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ABSTRACT 

TERRAIN VISIBILITY AND GUARDING PROBLEMS 
 

Haluk Eliş 

Ph.D. in Industrial Engineering 

Advisor: Osman Oğuz 

October 2017 

 

 

Watchtowers are located on terrains to detect fires, military units are deployed to watch the 

terrain to prevent infiltration, and relay stations are placed such that no dead zone is present on 

the terrain to maintain uninterrupted communication. In this thesis, any entity that is capable of 

observing or sensing a piece of land or an object on the land is referred to as a guard. Thus, 

watchtowers, military units and relay stations are guards and so are sensors, observers (human 

beings), cameras and the like. Observing, seeing, covering and guarding will mean the same. The 

viewshed of a given guard on a terrain is defined to be those portions of the terrain visible to the 

guard and the calculation of the viewshed of the guard is referred to as the viewshed problem. 

Locating minimum number of guards on a terrain (T) such that every point on the terrain is 

guarded by at least one of the guards is known as terrain guarding problem (TGP). Terrains are 

generally represented as regular square grids (RSG) or triangulated irregular networks (TIN). In 

this thesis, we study the terrain guarding problem and the viewshed problem on both 

representations. 

 

 The first problem we deal with is the 1.5 dimensional terrain guarding problem (1.5D TGP). 

1.5D terrain is a cross-section of a TIN and is characterized by a piecewise linear curve. The 

problem has been shown to be NP-Hard. To solve the problem to optimality, a finite dominating 

set (FDS) of size O(n
2
) and a witness set of size O(n

2
) have been presented earlier, where n is the 

number of vertices on T. An FDS is a finite set of points that contains an optimal solution to an 

optimization problem possibly with an uncountable feasible set. A witness set is a discretization 

of the terrain, and thus a finite set, such that guarding of the elements of the witness set implies  
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guarding of T. We show that there exists an FDS, composed of convex points and dip points, 

with cardinality O(n). We also prove that there exist witness sets of cardinality O(n), which are 

smaller than O(n
2
) found earlier. The existence of smaller FDSs and witness sets leads to the 

reduction of decision variables and constraints respectively in the zero-one integer programming 

(ZOIP) formulation of the problem. 

 

 Next, we discuss the viewshed problem and TGP on TINs, also known as 2.5D terrain 

guarding problem. No FDS has been proposed for this problem yet.  To solve the problem to 

optimality the viewshed problem must also be solved. Hidden surface removal algorithms that 

claim to solve the viewshed problem do not provide analytical solutions and present some 

ambiguities regarding implementation. Other studies that make use of the horizon information of 

the terrain to calculate viewshed do so by projecting the vertices of the horizon onto the 

supporting plane of the triangle of interest and then by connecting the projections of the vertices 

to find the visible region on the triangle. We show that this approach is erroneous and present an 

alternative projection model in 3D space. The invisible region on a given triangle caused by 

another traingle is shown to be characterized by a system of nonlinear equations, which are 

linearized to obtain a polyhedral set. 

 

 Finally, a realistic example of the terrain guarding problem is studied, which involves the 

surveillance of a rugged geographical terrain approximated by RSG by means of thermal 

cameras. A number of issues related to the terrain-guarding problem on RSGs are addressed with 

integer-programming models proposed to solve the problem. Next, a sensitivity analysis is 

carried out in which two fictitious terrains are created to see the effect of the resolution of a 

terrain, and of terrain characteristics, on coverage optimization. Also, a new problem, called the 

blocking path problem, is introduced and solved by an integer-programming formulation based 

on a network paradigm. 

 

 

Keywords: Terrain guarding problem, viewshed problem, terrain approximation, location 

problems, finite dominating sets, witness sets, blocking path problem, zero-one integer 

programming. 
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ÖZET 

ARAZİ GÖRÜNÜRLÜK VE KORUMA PROBLEMLERİ 
 

Haluk Eliş 

Endüstri Mühendisliği, Doktora 

Tez Danışmanı: Osman Oğuz 

Ekim 2017 

 

Gözetleme kuleleri yangınları tespit edebilmek için arazi üstüne konumlandırılır, askeri birlikler 

sızmayı önleyebilmek maksadıyla araziyi gözetlemek için tertiplenirler ve röle istasyonları 

kesintisiz iletişimi sağlamak maksadıyla arazi üzerinde ölü bölge kalmayacak şekilde 

yerleştirilir. Bu tezde, bir arazi bölümünü veya arazi üzerindeki bir nesneyi algılama veya 

gözetleme kabiliyetine sahip herhangi bir varlık muhafız olarak adlandırılmıştır. Bu anlamda, 

gözetleme kuleleri, askeri birlikler ve röle istasyonları birer muhafızdır, ve sensörler, gözcüler 

(insanlar), kameralar ve benzeri varlıklar da muhafız olarak kabul edilmektedir. Gözetleme, 

görme, kapsama ve koruma aynı anlamda kullanılmıştır. Belirli bir muhafızın görüş alanı 

muhafızın arazi üzerinde gördüğü kısımlar olarak tanımlanmış, ve görüş alanı hesaplaması görüş 

alanı problemi olarak adlandırılmıştır. Arazi üzerindeki her bir nokta en az bir muhafız 

tarafından korunacak şekilde arazi üzerine en az sayıda muhafız yerleştirme arazi koruma 

problemi olarak nitelendirilmektedir. Araziler genellikle düzenli kare grid veya düzensiz üçgen 

ağı şeklinde temsil edilirler. Bu tezde, arazi koruma problemi ve görüş alanı problemini her iki 

temsil için de ele almaktayız.  

 

 İlk ele aldığımız problem 1.5 boyutlu arazi koruma problemidir. 1.5 boyutlu arazi düzensiz 

üçgen ağın bir kesitidir ve parçalı doğrusal bir eğri ile karakterize edilir. Problemin NP-Zor 

olduğu gösterilmiştir. Problemi optimal çözebilmek için, O(n
2
) boyutlu bir sonlu egemen küme 

ve O(n
2
) boyutlu bir tanık küme sunulmuştur - n arazi üzerindeki köşelerin sayısını ifade 

etmektedir. Sonlu egemen küme, muhtemelen sayılamayan bir çözüm kümesi olan bir 

optimizasyon probleminde, optimal bir çözümü ihtiva eden sonlu noktalar kümesidir. Bir tanık 

kümesi arazinin ayrıklaştırılmasından elde edilen sonlu bir küme olup tanık kümesinin 

elemanlarının kapsanması arazinin de kapsanması anlamına gelmektedir. Konveks noktalar ve 

çukur noktalarından oluşan O(n) boyutlu bir sonlu egemen küme olduğunu gösteriyoruz. Aynı  
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zamanda, daha önce bulunan O(n
2
) boyutlu tanık kümesinden daha küçük O(n) boyutlu tanık 

kümeleri olduğunu ispat ediyoruz. Daha küçük boyutlu sonlu egemen küme ve tanık kümelerinin 

sayesinde problemin sıfır-bir tamsayılı programlanmasında kullanılan karar değişkenleri ve 

kısıtların sayısında azalma meydana gelmektedir. 

 

 Daha sonra, düzensiz üçgen ağlarda görüş alanı problemi ve arazi koruma problemini, 2.5 

boyutlu arazi koruma problemi olarak da adlandırılır, ele alıyoruz. Bu problem için henüz bir 

sonlu egemen küme ortaya konmamıştır. Ayrıca, problemi optimal çözebilmek için görüş alanı 

probleminin de çözülmesi zorunludur. Görüş alanı problemini çözmeye yönelik saklı yüzey 

ayıklama algoritmaları analitik çözümler ortaya koymamakta ve uygulama konusunda 

belirsizlikler ihtiva etmektedir. Arazinin ufuk çizgisinden faydalanan diğer çalışmalar görüş 

alanını hesaplarken ufuk çizgisindeki köşelerin ilgili üçgenin bulunduğu düzlemin üstündeki 

projeksiyonunu bulurlar ve üçgenin üzerindeki görünür alanı bulmak için bu projeksiyonları 

birleştirirler. Biz bu yaklaşımın hatalı olduğunu gösterdikten sonra üç boyutlu uzayda alternatif 

bir projeksiyon modeli ortaya koyuyoruz. Başka bir üçgenden dolayı bir üçgen üzerinde 

meydana gelen görünmez bölgenin doğrusal olmayan denklemlerle ifade edildiği gösterildikten 

sonra doğrusal olmayan denklemler doğrusallaştırılarak çok düzlemli bir küme elde edildiği 

ortaya konmaktadır. 

 

 Son olarak, düzenli kare grid ile yakınsaması yapılan engebeli coğrafi bir arazi parçasının 

termal kameralar tarafından gözetlenmesini içeren arazi koruma probleminin gerçek bir örneği 

ele alınmıştır. Düzenli kare gridde arazi koruma problemi ile ilgili konular ortaya konarak 

problemin çözümüne yönelik tamsayılı programlama modelleri sunulmuştur. Müteakiben, 

arazinin çözünürlüğünün ve arazi özelliklerinin kapsama optimizasyonu üzerindeki etkisini 

görebilmek maksadıyla iki hayali arazinin yaratıldığı bir duyarlılık analizi yapılmıştır. Aynı 

zamanda, engelleyici patika problemi adını verdiğimiz yeni bir problemi tanıttıktan sonra ağ 

modeline dayalı bir tamsayılı programlama formülasyonu ile problemin çözümü verilmektedir. 

 

Anahtar sözcükler: Arazi koruma problemi, görüş alanı problemi, arazi yakınsaması, yerleştirme 

problemleri, sonlu egemen kümeler, tanık kümeler, engelleyici patika problemi, sıfır-bir 

tamsayılı programlama. 
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Chapter 1 

 

Introduction 

 

1.1 Background 

 

Human beings utilize terrain features to their benefit. Old armies built castles not on river beds 

but on high hills that can see most of the terrain so that any incoming threat could be detected 

and defended against easily. On the other hand, enemies tried to approach the castles using the 

paths that were considered least likely to be seen. Today, we still utilize terrain features for 

different reasons. If one wishes to place watchtowers on a terrain to detect fires early to prevent 

forests from burning down then an optimization study can be conducted to choose the best sites 

that will host the watchtowers. Each watchtower on its location sees, guards or covers certain 

parts of the terrain. To do the optimization, the regions visible to each watchtower must be 

identified. Then, the number and the location of each tower necessary to monitor the terrain of 

interest can be determined using mathematical programming techniques. Observing, seeing, 

sensing, covering and guarding will mean the same. In this thesis, we are mainly concerned with 

covering, guarding or viewing a piece of land using one or more entities capable of seeing, 

covering, guarding all or some portions of the land. These entities may be human beings called 

observers, watchtowers, sensors, artillery batteries, cameras and so on and they are referred to as 

‘guards’. Covering a piece of a terrain using guards is known as the “terrain guarding problem”. 

Terrain guarding problem was first investigated by De Floriani et al. [1] when they considered 

the problem of determining the optimal set of observation points that cover the terrain. They 

showed that the terrain guarding problem is equivalent to the set covering problem. Guarding a 

geographical terrain has several areas of application such as locating receivers to maintain 

communication [2], using watchtowers to protect forests from fires [3], and siting defense 

instruments against enemy intrusion [4]. 
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 We use the term viewpoint to denote a certain point on the terrain where it is possible to 

observe the terrain. A guard that is capable of covering a certain part of the terrain, when placed 

on a site, is associated with a viewpoint in terms of the regions visible to the guard. The 

viewshed of a given guard (or a viewpoint) is defined to be the set of points on the terrain that 

are visible to the guard. To be able to cover a terrain one needs to calculate the viewshed of each 

guard and the calculation of the viewshed of a given guard is referred to as the “viewshed 

problem”. The viewshed may be calculated directly on the field by standing on the spot and then 

taking note of the visible parts of the terrain. However, this could be a tedious activity especially 

when one also wants to know the viewshed of another point only a hundred meters away to do a 

comparative analysis. This activity gets even more painful when one wants to choose the best 

site that can see most of the terrain. The need for conducting similar analyses related to terrains 

has led inevitably to the representation of terrains on computers as mathematical objects.  

 

 The digital (mathematical) representation of a real terrain surface is known as a Digital 

Elevation Model (DEM) ([5], [6]). Let S   R
3
 be the surface of a real terrain of interest, for 

which a DEM is to be constructed. Let P={p1,..., pn} be the set of ‘n’ points sampled from S with 

known x, y and z (elevation value) coordinates in a fixed coordinate system. We assume that the 

points in P are sampled such that they represent S sufficiently. Let  
 
   R

2
 be the projection of pi 

onto the Euclidean x-y plane, and       
 
 , ,  

n
  } be the set of such points. The points in P and 

P
*
 are referred to as vertices (or grid points). Consider the convex hull D  of vertices in P

*
. For   

a   R
3
, let xc(a), yc(a) and zc(a) denote the x, y and z coordinates of a respectively. The DEM T 

that approximates S is characterized by a function defined over D, f: D →   , such that         

f( 
 
 ) = zc(pi), i 1, ,n. Then, T = {(x,y,z): z= f(x,y), (x,y)   D}. Note that our definition allows 

points in P
*
 to be connected by edges (or curves) such that the lines do not intersect except at 

vertices. When the vertices are connected by edges as described, D is then said to be partitioned 

into regions. 

 

 Two widely used approximations for a real terrain are regular square grid (RSG) and 

triangulated irregular network (TIN) [6]. To obtain an RSG, points are sampled from S at regular 

intervals and their projection on the plane comprises what is called a DEM mesh, i.e. grids of 

square shapes formed among the four neighboring points. Each point in P
*
 is assumed to be at 
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the center of a cell (or pixel) (Figure 1.1). Each cell may be elevated to the height of the point at 

the center. T constructed as such is called a stepped model of RSG [6], [7] (Figure 1.2(a)). Also, 

the surface in a grid may be created by interpolating the elevations of the four points that are on 

the corners of the grid square [8] or by using another function [5]. We often refer to RSG as 

grids. 

 

 The triangulation of P
*
 is defined as the maximal planar subdivision whose vertex set is P

*
 

[9]. The resulting shape is the partition of the plane by triangles (Figure 1.3). Suppose that points 

from S are irregularly sampled and the vertices in P
*
 are triangulated such that there are triangles 

on the plane intersecting only at the vertices. The elevation of a point within a triangle can be 

found using the convex combination of the elevations of the vertices. T, obtained as such, 

consists of nonoverlapping triangles in R
3
 and is called a TIN (Figure 1.2(b)).  

 

 

 

 

 

Figure 1.1: The grid cells on the plane. 

 

 When RSG is referred to in the literature, what is generally meant is the stepped model of 

RSG and this convention is followed in this thesis, too. There are differing views as to whether 

RSG or TIN is a better approximation of the terrain. Goodchild and Lee [3] consider TIN to be a 

better representation since construction can be done at an irregular sample of points, which 

allows critical points on the terrain such as pits, peaks and points on ridges to be selected for 

approximation, as opposed to the regular sampling done in RSG. As discussed in Riggs and 

Dean [10], RSG is likely to omit the elevations of critical points, representing them as flat 

planes. In terms of viewshed analysis, some researchers prefer TIN to RSG due to the problems 

associated with the geometric shape of the RSG and the better adaptation of TIN to terrain 

characteristics [2], [10], [11]. Ferreria et al [12] state that neither representation is better than the 

other while Magalhães et al [13] argue that RSG is conceptually better, more compact and easier 

to implement than TIN. 

Grid mesh 

Cell outline 

Point 
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          (a)             (b)   

Figure 1.2: Two digital elevation models (a) Regular Square Grid (b) Triangulated Irregular 

Network. Church [7]. 

 

 

 

 

 

 

Figure 1.3: A triangulation of points on the plane. 

 

 For most real world studies involving a geographical region, which may be a terrain or a 

network of cities, the data about the spatial and the nonspatial features of the region of interest 

are likely to be needed. The required datum could be the height of a point or the population of a 

city. A Geographical Information System (GIS) is a decision support system that consists of 

hardware and software which stores, edits and displays the raw data on a geographical region and 

which can perform certain analyses and visualize the results of these analyses, [7], [14], [15]. 

ArcGIS, MATLAB, Google Earth, and MapInfo are examples of a GIS. Location problems, in 

general terms, involve locating facilities (firestations, hospitals, etc.) to serve customers in a 

location space such as a network of cities. Although the data needed differ depending on the 
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objective function, the population of each city, the distance between the cities, and the locations 

of existing, if any, facilities may be needed. Some locations may not be desirable if they are near 

river beds where there is a flood risk. All this information can be obtained from a GIS and 

visualized for the decision-maker. In a real world study, a GIS provides the data on the terrain, 

performs viewshed analyses and displays those regions visible to the observer. Further, once the 

facilities (guards) are located on the terrain, GIS can display those parts of the terrain covered by 

the guards with appropriate colors. Terrain guarding problem involves locating guards on the 

terrain and thus, is closely related to the problems in location science. A detailed overview of 

GIS functions and of the links between GIS and location problems is presented in Church [7], 

Murray [14], and G. Bruno and I. Giannikos [15].  

 

1.2 Description of the Problem 

 

 Let T be a DEM. Assume, without loss of generality, that T is in the nonnegative orthant. Let 

V be the visible region above T, i.e. V={(x,y,z): (x,y)   D and z ≥ f((x,y))}. The region below T is 

denoted by F, F={(x,y,z): (x,y)   D and 0 ≤ z < f(x,y))}. We note that T belongs to the visible 

region by definition. 

 

 The line-of-sight (LOS) originating at a point in a given direction is the set of points of the 

form      ,   ≥0, where x is a point in R
3
, d is a nonzero direction in R

3
 and   is a nonnegative 

real number. Given the visible region V, region F, and the surface T that forms the border 

between V and F, let x1 and x2 in R
3
 be two points such that their projection on the plane is in D. 

Consider the line segment LS(x1,x2) ≡  x1+   (x2-x1):     [0,1]} connecting the points x1 and x2. 

We say x2 is visible from x1 if LS(x1,x2) is a subset of V, and x2 is not visible from x1 if LS(x1,x2) 

∩ F≠  . As it is commonly assumed in the literature, visibility is a symmetric concept, i.e. if x2 

is visible from x1 then x1 is visible from x2. We also say that x1 sees/guards/covers x2 if x1 is 

visible from x2 (Figure 1.4). A visibility function is defined as follows, 

 

v(x1,x2) = v(x2,x1) = {
1 if LS(  ,  )    

0 otherwise            
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Figure 1.4: Cross-section of a terrain surface. V covers x but not y. 

