA). 

Synchronization of multiple time series is very important in understanding the 

efficiency increase of multivariate time series analysis. As Tsay stated, dynamic 

relations between variables can be identified better with vector autoregressive moving 

average models. Using highly correlated data series, as the dimension of the model 

increases, the VARMA model not only considers the historical data of each series but 
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also other interrelated variables in between the series. Hence, it leads to more accurate 

results compared to scalar counter models as Lutkepohl and Poskitt (1996) stated. 

The difference equation in (10) describes the The ARMA (p, q) process 

(𝑎0 − 𝑎1𝐿(𝑡,−1) − ⋯ − 𝑎𝑝𝐿(𝑡,−𝑝))𝑦(𝑡) = 𝑐 + (𝑏0 − 𝑏1𝐿(𝑡,−1) − ⋯−

𝑏𝑝𝐿(𝑡,−𝑝))𝜀(𝑡) (10) 

Where y(t), ε(t), L and c are the sequence of n elements, the white nose, the shift 

operator and the constant, respectively. The constant c is equal to zero unless 

otherwise specified. An n dimensional vector ARMA process should have real 

coefficient matrices ai and bj of dimensions nxn, real vector c of length n, a 

disturbance vector of n elements determined by serially uncorrelated white noise 

processes. Hence, the covariance matrix Σ should be symmetric positive definite of 

dimensions nxn. The vector ARMA process with zero constant has transfer function 

g(z-1),   

𝑔(𝑧) = (𝑎0 − 𝑎1𝑧 − ⋯− 𝑎𝑝𝑧
𝑝)

−1
. (𝑏0 − 𝑏1𝑧 − ⋯− 𝑏𝑞𝑧𝑞) 

Where a0 and b0 are the nxn identity matrices. The equation (10) can now be 

written in summary notation as  

𝐴(𝐿)𝑦(𝑡) = 𝑀(𝐿)𝜀(𝑡)  (11) 

Where L is the lag operator and A(z)=A0+A1z+ … +Apz
p and M(z)=M0+M1z+ … 

+Mqz
q are matrix values polynomials. A multivariate process of this nature is 

commonly described as a VARMA process. The equation (11) can be rewritten as 

(12) 

𝑦(𝑡) = 𝑀(𝐿){𝐴−1(𝐿)𝜀(𝑡)} = 𝑀(𝐿)𝜉(𝑡) (12) 

This suggest a two-step procedure begins with the calculation of (13) and (14), 

𝜉(𝑡) = 𝜀(𝑡) − {𝐴1𝜉𝑡−1 + ⋯ + 𝐴𝑟𝜉𝑟−1}   (13) 

𝑦(𝑡) = 𝑀0𝜉𝑡 + 𝑀1𝜉𝑡−1 + ⋯+ 𝑀𝑟𝜉𝑡−𝑟+1  (14) 
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Where r is the highest value of p or q when p is not equal to q. This indicates that 

either Ai is equal to 0 for every i greater than  p+1 but less than q or Mi is equal to 0 

every I greater than q+1 but less than p. 

Since,  

𝜉𝑟(𝑡) = 𝜉(𝑡−𝑟+1)  

𝑎𝑛𝑑 𝜉𝑟(𝑡) = 𝜉𝑟−1(𝑡 − 1) 

, 𝑡ℎ𝑒𝑛 𝜉(𝑡−𝑟+1) = 𝜉𝑟−1(𝑡 − 1)  (15) 

Which turn equation (14) into (16), 

𝑦(𝑡) = 𝑀0𝜉1(𝑡) + 𝑀1𝜉2(𝑡) + ⋯+ 𝑀𝑟−1𝜉𝑟(𝑡)  (16) 

It can be clearly realized that such a vector system would produce a large 

dimension of matrices in the calculation even at low order of processes. However it 

also shows that VARMA model can be reduced in a straightforward way to a set of n 

interrelated ARMA models.  Rewriting equation (12),  

𝑦(𝑡) = 𝑀(𝐿)
1

|𝐴(𝐿)|
𝐴∗(𝐿)𝜀(𝑡)   (17) 

Where |A(L)| is the scalar-valued determinant of A(L) and A*(L) is the adjoint 

matrix. The process becomes  

|𝐴(𝐿)|𝑦(𝑡) = 𝑀(𝐿)𝐴∗(𝐿)𝜀(𝑡)  (18) 

where a system of n dimensional ARMA process is defined with the common lag 

operator, L. 

2.3. Multiple Wavelet Coherence Analysis in 4D 

Multiple wavelet coherence brings out a plot that depends on a careful 

interpretation. On the x-axis you will find the time information and y-axis will 

indicate the frequency. The lower frequency means higher scale or vice versa. In the 

right, the power of the coherence is displayed. The warmer yellow colors mean higher 

correlation where 1 indicates the highest correlation and colder blue colors mean low 
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correlation where 0 indicates no correlation. The areas with black contour indicate the 

time-frequency regions with statistical significance at 5% significance level against 

red noise. The faded area falls onto the outside of the cone of influence (COI) which 

is due to the errors caused by the discontinuities in the wavelet transform. As Yilmaz 

and Unal (2016) stated, the continuous wavelet transform may return wrong 

estimation on the edges since the shape of the wavelet might exceed the length of the 

data. 

When we examine the multiple wavelet coherence plots, as shown in Fig. 3-5, 

of three Asian markets NIKKEI, TAIEX and KOSPI with SP500, FTSE and DAX, we 

realize that there is very high interrelation between all of the markets almost at all 

times. All markets display no correlation around 64 and 128 day periods between 

March of 2013 and October of 2014. The same can be stated around 32 and 64 day 

periods between August of 2015 and June of 2016. All of the markets are highly and 

fully correlated between 128-512 day periods at all times.  

  

Figure 2.3. Multiple wavelet coherence of Nikkei with SP500, FTSE and DAX 
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Figure 2.4. Multiple wavelet coherence of Taiex with SP500, FTSE and DAX 

 

Figure 2.5. Multiple wavelet coherence of Kospi with SP500, FTSE and DAX 

It is also intriguing to see that the high coherence is also true for South Korean 

stock market, even though the classical correlation calculations did not provide high 

correlation value compared to the other two Asian stock markets. Similar difference 
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between multiple wavelet coherence and correlation calculations is observed by Oral 

and Unal (2017) indicating better performance out of wavelet coherency analysis. 

 Multiple wavelet coherence helps us understand where the correlation is the 

highest on frequency and time space. According to these results, one may easily 

conclude that 256 day period at all-time intervals give the best coherent data which 

corresponds to octave value of 8 in the continuous wavelet transform. We extract the 

data at this specific period (frequency) and use it for the forecasting purposes.  

 The extracted and inversed data of all markets at octave value of 8 are plotted 

in Fig. 6. Now it is clearly possible to see even in bare eyes how all data is in 

coherence and moving together. This is also in line with the findings of Hyde et al 

(2007) that there is strong evidence to suggest that markets display common trends 

over the long term.  

 

Figure 2.6. Inversed Daily Data of All Markets at Octave Value of 8 
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The correlation of the inversed data has now substantially increased including 

the South Korean stock market as shown in Table 3. Now we obtain a set of time 

series data where all markets are highly correlated with each other at all times.  

Table 2.3.  

Correlation of Inversed Daily Data of All Markets 

  SP500 FTSE DAX NIKKEI TAIEX KOSPI 

SP500 1 0.9691 0.9133 0.9514 0.9556 0.9398 

FTSE 0.9691 1 0.9138 0.9309 0.9361 0.9259 

DAX 0.9133 0.9138 1 0.8862 0.9503 0.9196 

NIKKEI 0.9514 0.9309 0.8862 1 0.9398 0.9368 

TAIEX 0.9556 0.9361 0.9503 0.9398 1 0.9859 

KOSPI 0.9398 0.9259 0.9196 0.9368 0.9859 1 

 

Since continuous wavelet transform returns errors on the edges due to the 

wavelet size exceeding the length of the data, we utilize the daily data from October 

of 2010 up to August of 2015 in order to avoid possible discrepancies.  

2.4. Forecasting Trials, Results and Discussion 

As stated earlier, the fundamental purpose of the finance market is to predict 

the price in the future. Hence employing efficient forecasting methods is very crucial. 

In this chapter, we are presenting this new approach where vector auto regressive 

moving average is combined with scale by scale continuous wavelet transform.  

Each of the Asian market is correlated with SP500, FTSE and DAX. The data 

are selected from three different time intervals for each market and can be listed as 

following.  

 NIKKEI stock market data are selected starting  
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 from September 29th, 2012 for 207 days (Fig. 7),  

 from March 22nd, 2012 for 331 days (Fig. 8), and  

 from June 12th, 2010 for 297 days (Fig. 9).  

 TAIEX Stock market data are selected starting  

 from March 22nd, 2012 for 316 days (Fig. A.1),  

 from May 13th, 2010 for 333 days (Fig. A.2), and  

 from September 20th, 2010 for 413 days (Fig. A.3).  

 KOSPI stock market data are selected starting  

 from November 9th, 2010 for 289 days (Fig. A.4),  

 from June 21st, 2012 for 318 days (Fig. A.5) and  

 from July 7th, 2011 for 295 days (Fig. A.6).  

They are split into frequencies scale by scale using continuous wavelet 

transform and the data corresponding with octave value 8, which equals to 256 day 

period, are selected to be inversed.  

By doing so, we obtain time series data with the same frequency value moving 

along the same time frame. Hence, we have two different type of data set within the 

same interval for each period selected. One of them is the raw data as it is recorded 

daily and forecasted on its own. The other one is processed with continuous wavelet 

transform, inversed at a predetermined scale and then forecasted using vector auto 

regressive moving average.   

It is important to note that the data extracted has set of values less than the 

original value due to the nature of continuous wavelet transform. In order to 

compensate the forecasting difference in data, it is moved upward by the difference of 

the last value of the original data set and the first value of the forecasting result. 

Additionally, VARMA provides upper and lower boundaries as the number of 
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variables. Hence, we get 4 upper and 4 lower band vectors as a result. In this chapter, 

we filter the minimum values of the upper boundary and the maximum values of the 

lower boundary vectors and display them in our results. 

