HAND GESTURE RECOGNITION USING ARTIFICIAL NEURAL NETWORKS

by
GORKEM GOKNAR

Submitted to the Institute of Graduate Studies in
Science and Engineering in partial fulfilment of
the requirements for the degree of
Master of Science
in

Electrical and Electronics Engineering

Yeditepe University
2005

HAND GESTURE RECOGNITION USING ARTIFICIAL NEURAL NETWORKS

APPROVED BY:

Assoc. Prof. Dr. Tiilay Yildinnm

(Thesis Supervisor)

Assist. Prof. Dr. Soner Ozgiinel

Assist. Prof, Dr. Cem Unsalan

DATE OF APPROVAL.: 03.06.2005

il

iii

...TOMY FAMILY

iv

ACKNOWLEDGMENT

I would like to express my sincere appreciation to Assoc. Prof. Dr. Tiilay Yildirim and also
Assist. Prof. Dr. Cem Unsalan for their guidance and support, which made this work

possible.

I surely thank Prof.Dr. Cevdet Acar and all members of Electrical and Electronics

engineering department for their support in my short academic career.

Finally, I thank to her for making me work.

ABSTRACT

HAND GESTURE RECOGNITION
USING
ARTIFICIAL NEURAL NETWORKS

In order for humans to interact with computers, a fast and easy way is to use hand
gestures. Although using hand gestures in computer interaction was very cumbersome and
needed special glove and computer hardware in the past, nowadays in any personal
computer, simple cameras are available and there is enough processor power to do the
expensive computations done in the past. With this feature, not only controlling computer
with hand is possible but also some simple interpreters for sign language recognition can
be made.

In this thesis a hand gesture recognition system, using an inexpensive camera and a
personal computer is proposed. The system uses visual image as input and computes the
geometric features, such as invariant moments and signature, of the extracted hand image
for classification in a Multi-layer Perceptron Artificial Neural Network. The gestures used
in the system are American Sign Language Manual Alphabet Gestures and Turkish Sign
Language Manual Alphabet Gestures.

vi

OZET
EL ISARETLERININ

YAPAY SiNIiR AGLARI iLE ALGILANMASI

Insanlar birbirleriyle konusmanin yanminda farkli hareketli isaretler kullanarak
anlagmaktadir. Buna 6rnek olarak birisine dur derken, el ile dur isareti yapmak verilebilir.
Benzer ySntem kullanilarak bilgisayar insan iletisiminde de el isaretleri kullanilabilir.
Eskiden bunu yapmak kisithi iglemci giici ve pahali kamera sistemleri yliziinden zor
olmasina rafmen giiniimiiz aragtirmalari, bu y6ntem ile insan-bilgisayar iletigimi tizerinde
durmaktadir. El isaretlerinin kullamilabilecegi alanlar, bilgisayar1 go6rsel olarak el ile
yonetmek veya bir robota “saga, sola git” gibi komutlar géndermek olabilir. Bir diger
Onemli alan ise engelliler igin isaret dili tanima sistemidir, bu sayede isaret dili bilmeyen
kisiler ile rahatca anlagabilirler.

Bu tezde basit bir kamera ve ev bilgisayar ile el isaretlerinin bilgisayar tarafindan
algilanmas: denenmistir. Kullanilan sistem kamera ile elin de iginde bulundugu goriintiiyii
almakta, daha sonra bu goriintiiden elin goriintlisii ¢ikarilmaktadir. Bulunan el
gOriintiistiniin, daha sonra ¢esitli goriintii isleme teknikleri kullanilarak geometrik 6znitelik
vektorleri ¢ikarilmakta, simiflandirici sisteminde ise ¢ok-katman algilayici yapisindaki
yapay sinir aglari kullanilmaktadir.

vii

LIST OF FIGURES

Figure 2.1. RGB COlOr CUDEcccviirreereerireerrierienrersenssersseerssssssessssssssssssssessesessassesssesssssssssessens 4
Figure 2.2. HSIMOGEL........coveriireeririereniecntereiscsessesstissessessassessssesssssassessaesssssassessaesasensasssssaens 5
Figure 2.3. Dilation and EIOSIONccccceevemrieereneeierssesieerieneeseessessssssesessssssessessassssssessessasssesses 9
Figure 2.4. Open and CloSe OPerations.....ccoeverseerensssrrssessesesssssesseseoseessssessessoseassesaessassssessesses 10
Figure 2.5. Boundary of Si@N V .c..cccceeririineneninrinnnrsneenencetsessessecssnessessssssesssssessessessessasas 10
Figure 2.6. Color probability thresholding of face imagecccceeerreeerercerveecreirrerseeseecnenenaens 17
Figure 2.7. Color Distance thresholding of face Image........cecvevreeerverrrenieereencenieenenereeesereens 18
Figure 2.8. Color probability thresholding Hand image 1cccceeevveecrrrerveeveervrrceneeenneneecnees 18
Figure 2.9. Color distance thresholding Hand image 1ccoceevereiecrrnniineeecnsnneecsersenineens 19
Figure 2.10. Color probability thresholding, Hand image 2.......c..cccoueververcerccnncrsnenecenrenennes 19
Figure 2.11. Color distance thresholding, hand image 2........cccecoveveeernvererinenieerseesseeereesssesnes 20
Figure 3.1. Signature and LP Filtered Signature of Sign “V™ccocceeveverniienvrrercresserennnnees 25
Figure 4.1. A Dasic NEUION StIUCIUTIE....ccccicreererrrereensreeacereesrnessesessnsessessssneassassssssessssssnssssanessans 32
Figure 4.2. Artificial Neuron StrUCLUTEcccccccveereevecrecierrenieeresseereeseesesessasssesassecssasssessassens 33
Figure 4.3. General Mathematical Neuron Model.........c.cccvveeieniveniienenennecceneneecesseeesesenes 34
Figure 4.4. Activation FUNCHONSc..ccecieereeiiiereseneesieeesisenssseesresasssessessasssesseessssssssessessassees 36
Figure 4.5. Signal-flow Model of One Neuron Learning Process........coocvveverirnnnncncscsnennen 38
Figure 5.1. Probability iMagecceevceerrierirrriciiriiieenerteceenaesnecsssesssssnssenesssesssnosaessssssuessnenne 48
Figure 5.2. Open OPerationcccveeereerriiererserseniiessteeisessesseesasassecesssssssessassssssssessesassessaassens 48
Figure 5.3. Largest Area After Labeling.ccceeceerercerriireenesrersensrecsensiecsnssessssssasssssasessessasnnes 49
Figure 5.4. Signature plot 0f FIZUre 5.3.cccvvviiiriiiinnriinrciierticeinresresicsnsseeseessesaneseons 50
Figure 5.5. Low-Pass filtered Signature of FIgure 5.3.cccveverrerrernerrncrenneencesresseensesencnsnes 50
Figure 5.6. Approximate Finger Informationc.cceeerereerenissieninicsvenesenresesnsessessessessesnens 51
Figure 5.7. Magnitude of Signature, Filtered Signature and Finger Information................... 51
Figure 5.8. Different “Y” sign from S8Me PEISONccevuerererereereesrecrnesesserarssaseresssenessseeeonsones 52
Figure 5.9. Sign “C” from 4 PEOPLE....ceueerererrererrentsrueriectsreneseessesessesssssessessessessassonsossssossessoss 53
Figure 5.10. Sign “W?” from 4 PEOPIE......coeirereeirereterrereerreester e esneeseesresestesraessessssesesesssnns 53
Figure 5.11. American Sign Language Manual Alphabet..........cccceveererirreenenserseerirsnenesseeressens 54
Figure 5.12. “E” Sign from SAmME PEISOIL.....cccreeirrererervereessnsvessassaessessasssessersresasssessssssassessssns 56

Figure 5.13. Processed “E” Signs of Figure 5.12coivvievevrrieeenreniinnenessnesessessesssessesseeses 56

Figure 5.14.
Figure 5.15.
Figure 5.16.
Figure 5.17.
Figure 5.18.
Figure 5.19.
Figure 5.20.
Figure 5.21.
Figure 5.22.
Figure 5.23.
Figure 5.24.

“F” sign frOm 4 PEOPLE ...c.vrviereerrreereererereeseesssserssesessssaesesessassssssesesssssessessssessasses 56
Turkish Sign Language Manual Alphabetccoceovvvveneerecenenrecseeresrenneenns 57
ASL dataset trained with Gradient Descent Algorithm.ccccecvevevveeeerrernnnne. 59
ASL 9x15x5 Network MSE graph......c.coccvcevivicrinnrinecniniennresneeseeresssesesessenes 60
ASL 9x30x5 network MSE graph........ccccceeveerenririernenrnsnecsecissssessenseessssesresssnsans 61
ASL 9x15x%30X5 MSE Graph.......ccooeeeeruereeresserrenresecressnresssssnssessesseesssssesseesessens 62
ASL 9%x30X15X5 MSE GIraph......ccceevireercerrnecnrinaeressesnnsescssnnnssesessesessesasesssassees 63
ASL 9x30x15x5 MSE Graph (Delta inc=1.3, Delta dec=0.3)c.cc.ceocerrerrecnenne. 64
ASL 9x30x15x5 MSE Graph (Delta inc=1.9, Delta dec=0.9)ceccereceecerennes 64
TSL 9x90x30x5 MSE Graph, One Handcccccoeeeeeerennnienrerienenecsenernnsseesenns 67

TSL 9x90x30x5 MSE Graph, Two Hands.......ccceevceeeeerrecrevencseenessencsenrenesennens 68

