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ABSTRACT

AN FPGA IMPLEMENTATION OF SUCCESSIVE
CANCELLATION LIST DECODING FOR POLAR

CODES

Altuğ Süral

M.S. in Electrical and Electronics Engineering

Advisor: Erdal Arıkan

January 2016

Polar Codes are the first asymptotically provably capacity achieving error correc-

tion codes under low complexity successive cancellation (SC) decoding for binary

discrete memoryless symmetric channels. Although SC is a low complexity algo-

rithm, it does not provide as good performance as a maximum-likelihood (ML)

decoder, unless sufficiently large code block is used. SC is a soft decision decod-

ing algorithm such that it employs depth-first searching method with a divide

and conquer approach to find a sufficiently perfect estimate of decision vector.

Using SC with a list (SCL) improves the performance of SC decoder such that

it provides near ML performance. SCL decoder employs beam search method as

a greedy algorithm to achieve ML performance without considering all possible

codewords. The ML performance of polar codes is not good enough due to the

minimum hamming distance of possible codewords. For the purpose of increas-

ing the minimum distance, cyclic redundancy check aided (CRC-SCL) decoding

algorithm can be used. This algorithm makes polar codes competitive with state

of the art codes by exchanging complexity with performance. In this thesis,

we present an FPGA implementation of an adaptive list decoder; consisting of

SC, SCL and CRC decoders to meet with the tradeoff between performance and

complexity.

Keywords: Polar codes, successive cancellation list decoder, hardware implemen-

tation, FPGA.
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ÖZET

SIRALI ELEMELİ VE LİSTELİ KUTUPSAL
KODÇÖZÜCÜ’NÜN FPGA UYGULAMASI

Altuğ Süral

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Erdal Arıkan

Ocak 2016

Kutupsal kodların ayrık hafızasız kanallarda asimtotik olarak kanal kapasitesine

sıralı elemeli (SC) kodçözücü ile eriştiği kanıtlanmıştır. SC düşük karmaşıklı bir

algoritmadır ve bu algoritma ile yüksek blok uzunluğunda kodlar kullanılmadığı

taktirde azami ihtimaliyet tahmini (ML) performansı elde edilmez. SC algorit-

ması, böl ve fethet yöntemini kullanarak ve derinlik öncelikli arama yaparak karar

verir. SC algoritması ile liste yapısı (SCL) birlikte kullanılarak ML performansına

yaklaşılır. SCL algoritması açgözlü demet araması yapar. Ancak, kutupsal kod-

ların olası kod sözcüklerinin en yakın hamming uzaklığı ve dolayısıyla ML perfor-

mansı yeterince iyi değildir. Bu durumun üstesinden gelmek için döngüsel artıklık

denetimi ile SCL algoritması (CRC-SCL) birleştirilir. Bu sayede, kutupsal kodlar

güncel haberleşme sistemlerinde kullanılan kodlar ile rekabet eder hale gelir. Biz

bu tezde, yüksek karmaşıklıklı ve yavaş çalışan CRC-SCL ile düşük karmaşıklıklı

ve hızlı çalışan SC algoritmalarını FPGA uygulaması ile birlikte kullanarak per-

formans ve karmaşıklık arasında ödünleşim sağlıyoruz.

Anahtar sözcükler : Kutupsal kodlar, sıralı elemeli ve listeli kodçözücü, donanım

uygulaması, FPGA.
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Chapter 1

Introduction

Shannon defines channel capacity as the maximum rate of information, which can

be reliably transmitted over a communication channel [1]. He also shows that the

channel capacity can be achieved by a random code construction method. With a

code rate smaller than the channel capacity, a communication system encounters

negligible errors. It has always been a challenge to achieve channel capacity

with low complexity algorithms. Polar coding is a method that achieves channel

capacity with low complexity encoding and decoding.

1.1 What are Polar Codes?

Polar codes are a class of capacity-achieving linear forward error correction (FEC)

block codes [2]. The complexity of both encoding and successive cancellation (SC)

decoding of polar codes are O(N logN), where N is the code block length. The

recursive construction of both encoder and the SC decoder enables neat processing

structures, component sharing and an efficient utilization of the limited sources.

Polar codes provide a flexible selection of the code rate with 1/N precision such

that an arbitrary code rate can be used without reconstructing the code. Polar

codes are channel specific codes that means a polar code designed for a particular
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channel might not has a good performance for other channels. The important

properties of polar codes are:

• Capacity achieving error correction performance.

• O(N logN) encoding and SC decoding complexity.

• Enhanced bit error rate (BER) with systematic polar codes.

• Adjustable code rate with 1
N

precision without generating the code again.

• Channel specific recursive code construction.

• Achieves maximum likelihood (ML) performance by successive cancellation

list (SCL) decoding with a sufficiently large list size.

• Block error probability of the SC decoder is asymptotically smaller than

2−
√
N [3].

Decoding of polar codes is an active research problem. There are several de-

coding methods in literature such that these methods are SC [2], SCL [4], SC

stack [5] and belief propagation [6]. The scope of this thesis includes SC and SCL

methods. Due to low complexity encoding and decoding methods, implementa-

tion of polar codes at long block lengths is feasible for practical communication

systems. In contrast, the noticeable concern for polar codes at long block lengths

is the decoding latency due to strong data dependencies. In this thesis, we con-

sider moderate code block lengths such as 1024 and 256 in order to enhance finite

length performance with limited latency and resource usage. Although the SC

decoder asymptotically achieves channel capacity as N increases, the superior

performance of the SC decoder decays at short and moderate code block lengths

due to poor polarization. For this reason, the SC decoder does not provide as

good performance as a maximum likelihood (ML) decoder at short and moderate

block lengths. To overcome this issue, it is necessary to add more features to

the algorithm such as tracking multiple possible decision paths instead of one

such that the SC decoder does. At this point, SCL decoding algorithm emerges
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[4]. This algorithm uses beam search method for exploring the possible decoding

paths efficiently. It is considerable as a greedy algorithm that approaches ML

performance with sufficiently large list size, L. Since considering all 2NR pos-

sible decoding paths is impractical and too complex, the SCL algorithm has a

restricted complexity such that at most L best possible paths can be traced. In

that way, the algorithm operates with O(L N logN) computational complexity.

The error correction performance is further improved by combining the SCL al-

gorithm with a cyclic redundancy check (CRC) code. At the end of decoding,

the SCL decoder selects a CRC valid path from among L surviving paths.

1.2 Summary of Main Results

Polar codes are proved that they achieve channel capacity under SC decoding al-

gorithm for symmetric binary discrete memoryless channels (B-DMCs) [2]. Due

to the sequential nature of the SC decoding algorithm, the hardware implemen-

tation is significantly challenging. In this thesis, we try to overcome this issue by

dividing the algorithm into simpler modules. SC algorithm provides low complex-

ity O(N logN) decoding, however it does not provide as good performance as a

ML decoder at short and moderate code block lengths. The performance of the

SC algorithm can be improved by using SCL decoding algorithm, which tracks

L best decoding paths together. The performance can be further improved by

introducing CRC to SCL decoding by selecting a CRC valid path among L best

decoding paths at the end of decoding. However, SCL decoding algorithm suffers

from long latency and low throughput due to high complexity, O(L N logN)

calculations as L and N increases. The throughput of the SCL can be improved

by using an adaptive decoder, which provides the SC throughput with the SCL

performance. Data flow of the adaptive decoder is shown in Figure 1.1.

The adaptive SCL decoder has three main components, SC, SCL and CRC

decoders. Initially, the SC decoder is activated and a hard decision estimate

vector is calculated. After that, the CRC decoder controls whether the hard

decision vector is correct. If the CRC is valid, the hard decision vector is quite

3



Figure 1.1: Data flow of the adaptive decoder.

likely to be the correct information vector. In this case, the adaptive decoder is

immediately terminated without the activation of the SCL decoder. In other case,

when the CRC is invalid, the SCL decoder is activated and L information vector

candidates are generated. Among these candidates, the CRC decoder selects a

candidate, which has a valid CRC vector. If more than one CRC vector candidate

is valid, the most probable one among these candidates is selected. Lastly, when

none of the candidates has a valid CRC vector, the CRC decoder selects the most

probable decision estimation vector to reduce BER.

We have implemented an adaptive SCL decoder on Xilinx Kintex-7 (xc7k325t-

2ffg900c) field-programmable gate array (FPGA). We have used Xilinx KC705

evaluation kit to verify our implementation. We have used Xilinx ISE 14.7 XST

for synthesis and implementation of our design. To analyze each submodule in

detail, we present either the implementation results or synthesis results for the

ones which is not implementable as standalone due to large parallelization.

The effect of list size on the frame error rate (FER) performance of polar codes

is shown in Figure 1.2. In this simulation, binary phase shift keying (BPSK)

modulated symbols are transmitted over binary additive white Gaussian noise

channel (BAWGNC). There is significant performance gain, which is more than

1 dB between SC decoder and SCL decoder. When the list size increases the

performance improves, however the rate of improvement decreases.

As a result of our FPGA implementation of the adaptive SCL decoder, we

have achieved 225 Mb/s data throughput with a reasonable resource usage.

4



Figure 1.2: FER performance of the SCL decoder N = 1024, K = 512.

1.3 Outline of Thesis

In Chapter 2, we will review the polar codes in terms of properties, construction,

encoding and decoding features. In Chapter 3, we will present details of our

adaptive list decoder implementation on FPGAs. Finally, we will summarize

main results of this thesis and express future work ideas in Chapter 4.

5



Chapter 2

Polar Codes

In this chapter, we will summarize the properties, construction, encoding and

decoding methods of polar codes.

2.1 Notations

Upper case italic letters, such as X and Y denotes random variables and their

realizations are denoted by lower case italic letters (e.g., x, y). A length-N row

vector of u is denoted by uN and its sub-vector (ui, ui+1, ..., uj) is denoted by uji .

Uppercase calligraphic symbols denote sets (e.g., X , Y). Time complexity of an

algorithm is denoted by Υ and space complexity is denoted by ζ. Logarithm of

base-2 and natural logarithm is represented by log (·) and ln (·), respectively. The

logarithmic likelihood information is represented by δ0 for ln(W (y|x = 0)) and

δ1 for ln(W (y|x = 1)), where x denotes the encoder output and y denotes the

output of channel, W . The ratio of δ0
δ1

is called log-likelihood ratio (LLR) and it

is represented by λ.