One must also remember that using highly correlated data set is crucial; 

otherwise the forecasting results come out of charts. As it can be seen from the results 

of NIKKEI forecasting, VARMA, provides a narrower range of prediction with 

respect to univariate model of ARMA. This is due to the low variance value reached 

in the model which helps increase the precision of the forecasting. It can also be said 

that initial days of the VARMA forecasting are more successful as opposed to 

univariate model of ARMA model. 
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Figure 2.7. Inversed data of markets starting from September 29th, 2012 for 207 days 

and forecast of Nikkei for the next 30 days 

 

 



45 
 

  

 

Figure 2.8. Inversed data of markets starting from March 22nd, 2012 for 331 days and 

forecast of Nikkei for the next 30 days 
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Figure 2.9. Inversed data of markets starting from June 12th, 2010 for 297 days and 

forecast of Nikkei for the next 30 days 

2.5. Conclusion 

It is seen that South Korea always has the highest correlation with the 

Taiwanese stock market. Taiwan follows the stock market movement in the developed 

countries closer with respect to other Asian markets. It can also be stated that Asian 

markets are more correlated with the markets of the developed countries than with 

each other from their own regions. This also coincides with the findings of 

Janakiramanan and Lamba (1998) and Cha and Cheung (1998). Nevertheless, one can 
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conclude that the multiple wavelet coherence provides better and visual justification 

of in-phase relation in different data sets. The correlation between any data set may be 

explored more meticulously. We have seen that all three markets are highly correlated 

in low frequencies (longer periods) throughout the time frame.  

Using VARMA model of highly correlated time series amply increases the 

performance of the forecasting. This directly coincides with the results obtained by 

Peña and Sanchez (2007) that the performances of multivariate ARMA models are 

relatively better with respect to univariate models. Furthermore, we were able to 

provide consistent results both with small size and larger size data set which agrees 

with the findings of Dias and Kapetanios (2011) that consistency in VARMA 

forecasting may be obtained regardless of the size of the data set.  

In line with the findings of Oral and Unal (2017), multiple wavelet transform 

and continuous wavelet transform may be used to dissect the data scale by scale, 

obtain highly correlated data sets and use them to increase the efficiency of 

forecasting performance. By doing so, low mean squared errors are calculated which 

results with a narrow band of upper and lower limit. Moreover price movement trend 

is better predicted in terms of direction, increasing or decreasing course. As a result, 

using scale by scale wavelet transform allows any investor to pick time series data 

with higher correlation. This would allow VARMA forecasting perform with higher 

accuracy once the correlated data is determined as correct and accurate as possible. In 

conclusion, VARMA forecasting performance is increased remarkably by the use of 

scale by scale wavelet transform.  
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Appendix A. Inversed Data of Markets and Corresponding Forecasts for the 

Next 30 Days 

 

Figure 2.10. Inversed data of markets starting from March 22nd, 2012 for 316 days 

and forecast of Taiex for the next 30 days 
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Figure 2.11. Inversed data of markets starting from May 13th, 2010 for 333 days and 

forecast of Taiex for the next 30 days 
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Figure 2.12. Inversed data of markets starting from September 20th, 2010 for 413 

days and forecast of Taiex for the next 30 days 
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Figure 2.13. Inversed data of markets starting from November 9th, 2010 for 289 days 

and forecast of Kospi for the next 30 days 
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Figure 2.14. Inversed data of markets starting from June 21st, 2012 for 318 days and 

forecast of Kospi for the next 30 days 
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Figure 2.15. Inversed data of markets starting from July 7th, 2011 for 295 days and 

forecast of Kospi for the next 30 days 

  



54 
 

  

CHAPTER 3 

MODELING AND FORECATING MULTIFRACTAL WAVELET SCALE: 

WESTERN MARKET vs EASTERN MARKET 

 

Summary  

This leading primary study is about modeling multifractal wavelet scale time series 

data using multiple wavelet coherence (MWC), continuous wavelet transform (CWT) 

and multifractal de-trended fluctuation analysis (MFDFA) and forecasting with vector 

autoregressive fractionally integrated moving average (VARFIMA) model. The data 

is acquired from Yahoo Finances!, which is composed of 1671 daily stock market of 

eastern (NIKKEI, TAIEX, KOPSI) and western (SP500, FTSE, DAX) markets. Once 

the co-movement dependencies on time-frequency space are determined with multiple 

wavelet coherence, the coherent data is extracted out of raw data at a certain scale by 

using continuous wavelet transform. The multifractal behavior of the extracted series 

is verified by multifractal de-trended fluctuation analysis and its local Hurst 

exponents have been calculated obtaining root mean square of residuals at each scale. 

This inter-calculated fluctuation function time series have been re-scaled and used to 

estimate the process with vector autoregressive fractionally integrated moving 

average (VARFIMA) model and forecasted accordingly. The results have shown that 

the direction of price change is determined without difficulty and the efficiency of 

forecasting have been substantially increased using highly correlated multifractal 

wavelet scale time series data. 
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3.1. Introduction and Literature Review 

Economics is a man-made science. Since the invention of money, there has been a 

struggle in pricing. This struggle has increased enormously within the last century. 

The advanced technological developments today have brought it up to another 

dimension where it becomes an integrated matter of social sciences, technology and 

engineering at the same time. Hence there are many factors, persons, and goals 

affecting the price each day which causes it to move in fluctuations on many 

occasions dealing with different stress levels and shocks. That is why studying the 

price of any item in the market requires a particularized analysis that allows one to 

spot minute changes in different periods as well as scales.  

There are many tools serving this purpose like Fourier transform. However, 

Fourier transform loses the time information as it looks deep into the frequency 

information of the data. We need to best utilize a method like wavelet analysis that 

does not need stationarity (Burrus et al., 1998) in the time series and does not lose the 

time information as it is able to go deep into the frequency information at different 

scales (Reboredo and Rivera-Castro, 2014). Wavelet analysis is one of the methods 

that are capable of keeping the time and frequency information at the same time, 

finding localized intermittent periodicities, and eliminating the weaknesses in Fourier 

transform as pointed by Gulerce and Unal (2016). 

Wavelet analysis is another method in analyzing financial time series. Aguiar-

Conraria and Soares (2011, 2014), McCarthy and Orlov (2012), Graham et al. (2013) 

and Barunik et al. (2013) have been using the leading work of Gencay (2002) in 

analyzing financial time series to determine correlation estimates across different time 

and periods in their studies. Multi-scale analysis is stated as one of the main 

applications of wavelet methods in finance and economics by Haven. (2012).  
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There have been many investigations exploring the relation of different markets 

using these tools. The Finnish stock market has been compared with other markets 

worldwide by Graham and Nikkinen (2011). The emerging stock markets across the 

world were analyzed by Graham et al. (2012). Rua and Nunes (2009) analyzed two 

major developed markets, US and Germany, engaging wavelet analysis to explore co-

movement dependencies. Using multivariate autoregressive model, in phase 

movement of Asia-Pacific equity markets and the US has been investigated by 

Janakiramanan and Lamba (1998) and Cha and Cheung (1998). Loh (2013) 

investigated the co-movement of 13 Asia-Pacific stock market returns with that of 

European and US Stock market returns using wavelet coherence methods.  

Kantelhardt et al. (2002) has proposed multifractal de-trended fluctuation analysis 

(MF-DFA) as an alternative method in scrutinizing financial time series. It is also 

accepted as a strong and dynamic technique due to its ability to detect multifractal 

behavior in non-stationary time series. Tas and Unal (2013) made a comparative study 

of multifractal detrended fluctuation analysis to detect multifractal character of natural 

gas daily returns. Benbachir and Alaoui (2011) performed the multifractal de-trended 

fluctuation analysis method to investigate the multifractal properties of the Moroccan 

Dirham with respect to the US Dollars. Thompson and Wilson (2014) performs an in-

depth analysis of GE stocks and contrasting the results with those obtained using 

multifractal de-trended fluctuation analysis and using conventional time series 

models.  

A software package for wavelet coherence analysis is provided by Torrence and 

Compo (1998) and Grinsted et al. (2004) in order to be able to examine in-phase 

movement, frequent and consistent signals in multiple time series. Moreover, a 

Matlab tool for multifractal de-trended fluctuation analysis has been introduced by 
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Ihlen (2012). Both of the methodologies will be used to study the inter relation of 

Asian Markets (Japan, Taiwan and South Korea) in comparison to developed markets 

(US, UK and Germany) and their multifractal behavior. Multiple wavelet coherence 

will display the inter relation of each eastern market with western markets and 

multifractal detrended fluctuation analysis will be used not only to confirm their 

multifractal behavior but also to access multifractal time series of these markets at the 

specific scale.  

By the use of continuous wavelet transform, a specific time and scale interval 

retaining long range dependence will be extracted out of the time series. This will 

allow observing many exciting interrelationships in time-frequency space in a much 

detailed way than other methods as stated by Yilmaz and Unal (2016). The 

multifractal behavior of these series may be validated by the help of Matlab tool. The 

same tool may be used to obtain a brand-new series out of local Hurst exponent 

calculations. It is this section`s assumption that these new series will result in better 

forecasting performance using vector autoregressive fractionally integrated moving 

average (VARFIMA) model with respect to autoregressive fractionally integrated 

moving average (ARFIMA) model. 

All markets do possess highly heteroskedastic, non-linear and unit root behaviors 

due to different speculators, hedgers, investors, traders playing role with different 

goals on different terms and specifications. This makes it harder to estimate the price 

on the next day. Hence improving the forecasting performance of different methods 

has been one of the primary goals of financial engineering. Both univariate and 

multivariate models have been offered in the past. Quenouille has introduced the first 

multivariate model in 1957 which is later improved by Akaike (1974), Dunsmuir and 

Hannan (1976) and Hannan (1981). Oral and Unal (2017) underline that multivariate 
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models are a dynamic system of equations that examine the impacts of fluctuations 

(shocks) or correlations (interactions) between financial variables. Using more 

information out of multiple highly correlated data provides forecasting results with 

higher precision and multivariate models provide better results because of having low 

mean-squared errors compared to univariate models. 