LIST OF TABLES

Table 5.1. ASL 9x15x5 network, 9 VECLOr INPULcoeveeeiereveerircrecresiesrrenssesserssessessessassnesns 59
Table 5.2. ASL OX30X5 NEIWOIK ...cccvevureerererrnerreseerieeresssunsseseeseessesssesessescassrtosesssassssssessssssassess 60
Table 5.3. ASL 9x15x30x5 Network ReSUltS.....ovevirierniiirnensnnerncstrenntesicssensnesesneessesees 61
Table 5.4. ASL 9x30x15x5 Network ReSUIS.......cceecerrireneeiinnenennienseereereesessiesessessasssneseens 62
Table 5.5. ASL 9x30x15x5 Network ReSUILS......ccccorerveerircirreecrenrerrenieseisnesesssesaessessesescsnesans 63
Table 5.6. ASL Network 5 Training reSUILScceeveereereerierrrecrieniessenssessessessesssessessessssesessnsses 65
Table 5.7. ASL Network 5 Test reSUltS c..ccecrviriiiciriiirreecntinnreeesserieiesesscsaesstesnessessssseeas 65
Table 5.8. TSL 9x90x30x5 Network Results, One Handcooevveevveneiicrneeeneeecnneeereesnnee 67
Table 5.9. TSL 9x90x30x5 Network Results, Two Handcccceeveereeevcererreerrneereneneerseeenens 68
Table 5.10. TSL 50x30x5 Network Results, One Hand...........cooeveevrcevenrinererernereneserencsennennns 69
Table 5.11. TSL 50x30x5 Network Results, Two Hands..........cccocceeevmvecriinreneeeccsinenrernneenns 69
Table 5.12. TSL 50x90x30x5 Network Results, One Hand........cccoevveeeeeiviecicneeiecinneessnneanes 69
Table 5.13. TSL 50x90x30x5 Network Results, Two Hands.......cccceeveeecerecrveeniureesrseerscenenenns 70
Table 5.14. TSL 360x400x5 Network Results, One Hand.........cceouvveevcrviireeveevicneeenisinennennne 70
Table 5.15. TSL 84x160x20x5 Network Results, One Hand...........cccoeevieerveerneererererreneenes 71
Table 5.16. TSL 84x160x20x5 Network Results, Two Hands..........ccecevveeveeenveercnencencerennnne 71
Table 5.17. TSL 79x100x20x5 Network Results, One Hand............cccoeereeecervrennceerseeereecnenne 71
Table 5.18. TSL 79x100x20x5 Network Results, Two Hands........cccceeeveeveeervvnvernneenreensnnnns 72
Table 5.19. TSL 79x120x50x5 Network Results, One Handcc.ueeeveereeeveeeeeceeeerccrnveennns 72
Table 5.20. TSL 79x120x50x5 Network Results, Two Hands......cccccceveeveeiecrveeeresevernicennennns 72
Table 5.21. TSL Two-hand Network 8, 80X100X40X15XS.....ouivierirvreererrrreereeseresneeeeeeeseranns 73
Table 5.22. TSL Network 8, Training Data Recognition ResSultsccccccevievveerrerceercrvecsuenne 74
Table 5.23. TSL Network 8, Test Data Recognition Resultsccocvvviveerisenecinsencninnnnnnas 74

LIST OF SYMBOLS / ABBREVIATIONS

ASL
TSL
RGB
HSV

c

@ @ O C 9 %" &

o

Nyp)
Ns()
*.)
Jx.y)
Sz ()
Jfe()

S5()

D(z,m)
"

C—l

Artificial Neural Networks
American Sign Language
Turkish Sign Language
Red,Green,Blue color triple
Hue,Saturation,Value color triple
Angle or Threshold Value

Complement of Set A

Not element of a set

Empty set

Union of sets

Intersection of sets

Dilation operator

Erosion operator

Opening operator

Closing operator

Pixel (Picture element) p
4-neighbourhood of pixel p
4-neighbourhood of pixel p
Cartesian coordinate pair x and y
Image pixel value at coordinates x and y

Image red component function
Image green component function

Image blue component function

Mean vector

Vector z

Euclidean distance of vector z to mean vector m
Complement Operator

Covariance Matrix

Matrix inverse of C

P(rgb)

P(rgb | skin)
P(rgb |~ skin)
My

xi

Probability distribution of rgb triple

Probability of skin colored pixels in rgb triple
Probability of non-skin colored pixels in rgb triple
2D Moment of order 0

2D Moment of order p+g

2D Central moment of order p+¢q

Centroid of image x and y positions

Area of region
Perimeter of region
Compactness of region
Eccentricity of region

Invariant moment vector

Linear combiner output of neuron &
Output signal of neuron &
Activation function

Error signal of neuron &

Target signal of neuron k£

Cost function (Mean Square Error) at time-step n

Value of synaptic weight of neuron % excited by input

element x;(n)

Weight adjustment value of neuron k for element x;(n)
Derivative of cost function to synaptic weight

Learning parameter

Local gradient
Weight Update value
Delta decrease parameter

Delta increase parameter

xii

DEDICATION....cctiteeerccneererserenentessestaseeseressasesssssssssessssssessesesesssnessesessssassessassessassssasessans iii
ACKNOWLEDGEMENTS.....ctrtriiienreninenisennessseessssessssnesesssseessonmessesnesassesensssssancessasassens iv
ABSTRAUCT ...viirirreniinrerteseeereseneesesseestessssssssssestessessessessesessassesasssssessssiassssessasstsnasassssnasaases v
OZET ..ooteeeeeeereetctesreseiesaesessesesssssesssssassssas et s s sassssassssesssssesessssassasassessssessssssassassssessssesassens vi
LIST OF FIGURESoosteerrecreeeercneeenrsrecseessseesssestssnessessenessenssssssensssssssssasssssassassos vii
LIST OF TABLES.......oocecteetenienentestssensinsessesessesesssssssrssessssnsessssesasnsassssessessossessessessessssssssoss ix
LIST OF SYMBOLS / ABBREVIATIONSoootrviererereerreererrereesnessessssessessessessessesssseessassenes X
1. INTRODUCTIONouueummrmmreemermasessseessssessesssesssssssssssssessssessssssssssssssssasssssessmsssnsssssessns 1
1.1. Background on Gesture RECOGNILION. ..ccccceererrierenrinreereacenrerserssessessaesessessessaasaenas 1

1.2. Limitations of Hand Gesture Recognition SyStemscccccerevrervercnereecssvnenncsnnne 2

1.3, Layout Of THESIS ...ccevveerreereerrerrernrenrieeseesescseesresssnesnerseeresssssonsessessssvsassasssssssssensas 3

2. IMAGE PROCESSING FUNDAMENTALSccceeririererrertenreenenincrnenesensanesesesesessesses 4
2.1. Color IMage ProCESSING....ccovverrreereeerireresreeriaererenrsssesessnsssesmssesssaessssessssssssssassnasssans 4
2.1.1. RGB MOEL.....ccueriiriericrneiiieesssseneescnnnsnsosensestonnescssesssssessossennessosessossassenean 4

2.1.2. CMY Color MOdEl........ccvvruimriiiireienrnieisnesessnesissinsessssasssssanssssssssesssssenses 4

2.1.3. HSI Color MOdELcccoemrririeiicnneriennestntsteesscstesinssenesasensesnsssesessassessesaes 5

2.1.4. RGB 10 HSI CONVELSIONScovvreerreenreerercresneseessneseesessseasssseasanssessassssassessnes 5

2.2. Morphological Image ProCessingcccvuiurersesserrsruisenstrseesessesensesresseseasesseossenees 7
2.2.1. BasiC Set ThEOTY ...cvvueeeeirereieecrcctrceeseseee e sreestessnessesessesassssnessassnessnns 7

2.2.1. Logic Operations in Binary Imagescccecerververrerereecernrerersneseeriesseneecnees 8

2.2.2. DIAOMN c..eciereeeeirteneenreeseenesctesaesnessseesaesasssassesessesaessssesssnsesaressonssosens 8

2.2.3. EIOSION..ccutiiticeereiereeeenereererestesteeseestsestseresessessneseesssssesasessasesssasarassossasnees 8

2.2.4. Opening and CIOSINEGc.ceccvrerrererressersnssnerrtssersnesesestessesessesessasseessesassesses 9

2.2.5. Boundary EXfraction.....c.cccecveercerencrennnnrcinniesnencinessesnnsesenssesssnsessesnsees 10

2.2.6. Labeling Connected COMPONENLS....cccvereeerrenreereereenerceeerieseesarssseraessessasens 11

2.3. Skin Region Segmentation and Trackingcceceereeversvenreecreenieerreersecrnneereeneens 13
2.3.1. Introduction to Segmentationc..ccoveeeeecreerresrersrenseenseseessssessessacessennas 13

2.3.2. Color Image Thresholding..........ccccerceureienirsericcrnninniniirseencsessenesseeseene 13

2.3.3. Euclidean and Mahalanobis Distance in Color Space........cccceereeverrerceenns 14

2.3.4. Color Probability Distribution Model........cceeevvreuenercerrecrenieecrenrencenenne 15

2.3.5. Skin Color Thresholding TeStSc.eeerurreecrrerressrrerenreessinmsressseesseeseessaesones 17

2.4, Cam-Shift COlOT TTACKET ...uuveeiiieccreeereciietteeeeeeerneeessesssesssesssssressasersasssssesasssasesess 21

3. FEATURE EXTRACTION....cccceccsiruirueriereressvscrersssessesssssesssssosssssssssssssassssessasassssssansossans 23
3.1, COMPACINESS.....crvierirrieveneissiererstssansansstessesessessanesssssesassssessessonsassassssessesssensasssesesos 23
3.2, OTIENLALION ..coveeririrrrsirencrniteisesnesssssssassessssesssssesnsssescasasssssssssasssassssssasssasssssesssssases 23
3.3, ECCONTICILY cueeuerereiereenernetenieeneerstnesteeasneseessesessnnessessssasesnnessssssssensansesssessaesens 24
3.4, SIGNATUTES ..eociirerrireiiieineesiiaseeisesssuessssssaessesssessssossessssssassessossesssssssasssesssessssessans 25
3.5. Moment INVATIANLS......cccccereruerrerersirsnesieicessentrsnescesesesstrsssssssssssesssncssessassssessasncsne 27

4. ARTIFICIAL NEURAL NETWORKS..........cccenmerrrrninsenrerenreneessessesssressessessassessesessens 30
4.1, IDITOQUCLION ...cevinieeririereeiiineeseseeneests st sesessesaesassnsesessaseseessensesessasnsassssssnanes 30
4.2. Historical background.......ccceviveeevniircrninrernrenireesrenecieseessesisnssessnessessersessessenn 30
4.3. Neural Networks Versus Conventional Computationcceeceveneereecerrieeseennens 31
4.4, BiologiCal NEUIOM.....ceereeirerriirreeerenrereisieressseasessessassnessesssessssssersessnssesssssassesssens 32
4.5. Mathematical MOdEL.........cooveureiecrerirnneninerneeceseeseenaesessseecseesessaseseesesnsseesaneneans 33