6



2.2 Preliminaries

In this section, we review the basic definitions of polar codes in [2].

Definition 1. Binary discrete memoryless channel (B-DMC). A generic mem-

oryless channel W with input alphabet X , output alphabet Y and transition

probabilities W (y|x), x ∈ X , y ∈ Y is denoted as W : X → Y . The input alpha-

bet can take {0, 1} binary values, however the output alphabet and the transition

probabilities are continues such that they can take any arbitrary values in [0, 1]

interval.

Definition 2. A channel W is defined as symmetric if there exists a permutation

π such that π−1 = π and W (y|1) = W (π(y)|0),∀y ∈ Y .

Definition 3. A channel W is defined as memoryless if its transition probability

is

WY |X(y|x) =
∏
∀i

WYi|Xi(yi|xi). (2.1)

Note that the BSC(p), the BEC(ε) and the BAWGNC(σ) are all memoryless.

Definition 4. Symmetric capacity of a B-DMC W is defined as

I(W ) ,
∑
y∈Y

∑
x∈X

1

2
W (y|x) log

W (y|x)
1
2
W (y|0) + 1

2
W (y|1)

. (2.2)

Note that the symmetric capacity is the measure of rate. For symmetric channels,

I(W ) equals to the Shannon capacity, which is the upper bound on the code rate

to provide reliable communication.

Definition 5. Bhattacharyya parameter of a B-DMC W is defined as

Z(W ) ,
∑
y∈Y

√
W (y|0)W (y|1). (2.3)

Note that the Bhattacharyya parameter is the measure of reliability and it is an

upper bound on the probability of ML decision.
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Definition 6. The Kronecker product of m x n matrix A and q x p matrix B is

the (mp) x (nq) block matrix C that defined as

C , A⊗B =


A11B · · · A1n

...
. . .

...

Am1B · · · AmnB

 . (2.4)

In addition to that, nth Kronecker power of a matrix A is defined as A⊗n ,

A⊗ A⊗(n−1).

2.3 Channel Polarization

Channel polarization operation creates N synthetic channels {W (i)
N : 1 ≤ i ≤ N}

from N independent copies of the B-DMC W [2]. Polarization phenomenon

decomposes the symmetric capacity, I(W
(i)
N ) of these synthetic channels towards

to 0 or 1 such that I(W
(i)
N ) ' 0 implies that the ith channel is completely noisy

and I(W
(i)
N ) ' 1 implies that the ith channel is perfectly noiseless. The capacity

separation enables to send information (free) bits through the noiseless channels

and redundancy (frozen) bits through the noisy channels.

Let A be the information set and Ac be the frozen set. The input vector, uN1

consists of both information bits uA and frozen bits uAc such that uA ∈ XK and

uAc ∈ XN−K .

In the following sections, we present the channel polarization as channel com-

bining, channel splitting and channel construction.

2.3.1 Channel Combining

A B-DMC WN is generated by combining two independent copies of WN/2. Ini-

tially, W2 has the following transition probabilities
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y1

y2

W2

Figure 2.1: Construction of W2 from W .

W2(y1, y2|u1, u2) = W (y1|u1 ⊕ u2)W (y2|u2), (2.5)

where W denotes the smallest B-DMC, {0, 1} → Y .

In a similar way, WN is constructed recursively from WN/2, WN/4, ..., W2, W

at n steps, where N = 2n.

2.3.2 Channel Splitting

A combined B-DMC W2 is split back into two channels W
(↑)
2 and W

(↓)
2 by channel

splitting operation. The transition probabilities of these channels are

W
(↑)
2 (y21|u1) =

1

2

∑
u2∈{0,1}

W (y1|u1 ⊕ u2)W (y1|u2) (2.6)

W
(↓)
2 (y21, u1|u2) =

1

2
W (y1|u1 ⊕ u2)W (y2|u2). (2.7)

The transition probabilities are calculated in consecutive order from the top

splitting operation to the bottom splitting operation, because the decision bit u1

must be known before the bottom splitting operation.
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2.3.3 Code Construction

The aim of the polar code construction is to determine A and Ac sets according to

the capacity of individual channels. Since polar codes are channel specific codes,

the code construction may differ from channel to channel. Channel parameters,

such as σ for BAWGNC and ε for binary erasure channel (BEC) are an input to

a code construction method. For BEC W , code construction for (N = 8, K = 4)

polar code with an erasure probability ε = 0.3 is shown in Figure 2.2.

Figure 2.2: Code construction for BEC with N = 8, K = 4 and ε = 0.3.

Initially, the reliability of the smallest channel, W
(1)
1 sets as ε = 0.3. After

that the reliability of the first length-2 channel, W
(1)
2 is calculated as Z(W

(1)
2 ) =

2Z(W
(1)
1 )− Z(W

(1)
1 )

2
, where Z(W

(i)
N ) is the erasure probability of the ith length-

N channel starting from top. At the same time, the second length-2 channel

can be calculated as Z(W
(2)
2 ) = Z(W

(1)
1 )

2
. In general, the recursive formula for

calculating top and bottom channels is

Z(W
(2i−1)
N ) = 2Z(W

(i)
N/2)− Z(W

(i)
N/2)

2
(2.8)

Z(W
(2i)
N ) = Z(W

(i)
N/2)

2
. (2.9)
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At the end of stage logN (in this case logN = 3), the erasure probability of all

length-N channels appears. At this point, the channels which has the lowest K

erasure probabilities set as free and others set as frozen. The algorithm has logN

stages and performs N − 2 calculations. Polar code construction for symmetric

B-DMC is performed by using several methods such as Monte-Carlo simulation

[2], density evolution [7] and Gaussian approximation [8]. In this thesis, we use

Monte-Carlo simulation method with ten million trial numbers to determine A
and Ac sets.

2.4 Encoding of Polar Codes

Polar codes can be encoded by using simple linear mapping. For the code block

length N the generator matrix, GN is defined as GN = BNF
⊗n for any N = 2n

as n ≥ 1, where BN is a bit-reversal matrix and F⊗n is the nth Kronecker power

of the matrix F =

[
1 0

1 1

]
.

A length-N polar encoder has an input vector uN1 and an output vector xN1 .

The mapping of u 7→ x is linear over the binary field, F2 such that xN1 = uN1 GN .

The rows of GN are linearly independent and they form basis for the code space,

C(N, 2bNRc).

The factor graph representation of 8-bit encoder is shown in Fig.2.3, where ⊕
symbol represents binary XOR operation.

As a result, the following equations are obtained at the output of 8-bit encoder.
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Figure 2.3: The factor graph representation of 8-bit encoder, G8.

x1 = u1 ⊕ u2 ⊕ u3 ⊕ u4 ⊕ u5 ⊕ u6 ⊕ u7 ⊕ u8
x2 = u5 ⊕ u6 ⊕ u7 ⊕ u8
x3 = u3 ⊕ u4 ⊕ u7 ⊕ u8
x4 = u7 ⊕ u8
x5 = u2 ⊕ u4 ⊕ u6 ⊕ u8
x6 = u6 ⊕ u8
x7 = u4 ⊕ u8
x8 = u8

(2.10)

The factor graph representation (Fig.2.3) shows that 8-bit encoder includes twelve

XOR operations. In general, N-bit encoder includes (N/2 logN) XOR opera-

tions. Let ΥE(N) denote the time complexity of encoding. Due to recursive

channel combining, a length-N encoder consist of two length-N
2

encoders and N
2

binary XOR operations. Therefore, ΥE(N) is

12



ΥE(N) = 2ΥE(
N

2
) +

N

2
(2.11)

= 2ΥE(
N

2
) + Θ(N) (2.12)

(i)
= O(N logN), (2.13)

where ΥE(2) = 2 and (i): the master theorem, case 2.

The free bits can be observable at the output of a polar encoder by systematic

encoding of polar codes [9].

2.5 Successive Cancellation (SC) Decoding of

Polar Codes

SC decoding of polar codes is a search problem [10] such that the target is to re-

construct information data from noisy channel output. The search space consists

of all possible codewords, belong to the code space C(N, 2bKc), where K = NR.

The decoding path can be realized as a reduced binary tree with 2K leafs and

N depth. Frozen bits are the cause of the reduction in this binary tree, because

there is only one decision option at the ith frozen decision step as ûi = ui for

i 6∈ A.

Calculating likelihood of all possible codewords and finding the most probable

codeword could be the first method that minimizes block error probability defined

as Pe = P{ûA 6= uA}. This method is called the ML decoding and uses the

British Museum procedure for searching all possible codewords. Although the

ML decoding method provides decent error correction performance, exponential

complexity makes this method impractical to implement.

Furthermore, instead of searching for all possible codewords, searching for the

13



current best decoding path significantly reduces the decoding complexity. In this

case, depth-first (hill climbing) search method is useful. At each decision step,

there are two decision candidates: ûi = 0 and ûi = 1. The decision between these

two candidates is made with respect to channel information and all previously

decoded bit information. Due to the information gained at each decoding step,

depth-first search becomes hill climbing search and the decoder is not allowed to

change its previous decisions according to current information bits. Although this

restriction reduces the error correction performance of the SC decoder especially

in difficult terrains (low signal to noise ratio (SNR) values), the decoder has

reasonable O(N logN) complexity. The performance loss is caused by local

best decoding paths, which misguides the decoder to an incorrect decoding path.

The original low complexity SC decoder, [2] uses hill climbing search method for

decoding polar codes.

An another method to find a better decoding path is beam searching. It

enables to trace L best decoding paths instead of one in depth-first search. The

beam search method has restricted complexity compared to breadth-first search,

which traces all decoding paths at each decoding layer. The SCL algorithm uses

the beam searching method for decoding of polar codes. At each decision level, a

sorting algorithm finds the best L decoding paths for among 2L possible decoding

path candidates. Although the decoder complexity increases to O(L N logN)

[4], it has a noticeable performance gain. The performance gain with respect to

L is illustrated in Section 2.6.