 

 Nagy [16] discussed the importance of the definition of visibility by posing the question 

“Are surfaces tangent to a line-of-sight visible?”, since “...computer implementation requires 

unambiguous specifications”. Our definition of visibility implies that if the open line segment 

between two points on or above the terrain, i.e. if     (0,1) in the definition of LS(x1,x2), is 

tangent to the surface of the terrain then the points see each other. With our definition, a vertex 

of a triangle or a point at the center of a cell covers the triangle or the cell it is in, respectively. 

Now suppose that the definition of visibility is changed such that x1 and x2, which have zero 

height, are visible to each other if the open line segment between x1 and x2 is strictly above T (as 

defined in [6]). This definition implies that a guard on a triangle or on a cell does not cover the 

triangle or the cell it belongs. Further, as   gets closer to 0, x1 would not even see the points 

within a small distance   > 0 to itself. The gist of our argument is that when one places the 

guards on a terrain (with zero height) then the analysis of the visibility should proceed 

accordingly.  

 

 Let x be a point on T and VS(x) denote the “viewshed” of x, i.e.   ( )       :  (   ) 1}. As 

discussed before, the calculation of VS(x) is the “viewshed problem”. Let X={x1,...,xk} be a set 

of points on T. X guards or covers T if every point on T is guarded by at least one of the guards 

located at points in X. We express guarding of a point ‘y’ by a set X by the function; 

 

VIS(y,X) = {
1, if          , such that  ( ,   ) 1

0  otherwise                                        
    

 

 

 

V 

x 
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 In Terrain Guarding Problem (TGP), we seek to find the minimum cardinality set   whose 

elements belong to T such that X guards T. TGP is formally defined as follows; 

 

(TGP) 

Minimize | | 

Subject to     (    )  1,          

       T 

 

 We note that to solve TGP one must first solve the viewshed problem.  In TGP, the guards 

are assumed to have zero height, i.e. on the surface, and they can cover a point as long as the 

line-of-sight is not blocked by the terrain, i.e. the guards have infinite range. These two issues are 

the subject of the viewshed problem and the methods to solve the viewshed problem can be 

easily adapted to solve the cases where there exists a guard with a nonzero height and has a 

certain range, that is, the guard can only guard those points within a certain distance to itself. In 

other variations of TGP, there may be several types of guards with different ranges and costs, 

and there may be critical points that require to be guarded by more than one guard. Given a type 

of a terrain model, TGP will mean guarding that type of terrain under consideration. When we 

specifically refer to the guarding problem on TINs or RSGs we use TGP on TIN or TGP on grids 

respectively. TGP on TINs is also referred to as 2.5 Dimensional Terrain Guarding Problem 

(2.5D TGP).  

 

1.3 The Scope  

 

 The cross-section of a TIN is called a 1.5 dimensional (1.5D) terrain and is characterized 

by a piecewise linear curve. Thin and long roads and borders are examples of a 1.5D terrain. 

Placing street lights on a street, establishing communication networks at a certain direction on 

a terrain, locating watchtowers and cameras along a thin and long border such that these 

sensors guard the street, terrain or the border are the main motivations for studying 1.5D 

terrain guarding problem (1.5D TGP). Locating minimum number of guards on the 1.5D 

terrain to guard the whole terrain is known as 1.5D TGP. An important concept in solving 

optimization problems, especially with an uncountable feasible set such as 1.5D TGP, is the 
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concept of a finite dominating set (FDS). An FDS is a finite set of points that is proved to 

contain an optimal solution to the optimization problem (Hooker et al [17]). A witness set is a 

finite set obtained by the discretization of the terrain such that guarding of the elements of the 

witness set implies guarding of T. To solve 1.5D TGP to optimality, an FDS of size O(n
2
) and 

a witness set of size O(n
2
) have been presented earlier, where n is the number of vertices on T. 

Our contribution in this thesis is to show that there exist a smaller FDS and smaller witness 

sets, whose cardinality are O(n). The existence of a smaller FDS and witness sets leads to the 

reduction of decision variables and constraints respectively in the zero-one integer 

programming (ZOIP) formulation of the problem. 

 

 In solving 2.5D TGP to optimality, a solution to the viewshed problem must exist, which 

gives the portions of the terrain that each guard covers. Also, an FDS must exist that is proved 

to contain an optimal solution. When these are known, the problem can be solved by set 

covering models, which is discussed in detail in the next section. To the best of our 

knowledge, there is no FDS identified for 2.5D TGP. Our interest in this thesis is the 

viewshed problem on 2.5D terrains. Viewshed problem is assumed to be solved by hidden 

surface removal algorithms. But, we illustrate examples of this approach that present 

ambiguities regarding implementation. Another approach is to project the vertices of the 

horizon onto the triangle of interest. We show that this approach contains an error and 

produces incorrect results. After presenting a comprehensive theoretical framework, we 

provide the mathematical characterization of the projection of a triangle onto another triangle. 

Thus, ours is the first solution that is both theoretically rigorous and implementable. 

 

 We study the TGP on a real highly rugged terrain, which represents a border region and is 

approximated as RSG. The guards used for surveillance are thermal cameras. GIS is used for 

line-of-sight (LOS) calculations and visualizing the results. Integer-programming models are 

built to solve the problem. To study the effect of the resolution of a terrain, and of terrain 

characteristics on the optimum number of guards a sensitivity analysis is carried out in which 

an almost flat and a rugged terrain are created. Also, a new problem, called the blocking path 

problem, is introduced,  modelled and solved by an integer-programming formulation. 
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 The rest of the thesis is organized as follows. In chapter 2, we discuss the literature related to 

the viewshed problem and TGP. In Chapter 3, an FDS and two witness sets are constructed to 

solve 1.5D TGP. In Chapter 4, a solution to the viewshed problem is provided for TIN. In 

Chapter 5, a real world application of TGP is presented on a real terrain approximated by RSG. 

In the last chapter, we present discussions, summarize our contributions, and suggest possible 

directions for future research. 
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Chapter 2 

 

Literature Review 

 

2.1 Viewshed Problem 

 

2.1.1 Visibility on TIN 

 

The calculation of the viewshed, as implied by the definition, involves determining the exact part 

of each triangle visible to the guard. Goodchild and Lee [3], and Lee [18] consider a triangle, as 

a whole, visible or not. When all three edges of a triangle are visible the triangle is assumed to be 

visible, otherwise not visible, and thus, providing a heuristic for the viewshed problem.  

 

 Ben-Moshe et al [19] present two heuristic algorithms and their variations. These algorithms 

approximate the visible region by using interpolations among the visible points. The radar-like 

algorithm, which is the fastest, has a running time of O(cn
1/2

), where c is the number of cross-

sections and n is the number of triangles on T. A recent paper by Alipour et al. [20] considers a 

triangle visible if there exists a point in the triangle visible from the viewpoint. Their goal is to 

find all triangles visible from a viewpoint. We note that any exact solution to the problem they 

defined is only an approximation to the viewshed problem as we defined, that is, the exact visible 

portions of each triangle. They developed a heuristic for the problem in which a triangle is 

assumed visible if at least one of the vertices of the triangles is visible. They claim that this 

algorithm is faster than the radar-like algorithm of Ben Moshe et al. [19]. Yet, it is our 

understanding that the heuristic algorithm by Alipour et al. [20] is tested against their definition 

of what constitutes the exact viewshed, which is an approximation, while the radar-like 

algorithm by Ben-Moshe et al. [19] is tested against an exact algorithm, which is shown to be 

erroneous in chapter 4. 
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 Viewshed problem on TINs are considered as a special case of the hidden surface removal 

problem [6], [21]-[24]. Hidden surface removal problems involve the computation of visible 

parts of objects in the scene on a viewplane vertical to y-z (or x-y) plane when viewed from a 

viewpoint (Figure 2.1). In Figure 2.1, the two triangles are projected onto the screen. If the 

triangle closer to the screen blocks the visibility of the other then, those parts of the triangle lying 

behind are hidden from the view of V, and is not shown on the screen. Several hidden-surface 

removal algorithms exist [25]-[28]. However, this approach, when used for viewshed calculation, 

presents some ambiguities regarding implementation. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: The projection of objects onto to a screen as seen by the viewpoint V. 

 

 The survey papers by De Floriani and Magillo [6] and [29] discuss exact algorithms for 

calculating viewsheds. A viewshed algorithm by De Floriani and Magillo [30] makes use of the 

horizon information of the terrain. Horizon of a terrain with respect to a given viewpoint is 

described as the farthest set of points seen by the viewpoint. Studies related to horizon 

computation exist [30]-[32]. De Floriani and Magillo [30] computes a star-shaped polygon 

around the viewpoint and find the “current” horizon of the polygon. Then, the vertices of the 

current horizon are projected onto the triangle of interest, which is included in the polygon, to 

find the visible portion of the triangle. We show in chapter 4 that this approach does not calculate 

the visible region correctly. Viewshed algorithms take  (n ) time [31]. Riggs and Dean [10] 

point out that there is disagreement in viewsheds computed by different softwares, and 

V 
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disagreement between the real (on the field) viewshed and the viewshed computed by 

commercial softwares.  

 

2.1.2 Visibility on Grids 

 

De Floraini [6], Haverkort [24], and Nagy [16] discuss visibility algorithms on grids. Their focus 

is on an overview of how some algorithms work and on their running times. Fisher [8] and Dean 

[11] provide a more clear explanation for how visibility is defined and calculated on grids. Let v 

be a viewpoint/guard whose viewshed is to be calculated. The cell in which the viewpoint is 

located is called the viewing cell. In the literature, v is generally assumed to be at the center of 

the viewing cell and to represent all points in the cell it belongs. The cell and the point whose 

visibility from v is investigated are called the target cell and the target point respectively. 

Similarly, the point at the center of the target cell is generally assumed to represent the target 

cell. The visibility of a (target) cell from v is reported in a binary format. If a cell as a whole is 

visible to v, i.e. visible to the viewing cell, then the cell takes on a value of 1, or otherwise a 

value 0. This binary format is an approximation to the viewshed problem. Fisher [8] presents 

four alternative approaches for visibility calculations. These approaches are illustrated in Figure 

2.2, which is the same as that used in Fisher [8] and is reproduced here for ease of exposition. 

The approaches for calculating visibility between two cells are point-to-point, point-to-cell, cell-

to-point and cell-to-cell. In point-to-point interpretation, a cell is visible to the viewing cell if v 

sees the point at the center of the target cell. In point-to-cell visibility, v sees a target cell if v sees 

all four corners of the target cell. For cell-to-point visibility, a cell sees a point if all four corners 

of the viewing cell sees the target point, the center of the target cell. Finally, a cell sees another 

cell if each of the four corners of the viewing cell sees each of the four corners of the target cell. 

 

 Most of the algorithms in the literature appear to be calculating the viewshed using the point-

to-point approach. An exact (an approximation in our definition) such calculation, called R3, is 

discussed in Franklin et al. [4], and Franklin and Ray [33]. Possible points that might obstruct the 

visibility between v and the target point are those points where the projection of the LOS 

(between v and the target point) intersects with the projection of grid cells. If the height of the 

point at the intersection is smaller than the height of the LOS then the points are intervisible, 
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otherwise not visible. However, due to computation and storage constraints most viewshed 

algorithms either approximate R3 or use data management techniques to speed up the 

implementation. R2 and Xdraw are such approximative methods developed by Franklin et al. [4]. 

Kaucic and Zalık [34] compare these three algorithms and show that the error ratio of R2 is less 

than one percent and the corresponding ratio for Xdraw is less than four percent. Some 

algorithms use a variation of R3, R2 or the sweep line algorithm of Van Kreveld [35] in external 

memory [13], [36] and some others utilize parallel computations using graphics processing units 

for efficiency [37]-[41]. We note that the approaches discussed here to calculate viewshed are 

approximative since they consider a cell visible or not. An exact calculation of the viewshed 

would entail determining the visible portions of each cell, when viewed from anywhere on a cell, 

not only from the four corners of the viewing cell or from the cell center.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Each intersection point in the mesh has a known elevation. (a) point-to-point, (b) 

point-to-cell, (c) cell-to-point, and (d) cell-to-cell. 

 

2.2 Terrain Guarding Problem 

 

De Floriani et al. [1] were the first to investigate the terrain guarding problem. Although they 

posed the problem and proposed a solution for TINs their solution approach is also applicable to 
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TGP on grids. The vertices of the triangles were chosen as potential guard locations. They 

showed that the terrain guarding problem can be solved by a set-covering formulation. The 

subset of the terrain seen by a given vertex is called the visibility region of the vertex. First, the 

visibility region of each vertex is found, and then the entire region is decomposed into mutually 

exclusive and exhaustive set of regions. Finally, a matrix A is created in which the rows 

correspond to vertices and columns correspond to the visibility regions. The (i,j)
th

 entry of the 

matrix is ‘1’ if vertex ‘i’ sees the visibility region ‘j’ and ‘0’ otherwise. Then, the problem 

reduces to the set-covering problem of finding the minimum number of rows such that the sum 

of the entries in each column corresponding to the selected rows is at least 1. Obviously, the set-

covering problem also applies to the case where guards are located anywhere on the terrain, not 

only at the vertices, once the guard locations are determined. Cole and Sharir [31] showed that 

TGP is NP-Hard. In a variation of TGP, finding a single observer with the smallest height to 

observe the whole terrain can be solved in polynomial time [42], [43].  

 

 Given that T is an uncountable point set, to solve TGP by the set covering formulation, the 

exact viewshed of a guard and the existence of a finite set of guard locations, which contains an 

optimal solution, must be known. The approximation of either one of these problems will result 

in an approximate solution to TGP. In the literature, the guards are generally located either at the 

vertices only or on the edges and the vertices of the triangles forming the TIN whereas the 

guards are located at the centers of cells in grids with no justification provided for either case.  

 

 The results from the Set Covering Problem (SCP), Art Gallery Problem (AGP) and the 

problems in location science have been used to develop solution methods for TGP on TIN. We 

review these problems in the next subsection. Set covering and location problems are related to 

TGP on grids as well. Sensor placement problem is closely related to TGP on grids and a review 

is provided accordingly.  

 

2.2.1 2.5D TGP 

 

As discussed above, 2.5D TGP is equivalent to the SCP. 2.5D TGP is also related to the AGP 

since both problems optimize over a geometric shape. In TGP, the guards are located on the 
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terrain to cover the entire terrain. In a sense, the guards are facilities that provide service to each 

point on the terrain by covering them. Thus, TGP is closely related to a larger class of problems 

which belong to the Location Science, too. In the following, we review the set-covering, art 

gallery, and location problems and the literature that used results from these problems to propose 

solution approaches for 2.5D TGP.  

 

2.2.1.1 Set Covering Problem 

 

Let M  1, ,m} be a set. Let   be a given collection of subsets, Mj, j=1,…,n, of M. Let F be a 

subset of   such that F covers M, i.e. ⋃        . Let cj be the cost of Mj. Then the cost of F, 

C(F), is defined to be C(F)= ∑      . The set-covering problem is to find a minimum cost subset 

F
*
 of   such that F

*
 covers M. In other words, F

*
solves the following combinatorial optimization 

problem, min{c(F):F   } [44]. Karp [45] proved that SCP is NP-Hard. 

 

 Set-covering problem can be modelled using a zero-one integer programming formulation. 

Let A be the m n matrix whose rows correspond to the elements of M and columns correspond 

to the elements of  . Let i be an element of M, i 1, ,m. 

 

We define a   {
1, if           

0, otherwise 
  and the decision variable    {

   if          

  otherwise     
 

 

(SCP)   

Minimize  ∑ c       

Subject to ∑ a       ≥1      1, , .  

             , j=1,...,n. 

 

  The description and formulation of, and the solution approaches to SCP date back to 1960’s 

[46], [47]. SCP has applications in several areas: construction of optimal logical circuits, 

(railroad/airline-crew) scheduling, assembly line balancing, truck routing, political districting, 
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location of facilities, graphs and networks, manufacturing, and personnel scheduling to name a 

few [48]-[50].  

 

 Consider the plant location problem in which there are m potential plant locations, i 1, ,m 

and n customer locations, j 1, ,n. Each plant may serve only a subset of the customers. The 

problem is to find the minimum number of plants that can serve all the customers. Clearly this 

simple plant location problem can be defined as an SCP. More complex plant location and other 

problems can also be modelled as an SCP [50].  

 

 Caprara et al. [51] present an experimental comparison between existing algorithms, both 

heuristic and exact. Some recent studies on SCP include Lutter et al. [52] and Felicil et al. [53]. 

Approximation algorithms exist for SCP and it has been shown that the problem can not be 

approximated within a constant factor (hardness result) [54]. Eidenbenz [55] transforms 2.5D 

TGP to SCP and then, using the greedy algorithm for SCP, obtains approximation algorithms for 

2.5D TGP and its variants, with an approximation ratio of O(log n), where n is the number of 

vertices on the terrain. Eidenbenz et al. [56], by utilizing results from the Art Gallery Problem 

and SCP, present inapproximability results for 2.5D TGP. 

 

2.2.1.2 Art Gallery Problem 

 

We follow the notation and the definitions given in the survey paper of Shermer [57] to give a 

description of AGP. A polygon is defined as an ordered sequence of at least three points v1, v2,. . . 

, vn, in the plane, called vertices, and the n line segments     ̅̅ ̅̅ ̅̅ ,     ̅̅ ̅̅ ̅̅ , ,   -   ̅̅ ̅̅ ̅̅ ̅̅  and     ̅̅ ̅̅ ̅̅  called 

edges. A simple polygon is a polygon with the constraint that nonconsecutive edges do not 

intersect. A simple polygon divides the plane into three subsets: the polygon itself, the interior, 

and the exterior. In the context of art gallery problem, the term “polygon” refers to “simple 

polygon plus interior.” Polygons are thus closed and bounded sets in the plane (Figure 2.3). 

 

 Let x and y be two points in a polygon P. If the line segment   ̅̅ ̅ does not intersect the 

exterior of P then x and y are said to be visible. In Figure 2.4, the point a is visible to b, but not to 

c. The definition implies that visibility is symmetric, i.e., if a is visible to b then b is visible to a. 
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The set of all points of P visible from x is a polygon, called the visibility polygon of x, and is 

denoted by V(x,P).  

 

 

 

 

 

 

Figure 2.3: A Polygon. 