4.5.1. Types of Activation FUNCHONScccevvrrerecvecrerersinnensennceeseencersreeeennaenss 35
4.5.1.1. Threshold FUNCHON........ccectrieeniriereeeeisecesestecese e seesenene 35
4.5.1.2. Piecewise-Linear FUNCONcccceeeevrirereeninneereinnnreerenianeseeseseseens 36
4.5.1.3. Sigmoid FUNCLIONeceveerereerereeeereerreertenseeeneensessaseaessenesarensens 36

4.5.2. LEAIMING ...ccuerrererrcrrreireertorrerasseeesesseessessessessessnessessessessssssnessessassessssssessssns 37

4.5.3. Multi Layer PErceptron.........cccecvvereerernescereesersenresiesesseseesessessesseseoseeneene 39
4.5.3.1. Introduction t0 MLPcccceceverreceniercnenenrenseennrsresesssescessnesessses 39
4.5.3.2. Backpropogation Algorithmcccceveverveircrerienerseeninsceeseecrecenens 40
4.5.3.3. Mathematics of Backpropogation.........ccecceeverrrenrerirerereeseeceennens 40
4.5.3.3. Backpropogation Models.........cccceeveverveererveesneninsrereneerenieneeennes 43

5. EXPERIMENT RESULTS AND DISCUSSIONcoceceermerirrerrersererncnssnessesesssesessones 45

5.1. EXperiment PIOCESSccccvvirenerireerirsicnrnesirenesesnennesnessesssssssesssssssesasssesassseseens 45
5.1.1. Tmage INPUL...coceecvieeeeriererrnireeririsiseeseesasestestaseessessseessssseseessnesaeneessersessees 45
5.1.2. IMAGE PIOCESSINEcovervrrerrrrrereeerrersesrerseniessesesnessessasssssesssnssssnsssossossnsones 45
5.1.3. Feature eXtractionc.cccceveeerrcerenrnuereeseeserseeesessessesnennesenessnssssssosesenses 46
5.1.4. Neural network Classifier.........coievrrereereirerserrrresrenieeenensrseseesessesseseesanens 47

5.2. Sample GeSture ProCESSINGcccocrrerricrerreninererentseseescnsenesessesseseeseseseseesaseraene 48

5.3. American Sign Language Manual Alphabetccccveeevricieerennrrcereenenscrseereennes 52

5.4. Turkish Sign Language Manual Alphabet.........ccccoeverrervrienrenneecceniiiecnveenennens 55

5.5, ASL RESUIS ...cuvrtieiirititiirtit ettt resesesssesseesessses s sssassnesaesseanesnes 58

Xiv

5.5.1. ASLNEIWOTIK L...uooureirrrereirrnenscsinnsisssecrssnnssessssssnssssnnessssssnessessonsasessones 59
5.5.2. ASLNEIWOTK 2......oovecerirrernineseeseerecsiensssssesansasesssessessesessastsacssasesessanes 60
5.5.3. ASL NEIWOIK 3...ecurreeirirreeirreneneerstsnestesesnisessenssresessessesesesssocssssessessens 61
5.5.4. ASLNEIWOTK 4....ccvirricreniieneienieeienreeenieseesesssesesassessessessessasesasssseseensass 62
5.5.5. ASLNEIWOIK 5...ecverirecricrertrrenenesenesessenesssssessssessessessassessssessssnesnsens 63
5.5.6. ASL NEIWOTIK 6....cueevvrervrrienreniesecssnnessssarsesssessessssssesssessosssssessessssenessaesass 65
5.5.6. Discussion on ASL results.......ccecrrueriermnenternrcseninnesessensosssessesessessssacsane 66

5.6. TSL RESUILS ...cvrrvrereieirccetirieeessirsnesiesenestosissesstensesessnnessessosessassnsssassossessessesssesssss 66
5.6.1. TSLNEIWOTK 1 .ueeviereeeererecrenirnsrseeerensnssesessessenesessessessssnssnsssssesssssenseses 66
5.6.2. TSLINEIWOTK 2 ...coevuerrecreereeeeririeeiieestenesseesessesssssensesessessossassascosessasassasanss 68
5.6.3. TSLNEIWOIK 3 ...oouerrieceneerreecrenirerssestsssnressesessessssnescsssencsssssssesessesassassnss 69
5.6.4. TSLNEIWOTK 4ccoveieererrererreniiereeesesenssneeseesssscesesssesassssssnesssssnossessasses 70
5.6.5. TSLINEIWOTK 5 ..cccterrieciinecreenniiriiiensesiieeresisneessseseeesssssesssenassessnssacsssssssese 70
5.6.6. TSL NEIWOTK 6 ...c.eevvreeerirerrereinsesseseeseenresessessessesesssssessnssessessosasssssessess 71
5.6.7. TSLNEIWOTK 7 ..eecvevrerererrirerenrenresresseseesrnssssesiosssaesssssessesssssssssessassssessoss 72
5.6.8. TSLNEIWOIK 8coveeuieecriierritererennserissneseseesessssssesessessessessesessesassaesanens 73
5.6.9. TSL Results DiSCUSSION...cccvreeerirrerrrerrecenssrrencnesissnsseesesssassesessssesnssssessess 75

5.7. Conclusion and Future WorK.........cocceveeveirnnncimreiencrnenenieneenseseniseeseeseesecssasscans 76
6. APPENDIX A: DATABASEcoooiitrietieerereenreseeneeseeressesesssssessessssessssssssssssssensssessesanss 78

7. REFERENCEScooiiiitntninnitencissntsssssnssssesseassssesnssnssessssssnossssnesesssssensens 79

1. INTRODUCTION

1.1. Background on Gesture Recognition

Humans communicate with each other not only by talking but also using hand and
body gestures. Example gestures can be given as “the table over there” (pointing the table)
or “stop please” (making a stop sign). A more complex version is sign language where
talking is not possible, instead this system uses complex hand and body gestures. But not
everyone understands sign language; hence an “interpreter” must be used. Although there
is not a complete system fully capable of understanding yet, it is possible to capture some
of the static signs (letters) of the sign language alphabet. Using analysis of locations of the
previous sign and next sign it is possible to understand “words”. In every country different
sign language systems are used hence it is not possible to derive a universal system, some
countries use only one hand (eg. USA) and some (eg. Turkey, Japan) use both hands. For
this purpose “Hand Gesture Recognition” is a relatively new and growing subject in signal

processing area.

Hand gestures have a wide area of usability. Computer system can be taught to
interpret sign language alphabet or can be used as a controller. A vision controlled painting
system can be made or you can command a robot to follow or stop by you. This general

system is widely called as Human-Computer Interaction (HCI).

Prior systems used sensor gloves to capture the hand motion data [1], also Kessler et
al. tried the glove system for direct computer interface [2]. Although these systems are
already being used in simulation and virtual reality systems, it is not eligible for sign

language or simple control systems for the requirement of hardware and gloves.

Later systems used color gloves to explicitly identify fingers (hence easy feature
extraction) for visual input. Each finger was assigned a special color, hence making the

image processing part easier to identify finger location and shape.

Another system is used to control the mouse pointer via visual hand gestures. This
system uses dynamic position of the hand by motion recognition, and in fact is not a static

hand posture recognition system. Akyol et al. [3] proposed a hand gesture control interface

for automotive. This system used infra-red cameras as input and images where processed
in a similar way in this thesis, using 2D hand projection (or silhouette). They used
manually constructed 20 and 6 class datasets, which classes where barely separable. Juan
[4] used hand gestures to control a simple robot, the gesture were first processed and then
fed into a fuzzy classifier system. Then he assigned each output to commands like stop,
turn left, turn right or forward.

Marcel [5] used direct gray-scale hand images for classification in a Hidden Markov
Model classifier and obtained good results for a 6-class database, and then he improved the
system for dynamic classification [6]. Freeman [7] used orientation histogram based
approach to differentiate hand postures. In this model he used partial derivatives of edge
images for obtaining feature information. A wide area of people working on hand posture
classification can be found on Kohler’s page [8], each with different features and

classifiers.

1.2. Limitations of Hand Gesture Recognition Systems

Complete recognition of hand gestures is in fact a challenging subject. Since hand
gestures are rich in types of use; they have multi meanings and these can change in space
and time. Also human hand is a complex non-rigid object, looking from one view is

different then other.

Visual tracking of hand is in fact the most important part of the system. It is not
possible, yet, for any computer system to correctly classify every hand gesture in every
condition. First one of these conditions is different illumination. The illumination changes
during the day. If there is only artificial light, the body of the person or number of people
in the room can change the illumination taken by the camera. This problem can be
achieved by first taking a sample color region of the object to be tracked, as proposed in
this thesis.

System must be able to know where the head and hand is, initially. This can be done
by setting the person in a specified position in front of the camera, or just taking only hand

to the camera region.

A good feature vector must be used and this must be computationally efficient.
Putting the whole captured image to the classifier without any preprocess will sometimes
give good results, but if the image is very big, system will not be stable and fast. Most of
the features of hand can be recognized by geometrical properties, as proposed in this thesis.
Also edge information of the hand can give good results.

Classifier system must be good and robust in order to work on all conditions. A
classical clustering approach will not work for higher number of classes (or number of
gestures to be recognized). In literature Hidden-Markov Models for dynamical
classification and Artificial Neural Networks for statistical classification are found to be

robust. A hybrid model can be used for generalization.

1.3. Layout of Thesis

Main objective of this thesis is recognition of visual hand postures (static gestures)
using geometrical properties of binary hand images and classifying them with the help of
Multi-layer Perceptron Artificial Neural Network. This work presented here proposes a
computer efficient and inexpensive system for static hand gesture recognition using
contour model of hand for feature extraction and Multi-layer Perceptron neural network as

a classifier.

Input images for system are taken from a cheap USB or TV-Card camera. First image
processing fundamentals needed for meaningful parts of image extraction from input
image are described. Then, the mathematics of features extracted from the binary image
are described, followed by basics of Artificial Neural Networks and Multi-Layer
Perceptron Network model. Finally, system process information and results are described

with the conclusion of the proposed model.