Lastly, the best search method reduces the complexity of beam search by

tracing the best L encountered node so far. This can produce partially developed

decoding tree. The best search method is also similar to hill climbing in terms

of tracing the best path. The main difference between these methods is the best

search method enables the decoder to change its previous decision according to

current likelihood information. The stack SC algorithm, [5] uses the best search

method to decode polar codes.

A decoding tree example, which consists of all of the mentioned search meth-

ods, is shown in Figure 2.4. In this example, the black paths represent the visited

14



(a) British museum searching. (b) Hill climbing searching.

(c) Beam searching, L = 2. (d) Best searching, L = 2.

Figure 2.4: An example decoding tree representation for searching methods.

15



paths and the gray paths represent the ignored decoding paths. All decoding

paths are possible, because all decisions set as free. Likelihoods of decoding paths

are written inside circles and the values on the arrows are the hard decisions at

each decision step. By using the British museum search method (Fig. 2.4a), all

paths are visited. Therefore, the hard decision is the most probable path at the

end of decoding, which is 001 with a probability 0.33. On the other hand, the hill

climbing search (Fig. 2.4b) ends up with a different hard decision, 101 that has a

lower likelihood probability, 0.19. The reason is the first decoding step such that

the SC decoder selects the local best path, however it turns out to be a better

path at the end of the binary decision tree. Unlike the British museum searching,

beam searching traces only two most probable paths instead of eight and still

explores the most probable path (Fig. 2.4c). Lastly, the best search starts with

the paths which has 0.60 and 0.40 probabilities, then explores the path which

has 0.32 probability. Since it is smaller than the stack, the algorithm explores

the other nodes which have 0.28 and 0.35 probabilities respectively. At the end

of best searching, the algorithm reveals the most probable decoding path, which

has 0.33 probability.

In the following sections, we will introduce SC and SCL algorithms.

2.5.1 Successive Cancellation Decoding of Polar Codes

Polar SC decoder estimates the transmitted bits uN1 as ûN1 by using the received

codeword y ∈ Y at the B-DMC, WN : XN → YN . The channel likelihood infor-

mation gained from the received codeword is represented as LLR. The decoder

performs soft-decision decoding as computing intermediate LLR values by using

channel LLR values. After a sequence of LLR computations, SC decoder com-

putes ûN1 hard decisions in a successive order from û1 to ûN . In other words, ûi

is decided according to ûi−11 for 1 < i ≤ N . The time (ΥSCD) and the space

complexity (ζSCD) of the SC algorithm is
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ΥSCD(N) = O(N logN), (2.14)

ζSCD(N) = O(N). (2.15)

A high level description of the SC decoding algorithm is illustrated in Algo-

rithm 1. The algorithm takes the received codeword yN1 , the code block length

N and the information set A as input and calculates the estimated free bits ûA

as an output vector. There are N decision steps in the algorithm. If a hard

decision belongs to the frozen set Ac, the decision will be a frozen decision such

that it is known by both encoder and decoder. Otherwise, the decoder sets its

hard decision with respect to the soft decision information. After all N decisions

are calculated, the output of the decoder is the hard decisions, which belong to

the free set.

Algorithm 1: Successive Cancellation Decoding

Input: received codeword, yN1
Input: code block length, N
Input: information set, A
Input: frozen bit vector, uAc
Output: estimated free bits, ûA

1 begin
2 for i← 1 to N do
3 if i 6∈ A then
4 ûi ←− ui

5 else

6 if log

(
W

(i)
N (yN1 ,û

i−1
1 |ûi=0)

W
(i)
N (yN1 ,û

i−1
1 |ûi=1)

)
≥ 0 then

7 ûi ←− 0

8 else
9 ûi ←− 1

10 return ûA

More specifically, the channel LLR values, γ are calculated for BAWGNC as
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γ = ln

(
W (y|x = 0)

W (y|x = 1)

)
(2.16)

= ln

e−(y−1)2

2σ2

√
2πσ2

− ln

e−(y+1)2

2σ2

√
2πσ2

 (2.17)

=
−(y − 1)2

2σ2
− −(y + 1)2

2σ2
(2.18)

=
2y

σ2
, (2.19)

where BPSK modulation with standard mapping is used to assign an output bit

of encoder x to a transmitted symbol s. For i = {1 ≤ i ≤ N}, the mapping rule

is

si =

1, if xi = 0

−1, if xi = 1.
(2.20)

Three different functions are defined to illustrate the behavior of the SC de-

coder. These functions are called f , g, and d. Firstly, the f function is responsible

for the calculation of top channel splitting operation, defined in Section 2.3.2. The

f function, with likelihood ratio (LR) representation is

f(LRa, LRb) = LRc (2.21)

=
W (y21|ûc = 0)

W (y21|ûc = 1)
(2.22)

=
W (y1|ûa = 0)W (y2|ûb = 0) +W (y1|ûa = 1)W (y2|ûb = 1)

W (y1|ûa = 0)W (y2|ûb = 1) +W (y1|ûa = 1)W (y2|ûb = 0)

(2.23)

(ii)
=
LRa LRb + 1

LRa + LRb

, (2.24)

where (ii): both numerator denominator are divided by W (y1|ûa = 1)W (y2|ûb =

1).
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The f function, with LLR representation is

f(γa, γb) = γc (2.25)

= 2 tanh−1 ((tanh (
γa
2

) tanh (
γb
2

)) (2.26)

[11], [12]
≈ sign(γaγb) min(|γa|, |γb|), (2.27)

where min-sum approximation is defined for BP decoding of LDPC codes [11] and

this approximation is used in SC decoding of polar codes for the first time [12].

The min-sum approximation causes an insignificant performance degradation,

which will be shown in Section 2.6.2.

Secondly, the g function computes the bottom channel splitting operation in

SC decoder. The g function, with LLR representation of soft decisions is

g(δa, δb, û) = δc (2.28)

=
W (y21, û|ûc = 0)

W (y21, û|ûc = 1)
(2.29)

=


W (y1|ûa=0)W (y2|ûb=0)
W (y1|ûa=1)W (y2|ûb=1)

, if û = 0

W (y1|ûa=1)W (y2|ûb=0)
W (y1|ûa=0)W (y2|ûb=1)

, if û = 1
(2.30)

= δa
(1−2ûc)δb. (2.31)

The g function, with LLR representation is

g(γa, γb, û) = (−1)(û)γa + γb. (2.32)

Lastly, the d function is the decision function, which computes hard decisions
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from soft decisions such that

ûi =


ui, if i /∈ A

0, if i ∈ A and
W (y,ûi−1

1 |ûi=0)

W (y,ûi−1
1 |ûi=1)

≥ 1

1, otherwise.

(2.33)

We will present hardware implementations of these functions in Section 3.2.

2.5.2 Successive Cancellation List (SCL) Decoding of Po-

lar Codes

SCL decoding algorithm is proposed to enhance the performance of SC decoding

for short and moderate block lengths in [4]. SCL decoding enables tracking L

best decoding paths concurrently, unlike an SC decoder can track at most a single

decoding path. If L is sufficiently large, ML decoding performance is achieved,

since sufficient number of decoding paths are visited. There is a trade-off between

complexity and performance of the algorithm, because time complexity (ΥSCLD)

and space complexity (ζSCLD) of the algorithm linearly depends on list size (L)

such that

ΥSCLD(L,N) = O(L N logN), (2.34)

ζSCLD(L,N) = O(L N). (2.35)

A high level description of the algorithm is shown in Algorithm 2. The SCL

algorithm takes the received codeword yN1 , the code block length N , the infor-

mation set A, the frozen bit vector uAc and the maximum list size L as input

and calculates the estimated information bits ûA as output. The current list size

variable, cL set as 1 at the initialization of the algorithm. If the ith hard decision

20



belongs to the frozen set Ac, the ith hard decisions of all L lists are updated with

the frozen decision, ui. In case of a free decision, the decoder checks whether

the current list size is equal to the maximum list size. If they are not equal, the

current list size doubles and the decoder can track likelihoods of both decisions.

In case of all lists are occupied, the decoder sorts 2L likelihoods to continue with

the best L decoding paths. At the end of the last decision step, the decoder

outputs the free bits from the best list as ûA.

Algorithm 2: Successive Cancellation List Decoding

Input: received codeword, yN1
Input: code block length, N
Input: information set, A
Input: frozen bit vector, uAc
Input: maximum list size, L
Output: estimated information bits, ûA
Variable: cL←− 1 //current list size

1 begin
2 for i← 1 to N do
3 if i 6∈ A then
4 for l← 1 to cL do
5 ûl,i ←− ui

6 else
7 if cL 6= L then
8 for l← 1 to cL do
9 ûl,i ←− 0

10 ûl+cL,i ←− 1

11 cL←− 2cL

12 else

13 s←− sort (W
(i)
N (yN1 , û

i−1
1 |ûL1,i))

14 for l← 1 to cL do
15 ûl,i ←− sl

16 return ûA

We will present a hardware implementation of the SCL decoding algorithm in

Section 3.3.
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2.5.3 Adaptive Successive Cancellation List Decoding of

Polar Codes

The adaptive SCL algorithm consists of SC decoding, SCL decoding and CRC

decoding algorithms. The aim of the algorithm is to increase the throughput

of the SCL decoder in [13], [14]. A high level description of the algorithm is

shown in Algorithm 3. Inputs of the adaptive SCL decoding algorithm are the

received codeword yN1 , the code block length N , the information set A, the frozen

bit vector uAc and the list size L. The output of the algorithm is the free bit

vector ûA. At the beginning of the algorithm, the SC decoder calculates a free bit

candidate vector. If the CRC of that vector is true, the algorithm terminates with

the output of the SC decoder. In case of incorrect CRC vector, the algorithm

calls a SCL algorithm with the list L. At this time, SCL algorithm calculates L

hard decision candidate vectors. If one of them has a valid CRC, the algorithm

terminates with that output. If none of them has a valid CRC, the algorithm

terminates with the most probable hard decision candidate vector.

2.6 Simulation Results

In this section, we present the software simulations of the SC, the SCL and

the adaptive SCL decoding algorithms for N = 1024 and K = 512. Although

fixed-point data types and function approximations reduces the complexity of

implementation, they cause some performance degradation. This performance

degradation is to be insignificant such that the trade-off between performance

and complexity is kept. In this manner, we perform fixed-point and approxi-

mation simulations to illustrate the performance loss in FPGA implementation.