 

 

 

 

 

 

 

 

 

Figure 2.4: Point a can see b, but not c 

 

 Guard set G has as its elements a finite number of guards, which are some selected points in 

P. If all of the points in a guard set are vertices of P, then G is called a vertex guard set, and the 

elements of G are called vertex guards. Otherwise G is called a point guard set, and its elements 

as point guards. A guard set G is said to cover a polygon P if every ponit x in P is in the visibility 

polygon of at least one of the guards, i.e., x   V(g,P ) for some g   G. In this case, G is also said 

to cover P. The points in the polygon in Figure 2.5 are a covering guard set. The art gallery 

problem is to find a minimum-cardinality covering guard set G for any polygon with n vertices. 

 

 Chvatal [58] proved that ⌊
 

 
⌋ guards are always sufficient and sometimes necessary, a result 

known as the art gallery theorem, where n is the vertices of the polygon. Agarwal [59] proved 

that AGP is NP-Hard. Approximation algorithms were devised for the problem [60].  

 

a 

c 

b 
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Figure 2.5: Three points are necessary and sufficient to guard the polygon shown 

 

 The AGP is so called since the floor plan of an art gallery resembles a polygon [57]. Terrain 

guarding problem is closely related to the Art Gallery Problem (AGP) since both problems 

optimize over a geometric object. When the terrain is projected onto the x-y plane, the resulting 

object can be viewed as a planar triangulated graph (a triangulation of the x-y plane). The 

geometric connection between the two problems led researchers to use the results in AGP to 

devise approaches for 2.5D TGP [56], [61]-[65]. O’Rourke [66] and Urritia [67] give a 

comprehensive review of the Art Gallery Problem (AGP) and discuss certain results.  

 

2.2.1.3 Problems in Location Science 

 

La Porte et al. [68] define a (facility) location problem as “determining the best location for one 

or several facilities or equipments in order to serve a set of demand points”. Re Velle and Eiselt 

[69] state that there are four components that characterize location problems. These are, as they 

described, (1) customers, who are already located at points, (2) facilities whose locations will be 

determined, (3) a space in which customers and facilities are located, and (4) a metric that 

indicates distances or times between customers and facilities. The relation between TGP and 

location problems become apparent when facilities are replaced by guards and the customers are 

replaced by the points on the terrain that need to be covered (to be served in a sense). Location 

problems may be studied on the plane or on the networks [70]. A review of location problems 

and applications is found in [68]-[72]. 

 

 Two well-known problems in locating facilities on networks are the p-median and p-center 

problems, both of which were posed by Hakimi [73], [74] and are central to most of the research 

in the area as illustrated by Tansel et al. [75]. Kariv and Hakimi [76], [77] proved that both 
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problems are NP-Hard. Next, we discuss the p-center problem to illustrate the nature of a 

location problem. 

 

 Let G=(V,E)  be a graph with vertex set V={v1, ,vn} and edge set E={{i,j} : vi, vj   V }. A 

weight wj is associated with vj   V and similarly, a length of lij is associated with edge (i,j). Let 

dxy denote the length of the shortest path between two points x, y on G. We note that G is an 

uncountable point set considering all edges. Let X   G be a finite set of p points on G with 

X={x1, ,xp}. Let d(X,vj)=           (      ). d(X,vj) may be referred to as the distance between 

X and vj [78]. Let f(X)=           (     ). The p-center problem is to find a set X
*
 such that 

f(X
*
)=min{ f(X): |X|= p, X   G }. A motivation for the p-center problem is to provide a public 

service to communities. G can be the road map of a city, and the goal may be the determination 

of the locations of ‘p’ police stations such that the maximum time a police force can reach any 

neighborhood (vertex) is minimized. d(.,.) may represent time or distance between locations on 

the graph.  

 

 An important factor in solving the p-center problem to optimality is the determination of a 

finite set such that the set contains an optimal solution. In p-center problem, the centers are to be 

located on G, which is an uncountable point set. Hakimi [73] proved that, when p=1, the optimal 

solution belongs to the set of local centers on each edge, which is a finite set. Later, Minieka [79] 

generalized this result for p > 2 and solved the p-center problem by solving a series of set 

covering problems. An integer programming formulation and further discussions on the 

modelling and solution approaches for the p-center problem and its variations are discussed in 

Çalık et al [78]. 

 

 The identification of a finite dominating set that contains an optimal solution allows the 

search for an optimal solution among a finite number of points rather than, possibly over an 

uncountable set. The term ‘finite dominating set’ was first introduced by Hooker et al [17] for 

network location problems. Mehrez and Stulman [80] present an FDS for locating a facility on 

the plane. The concept of an FDS applies to general optimization problems, as argued by Hooker 

et al [17], possibly with an uncountable feasible set. In this regard, the set of extreme points in 

linear programming, which is a finite set, is also an FDS. In a linear programming problem, a 
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linear objective function is minimized subject to a number of linear constraints. The constraint 

set is a polyhedron, which is an uncountable point set. It is well known that if there is an optimal 

solution to a linear programming problem, then there exists an extreme point which is an optimal 

solution. The concept of FDS is also relevant to TGP since the problem involves minimizing the 

number of guards whose locations are to be selected from the terrain, which is an uncountable 

point set. The existence of an FDS for TGP ensures that the problem can be cast as a location set 

covering problem (LSCP), which is discussed next. 

 

 LSCP, introduced by Toregas et al [81], involves locating emergency service facilities (fire 

stations, ambulances, hospitals etc.) to serve customers within a maximum response time ‘s’. The 

problem is, in fact, a set-covering problem within a location context. Each potential site can 

cover certain customers, which is determined through a preprocessing of the data. The goal is to 

provide service to all customers with minimum number of facilities. The customer locations and 

the potential facility locations are known and both are finite sets. Thus, different from the  

p-center problem, the feasible set is a finite set. An FDS for this problem is not needed since no 

subset of potential facility locations, presumably, dominates others for all problem instances. Let 

N  1, ,n} be the potential facility locations and M={1, ,m} be the known customer locations. 

A decision variable xj is defined such that xj=1 if a facility is located at site j   N and xj=0 

otherwise. aij is 1 if the customer located at site i   M is within the maximum response time of an 

emergency service facility located at site j and 0 otherwise. The problem can be formulated as a 

zero-one integer programme as follows; 

 

Minimize ∑   
 
     

 

Subject to ∑ a       
   ,   i 1, ,m. 

             ,   j=1,...,n. 

 

 Another problem of interest is the maximal covering location problem (MCLP) introduced 

by Church and Re Velle [82]. This problem is similar to the location set covering problem, but 

instead of minimizing the number of facilities required to serve all customers, the number of 
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customers that are provided service are maximized with a given number facilities. The number of 

facilities is fixed due to the budgetary constraints. We give a formulation as follows; 

 

Maximize  ∑ k 
 
  1  

 

Subject to  k ≤1,     1, ,     (1) 

    k ≤∑ a  
n
  1  

 
,     1, ,    (2) 

    ∑  
 
    n

  1       (3) 

    k ≥0,     1, ,     (4) 

     
 
   0,1 ,     1, ,n    (5) 

 

 The definition of aij is the same as in the location set covering problem. yj is 1 if a facility is 

located at j and 0 otherwise. ki is the customer that is provided service. The goal is to maximize 

the number of customers, who are provided service, with p facilities. At the end of the solution, 

ki will be either zero or one. Therefore, it is not restricted to be a binary variable. Note that this is 

a well known fact in location theory [68], [83]. For the extensions of LSCP and the relations 

between LSCP, MCLP, and the p-median problem the reader is referred to [84], [85]. Goodchild 

and Lee [3] discuss how LSCP and MCLP models can be applied to TGP and apply three 

heuristics to solve the vertex restricted TGP. These are greedy add, in which guards are added 

one at a time according to a certain parameter, stingy drop, in which guards are dropped one at a 

time, according to a predefined value, and greedy add with swaps, in which each vertex is 

swapped with another vertex that improves the objective value. The best algorithm was found to 

be greedy add.  

 

2.2.2 TGP on Grids  

 

Once the potential guard locations are determined TGP on grids is equivalent to the set covering 

problem discussed in 2.2.1. Specifically, the location set covering model can be used to solve 

TGP on grids. Thus, the literature mentioned for set covering problem and location problems is 

also relevant to TGP on grids. The concept of finite dominating set that has emerged from the 
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location science also applies to TGP on grids. Yet, to the best of our knowledge, no finite 

dominating set has been identified for TGP on grids. Guards are mostly located on the cell 

centers with no proof provided that the set of points at the cell centers is an FDS. Sensor 

placement problem is about placing minimum number of sensors on a sensor field, composed of 

equally spaced grid points, such that the grid points on the field are covered by the sensors. 

Sensor placement problem is discussed after presenting the previous work on TGP on grids. 

 

 Franklin [86] uses a greedy heuristic by first selecting a set of observers (guards), which is a 

subset of the cells on the terrain, according to an approximate visibility index of observers, such 

that the selected observers cover most of the area of interest. Then, at each step, a new observer 

is included in this set if its viewshed will increase the cumulative viewshed of the current 

observers. To site observers on larger terrains, Magalhães et al. [13] divides the terrain into 

subterrains and uses the greedy heuristic given in Franklin [86] in each subterrain to determine 

the location of observers. The joint viewshed is stored in external memory. Shi and Xue [87] also 

apply the heuristic in [86] with slight changes such as selecting a candidate viewpoint that has a 

viewshed that does not overlap too much with that of the selected viewpoints, or that has a 

distance to already selected points greater than a threshold value. They use multiple processors to 

handle the large data sets involved in their study. These studies do not compare their heuristic 

algorithms to optimal solutions. 

 

 Bao et al. [88] locates watchtowers to detect forest fires in an application study. They use 

location set covering problem and maximal covering location problem models to determine the 

minimum number of watchtowers to cover the entire terrain and to maximize the area covered 

within a budget constraint. In Bao et al. [88] and other studies mentioned, potential guard 

locations are chosen from among the cells comprising the terrain since they have a better 

viewshed. Then, they apply their solution methodologies to locate guards at these points. Next, 

we discuss the sensor deployment/placement problem, which is closely related to TGP on grids. 
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2.2.2.1 Sensor Placement/Deployment Problem (SPP) 

 

In Wang [89], a sensor is defined as “a device which responds to physical stimulus (such as heat, 

light, sound, pressure, magnetism, etc.) and converts the quantity or parameter of a physical 

stimulus into recordable signals (such as electrical signals, mechanical signals, etc.)”. A sensor 

network is composed of sensors that may or may not communicate to each other, and report data 

sensed to a base station. Sensor networks have aplications in military (detection of enemy forces, 

targeting), environmental monitoring (forest fire detection), health (drug administration), smart 

homes, and vehicle tracking to name a few [90], [91]. The region to be surveilled is called the 

sensor field [92]. The sensor field is assumed to be composed of equally spaced grid points in 

two or three dimensions (Figure 2.6). Sensors are placed on the grid points and the goal is to 

cover all of the grid points.  

 

 

 

 

 

 

 

Figure 2.6: A sensor field and the area covered by a sensor placed at a grid point. 

 

 A sensor is said to cover a given grid point if the grid point is within the range of the sensor. 

Then, the sensor placement problem is to locate the sensors, which have different ranges and 

costs, on the sensor field such that the field is covered by the sensors and the total cost of the 

sensors is minimized [92], [93]. With the given definition, the sensor placement problem is 

equivalent to the weighted set covering problem. It may be required that the grid points are 

covered by more than one sensor, i.e. the desired ‘degree of coverage’ may be more than one. 

Chakrabarty et al. [92] give a complicated integer programming formulation for the problem. To 

solve larger instances, they use a divide and conquer heuristic in which they divide the sensor 

field into smaller subfields and solve the placement problem for each subfield and then combine 

the results to obtain a solution for the original problem. Later Xu and Sahni [94] gave a more 
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compact ZOIP formulation. Xu and Sahni [94], Kar and Banarjee [95], and Wang and Zong [96] 

present approximation algorithms for the problem. Watfa and Commuri [97] and Pompili et al. 

[98] discuss sensor deployment for three-dimensional regions. A number of studies have dealt 

with the probabilistic nature of the detection of sensors on the plane [99]-[102]. Other problems 

and topics related to sensors such as maximizing sensor lifetime, sensor fusion, and area 

coverage can be found in [89], [103] and [104].  

 

 Although the studies on the sensor placement problem do not explicitly refer to the grid 

representation of the terrain and do not take into account the visibility between grid points, there 

are similarities between the SPP and TGP on grids. Both problems involve points on which 

sensors/guards are located to cover all these points, which are regularly spaced. Once the points 

that are within the range of the guard and that are visible to the guard are determined in TGP, we 

obtain the set of points covered by the sensor in the sensor placement problem. Thus, solution 

approaches to SPP might apply to TGP. 
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Chapter 3 

 

Finite Dominating Sets and Witness Sets for 1.5D Terrain 

Guarding Problem 

 

3.1 Introduction 

 

1.5D terrain (T) may be considered as an intersection of a vertical plane with 2.5D terrain and is 

characterized by a piecewise linear continuous curve (also referred to as an x-monotone 

polygonal chain). Locating minimum number of guards on the terrain (T) to cover/guard the 

whole terrain is known as 1.5D terrain guarding problem (1.5D TGP). Guarding 1.5D terrains 

has applications where guarding a thin and long strip of land makes sense such as placing street 

lights or security sensors along roads, constructing communication networks (Ben-Moshe et al. 

[105]) or locating cameras along a borderline such that the cameras watch the border to prevent 

intruders from sneaking into homeland. In this chapter, our goal is to formulate zero-one integer 

programming models to obtain optimal solutions for the problem.  

 

3.2 Related Work 

 

Chen et al. [106] proposed an exact polynomial-time algorithm for left-guarding of T. In left-

guarding of T, guards are only allowed to guard those points to their left. Consider the part of the 

terrain where the piecewise linear curve representing T is convex, which we also call convex 

region in our approach. Chen et al. [106], without mentioning convexity explicitly, use the fact 

that if a point u, which is in the interior of a convex region, sees some portion of the terrain (to 

its left) then another point v, which is the rightmost vertex of the same convex region, can see the 

same portion of the terrain seen by u. Starting from left to right, they place guards on points 

which are the rightmost vertices of a convex region. Then, they remove unnecessary guards such 

that if the terrain covered by a vertex u is also covered by a vertex v then u is removed from the 
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guard set. However, in the following, we present a much simpler argument than the somewhat 

lengthy one given in Chen et al. [106] to find the optimal guards. In contrast to their approach, 

we start to place guards from right to left. Note that the last vertex of the terrain, which is the 

rightmost vertex, must be in the optimal solution since no point to its left can cover it. When 

those points covered by the last vertex are painted, the second guard must be at the right end of 

the unpainted (unguarded) region due to the same reason. Continuing similarly to place 

subsequent guards, we obviously obtain an optimal solution. As a note, in our approach to 1.5D 

TGP presented in this chapter, we also use those points that are the rightmost vertex in a convex 

region to place guards and we call such points convex points. Several constant-factor 

approximation algorithms were given for TGP and its variants (Ben-Moshe et al. [105], King 

[107], Clarkson and Varadarajan [108], Elbassioni et al. [109], Elbassioni et al. [110]). Gibson et 

al. [111] presented a PTAS for the discrete version of the problem in which the set of possible 

guard locations and the set of points to be guarded are both given finite sets. Later, Friedrichs et 

al. [112], [113] presented a PTAS for TGP. King and Krohn [114] showed that 1.5D terrain 

guarding problem is NP-Hard.  

 

 As discussed in Chapter 2, a finite dominating set (FDS) is a finite set of points which 

contains an optimal solution to an optimization problem. FDS’s exist for several network 

location problems [17], [115] and planar location problems [116], [117]. Friedrichs et al. [112] 

presented the first FDS for TGP. They showed that the vertices and the ‘x-extremal points’ of the 

viewshed of each vertex form an FDS, which has a size of O(n
2
), where n is the number of 

vertices on T. They also discretized the terrain to obtain a finite set, which they call ‘witness set’, 

such that guarding of all elements of the witness set implies guarding of T. The witness set 

presented in Friedrichs et al. [112] and [113] is of size O(n
3
). Earlier, Ben-Moshe et al. [105] 

showed that there exists a witness set of size O(n
2
) for the problem where guards are restricted to 

the vertices of the terrain. However, an argument similar to the one in their study (see the proof 

of Lemma 6.2 in Ben-Moshe et al. [105]) shows that their witness set is a valid set for TGP with 

respect to the FDS’s in Friedrichs et al. [112], [113] and in our study. 

 

 The main contribution of this chapter is to show that there exist a smaller finite dominating 

set and smaller witness sets than those given in Friedrichs et al. [112], [113] and Ben-Moshe et 
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al. [105] respectively. The FDS we construct consists of dip points and convex points, called 

critical points, for which formal definitions are provided in the next section. The FDS presented 

in this chapter is of cardinality O(n), where n is the number of vertices on T. The number of 

convex points is denoted by k and the number of dip points is bounded by k-1, which implies that 

our FDS is of cardinality O(n). It is possible to construct terrains such that n=2
k
 and we note that, 

for n≥ , n=k only when T is concave. Due to our FDS, the number of decision variables 

decreases in the zero-one integer programming (ZOIP) formulation given in Friedrichs et al. 

[112]. Next, we present a witness set of cardinality O(n) compared to the witness set of 

cardinality O(n
2
) presented in Ben-Moshe et al. [105]. Further, we obtain another witness set of 

size ‘k-1’, which is also O(n). Yet, a witness set of cardinality of k-1 is achieved by an increase 

in the number of decision variables, from O(n) to O(n
2
), in the ZOIP formulation. 

 

3.3 Description of the Problem, Definitions and Notation 

 

3.3.1 Description of the Problem 

 

In our description of the problem, we use a somewhat different terminology from that in the 

literature to be able to introduce the new concepts. Consider a piecewise linear continuous curve 

in the nonnegative orthant of the 2-dimensional space representing the surface of a 1.5 

dimensional terrain (Figure 3.1). The length of the region of interest is L and we assume without 

loss of generality that the one-dimensional region is situated between 0 and L. For any point x in 

the interval [0,L] let h(x) denote the height of point x. We assume h is a continuous real-valued 

function defined on [0,L]. We also assume h(x) ≥ 0   x   [0,L]. 

 

 T is the graph of the function h:[0,L] →   that represents the surface of the terrain of 

interest. Equivalently, T={(x, h(x)): x   [0,L]}. Similar to the definition of TGP for DEMs, the 

region below T, shown as a shaded region in Figure 3.1, is denoted by F, that is, F={(x,y): x   

[0,L] and 0 ≤ y < h(x)}. Let V be the visible region above T, i.e. V={(x,y): x   [0,L] and y ≥ h(x)}. 