In following, data and methodology will be covered in section 2. Fundamental 

formulations of continuous wavelet transform and multiple wavelet coherence, basics 

of multifractal detrended fluctuation analysis and vector autoregressive fractionally 

integrated moving average will be introduced as a summary review. In section 3, 

multiple wavelet coherence will be utilized to reveal the inter relation of the markets 

and their movement dependencies on time-frequency space. Once the highly 

correlated time and scale interval is determined, the multifractal behavior of the time 

series will be validated. Out of inversed data set, a new set of data used in calculation 

of local Hurst exponents will be procured. In section 4, the forecasting results will be 

compared and discussed between multivariate and univariate models. Section 5 will 

conclude with the discussion of the results. In appendix A, 4D multiple wavelet 

coherence and 2D wavelet coherence results of eastern markets with each western 

markets will be presented. Appendix B will give local Hurst exponents at scale 256 

for all markets along with the inversed data set and appendix C will display two 

forecasting results of each market couples, totaling 18 trials of forecasts.   

3.2. Data 

The data is acquired from Yahoo Finances!, which is composed of stock 

market indexes from eastern markets of Japan (NIKKEI), Taiwan (TAIEX), South 

Korea (KOSPI), and western markets of United States (SP500), United Kingdom 
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(FTSE) and Germany (DAX). It is composed of 1671 daily records of each market 

starting from March 10, 2009 as shown in Fig. 1.  

 

Figure 3.1. Real Values of Each Stock Market 

As shown in Table 1, SP500, FTSE and DAX are highly correlated with each 

other and NIKKEI and TAIEX with the least correlation value of 83% and higher. On 

the other hand, KOSPI seems to have developed other factors influencing its market 

trend and does not demonstrate high correlation with the rest of the markets neither 

with markets in the east nor with markets in the west. South Korea has the least 

correlation with Japanese Market with the value of less than 50% and the highest 

correlation with Taiwanese market with the value of 78%. 

Table 3.1.  

Correlation Values of Each Market 

 SP500 FTSE DAX NIKKEI TAIEX KOSPI 

SP500 1 0.9689 0.9593 0.9178 0.9117 0.6675 

NIKKEI

TAIEX

KOSPI
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FTSE

DAX

2011 2012 2013 2014
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FTSE 0.9689 1 0.9181 0.8604 0.8589 0.6476 

DAX 0.9593 0.9181 1 0.9233 0.9102 0.6659 

NIKKEI 0.9178 0.8604 0.9233 1 0.8302 0.4743 

TAIEX 0.9117 0.8589 0.9102 0.8302 1 0.7775 

KOSPI 0.6675 0.6476 0.6659 0.4743 0.7775 1 

 

The data will be analyzed using wavelet transform and multiple wavelet 

coherence in order to detect a series of data possessing a higher correlation with each 

other. It is our assumption that this data will display multi fractal behavior. Once the 

multi fractal behavior is verified, we will look into the local Hurst exponents’ series at 

the same scale detected by the wavelet coherence and use it to improve forecasting 

performances and compare the results with the traditional methods.  

3.3. Methodology 

3.3.1. Continuous Wavelet Transform (CWT) and Multiple Wavelet 

Coherence (MWC) 

Gencay (2002) has introduced a new tool of wavelet application in finance and 

economics. More applications have been employed later by many researchers such as 

Aguiar-Conraria and Soares (2014), Barunik et al. (2013), Yilmaz and Unal (2016) 

and Oral and Unal (2017). Two essential wavelet methods are discrete and continuous 

wavelet transforms. However, Grinsted et al. (2004) states that CWT is used more for 

feature extraction purposes hence CWT is used to examine the frequency and time 

information of the time series. CWT is defined as in equation (1), 

𝐶𝑊𝑇𝑥
𝜓(𝑠, 𝜏) = ⟨𝑋,⇥ 𝜓(𝑠, 𝜏)⟩ =

1

√𝑠
∫ 𝑋(𝑡)

+∞

−∞
𝜓∗ (

𝑡−𝜏

𝑠
)𝑑 (1) 

Where "𝜓"the transforming is function also known as the mother wavelet, "𝜏" is 

the translation which corresponds with the time information and “s” is the scale 
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parameter which corresponds with the frequency information in the transform 

domain.  

Additionally, bivariate case of wavelet coherence may be extended into 

multivariate models where four dimensional multiple wavelet coherence may be 

defined as in equation (2), 

𝐶𝑑 = 1 − 𝑅12
2 − 𝑅13

2 − 𝑅23
2 − 𝑅14

2 − 𝑅24
2 − 𝑅34

2 + 𝜌12𝜌23𝜌31 + 𝜌13𝜌21𝜌32 +

𝜌12𝜌24𝜌41 + 𝜌14𝜌21𝜌42 + 𝜌23𝜌34𝜌42 + 𝜌24𝜌32𝜌43 + 𝜌14𝜌31𝜌43 + 𝜌13𝜌24𝜌41 +

𝜌14𝜌23𝜌32𝜌41 − 𝜌13𝜌24𝜌32𝜌41 − 𝜌12𝜌23𝜌34𝜌41 − 𝜌14𝜌23𝜌31𝜌42 + 𝜌13𝜌24𝜌31𝜌42 −

𝜌13𝜌22𝜌34𝜌42 − 𝜌12𝜌24𝜌31𝜌43 − 𝜌14𝜌21𝜌32𝜌43 + 𝜌12𝜌21𝜌34𝜌43   (2) 

Where C denotes complex coherence, R2ij is squared multiple wavelet 

coherencies. For details of these methods, the reader may look into the articles, 

“dynamic correlation of eastern and western markets and forecasting: Scale-by-scale 

wavelet-based approach (Oral and Unal, 2017)” and “co-movement of precious 

metals and forecasting using scale by scale wavelet transform (Oral and Unal, 2017).” 

3.3.2. Multifractal De-Trended Fluctuation Analysis (MF-DFA). 

Fractal structures and behavior are found in all financial time series data. Multi 

fractal analysis identifies the deviations in fractal structure within time periods with 

large and small fluctuations (Ihlen 2012). The MF-DFA method is a robust and 

powerful technique which is proposed by Kantelhardt et al. (2002) with the main 

advantage of allowing multifractal behavior detection in non-stationary time series. 

The time series data X(t) is assumed to be self-similar with Hurst exponent H ≥ 0. For 

any c>0 we have 

𝑋(𝑐𝑡) = 𝑐𝐻𝑋(𝑐𝑡)  (3) 

Where a process with H<0.5 exhibits anti-persistence with short range dependence 

which means that an increase in the process is high likely to be followed by decrease 
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in the next time segment and vice versa. When H>0.5, the time series exhibits 

persistence with long range dependence which means that successive non-overlapping 

time segment is more likely to have the same sign.  

The MF-DFA consists of five steps. Let X(t) be a time series of length N. First of 

all, the accumulated profile y(i) of the time series X(t) for i=1, …, N is determined.  

𝑦(𝑖) = ∑ [𝑋(𝑖) − �̅�]𝑁
𝑖=1   (4) 

Where �̅�denotes the mean of the time series X(t). Later, we divide the profile y(i) 

into non-overlapping segments of equal length scale s, Ns = int(N/s) rounding the 

number to the nearest integer, int(). In order to include a short part of the end of the 

profile, the same procedure starting from the end of the profile is repeated, giving 2Ns 

segments.  

Each of the 2Ns segments are estimated with a local trend by fitting a polynomial 

to the data. Then, the variances are calculated by two formulas in terms of segment v. 

For each segment v = 1, …, Ns: 

𝐹𝑠(𝑣, 𝑠) =
1

𝑠
∑ [𝑦((𝑣 − 1)𝑠 + 𝑖) − 𝑝𝑣

𝑛(𝑖)]2𝑠
𝑖=1   (5) 

And for the reverse selection of each segment v = Ns+1, …, 2Ns: 

𝐹𝑠(𝑣, 𝑠) =
1

𝑠
∑ [𝑦((𝑁 − 𝑣 − 𝑁𝑠)𝑠 + 𝑖) − 𝑝𝑣

𝑛(𝑖)]2𝑠
𝑖=1   (6) 

Where 𝑝𝑣
𝑛(𝑖) is the nth order fitting polynomial in the segment order, v. Linear, 

quadratic, cubic or higher order polynomials can be used for n>3. Next, the variances 

over all segments will be averaged in order to obtain qth order fluctuation functions 

which is defined as equation (7) for q≠0: 

𝐹𝑞(𝑠) = [
1

2𝑁𝑠
∑ [𝐹2(𝑣, 𝑠)]

𝑞
2⁄

2𝑁𝑠
𝑣=1 ]

1
𝑞⁄
  (7) 

And if for q=0, the equation is evaluated as in equation (8) 

𝐹0(𝑠) = exp [
1

2𝑁𝑠
∑ 𝑙𝑛[𝐹2(𝑣, 𝑠)]

2𝑁𝑠
𝑣=1 ]  (8) 
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The main purpose of the MF-DFA function is to determine the behavior of the q-

dependent fluctuations Fq(s) with regard to the time scale s, for various values of q. 

For different values of time scales s, the equations 5 thru 8 should be run repeatedly in 

order to be able to analyze the multi-scaling behavior of the fluctuation functions 

Fq(s). This will be obtained by estimating the slope of log-log plots of Fq(s) with 

respect to s for different values of q, such as -3, -2, -1, 0, 1, 2, 3. If long-range power-

law correlation as fractal proprieties is analyzed, fluctuation function Fq(s) will 

behave as the following power-law scaling 

𝐹𝑞(𝑠)~𝑠ℎ(𝑞)  (9) 

For different values of q, h(q) is regressed on the time series Fq(s). if h(q) is a 

constant value for all values of q, then the time series is said to be monofractal. 

Contrarily, if h(q) is a steadily decreasing function of q then the time series is said to 

be multifractal. For positive (negative) values of q, the Hurst exponents h(q) describe 

the scaling properties of large (small) fluctuations. As Ihlen (2012) stated the small 

(larger) local Hurst exponents in the periods of the multifractal time series with local 

fluctuation of large (small) magnitudes reflects the noise (random walk) like structure 

of the local fluctuations. It is therefore consistent with the generalized Hurst 

exponents for negative and positive q’s, respectively. Nevertheless, the local Hurst 

exponent is able to recognize structural changes within time series instantly. This is 

the main advantage with respect to generalized Hurst exponent. 