For all simulations, the code is optimized for 0 dB by using Monte-Carlo code

construction model with 10000000 trials [2]. The channel model is BAWGNC for

all simulations.
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Algorithm 3: Adaptive Successive Cancellation List Decoding Algorithm

Input: received codeword, yN1
Input: code block length, N
Input: information set, A
Input: frozen bit vector, uAc
Input: maximum list size, L
Output: estimated information bits, ûA
Variable: j //valid CRC vector of SCD

Variable: k //valid CRC vector of SCLD

1 begin
2 ûA ←− Successive Cancellation Decoding (yN1 , N , A, uAc)
3 j ←− Cyclic Redundancy Check Decoding (ûA)
4 if j is true then
5 return ûA

6 else
7 ûL,A ←− Successive Cancellation List Decoding (yN1 , N , A,

uAc, L)
8 for l← 1 to L do
9 k ←− Cyclic Redundancy Check Decoding (ûl,A)

10 if k is true then
11 ûA ←− ûl,A
12 return ûA

13 ûA ←− û1,A
14 return ûA
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2.6.1 Comparison between Floating-point and Fixed-

point Simulations of the SC Decoder

In this section, we use P bit precision for both channel input and internal LLR

values of the SC decoder. We use P = 32 for the floating-point simulations. The

BER and FER performance results are shown in Figure 2.5 and 2.6 respectively.

The performance difference between 32-bit floating-point precision, 6-bit and 5-

bit fixed-point precision is insignificant. When 4-bit LLR precision is used, a

noticeable performance degradation up to 1dB occurs. This performance degra-

dation becomes significant when energy per bit to noise power spectral density

ratio (Eb/No) increases.

Eb/No (dB)
0 1 2 3 4 5 6

B
E

R

10-6

10-5

10-4

10-3

10-2

10-1

100

P = 32 bits
P = 6 bits
P = 5 bits
P = 4 bits

Figure 2.5: BER performance of the SC decoder for different bit precision (P ), N =
1024, K = 512.

2.6.2 Performance Loss due to Min-sum Approximations

in the SC Decoder

Although complexity of the f function in an SC decoder reduces by using the min-

sum approximation in the Equation 2.25, the performance may also decreases.
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Figure 2.6: FER performance of the SC decoder for different bit precision (P ), N =
1024, K = 512.

The BER performance loss due to min-sum approximation is shown in Figure 2.7.

The FER performance loss due to min-sum approximation is shown in Figure 2.8.

The results indicate that there is insignificant performance loss due to min-sum

approximation of f function in SC decoder.

2.6.3 Fixed-point Simulations of the SCL Decoder

The fixed-point simulations with of the SCL decoder with the soft decision preci-

sion, P = 6 is shown in Figure 2.9 and 2.10. Note that the SCL decoder does not

use CRC in this simulation. After 3 dB Eb/No, the performance improvement

from L = 2 to L = 32 is not observable. However, there is still a performance

gap between SC and SCL decoders.
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Figure 2.7: BER performance of the SC decoder due to approximations, N = 1024,
K = 512.
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Figure 2.8: FER performance of the SC decoder due to approximations, N = 1024,
K = 512.
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Figure 2.9: BER performance of the SC and the SCL decoders, N = 1024, K = 512,
P = 6.
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Figure 2.10: FER performance of eh SC and the SCL decoders, N = 1024, K = 512,
P = 6.
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2.6.4 Fixed-point Simulations of the Adaptive SCL De-

coder

For adaptive SCL decoder, we made simulations to determine the input precision

Pi of likelihood values. The BER and FER simulation results are shown in Figure

2.11 and 2.12 respectively. There is significant performance loss when the input

of adaptive SCL decoder has Pi = 3 bits. When Pi = 4, there is up to 0.5 db

performance loss due to inadequate input precision. For other input bit precisions

(Pi = 5 and Pi = 6), we observed an insignificant performance loss.
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P
i
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P
i
 = 6

Figure 2.11: BER performance of Adaptive SCL decoder, N = 1024, K = 512,
L = 16.

2.6.5 Systematic and Non-systematic Code Simulations of

the SC Decoder

In this section, we present some simulation results of the SC decoding with

systematic and non-systematic code. The BER performance of the code with

N = 1024, K = 512 is shown in Figure 2.13. According to BER performance

results, there is up to 0.5 dB performance gain of systematic codes with respect to
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Figure 2.12: FER performance of Adaptive SCL decoder, N = 1024, K = 512,
L = 16.

non-systematic polar codes under the SC decoding. The FER performance results

is shown in Figure 2.14. We observed that the FER performance of systematic

and non-systematic polar codes under SC decoding are almost identical.

2.7 Summary of the Chapter

In this chapter, we presented polar codes in terms of properties, construction,

encoding and decoding methods. For encoding of polar codes, we presented

two methods as non-systematic encoding and systematic encoding. For a non-

systematic encoder, the input consists of free bits and the output consists of parity

bits. For the systematic encoder, the input consists of free bits; in this case, the

output consist of both free and parity bits. We showed that the systematic polar

code has an improved BER performance than the non-systematic code under the

SC decoding.

For decoding of polar codes, we presented the SC, the SCL and the adap-

tive SCL algorithms. We showed some fixed-point software simulation results to
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Figure 2.13: BER performance of SC decoder, N = 1024, K = 512.
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Figure 2.14: BER performance of SC decoder, N = 1024, K = 512.
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demonstrate the performance loss due to approximations, input bit precisions of

SC and adaptive SCL decoders. As a result, we observed an insignificant per-

formance loss due to approximations and an input LLR bit precision more than

5 bits. For the adaptive SCL decoder, when the input log-likelihood (LL) bit

precision is more than 5 bits, it does not cause an observable performance loss.

According to these results, we will use systematic coding with P = 6 input LLR

and LL bit precisions for our adaptive SCL decoder FPGA implementation, which

we will present in the next chapter.
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Chapter 3

An Adaptive Polar Successive

Cancellation List Decoder

Implementation on FPGA

In this chapter, we will present our adaptive decoder implementation. In Section

3.1, we will review previous studies about SC and SCL decoding in terms of algo-

rithm and implementation. As mentioned earlier, the adaptive decoder consists

of three decoders, SC, SCL and CRC decoders. In Section 3.2, we will present

our SC decoder implementation with the detailed analysis of each submodule in

its implementation. In Section 3.3, we will present our SCL decoder implemen-

tation and its analysis. In Section 3.4, we will present our CRC decoder with

implementation results. Lastly, we will present the implementation results of our

adaptive SCL decoder in Section 3.5.

3.1 Literature Survey

In this section, we review previous studies about implementation of SC and SCL

decoders of polar codes.
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3.1.1 Successive Cancellation Decoder Algorithms and

Implementations

SC is a low-complexity decoding algorithm such that it uses soft decision infor-

mation from channel to calculate hard decision estimations. SC has logN stage

forward and backward processing structure. Internal soft decisions are calculated

via forward processing, until a hard decision emerges at the decision stage, which

is the last stage of forward processing. After that, backward processing starts

and SC calculates partial sums by using hard decisions. The partial sums are

used by forward processors as a feedback. SC performs forward and backward

processing recursively, until all N hard decisions are estimated.

Implementation of the SC decoding is challenging to get high throughput with

a low-complexity, because successive nature of the SC algorithm restricts parallel

computations. To overcome this challenge, many different architectures are pro-

posed. In this section, we review previous studies about implementation of the

SC decoder in terms of complexity reduction and throughput improvement.

3.1.1.1 Architectures for Reducing Complexity

Implementation of the SC decoder on hardware is still an active research area

after polar coding is invented in 2009 [2]. Initially, three different hardware ar-

chitectures are proposed in [12], [15] and [16]. These are butterfly-based, pipeline

tree and line architectures. Firstly, butterfly-based architecture is a resemble of

well-known fast fourier transform (FFT) structure, which has logN stages with

N processing operator at each stage. In implementation of polar codes, basic

processing blocks are called processing elements (PEs), which performs f (2.25)

and g (2.28) functions. Due to the calculation of hard decisions in a successive

way, SC decoding introduces strict data dependencies compared to FFT struc-

ture. These data dependencies, caused by the forward processing of f and g

functions for N = 8, are shown in Figure 3.1. In this figure, the circles represents

PEs and inside these circles there are values such as pi,j, where p is the function
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type, i the is stage number and j is the element number in a stage. In general,

each stage requires N computation blocks to calculate N hard decisions that

takes 2N − 2 clock cycles (CCs). This is the conventional decoding cycle (DC)

of the SC algorithm. Using N logN PEs is a primitive idea to maximize the

computation speed, however data dependencies caused by successive nature of

the decoder enables using less PEs without spending extra CCs. Since maximum

N/2 PEs is activated for one CC, it is unnecessary to implement N PEs for each

stage. At this point, pipeline tree architecture emerges.

Despite the rectangular shape of the butterfly-based architecture, the pipeline

tree architecture has tree shape such that from stage i = {1 → logN}, at most
N
2i

computations can be executed in parallel due to strict data dependencies.

Therefore, in this architecture,
N∑
i=1

N

2i
= N − 1 PEs are allocated. In that way,

a PE is capable of performing either f or g function at one CC. The number of

PE can further be decreased to N/2 without the necessity of extra CCs. This

approach is called the line architecture. With the expense of multiplexers, N
2i

PE

is selected from among N/2 PEs to increase the utilization for the ith stage. Line

architecture utilizes all PEs only for the first stage.

Figure 3.1: Data flow graph of forward processing for successive cancellation decoder,
N = 8.

The utilization of PEs further increases with the expense of extra CCs in order

to reduce complexity by using less PEs. The semi-parallel architecture, in [17],

uses v PEs such that 1 < v < N/2. The stages from 1 to logN − log v − 1 need
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more than v PEs; the stage, logN − log v needs v PEs and the remaining stages

need less than v PEs to calculate internal soft decisions in one CC. Therefore,

more than one CC is spent during the first logN − log v− 1 stages with the fully

utilization of v PEs. Since the activation of these stages are less frequent than

the other stages, the time expense is tolerable such that extra N
j

log N
4j

+ 2 CCs

are necessary. Thus, the DC increases.