2. IMAGE PROCESSING FUNDAMENTALS

2.1. Color Image Processing

2.1.1. RGB Model

Hardware (cameras, monitors) usually use RGB (red, green, blue) model [9]. This
model is based on Cartesian coordinate system and uses primary colors red, green and blue
for processing. Images represented in RGB color model consist of three component images

for each primary color.

Figure 2.1. RGB Color Cube

2.1.2. CMY Color Model

Uses cyan, magenta and yellow colors which are secondary colors derived from
primary colors. Mainly printing devices uses this model. Also and additional black value

(denoted as “K”) is used for printing pure black values, making the model CMYK.

e i TR
M|=[1]|-|G @)
Yy | 1| |B

2.1.3. HSI Color Model

This model is the best model for human eye as it is a kind of describing color. When
humans view a color object, we describe it by its hue, saturation and brightness. Hue is a
color attribute that describes a pure color and saturation gives a measure of the degree to
which a pure color is diluted by white light. Intensity value gives how much an object is
illuminated by means of gray-scale value. HSI is similar to the human way of saying that,
this dress is dark yellowish green, meaning it has a hue going from green to yellow with

high saturation and low intensity.

Hue

0
Figure 2.2. HSI Model

2.1.4. RGB HSI Conversions

Given an image in RGB format , H component of each RGB pixel is obtained by :

{ 0 LifB<G
H= 4 2.2)
360-6,ifB>G
with,
LR-Gy+ (R~ B)]
O=cos™ {—2 23)

T
[(R-G)* +(R-BYG-B)|

The saturation component is calculated as:

3 .
S=1 —m[mm(R,G, B)] (2.4)

And the intensity (value) component is given by:
I=-§(R+G+B) @.5)

where R, G and B are red, green and blue values of color image respectively.

These calculations have an assumption that R, G and B values are normalized on the
range [0, 1] instead of regular [0, 255] interval, and angle & is measured with respect to
the red axis of HSI space. Hue can be normalized to the range [0, 1] by dividing all values

in hue equation to 360.

2.2, Morphological Image Processing

Mathematical morphology is a used for extracting image components that are useful
in representation and description of region shape, such as boundaries, skeletons and convex
hull. These techniques are used for filtering, thinning or getting a desired region from the

image. Our work here will be mainly used in binary images, which in fact are 2

dimensional integer space Z2.
2.2.1. Basic Set Theory

Most of the morphological operators use the set theory as base. The set of all pixel
coordinates that do not belong to set 4, denoted by A4°, is given by

A° ={w|we 4} 2.6)

Where w = (x, y) is the coordinate of point in set 4 (an area location 4 in the image). Then

points in image which are not 4 is the complement of set 4.
The union of two sets,

C=AUB 2.7
Will give all elements in sets 4 and B, similarly the intersection of two sets 4 and B is

C=A4NB 2.8)

Which gives elements that both exist in sets 4 and B.

2.2.1. Logic Operations in Binary Images

Majority of applications based on morphological concepts involve binary images,
which involve pixel values of either 1 or 0. The principal logic operations used in image
processing are AND (“N” or “& “),OR (“W” or “|”) and NOT (complement or “~).
These operators are used pixel-by-pixel operations between two images and it has the same
idea of use as in the set theory. The first image can be mask and second image can be the

structuring element.
2.2.2. Dilation

One of the fundamental operations in binary images is dilation. Mathematically

dilation is defined in terms of set operations. With A and B as sets in Z?2, the dilation of A
by B, denoted by 4 @ B is defined as

A®B={z|(B), N A= D} (2.9)

where & is the empty set and B is commonly referred as the structuring element in
dilation, as well as in other morphological operations. Dilation of 4 by B is the set
consisting of all the structuring element origin locations where the reflected and translated
B overlaps at least some of 4. Dilation is similar to convolution theory in communication

systems. One of the simplesf applications of dilation is for bridging gaps in the image.

2.2.3. Erosion
For sets A and B in Z? the erosion of A by B, denoted as A©®B is defined as:

A®B ={z|(B),N A" = &} (2.10)
In words, erosion of 4 by B is the set of all structuring element origin locations where the
translated B has no overlap with the background 4. Erosion simply removes unconnected

or any user defined shape type (the structuring element) of pixels, thus shrinking the

image.

Original Image Dilation Erosion
.1.- ?. . -

Figure 2.3. Dilation and Erosion

2.2.4.0pening and Closing

Opening generally smoothes the contour of objects, while breaking narrow gaps.

Closing in contrast eliminates small holes and fills gaps in the contour [10].

The morphological opening of set A by structuring element B, denoted A.B is

defined as

AoB=(4GB)® B 2.11)

Thus, the opening A by B is the erosion of A by B, followed by a dilation of the result by
B. The morphological closing of set A by structuring element B, is defined as

AeB=(A® B)OB (2.12)

That is closing of A by B is dilation of A by B, followed by erosion of the result by B.

10

Figure 2.4. Open and Close Operations

2.2.5. Boundary Extraction

The boundary of set A, denoted by B(A), can be obtained by first eroding A by B,
then performing the set difference between A and its erosion, that is :

B(4) = A—(4OB) (2.13)

where B is a suitable structuring element or marker, and the original image A is assumed to
be a filled image. The boundary of the object will be used to calculate the signature of the

object and will be described in feature extraction section.

Cirigirial Boundary

i

Figure 2.5. Boundary of Sign V

11

2.2.6. Labeling Connected Components

Connected component analysis allows separating unconnected objects from the
image. This method is used in binary images, to obtain the mask image for desired object.
Once the skin color objects are found in the image, there should be a proper way to identify
the hand region from the image. The main approach widely used is body-object centered
model, which assumes that head is in the middle of the screen and two hands are in left and
right sides of the screen respectively, this leads to three largest skin areas in the image.
Even only one hand is assumed to be in the image, there will be some noise, like some
other small regions and pixels that have same skin probability but not skin data. For this
reason segmentation requires objects to be separated. Then we can use an area threshold
level or if one hand is used; the maximum region area that is greater than certain threshold.

First the connectivity must be defined:

A foreground pixel p (which corresponds to 1 if background pixels are assumed to be
0) at coordinates (x,)) has two horizontal and two vertical neighbors whose coordinates
are: (x+1,y),(x-1,y),(x,y+1) and (x,y-1), and this set of 4-neigbors of p is denoted N (p).
The four diagonal neighbors of p have coordinates (x+1,y+1),(x+1,y-1), (x-1,y+1) and (x-
1,y-1) denoted as Ny(p). The union of Ny(p) and Ny(p) are the 8-neighbours of p denoted by
Ns().

Two pixels p and g are said to be 4-adjacent if g € N,(p), and similarly 8-adjacent
if g € Ng(p) .A path between pixels p; and p, is a sequence of points p;,p;, ... p, such that

Pk is adjacent to pgs+; for 1<k<n. If 4-adjacency is used path can be 4-connected, and 8-
connected if 8-adjacency is used. These two types of connectivity are the mainly used

types for 2D binary images.

Two foreground pixels p and g are said to be 4-commected if there exists a 4-
connected path between them, consisting entirely of foreground pixels. For any
foreground pixel, p, the set of all foreground pixels connected to it, is called the connected
component containing p. Then this set is assigned a label, which is mainly the component

number.

12

A simple algorithm to find 8-connected components [11] of image f{u,v), H and W being
height and width of the image is :

procedure IncrementalLabeling
nextLabel =2
Create collision set C={}
for v=1 to H, and #=1 to W do
if f{u, v)=1 then
if all neighbors n/~0 then
Assign f{u, v) to nextLabel

nextLabel=nextLabel+1

else
Choose any neighbor ni>1
Assign f{u, v) to nx
for all neighbors n>1 do
if n; # n, then
Set (n;, ny) to collision set C
end if
end for
end if

end if
Imax=nextLabel -1
end for
for all (v, v) € Cdo
A= labels containing u
B= Find labels containing v
if A B then
A=A UB
end if
end for
for all (4, v) do
if f(u, v) >1 then
S= Label sets containing f{u, v)
Set f{u,v) to first set
end if

end for

end procedure

13

2.3. Skin Region Segmentation and Tracking

2.3.1. Introduction to Segmentation

A classifier is good as long as it has meaningful data in its inputs. Thus to correctly
classify hand images online if possible, one must be able to get hand image region
properly. Most off-line systems for gesture recognition use manual segmentation of hand
images from their database. This work uses a less cumbersome semi-automatic process
which uses color skin probability model for segmentation. Also for online recognition
system the segmentation of hand will be in real-time with no user input thus the system

must be able to understand the hand image properly.

2.3.2. Color Image Thresholding

One obvious way to extract an object from the image is by looking up the colors
corresponding to that object. Since a color image consists of three gray image levels this
can be done with a simple thresholding. If a color object (in this case, skin regions) is to be
segmented from an image one basic approach is simple thresholding. If RGB model is used

color object region can be described by threshold parameters. Such an example will is:

f(xy)=(fa(6p) > Rt) & (f5(x,) > Gt) & (f5(x.y) > Br) (2.14)

where f(x,y) is the thresholded mask image, Rt, Gt and Bt are threshold values for red,
green and blue components, and f;(.), f5 (), f3(.) are red, green and blue components for

the color image respectively. The thresholded mask image is a binary image (with 0 and 1
values only). The logical operators can be any combination. The mask image multiplied by

original image will give “color of interest” image.

Although this system works fine under same illumination and background conditions
it is not a proper way to extract color regions in most conditions. Threshold value can be
used adaptively to improve performance, by sefting a convergence parameter then
calculating threshold parameters automatically. This method is called adaptive
thresholding but in the skin model case this will not work also.

14

2.3.3. Euclidean and Mahalanobis Distance in Color Space

Given a set of sample color points representing of a color (in this case skin color
range) of interest, we obtain an estimate of the “average” or “mean” color that we wish to
segment [12]. Let this average color be RGB column vector m. To segment the image
pixels according to each pixel being in the selected range, one of the simplest measures is

Euclidean distance.

Let z denote the arbitrary point (z=frga(X, ¥), which is calculated in the iterative loop)
in RGB space. We say that z is similar to m if distance between them is less than a
threshold, 7.

The Euclidean distance between z and m is given by

D(z,m)=| z—m|| _
= Jlz-m)" (z-m)] (2.15)

= Jlzx —me)? + (2 —me)? + (2, —my)?]