3.3.3. Vector Autoregressive Fractionally Integrated Moving Average 

(VARFIMA) 

Vector autoregressive fractionally integrated moving average (VARFIMA) 

models allows us to simultaneously address the long-run effects as well as the short 

and long term dynamics characterized by the AR, MA and the fractional differencing 
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parameters (Tsay, 2012). It has been a useful tool for many time series observations, 

including Sowell (1989) and Dueker and Startz (1998), Box-Steffensmeier and 

Tomlinson (2000), Clarke and Lebo (2003) and Durr et al. (1997). The 

ARFIMA(p,d,q) process can be described by the difference equation in (10) 

(1 − 𝑎1𝘌|𝑡𝑛−1| − ⋯− 𝑎𝑝𝘌|𝑡𝑛−𝑝|)(1 − 𝘌|𝑡𝑛−1|)
𝑑
𝑦(𝑡) = (1 + 𝑏1𝘌|𝑡𝑛−1| + ⋯+

𝑏𝑝𝘌|𝑡𝑛−𝑝|)𝑒(𝑡) (10) 

where y(t) is the state output, e(t) is the white noise input, and 𝘌 is the shift operator. 

An n-dimensional vector ARFIMA process should have real coefficients matrices ai, 

and bj of dimensions nxn, real integrating parameter di such that -0.5 < d < 0.5, and 

the covariance matrix Σ should be symmetric positive definite of dimensions n by n.  

The vector ARFIMA process has transfer matrix g(z-1) where g(z) function can be 

defined as (11) 

𝑔(𝑧) = ((𝐼𝑛 − 𝑎1𝑧 − ⋯− 𝑎𝑝𝑧𝑝). (𝑙𝑛 − 𝑧)𝑑)
−1

(𝐼𝑛 + 𝑏1𝑧 + ⋯+ 𝑏𝑞𝑧𝑞)  (11) 

where In is the n by n identity matrix. Equation (11) can now be written in 

summary notation as  

𝐴(𝘌)(𝐼 − 𝘌)𝑑𝑦(𝑡) = 𝑀(𝘌)𝜀(𝑡) (12) 

Where 𝘌 is the lag operator and A(z) = (𝐴0 − 𝐴1𝑧 − ⋯− 𝐴𝑝𝑧𝑝). (𝐴0 − 𝑧)𝑑 

and M(z) = 𝑀0 + 𝑀1𝑧 + ⋯+ 𝑀𝑞𝑧
𝑞. Equation (12) can be written as follows: 

𝑦(𝑡) = 𝑀(𝘌){𝐴−1(𝘌)(𝐼 − 𝘌)−𝑑𝜀(𝑡)} = 𝑀(𝐸)𝜉(𝑡)  (13) 

This means a two-step of calculation for ξ(t) first and then for y(t). 

From here, we see that VARFIMA model can be reduced in a straightforward 

way to a set of n interrelated ARFIMA models. Hence, when we rewrite equation 

(12), we get  

𝑦(𝑡) = 𝑀(𝘌)
1

|𝐴(𝘌)|(𝐼−𝘌)𝑑
𝐴∗(𝘌)𝜀(𝑡)  (14) 
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Where |𝐴(𝘌)| is the scalar valued determinant of A(𝘌) and 𝐴∗(𝘌) is the adjoint 

matrix. The process becomes 

|𝐴(𝘌)|(𝐼 − 𝘌)𝑑𝑦(𝑡) = 𝑀(𝘌)𝐴∗(𝘌)𝜀(𝑡)  (15) 

where a system of n-dimensional ARFIMA process is defined with the common 

lag operator, 𝘌 and co-integration fraction, d. 

3.4. Empirical Analysis 

Wavelet coherence displays the time series information in frequency and time 

space. The x axis displays the time information and the y axis displays the frequency 

information. The frequency and period/scale information are the same but inversely 

proportional. The low frequency means higher scale/period of the information or vice 

versa. As the scale gets higher, the longer periods of data set is taken into account. 

The warmer yellow colors in the figure indicate higher correlation area.  The cooler 

blue colors mean no correlation during the time and frequency period. The power of 

correlation is shown in the column on the right where 1(one) indicates highest 

correlation and 0 (zero) indicates no correlation. The black lines display the statistical 

significance at 5% level against the red noise in the time-frequency space on the 

graph. The faded area is due to the discontinuities in the wavelet function since the 

shape of the wavelet may exceed the length of the data (Unal and Yilmaz, 2016). This 

area may return wrong estimations and is accepted at the outside of the cone of 

influence (COI).  

Wavelet coherency is a great tool to understand where the correlation is higher 

in time and frequency space. As shown in Figure 2, there are blue regions found with 

less significance between 2 to 128 day periods. On the other hand, Nikkei is found to 

be correlated with each western market between 128 and 256 day periods at all times. 

Four dimensional multiple wavelet coherence results for other markets are shown in 
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Fig. A1 and A3 in the appendix section where they all move in coherence on 256 day 

period at all times. 

  

Figure 3.2. Multiple wavelet coherence of Nikkei with SP500, FTSE and DAX 

According to these results, we were able to point out that all time-series of 

each market are highly correlated around 256 day period, which corresponds to octave 

value of 8 (scale 256) in the wavelet transform. Hence we inversed the data at this 

specific scale neglecting the other scales and obtained the following time series as 

shown in Fig. 2. 
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Figure 3.3. Extracted Values of Indexes (Scale 256) 

When we examine the wavelet coherency of extracted values of Nikkei with 

each western market, we find out that all series are correlated at 256 day scale as 

shown in Fig. 4. We now discover that the inversed time series have higher 

correlation with respect to the raw data as seen in Table 3. In fact we have obtained a 

time series of Kospi with a correlation value of 91% and more with the rest of the 

markets. It is also realized that wavelet coherence provides a better tool to investigate 

the correlation between time series with respect to traditional correlation calculations. 

Instead of looking at the sole picture alone, wavelet coherence definitely helps locate 

the interrelated areas in time-frequency space in a broader manner and allows one to 

explore in much detail.  
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Figure 3.4. Wavelet coherence of inversed time series between Nikkei and each 

western market at Scale 256 

Table 3.2.  

Correlation Values of Extracted Indexes (Octave 8) 

  SP500 FTSE DAX NIKKEI TAIEX KOSPI 

SP500 1 0.9691 0.9133 0.9514 0.9556 0.9398 

FTSE 0.9691 1 0.9138 0.9309 0.9361 0.9259 

DAX 0.9133 0.9138 1 0.8862 0.9503 0.9196 

NIKKEI 0.9514 0.9309 0.8862 1 0.9398 0.9368 

TAIEX 0.9556 0.9361 0.9503 0.9398 1 0.9859 

KOSPI 0.9398 0.9259 0.9196 0.9368 0.9859 1 

 

The traditional method for calculating Hurst exponent takes the time series as 

one time period and provides a single value that indicates the global behavior of the 
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series. A time series has a long-range dependent (i.e., correlated) structure when the 

Hurst exponent is in the interval of 0.5–1 and an anti-correlated structure when the 

Hurst exponent is in the interval of 0–0.5. (Ihlen, 2012).  It is our assumption that 

better forecasting performances are due to the multifractal behavior of the time series 

obtained. When the time series are multifractal, the data develops long range 

dependence. When we examine both of the data, raw and inversed, we realize that 

inversed data still possess the multifractal data properties as well as the raw data 

itself. Hurst exponent of the series at scale 256 is less than the Hurst exponent 

calculated for the real data however they are still more or less around 1 as shown in 

table 4. We found out that after extracting the inversed scale, the biggest Hurst 

exponent change (~35%) has occurred with SP500 from 1.47 to 0.96. 

Table 3.3.  

Hurst Exponent of Real and Inversed (Scale 256) Time Series 

Hurst Exponents of Wavelet Scale Time Series (Octave 8) 

  NIKKEI TAIEX KOSPI SP500 FTSE DAX 

Hurst Exponent Real Data 1.2398 1.3227 1.4195 1.4781 1.4124 1.3231 

Hurst Exponent Scale 256 1.0517 1.0384 1.0637 0.9632 0.9665 1.0156 

% Change 15.2% 21.5% 25.1% 34.8% 31.6% 23.2% 

 

We will look at the fractional function series used to calculate the local Hurst 

exponents. The advantage of local Hurst exponent compared with traditional Hurst 

exponent is the ability of local Hurst exponent to identify the time instant of structural 

changes within the time series (Ihlen 2012). In Figure 5 (A-top), inversed wavelet 

transform data at scale 256 for Nikkei is shown and in Figure 5 (B-bottom), 

corresponding local Hurst exponents at scale 256 of Nikkei is shown. The inversed 
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data and corresponding local Hurst exponents of the other markets may be found in 

appendix B.  

 

Figure 3.5. Nikkei Inverse Data (A-top) and Corresponding Local Hurst Exponents at 

Scale 256 (B-bottom) 

The maximum and minimum local Hurst exponent of Nikkei at scale 256 was 

2.4589 and 0.7461, respectively as shown in Table 5. In all the series obtained, the 

lowest local Hurst exponent belongs to the latest segment of the series, weakening in 

its long range dependence behavior day by day. 

Table 3.4.  

Minimum and Maximum Local Hurst Exponents at Scale 256 

Min and Max Local Hurst Exponents at Scale 256 

  NIKKEI TAIEX KOSPI SP500 FTSE DAX 

Min Hloc 0.7461 0.8283 0.8761 0.5462 0.6317 0.7615 

Max Hloc 2.4589 2.4595 2.6298 2.4161 2.1514 2.4499 
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In Fig. 6, the fluctuation function series used in the calculation of the local 

Hurst exponents at scale 256 are shown. The local Hurst exponents are calculated out 

of values found in fluctuation function.  

 

Figure 3.6. The time series used to calculate local Hurst Exponents at scale 256  

We will be able to use these time series to forecast the prices for the next 30 

days but first we needed to rescale them. We found the ratio between the first value of 

the series and the first value of the raw data and divided the whole series with that 

ratio. So we obtained a time series closer in ratio. Since the real raw time series data 

and time series data obtained at scale 256 are both demonstrating multi fractal 

behavior, we will use autoregressive fractionally integrated moving average 

(ARFIMA) model with the real data and vector autoregressive fractionally integrated 

moving average (VARFIMA) model to estimate a process and forecast the price for 

the next 30 days and compare the results accordingly.   
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3.5. Forecasting Results 

As the dimension of the model increases, the VARFIMA models consider not 

only the historical data of each series but also other fractionally co-integrated 

variables in between the series. Hence, multivariate models leads to more accurate 

results compared to scalar counter models as Lutkepohl and Poskitt (1996) stated. 

That is why highly correlated data series is important to use in modeling in order to 

establish efficient estimated process for better forecasting performances.  The 

forecasting performance of the raw data using ARFIMA process will be compared 

with the forecasting performance of the 2D VARFIMA process.  