An another approach to reduce the complexity is the two phase decoder [18],

which implements
√
N − 1 PEs like a

√
N decoder with the tree architecture.

In two-phase SC decoder architecture, the decoder is divided into two phases:

phase-1 for the first logN
2

stages and phase-2 for the remaining stages. Through-

out decoding a code block, phase-1 and phase-2 stages are activated
√
N times.

Therefore,
√
N hard decisions emerge at the end of a phase-2 stage. In total,

additional N +
√
N logN

2
CCs are necessary to calculate all hard decisions without

using the 2-bit decoding method, which will be explained in the following section.

3.1.1.2 Architectures for Increasing Throughput

The conventional DC of a polar SC decoder reduces by half by precomputation

of g functions [19]. In this approach, a PE performs both f and g functions

at the same time. This provides 2-bit decoding [20] during a single CC. Using

2-bit decoding scheme without precomputation reduces the conventional DC by

N/2, because only the last stage f and g functions are merged. An another ap-

proach to the problem is to interleave more than one codeword in the SC decoder

presented in [21], [22]. This can address the low utilization problem of PEs by

resource constrained implementation and reduces the DC by latency constrained

implementation methods. In addition to these, SC decoder uses f and g functions

to decompose a code segment into two simpler constituent segments recursively

as a divide and conquer paradigm. The constituent segments, all frozen (rate-

0) and all free (rate-1) can be decoded easily without further decomposition by

using simplified successive cancellation (SSC) decoding [23], [22] and maximum

likelihood SSC (ML-SSC) [24]. In addition to rate-0 and rate-1 codes, single par-

ity check code (SPC) and repitition code (REP) code segments are also easy to
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decode. At this point fast-SC (FSC) algorithm emerges [25]. In this algorithm,

rate-0, rate-1, SPC and REP special code segments are detected and after detec-

tion, an ML decoder decodes these constituent code segments. Decomposition of

code segments and detection of special code segments are shown in Figure 3.2.

Figure 3.2: Decomposition of code segments and detection of special code segments,
N = 8.

Code specific designs improve the throughput of SC decoder significantly. Un-

rolling the DC with sequential pipeline stages consist of f , g, rate-0, rate-1, SPC

and REP nodes makes decoder capable of decoding multiple codewords in a re-

duced DC, presented in [26], [27]. An another method is the use of combinational

logic is a way to combine all sequential stages of the SC decoder as one to in-

creases energy efficiency and throughput with the expense of extra computational

logic [28].

3.1.2 Successive Cancellation List Decoder Algorithms

and Implementations

Hardware implementation of the SCL decoder is an attractive topic to increase

the performance of polar codes with reasonable complexity, after the list decod-

ing algorithm is proposed for polar codes in [4]. Combining list decoding algo-

rithm with CRC makes polar codes competitive with Turbo and LDPC codes [4],
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[29], [13]. Initial implementation of the SCL decoder focuses on maximizing the

throughput with a fast radix sorting algorithm with a limited list size in [30], [31]

and [32]. These implementations use log-likelihood LL representation of channel

information to calculate hard decisions. A log-likelihood ratio LLR based list de-

coding implementation is presented to reduce the complexity in [33]. In addition

to these, the conventional latency of a SCL decoder can be reduced by reduced

latency list decoding (RLLD) algorithm such that it enables the detection of rate-

0 and rate-1 constituent codes in [34]. An adaptive list decoding algorithm in

software is presented to reduce the latency in [13]. In this algorithm, the decoder

uses list-1 decoding at the beginning. If CRC is true as a result of list-i decoding,

the algorithm terminates with the output of list-i decoder, otherwise the decoder

is relaunched with the list-2i decoder until the maximum list size is achieved.

Moreover, an other adaptive algorithm, which combines a simplified SCL de-

coder with a fast simplified SC decoder, is presented in [14] to enhance the

throughput of SCL decoder in software. For higher list sizes, more efficient imple-

mentation of SCL decoder can be made by using a bitonic sorter in [35]. With a

recent algorithm, SCL decoder can make multiple decisions [20], [36] in one CC.

This can further increase the throughput of polar list decoders. Lastly, double

thresholding method is proposed in [37] to decrease the list pruning latency.

3.2 Successive Cancellation Decoder Implemen-

tation

In this section, we present our implementation of the SC decoding algorithm.

The high level description of the algorithm was shown in Section 2.5. The main

modules of the SC decoder are processing unit (PU), decision unit (DU), partial

sum update (PSU) and control logic (CL). The data flow between these modules

is shown in Figure 3.3. PU is responsible for forward processing operation as

computation of likelihood metric. The PU uses channel LLRs to compute internal

LLRs. In addition to that the DU uses the internal LLRs of the PU to compute
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a length-λi (2 ≤ λi < N , 2 ≤ i < N/2) constituent of an internal hard decision

vector, û. This constituent hard decision vector is used by PSU to calculate

partial sums. At the end of calculation of partial sums, SC decoder completes its

one iteration as a part of û reveals. Unless all free bits ûA reveals, SC decoder

starts the its next iteration and the output of the PSU feedbacks to the PU.

Lastly, the CL is responsible for all control signals to activate each module and

regulate scheduling. Since the SC decoder uses systematic coding 2.4, the output

of SC decoder consists of systematic information bits,x̂A. Note that we set all

frozen bits to zero, uAc = 0 to obtain a decision rule.

Figure 3.3: Data flow graph of successive cancellation decoder.

To enhance throughput, the SC decoder stores LLR and hard decision informa-

tion in registers instead of block random access memory (BRAM), which provides

slower data access less data width compared to register memory. In this way, pro-

cessors can access data faster with higher parallelization. State information, free

set information and scheduling control information are stored in BRAM, because

control sequences do not need high parallelization. In the following sections, we

will present the details of our PU, DU, PSU and CL implementation.

3.2.1 Processing Unit (PU)

The PU consists of PEs, which implement f (2.25) and g (2.28) functions. The

aim of the PU is to complete at most N logN computations as fast as possible

with the limited resources. The PU employs PEs as pipeline tree architecture

38



[16], without the PE and the decision element in the last stage of the architecture

to provide minimum 2-bit hard decision in a DC. Therefore, the PUs has logN−1

stages and N−2 PEs. Although the conventional DC of SC takes 2N−2 CCs, our

implementation takes variable CCs depending on the free set A and the frozen

set Ac. We analyzed A and all possible subsets of A to detect rate-0, rate-1, REP

and SPC constituent code segments. When these code segments emerge, the PU

terminates and gives internal LLRs to the DU.

In the following section, we will present our PE implementation.

3.2.1.1 Processing Element (PE)

PE implements f (2.25) and g (2.28) functions to decompose a length-λ code

segment into two length-λ/2 code segments. It takes two input LLR values, γa

and γb and one partial sum decision, û. Each of the LLR value has P bit precisions

and û has single bit precision. CL assigns the control signals, EN to enable the

element and SEL to select the function type. As a result of a PE function, an

intermediate LLR value γc with P bit precision is calculated. Input and output

values of a processing element is shown in Figure 3.4 and the truth table of these

values are shown in Figure 3.1.

Figure 3.4: Inputs and outputs of a processing element (PE).

We have implemented a PE for both twos complement (TC) and sign-

magnitude (SM) representations of γ values. Since the absolute value and the

sign value is available in SM representation, f function is easier to compute. In
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Table 3.1: The truth table of a PE.

CLK EN SEL û γa γb γc

- x x x x x no change
↑ 0 x x x x no change
↑ 1 0 x x x sign(γaγb) min(|γa|, |γb|)
↑ 1 1 0 x x γb + γa
↑ 1 1 1 x x γb − γa

terms of g function, using TC logic minimizes resource usage due to addition and

subtraction operations. At the end of a PE, pipeline registers are used for γc

to meet with the timing requirements of the FPGA. Implementation results of a

PE is shown in Figure 3.2. In these results, input values are also registered to

measure the latency of the critical path delay from an input to an output. As a

result, we choose SM representation to implement the SC decoder.

Table 3.2: Implementation results of a processing element.

LLR Bit
Precision

PE Data
Type

FFs LUTs Slices
Latency

(ns)
TC 14 67 31 1.96

4
SM 14 54 25 1.70
TC 20 98 47 2.51

6
SM 23 120 48 2.44
TC 26 122 53 2.46

8
SM 26 94 41 2.62
TC 34 145 68 2.85

10
SM 32 101 45 3.02
TC 38 165 61 3.32

12
SM 38 119 51 2.96
TC 46 190 73 3.54

14
SM 44 139 63 3.08
TC 50 217 82 3.75

16
SM 50 158 61 3.06

3.2.2 Decision Unit (DU)

The DU creates internal hard decisions from γ soft decisions for a constituent

code length λi. The CL activates the DU at the end of PU, when a REP, a SPC,
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a rate-0 or a rate-1 code segment emerges. We use a decision rule, similar to [25],

to decode constituent codes such that the decision rule is shown in Equation 3.1.

In this decision rule, rλ represents the code rate of length-λ constituent code and

d̂λ1,i is the length-λ internal hard decision vector. Note that this decision rule is

only valid when all frozen bits are: uAc = 0.

d̂λ1,i =



0, if rλ = 0

0, if rλ = 1
λ

and
λ∑
j=1

γj ≥ 0

1, if rλ = 1
λ

and
λ∑
j=1

γj < 0

sign(γi), if rλ = λ−1
λ

and
λ∑
j=1

sign(γj) = 0

not sign(γi), if rλ = λ−1
λ

and
λ∑
j=1

sign(γj) 6= 0 and i = argmin
k

(|γk|)

sign(γi), if rλ = λ−1
λ

and
λ∑
j=1

sign(γj) 6= 0 and i 6= argmin
k

(|γk|)

sign(γi), otherwise (rλ = 1).

(3.1)

Since sign(γ) equals to the most significant bit (MSB) of a γ in SM representa-

tion, rate-1 decisions does not use any logic. In addition to that, rate-0 decisions

are connected to the ground without using any logic. Thus, the critical path

delay of DU is caused by either REP or SPC constitutes. The implementation of

length-λ REP and SPC constitutes with P = 6, γ bit precision is shown in 3.3.