The formal definition of visibility and 1.5D TGP is the same as the one given for TGP in three 

dimensional spaces except that the terrain in 1.5D TGP is a piecewise linear curve and guards are 
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two dimensional points. We confine the discussion that follows to the half-strip H(0,L) in the 

nonnegative orthant defined by the vertical lines passing through (0,0) and (L,0) (Figure 3.1).  

  

 

 

 

 

 

 

 

Figure 3.1: A 1.5 dimensional terrain. 

 

3.3.2 Additional Definitions and Notation 

 

Vertex: A vertex is a point where h(x) changes slope. Endpoints (0,h(0)) and (L,h(L)) are also 

considered as vertices. The number of vertices is given by ‘n’ and n is the problem input. The 

leftmost vertex (0,h(0)) is the first and (L,h(L)) is the n
th

 vertex. Given ‘n’ vertices, the terrain is 

constructed by connecting vertices by line segments.  

 

Edge: The line segment between vertex i and i+1, i=1,...,n-1. The number of edges is n-1. 

 

Convex region: A convex portion of T (i.e. of h(x)) which is composed of maximally connected 

edges. We denote the set of convex regions by ‘CR.’ 

 

Convex point: A vertex where two convex regions intersect. We also consider the two end points 

of T, i.e. (0,h(0) and (L,h(L), as convex points. We denote the set of convex points by ‘C’, |C|=k. 

((0,h(0)) is the first convex point and (L,h(L)) is the k
th

 convex point. The convex region between 

the i
th

 and (i+1)
st
 convex points is the i

th
 convex region. Obviously, if k is the number of convex 

points then the number of convex regions is k-1 and vice versa. 
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 Let Mi denote the convex region between convex points i and i+1, i 1, ,k-1. There are 9 

vertices, 8 edges, 5 convex points and 4 convex regions in Figure 3.2. The part of T that is 

between convex points 1 and 2 is convex region M1, which has 3 edges. The other three convex 

regions in the figure lie between convex points 2 and 3, 3 and 4, and 4 and 5. 

 

 

 

 

 

 

 

 

Figure 3.2: Convex points and convex regions on T. 

 

 Algorithm 1 finds the convex points and convex regions on T. At each step, an edge {vi,vi+1} 

is examined. If the height of  vi+2 is smaller than the height of the line passing through vi and vi+1 

at xc(vi+2) then vi+1 is a convex point and {vi+1,vi+2} is the first edge of the next convex region. 

Otherwise, {vi,vi+1} and {vi+1,vi+2} are in the same convex region. Thus, convex points and 

convex regions are found in O(n) time. 

 

Algorithm 1 Generation of Convex Points and Convex Regions 

 V={v1, ,vn}, E={{vi,vi+1}: vi   V, i 1, ,n-1}, C ← {v1, vn}, k ← 1, M1 ← v1,v2}, CR ← M1. 

 1: for i=1 to n-2 do 

 2:  if [
 c(   1)- c(  )

 c(   1)- c(  )
   c(    ) 

( c(  )  c(   1)  c(   1)  c(  ))

 c(   1)- c(  )
]   c       then 

 3:   C ← C ⋃ vi+1 

 4:   k ← k+1  

 5:   Mk ← {vi+1,vi+2} 

 6:   CR ← CR ⋃ Mk 

 7:  else  

 8:   Mk ← Mk ⋃ {vi+1,vi+2} 

 9:  end if 

10: end for 
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 A Point u is not visible from a point p if there exists a convex point which is above the line 

passing through u and p, which can be computed in O(n) time as well (Algorithm 2). 

 

Algorithm 2 Is u visible from p 

 E={{vi,vi+1}: vi   V, i 1, ,n-1}, CR = {M1,..., Mk-1}, C={c1, ,ck}, u, p   T, Isvisible(u,p)  

 1: for i=1 to k do 

 2:  if xc(u)<xc(ci)<xc(p) then 

 3:   if [
 c( )- c( )

 c( )- c( )
   c(c ) 

( c( )  c( )  c( )  c( ))

 c( )- c( )
]    (c ) then 

 4:    Isvisible(u,p) ← YES 

 5:   else Isvisible(u,p) ← NO 

 6:  end if 

 7:  if xc(p)<xc(ci)<xc(u) then 

 8:   if [
 c( )- c( )

 c( )- c( )
   c(c ) 

( c( )  c( )  c( )  c( ))

 c( )- c( )
]    (c ) then 

 9:    Isvisible(u,p) ← YES 

 10:   else Isvisible(u,p) ← NO 

 11:  end if 

12:   Isvisible(u,p) ← YES 

13: end for 

 

 

 Algorithm 3, for each edge, finds the portion of the edge visible from a point p using 

Algorithm 2. Since Algorithm 2 is used for each edge, the calculation of VS(p) takes O(n
2
) time. 

 

QIJ : A point p on T “partially covers” convex region M if only a proper subset of M is covered 

by p and “fully covers” M if M  VS(p). Note that a convex point i can fully cover the convex 

regions Mi-1 and Mi. A set QIJ is defined to be the set of nonconvex points that fully cover as 

many convex regions as possible to their left and right. 

 

 

 

 

 

 

 

Figure 3.3: Illustration of a QIJ. 
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Algorithm 3 Edges and Portions of Edges Visible from p (VS(p)) 

 E={{vi,vi+1}: vi   V, i 1, ,n-1}, C={c1, ,ck}, p   T, VS(p) ←   

 1: for i=1 to n-1 do 

 2:  run Algorithm 2 to compute Isvisible(vi,p) and Isvisible(vi+1,p) 

 3:  if Isvisible(vi,p)=YES and Isvisible(vi+1,p)=YES  then 

 4:   {vi,vi+1} is visible from p, VS(p) ← VS(p) ⋃ {vi,vi+1} 

 5:  end if 

 6:  if Isvisible(vi,p)=NO and Isvisible(vi+1,p)=YES  then 

 7:   for j=1 to k do 

 8:    if xc(p)<xc(cj)<xc(vi) then 

 9:          
 c(c

 
)- c( )

√( c(c
 
)- c( ))

 
 ( c(c

 
)- c( ))

 
 

 10:    end if 

11:    end for 

12:    l = argmin
 
   

13:    ( 
 
)  [

 c(c
l
)- c( )  c( 

 
)- c( 

  1
)

 c(c
l
)- c( )  c( 

 
)- c( 

  1
)
]

  

. (
 c( 

l
)- c( )

 c( 
 
)- c( )

) 

14:    segment [ vi+1 + (1-  )vi, vi+1] on {vi,vi+1} is visible, VS(p) ← VS(p) ⋃ [ vi+1 + (1-  )vi, vi+1]  

15:   end if  

16:   if Isvisible(vi,p)=YES and Isvisible(vi+1,p)=NO  then 

 17:   for j=1 to k do 

 18:    if xc(vi+1)<xc(cj)< xc(p) then 

 19:          
 c(c

 
)- c( )

√( c(c
 
)- c( ))

 
 ( c(c

 
)- c( ))

 
 

 20:    end if 

21:    end for 

22:    l = argmin
 
   

23:    ( 
 
)  [

 c(c
l
)- c( )  c( 

 
)- c( 

  1
)

 c(c
l
)- c( )  c( 

 
)- c( 

  1
)
]

  

. (
 c( 

l
)- c( )

 c( 
 
)- c( )

) 

24:    segment [vi,  vi+1 + (1-  )vi] on {vi,vi+1} is visible, VS(p) ← VS(p) ⋃ [vi,  vi+1 + (1-  )vi] 

25:   end if 

26: end for 

 

 

 For the terrain in Figure 3.3, QIJ is the thick line segment in convex region 3. Points in QIJ 

fully cover convex regions 1 and 2 to their left and regions 4 and 5 to their right. For a convex 

region M, CS(M)={y   T: v(y,x) =1 for all x   M}, i.e. CS(M) is the set of points on T that are 

covered by all points in convex region M and is also referred to as the ‘coverage segment’ of M. 

Let M and N be two convex regions. It is true that if N   CS(M) then M   CS(N) due to the 

symmetric property of visibility. When N   CS(M), M is said to cover N. Note that if two convex 

regions cover each other then, in a sense, they face each other. In Figure 3.3, convex regions 1 
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and 2 cover convex regions 4 and 5, and vice versa. Algorithm 4 generates the convex regions 

that are in CS(Mi), i 1, ,k-1. The edges covered by a convex region can be found using 

Algorithm 3. A convex region N is in CS(Mi), i    1, ,k-1} if all its edges are in CS(Mi). 

Finding all convex regions in CS(Mi) takes O(n
2
) time and thus, finding CS(Mi), i 1, ,k-1, takes 

O(n
3
) time. 

 

Algorithm 4 Generation of Convex Regions that are in CS(Mi) 

 E={{vi,vi+1}: vi   V, i 1, ,n-1}, CR = {M1,..., Mk-1}, CS(Mi) ←   

 1: for i=1 to k-1 do 

 2:  let ui be the first vertex to the left of    
, ti be the first vertex to the right of    

 

 3:  run Algorithm 3 to compute VS(ui), VS(ti), VS(   
), VS(   

) 

 4:  CS(Mi)=VS(ui)   VS(ti)   VS(   
)   VS(   

) 

 5: end for 

 6: for i=1 to k-1 do 

 7:  for j=1 to k-1 do 

 8:   let {vm, ,vq}   Mj 

 9:   a = 0 

 10:   for l=m to q-1 do 

11:     if {vl,vl+1}   CS(Mi) then 

12:      a = a+1 

13:     end if 

14:     if a =q-m then 

15:      Mj   CS(Mi) 

16:     end if 

17:    end for 

18:   end for 

19: end for 

 

 

 Let LM and RM denote the left and right convex point of the convex region M respectively. 

xc(p) and yc(p) denote as before the x-coordinate and the y-coordinate of a point ‘p’   T. Our 

intention is to find two sets of convex regions such that the convex regions in one set cover 

(face) those in the other (and vice versa), the intersection of the coverage segments, i.e. CS(.), of 

all convex regions is nonempty and does not contain a vertex, a point in this intersection is not in 

any one of the convex regions in these sets, and the the number of convex regions in the union of 

these sets is maximal. For the formal definition, let (I, J ) be a pair of sets of convex regions such 

that I ≠  , J ≠  , and   M   I and N   J it is true that M   CS(N), CS(M) ∩ CS(N) ∩ C =  , 

CS(M) ∩ CS(N) ≠  , if p   CS(M) ∩ CS(N) then xc(LN) > xc(p) > xc(RM), and I ⋃ J is maximal. 
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Note that there may be other pairs of sets distinct from (I, J ). For the terrain in figure 3, I={1,2} 

and J={4,5}. Let us fix I and J and define a set QIJ associated with (I, J ) as follows, 

 

 QIJ ={p: p   CS(M) ∩ CS(N),   M   I and N   J}. In words, a point in QIJ is a nonconvex 

point that covers as many convex regions as possible on its left and right. We choose the leftmost 

point in QIJ (for our purposes any points in QIJ would work) to form a set DP={p: p   QIJ for 

some sets I and J, xc(p)<xc(q)   q   QIJ s.t. p≠q }. An element of DP is referred to as a “dip 

point.” Let CP=C   DP. CP is the set of “critical points” containing all convex points and dip 

points. 

 

 Let ‘x’ be a dip point in a convex region ‘G’. By definition, three convex regions are 

necessary for the existence of a dip point. One convex region (G) contains x. There must exist a 

convex region ‘M’ to the left of LG and a convex region ‘N’ to the right of RG such that M and N 

are fully covered by x and no other dip point fully covers both M and N. In other words, CS(M) ∩ 

CS(N) contains only one dip point, which is x. M, N, and G with these properties are called 

‘defining’ convex regions for x. Using this observation, dip points can be found using Algorithm 

5. Note that a convex region Mi can define only one dip point in a convex region Ml different 

from Mi. Algorithm 5 seeks whether there exists a convex region Mj such that Mi and Mj define a 

dip point in Ml. Since this search is done over all i, l, and j    1, ,k-1}the total effort to find the 

dip points is O(n
3
).  

 

3.4 A Finite Dominating Set of Critical Points 

 

Observe that a guard located at a convex point can guard the convex regions on both sides. We 

can obtain a feasible solution to TGP by placing a guard at each convex point where two convex 

regions meet such that the first guard covers the first and second convex regions, second guard 

covers the third and fourth regions and so on, with a total number of ⌈
(k-1)

 
⌉ guards. Let ‘p’ be a 

point on T. Lp is defined to be the left convex point in a convex region in which p exists. Rp 

denotes similarly the right convex point.    is the hyperplane represented by the vertical line that 
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passes through p.   
-
 and   

  denote the set of points on T, excluding p, that are to the left and 

right of   , respectively (Figure 3.4). 

 

Algorithm 5 Generation of Dip Points 

 CR = {M1,..., Mk-1}, C={c1, ,ck}, CS(Mi), i=1,...,k-1, DP ← . 

 1: for i=1 to k-1 do 

 2:  for l=i+1 to k-1 do 

 3:   A ← Ml  

 4:   for j= i+1 to k-1 do 

 5:    if Mj   CS(Mi) then 

 6:     if Ml   CS(Mi) and Ml   CS(Mj) then 

 7:      if Ml   CS(Mi)   CS(Mj)     then 

 8:       if (Ml   CS(Mi)   CS(Mj))   A  then 

 9:        A ← Ml   CS(Mi)   CS(Mj) 

 10:       end if 

 11:      end if 

12:      end if 

13:     end if 

14:    end for 

15:    if A    and A   Ml then 

16:     pick p
*
   A s.t. xc(p

*
)<xc(p), p   A 

17:     I ←   

18:     for s=1 to k-1 do 

19:      if p
*
   CS(Ms) then  

20:       I ← I ⋃ s 

21:      end if  

22:     end for  

23:     for m=1 to k do 

24:      if cm        s s   then 

25:       DP ←  

26:      else DP ← p
*
 

27:      end if 

28:     end for 

29:    end if 

30:   end for 

31: end for 
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Figure 3.4: Hp divides the terrain into two parts.  

 

Lemma 3.1. Let p be a nonconvex point on T. Then VS(p) ∩   
    VS(Lp) ∩   

  and VS(p) ∩   
-
 

  VS(Rp) ∩   
- . In words, Lp covers all points that p covers in   

  and Rp covers all points that p 

covers in   
- .  

 

Proof.  Let q be a point in   
  such that v(p,q)=1. Since h(x) is convex in the convex region 

where Lp and p exist, the line segment between Lp and q, LS(Lp,q), lies on or above LS(p,q) in 

[xc(Lp), xc(q)] (see Figure 3.5). This implies that if q is visible from p then it is visible from Lp. 

Since q is arbitrary the result follows. The same holds true for the other case.      □ 

 

 

 

 

 

 

 

Figure 3.5:  Lp covers all points covered by p to its right. 
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 Let x
*
 be a nonconvex point in an optimal solution X

*
 to TGP. We define OG(x

*
) as the set of 

points on T guarded only by x
*
 and not by other points in X

*
, that is, OG(x

*
)={p   T: v(p,x

*
)=1, 

v(p,x)=0 for x≠x
*
, x   X

*
}. Theorem 3.2 below proves that if x

*
 covers only a proper subset of a 

convex region then, that part of the convex region will also be covered by another point in X
*
. In 

Figure 3.6, X
*
 = {x1, x2}. x1 covers the line segment yx2, which is a subset of M4 and is also 

covered by x2. 

 

 

 

 

 

 

 

Figure 3.6: Line segment yx2 is covered by both x1 and x2. 

 

Theorem 3.2. Let x
*
 be a nonconvex point in an optimal solution X

*
 and let x

*
 be in convex 

region M. Suppose, without loss of generality, that OG(x
*
) ∩    

  ≠   and OG(x
*
) ∩    

-
 ≠  . 

Suppose x
*
 covers a proper subset S of a convex region N, i.e. S   VS(x

*
) ∩ N and   u   N such 

that u   VS(x
*
). Then it is true that S ∩ OG(x

*
) =  . 

 

Proof. Suppose to the contrary that S ∩ OG(x
*
) ≠  . Suppose, without loss of generality, that     

N      

-
. Let p   S ∩ OG(x

*
) ∩    

-
 and t   OG(x

*
) ∩    

 . Let u be the first vertex in N, which 

is to the right of p and is not guarded by x
*
. Note that such a vertex exists since otherwise N 

would be fully covered by x
*
. u must be covered by another optimal point  ̃.  ̃ can not be in N 

since  ̃ would also cover p. If xc( ̃)>xc(RN) then since N is convex the assumption that  ̃ covers u 

implies  ̃ also covers p, a contradiction (Figure 3.7 (a)). We note that, for a nonconvex point x
*
, 

the LS(p,t) can not be blocked by the terrain. If xc( ̃)<xc(LN) then since LS(  ̃u) and LS(p,t) are 

not blocked by the terrain, ‘order claim’ discussed in Ben-Moshe et al. [105] implies LS( ̃ t) is 

not blocked either, which contradicts t   OG(x
*
) (Figure 3.7 (b)).          □ 
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      (a)            (b) 

 

Figure 3.7:   (a) xc( ̃)>xc(RN) (b) xc( ̃)<xc(LN). 

 

Theorem 3.3 is the main result of this chapter. It states that it suffices to seek an optimal solution 

to an instance of TGP among the critical points. 

 

Theorem 3.3. The set of critical points CP is a finite dominating set. In other words, there exists 

an optimal solution to TGP whose elements consist of critical points. 

 

Proof.  Let X
*
 be an optimal solution to an instance of TGP and x

*
 be a noncritical point in X

*
. 

We assume that x
*
 is in convex region M. If T is convex, i.e h(x) is convex in [0,L], then optimal 

solution value is 1 since any point on T guards T. Hence, convex point Lx* (or Rx*) is also an 

optimal solution and the claim follows. In the following, we assume T is not convex.  

case (I) OG(x
*
)      

      (or OG(x
*
)      

-
   M): then Lx* (or Rx*) can replace x

*
 in the 

optimal solution due to lemma 3.1.  

case (II) OG(x
*
) ∩    

  ≠   and OG(x
*
) ∩    

-
 ≠  .  

case (II) (a) There are fully covered convex regions in both    

  and    

-
 by x

*
: Since x

*
 is not a 

critical point it is not a convex point. If there is a convex point  ̅ such that  ̅ fully covers all 

convex regions that x
*
 fully covers then  ̅ can replace x

*
 in the optimal solution. To see this, let N 

be a partially covered convex region in    

  (or in    

-
) by x

*
 and S be the covered part of N. 