Where || . || is the norm of the argument and subscripts R, G, B denote red, green and blue

components of vectors m and z. The locus point D(z,m)<=T is a solid sphere of radius 7.

A useful generalization of equation (2.15) is a distance measure of the form:

D(zm) = [z-m) C 7 (z—m)] 2.16)

where (.)" is the complement operator and C is the covariance matrix of the samples

representative of the color we wish to segment, and is computed as:

C= —1122; (z, —m, Xz, —m,)" 2.17)

15

where K is the number of points in the set and zx being the RGB point operated.

This distance is commonly referred to as the Mahalanobis distance. The locus of points
D(zym)<=T describes a solid 3D elliptical body with its principal axes oriented in the
direction of maximum data spread. When C=I, the 'identity matrix, Mahalanobis distance

reduces to Euclidean distance, giving a 3D sphere.
2.3.4. Color Probability Distribution Model

In the skin color case, basic threshold approaches fail in complex backgrounds. Thus
a more robust approach must be used. The fact about human skin color is in fact most of
the human skins around the world fall in a region of RGB space under same illumination
conditions. But it is nearly impossible to provide same illumination every time; each
minute of the day has different illumination parameters. A robust approach is to take a
sample region of skin color from the image (or from the first frame of movie in online
scenario) then using a probability lookup table (LUT), compare each image if it contains a
skin color region. This approach is mainly developed by Jones et al. [13] and called as skin

color probability model. Many new color tracker systems use this method as a base.

To build the lookup table, first sample skin color regions must be selected. In this
study, the thresholding is done by constructing a lookup table for each person from three or
four images and then applied to all images of that person, thus instead of manually

thresholding each image, a semi-automatic and robust thresholding method is proposed.

An RGB image in hardware has a maximum of 256*256*256 different colors
(excluding alpha channel) in today’s vision systems. For each primary color there exist 256
possible levels, which is also called 256 bin. But as Jones et al., stated 256 bin system uses
a large lookup table thus decreases the computing time, a better way is to use a 32 bin
system, which in fact quantizes every 8 neighborhood images to 1 pixel.

Once the histogram is constructed the probability distribution is obtained using;:

P(rgb) = %‘@ (2.18)

c

16

Where c(rgb) gives the count in the histogram bin associated with the RGB color triple and
T, total count obtained by summing the point counts in all of the bins. By this definition

skin color and non-skin color distribution will be:

P(rgb | skin) = s—(;-,gﬂ (2.19)
P(rgb |~ skin) = n(—;fgb—) (2.20)

n

where s(rgb) is pixel count in RGB of skin histogram, n(rgb) is equivalent count from non-
skin histogram and 7, and 7T, are total counts contained from skin and non-skin color

respectively.

After constructing these lookup tables then color threshold for skin color objects can
be obtained as:

P(rgb | skin) >0

P(rgb |~ skin) @21)

where 0<8 <1 is a desired threshold value.

When experimenting with this system, it is observed that most light and most dark
value pixels are misclassified by the system hence these regions (RGB(0,0,0) and
RGB(32,32,32)) are set to 0 after constructing the LUT and also non-skin pixels are
ignored for fast computation, this leads to:

P(rgh | skin) > 6 (2.22)

This system here is found to be a robust way of segmenting skin-color pixels, also
this method is a base system for CAMSHIFT online skin color tracker algorithm that will

be described later.

2.3.5. Skin Color Thresholding Tests

These examples show a rough description of how Mahalanobis distance and color
probability pictures are constructed. Below pictures are thresholded after training the
probability database with 20 human skin color images that are cropped manually. Up left
image in each Figure is either probability or distance color map of the original image down
right.

probability image probability>0.1

open-close op.

Figure 2.6. Color probability thresholding of face image

distance image distance threshold>0.1

open-close op.

Figure 2.7 Color Distance thresholding of face image

18

Some faces from the original image of Figure 2.6 is included in the training. As can be
seen, nearly all faces are extracted except the dark skin tones, which are not used in
training.

probability image probabilty>0.1

open-close 0p. original image

Figure 2.8. Color probability thresholding Hand image 1

Original image in Figure 2.8 was not in the training set, but it was properly extracted. Both

color probability (Figure 2.8) and distance thresholders (Figure 2.9) give proper results.

distance image distance threshoid>0.1
T A

open-close op. original image

Figure 2.9. Color distance thresholding Hand image 1

distance image distance threshold>0.1

open-close op. original image

Figure 2.10. Color probability thresholding, Hand image 2

probability image probability>0.1
open-close op original image

Figure 2.11. Color distance thresholding, hand image 2

As can be seen in the original images of Figure 2.10 and Figure 2.11, that are not
included in training, skin regions cannot be segmented. This is in fact, due to the camera

calibration failure in that image, not every time a camera gets good pictures.

The last figure is not also trained. As can be seen, although the distance probability

image seems to capture the hand region (black values), a different color threshold value

20

different then the used one must be used. The color-probability system doesn’t capture a

clue at all. Just training 20 images is not enough but more data must be trained.

Generally a Mahalanobis color thresholder can track the hand images but there will
be other regions as well due to the elliptic nature, thus is not in fact a good color object
tracker. Whenever enough training is used color-probability tracker is a better choice. This
tracker is best worked on local probability thresholding, take one probability distribution
from the first image then the tracker can find desired regions in the similar images (same

time, same person skin).

In the proposed model, the color-probability tracking system is used to semi-
automatically threshold skin regions from a person at a time. Each person has at least 75
images in a dataset. In two or more cases, more images from different classes are used to
train the probability tracker. After thresholding, hand skin segmentation is performed

automatically using connected component analysis for that person.

2.4. Cam-Shift Color Tracker

This algorithm is based on a robust non-parametric technique for climbing density
gradients to find the peak of probability distributions called the mean-shift algorithm [14].
The mean-shift algorithm is meant to be used in static mode, taking only the first color
distribution of video sequence, thus fails in video sequences which have illumination
changes. Therefore, mean-shift is modified to deal with dynamically changing color
probability distributions derived from video frame sequences. This modified algorithm is
called the Continuously Adaptive Mean Shift (CAMSHIFT) algorithm and developed by
Bradski [15]. Algorithm is meant to be a color object tracker, thus an object with a color
distribution or skin (flesh) color can also be used.

This algorithm first takes a manual area of the object (in this case a skin area), after
this a color-probability histogram is created. Each image in video is then compared with
histogram and area desired (if there is only one hand that will be the object) is chosen, after
that another color-probability for the tracked area is recreated and system continues to

work like this until stopped.

21

Main algorithm of mean-shift is:
1. Choose a search window size
Choose the initial location of search window
Compute the mean location (centroid) in the search window

Center the search window at the mean location computed in Step 3

LA W

Repeat Steps 3 and 4 until a certain conversion threshold is reached.
For discrete 2D image probability distributions the mean location (the centroid)

within the search window is obtained below. Zeroth moment of a 2D function f{x,y) , x and

y being the cartesian coordinates, is :
My =Y f(%) (2.23)
x oy
The first moment for x and y is:

My, =Y D x(63) s My =Y > 3f(x,y) (2.24)

Then the mean search window location (the centroid of the area) is:

MlO

x, = (2.25)
MOO
MOI

y.= 2.26)
MOO

where f{x,3) is the pixel (probability) value at position (x,y) in the image and x and y range

over the search window.

22
CAMSHIFT algorithm uses mean-shift algorithm as base:
Choose the initial location of the search window

Mean shift as above; store the zeroth moment (Mgg)

Set the search window size equal to a function of My, found in Step 2

Ll A e

Repeat Step 2 and 3 until convergence (certain threshold level)

Experiments are performed with the CAMSHIFT tracker and it is observed that it is
good as a tracker for skin color sequences. Some videos showing CAMSHIFT at work for
skin-color can be found on the appendix. In the future, an online system with this tracker
for gesture recognition could be made.

23

3. FEATURE EXTRACTION

Feature extraction is a general term of getting mathematical descriptions from an
image. Instead of using full image data as input some properties of meaningful regions (in
this case the hand regions) are extracted. This section shows the geometrical features used

in this work.
3.1 Compactness

Compactness is a measure of how deformed an object shape is. It is measured as the
ratio of object area to square of objects perimeter. When the ratio is exactly one the object

1s a circle.

Area of the object can be found as summing all the pixels within the object and in

fact it is the zeroth moment Mp,.
A=My =) I(x,y) ERY)
x oy

The perimeter in turn can be found as summing all the boundary pixels of the object,
denoted by P. Then the compactness, C, is:

_4nd

C-—F

(3.2)

3.2. Orientation

To obtain the degree of movement of object in z-axis (along x,y plane), orientation

can be calculated by image moments. Second moments are:
My =Y > %" I(x,) (3.3)
x y

and

My, = ZZyzl(x,y)

Then the orientation angle is

M
2(J - xcyc)
MOO

9—larctan
2 Mzo

M 00 00

3.3. Eccentricity

The major length and width of the object can be found as described [16]. Let

=M -x?
M
b=2(ﬂ—xcyc)
MOO
and
c=—2_y
MOO

Then length / and width w from the centroid are

A3ty 2

lz\/(a+c)+,/bz+(a—c)2

2

wz\/(a+c)—,/b2+(a—c)2
2

24

3.4)

(3.5)

(3.6)

(.7)

(3.8)

(3.9)

(3.10)

! and w are major length and width of the ellipse to be fit in the segmented object, it can be

used for ellipse fitting. Their ratio will also give the “eccentricity”, E, of the object which

is in fact how linear or circular the object is.

(3.11)

25

3.4. Signatures

A signature is a 1D functional representation of the boundary. A simple calculation is
to plot the distance from the centroid of the object to the boundary as a plot of angle [12],
or the polar coordinate transform of the boundary image from the Cartesian space can be

performed. The basic idea behind is to reduce the 2D image to a 1 dimensional form.

Signatures generated by this approach are invariant to translation, but depend on
rotation and scaling. Normalization with respect to maximum length can make the
signature scale invariant. But rotation can be a problem. One way to solve this problem is
to take every boundaries’ starting point similar. This can be the first point after rotating the
image in its major eigen axis (simply the axis which has the longest length within the

image).