Due to implementation results, we create a constraint for the maximum length

of a REP and a SPC constituent as λM . As a default, we set λM = 16 to meet

with the critical path delay, 5.25 ns. By using this constraint, the SC can decode

at most length-16 REP and SPC code segments, however there is no limitation

for the length of rate-0 and rate-1 code segments.
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Table 3.3: Implementation results of REP and SPC constituent codes, P = 6.

Code
Type

Code
Length

FFs LUTs Slices
Latency

(ns)
2 13 51 22 1.47
4 25 104 47 2.81
8 61 219 98 3.61
16 125 449 196 5.10
32 273 921 428 6.45

REP

64 565 1861 817 7.69
2 13 40 21 1.07
4 28 100 47 1.88
8 56 230 104 3.53
16 112 484 216 5.25
32 224 993 496 7.99

SPC

64 451 1992 902 8.95

3.2.3 Partial Sum Update (PSU)

The PSU is responsible for both calculation of the feedback hard decisions and

final output of the SC decoder, x̂A. This can be achieved by encoding length-λi

internal decision vectors blocks, d̂ such that λi is the length of the ith constituent

code. The encoding operation has logN stages and it is the bit-reversed version

of the encoding algorithm that we present in Section 2.4. The last stage decision

vector, d̂1,logN will be the systematic output of the SC decoder. In general, the

jth stage has N/2j decision vectors as d̂i,j of length-2j. The total number of d̂

blocks loaded to PSU is defined as υ such that
υ∑
i=1

λi = N .

Figure 3.5: PSU with N = 8, υ = 3, λ1 = 2, λ2 = 2 and λ3 = 4.
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The PSU performs logic operations with combinational logic and uses register

arrays for keeping d̂ values. For instance, let N = 8, υ = 3, λ1 = 2, λ2 = 2 and

λ3 = 4, then the data flow of the PSU is shown in Figure 3.5. Since λ1 = 2, the

first input of the PSU is d̂1,1 = (û1 ⊕ û2, û2). The PSU saves this input vector

in a register array of length-2 and feedbacks these hard decisions to the PU. The

second decision block of length-λ2 is d̂2,1 = (û3 ⊕ û4, û4). This vector and the

registered vector are combined as d̂1,2 = (û1⊕ û2⊕ û3⊕ û4, û3⊕ û4, û2⊕ û4, û4).
Similar to the previous encoded hard decision block, this hard decision block is

also given to the PU for forward processing operations. Since λ3 = 4, so there

is no need to calculate d̂3,1 and d̂4,1. The last decision block is d̂2,2 = (û5 ⊕ û6 ⊕
û7⊕ û8, û7⊕ û8, û6⊕ û8, û8) in the second stage and the PSU combines d̂1,2 and

d̂2,2 as d̂1,3 and the decoding is completed. Therefore, the general encoding rule

of the PSU is

d̂i,j = (d̂2i−1,j−1 ⊕ d̂2i,j−1, d̂2i,j−1) (3.2)

= (d̂12i−1,j−1 ⊕ d̂12i,j−1, d̂12i,j−1, ..., d̂2
j−1

2i−1,j−1 ⊕ d̂2
j−1

2i,j−1, d̂
2j−1

2i,j−1). (3.3)

3.2.4 Controller Logic (CL)

CL is responsible for offline detection of REP, SPC, rate-0 and rate-1 constituent

codes and scheduling of the SC decoder. Code detection functions are im-

plemented in very high speed integrated circuit hardware description language

(VHDL) to make a compact system design. As we present in Section 3.1.1, the

conventional DC of the SC decoder is 2N−2 CCs. Due to the detection of special

constituent codes, CL reduces the number of decoding stages as shown in Figure

3.4. In this figure, K is the number of free bits and λM is the maximum number

of REP and SPC constituent code lengths. The current stage number, i of f and

g functions is illustrated as fi and gi and the length of the constituent code, j is

set as repj for repetition, spcj for single parity check, aij for rate-1 and afj for

rate-0 codes. When K = 4, the free set is:A4 = {4, 6, 7, 8}. Similarly, other free
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sets are A3 = {4, 6, 8} when K = 3 and A7 = {2, 3, 4, 5, 6, 7, 8} when K = 7. If

(K,λM) is (4,0), CL does not detect the constituent codes, so the conventional

DC does not change. In other cases, CL is allowed to detect constituent codes

and overall DC reduces. The CL sets the DC such that each stage of PU takes

one CC, each iteration of DU takes one CC and PSU operates with combinational

logic, which does not contribute to the DC.

Table 3.4: SC decoder latency for N = 8.

CC
K,λM

1 2 3 4 5 6 7 8 9 10 11 12 13 14

4,0 f1 f2 f3 g3 g2 f3 g3 g1 f2 f3 g3 g2 f3 g3

4,2 f1 f2 af2 g2 rep2 g1 f2 spc2 g2 ai2 - - - -
4,4 f1 rep4 g1 spc4 - - - - - - - - - -
3,2 f1 af4 g1 f2 rep2 g2 ai2 - - - - - - -
7,2 f1 f2 rep2 g2 ai2 g1 ai4 - - - - - - -

3.3 Successive Cancellation List Decoder Imple-

mentation

In this section, we present our implementation of the SCL decoding algorithm,

introduced in Section 2.5.2. The SCL decoding algorithm is a beam search al-

gorithm that tracks L decoding paths together to increase the error correction

performance of SC decoder with some additional complexity. Unlike the SC de-

coder, the SCL decoder uses the negative of the LL (δ) values as soft decision

information such that

δ0 = W (y|x = 0) = − ln

e−(y−1)2

2σ2

√
2πσ2


δ1 = W (y|x = 1) = − ln

e−(y+1)2

2σ2

√
2πσ2

 ,

(3.4)

where the channel is BAWGNC.
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Both δ0 and δ1 can take values between 0 to 2P − 1, represented with P bit

precision. Data flow of the SCL decoder is shown in Figure 3.6. Main modules

of SCL decoder are list processing unit (LPU), list partial sum update (LPSU)

and bitonic sorter (BS). We use an asymmetric BRAM to save δ0 and δ1 from

channel at the beginning of decoding. After that, the processors use this BRAM

to read and write δ0 and δ1 values for internal soft decision calculations. There

are V LPUs in our SCL decoder implementation and each of LPU has one soft

decision router element (SRE) and L list processing elements (LPEs). The aim

of the SRE is to route the output of LL asymmetric BRAM to the input of

LPEs with respect to the pointer information, which is stored in pointer register

array memory. Each LPU takes 4LP bits as input and calculates 2LP bits of LL

information in a pipeline manner. For the last log V stages, the output of the

ith LPU directly feedbacks to the input of the LPU, which has di/2e index for

i = {1 → V } without accessing the BRAM to enable pipeline calculations. A

data buffer is implemented for the feedback operation of LPUs.

Figure 3.6: Data flow graph of successive cancellation list decoder.

For each valid decoding path, SCL decoder calculates path likelihood informa-

tion such that the number of the path likelihood information doubles at each free

decision step, until 2L different valid paths emerge. At this point, the decoder

has not adequate resources to track all 2L paths. Therefore, it sorts them to

find L best paths. If more than one winner path is reproduced from the same

ancestor, two different processors have to access to the same memory and one

of these processors writes to the same memory. This makes memory conflicts
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due to overwriting. To solve this problem, the primitive idea is to copy all data

history from one memory of a winner path to the memory of a loser path. The

cost of copying information is quite significant, because the amount of data to be

copied is 2LP (N−1) bits for likelihood values and LN bits for the hard decisions.

For the implementation of the SCL decoder, we use P bits LL representation to

calculate internal soft decisions. Therefore, 2P bits are necessary to keep both

likelihood values δ0 for the likelihood of 0 and δ1 for the likelihood of 1. In ad-

dition to that, we use N − 1 memory locations to save 2P likelihood values for

each list to enable internal calculations. During state copying, the SCL decoder

pauses the all processing operations such that it creates additional latency after

each sorting operation. A better solution is to create a pointer memory, which

remembers the valid memory locations for all lists. We use this approach and

create L logN × logL bits of pointer array memory. The pointer memory has

L logN depth, because each list needs a pointer for logN stages. There is L

different memory options to access, thus the data width of the pointer memory

is logL.

We will explain the implementation details of LPU, LPSU and BS throughout

this section.

3.3.1 List Processing Unit (LPU)

The LPU consists of L LPEs and one SRE to compute δ0 and δ1 soft decisions. We

used semi-parallel architecture for processing to minimize the total complexity of

all LPU blocks. Therefore, the SCL decoder has V LPUs. Each LPU reads from

and writes to the asymmetric BRAM, which has 2V × L × P input data width

and 4V ×L×P output data width and (2∗N/V )−2 address length. The LL bit

precision, P is taken as P = logN + Q, where Q is the channel LL precision, to

avoid overflows during forward processing of logN stages. A LPE can read one

of L different memory locations of BRAM or the data buffer between the LPUs,

however it can write only its own memory location. During the activation of

LPSUs and BS, all LPUs are paused. In case of a loser list after sorting, the SRE
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does not route the LL information of that list to LPEs to perform g functions.

SRE reads pointer values from pointer register array and route both of output

of the BRAM and data buffer to the input of LPEs. The pointer information is

only necessary for g functions, because f functions always operate in the same

memory. The synthesis results of LPU, SRE and LPE is shown in Figure 3.5.

As L increases, SRE uses more lookup tables (LUTs) and dominates the LPU

implementation.

Table 3.5: Synthesis of LPU, SRE and LPE.

LPU LPE SRE
LL

Precision
List
Size

LUTs
Latency

(ns)
LUTs
(%)

Latency
(%)

LUTs
(%)

Latency
(%)

2 144 3.52 55.6 71.3 44.4 28.7
4 360 3.98 64.4 71.7 35.6 28.3
8 976 4.16 47.5 68.6 52.5 31.4
16 2976 4.30 31.2 66.3 68.8 33.7

8

32 12096 4.76 15.3 59.9 84.7 40.1
2 312 3.66 59.0 72.3 41.0 27.7
4 760 4.11 66.3 72.5 33.7 27.5
8 2032 4.30 49.6 69.3 50.4 30.7
16 6112 4.46 33.0 66.9 67.0 33.1

16

32 24512 4.94 16.4 60.4 83.6 39.6

The RTL schematic of LPU for N = 1024, P = 14 and L = 4 is shown in 3.7.