The data used in VARFIMA is obtained by the following these steps. Firstly, it is 

extracted out of raw data using scale by scale wavelet transform at scale 256. After 

the data is verified to be multi fractal, the local Hurst exponents are calculated. In this 

calculation, a fractional function is obtained with corresponding time series data. 

Finally, we use these calculated fluctuation function time series data in 2D 

VARFIMA model. 

For each of the eastern market, we have forecasted two trials with each 

western market for a chosen time interval. The time intervals and their designated 

figures are listed in Table 5. 

Table 3.5.  

Dates used to forecast market prices 

Forecasting Time Intervals 

  From Days Figure From Days Figure 

NIKKEI SP500 12/24/2010 199 Fig. 3.25 12/19/2009 1275 Fig. 3.19 

NIKKEI FTSE 12/24/2010 215 Fig. 3.26 12/24/2010 706 Fig. 3.7 

NIKKEI DAX 11/19/2009 999 Fig. 3.27 11/19/2009 1199 Fig. 3.20 
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TAIEX SP500 03/29/2010 385 Fig. 3.28 12/19/2009 803 Fig. 3.21 

TAIEX FTSE 03/29/2010 372 Fig. 3.29 12/19/2009 772 Fig. 3.22 

TAIEX DAX 11/14/2009 501 Fig. 3.39 11/14/2009 1001 Fig. 3.8 

KOSPI SP500 10/15/2010 776 Fig. 3.31 11/19/2011 478 Fig. 3.9 

KOSPI FTSE 07/07/2010 576 Fig. 3.32 03/29/2010 776 Fig. 3.23 

KOSPI DAX 12/19/2009 1176 Fig. 3.33 12/19/2009 875 Fig. 3.24 

 

Even though we have shown that the time series data have long range 

dependence and multi fractal behavior, ARFIMA results have not resulted with good 

estimates. The forecasts with VARFIMA on the other hand have given very efficient 

results. Because of having two vector in the model, the upper and lower bands are 

given in couples. The highest band in the upper boundary and the lowest band in the 

lower boundary have been eliminated. In Figure 7-9, one can follow the efficiency of 

these estimates. 

 

Figure 3.7. Nikkei with FTSE Forecasting Results for the next 30 days data taken 

from December 24, 2010 for 706 days 
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Figure 3.8. Taiex with DAX Forecasting Results for the next 30 days data taken from 

November 14, 2009 for 1001 days 

 

Figure 3.9. Kospi with SP500 Forecasting Results for the next 30 days data taken 

from November 19, 2011 for 478 days 

One interesting point to make is that we have used data sets as little as 199 

days and as high as 1275 days and we were still able to obtain results with efficient 

forecasts. This is aligning with the statement made by Dias and Kapetanios (2011) 

that consistent forecasting results may be obtained in VARMA regardless of the size 

of the dataset. We have shown that this is also true with VARFIMA process. 
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Furthermore, as stated by Oral and Unal (2017), the price change direction, either 

increasing or decreasing trend, have been indicated very efficiently. 

3.6. Discussion and Conclusion 

We have investigated the co-movement of eastern and western markets using 

multiple wavelet coherence and multifractal de-trended fluctuation analysis. We have 

shown that multiple wavelet coherence provides much better resolution with respect 

to traditional correlation methods to visualize correlation of different time series on 

various periods and time. As stated in Oral and Unal (2017), multiple wavelet 

coherence provides better and visual justification of in-phase relation in different 

states and the correlation between any dataset may be explored more meticulously.  

Janakiramanan and Lamba (1998) and Cha and Cheung (1998) states that eastern 

markets demonstrate more in-phase movement with the western markets of the 

developed countries with respect to the markets in the eastern part of the world. Our 

findings also coincides that eastern markets have 90% or more correlation with the 

western markets. We have also shown that there is long range interdependence 

between all markets around 256 day period at all times.  

Pena and Sanchez (2007) conclude that the multivariate models perform better 

with respect to the univariate models. We have reached the same conclusion that the 

forecasting performance of multifractal time series is remarkably increased by using 

VARFIMA model. These successful results were indifferent to small-size or larger-

size data sets used which align with the findings of Dias and Kapetanios (2011).  

We have seen that multiple wavelet coherence and continuous wavelet transform 

may be used to reach time series date sets with higher correlation as indicated by Oral 

and Unal (2017). Local Hurst exponents of the inversed time series are proven to be 

multifractal almost at all times. We realized that the lowest local Hurst exponents 
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values have been calculated during the latest periods for all the markets. It can be 

concluded that there has been a weakening trend in long range dependence in the 

markets and possessing less persistent structure. This indicates faster evolving 

variations in the prices or in other words, periods with large variations as Ihlen (2012) 

pointed. Furthermore, we have seen that the trend of the price change is also pointed 

correctly, increasing or decreasing direction. The last but not the least, we have also 

shown that the time series used to calculate local Hurst exponents can be used to 

model an estimated process using VARFIMA model and provide substantially better 

forecasting performance in comparison to its univariate form, ARFIMA.  
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Appendix A. Multiple Wavelet Coherence of Real Data and Inversed Data of 

Each Market with Western Markets 

 

Figure 3.10. Multiple wavelet coherence of Taiex with SP500, FTSE and DAX 
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Figure 3.11. Wavelet coherence of inversed time series between Taiex and each 

western market at Scale 256 

 

Figure 3.12. Multiple wavelet coherence of Kospi with SP500, FTSE and DAX 

 

Figure 3.13. Wavelet coherence of inversed time series between Kospi and each 

western markets at Scale 256 



79 
 

  

Appendix B. Inversed Data and Corresponding Local Hurst Exponents 

 

Figure 3.14. Taiex Inverse Data and Corresponding Local Hurst Exponents at Scale 

256 

 

Figure 3.15. Kospi Inverse Data and Corresponding Local Hurst Exponents at Scale 

256 
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Figure 3.16. SP500 Inverse Data and Corresponding Local Hurst Exponents at Scale 

256 

 

Figure 3.17. FTSE Inverse Data and Corresponding Local Hurst Exponents at Scale 

256 
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Figure 3.18. DAX Inverse Data and Corresponding Local Hurst Exponents at Scale 

256 
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Appendix C. Forecasting Results 

 

Figure 3.19. Nikkei with SP500 Forecasting Results for the next 30 days data taken 

from December 19, 2009 for 1275 days 

 

Figure 3.20. Nikkei with SP500 Forecasting Results for the next 30 days data taken 

from December 24, 2010 for 215 days 
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Figure 3.21. Nikkei with FTSE Forecasting Results for the next 30 days data taken 

from December 24, 2010 for 199 days 

 

Figure 3.22. Nikkei with DAX Forecasting Results for the next 30 days data taken 

from November 19, 2009 for 999 days 
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Figure 3.23. Nikkei with DAX Forecasting Results for the next 30 days data taken 

from November 19, 2009 for 1199 days 

 

Figure 3.24. Taiex with SP500 Forecasting Results for the next 30 days data taken 

from March 29, 2010 for 385 days 
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Figure 3.25. Taiex with SP500 Forecasting Results for the next 30 days data taken 

from December 19, 2009 for 803 days 

 

Figure 3.26. Taiex with FTSE Forecasting Results for the next 30 days data taken 

from March 29, 2010 for 372 days 
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Figure 3.27. Taiex with FTSE Forecasting Results for the next 30 days data taken 

from December 19, 2009 for 772 days 

 

Figure 3.28. Taiex with DAX Forecasting Results for the next 30 days data taken 

from November 14, 2009 for 501 days 
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Figure 3.29. Kospi with SP500 Forecasting Results for the next 30 days data taken 

from October 15, 2010 for 776 days 

 

Figure 3.30. Kospi with FTSE Forecasting Results for the next 30 days data taken 

from July 07, 2010 for 576 days 
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Figure 3.31. Kospi with FTSE Forecasting Results for the next 30 days data taken 

from March 29, 2010 for 776 days 

 

Figure 3.32. Kospi with DAX Forecasting Results for the next 30 days data taken 

from December 19, 2009 for 1176 days 
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Figure 3.33. Kospi with DAX Forecasting Results for the next 30 days data taken 

from December 19, 2009 for 875 days 
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CHAPTER 4 

MODELING AND FORECASTING TIME SERIES OF PRECIOUS METALS: 

A NEW APPROACH TO MULTIFRACTAL DATA 

 

Summary 

In this chapter, we introduce a novel approach to multifractal data in order to achieve 

transcended modeling and forecasting performances. The data is composed of ~2000 

daily prices of gold, silver and platinum starting from July, 2011. First, the long range 

and co-movement dependencies on time-frequency space are scrutinized using 

multiple wavelet coherence analysis. Then, the multifractal behaviors of the series are 

verified by multifractal de-trended fluctuation analysis and its local Hurst exponents 

are calculated. Also, root mean squares of residuals at the specified scale are extracted 

from an intermediate step during local Hurst exponent calculations. These internally 

calculated series have been used to estimate the process with vector autoregressive 

fractionally integrated moving average (VARFIMA) model and forecasted 

accordingly. The results have shown that all metals do behave in phase movement on 

long term periods and possess multifractal features. Furthermore, the intermediate 

time series obtained during local Hurst exponent calculations still appertain the co-

movement as well as multifractal characteristics of the raw data and may be 

successfully re-scaled, modeled and forecasted by using VARFIMA model. 

Conclusively, VARFIMA model have notably surpassed its univariate counterpart 

(ARFIMA) in all efficacious trials while re-emphasizing the importance of co-

movement procurement in modeling.  
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4.1. Introduction 

Multi fractal structure analysis has become more and more popular in financial 

studies. It is referred as one of the strong and dynamic techniques due to its ability to 

detect multifractal behavior in non-stationary time series. Especially, local Hurst 

exponents help point out the discontinuities in the financial time series. Hence, any 

asymmetric or inconsistent behavior in the time series, such as the failure of any 

economic system, can be captured. These irregularities are the main reason for the fat 

tail observations. Local Hurst exponents demonstrate that these irregular behaviors 

may be organized to be used in various models/methods.  

Mandelbrot and Ness has laid the foundations of multifractal analysis by 

introducing fractional Brownian motions, fractional noises and its applications 

(Mandelbrot and Van Ness, 1968). Later, multifractal de-trended fluctuation analysis 

(MF-DFA) has been proposed as an alternative method in analyzing financial time 

series by Kantelhardt et al. (2002). Heretofore, there have been many researchers 

using this method in their analysis. Zhang et al. have investigated asymmetric 

multiscale multifractal analysis of wind speed signals (Zhang et al., 2017). 