Another method to gain rotation invariance is to take Fourier transform of the

signature points. After this we use a simple low-pass filter to disable some high frequency

responses.
Signature of Sign %
BU T T T T T T T
@ ﬂ\m]
=3
=S
£ N‘\ -
o
g
=
il I 1 \Y‘\V
0 50 100 150 200 250 300 350 400
Angle
LF Filtered Signature of Sign %
1UU T] T T T 1 T
/N
/ *
:§ / \\5
S \,f“’ A,
1V 1 1 1 ' 1

D 1
1] 50 100 150 200 250 300 350 400
Angle

Figure 3.1. Signature and LP Filtered Signature of Sign “V”

26

For hand images, the signature is a good choice for extracting features. It gives the
rough shape of the hand (Figure 3.1) and, in theory even 360 points for 360 degrees can
describe the shape properly. But if the object image is not good enough (if it is very noisy,

or not good segmented) this approach cannot describe the shape alone.

Using the signature transform, we can count the number of fingers in an image.
Given the signature of the hand is normalized in scale [0, 1], basically when we fit a circle
in a radius of 0.5 , and mask the image the 1-0 and 0-1 crossings mostly will give the
finger locations. If working with only one hand, this method can track whole classes,
which are dependent on finger locations. But in the two-hand case this method fails, the

fingers don’t define the class as alone.

27
3.5. Moment Invariants

The 2D moments work in similar way as 1D moments of a function. If all of the
moments (infinite) are taken into account, these can define the shape exactly. But this
doesn’t simplify the image. From the image moments it is possible to calculate: centroid,
area, fitted ellipse location, or other geometric descriptors. But to obtain a translation, scale

and rotation invariant measures of the image another method must be used.

Widely used features of an image used in pattern recognition are moment invariants.
Seven of the invariant calculations is obtained by Hu in 1967 [17].
The 2D moment of order (p+q) of a digital image f{x,y) is defined as

M, =Y > %"y f(x,y) (3.12)

For p,g=0,1,2 ... where summations are over values in spatial coordinates x and y
spanning the whole image (in this case the segmented area) and x and y, f{x,)) being the
value of the pixel coordinate (x,y). f{x,y) will be 0 or 1 if image is binary, 0 to 255 if image

is unsigned integer (8 bit, or grayscale). The corresponding central moment is

Hoy = 2.0 (=% (y=3)! f(x,3) (3.13)

where
X=x,= g;‘; (3.14)
5=y, = o (3.15)

28

The normalized central moment of order (p+g) is defined as

u

ﬂpq =—£;q_ ,p:q=0:]:2:-- (3.16)
Koo

7=pT+q+1 p+q=23,... 3.17)

A set of seven 2D moment invariants that are insensitive to translation, scale change,

mirroring and rotation can be derived from these equations. These are:

@1 =115 + T, (3.18)
@, = (10 —11,)" + 472 (3.19)
@5 = (119 = 3711)" + (3051~ 13)? (3.20)
@4 = (10 + 1) + (1 +1155)° 321)

@5 = (T30 — 37715) (M3 + 7712)[(7730 + 7712)2 =3(175 + 7703)2]
+ (37751 = 63 (7131 + T3)[3(”30 +1,)° = (1 + 7703)2] (3.22)

@5 = (7 _7702)[(7730 + 7712)2 — (1 + 7703)2]
+ 417y, (130 + 112)17, + T03) (3.23)

@7 = (3151 — o3)30 + Ty)|.(7730 + 7712)2 =317y + 7703)2J
+ (172 = 30 X1 + T3)[3(7730 +17713)> = (g + o3)2] (3.24)

The corresponding seven invariant moment vector will be:

p= [¢1 D2 Py Py Ps P §07] (3.25)

29

Calculated moment scales will most likely have a wide dynamic range (e.g.
maximum could have 100 and minimum could have a 0.00001 value). To reduce the
dynamic range, logarithm of the moment can be taken, and since logarithm of a negative

value will give a complex number, the absolute value of the logarithm is taken, which is:
Py =|log(p)| (3.26)

The calculated results in theory are invariants but in practice there is a small change
if the image is rotated or rescaled due to quantization errors in the image, since there is a

finite number of pixels to be dealt with (finite bandwidth).

30

4. ARTIFICIAL NEURAL NETWORKS

4.1. Introduction

In Artificial Neural Network (ANN) is a way of solving problems in the sense of
human (or animal) biology [18]. This can be simulated by the function of brain, which
processes the information gathered from whole body, using neurons for acquisition and
transfer. Neurons are a complicated network around the whole body, acquiring information
via body transducers (heat, sound, pain etc.) then converts these information to the brain
via chemical reactions, similar to electrical information. All information gathered
previously are, in fact learnt in a storage (brain), then processed for proper reaction if a
similar information is retrieved. This reaction can be “remembering a person that we have
just met a day ago”. This learning process corresponds to adjustments in synaptic
connections that exist between neurons. Artificial neural networks take this system into
account and tries to simulate the natural processing in an artificial or computer aided

fashion.
4.2. Historical background

Although neural networks appear to be a fashion of research nowadays, this field was

established before the advent of computers.

The modern era of neural networks began with the early works of McCulloch, a
neuroanatomist and Pitts [19], a mathematician in 1943. They introduced logical
calculations by using parallel synaptic connections and producing a very simple neural
network model. This work influenced von Neumann to use idealized switch-delay elements
in the construction of the EDVAC (Electronic Discrete Variable Automatic Computer)
which was an improved version of ENIAC. In 1986, the back-propagation algorithm was
first reported to be developed by Rumelhart, Hinton and Williams [20] . Nowadays, with
the relatively fast speed of personal and research computers, the research on both artificial
neural network models and their implementations are studied in a growing fashion.

Nowadays, neural networks can be implemented in hardware.

31

4.3. Neural Networks Versus Conventional Computation

Neural networks, with their ability to derive meaning from complicated data, can be
used to extract patterns and detect information that is too complex to be noticed by other
computer techniques. In fact there is no exact explanation of how a network understands
the system. A trained neural network can be thought in the category of information it has
given to analyze, this can be a complex function approximation or a person face detection
system. Then this “expert” network provides projections given new situations and answers

the “what if” questions.
Some advantages of Artificial Neural Networks can be:

o Adaptive learning: An ability to learn how to perform tasks based on the data given
for training or initial experience.

o Self-Organization: An ANN can create its own organization or representation of the
information it receives during learning phase.

e Real Time Operation: ANN computations may be carried out in parallel, and special
hardware devices are being designed and manufactured which take advantage of
this capability.

e Fault Tolerance via Redundant Information Coding: Partial destruction of a network
leads to the corresponding degradation of performance. However, some network

capabilities may be retained even with major network damage.

Conventional computers use an algorithmic approach, following a set of instructions
in order to solve a problem. If there is a missing step, the computer cannot solve the
problem. Thus one must in fact already know the answer to the problem, to state the

problem to the computer.

Neural networks process information in a similar way the human brain does. The
network is composed of a large number of highly interconnected processing elements
(neurons) working in parallel to solve a specific problem. Neural networks learn by
example, thus cannot be programmed to perform a specific task. Neural network is
successful in solving as long as it has carefully choosing examples for input, else the

results may be corrupted. The disadvantage is that because the network finds out how to

32

solve the problem by itself, its operation can be unpredictable. On the other hand,
conventional computers use programs created by human to solve problems, thus the whole
operation and results are predictable; if anything goes wrong it is due to a software or

hardware fault.

Neural networks and conventional algorithmic in fact complement each other. There
are tasks that are more suited to an algorithmic approach like arithmetic operations and
tasks that are more suited to neural networks. Even more, a large number of tasks require
systems that use a combination of the two approaches in order to perform at maximum

efficiency.
4.4. Biological Neuron

In the human brain, a typical neuron collects signals from others through host
structures called dendrites. The neuron sends out spikes of electrical activity through a
long, thin way known as an axon, which splits into a set of branches. At the end of each
branch, a structure called a synapse converts the activity from the axon into electrical
effects that inhibit or excite activity from the axon, into electrical effects that inhibit or
excite activity in the connected neurons. When a neuron (Figure 4.1) receives excitatory
input that is sufficiently large compared with its inhibitory input (like a threshold voltage) ,
it sends a spike of electrical activity down its axon. Learning occurs by changing the
effectiveness of the synapses so that the influence of one neuron on another changes, thus

changing the threshold value.

¥

Axon

\Sﬁ ' Dentrites
“\K \,_,

Figure 4.1. A basic neuron structure

33

These biological neural network model is translated into a computational model
(Figure 4.2), making it an artificial neural network. Although not all the information about
the biological model is known, the basic artificial model is a gross idealization of real

networks of neurons.

Neural Network

—_— including connections
(called weights)

Input between neurons Cutput

Compare

Adjust
weights

Figure 4.2. Artificial Neuron Structure

4,5. Mathematical Model

Each neuron performs a simple computation. It receives signals from its input links and
it uses these values to compute the activation level (or output) for the neuron, using an
activation function. This value is passed to other neurons via its output links. The input
value received of a neuron is calculated by summing the weighted input values from its

input links.

In mathematical terms, a neuron £ may be described by:
u, =Zw,qxj 4.1)
=

and

Ve =0, +b,) (4.2)

34

Where x;,x5,.. X, are the input signals; wg;, Wi,...Wr, are the synaptic weights of
neuron k; u; is the linear combiner output due to the input signals; b, is the bias; @(.) is
the activation function;_and y; is the output signal of the neuron. The use of bias has the
effect of an affine transformation to the output u;, making the output shift. When the bias is

included in the model by assuming x0 to the bias (wxy=bx), and v; can be used as bias plus

output (Figure 4.3).

wio=by (bias)

Activation

X1 function

Output
o() | >

X2

Summing
function

Xm

Synaptic
weights
(with bias)

Figure 4.3. General Mathematical Neuron Model

35

4.5.1. Types of Activation Functions
4.5.1.1. Threshold Function

Threshold Function can be described as
>
p(v) ={ (4.3)

This function is also called hard limiter. The output neuron k using this function is

expressed as

lifv20
Ve =, (4.4)
0ifv<0
where v;_is the induced local field of the neuron, meaning
Ve =D WX, +b, (4.5)

J=l

This type of neuron is referred to in literature as McCulloch-Pitts model. The output is
1 induced local field of that neuron is nonnegative and 0 otherwise. This describes the all-

or-none property of McCulloch-Pitts model.
4.5.1.2. Piecewise-Linear Function

Piecewise-Linear Function has the property

1, v +—1—
L1

o) ={v, to>v>—o (4.6)
0, v< 1
2

where the amplification factor, thus the slope of the line, is assumed to be one. This
function compresses the range of output in a linear fashion, and can be viewed as an

approximation of a non-linear amplifier.