3.3.1.1 List Processing Element (LPE)

LPEs compute f0, f1, g0 and g1 functions to obtain logN stage LL values. At

each stage, these functions are activated N/2 times. The f0 and f1 functions are

LL representation of the f function; g0 and g1 are the LL representation of the g

function such that
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Figure 3.7: The RTL schematic of list processing unit for N = 1024, P = 16 and
L = 4.
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f0(δa,0, δa,1, δb,0, δb,1) = δc,0

= min(δa,0 + δb,0, δa,1 + δb,1) + ln(1 + e−|δa,0+δb,0−δa,1−δb,1|)− ln 2

≈ min(δa,0 + δb,0, δa,1 + δb,1),

(3.5)

f1(δa,0, δa,1, δb,0, δb,1) = δc,1

= min(δa,0 + δb,1, δa,1 + δb,0) + ln(1 + e−|δa,0+δb,1−δa,1−δb,0|)− ln 2

≈ min(δa,0 + δb,1, δa,1 + δb,0),

(3.6)

g0(δ
∗
a,0, δ

∗
a,1, δ

∗
b,0, δ

∗
b,1, û) = δd,0

= δa,0 + δb,0 + (δa,1 − δa,0) û− ln 2

≈ δa,0 + δb,0 + (δa,1 − δa,0)û,

(3.7)

g1(δ
∗
a,0, δ

∗
a,1, δ

∗
b,0, δ

∗
b,1, û) = δd,1

= δa,1 + δb,1 + (δa,0 − δa,1) û− ln 2

≈ δa,1 + δb,1 + (δa,0 − δa,1)û,

(3.8)

where δ∗a,0, δ
∗
a,1, δ

∗
b,0, δ

∗
b,1 are the pointed LL vectors.

SCL decoder performs g0 and g1 functions after û hard decisions are made.

3.3.1.2 Soft Decision Router Element (SRE)

The SRE reads the pointer information from pointer register array. With respect

to this information, the SRE routes the output of the asymmetric LL BRAM to

L LPEs. This routing operation has P L2 complexity, because a SRE needs 4PL

L − to − 1 demultiplexers to map {δa,0, δa,1, δb,0, δb,1} LLs to {δ∗a,0, δ∗a,1, δ∗b,0, δ∗b,1}
pointed LLs for all lists.
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3.3.2 List Partial Sum Update Logic (LPSU)

The LPSU updates hard decision partial sums for all lists as a feedback to g0 and

g1 functions and creates the systematic data output of the SCL decoder. The

feedback decisions have L(N − 1) bits and the systematic output has LN bits.

The LPSU uses registers as memory instead of BRAM to decrease latency. This

enables to calculate all necessary partial sums in one CC. The LPSU accesses

registers through N − 1 hard decision router elements (HREs) with respect to

pointer information to avoid recalculation of previous hard decisions. The data

flow of the LPSU for N = 4, L = 2 is shown in Figure 3.8. At each decision step

from i = {1 ≤ i ≤ N}, L hard decisions appear for the lth list l = {1 ≤ l ≤ L}
as ûl,i. If the outputs of lth list has lower probability than the other lists, we do

not need the decisions of this list anymore. In addition to that, a list can operate

with the previous hard decisions of an other list. For that operation, the LPSU

accesses the decision memory by using de-multiplexers and calculates the partial

sums.

Figure 3.8: List partial sum update logic (LPSU) for N = 4, L = 2.
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3.3.2.1 Hard Decision Router Element (HRE)

The operation of the HREs and SREs in Section 3.3.1.2 is similar as they access

to the same pointer memory at different times. The only difference is the HRE

takes hard decisions as input. Therefore, the complexity of each HRE decreases

to L2 from P L2 such that each HRE has L L− to− 1 demultiplexers. Accessing

to the pointer memory does not cause memory conflicts, because read operations

occur before write operations.

3.3.3 Sorter

Our SCL decoder needs a sorter to find best L decoding path among 2L at each

free decision stage. That means, we activate the sorter module K times for a

code block. During sorting, the decoder core waits for the best decoding paths

without performing any operations. Therefore, latency of a sorter module has an

important influence on total latency of the SCL decoder. In addition to that, the

probability of each decoding path is represented by two LLs with each of them

has P bit precision. Although these 2L LLs need to be sorted to find the highest

L LLs, we only need L winner indices and their list number. The remaining

Lloser paths are discarded. The output information of sorter is used for making

hard decisions and updating pointer list values.

3.3.3.1 Bitonic Sorter

To limit latency and also resource usage, we implemented BS algorithm [38].

The BS algorithm is a low complexity semi-parallel sorting algorithm, which is

suitable for FPGA implementation of polar list decoders [35]. The complexity of

bitonic sorting scales with L efficiently.

Let ΥB(L) denote the time complexity of the bitonic sorter with the list size
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L such that

ΥB(L) = ΥB(
L

2
) + logL+ 1 (3.9)

= ΥB(
L

2
) + Θ(logL) (3.10)

(i)
= O(log2L). (3.11)

Let ζB(L) denote the space complexity of the bitonic sorter with the list size

L such that

ζB(L)) = 2ζB(
L

2
) + 2L(logL+ 1) (3.12)

= 2ζB(
L

2
) + Θ(L logL) (3.13)

(i)
= O(Llog2L), (3.14)

where ΥB(1) = 1, ζB(1) = 2 and (i): the master theorem, case 2.

For instance, let L = 4, the bitonic sorter circuit is shown in Figure 3.9.

There are three stages as s1, s2, s3 and these stages has substages such as

s1,1, s2,2, s3,2. Then, total stage number is log(L) + 1 and total substage num-

ber is (log(L)+1)(log(L)+2)
2

. Each list processing core provides two LLs to the BS. In

addition to that, the input indices are represented by log 2L bit precision from

one to eight such that LL1,1 is the first, LL1,2 is the second and LL4,2 is the eighth

input indices. These indices follow the LL data, throughout the sorter to keep

list history information. The elements in each substage are simple comparators,

which compares the left upper LL value with the left bottom one. The higher LL

value is the output of diamond connection and the lower LL value is the output

of the square connection with their initial index information. Comparators does

not use initial index information, but they use LL values for comparison.

We have implemented three different bitonic sorters as BS, fast bitonic sorter

(FBS) and fast reduced bitonic sorter (FRBS). For the BS implementation, we

use pipeline registers at the end of each substage. For the FBS implementation,

we use pipeline registers for every two substage of the bitonic sorter. For the
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Figure 3.9: Bitonic sorter circuit for L = 4.

FRBS implementation, the last logL optional substages, s3,2 and s3,3 are not

used. Thus, the output list information is not sorted from the best list to the

worse list. This may introduce some performance degradation to the algorithm

as we will be discussed in Section 3.5.

At the end of s3, there are four identical decision units (d) to make hard

decisions with respect to indices of sorted LLs. Since we activate the sorter

K− logL times as k = {1→ K− logL} for all lists l = {1→ L = 4}, the output

hard decisions are saved as ul,k. Let the input of a decision unit is t, then the

decision rule is

ûl,k =

0, if t mod 2 = 1

1, otherwise.
(3.15)

In addition to that, there are four pointer units (p) to calculate the list number

of output indices. Let the input of a pointer unit is l and the output is a such

that a = d l
2
e. The output of a pointer unit determines a routing rule for a LPU.

Similar to the example of L = 4 sorter, the L = 2 sorter is shown as the dotted

square box in the upper left corner of the L = 4 bitonic sorter. A recursive
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algorithm is used to generate a sorter with respect to L.

The resource usage of the bitonic sorter is shown in Table 3.6. Since FRBS

has advantages in terms of both resource usage and latency, we choose FRBS

to implement the adaptive SCL decoder. RTL schematic of the FBS for L = 2

is shown in Figure 3.10. For the FRBS implementation, the last stage bitonic

comparator in this RTL schematic is not used.

Table 3.6: Implementation results of the bitonic sorter for P = 8.

List
Size

Sorter
Type

FFs LUTs Slices
Period

(ns)
Latency

(CC)
Latency

(ns)
FRBS 34 147 71 0.51 1 0.51
FBS 54 229 108 2.95 1 2.952
BS 96 189 84 1.68 3 5.03

FRBS 146 507 209 4.21 1 4.21
FBS 203 873 345 3.24 2 6.474
BS 401 635 261 2.03 6 12.20

FRBS 500 1521 624 4.50 3 13.49
FBS 776 2492 970 3.43 4 13.718
BS 1446 2054 835 2.13 10 21.33

FRBS 1781 4796 2019 4.44 5 22.22
FBS 2469 6660 2824 3.75 7 26.2516
BS 4694 6174 2521 2.24 15 33.54

FRBS 5893 16170 6070 5.09 7 35.61
FBS 7110 21406 8200 4.43 10 44.2532
BS 14151 17209 6763 2.42 21 50.88

3.4 CRC Decoder Implementation

The CRC decoder is activated at the end of both SC and SCL decoders for

detecting whether a decision vector is valid. We use CRC-16-CCITT, x16 +x12 +

x5 + 1 polynomial for the implementation. The input of the CRC decoder is x̂A

at the end of SC decoder and x̂l,A at the end of SCL decoder for l = {1 → L}.
The output of the CRC decoder is boolean such that it is equal to ’1’ if the CRC

is valid, ’0’ otherwise. The CRC decoder is shown in Figure 3.11. In this figure,

there are 16 pipeline registers and 3 XOR gates. At the initial stage, the output
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Figure 3.10: RTL schematic of the fast bitonic sorter with L = 2.
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of all registers are zero. After that, an input vector is loaded to din pin from

least significant bit (LSB) to MSB, where the last 16 MSB bits are the CRC

bits. Loading an input vector to the CRC decoder takes K CCs. The final CRC

output is valid, if and only if the output of all 16 flip-flops (FFs) are zero after

the Kth CC.

Figure 3.11: CRC decoder circuit.