Multifractal and wavelet analysis of epileptic seizures have been studied by Dick and 

Mochovikova (2011). An in-depth analysis of GE stocks were performed by Thomson 

and Wilson by contrasting the results with those obtained using multifractal de-

trended fluctuation analysis and using conventional time series models (Thompson 

and Wilson, 2014). Benbachir and Alaoui employed the MF-DFA method in order to 

explore the multifractal properties of the Moroccan Dirham compared to the US 

Dollars (Benbachir and Alaoui, 2011). Tas and Unal studied the multifractal character 

of natural gas daily return using a comparative study of MF-DFA method (Tas and 

Unal, 2013).  
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The wavelet analysis is also one of the methods in scrutinizing the time series. 

Unlike Fourier transform, as Burrus et al. (1998) indicated, wavelet analysis does not 

need stationarity and is able to look deep into the frequency information of the series 

at different scales without losing time information (Reboredo and Rivera-Costa, 2014) 

which helps eliminate the weaknesses in Fourier transform (Gulerce and Unal, 2016). 

Gencay’s study (2002) has become a pioneer work for many researchers using 

wavelet tools to analyze financial time series in many studies such as Aguiar-Conraria 

and Soares (2012-2013), Barunik et al. (2013), and McCarthy and Orlov (2012). 

Multi-scale analysis is accepted as one of the main applications of wavelet methods in 

finance and economics (Haven, 2012).  

There have been many investigations looking into the relation of precious metals 

using these types of tools. Kucher and McCoskey indicated that the long-run 

relationships between precious metal prices are strongly influenced by economic 

conditions using a vector error correction model (Kucher and McCoskey, 2017). A 

flexible modification of the DCC model that accounts for asymmetry and long 

memory in variance is applied on precious metals by Klein (2017). He et al. (2017) 

uses wavelet analysis and ARMA model with higher accuracy to forecast prices of 

precious metals. The causal relationship among the spot prices of precious metals 

through mean and variance have been investigated by Bhatia et al (2018) and resulted 

with a strong causality for the middle quantiles and with significant implications for 

policy makers, portfolio managers and investors. 

In this chapter, we will use a software package for wavelet coherence analysis 

provided by Torrence and Compo (1998) and Grinsted et al. (2004) and a Matlab tool 

for multifractal de-trended fluctuation analysis developed by Ihlen (2012). The former 

will be used to analyze inter relations, co-movement dependencies, frequent and 
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consistent signals in multiple financial time series of precious metals (gold, silver and 

platinum). The latter will be used to confirm their multifractal behavior, calculate 

local Hurst exponents and obtain the fractal function of time series at specific scale 

determined. 

Multiple wavelet coherence will be used to determine the specific time period and 

scale that possesses common long range dependence out of the time series. With the 

help of Matlab tool, the multifractal behavior of these time series will be validated 

and a new series out of local Hurst exponent calculations will be obtained. These new 

series will be used to model and forecast the prices. It is our assumption that 

forecasting performances will be better using vector autoregressive fractionally 

integrated moving average (VARFIMA) compared to autoregressive fractionally 

integrated moving average (ARFIMA) model. 

It is evidently more challenging to estimate the price on the next day due to many 

different players in the financial world. Thus, developing new methodologies to 

improve the forecasting performances has become one of the fundamental goals of 

econophysics as well as financial engineering. There have been univariate as well as 

multivariate models applied in the past. The first multivariate model has been 

introduced by Quenouille in 1957 and later improved by Akaike (1974), Dunsmuir 

and Hannan (1976) and Hannan (1981) in order. Multivariate models are a dynamic 

system of equations that examine the impacts of fluctuations (shocks) or correlations 

(interactions) between financial variables as stated by Oral and Unal (2017). 

Multivariate models provide better forecasting results with higher precision because 

of using more information out of multiple highly correlated data and having low 

mean-squared errors compared to univariate models (Oral and Unal, 2017). 
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Section 2 covers the data and methodology used in this chapter. The main 

equation of continuous wavelet transform and multiple wavelet coherence, basics of 

multifractal de-trended fluctuations analysis and vector autoregressive fractionally 

integrated moving average model will be included as a summary review. In section 3, 

multiple wavelet coherence will be utilized to detect the highly correlated time 

periods and frequencies. After the multifractal characteristics of the series are 

verified, a new series of fractional function will be obtained out of local Hurst 

exponent calculations at the specified scale. Section 4 will compare and discuss the 

forecasting results of both multivariate and univariate models. Section 5 will be ended 

with the discussion of the results. In appendix A will display two forecasting results 

of each metal couple along with the plot of the data set extracted from the local Hurst 

exponents’ calculations at the specified period.  

4.2. Empirical Framework 

4.2.1. Data 

The daily prices of gold, silver and platinum is acquired from Yahoo Finances! 

starting from July 2011 which is composed of approximately 2000 daily data.  
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Figure 4.1. The daily prices of gold, silver and platinum starting from July, 2011 

to November, 2016. 

As can be seen from Table 1, silver has the highest mean and standard deviation, 

thus there is higher fluctuation in the prices of silver with respect to other metals. One 

thing that draws one’s attention is the skewness value of platinum. The negative 

skewness or negatively skewed means frequent small gains and a few extreme losses. 

This could indicate platinum a safer investment with respect to gold and silver during 

economic crisis. On the other hand, positive skewness or positively skewed means 

frequent small losses but a few extreme gains which is greater for silver due to its 

higher volatility that we pointed.   

Table 4.1.  

Daily Data of Precious Metals from July 2011 to November 2016 

 Mean Median St. Dev. Kurtosis Skewness 
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Gold 4736.03 4478.74 736.49 1.8535 0.4855 

Silver 7805.07 6845.28 2478.29 2.4046 0.7307 

Platinum 4574.81 4843.27 872.87 2.0483 -0.2758 

 

When we look at the traditional correlation calculation results of these metals, we 

realize that there is higher correlation with gold and silver with respect to platinum. 

Additionally, platinum seems to be in harmony with silver more than gold itself. It is 

surprising to see 85% correlation with silver and platinum even though the volatility 

of silver prices is expected to be higher.  

Table 4.2.  

Correlation of gold, silver and platinum 

  Gold Silver 

Silver 0.718556   

Platinum 0.54741 0.8564173 

In this chapter, we will look deep into co-movement of metal prices in time and 

frequency space by using multiple wavelet coherence. Once highly correlated time 

interval and frequency is determined, the multi fractal behavior of the real series will 

be validated. A new time series of fluctuation function at the specified scale will be 

obtained out of its local Hurst exponents calculations. Finally, we will compare and 

discuss the performance of modeling and forecasting using these series with the help 

of univariate and multivariate models.   
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4.2.2. Methodology 

4.2.2.1. Continuous wavelet transform (CWT) and multiple wavelet 

coherence. 

An application of wavelet analysis in finance and economics were first presented 

by Gencay in 2002. Aguiar-Conraria and Soares [2012, 2013], Barunik et al. (2013), 

Yilmaz and Unal (2016) are some of the many researchers who have utilized these 

tools in their studies. There are many ways how to sort the types of the wavelet 

transforms. The division based on the wavelet orthogonality defines two methods, 

discrete wavelet transform (DWT) for orthogonal wavelets and continuous wavelet 

transform (CWT) for non-orthogonal wavelets. Nevertheless, CWT performs better to 

see the signal frequencies evolution during the duration of the signal and compare the 

spectrum with other signals spectra, thus is used more for feature extraction purposes 

(Grinsted et al., 2004) to see the results in more humane form. CWT follows the 

following form in equation (1), 

𝐶𝑊𝑇𝑥
𝜓(𝑠, 𝜏) = ⟨𝑋,⇥ 𝜓(𝑠, 𝜏)⟩ =

1

√𝑠
∫ 𝑋(𝑡)

+∞

−∞
𝜓∗ (

𝑡−𝜏

𝑠
)𝑑 (1) 

Where the transforming function, also known as the mother wavelet, is"𝜓", the 

translation parameter is "𝜏"and the scale parameter is “s”. The translation parameter is 

the time information in the transform domain and the scale parameter is the frequency 

of the corresponding information. 

Wavelet coherence may be evaluated not only in two dimensional data sets but 

also in multi-dimensional sets of data for the same time and frequency space. Thus, 

multivariate models where three dimensional multiple wavelet coherence is possible 

as shown in the following equation (2), 

𝐶𝑑 = 1 − 𝑅23
2 − 𝑅12

2 − 𝑅13
2 + 𝜌12𝜌23𝜌31 + 𝜌13𝜌21𝜌32  

𝐶𝑑 = 1 − 𝑅23
2 − 𝑅12

2 − 𝑅13
2 + 2𝑅(𝜌12𝜌23𝜌31) 
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𝐶𝑑  = 1 − 𝑅23
2 − 𝑅12

2 − 𝑅13
2 + 2𝑅(𝜌12𝜌23𝜌13

∗ )  (2) 

Where C denotes complex coherence, 𝜌𝑖𝑗  is the correlation factor and R2ij is 

squared multiple wavelet coherencies. For details of these methods, the reader may 

look into the article, “co-movement of precious metals and forecasting using scale by 

scale wavelet transform (Oral and Unal, 2017).” 

4.2.2.2. Multifractal de-trended fluctuation analysis (MF-DFA). 

Multifractal de-trended fluctuation analysis (MF-DFA) may be used to analyze 

financial time series demonstrating volatility clustering or many different forms of 

irregular behavior. It is in the nature of all financial time series data to have fractal 

structures and behavior. As Ihlen (2012) pointed, the deviations in fractal structure 

within time periods with large and small fluctuations may be identified by multifractal 

analysis. The main advantage of the method is to be able to detect multifractal 

behavior in non-stationary time series. That is why it is proposed as a robust and 

powerful technique by Kantelhardt et al. (2002). The aim of the MF-DFA is to find 

the spectrum of singularities both for stationary as well as non-stationary time series. 