Theorem 3.2 implies that S can not be in OG(x
*
). This implies OG(x

*
) consists only of convex 

regions fully covered by x
*
, which in turn implies  ̅ can replace x

*
 in the optimal solution. If there 

x*

 

p 

x̃ 

u u 

x* p 

x̃ 

t 
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is no convex point that covers the convex regions x
*
 covers then it must be true that x

*
   QIJ for 

some index sets I and J since nonconvex points that fully cover convex regions on their left and 

right is an element of QIJ by definition. But this implies there is a point  ̃ in DP such that      

xc( ̃)   xc(x
*
) and  ̃   QIJ by construction of DP. A reasoning similar to the one discussed above 

shows that  ̃ can replace x
*
. 

case (II) (b) In at least one of    

  and    

-
, all convex regions in which there are points covered 

by x
*
 are partially covered by x

*
: Suppose, without loss of generality, that all convex regions 

partially covered by x
*
 is in    

 . As in case (II) (a), let N be a convex region in    

  and S be 

the proper subset of N that is covered by x
*
. Theorem 3.2 implies that S ∩ OG(x

*
) =  . Since this 

is true for all convex regions in    

 , it contradicts the standing assumption that  

OG(x
*
) ∩    

  ≠  .                     □ 

 

3.5 Construction of a Witness Set 

 

A witness set is a discretization of T such that guarding of the elements of the witness set implies 

guarding of T. In this and the next section we construct witness sets. Let CP={cp1,...cpm} denote 

the set of critical points and E={e1,...,en-1} denote the set of edges, where ei={vi,vi+1}, vi   V, 

i 1, ,n-1. A critical point may cover all of an edge, only a proper subset of an edge or can not 

see the edge. If only a proper subset of an edge is covered by a convex point then that part of the 

edge is considered an element of the witness set that needs guarding. However, if a subset of an 

edge is covered by a dip point then that part of the edge is not considered an element of the 

witness set since Theorem 3.2 implies that in case a nonconvex point covers only a proper subset 

of a convex region that subset of the convex region will also be guarded by another guard in an 

optimal solution. If no proper subset of an edge is covered then that edge, as a whole, is 

considered an element of the witness set. 

 

 Let dij be the proper subset of ei visible from convex point cj, if one exists, such that j is not 

one of the two convex points within the convex region containing ei. Let   
     ⋃     . Note 

that   
 
 is covered by the two convex points on both ends of the convex region in which ei exists. 

If guards on T cover dij and   
 
, for i 1, ,n-1, j=1,...,k and/or each edge then T is covered. If, for 
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an edge ‘i’, it is true that dij   dik for some convex points ‘j’ and ‘k’ then we can further eliminate 

dij from consideration as a line segment to be covered since, at optimality, guarding of  dik 

implies guarding of dij. We renumber each remaining line segment (and possibly the edges) to 

create the witness set. Algorithm 6 generates the witness set by utilizing Algorithm 2 and 

Algorithm 3. The segment on an edge visible to a convex point is found in O(n) time. 

Considering all edges and all convex points, the effort to generate the witness set is O(n
3
). 

 

Algorithm 6 Generation of the Witness Set 

 E={{vi,vi+1}: vi   V, i 1, ,n-1}, C={c1, ,ck}, WS (Witness Set) ←  ,  

 1: for i=1 to n-1 do 

 2:  a1 = xc(vi+1), a2 = xc(vi), segment1= [vi,vi+1], segment2= [vi,vi+1] 

 3:  for j=1 to k do 

 4:   if xc(cj) > xc(vi+1) then  

 5:    run Algorithm 2 to compute Isvisible(vi, cj) and Isvisible(vi+1, cj) 

 6:    if Isvisible(vi, cj)=YES and Isvisible(vi+1, cj)=NO  then 

 7:     run Algorithm 3 to compute   

 8:     dij = [vi,  vi+1 + (1-  )vi] 

 9:     dj = xc( vi+1 + (1-  )vi) 

 10:     if dj < a1 then 

11:       a1 = dj 

12:       segment1= dij 

13:      end if 

14:     end if 

15:    end if 

16:   end for  

17:   for j=1 to k do 

18:    if xc(cj) < xc(vi) then  

19:     run Algorithm 2 to compute Isvisible(vi, cj) and Isvisible(vi+1, cj) 

20:     if Isvisible(vi, cj)=NO and Isvisible(vi+1, cj)=YES  then 

21:      run Algorithm 3 to compute   

22:      dij = [ vi+1 + (1-  )vi, vi+1] 

23:      dj = xc( vi+1 + (1-  )vi) 

24:      if dj > a2 then 

25:       a2 = dj 

26:       segment2= dij 

27:      end if 

28:     end if 

29:    end if 

30:   end for  

31:   if segment1   [vi,vi+1] then 

32:    if segment2 = [vi,vi+1] then  

33:     WS ← segment1 

34:     WS ← [vi,vi+1] \ segment1 

35:    end if 

36:   end if 
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37:   if segment1 = [vi,vi+1] then 

38:    if segment2   [vi,vi+1] then  

39:     WS ← segment2 

40:     WS ← [vi,vi+1] \ segment2 

41:    end if 

42:   end if 

43:   if segment1   [vi,vi+1] then 

44:    if segment2   [vi,vi+1] then   

45:     if  segment1   segment2    then  

46:      WS ← segment1 

47:      WS ← segment2 

48:     end if 

49:    end if 

50:   end if 

51:   WS ← segment1 

52:   WS ← segment2 

53: end for 

 

 

 Let D={d1,...,dl} be the final set of line segments to be covered and A be the visibility matrix 

whose rows correspond to the elements of D and columns correspond to the critical points. Let aij 

denote the value at the i
th

 row and the j
th

 column of A. Then aij=1 if di is visible by the critical 

point cpj and 0 otherwise. Let xj be a binary decision variable corresponding to cpj. xj is 1 if cpj is 

in the optimal solution and 0 otherwise. ZOIP formulation (TGPZOIP) is given below;  

 

(TGPZOIP) 

Minimize  ∑        

Subject to ∑ a        ≥1      1, ,    

             , j=1,...,m 

 

 We illustrate the approach with an example. Consider the terrain in figure 3.8. There are 18 

vertices, 17 edges, 9 convex points and one dip point (with a total of 10 critical points) on the 

terrain. Since d13   d14, d72   d71, d13,10   d13,9, d13,5   d13,4 we need not consider d13, d72, d13,10, 

and d13,5 as elements of the witness set to be covered (Figure 3.8 (a)). After eliminating these 

redundant segments there are 23 line segments that need to be covered (Figure 3.8 (b)). Thus, A 

will have 23 rows and 10 columns. 7
th

 critical point, which is a dip point, does not see the line 
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segments from 1 to 10 and see all line segments from 11 to 23. Then, ai7=0 for i=1,...,10 and 

ai7=1 for i=11,...,23. 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

(b) 

Figure 3.8: (a) The visible parts of edges by convex points (b) The final set of line segments that 

need to be covered. 

 

Lemma 3.4. The number of dip points is bounded by ⌊
(k- )

 
⌋.   

 

Proof.  We say that a dip point x ‘ n  ces’ a number of convex regions if two conditions are met: 

(1) the convex regions are defining for x, and (2) the convex regions are different from those 

induced by another dip point that is to the left of x. Suppose that x induces M, N, and G, and ‘y’ 

is a dip point which is different from x and is to the right of x. In the following, we consider 

cases. 
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Case (I) y is in N (Figure 3.9): If y is in N then, by definition, there must exist a convex region 

‘K’ which is to the right of RN and a convex region ‘U’ which is to the left of LN such that y   

CS(U) ∩ CS(K) and no other dip point is in CS(U) ∩ CS(K). The assumption that x covers N and 

that y covers K implies that x covers K. Since x   CS(U) ∩ CS(K) it must be true that U is not 

covered by x and as such, U is different from M. Note that although x and y ‘share’, i.e. both 

cover, N, K and M, the existence of y requires that the terrain must have (at least) two more 

convex regions in addition to M, N and G. That is, y induces U and K.  

 

 

 

 

 

 

Figure 3.9: y induces U and K. 

Case (II) y is in G (Figure 3.10): There must exist convex regions ‘U’ and ‘K’ such that U is to 

the left of LG, K is to the right of RG, y   CS(U) ∩ CS(K) and no other dip point is in CS(U) ∩ 

CS(K). Note that y covers all convex regions x covers that are to the left of LG, and x covers all 

convex regions y covers that are to the right of RG. Thus, U is not covered by x, for otherwise x   

CS(U) ∩ CS(K), a contradiction. Note that y covers M. If y also covers N then this implies y   

CS(M) ∩ CS(N), a contradiction, since x is, by assumption, the only dip point in CS(M) ∩ CS(N). 

Thus, y does not cover N. By assumption  y covers K, which is to its right. Among the convex 

regions y covers, U and K are such that CS(U) ∩ CS(K) contains only y. Thus, y induces two 

convex regions, U and K. 

Case (III) y is in convex region A such that A is different from M, N and G (Figure 3.11): It is 

true that y   CS(U) ∩ CS(K) and no other dip point is in CS(U) ∩ CS(K) for convex regions ‘U’ 

to the left of LA and ‘K’ to the right of RA. If U is M or N then K must be different from N. In this 

case y induces A and K. If K is N then U must be different from M. In this case y induces A and 

U. If each of U and K is different from M and N then y induces A, U, and K. If U is G then this 
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implies x covers K (since x covers y), which contradicts the standing assumption that x   CS(U) 

∩ CS(K). Hence U must be different from G.  

 

 

 

 

 

 

Figure 3.10: CS(U) ∩ CS(K) contains y only. 

 

 

 

 

 

 

Figure 3.11: CS(M) ∩ CS(N) contains x only and CS(M) ∩ CS(K) contains y only. But y induces 

A and K. 

Observation: Note that, in the cases discussed above, x is an arbitrary dip point that is to the left 

of y. Thus, the cases imply that a dip point induces two or three convex regions, each of which is 

a defining convex region.  

 

 Suppose that there are ‘m’ dip points on a terrain T with k-1 convex regions. We claim that 

the number of induced convex regions is at least 2m+1. This implies that there must be at least 

2m+1 convex regions on T. We prove the claim by induction. If there is one dip point on T then, 

by definition, there are three induced convex regions, which agrees with the basis for induction, 

i.e. for m=1. Consider a terrain with m+1 dip points. Let us order the dip points from left to right 
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according to their x-coordinate values. Suppose, by the induction hypothesis, that there are at 

least 2m+1 induced convex regions for the first m dip points. The three cases discussed above 

and the observation imply that the m+1
st
 dip point induces two or three convex regions, which 

are different from those induced by the first m dip points. Thus, there must exist at least 

(2m+1)+2=2m+3 induced convex regions for the existence of m+1 dip points. Since 

2m+3=2(m+1)+1 the induction hypothesis is true and the claim follows. Since there are k-1 

convex regions it must be true that 2m 1 ≤ k-1. Hence, the number of dip points, being an 

integer, is bounded by ⌊
(k- )

 
⌋.                 □ 

 

 For the terrain shown in Figure 3.12, the bound ⌊
(k- )

 
⌋ is tight . There are 10 convex points, 

9 convex regions and 4 dip points on the terrain. 

  

 

 

 

 

 

Figure 3.12: CS(3) ∩ CS(8) contains x1 only, CS(4) ∩ CS(7) contains x2 only, CS(2) ∩ CS(6) 

contains x3 only, and CS(1) ∩ CS(9) contains x4 only.  

 

 Note that each element of the witness set needs to be covered and it follows that the number 

of constraints in TGPZOIP corresponds to the size of the witness set, which is O(n). The number 

of variables, i.e. the size of the FDS, is the number of convex points plus the number of dip 

points, which is O(n). Finding the entries of A requires checking whether the line segments in the 

witness set are visible to the critical points. For each critical point this amounts to O(n
2
) time and 

since there are O(n) critical points,  the overall effort to create the visibility matrix A is O(n
3
). 
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3.6 A Witness Set of Size ‘k-1’ 

 

It is shown in Theorem 3.3 that the set of critical points is an FDS. Also implied in the theorem is 

that this result is true regardless of the witness set used. The size of the FDS, which consists of 

critical points, is O(n). We use these facts in the following lemma. 

 

Lemma 3.5. Let x be a point in an optimal solution X
*
 to an instance of TGP and let x be in 

convex region M. Let R be a point in M and let RRM denote a subset of M consisting of points 

between R and RM inclusive. Suppose, without loss of generality, that x is to the left of LM and x 

covers RRM   M (Figure 3.13). If there is no point that fully covers M then it is true that there 

exists y   X*
 that is to the right of RM and that covers LMR. 

 

Proof.  LMR must be covered by a point in X
*
. If LMR is covered by z   X

*
 such that z is to the left 

of LM then this implies, due to the convexity of M, z covers M, contradicting the standing 

assumption that no point in X
*
 fully covers M. Thus, there must exist y   X

*
 that is to the right of 

RM and that covers LMR. It may well be the case that y covers LMS   M such that LMR   LMS.    □ 

 

 

 

 

 

 

 

 

 

Figure 3.13:   x covers RRM   M, y covers SLM   M and RRM ∩ SLM = [R,S]. 

 

 Let M be a convex region on T. Suppose that critical points x and y partially cover M such 

that x covers RRM   M, y covers SLM   M and SLM ∩ RRM ≠   (as shown in Figure 3.13). Then 

we create an artificial critical point (ACP) cxy. 
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Theorem 3.6. Each convex region is covered either by an artificial critical point or by a single 

critical point.  

 

Proof.  At an optimal solution either a critical point fully covers M or, as implied by Lemma 3.5, 

two critical points such as x and y exist in the optimal solution such that each of x and y partially 

covers M but fully cover when they form an artificial critical point. Hence, each convex region is 

covered by a single critical point or by a pair of critical points.          □ 

 

 Theorem 3.6 implies that each convex region can be considered an element of the witness set 

that needs to be covered. Let  ′ denote the set of ACP’s. CR, as before, denotes the set of critical 

points. Let x and y be two critical points such that xc(x)<xc(y). Note that x and y can form an 

ACP with respect to a convex region M if xc(x)<xc(LM)<xc(RM)<xc(y). Observe that the 

maximum number of ACP’s can be obtained with respect to a single convex region M if half of 

the critical points are to the left and the other half is to the right of M, creating O(n
2
) artificial 

critical points. Algorithm 7 finds the artificial critical points. Since for each critical point there 

are O(n) critical points and O(n) convex regions to investigate whether the critical point forms an 

ACP with respect to a convex region, the effort is O(n
3
).  

 

 We create a visibility matrix A in which k-1 rows correspond to convex regions and columns 

correspond to the (original) critical points plus the artificial critical points. aij is set equal to 1 if 

convex region ‘i’ is visible by critical point cj and to 0 otherwise. Similarly, ai,(m,q) is 1 if convex 

region ‘i’ is visible by artificial critical point cmq and 0 otherwise. Let xj and ymq be the binary 

decision variables for critical point cj and artificial critical point ‘cmq’ respectively such that the 

variable equals 1 if the point is used in the solution and 0 otherwise. We also note that if  
  
 1 

then it must be true that    1 and    1. Optimal solution to TGP is obtained by the following 

zero-one integer programming formulation (TGPZOIP2). Note that the first constraint ensures that 

each convex region is covered by one or two critical points, and second and third constraints 

ensure that if an artificial critical point is used in the solution then corresponding critical points 

must also be in the solution. The number of constraints is O(n
2
) (a constraint for each convex 

region plus two constraints for each artificial variable ((2) and (3)). The number of variables is 

also O(n
2
) as stated before. 
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Algorithm 7 Generation of Artificial Critical Points 

 CR = {M1,..., Mk-1}, CP={c1, ,cq}, VS(ci), i=1,...,q, ACP ← . 

 1: for i=1 to k-1 do 

 2:  for j= 1 to q do 

 3:   for l= 1 to q do 

 4:    if xc(cj)<xc(   
)<xc(   

)<xc(cl) then 

 5:     if Mi   VS(cj)   Mi then 

 6:      if Mi   VS(cl)   Mi then 

 7:       if Mi   VS(cj)   Mi then 

 8:        if Mi   VS(cj)   VS(cl)    then 

 9:         ACP ← (cj, cl) 

 10:        end if 

 11:       end if 

 12:      end if 

 13:     end if 

 14:    end if 

 15:   end for 

 16:  end for 

17: end for 

 

 

(TGPZOIP2) 

Minimize  ∑         

Subject to ∑ a          ∑  a  (    )           ≥1      1, ,k-1  (1) 

    
  
≤  , m   C and cmq   C′        (2) 

    
  
≤  , q   C and cmq   C′        (3) 

                             (4) 

 

3.7 Conclusions 

 

We have proved the existence of a finite dominating set of cardinality O(n) and witness sets of 

cardinalities O(n). These results are an improvement over the FDS of cardinality O(n
2
) presented 

by Friedrichs et al. [112] and the witness set of cardinality O(n
2
) presented by Ben-Moshe et al. 

[105]. In the worst case n could be as large as 2
k
 while it is also true that n=k when T is concave. 
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Thus, the FDS and the witness sets we have constructed eliminates a large number of decision 

variables and constraints respectively in the ZOIP formulation of the problem. 
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Chapter 4 

 

The Viewshed Problem and the Terrain Guarding Problem 

on 2.5D Terrains 

 

4.1 Introduction 

 

As discussed in chapter 2, to solve TGP to optimality two pieces of information must exist: first, 

the exact viewshed of a guard, i.e. the solution to the viewshed problem, and second an FDS of 

guards which contains an optimal solution. 2.5D TGP is generally approached by restricting the 

guard locations either to vertices and edges or only to vertices of the triangles forming the terrain 

[55], [61]. However, to the best of our knowledge, since the set of vertices and/or edges has not 

been proved to be an FDS, the solutions obtained through models which locate minimum number 

of guards on vertices and/or edges are only an approximation for the problem. Therefore, it is 

still an open question whether any dominating set exists for 2.5D terrain guarding problem. The 

subject of this chapter is the viewshed problem: the calculation of the exact viewshed of a given 

guard (or a viewpoint) on a 2.5 dimensional terrain. 