In our implementation, we reduced the latency of the CRC decoder from K

to C by using C pipeline stages. C can take any integer value, if it is dividable

by K. The implementation results of CRC decoder for K = 512 with respect to

various C values are shown in Table 3.7. According to implementation results,

we choose C as two to limit the maximum period as 2.56 ns.

In case of CRC encoding, the last 16 bits set to zero. After all input is loaded,

the output of 16 FFs will be the CRC vector. Therefore, the same circuit can be

used for both CRC encoding and decoding.

Table 3.7: Implementation results of CRC decoder for K = 512.

FFs LUTs Slices
Period

(ns)
Latency

(CC)
Latency

(ns)
17 2711 1113 18.11 1 18.11
34 1572 713 2.56 2 5.13
67 1526 617 2.20 4 8.81
132 1501 619 1.85 8 14.81
261 1571 658 1.73 16 27.68

The RTL schematic of CRC for K = 512 is shown in Figure 3.12.
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3.5 Adaptive SCL Decoder Implementation Re-

sults

We implement the adaptive decoder as the combination of SC, SCL and CRC

decoders on the Xilinx Kintex-7 (xc7k325t-2ffg900c) FPGA. The resource usage,

latency and throughput of the adaptive decoder is shown in Table 3.8. For this

implementation, we set input LLR precision of SC decoder to PSCD = 6 bits.

Although the input LL precision of the SCL decoder is Pi = 6 bits, we add extra

logN bits to ensure that the decoder does not overflow. Thus, the internal LL bit

precision of the SCL decoder is PSCLD = 6 + logN bits. The number of LPU set

as V = 4 and we use FRBS to sort LL values in the SCL decoder. The adaptive

SCL decoder performs its maximum latency and minimum throughput when the

CRC is invalid at the end of SC decoder and SCL decoder is activated. The

adaptive SCL decoder performs min. latency and max. throughput, when the

output of the SC decoder has a valid CRC as a result of the CRC decoder. The

increase on the BRAM usage is caused by the input data width of the asymmetric

BRAM in the SCL decoder.

Table 3.8: Implementation results of adaptive successive cancellation list decoder.

N L FFs LUTs Slices
Block
RAMs

Period
(ns)

Min.-Max.
Lat. (CC)

Min.-Max.
Tp. (Mbps)

2 7809 12589 4886 14 7.38 152 - 1534 12 - 197
4 10217 16565 6314 28 8.23 152 - 1539 11 - 177256
8 15241 28438 10344 56 9.67 152 - 1800 8 - 150
2 27690 45021 12576 16 7.78 548 - 6640 10 - 225

1024
4 34099 53972 17219 32 8.43 548 - 6645 10 - 208

The resource percentage of SC, SCL and CRC decoders in the adaptive SCL

decoder implementation is shown in Figure 3.9. As the list size increases, SCL

decoder uses more resources compared to other decoders. For all cases, CRC

decoder uses insignificant amount of resources.

Throughput results of our implementations varies with respect to Eb/No. At

low Eb/No values, both the SC and the SCL decoders do not performs well.

Therefore, the SCL decoder is frequently activated, after the CRC fails at the
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Table 3.9: The resource usage percentage of SC, SCL and CRC decoders.

N L
Decoder

Type
FFs
(%)

LUTs
(%)

Slices
(%)

BRAMs
(%)

SCD 67.2 72.2 75.8 6.7
SCLD 31.9 25.1 22.1 93.32
CRC 0.9 2.7 2.1 0.0
SCD 51.0 53.5 57.8 3.4

SCLD 48.3 44.4 40.3 96.64
CRC 0.7 2.1 1.9 0.0
SCD 34.0 30.9 30.5 1.8

SCLD 65.5 67.9 68.4 98.2

256

8
CRC 0.5 1.1 1.1 0.0
SCD 74.6 80.2 79.4 5.3

SCLD 25.1 16.2 17.2 94.72
CRC 0.3 3.6 3.5 0.0
SCD 60.4 66.8 67.3 2.9

SCLD 39.4 30.2 29.6 97.1

1024

4
CRC 0.2 3.0 3.1 0.0

end of the SC decoder. As Eb/No increases, the SCL decoder is less frequently

activated and the throughput of adaptive SCL decoder improves. The throughput

improvement with respect to Eb/No is shown in Figure 3.13 and 3.14.

The performance loss due to the implementation of the FRBS is shown in

Figure 3.15 and 3.16 for N = 256 and K = 128. It is observed that there is

not significant performance loss in both BER and FER curves with the list size

L = 32 and L = 16.

For N = 1024 and K = 512, the performance of the adaptive SCL decoder

implementation with bitonic sorter is shown in Figure 3.17, 3.18. At this point,

the FRBS causes more than 0.5 dB performance loss when L = 32. The reason

behind this performance loss might be the hard decision candidates, which has

more than one valid CRC at the end of the SCL decoder.

In addition to these, the BER performance of the adaptive SCL with respect to

different internal bit precisions is shown in Figure 3.19 and the FER performance

is shown in Figure 3.20. Although the SCL decoder uses P = Pi + logN internal
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Figure 3.13: Throughput of the adaptive SCL decoder, N = 256, K = 128, L = 8.
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Figure 3.14: Throughput of the adaptive SCL decoder, N = 1024, K = 512, L = 4.
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Figure 3.15: BER performance of the adaptive SCL decoder with bitonic sorter,
N = 256, K = 128.
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Figure 3.16: FER performance of the adaptive SCL decoder with bitonic sorter,
N = 256, K = 128.
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Figure 3.17: BER performance of the adaptive SCL decoder with bitonic sorter,
N = 1024, K = 512.
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Figure 3.18: FER performance of the adaptive SCL decoder with bitonic sorter,
N = 1024, K = 512.
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LL precision, the P = 11 bit precision is adequate for N = 1024, K = 512,

L = 16, Pi = 6 due to BER and FER performance results.
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Figure 3.19: BER performance of the adaptive SCL decoder with different internal
bit precisions, N = 1024, K = 512, L = 16, Pi = 6

3.6 Summary of the Chapter

In this chapter, we made a literature survey about SC and SCL decoder algorithms

and implementations. We analyzed the SC decoding architectures in terms of

reducing complexity and increasing throughput. Furthermore, we presented our

adaptive successive cancellation list decoder implementation consisting SC, SCL

and CRC decoders.

The SC decoder has four main modules as processing unit (PU), decision unit

(DU), partial sum update (PSU) and controller logic (CL). For the implementa-

tion of the SC decoder, we use fast SC decoding method in [25]. This provides

the detection of all frozen (rate-0), all free (rate-1), single partiy check (SPC) and

repetition (REP) code segments to increase the throughput of the SC decoder.

These code segments can be decoded with a maximum likelihood (ML) decoder
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Figure 3.20: FER performance of the adaptive SCL decoder with different internal
bit precisions, N = 1024, K = 512, L = 16

in a single clock cycle.

The SCL decoder consists of three main modules as list processing unit (LPU),

list partial sum update (LPSU) and sorter. We use the semi-parallel architecture

in [17] for the implementation of LPU. By this way, we define V LPUs, consist

of total V soft decision router elements (SRE) and V L list processing elements

(LPE). In the implementation of adaptive SCL decoder, we set V = 4. For the

LPSU module, we use tree structure to minimize the latency. Thus, N − 1 hard

decision router elements (HRE) are used for the LPSU module. For the sorter

module, we have implemented there different sorters as bitonic sorter (BS), fast

bitonic sorter (FBS) and fast reduced bitonic sorter (FRBS). We selected FRBS

as our sorter to minimize the latency and resource usage caused by the sorter in

SCL decoder. The FRBS introduces some insignificant performance loss that we

showed in this chapter.

We considered a latency oriented design of the CRC decoder to maximize the

throughput. The latency of the CRC decoder sets as 2, for the implementation

of the adaptive SCL decoder. As a result, we achived an FPGA implementation

64



of the adaptive SCL decoder up to 225 Mb/s data throughput.
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Chapter 4

Conclusion

In this thesis, we focused on the implementation of polar codes on standard com-

mercial FPGA chips. An adaptive SCL algorithm was developed by combining

the SC, the SCL and the CRC decoders. The implementation of the adaptive SCL

decoder on FPGA was challenging for large list sizes due to increasing complexity

and the excessive demand on routing paths. Thus, we achieved an implementa-

tion for the code block length N = 256 up to list size L = 8 and for N = 1024

up to list size L = 4. Although we had tried to implement with longer list sizes,

the implementation failed due to routing congestion in FPGA. As a result, we

achieved an adaptive SCL decoder, which has a throughput up to 225 Mb/s.

In Chapter 2, we reviewed the polar codes in terms of properties, code con-

struction, encoding and decoding methods. We discussed the systematic and non-

systematic polar coding. We presented the SC, the SCL and the adaptive SCL

algorithms with their high level description. We presented both floating-point

and fixed-point simulation results to get intuitive about hardware performance

results. In Chapter 3, we presented important details about our adaptive list de-

coder implementation. Our implementation target is to design the SC decoder as

throughput oriented and the SCL decoder as complexity oriented. In this manner,

we preferred fast architecture for the SC decoder; semi-parallel architecture for

the SCL decoder. In the SC decoder, we analyzed special code segments, REP,
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SPC, R-0 and R-1 in detail and presented its implementation results. In SCL

decoder, we developed FRBS to reduce sorting latency significantly, compared to

a conventional BS. The FRBS implementation results were analyzed in Section

3.3.3.1. After that, we showed the implementation logic of the CRC decoder.

Since it has insignificant contribution to the total implementation complexity, we

reduced the pipeline stages in Section 3.4. Lastly, we showed implementation

results of the adaptive SCL decoder in terms of resource usage, maximum clock

frequency, memory usage, latency and throughput. The latency and the through-

put of the adaptive SCL decoder varies with respect to operating SNR value. As

a result, we achieved 100 Mb/s throughput approximately at 1.5 dB Eb/No in

N = 256, K = 128, L = 8 parameters. For the length N = 1024, K = 512, L = 4

decoder at 1.25 dB Eb/No, our implementation works faster than 100 Mb/s data

throughput.

For future work, we will reduce the complexity of our implementation and make

it possible to implement adaptive L = 32 SCL decoders on standard commercial

FPGA chips.
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