It is assumed that X(t) is self-similar time series with Hurst exponent H ≥ 0. For any 

c>0, we have 

𝑋(𝑐𝑡) = 𝑐𝐻𝑋(𝑐𝑡)  (3) 

According to equation (3), when H is greater than 0.5, the time series data 

possesses persistent behavior with long range dependence. This persistency indicates 

practicably the same sign for the next non-overlapping time segment in line. If H is 

less than 0.5, the time series data will exhibit anti-persistent behavior with short range 

dependence. This, however, anti-persistent behavior would mean that an increase 

(decrease) in the process is most likely to be followed by decrease (increase) in the 

next time segment.  
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Assume that X(t) is a time series of length N with mean of �̅�. Firstly, the 

accumulated profile y(i) of the time series X(t) for i=1, … , N is determined.  

𝑦(𝑖) = ∑ [𝑋(𝑖) − �̅�]𝑁
𝑖=1   (4) 

Firstly, a non-overlapping segment of equal length scale s is formed.  Then the 

profile y(i) is divided to the number Ns = int(N/s) rounding to the nearest integer, int(). 

The same procedure is repeated starting from the end of the profile in order to include 

a short part of the end of the profile, doubling the number of segments, 2Ns. 

Each segment is fitted by a polynomial providing a local trend to the data and the 

variances are calculated by two formulas in terms of segment v. For each segment v = 

1, … , Ns: 

𝐹𝑠(𝑣, 𝑠) =
1

𝑠
∑ [𝑦((𝑣 − 1)𝑠 + 𝑖) − 𝑝𝑣

𝑛(𝑖)]2𝑠
𝑖=1   (5) 

And for each segment from the end of the profile v = Ns+1, … , 2Ns: 

𝐹𝑠(𝑣, 𝑠) =
1

𝑠
∑ [𝑦((𝑁 − 𝑣 − 𝑁𝑠)𝑠 + 𝑖) − 𝑝𝑣

𝑛(𝑖)]2𝑠
𝑖=1   (6) 

𝑝𝑣
𝑛(𝑖) is the nth order fitting polynomial in the segment order, v. For n>3, any 

order of polynomials can be used, linear, quadratic, cubic or higher. Next, qth order 

fluctuation functions will be obtained by averaging the variance over all segments. 

This calculation is shown in equation (7) as following, for q≠0: 

𝐹𝑞(𝑠) = [
1

2𝑁𝑠
∑ [𝐹2(𝑣, 𝑠)]

𝑞
2⁄

2𝑁𝑠
𝑣=1 ]

1
𝑞⁄
  (7) 

And if q=0, the equation is evaluated as in equation (8) 

𝐹0(𝑠) = exp [
1

2𝑁𝑠
∑ 𝑙𝑛[𝐹2(𝑣, 𝑠)]

2𝑁𝑠
𝑣=1 ]  (8) 

Resolving the behavior of the q-dependent fluctuations Fq(s) is the main goal of 

MF-DFA while taking into consideration the time scale s and various values of q. The 

equation 5 thru 8 should be run in loop for various values of time scales s.  Hence, the 

multi-scaling behavior of the fluctuation functions Fq(s) may be analyzed. In order to 
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do that, the slope of log-log plots of Fq(s) with respect to s for different values of q 

(such as -3, -2, -1, 0, 1, 2, 3) should be estimated. The fluctuation function Fq(s) will 

demonstrate the following power-law scaling behavior as shown in equation (9) 

depending on the analysis of long-range power-law correlation as fractal proprieties, 

𝐹𝑞(𝑠)~𝑠ℎ(𝑞)  (9) 

For different values of q, h(q) is regressed on the time series Fq(s). The time series 

is called monofractal, when a constant value for h(q) for all values of q is true. 

Conversely, the time series is said to be multifractal, when h(q) is a steadily 

decreasing function of q. The Hurst exponents of h(q) represent the scaling properties 

of small (large) fluctuations when the values of q are negative (positive). Ihlen (2012) 

pointed that the size of local Hurst exponents in the periods of the multifractal time 

series with local fluctuation of different magnitudes determines the structure of the 

local fluctuations.  Small (large) local Hurst exponents mean large (small) noise like 

(random walk like) structure of local fluctuations. This is identical with the 

generalized Hurst exponents for negative and positive values of q, respectively. 

Regardless, the structural changes within time series are caught instantly with the 

local Hurst exponents and it is the major advantage compared to generalized Hurst 

exponent.  

4.2.2.3. Vector autoregressive fractionally integrated moving 

average (VARFIMA). 

The efficiency of multivariate time series analysis may be increased by 

understanding the importance of synchronization of multiple time series. Tsay (2013) 

stated that the long-run effects as well as the short and long term dynamics 

characterized by the AR, MA and the fractional differencing parameters may be 

simultaneously addressed by vector autoregressive fractionally integrated moving 



101 
 

  

average (VARFIMA) model. Sowell (1989), Durr et al. (1997), Dueker and Startz 

(1998), Box-Steffensmeier and Tomlinson (2000), Clarke and Lebo (2003) have all 

used these models in their time series observations. Primarily, the ARFIMA (p, d, q) 

process can be described by the difference equation in (10) 

(1 − 𝑎1𝐿|𝑡𝑛−1| − ⋯− 𝑎𝑝𝐿|𝑡𝑛−𝑝|)(1 − 𝐿)𝑑𝑦(𝑡) = (1 + 𝑏1𝐿|𝑡𝑛−1| + ⋯+

𝑏𝑝𝐿|𝑡𝑛−𝑝|)𝑒(𝑡) (10) 

Where y(t) is the state output, e(t) is the white noise input, and 𝐿 is the shift 

operator. ai, and bj are real coefficient matrices of n by n dimensions, di is real 

integrating parameter between -0.5 and +0.5, Σ is the covariance matrix which is 

symmetric positive definite of dimensions n by n.  

The vector ARFIMA process has transfer matrix t(z-1) where t(z) function can be 

defined as (11) 

𝑡(𝑧) = ((𝐼𝑛 − 𝑎1𝑧 − ⋯− 𝑎𝑝𝑧𝑝). (𝑙𝑛 − 𝑧)𝑑)
−1

(𝐼𝑛 + 𝑏1𝑧 + ⋯+ 𝑏𝑞𝑧𝑞) 

 (11) 

where In is the identity matrix with dimensions n by n. Equation (11) can now be 

written in summary notation as  

𝐴(𝐿)(𝐼 − 𝐿)𝑑𝑦(𝑡) = 𝑀(𝐿)𝜀(𝑡) (12) 

Where 𝐿 is the lag operator and A(z) = (𝐴0 − 𝐴1𝑧 − ⋯ − 𝐴𝑝𝑧
𝑝). (𝐴0 − 𝑧)𝑑 and 

M(z) = 𝑀0 + 𝑀1𝑧 + ⋯+ 𝑀𝑞𝑧
𝑞. Equation (12) can be written as follows: 

𝑦(𝑡) = 𝑀(𝐿){𝐴−1(𝐿)(𝐼 − 𝐿)−𝑑𝜀(𝑡)} = 𝑀(𝐿)𝜉(𝑡)  (13) 

This means a two-step of calculation for ξ(t) first and then for y(t). 

From here, we see that VARFIMA model can be reduced in a straightforward way 

to a set of n interrelated ARFIMA models. Hence, when we rewrite equation (12), we 

get  
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𝑦(𝑡) = 𝑀(𝐿)
1

|𝐴(𝐿)|(𝐼−𝐿)𝑑
𝐴∗(𝐿)𝜀(𝑡)  (14) 

Where |𝐴(𝐿)| is the scalar valued determinant of A(𝐿) and 𝐴∗(𝐿) is the adjoint 

matrix. The process becomes 

|𝐴(𝐿)|(𝐼 − 𝐿)𝑑𝑦(𝑡) = 𝑀(𝐿)𝐴∗(𝐿)𝜀(𝑡)  (15) 

Where a system of n-dimensional ARFIMA process is defined with the common 

lag operator, 𝐿 and co-integration fraction, d. 

4.3. Wavelet Coherence and Local Hurst Exponents  

Wavelet coherence displays the time series data in two dimensional axes of 

frequency and time space. The time information is displayed on x axis and the 

frequency information on y axis. The frequency information is also represented as 

period or scale. However they are inversely proportional where high frequency means 

low scale or vice versa. The column on the right indicates the correlation scale. The 

yellow colors in the figure means higher correlation and the blue colors mean no 

correlation during the specific time and frequency interval. The power of correlation 

is one at its highest point and zero where there is no correlation. The black lines 

represent the statistical significance at 5% level against red noise. Since the length of 

the wavelet may exceed the length of the data on the edges, the discontinuities in the 

wavelet function is displayed in the faded area [30]. The faded area falls onto the 

outside of the cone of influence (COI).  
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Figure 4.2. Multiple wavelet coherence of gold with silver and platinum 

Three dimensional multiple wavelet coherence would bring out the effect of two 

factors together on the commodity itself. As we look at the multiple wavelet 

coherence of silver with gold and platinum, it shows a strong relation almost at all 

times and frequencies. There is a weakening relationship at around 32 day period 

from time to time. All metals are displaying very strong relation along 256 day period 

at all times. It was also possible to point out that platinum has the lowest amount of 

coherence with other metals. The traditional correlation calculations have 

demonstrated themselves in much detail with the wavelet coherence diagrams.    
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Figure 4.3. Multiple wavelet coherence of silver with gold and platinum 

It is seen that there are some of the areas colored blue considering long range 

dependency. The blue areas indicate low interrelation between the metals at the 

specific time and frequency. These areas are found more in platinum diagram but less 

in silver diagram. This may be because of reaching equilibrium in prices at different 

rates during shocks or stresses. Kucher and McCoskey (2017) find in their study that 

the error correction mechanisms between precious metal prices seem to be 

asymmetric. This also aligns with our observations and explains some of the weak 

long run (low frequency / higher periods) relationship over certain periods of time.  
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Figure 4.4. Multiple wavelet coherence of platinum with gold and silver 

The generalized Hurst exponent considers the time series as a single time 

period and provides a single value that indicates the global behavior of the series. A 

correlated (long range dependent) structure is observed when the Hurst exponent is in 

the interval of 0.5 and 1. An anti-correlated (short range dependent) structure is 

observed when the Hurst exponent is in the interval of 0 and 0.5. It is expected in this 

chapter that the better performance of forecasting will be obtained due to the long 

range dependence and the multifractal behavior of the time series obtained. In table 3 

it is shown that the real time series data of all metals have generalized Hurst exponent 

even greater than 1, indicating a strong long range dependence.  