 

 Viewshed calculations on terrains have important applications in such diverse areas as 

military (siting defense instruments against enemy intrusion) [4], archeology [118], forest 

protection from fires [3], [119], and computer graphics [120]. Some problems related to 

viewshed analysis are posed and solution algorithms are presented in Lee [18]. Nagy [16] 

discusses several issues regarding terrain visibility, such as visibility graphs and visibility 

invariants. There are factors, such as weather, vegetation, time of day, etc. that might affect 

visibility [121], [122]. 
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4.2 Analysis of the Viewshed Problem 

 

4.2.1 Preliminaries 

 

Let T be a TIN and T
*
 be the projection of T onto x-y plane. Note that T

*
 is a triangulation of a 

number of points on the plane. Due to our construction, T
*
 is both compact and convex and T is 

compact. For a   R
3
, let xc(a), yc(a) and zc(a) denote the x, y and z coordinates of a respectively, 

as before. Suppose a is a point in triangle KLM and a
*
 is its projection on the plane. It follows 

that a
*
 is in K

*
L

*
M

*
 such that vertices K

*
, L

*
, and M

*
 are the projections of the vertices K, L, and 

M respectively. Since a point within a triangle can be written as a convex combination of the 

vertices of the triangle, there exist unique λ1, λ2, λ3   R such that 

a
*
=λ1K

*
+ λ2L

*
+ λ3M

*
, λ1+ λ2+ λ3=1, λi≥0, i=1,2,3  (1)  

 The elevation of a can be found as the convex combination of the elevations of the vertices 

K, L, and M using λ1, λ2, and λ3 that satisfy (1), zc(a)= λ1zc(K)+ λ2zc(L)+ λ3zc(M) (2) 

 

 Let V=(V1,V2,V3) be the viewpoint on T whose viewshed is to be calculated, and KLM be a 

triangle on T. We want to find the region on KLM which is invisible to V. The complement of 

this region gives the visible region on KLM and the union of visible regions over all triangles 

gives VS(V).  

 

 Let PQR be a triangle that might affect the visibility of (i.e. cast a shadow on) KLM when 

viewed from V. We call KLM the “Target Triangle” (TT) and PQR the “Blocking Triangle 

Candidate” (BTC). We will discuss shortly how to find triangles such as PQR that might cast a 

shadow on KLM. Let P
*
, Q

*
, R

*
, K

*
, L

*
, M

*
 and V

*
   R

3
 be the projections of P, Q, R, K, L, M, 

and V onto x-y plane respectively (Figure 4.1). Since T* is convex, the invisible region on KLM 

is the union of the projections of triangles on T. This is an important observation since if T
*
 were 

not convex then we would also have to consider the projection of the earth (i.e. the object 

defined by PP
*
QQ

*
RR

*
 in Figure 4.1) below the BTC’s on TT. Also, the triangle TR that 

includes V may well block the view of V. Yet, the fact that T* is convex implies that the union of 
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the projections of the triangles that share edges with TR and that are also BTCs will be the same 

as the projection of TR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: PQR may cast a shadow on KLM.  

 

 For any TT, BTC’s can be found using T
*
 as follows (Figure 4.2); First, we select two 

vertices of the K
*
L

*
M

*
 at a time and form a triangle with V

*
. Obviously, there can be at most 

three such triangles, V
*
L

*
M

*
, V

*
K

*
M

*
 and V

*
L

*
K

*
. We choose the triangle in which the angle 

associated with vertex V
*
 is largest. In Figure 4.2, this triangle is V

*
K

*
M

*
. A vertex P

*
 within 

triangle V
*
K

*
M

*
 is the projection of a vertex P of a triangle PQR on T. PQR is a triangle that 

may or may not cast a shadow on KLM and is, therefore, a BTC. Note that a point P
*
 is within 

V
*
K

*
M

*
 if it is a convex combination of the vertices V

*
, K

*
, and M

*
.  

 

 Let  ⃗  be a vector normal to KLM. Since both  ⃗  and - ⃗  are normal to KLM, we require  ⃗  to 

be directed toward the sky from the surface of KLM, i.e.  ⃗  must have an acute angle with the 

vector e3=(0 0 1)
T
. Let N be a point on KLM. We note that when angle θ between  -  

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
 and  ⃗  is 

less than or equal to 90 degrees, V is able to see the upper side of KLM (if no blocking object 

would exist) and thus a projection analysis on KLM becomes meaningful (Figure 4.3). Note also 

V 

V
*
 

P 

Q 

R 

𝑃
*
 

L 

K 

M 

𝐿
*
 

𝑅
*
 

𝑄
*
 

𝐾
*
 

𝑀
*
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that any point on KLM can be chosen as N. This discussion is formalized with the following 

lemma. 

 

 

 

 

 

 

Figure 4.2: PQR is a BTC. 

 

Figure 4.3: V is able to see point ‘N’ since angle θ is less than or equal to 90 degrees.  

 

Lemma 4.1. Let V be a viewpoint and KLM be a triangle on T. Suppose, without loss of 

generality, that KL is the first edge (possibly one of at most two edges) that intersects a ray shot 

from V toward KLM. If  
(   )  

‖   ‖‖ ‖
  , then all points on KLM except (possibly) those on KL are 

invisible to V.  

 

4.2.2 Calculation of the Viewshed 

 

Hidden surface removal algorithms compute the visible parts of objects, in our case triangles in a 

given TIN, on a viewplane (screen) vertical to y-z (or x-y) plane by projecting each object onto 

the viewplane as seen by a viewpoint (Figure 4.4) [21]-[24]. As such, they provide a picture of 

the scene. Below, we give reasons why the ‘scene’ calculated by the hidden surface removal 

𝑉
*

 

𝐿
*

 

𝑄
*

 

𝑅
*

 

𝐾
*

 

𝑀
*

 

𝑃
*
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approach is not useful for viewshed calculations on terrains and presents ambiguities for 

implementation. 

 

 

 

 

 

 

 

 

 

Figure 4.4: Hidden surface removal of triangles.  

 

 First, the location of the viewplane is not specified in hidden surface removal. There may be 

other triangles between the viewpoint and the viewplane that may or may not affect the visibility 

of the target triangle. Particularly, it is possible that the viewpoint sees only a portion of or none 

of the target triangle since the viewpoint itself is on a triangle blocking the visibility. In this case, 

the viewpoint must be on the viewplane and it is not clear how the projection analysis is to 

proceed (Figure 4.5). Also, the angle of the viewplane with respect to a triangle is not specified. 

 

 If a triangle is on the side of the viewplane then, to calculate the visible region on the 

triangle, one has to put another viewplane between the target triangle and the viewpoint. In other 

words, in case the viewpoint is in the middle of the terrain it is not clear how the location of the 

viewplane is to be chosen for a 360
0
 viewshed analysis. 

 

 Next, consider TGP. In the following, we discuss that the picture obtained by hidden surface 

removal algorithms are not useful for such problems either. As before, we assume that T is 

defined in a fixed coordinate system and as such, every point on T has a known coordinate. To 

solve the terrain guarding problem, we need to find the exact portion of a given triangle visible to 

each viewpoint. Let V and Y be two points on which guards are located, as shown in Figure 4.6. 

 

V 
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Figure 4.5: The viewplane must contain V since the triangle that contains V blocks the target 

triangle.  

 

 Let M be a triangle on which the visible region is to be found when viewed from V and Y. 

Suppose triangle K blocks the visibility of M when viewed from V and triangle L blocks the 

visibility of M when viewed from Y. Let S1 and S2 be the screens in front of V and Y respectively, 

onto which the triangles are projected.  The coordinates of the visible region of the projection of 

M depends on the coordinates of  V, Y, and the coordinates of S1 and S2 respectively. Thus the 

coordinates of the visible regions of M on S1 and S2 are not comparable. In other words, using 

hidden surface removal algorithms, one can not know if Y covers the part of M that is not 

covered by V. To be able to compare the regions on the screens seen by different viewpoints the 

regions must be projected back to M. To be more specific, let Mi, i 1, ,k be the region on M 

covered by the i
th

 guard. For the terrain guarding problem, Mi, i 1, ,k may be considered as sets 

that need to be covered. Note that the vertices of M covers all of M. Since M must be covered at 

an optimal solution, it is true that either two or more guards collectively cover M or a single 

guard covers M. Thus, we need to know the visible, or equivalently the invisible, region covered 

by each guard and the coordinates of the boundary of these visible regions on M, not on any 

screen. 

 

V 
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Figure 4.6: The regions seen by V and Y are not comparable.  

 

 We solve these pitfalls presented by the hidden surface removal approach by analyzing the 

problem in 3D space and projecting each triangle directly onto the target triangle. We show that 

the invisible region on the target triangle caused by a blocking triangle is characterized by a 

system of nonlinear equations, which are linearized to obtain a polyhedral set.  

 

 Different from that of the hidden surface removal approach, the purpose of the algorithm by 

De Floriani and Magillo [30], which is also discussed in [6], [29], and [123], is the same as ours, 

which is to find the exact coordinates of the visible region on the target triangle in 3D space. 

Their algorithm projects the vertices of the “current” horizon onto the supporting plane of the 

target triangle and then connects the projections of each vertex with an edge to obtain the visible 

region (Figure 4.7). Black region in figure 4.7 is assumed to be invisible and the region above the 

projected horizon is assumed visible. However, as shown in figure 4.8, the ray passing through V 

and vertex ‘a’ hits the supporting plane of the triangle at ‘b’, which is not between V and the 

V 

Y 

M 

K 

L 
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target triangle. Further, in figure 4.8, it is shown that the projection of the other vertex (‘c’), 

which shares the same edge with a, falls between V and the target triangle, which indicates that 

the horizon may actually cast a shadow on the triangle. Thus, the visibility information obtained 

by connecting the projections of the vertices of the horrizon is not correct.  

 

 

 

Figure 4.7: Projection of the vertices of the horizon, which is not correct for all cases. 

 

 

 

Figure 4.8: Projection of a vertex on an edge onto to the supporting plane of the target triangle 

may lie behind V. Yet, the edge may cast a shadow on the triangle. 

 

 Below, we give an alternative model in which we project a BTC directly onto the target 

triangle itself. To the best of our knowledge, no analytical model for calculating this projection 

has been formulated before, due to, we believe, the same misconception that the projection of a 

vertex onto a target plane lies between the vertex itself and the target plane. 

 

 Let PQR be a BTC and KLM be the TT. We assume that  
(   )  

‖   ‖‖ ‖
  , where d is as 

defined in section 4.1. It is true that if PQR blocks the visibility of KLM from V then PQR has a 
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projection (casts a shadow) on  KLM. Note that if U on KLM is the projection of W on PQR then 

it must be true that U=W+µ(W-V), for some µ≥1 (figure 4.9). It follows that PQR has a 

projection on KLM if and only if there exist points on PQR that satisfy the set of equations given 

by (1) and (2) below.  

 

 

Figure 4.9: U is the projection of W on KLM. Note that W and U can be written as convex 

combinations of the vertices of PQR and KLM respectively. 

 

For   1     (λ   λ   λ   -  ) (            )  (1) 

              ∑  λ  1
 
i 1 ,  ∑     1,  

 
i 1   λ ,   ≥0, i 1, , .      (2) 

 

We note that the invisible region on KLM is given by             with 

∑     1,
 
i 1 and    ≥0, i 1, , . Equations (1) and (2) are equivalent to 

 

  1            -   -   -         -     (3) 

   λ      λ        λ                                   1     (4) 

                                                        1      (5) 

            λ ,  λ ,  λ ,    ,    ,     ≥ 0,    ≥1      (6) 
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 Note that equation (3) is nonlinear and to linearize the equation, we use the following change 

of variable:  We define λ 
 
   λ  , i 1, , .  Then λ   λ  λ   1  gives 1   (λ 

 
 λ 

 
 λ 

 
) 1  or 

λ 
 
 λ 

 
 λ 

 
   .  We now have; 

 

λ 
 
  λ 

 
  λ 

 
 -   -   -        -      (7) 

λ 
 
    λ 

 
    λ 

 
                                     (8) 

                                             1       (9) 

λ 
 
,  λ 

 
,  λ 

 
,    ,    ,     ≥0,     ≥1      (10) 

 

 Let A1 be the matrix [P-V, Q-V, R-V] and A2 be the matrix [K, L, M]. Then we obtain the 

following equivalent system; 

 

 1 
 
-        -   (11) 

   
 
           ≥ 1  (12) 

                1  (13) 

                ≥    (14) 

where  
 
 (

 1
'

  
'

  
'

) ,    (

 1
  
  

) , and e
T
 = (1 1 1). 

 

 Suppose that A1 is invertible. A1 is not invertible when V, P, Q, and R lie on the same plane 

and this implies that PQR does not block the visibility from V due to our definition of visibility. 

Premultiplying (11) by  1
-1

 on both sides we obtain;  
 
 ( 1

-1
  ) - 1

-1
 , and since we require   

 
 
 ≥ 0, we obtain the following equivalent system; 

 

     ( 1
-1
  )    ≥  1

-1
   (15) 
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  ( 1
-1
  )    ≥ 1  

  1
-1
  (16) 

                     1   (17)  

                    ≥       (18) 

 

 For each   that solves (15)-(18), we put  
 
 ( 1

-1
  )  -  1

-1
 , then compute   from 

  λ 
 
 λ 

 
 λ 

 
, and   from   

1

 
  

 
. The values we get for      and   satisfy all requirements in the 

initial system. Note that the set of solutions to the system of equations (15)-(18) is a bounded 

polyhedron (a polytope), which we name Ω. The preceding analysis establishes the following 

theorem. 

 

Theorem 4.2. Let PQR be a BTC and KLM be a TT. Suppose A1 is invertible. Then PQR has a 

projection (blocks the visibility of) on KLM if and only if  Ω is nonempty. 

 

 For each   in Ω there is a corresponding point on KLM, given by A2 . Let Π={y: y=A2 ,   

   }, i.e. Π is the invisible region on KLM caused by PQR and it is also a bounded polyhedron.  

 

Lemma 4.3. Let  * be a point in Ω and y*=A2 *. Then  * is the unique solution to the system 

of equations given by y*=A2x, ∑   
 
  1  1      and x  Ω. 

 

Proof. Let   ( ⃗⃗⃗
  ⃗⃗  ⃗⃗⃗ 

1 1 1
),     ( 

 

1
). D is a 4 by 3 matrix whose columns are the vertices of 

KLM with 1’s at the 4
th

 row. Similarly E is a 4x1 matrix with components of y* and a 1 at the 

last row. We note that  * is a solution to Dx=E, x≥0, x     . We will show that the columns of 

D are linearly independent and this will establish the uniqueness of  * (by Theorem 2.2 in 

Bertsimas and Tsitsiklis [124]). Suppose that the columns are linearly dependent and suppose 

without loss of generality that ( ⃗⃗⃗
 

1
)  is a linear combination of ( ⃗⃗⃗

 

1
)  and ( ⃗⃗

 

1
) , i.e. 

        R such that  ( ⃗⃗⃗
 

1
)   ( ⃗⃗

 

1
)  ( ⃗⃗⃗

 

1
) . Last row implies     1 , which implies 

   (   )   . However, the last equality implies that M is on the line passing through K 
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and L, contradicting the fact that KLM is a triangle. Hence  * is unique.       □ 

 

 Let  *, 
1
, 

2
   Ω and y*=A2 

*
, y

1
=A2 

1
, y

2
=A2 

2
. Lemma 4.2 implies that if  *≠ 

1
≠ 

2
 then 

y*≠y
1
≠y

2
. Since nonempty and bounded polyhedra have at least one extreme point (Bertsimas 

and Tsitsiklis [124], corollary 2.2), we conclude that if Ω is nonempty then both Ω and Π have at 

least one extreme point. 

 

Theorem 4.4. Suppose A1 is invertible and Ω is nonempty. Let  
*
 be a point in Ω and y*= A2 

*
. 

Then y* is an extreme point of Π if and only if  
*
 is an extreme point of Ω. 

 

Proof. Suppose  
*
 is an extreme point of Ω but y* is not an extreme point of Π. Then there exists  

λ′   (0,1), y
1
 and y

2
   Π such that y

1
 ≠ y

2
 ≠ y* and y*= λ′y

1
+(1- λ′)y

2
. Since y

1
 and y

2
   Π, there 

exist  
1
 and  

2
   Ω such that y

1
=A2 

1
 and y

2
=A2 

2
. Note that y

1
≠y

2
≠y implies  

1
≠ 

2
≠ *. 

y*=λ′y
1
+(1- λ′)y

2
 implies A2 *= λ′A2 

1
+(1- λ′)A2 

2
 = A2(λ′ 

1
+(1- λ′) 

2
), which implies, by 

Lemma 4.3.,  *=λ′ 
1
+(1- λ′) 

2
. But this implies  * is not an extreme point of Ω, a contradiction. 

The other direction follows similarly.               □ 

 

 Theorem 4.4. shows that there is one-to-one correspondence between the extreme points of 

Ω and Π. A point in a polyhedron is an extreme point if and only if it is a basic feasible solution 

and basic feasible solutions can be found using the constraints that define the polyhedron 

(Bertsimas and Tsitsiklis [124], Definition 2.9 and Theorem 2.3). The boundary of Π is given by 

edges connecting the neighboring basic feasible solutions since a bounded polyhedron is the 

convex hull of its extreme points (Bertsimas and Tsitsiklis [124], Theorem 2.9). To summarize; 

to find the region on KLM blocked by PQR, we first find the extreme points of Ω, and then, 

using these points, find the extreme points (basic feasible solutions) of  Π, and finally connect 

the neighboring extreme points of Π. 
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4.2.3 Finding the Boundary of the Invisible Region on KLM 

 

For a point V on T, let us denote the projection of (invisible region caused by) triangle ‘i’ on TT 

‘j’ by Πi(j). Then the invisible region on j, IR(j), is the union of Πi(j) over all i, i.e. IR(j)=⋃ Π
 
( ) . 

Our goal is to find IR(KLM), and we proceed as follows, 

 

 We form two sets: First set, denoted by TR, is the the set of projections on KLM of all 

blocking triangles, i.e., TR  Π1(KLM),.., Πr(KLM)}. Due to the analysis in section 4.2.2 we 

have the exact coordinates of the extreme points (ext.pts.) of Πi(KLM), i=1,...,r. The elements of 

TR will not change during the execution of the algorithm. Second set, denoted by BP (set of 

boundary points), is composed of points that mark the boundary of current invisible region with 

edges existing between each consecutive point in BP. Initially, only the extreme points of the 

first triangle is in BP and the boundary of the initial invisible region (the projection of the 

triangle) is formed by the edges that connect the extreme points of the projection of the first 

triangle.  