36

4.5.1.3. Sigmoid Function

Sigmoid Function is the most common form of activation used in ANN research.

This function is a balance between linear and nonlinear behavior. The infinite range of

values is compressed to a maximum finite number, and the range is divided exponentially.
An example is the logistic function (or logsig, or log-sigmoid) as defined:

W= @

? 1+exp(—av) '
Where a is the slope parameter of the sigmoid function. A sigmoid function assumes
a continuos range of values from 0 to 1, and since it is continuos (on the contrary to

threshold or linear functions) it is differentiable.

When negative values are needed in output, not only 0 and 1 but -1 as well then

hyperbolic tangent function (tansig, or tan-sigmoid) can be used as:
@(v) = tanh(v) (4.8)

Plots of these sample activation functions can be seen in Figure 4.4.

- 7
/Lo Vi
i

a = purelin{n)

a = tansigin)

Tan-Sigmoid Transfer Function | Linear Transfer Function

a a
AL
— [
iy o S
a = logsigfn) a = hardlim{n)
Log-Sigmoid Transfer Function Hard-Limit Transfer Function

Figure 4.4 Activation Functions

37

4.5.2. Learning

ANN learns by training, and to train network there must be some targets or desired
responses to give the network. Then the network compares its own calculated output with
the target data (target output), if there is a mistake (error signal) it must redesign itself
(recalculate the synaptic weights). Assuming a single neuron k, di(n) being the target

output error at time step 7, can be formulated as:
e, (n)=d,(n)—y,(n) (4.9)

This error signal is a control mechanism, to correct the weights of neuron %, making
the output signal yi(n) closer to the target di(n) step by step in time (Figure 4.5). This is

achieved by minimizing a general cost function £(#) to calculate the performance:

£ =2 el () @.10)

which is the instantaneous value of the error energy. The step-by-step adjustment is
continued until the system reaches a desired steady state (until a given error threshold).

This is thus an error-correction mechanism.

To redesign the synaptic weights, information from the error must be gained. The
basic rule for correction is Delta rule or Widrow-Hoff rule named after its creators in 1960.

Let wyi(n) denote the value of synaptic weight of neuron £ excited by element x;(n) of the
signal vector x(n) at time step n. According to the Delta rule the adjustment Aw,(n)

applied to the synaptic weight wy, at time step » is:
Aw,;(n) =7 e, (m)x,(n) 4.11)

Where 7 is a positive constant that determines the rate of learning in that step, and

called as learning rate parameter. When the adjustment is computed, the updated value of

wy; will be:

wy, (1 +1) = wy(n) + Aw,, (1) 4.12)

38

These old and new terms can also be written as
w, (1) = 27w, (n+1)] 4.13)

where z”! is the unit-delay operator representing a storage element (memory).

di(n)

ex(n)

Figure 4.5. Signal-flow Model of One Neuron Learning Process

This kind of training that has a target dataset is called Supervised learning. The
simplest one (having an only one layer) is called Perceptron. Each trained output has a
target class in the target database, when the computed response has no proper class for a
given input in the test phase (after training) then either there is no such target for that
information or the network is falsely trained. Training which has no initial target dataset is
called unsupervised learning. The target classes are automatically constructed by network

and each new output that has not a similar target class is assigned a new target class.

39

4.5.3. Multi Layer Perceptron
4.5.3.1. Introduction to MLP

The network consisting of a set of source nodes (neurons) that constitute the input
layer, one or more hidden layers of computation nodes, and an output layer of
computations are called multilayer feed forward networks. The input signal is processed to
the output one layer at a time. These ANN types are commonly named as multilayer

perceptrons (MLP), which represents a generalization of a perceptron.

These kinds of networks are highly successful in difficult problems by training in a
supervised manner with the popular error backpropogation algorithm, based on error-

correction learning rule.
4.5.3.2. Backpropogation Algorithm

The error backpropogation learning consists of a two pass through the different layers
of network: a forward pass and a backward pass. In the forward pass, an input vector is
applied to the nodes of the network computing the effect in each layer, and an output is
found. During the forward pass the synaptic weights are fixed. During the backward pass,
the synaptic weights are all adjusted according to an error-correction rule. The actual
response for the network (the output) is subtracted from a target response to produce an
error signal. Then the error is propagated through the network backwards, adjusting all the
weights according to a formula. This algorithm is also called the backpropogation
algorithm.

4.5.3.3. Mathematics of Backpropogation

The error signal at the output of neuron j at time step »n (nth training example) is
defined by:

ej(n)=dj(n)_yj(n) (4.14)

Since all neurons have instantaneous error energy, the instantaneous total energy is

computed as summing all the neurons in the output layer:

40

En) = %Z e’ (n) (4.15)

jeC

Where set C includes all neurons in the output layer. When there are N_total number of

examples the average squared error energy will be

1 N

= ﬁZf(n) (4.16)
n=1

For a given training set £, represents the cost function, as a measure of learning

performance. The objective of learning is to minimize the cost function, when the cost
function approaches zero, the network will be able to detect and classify all the inputs

similar to the training set correctly.

The backpropogation algorithm applies a correction of Aw , (), which is proportional

to the partial derivative of error to the synaptic weight, and can be written according to the
chain rule:

05(m) _ 0&(n) Oe;(n) By, (n) v, (n)
ow;(n) Oe;(n) Ay;(n) ov,(n) ow;(n)

4.17)

And with some differentiation with respect to error, output and the sum function, this

equation is minimized to:

0 (n)

6Wﬁ) =-€; (n) ¢j'(vj (n)) Y (n) (4.18)

The correction applied to the synaptic weight is defined by the modified delta rule as:

95(n)
ow Ji (n)

Aw,(n)=-n (4.19)

Where 7 is the learning rate parameter, and minus sign accounts for gradient descent (a

direction) in weight space. Finally the correction is:

B, (1) =16, () () (4.20)

41

Where the local gradient §;(n) is defined as

6,(n)=¢e;(n)p,'(v,(n)) 4.21)
In the application of backpropogation algorithm, two passes are processed.

In the forward pass the weights remain unchanged through the network, and output is

calculated by neuron-by-neuron basis.
y;(m)=9,,(n) (4.22)

where v;(n) is the induced local field of neuron j and computed as:

v, (m)= iwﬁ (my,;(n) (4.23)

i=0

where w ,(n) is the synaptic weight connecting neuron i to neuron j at time # , and y,(n)

is the input to the neuron j. If neuron j is first layer then the input is the general input of
the network, if it is in a hidden layer then its input is the output of the previous layer, and
calculations are done in a standard way. But when the jﬂ’l neuron is in the output layer it is

compared to the desired response then the backward pass occurs.

The backward pass starts output layer by passing the error signals leftward through
the network, layer by layer, and recursively computing local gradient for each neuron. For
a neuron in the output layer, the local gradient & is simply the error signal of that neuron

multiplied by the first derivative of its nonlinearity.
If the activation function is logistic function then:

1
1+exp(—av,(n))

@;(v;(m) = , a>0and —o <V, (n) < (4.24)

Differentiating with respect to v;(n) , we get

42

a exp(—av j (I’l))

(4.25)
[l +exp(-av; (n))]2

9;'(v; ()=

with y;(n)=¢,(v;(n)), the exponential term can be eliminated, and the derivative is

expressed by :
0, (v,(m) =ay ,(W|L-y,)] (4.26)

For a neuron j in the output layer, y ;(n) = o ;(n) , hence the local gradient

for neuron is :

5]‘ (n) =ej(n)¢j'(vj(n))

—ald (1) -o0,(), m)1-0,(n)] 427
Where o,(n) is the function signal at the output of neuron /.
For an arbitrary hidden neuron j, the local gradient is expressed as
5,(m) =, (7, ()Y 8, (yw,, ()
k (4.28)

~ay, 1~ y,m)]Y. 8, (w, (n)
k

The whole one process learning of a training of one set inputs is called one epoch.
4.5.3.4. Backpropogation Models

The general backpropogation algorithm described above is also called as batch-
gradient descent algorithm, and called in Matlab as traingd [21].

For a more general approach to maximize the learning capability a positive
momentum term is included in the adjustment term, making the synaptic weight adjusting

term as:

Aw,(n)=aAw (n—-1)+nd,(n) y;(n) (4.29)

43

The momentum term « is an adjustment to control the learning rate, minimizing the

probability of any oscillation when learning-parameter 7 is chosen large to gain a faster

synaptic change. When the momentum term is used the algorithm is called as Batch

Gradient Descent with Momentum, and expressed in Matlab as traingdm.

Multilayer networks typically use sigmoid transfer functions in the hidden layers.
Sigmoid functions are characterized by the fact that their slope must approach zero as the
input gets large. This causes a problem when using gradient descent to train a multilayer
network with sigmoid functions, since the gradient can have a very small magnitude, but

instead making oscillations in the output.

The resilient backpropogation (or Rprop as called in literature) training algorithm
suggested by Riedmiller and Braun in 1993 [22], has the effect to eliminate the harmful
effects of the magnitudes of the partial derivatives, also causing the backpropogation
system to compute faster. Only the sign of the derivative is used to determine the direction
of the weight update; the magnitude of the derivative has no effect on the weight update.
The size of the weight change is determined exclusively by a weight-specific update value.

8,0, i 2050

awji (n)

4 - 06(n)
Aw,(n) =4 +A,(n), lfaw,,.(n) <0 (4.30)
0, else

The second step of Rprop is determining the new update-values:

+ _ 0&(n-1) 0£(n)
7O) ow,)

. _ 02(n-1) 02(n)
A, (m)={n"A;(n), if awﬂ(n) 6wji(n)>0 (4.31)

A, (n-1), else

where 0<7~<l<n". Every time the partial derivative of the corresponding weight changes
its sign, the update-value A,(n) is decreased by the factor 7~ likewise if the derivate

does not change its sign the update is slightly increased. If the derivative is zero, then the

44

update value remains the same. By default 77~ (delta decrease) is set to 0.5, and 7™ (delta

increase) is set to 1.2. The Rprop function name used in Matlab is trainrp and it has

promising convergence rates and speed in pattern recognition applications.