Table 4.3.  

Hurst Exponent of Real and Fluctuation function at scale 256 

 Gold Silver Platinum 
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General Hurst Exponents 1.5043 1.4714 1.4927 

General Hurst Exponents of Fluctuation 

Function Time Series at Scale 256 

1.3255 1.3237 1.4515 

% Change 11.89% 10.04% 2.76% 

 

When we calculated the local Hurst exponents at scale 256, the fluctuation 

function series obtained at the specified scale are still demonstrating multifractal 

behavior as strong as the raw data. There is only 10% difference for gold and silver 

and 2.7% for platinum. The main advantage of working with local Hurst exponents 

with respect to generalized Hurst exponent is the ability of local Hurst exponent to 

identify the time instant of structural changes within the time series (Ihlen, 2012).  

Table 4.4.  

Minimum and Maximum Values of Local Hurst exponents at scale 256 

  Gold  Silver Platinum 

Min Hloc 1.0342 0.8648 0.8657 

Max Hloc 1.8254 2.0615 2.133 

 

In figure 5 thru 7, the real data of each metal and their corresponding local 

Hurst exponents are displayed. In table 4, the minimum and maximum values of local 

Hurst exponents at scale 256 are listed. Even though gold has the lowest maximum 

value among all the metals, it does not have weakening long range dependence with 

the lowest Hurst exponent value of 1.03. Silver and platinum on the other hand have 

minimum Hurst exponents of 0.86 around the same time interval. This is indicating a 

weaker persistent behavior in terms of long range dependence. Silver and platinum 

are demonstrating stable long range dependence in the latest times of the series. 

However, as shown in figure 5, gold has a continuously increasing value of local 
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Hurst exponents, suggesting stronger long range dependence with even smaller 

variations in price.  

 

Figure 4.5. Gold Local Hurst Exponents at Scale 256 day period 

 

Figure 4.6. Silver local Hurst exponents at Scale 256 day period 
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Figure 4.7. Platinum local Hurst exponents at scale 256 day period 

In figure 8, the fluctuation function time series obtained during the calculation 

of local Hurst exponents at scale 256 are shown. These time series will be used to 

model and forecast the prices for the next 30 days. However due to the nature of the 

calculation, the values need to be rescaled with respect to the raw data. To do so, we 

calculated the ratio between the mean value of the fluctuation function and the mean 

value of the raw data. Then we divided the series with that ratio and obtained a new 

series closer to the real data in value. 
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Figure 4.8. Fraction function at scale 256  

Since we know that both the real data and the fluctuation function data exhibits 

multifractal behavior, autoregressive fractionally integrated moving average 

(ARFIMA) model with the real data and vector autoregressive fractionally integrated 

moving average (VARFIMA) model with the fluctuation function time series will be 

used to estimate a process and forecast for the next 30 days. Finally we will compare 

the results accordingly.  

4.4. Forecasting Results and Analysis 

Multivariate models leads to more accurate results compared to scalar counter 

models (Tsay, 2013) because not only the historical data of each series but also other 

fractionally co-integrated variables in between the series are taken into consideration 

in VARFIMA models. Therefore it is important to set up highly correlated data set. It 

would help establish efficiently estimated processes with better forecasting results. 

The raw data and fluctuation function time series data will be picked for the same 

interval for forecasting purposes. Raw data using ARFIMA process and fluctuation 
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function data using 2D VARFIMA process will be forecasted and the results will be 

compared accordingly.   

The reader must note that when 2D VARFIMA model are run, the forecasting 

results are provided with upper and lower limits of two dimensional vectors. In our 

results, we have eliminated the highest value of the upper boundaries and the lowest 

value of the lower boundaries displaying the narrowest band possible.  

Table 4.5.  

Dates and couples used to forecast precious metals 

  From To Correlation 

Gold Platinum 25.02.2011 11.01.2012 0.7905 

Gold Platinum 19.12.2011 18.04.2012 0.6588 

Gold Silver 25.02.2011 06.01.2012 0.8538 

Gold Silver 06.03.2010 18.05.2012 0.8056 

Silver Platinum 19.04.2010 21.07.2012 0.7189 

Silver Platinum 26.02.2011 11.01.2012 0.8669 

 

In table 5, the dates of time series interval are given for each couple of metals. 

6 time interval have been chosen for forecasting purposes. Forecasting for each metal 

has taken place for the same time interval in VARFIMA for the next 30 days. Figure 9 

displays fraction function couple for gold and platinum from February 25th, 2011 to 

January 11th, 2012. The correlation of these series is approximately 80%. VARFIMA 

model uses the same time series (gold with platinum and platinum with gold) to 

obtain the forecasting results of each metal and they are shown in Figure 10 for gold 

and in figure 11 for platinum. As you can see from both of the results, forecasting 
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with VARFIMA model have performed extremely well with respect to ARFIMA 

model of the raw data for the same time frame chosen.  

 

Figure 4.9. Gold and platinum data at Scale 256 from February25th, 2011 to January 

11th, 2012 

 

Figure 4.10. Forecasting for gold with platinum starting from January 11, 2012 for 

the next 30 days 
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Figure 4.11. Forecasting for platinum with gold starting from January 11, 2012 for 

the next 30 days 

This has been the case for all couples chosen. ARFIMA (univariate model) have 

been used with the raw data itself and VARFIMA (multivariate model) have been 

used with the fluctuation function time series provided out of local Hurst exponent 

calculations. It is shown that VARFIMA has provided better forecasting results with 

respect to its counterpart. Despite of the fact that some of the ARFIMA models have 

given smaller root mean error values, they were off the charts and still have shown a 

decreasing trend in all of the results. In all of the forecasting results with the use of 

VARFIMA model, the estimated function was able to follow an approximate path 

with the real data. It is also seen that the narrower range of prediction and lower root 

mean square error in the estimated models are achieved with the increased rate of 

correlation of the series. 

4.5. Concluding Remarks 

Multiple wavelet coherence and multifractal de-trended fluctuation analysis (two 

important tools in the analysis of financial time series) have been employed to explore 



113 
 

  

the inter dependency and multifractality of precious metals, gold, silver and platinum. 

Firstly, it is presented that multiple wavelet coherence provides higher resolution to 

visualize in-phase movement of different time series in time and frequency space 

compared to any other traditional correlation function analysis (Oral and Unal, 2017). 

The direct observation allowed us to conclude that all three metals are highly 

correlated at higher periods throughout the time, especially around 256 day period.  

We have observed that long range dependence is weaker over certain periods of 

time and frequency, which might be due to asymmetric error-correction mechanisms 

between precious metal prices during shocks or stresses. This could mean that it 

would take time at different rates for all metal prices to find equilibrium. This is 

parallel with the findings of Kucher and McCoskey (2017) whom stated that the long 

run relationships between precious metals are strongly influenced by economic 

conditions.  

Compared to univariate counterparts (ARFIMA), it is depicted that the 

consistency and performance of forecasting with multifractal time series is 

remarkably increased with multivariate models (VARFIMA) (Durr et al., 1997). This 

was also true in spite of the size of the data set chosen (Dueker and Startz, 1998) 

where we have used set of data from 300 daily prices up to 1100 daily prices.  

The generalized Hurst exponents of all precious metals have revealed that daily 

prices of precious metals do possess long range dependence with persistent structure 

and demonstrate multifractal behavior in general. Furthermore, local Hurst exponents 

of precious metals at 256 day period turned out to be multifractal as well. We realized 

that local Hurst exponents are at the higher portion of the scale during their latest 

times. It indicates a strengthening trend in long range dependence with persistent 
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structure (Ihlen, 2012) which in return means that the periods do not experience large 

variations and the prices are evolving in slower pace.  

A new fluctuation function time series is generated during the calculations of local 

Hurst exponents. These fluctuation function time series are used to model and forecast 

the data for the next 30 days. Even though both of the methods (ARFIMA and 

VARFIMA) are adopted to integrate time series into the model fractionally and all 

series demonstrate multi fractal behavior, ARFIMA model almost never produced 

forecasting results as successful as VARFIMA model which have outperformed its 

univariate match conspicuously. 
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Appendix A. Forecasting results 

 

Figure 4.12. Gold and platinum data at Scale 256 from December 19th, 2011 to April 

18th, 2012 

 

Figure 4.13. Forecasting for gold with platinum starting from April 18th, 2012 for the 

next 30 days 
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Figure 4.14. Forecasting for platinum with gold starting from April 18th, 2012 for the 

next 30 days 

 

Figure 4.15. Gold and silver data at Scale 256 from 25th February 2011 to January 

6th, 2012 
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Figure 4.16. Forecasting for gold with silver starting from January 6th, 2012 for the 

next 30 days 

 

Figure 4.17. Forecasting for silver with gold starting from January 6th, 2012 for the 

next 30 days 
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Figure 4.18. Gold and silver data at Scale 256 from March 6th, 2010 to May 18th, 

2012 

 

Figure 4.19. Forecasting for gold with silver starting from May 18th , 2012 for the 

next 30 days 
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Figure 4.20. Forecasting for silver with gold starting from May 18th , 2012 for the 

next 30 days 

 

Figure 4.21. Silver and platinum data at Scale 256 from April 19th, 2010 to July 21st, 

2012 
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Figure 4.22. Forecasting for silver with platinum starting from July 21st , 2012 for the 

next 30 days 

 

Figure 4.23. Forecasting for platinum with silver starting from July 21st , 2012 for the 

next 30 days 
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Figure 4.24. Silver and platinum data at Scale 256 from February 25th, 2011 to 

January 11th, 2012 

 

Figure 4.25. Forecasting for silver with platinum starting from January 11th, 2012 for 

the next 30 days 
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Figure 4.26. Forecasting for platinum with silver starting from January 11th, 2012 for 

the next 30 days 
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Appendix B. Hurst Exponents for Real and Scale 256 Data 

 

Figure 4.27. Log-log plot of platinum real data (H=1.4714) 

 

Figure 4.28. Log-log plot of platinum data at scale 256 (H=1.3237) 

 

Figure 4.29. Log-log plot of silver real data (H=1.4927) 
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Figure 4.30. Log-log plot of silver data at scale 256 (H=1.4515) 
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Appendix C. Local Hurst Exponents 

 

Figure 4.31. Silver local Hurst exponents at Scale 256-day period 

 

Figure 4.32. Platinum local Hurst exponents at scale 256-day period 
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