 

 We find the union of the current invisible region and the projection of the next triangle in 

TR, and then update BP. Once all elements in TR is considered for analysis, we will have 

obtained IR(KLM) and its boundary. Let IRk denote the invisible region obtained after projecting 

the k
th

 triangle on KLM. Then,    IRk = IR(k-1)   Πk. Note that IR(KLM)=IRr. Let BPk denote 

similarly the boundary points obtained after inserting the k
th

 projection. We note that the number 

of extreme points of a projection of a triangle on KLM can be at most six. Suppose the k
th

 

element (Πk) in TR is considered for analysis. We study two mutually exclusive cases:  

a. No e ge of Πk intersects, at its interior point, the edges of IR(k-1). 

 

 Let int(Πk) denote the interior of Πk. It must be true that one of the following three cases 

exists: (1) IR(k-1)   Πk  ( ) Πk   IR(k-1) or (3) IR(k-1)   int(Πk) =   (Figure 4.10). For each 

preceding case it is true that (1) IRk   Πk (2) IRk = IR(k-1) and (3) IRk = IR(k-1)   Πk. Also, BPk is 

composed of the extreme points of Πk for case (1), BPk = BP(k-1) for case (2), and BPk is the union 

of BP(k-1) and the extreme points of Πk for case (3). We can determine which case is obtained 
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after an insertion of Πk as follows; if all boundary points of IR(k-1) lie within Πk we are faced with 

case (1), if the extreme points of Πk lie within IR(k-1) we obtain case (2) and if neither is true we 

obtain case (3). Note that this operation is done after ensuring that no edge intersection (at an 

interior point) exists. 

 

 

Figure 4.10: Three cases may result when the edges a projection of a triangle do not intersect 

with edges of the current invisible region. 

 

b. At least one edge of Πk intersects, at its interior point, at least one edge of IR(k-1).  

 

 Suppose that an edge (c,d) of Πk intersects an edge (e,f) of IR(k-1) at p and suppose, without 

loss of generality, that p is an interior point of (c,d) (p ≠ c and p ≠ d), f  is in Πk, p ≠ f, and d is in 

IR(k-1) (Figure 4.11 (a)). We note that c and d are extreme points of Πk. We remove f from BPk, 

add c and p to BPk. The boundary of IRk becomes (e,p,c) for that part. In general, to find IRk and 

its boundary, we remove all boundary points of IR(k-1) which remain in Πk from BPk, include all 

intersection points in BPk, and remove from BPk all extreme points of Πk which remain in IR(k-1). 

Then, connecting the points in BPk we obtain the boundary of IRk (Figure 4.11 (b)). Observe that 

the dashed gray boundary of IRk (Figure 4.11 (b)) is visible to V due to our definition. 

 

 

             (a)       (b) 

Figure 4.11: Finding the union of the current invisible region and a projection of a triangle. 
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4.2.4 Pseudocode of the Algorithm Viewshed and an Application 

 

The outer for loop considers one triangle at a time and the inner for loop calculates the 

projections of other triangles on the triangle. Since there are O(n) projections for a single triangle 

the running time of the algorithm is O(n
2
).   

 

Algorithm 8 Calculation of the Viewshed of V 

 N = # number of triangles, InvisibleRegion(V) ←  , VS(V) ←  , T. 

 1: for j=1 to N do 

   let K=(K1, K2, K3), L=(L1, L2, L3) and M=(M1, M2, M3) be the vertices of the triangle j. 

   Let V=(V1, V2, V3) 

 2:  a1= (K2-L2).(K3-M3) - (K2-M2).(K3-L3) 

   a2= - (K1-L1).(K3-M3) + (K1-M1).(K3-L3) 

   a3= (K1-L1).(K2-M2) - (K1-M1).(K2-L2) 

 3:  if  a3 ≥ 0 then 

 4:    ⃗ = ⃗  = (a1, a2, a3)  

 5:  else  ⃗ = -  ⃗        

 6:  end if      

 7:  if  
(   )  

‖   ‖‖ ‖
   then       

 8:   InvisibleRegion(V) ← j 

 9:  else       

10:    for i =1 to N do 

     let PQR be triangle i. 

11:     A1=[P-V, Q-V, R-V] and A2=[K, L, M]. 

     find the extreme points of the set Ω given by the following system of equations 

         ( 1
-1
  )    ≥  1

-1
    

      ( 1
-1
  )    ≥ 1  

  1
-1
   

                         1     

                        ≥        
     let    (i ≤ 6) be the extreme points of Ω.  

 12:    yi= A2 i 

13:    Πi(j)=∑  
 
  

   , ∑  
   =1,  

 
 0, i≤ 6  

14:     InvisibleRegion(V) ← InvisibleRegion(V) ⋃ Πi(j) 
15:    end for  

16:   end if 

17:  end for 

18: VS(V) ← T \ InvisibleRegion(V) 
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 We apply the algorithm to a real terrain (Figure 4.12 (a)), which is 50 km in length and 1.6 

km in width and is triangulated to obtain 6972 triangles (Figure 4.12 (b)). Those portions of the 

terrain seen by V are painted green and the invisible regions are painted red (Figure 4.12 (c)).  

 

 

(a) 

 

 

(b) 

 

 

(c) 

Figure 4.12: (a) The real terrain (50km x 1.6km) used for analysis (The picture is obtained from 

Google Earth
®
) (b) TIN representation of the terrain (c) The viewshed of V, the regions painted 

green are visible and those painted red are invisible. 
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4.3 Conclusions 

 

We have discussed two main approaches, prior to ours, for solving the viewshed problem on 

TINs and showed that one of these approaches, the hidden surface removal, has ambiguities 

regarding its implementation. The other approach projects the vertices of an edge onto the 

triangle on which we desire to find the visible part. We showed, by a counter-example, that this 

approach is not correct since the projection of a vertex need not necessarily be between the 

viewpoint and the target triangle. We have modelled the projection of a triangle onto the target 

triangle, which is characterized by a system of nonlinear equations, which we have linearized to 

obtain a polyhedral set. The points in this set correspond to the points on the target triangle that 

are not visible from V. 
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Chapter 5 

 

Terrain Guarding Problem on RSG: an Application to 

Border Security 

 

5.1 Introduction 

 

In RSGs, grid points are regularly spaced and they are at the center of a grid cell. The terrain is 

represented as three dimensional rectangular blocks by elevating the entire cell to the height of 

the center of the cell (or to the height of one of the four corners of a cell). Generally, each guard 

is located at the center of a cell and the target set is generally the set of grid points for RSGs. The  

points at the centers are assumed to represent the cells they are in. If the guards located at the 

center of the cells guard all other grid points, it is assumed that terrain guarding problem is 

solved. Yet, this approach is approximative since in TGP guards can be located anywhere on the 

terrain and covering of a point at center of a cell does not necessarily imply guarding of the cell.  

 

 The goal in this chapter is to introduce some important issues involved in guarding a real 

topographic terrain represented as RSG and to solve the terrain guarding problem on a real 

terrain. We also locate guards on grid points and the goal is to cover all grid points on the terrain.  

In section 5.2., a realistic example of the problem, which involves the surveillance of a rugged 

geographical terrain by means of thermal cameras (guards), is studied by applying location 

models. The terrain studied is a real terrain which is 50 km long by 1.6 km wide (Figure 5.1). It 

represents a section of a border between two neighboring countries. While the border and the two 

neighboring countries are fictitious, the border terrain is real. In section 5.3., an experiment is 

carried out in which two fictitious terrains are created to see the impact of terrain characteristics 

and terrain resolution on coverage optimization. In section 5.4., a new problem, which we call 

the blocking path problem, is first defined and then formulated. A blocking path is, in a sense, a 

line-of-defense that blocks an infiltration route which intruders are likely to use to enter the 

homeland. For this problem, the goal is to create a blocking path such that each point on the path 
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is covered by a guard placed on the terrain while the total number of guards is minimized. In 

section 5.5, we provide some discussions on our problems. 

 

             

    (a)              (b) 

 

 

                 (c) 

Figure 5.1: Views of the terrain from different angles. Pictures were obtained from Google Earth. 

 

 Franklin [86], Magalhães et al. [13] and Shi and Xue [87] apply heuristic methods to solve 

the TGP on grids. Yet, they do not provide any comparison with the optimal solution. Their 

guard locations are selected before solving the problem based on a visibility index. Bao et al. 

[88] locates watchtowers to detect forest fires in an application study. They use location set 

covering and maximal covering location problem models to determine the minimum number of 

watchtowers to cover the entire terrain and to maximize the area covered within a budget 

constraint. Bao et al. [88] also choose some sites as potential guard locations since these 
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locations have a better viewshed. Then, they apply their solutiıon methodologies to locate guards 

at these points. We note that in all these studies, the guard locations are selected prior to solving 

the problem. Our approach here is to let the optimization model choose the best sites to deploy 

the guards. 

 

 A real world guarding problem must necessarily involve the use of a Geographic 

Information System (GIS). Murray et al [125] considers placing cameras on a campus area that 

discretize the continuous 3-D space with regular grid squares of size 3ft by 3ft using ArcGIS to 

model the problem as integer programming. Wilhelm and Gokce [126] model the security of a 

port and solve the problem by a branch and cut algorithm, using ArcGIS for visibility analyses.  

 

5.2 Terrain Guarding  

 

We aim to place thermal cameras (Figure 5.2) on a 50 km by 1.6 km rugged rectangular border 

region (Figure 5.1) such that the area is covered by the fewest number of thermal cameras under 

night conditions. The region used is long and thin since it represents an area next to the border 

line where illegal intruders can be apprehended. The pictures of the terrain used in this study 

were taken from Google Earth. The digital elevation data of the region was converted using 

NetCAD, a GIS software, into a data format that Google Earth can read.  

 

 

                  

   (a)          (b)  

Figure 5.2: (a) A thermal camera (b) The image seen by a thermal camera. Pictures are taken 

from the internet. 
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 Smuggling, illegal immigrants and terrorism are among the biggest threats to national 

security, and these activities occur mostly across borders at night, when visibility is diminished. 

Border security has gained more importance since 9/11 (Ordóñez [127]). Border security can be 

maintained using several resources: unmanned aerial vehicles (UAVs) [128], balloons, 

watchtowers, patrolling units, thermal or other types of cameras/sensors etc. Watchtowers and 

balloons are easy for an intruder to spot and, therefore, are themselves targets for a simple 

(rocket or similar) attack. The effect of inclement weather conditions on UAVs’ surveillance 

capability, high accident rates and high operating costs are major drawbacks in implementing 

UAVs for border surveillance [129]. These factors make thermal cameras the ideal choice for 

border security. Thermal cameras sense the heat emitted by any agent on the land, i.e. human, 

animal or vehicle, and are not affected by darkness. These devices can either be operated by 

trained personnel or made to operate autonomously. In this study, cameras are operated by 

security personnel who can hide from intruders inside suitably dug trenches. A thermal camera at 

site i can detect an event at site j if there is a direct line-of-sight between points i and j, and j is 

within the range of the camera placed at i. Personnel using cameras observe a region assigned to 

them according to a certain pre-determined surveillance pattern. One such pattern is illustrated in 

Figure 5.3. 

 

 

 

 

 

 

Figure 5.3: The reverse triangular shaped field shows the area assigned to a camera for 

surveillance. The surveillance pattern is from far to near and changes from left to right and right 

to left as the guard looks closer.  

 

 The interval between the grid points is generally fixed and the square formed by four 

neighboring points is known as the pixel or grid cell ([130]). An important issue in terrain 
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guarding using RSG is the pixel size, i.e. the distance between grid points. As the distance 

between grid points increases, RSG is less representative of the real terrain. As Hengl [130] 

states, ‘although no absolute ideal pixel size exists for terrain analysis, and the right pixel size is 

relative to the application type and project objectives, 20 to 200 meters are standard grid 

resolutions in most cases.’ In section 5.3, the effect of pixel size on terrain guarding is explored 

in detail. 

 

 Points are sampled at every 200 meters starting from the corners of the region (i.e. grid 

resolution is 200 m) and 2000 grid points are obtained for coverage analysis (Figure 5.4). 

MATLAB is used as the GIS tool. In contrast to RSGs, in which the surface in each pixel is flat, 

MATLAB uses bilinear interpolation to approximate the surface within each grid cell for line-

of-sight  (LOS) calculations. Visibility analyses are performed using MATLAB’s viewshed tool 

function on the 2000 grid points. The line-of-sight is restricted by 7500 meters, the range of the 

thermal camera.  

 

      

     (a)            (b) 

Figure 5.4: The grid points that discretize the terrain. Views from different angles. 

 

 Another issue is the relationship between the sensor’s coverage radius and grid spacing since 

a grid spacing greater than the sensor’s coverage radius would obviously be absurd. Andersen 

and Tirthapura [131] explore the relationship between the sensor’s coverage radius and grid 

spacing using two three-dimensional rooms in their experiments and show that when grid 

spacing is one-fifth of the sensor’s coverage radius, the coverage obtained is 99%. In other 
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words, when all grid points are covered, 99% of the targeted real space is covered. In our case, 

this ratio is approximately 1/37 (200/7500). 

 

 A ‘visibility matrix’ A is created as follows. If point k is visible from point m and the 

distance between k and m is less than or equal to the range of the thermal camera, then the A 

(k,m) entry of the matrix is 1, and is otherwise 0. This procedure is repeated for all k=1,...,2000 to 

obtain A with dimensions of 2000 by 2000 points. The main obstacle in solving coverage 

problems for larger terrains is the time consumed in creating the visibility matrix A and the 

memory limitations of the optimization software that stores A.  

 

 Let us place the x–y axis on point k such that the y axis bears north (neighboring country) 

and k is at the origin. Axes divide the region 360
°
 around k into four equal sectors (Figure 5.5). 

Assume that a single guard is placed at k and the guard is assigned all sectors for surveillance. 

Then, while the guard watches, say, sector I, the other sectors, especially sector III in the 

opposite direction, will remain unsurveilled for a considerable amount of time (this time can be 

at least 10 minutes, which is not desirable). Therefore, a policy is established such that the 

number of cameras to be placed at k is two if a guard at k sees at least 30 locations (based on 

field experience) in at least two of the four sectors, otherwise one camera is used. When two 

cameras are needed, they are placed in such a way that they share all invisible parts equally 

(Figure 5.6). The cost (weight) vector becomes c
T
=(c1,...,c2000) = (1 or 2,...,1 or 2). 

 

 

 

 

 

 

Figure 5.5: The sectors around a potential guard location. 
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    (a)           (b) 

 

Figure 5.6: (a) Black regions are dead-zones that cannot be seen by the camera (b) Two cameras 

share the invisible region equally. One camera is assigned the northwestern part and the other is 

assigned the southeastern part. 

 

 Note that, instead of dictating the number of cameras we could let the optimization model 

decide how many cameras to place at a certain spot. However, if there were more than two 

cameras on a spot, then a single (rocket) attack on the spot could destroy all of the sensors, 

leaving many parts of the region unguarded for a considerable amount of time, which is not 

desirable, quite apart from the cost of the sensors and of human lives. To overcome this problem, 

the model could again be allowed to choose the number of sensors at a point simply by defining 

a decision variable and restricting it to be less than or equal to 2. However, this might result in 

placing only one or no camera at a certain location which has to view many locations in different 

directions (for example 100 points, 50 in sector 1 and 50 in sector 3), and this would make the 

surveillance less effective. 

 

 Covering the region with the minimum number of cameras under the stated surveillance 

policy can be modeled by the ‘location set covering’ formulation discussed in chapter 2, 
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Model (I): 

Minimize  ∑   
N
      

Subject to  ∑    
N
            1, ,N  

                 1, ,N  

 

where yj is 1 if a sensor is placed at site j, and 0 otherwise. The term aij is the entry for the 

visibility matrix A with row i corresponding to a point to be covered and j to a point that is a 

candidate for sensor location. The first constraint is the coverage constraint which ensures that 

all grid points are covered. In our case N=2000. 

 

 Another problem regarding terrain guarding is maximizing the area covered within the  

available budget, i.e. with a fixed number of guards. Regarding border security, a commander 

may wish to establish his/her command post/s at (a) site(s) where the area seen is maximized. 

The problem of maximizing the area covered by ‘p’ guards is the ‘maximal coverage location 

problem’ whose integer-programming formulation was discussed in chapter 2 and it is restated 

for our problem as follows, 

 

Model (II): 

Maximize ∑   
N
    

Subject to         1, ,N     (1) 

      ∑    
    
                (2) 

   ∑   
    
             (3) 

           1, ,N     (4) 

               1, ,N    (5) 
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The variable ki is 1 if location i is covered and is 0 otherwise. The variable yj is as defined in 

model (I). Note that ki is not restricted to be a binary variable (0≤ ki≤1) since, at an optimal 

solution, ki is either 0 or 1.  

 

 The two problems are solved by ‘branch and bound’ using GAMS and solver CPLEX. 

Model (I), the location set covering, prescribes a total of 83 cameras. The locations of the 

cameras are shown in Figure 5.7 (a), (b) and (c). The red points in Figure 5.7 have two cameras 

and the green points have only one camera. 

 

 

           

    (a)             (b) 

 

 

     (c) 

Figure 5.7: There are two cameras on red points and one camera on green points in (a), (b) and 

(c). 
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 For p=1,...,83 the maximal coverage problem is solved for model (II); the results are 

presented in Table 5.1. The graphical representation of coverage versus the number of cameras 

(Figure 5.8) shows that the coverage of the region increases with each additional camera but at a 

decreasing rate, as expected. 

 

Table 5.1:  Maximum number of points that can be covered with p cameras. 

p points covered p points covered 

1 49 26 1740 

2 347 27 1753 

3 394 28 1764 

4 692 29 1777 

5 729 30 1788 

6 943 31 1800 

7 980 32 1811 

8 1134 33 1820 

9 1170 34 1831 

10 1278 35 1840 

11 1311 36 1849 

12 1367 37 1858 

13 1400 38 1865 

14 1455 39 1873 

15 1488 40 1880 

16 1532 42 1894 

17 1556 45 1912 

18 1580 48 1928 

19 1601 55 1959 

20 1622 60 1975 

21 1643 65 1986 

22 1663 70 1992 

23 1684 75 1996 

24 1703 80 1998 

25 1724 83 2000 
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 Sixty cameras cover 1975 points, yet twenty-three more cameras are needed to cover the 

remaining 25 points. A decision-maker may not want to incur the additional cost of twenty-three 

cameras, which can be as high as 300,000$, to cover only 25 more points. The locations of 

cameras on the terrain for p=1, 4 and 16 are illustrated in Figures 5.9, 5.10, and 5.11 

respectively. 

 

 

 

 

Figure 5.8: Diminishing marginal returns obtained by using additional cameras. 

 

 

     

     (a)            (b) 

 

Figure 5.9: The locations of cameras when p=1. Red points represent camera locations and green 

points represent points covered by cameras  (a) top view (b) angled view. 
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     (a)            (b) 

 

Figure 5.10: The locations of cameras when p=4. Red points represent camera locations and 

green points represent points covered by cameras (a) top view (b) angled view. 

 

      

     (a)            (b) 

 

Figure 5.11: The locations of cameras when p=16. Red points represent camera locations and 

green points represent points covered by cameras (a) top view (b) angled view. 

 

5.3 Sensitivity Analysis 

 

As pixel size decreases, i.e. as the resolution increases, the number of grid points that represent 

the terrain increases, which leads to a better representation of the terrain, and the results of the 

coverage model – model (I) – become more reliable. However, as the number of grid points 
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increases the computation time increases and memory issues arise. While representing a terrain 

with fewer points will reduce memory problems, it is likely to result in fewer guards than is the 

case with more points, and therefore, more of the terrain is likely to be unguarded. In this 

section, there are two goals: to investigate the effect of terrain characteristics and to investigate 

the resolution of the terrain on coverage. To this end, two fictitious square terrains are created 

with equal numbers of grid points but the standard deviations of the heights of the points 

(steepness) in both terrains are different (Figure 5.12). 

 

     

     (a)             (b) 

 

Figure 5.12: (a) A highly rugged terrain (b) A smooth region that is almost flat. 

 

 Both terrains are represented by 33*33 grids. The height of each grid point in both terrains 

was generated using a normal distribution with a mean of 1000 m using MATLAB. The standard 

deviations of heights in terrain 1 and terrain 2 are 200 m and 10 m respectively. Clearly, terrain 1 

is much more rugged than terrain 2, which is almost flat. The highest and lowest points in terrain 

1 have heights of 1633.25 m and 251.56 m respectively. In terrain 2, the maximum height is 

1033.25 m and the minimum height is 962.77 m. 

 

 Let us assume that the region represented with 33*33 grid points is the best representation 

possible in terms of a reasonable solution time and the elevation data available. The impact of 

representing the same region is investigated by using fewer grid points, i.e. an approximate 

representation, on the coverage. The 5*5, 9*9, and 17*17 grids are used as approximate 

representations. The 17*17 grid representation is obtained from the 33*33 grid by deleting even-
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numbered rows and keeping odd-numbered rows, and, for each remaining row, keeping the left-

most point along with every other point (Figure 5.13).  

 

 

 

 

 

 

Figure 5.13: The red points are selected from the 33*33 grid to obtain a 17*17 grid. A 9*9 and 

5*5 grid is obtained similarly from 17*17 and 9*9 grids respectively. 

 

 Because we are interested only in investigating the effect of terrain characteristics and of the 

resolution of the terrain on coverage, it is assumed that guards can cover all grid points. The 

visibility matrix was calculated and the location set covering models were solved for each 

representation and for the two types of terrain. The minimum number of guards for each 

representation and the two types of terrain is presented in Table 5.2. The results clearly indicate 

that when one trades ‘correct’ representation (for example 5*5 vs   *  ) for computational 

constraints, one can use three guards and thirty-nine guards respectively for terrain 1, and two 

guards and sixty-two guards respectively are required for terrain 2.  

 

 Table 5.3 gives the percentage of the 1089 grid points (33*33) that are covered if the guard 

locations obtained for the 5*5, 9*9, and 17*17 representations – for both types of terrain – are 

used to cover the 33*33 representation. For example, for terrain 1, if the three guard locations 

found for the 5*5 representation (Table 5.3) are used to cover the 33*33 grid, only 21% of the 

33*33 representation is covered, which would leave 79% of the terrain unguarded. The guard 

locations found in 9*9 and 17*17 cover 56% and 75% of the 33*33 grid respectively for terrain 

1. These results suggest that when the number of points is decreased by about 75% (17*17 vs 

33*33), 25% and 22.5% of the coverage for terrain 1 and 2 are lost respectively. It seems that 
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deciding on an appropriate resolution is based on the trade-off between the desired degree of 

coverage and the computational constraints.  

 

Table 5.2: Optimum number of guards for each type of terrain and grid representation. 

 

 TYPE OF 

TERRAIN 

Grid 

representation 

Terrain 

1 

Terrain 

2 

5*5 3 2 

9*9 5 5 

17*17 21 16 

33*33 39 62 

 

 

Table 5.3: Percentage of grid points covered in the 33*33 representation when an optimal 

solution for an alternate specific representation is used. 

 

 TYPE OF TERRAIN 

GRID 

REPRESENTATION 

TERRAIN 1 

(RUGGED) 

% 

TERRAIN 2 

(SMOOTH) 

% 

5*5 21 14 

9*9 56 63 

17*17 75 77.5 

 

 

 The results in Table 5.2 and Table 5.3 indicate that, considering the shapes of both terrains 

and approximate representations used, terrain 1 and terrain 2 do not show much difference in 

terms of the number of guards used or in terms of the percentage of the terrain covered (33*33 
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grid). Actually, although terrain 2 is almost flat, it requires almost the same number of guards for 

the 5*5, 9*9 and 17*17 representations as terrain 1, and 1.5 times more guards than terrain 1 for 

the 33*33 representation (Table 5.2). These results might seem counter intuitive at first, since 

one expects to use more guards for more rugged terrains. However, as the terrains in Figure 5.14 

illustrate, only two guards are needed to cover the rugged terrain, whereas four guards are 

required to cover the flat terrain. It seems that the key factor in determining the number of guards 

to cover a terrain is not the shape of the terrain but the viewshed of the points of the terrain. Of 

course, building a relatively small tower on the smooth terrain can decrease the optimal value to 

1, but as discussed in section 4, it is not desirable to install towers.  

 

 

 

 

 

 

 

(a) 

 

 

 

(b) 

 

Figure 5.14: The circles represent the optimal location of guards. The rugged terrain in (a) 

requires 2 guards whereas the smooth terrain in (b) requires 4. 
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5.4 Preventing an Infiltration Route 

 

An infiltration route is one that intruders use to sneak into the homeland. Bang et al. [132] find 

the best infiltration route for an intruder. A possible infiltration route in the context of this study 

consists of a connected path of uncovered points from one side of the region to the other side 

across the width of the region (Figure 5.15). In this section, a new problem is defined, called the 

blocking path problem (BPP), and an integer-programming model is presented to solve it. The 

goal of creating a blocking path is to guard all points on the path, extending across the length of 

the region, so that any infiltration route is blocked. A similar problem is k-barrier coverage 

problem in which an infiltration route is covered by at least k sensors [133]. But in this problem, 

it is assumed that sensor locations are in the barrier (path) and the sensors can cover any point 

within their range. In our approach, sensors can be located anywhere on the terrain. Further, we 

assume a sensor can cover a point if both the point is within the sensor’s range and the line-of-

sight between the sensor and the point is not blocked by the terrain. Therefore, the problem given 

in [133] is a restricted version of our problem.  

 

      

 

Figure 5.15: White points are not guarded while green points are. Intruders may use unguarded 

locations to infiltrate into the homeland.  

 

 Network interdiction problem (NIP) is another problem closely related to BPP. In NIP, there 

is a network with a source node s
*
 and sink node t

*
. The enemy (follower) wishes to move as 

much of a commodity from s
*
 to t

*
 and is constrained by arc capacities. The interdictor (the 

HOMELAND 

NEIGHBOR COUNTRY 

an infiltration route 
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leader) tries to destroy arcs to prevent the flow of commodity but destroying an arc has a known 

cost and there is a budget so that destroying all the arcs is not possible [134]. Wood [134] 

proposes a solution to this problem by sending a maximum flow from s
*
 to t

*
 and then destroying 

the arcs that correspond to the minimum capacity s
*
- t

*
 cut. Consider a rectangular region of grid 

points similar in shape to the grid representation of the border region (Figure 5.16). To transform 

our problem to NIP, we can define a network such as the one in Figure 5.16. We assume that 

each grid point is a node in the directed network G = (N,A), with node set |N|=n and arc set 

|A|=m. The region consists of ‘u’ rows and ‘v’ columns. Let p(i,j) denote the position of the node 

in the i
th

 row and j
th

 column of the region. Then, for each node in the network an arc can be 

created such that there is a directed arc from p(i,j) to p(i,j-1), p(i,j+1), p(i-1,j), p(i-1,j-1) and p(i-

1,j+1), where they are defined. The infiltration route starts at s
*
 and ends in t

*
. In NIP, the 

interdictor tries to destroy some of these arcs such that the remaining arcs have the minimum 

total capacity. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16: The network used to illustrate NIP.  

 

 The main difference between NIP and BPP is that the cost of destroying an arc – instead of 

destroying the arcs we block them in BPP – is known in NIP as a problem input whereas the cost 

of creating a blocking arc is not known in BPP in advance. Let us use the same network but with 

s
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t
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arcs defined somewhat differently to create a blocking path (Figure 5.17). For i=1, ,u and 

j  , ,v, directed arcs are created from the node in p(i,j) to nodes in p(i,j+1), p(i+1,j), p(i+1,j+1), 

p(i-1,j) and p(i-1,j+1), in case these nodes exist. If p(i,j) is the position of a node in the first 

column, arcs are directed only to the nodes in column 2, i.e. to p(i-1,2), p(i+1,2) and p(i,2), 

where they are defined. Each node in position p(i,j) is indexed by the formula (j-1) 4) + i. 

 

 

 

 

 

 

 

Figure 5.17: The network used to model a blocking path on the terrain.  

 

 Let ‘Q’ and ‘ ̅’ be two sets that consist of the grid points in the first column and the last 

column respectively. A path from a node in Q to a node in  ̅, which is called the ‘blocking path’, 

is such that each node on the path is covered by a guard (located not necessarily on the path). 

The blocking path in Figure 5.18 blocks any infiltration route that starts from a node in row u  

and ends in a node in row 1. The blocking path problem is to find a blocking path such that the 

path extends from the first column of the grid and ends in the last column, and each grid point on 

the path is covered such that the total number of guards/cameras is minimum. If an arc (i,j) is 

included in the path then nodes i and j must be covered by a guard located in any one of the grid 

points. Thus, the cost of covering nodes i and j (i.e. creating the blocking arc (i,j)) depends on the 

cost of the location of a guard that covers each of i and j. As discussed earlier, this is in contrast 

to NIP, where the cost associated with each arc is a problem input. 

 

To solve BPP, two artificial nodes denoted by s and t are added to the network such that 

there is a directed arc from s to each node in Q and a directed arc from each node in  ̅ to t 

(Figure 5.19); the previous numbering of n nodes are kept after adding s and t. With s and t 

1 . 

1 

. 

. 

i 

u 

v . . j 
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included, the total number of nodes and arcs become n+2 and m+2 |Q| respectively. xij is a 

variable that denotes the flow on each arc, and is defined as follows, 

 

    {
1   if arc ( , ) is in the blocking path                               
0   otherwise                                                                     

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18:A blocking path (painted red) blocks any infiltration route (two possible routes are 

painted green).  

 

 As in models (I) and (II) in section 5.2, aij is 1 if the node (grid point) i is covered by a guard 

at node j and is 0 otherwise. The term cj is the number of guards (the cost of node j) that need to 

be placed at j, which is determined by the preprocessing described in section 4 and takes on 

values of either 1 or 2. The binary variable yj is 1 if a guard is located at j and 0 otherwise. 

 

 

 

 

 

 

Figure 5.19:  The network after two artificial nodes are included. 
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The formulation for BPP is given as follows, 

 

(BPP) 

Minimize ∑     
 
      
     

 

Subject to ∑        (   )    ∑       (   )    {

 0, for  ≠s,t

  1, for   s   

-1, for   t   

  (1) 

 

       ∑                              (2) 

 

                          (3) 

 

 A unit flow is sent from s to t through the network. Equation (1) gives the node balance 

constraints of this flow, which are similar to those in the shortest path formulation given in 

Ahuja et al. [135]. Note that a feasible flow satisfying equation (1) gives a path from s to t, and 

therefore, a path from a node in Q to a node in  ̅, as desired. Each node in this path is covered by 

a guard since equation (2) ensures that if (i,j) is in the blocking path, i.e.      , then i is 

covered by a guard located at a node in the network. A constraint like equation (2) is not added 

for covering node j when      , i.e. a constraint of type 

 

    ∑                                   (4)  

 

The reason for this is as follows; since equation (1) requires that the incoming unit flow 

must exit j, it must be true that       for some node q in the network. Equation (2) also applies 

to     and ensures that j is covered, which shows that equation (4) is redundant. Removing 

equation (4) from the model eliminates almost 11,000 constraints in the real-world problem of 

this study and helps solver to obtain a solution in a reasonable amount of time.  
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 BPP formulation is applied to the real terrain, which represents the border region between 

two countries. The problem is solved using CPLEX 12.5. Seventeen cameras are needed to 

create the blocking path in the region (Figure 5.20). 

 

 

 

Figure 5.20: The blocking path is shown for a part of the region.  

 

5.5 Discussions 

 

In our approach to guarding a terrain in this chapter, the goal has been to detect any incoming 

movement. Once we solve the LSCP or the BPP the guard locations are fixed. In a sense, our 

problem is static. Suppose, instead of detection only, we also want to track the intruders during 

their time in the region and apprehend them before they leave the border region. This problem is 

rather dynamic. In this version of the problem, the units (guards) must be directed to a location 

where intruders are likely to go through such that the guards arrive at the location before the 

intruders reach.  

 

 We note that, in most real cases, the intruders are likely to prefer some routes, such as river 

beds, over others for infiltration due to lower probabilities of being detected in such routes. 

When this is the case, instead of creating a blocking path extending along the region, only those 

points on critical routes may be covered. Further, in the routes where intruders are most likely to 
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use, the resolution of the terrain may be increased to better approximate the terrain, and thus, to 

obtain solutions that are more realistic. 
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Chapter 6 

 

Discussions, Summary of Contributions and Directions for 

Future Research 

 

6.1 Discussions and Summary of Contributions 

 

The terrain guarding problem is equivalent to the set covering problem only after a finite 

dominating set has been identified and the viewshed problem has been solved. In light of this 

fact, we note that, TGP on grids (RSG) or TGP on TIN is still unsolved. This is true since 

although we have solved the viewshed problem on TINs in this thesis, there is no FDS found for 

TGP on TIN yet. As for RSGs, the viewshed problem has not been solved nor any FDS has been 

identified to date. 

 

 For 1.5D terrain guarding problem, we have proved the existence of a finite dominating set 

of cardinality O(n) and two witness sets of cardinalities O(n), which are smaller than found 

previously.  

 

 We have given the first solution to the viewshed problem on TINs given that earlier studies 

have either ambiguties regarding implementation or their methods does not model the projection 

of a blocking edge or a triangle correctly. With the viewshed solution presented in this thesis, 

optimization problems on terrains, such as those given in Lee [18], and Kaučič and Žalık [136] 

can be modelled exactly.  

 

 We have covered a real terrain and discussed key factors that must be taken into account 

when guarding a real terrain represented by RSG such as the ‘ideal’ distance between grid points 

(pixel size), and the relationship between the guard’s range and the distance between grid-points. 

Experiments were carried out to investigate the trade-off between the resolution of the terrain 

and the coverage, and the relationship between terrain characteristics and the coverage. The 
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results indicate that the key factor that determines the number of guards is not the shape of the 

terrain but the viewsheds of the points on the terrain. As for the relationship between the pixel 

size and coverage, similar results are obtained for both terrains. An approximately 75% decrease 

in resolution leads to a loss of approximately 25% in coverage as the sensitivity analyses suggest. 

A new problem, called the blocking path problem, is introduced and solved by an integer-

programming formulation based on a network configuration. Our realistic study also provides 

practitioners with a guide to a real world terrain guarding problem on RSG and to the kind of 

software that may be used in guarding a real terrain.  

 

6.2 Directions for Future Research 

 

The viewshed problem for RSGs remains unsolved since a cell as a whole is considered visible 

only if the cell center or a certain subset of the cell is covered without any justification provided. 

Given a guard location, the exact visible part of a cell is needed to be identified to obtain an 

exact viewshed of the guard, and subsequently to obtain an optimal solution for the problem. A 

projection analysis similar to the one presented for TINs can be used for RSGs. Also, given that 

no FDS has been found for TGP on grids (RSG) and TGP on TIN, future research may focus on 

finding FDSs for both problems. 

 

 1.5D TGP is closely related to the 2.5D TGP (TGP on TINs) since a 1.5D terrain is a cross-

section of a 2.5D terrain. We conjecture that an FDS for 2.5D TGP is a generalization of the FDS 

constructed in this thesis for 1.5D TGP. We define convex and dip points for 2.5D terrains as 

follows. A convex region is defined to be the part of T where the surface is convex and is 

composed of maximally connected triangles. Then a convex point is defined to be the point 

where convex regions intersect, similar to its definition in 1.5D TGP. A dip point is defined to be 

a nonconvex point that fully covers as many convex regions as possible to all directions, similar 

to its definition in 1.5D TGP. Then, we conjecture that the set of convex points and the dip 

points as defined is an FDS for 2.5D TGP. 

 

 In light of the fact that the DEM is itself an approximation, an approximation to the 

viewshed problem and an approximation to TGP are highly likely to produce results that will be 
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far from useful. The future research may focus on the effect of these triple approximations. An 

exact solution to the viewshed problem and the identification of an FDS will lead to a better 

evaluation of the performance of a heuristic or an approximation algorithm. There are 

approximation algorithms and inapproximability results for 2.5D TGP for the case where the 

vertices are used as guard locations. Similar theoretical results may be obtained for RSGs and for 

TINs for the case in which the guards are located anywhere on the terrain.  

 

 As for whether RSG or TIN is a better approximation of a real terrain, an experiment may be 

designed that involves real terrains. The real terrain chosen for the experiment can be modelled 

both by RSG and TIN DEMs by sampling points such that the number of points sampled is 

maximized subject to the data storage limitations of a computer. Then, the elevations of 

sufficiently many points chosen randomly from the real terrain are compared to the 

corresponding elevations estimated by DEMs. Minimization of the difference between the real 

and the estimated height values is only one indicator of good approximation of a DEM. Other 

measures such as the curvature of the surface may also be used for comparison.  
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