For a ANN system to be trained properly multiple epochs with different input-target
couples must be done. Whenever the network is trained with more training data the cost
function will reduce, making the network more stable to similar test inputs (which are in
fact the inputs to be recognized) .

45

5. EXPERIMENT RESULTS AND DISCUSSION

5.1. Experiment Process

Once recognized by the computer system, hand gestures can be used to command any
machine, it can type a letter from the alphabet or just send a control sign to a robot to turn
left. Proposed system in this thesis is an off-line method for recognition of hand gestures,
thus does not perform on-line realtime gesture recognition. Source code for the system in
Matlab and database gestures can be found in Appendix A. With some modifications on-
line recognition can be implemented in future work. These modifications are in fact real-
time video acquisition, a hand posture flag recognizer (thus the system will know that there
is a hand sign input to feed the neural network), and an output interpreter (to do the
meaning of the sign, e.g. if sign is A (class 1) in the output of classifier, type “A” on the

screen).

5.1.1. Image input

Hand image is obtained with a simple USB camera, the gesture database is
constructed directly from Matlab. To construct a database for a person, the system shows
the guide sign for the person and 5 gestures for that letter is entered.

5.1.2. Image processing

Obtained images are process to get the hand shape image (silhouette).

1. For each person a skin probability matrix is constructed, using maximum 5 images
from that person’s hand database. An area of skin region is taken from each 5
image and the system is trained to obtain skin color probability matrix. Then each
image in the database is compared with this matrix. The compared values which are
greater than skin probability threshold value 0.1, gets the binary skin image, which

includes pure hands or face plus some noise.

46

The noise in the image is mostly eliminated by performing open-close operation on
the binary image. Open-close operation also makes the small gaps disappear in the

image.

After open-close operation, connected components analysis is performed. Each

connected component is labeled with a number value.

The area of each connected component is calculated and the one which has the
largest area greater than a certain threshold is taken as binary hand image.
Properties of hand region (area, eccentricity, location, number of holes) are stored.

Filled hand region (to discard the holes) is processed for feature extraction.

Then each sign is assigned to its class directory under the directory named after that

person.

5.1.3. Feature extraction

1.

Binary hand image features are extracted as followed:

Invariant calculation function is used on hand region to obtain 7 Hu moment
invariants. Absolute value of the logarithm of invariant moments are taken to widen

the dynamic range.

Compactness and eccentricity features are calculated from the image moments.

For the ASL system these 9 values are composed to perform a 9x1 vector input for

neural network.

For the TSL system signature of the hand region is calculated, then filtered through
a low-pass filter to eliminate high frequency components. Filtered signature is
normalized by its maximum value to gain scale invariance. Fourier transform of

filtered signature is taken to gain rotation invariance. Then the absolute value of the

47

Fourier transform is taken to eliminate complex numbers. Maximum signature is a
360x1 vector. But since the high frequency components are eliminated it is seen
that only a finite number of first components of the Fourier transform are efficient
as good as the whole signature vector. Different test has been performed for 40 and

60 Fourier components as well as 360 full components.

5. Another feature vector, additional approximate finger location information, can
also be calculated from the signature information. The normalized signature whose

threshold is greater than 0.5 will give approximate finger locations.

5.1.4. Neural network classifier

Gradient descent, gradient descent with momentum and resilient backpropogation
algorithms (Rprop) are tested with the system with different layers and different number of
neurons. For each class the target vectors are assumed to be incremental binary values, e.g.
for class 1 (sign A) the target is [0 0 0 1], class 2 target is [0 0 1 0], class 6 targetis [0 1 1
0] and so on. This assumption has advantage that when the classes are increased target
vectors are automatically increased, also this is an easier way to compute the error
response of the system. Since the gradient descent algorithm does not give good results,
Rprop algorithm was used in all tests, because of its fast convergence, memory and

computation efficiency.

48
5.2. Sample Gesture Processing

Original image was read and compared with skin color probability lookup table and
probability image was constructed (Figure 5.1)

probability image probability>0.2

open after close op. original image

Figure 5.1. Probability image

Open operation was performed after thresholding the image (Figure 5.2) then using

connected component labeling largest area is obtained (Figure 5.3).

Figure 5.2. Open Operation

49

Figure 5.3. Largest Area After Labeling.

Additional feature information is calculated from the segmented image. Area is found
to be 4284 and perimeter 416.73, then the compactness is:

c=A . 128 04 5.1)
P (416.73)

Eccentricity is found to be 0.78 from the image moments. Also the 7 invariant

moments are:

¢, =[0.2469 0.0125 0.0072 0.0007 0.0000 0.0001 0.0000] (5.2)

To widen the dynamic scale with positive values absolute value of the logarithm of

the moments were taken:

llog(p,)=[1.3986 43855 4.9394 7.2218 13.3721 9.4225 14.3220] (5.3)

Signature plot (Figure 5.4) is computed for 360 degrees of rotation around the

centroid of the image.

50

~
o

A o o
S S S
v—/\-

g

R\
—

. H‘Hi\au‘!" \
il f[ﬁW ‘M‘;W UN*;U;‘A«' W*{ﬁ%f% M

Figure 5.4. Signature plot of Figure 5.3

Filter 0.2 Hz normalized low-pass filter operation (Figure 5.5) was performed on
signature plot to remove the noisy data.

N

0.8 / \ g

0.7L . /\ / | ﬁ
| i

o6; [V \

0.5

Magnitude

pe—— —

04 | {\ :
0.3} f \ 1’ \\
0z |) i [

/ N UM |

0.1

0

. . .) - N N
0 50 100 150 200 250 300 350 400
Angle

Figure 5.5. Low-Pass filtered Signature of Figure 5.3

Additional approximate finger information (Figure 5.6) was calculated by setting a
0.5 threshold on filtered signature.

51

0.9+ —
0.8 i 1

07 {\

0.6 r : 1
0.5 / H]

0.4

Magnitude

0.3+
l |

0.1}

0 ‘) i L \ L L ;
0 50 100 150 200 250 300 350 400

Angle

Figure 5.6. Approximate Finger Information

Magnitude of the Fourier Spectrum of Signature and filtered signature and finger

information can be seen on Figure 5.7.

FFT Magnituds of Signature FFT Magnitude of Filtered Signature
140 : 140 : .
120 1 120 B
100 1 100} 1
g g ®
E E
§ €0 b g 60[
40 | - 40!
|
] ’ ’
20 H ! 20! I 1
I, B | '
0 P T M) W{ﬂl O Pragit. g 0 ‘h"M-A_ -
200 -150 <100 .50 0 50 100 180 200 200 -150 100 -850 0 50 100 180 200
Compaonent Frequecy (Ts=360) Component Freguecy (Ts=380)
FFT Magnitude of Filtered Signature>0.5
120 , ' —
100
80
3
3
£ 60
g
=
40
!
20 | ! !

4

|
O‘ A mv.p,«wn’b‘“ X'M«f’mwn
200 -150 -100 -850 0 50 100 150 200
Component Fregquecy (Ts=380)

Figure 5.7. Magnitude of Signature, Filtered Signature and Finger Information

52

5.3. American Sign Language Manual Alphabet

This system used one hand gestures to represent letters of the alphabet (Figure 5.11) .
Sign J and Z are dynamic signs which need movement of hand in the shape of the letter.
Some letters such as R, D, G and Z are so much similar in shape that it is almost
impossible to classify each letter independently using only geometric features. This also
applies to similar letters of K and V. For the system proposed in this thesis includes just

eight of these signs, which are: A, B, C,D, L, V, Wand Y.

The database is constructed from 15 people with each person doing the same gesture
5 times. There are a total of 75 gestures for each class, having total number of 600 gestures

in the database.

A person does the same gesture 5 times but these 5 gestures differ in orientation and
picture as well. Figure 5.8 shows two of the “Y” sign from the same person. Figure 5.9
shows the “C” sign taken from 4 different people, and Figure 5.10 showing “W” sign

likewise.

Figure 5.8. Different “Y” sign from same person

A

Figure 5.9. Sign “C” from 4 people

Figure 5.10. Sign “W” from 4 people

53

54

Figure 5.11. American Sign Language Manual Alphabet

39

5.4. Turkish Sign Language Manual Alphabet

The TSL consists of two hand gestures (Figure 5.15), but these two hand gestures are
in fact mixture of the like gestures of one hand gestures in ASL. For a proper Turkish
database construction, the letter gesture movies from sign language page from Koc
University [23] is also shown to some of the performers, which had no initial experience
with sign language. Again some of the gestures in TSL are dynamic and discarded in the

system, also similar gestures in shape are discarded as well.

The database is constructed from 15 people with each person doing the same gesture 5
times. Total 21 alphabet letters were used. The dynamic gestures were discarded. When
constructing the database, a person did the same gesture 5 times but these 5 gestures
differed in orientation and rotations as well. Figure 5.12 shows two of the “E” sign from
the same person and Figure 5.14 shows “F” sign of 4 people. Figure 5.13 shows image

processing of the “E” sign of the person that was shown in Figure 5.12.

Figure 5.14. “F” sign from 4 people

56

TURK iSARET DILi / TURKISH SIGN LANGUAGE (TID)

ALFABE

o8 £

[¢4]

557
N g

= PARMAK SIKLATMAK/SNAP FINGER

* fstanbul

FaA

};

Approved by the Turkish N

deration of the Deal D her 2002 Tiirkiye tgitme Engelliler Milli Federasyonu tarafinden 12 2002'de kaby! edimisty

Figure 5.15. Turkish Sign Language Manual Alphabet

57

58

5.5. ASL Results

In this test results, an M input N output neural network with K hidden layers will be
presented as MxKxN network, meaning network has M node (M neurons) input layer, K
node hidden layer, and N node output layer . Output layer does not contain any activation
function, all operations are performed with input and hidden layers, but mean square error
(MSE, general error of the system) is calculated from the output by looking at the

difference from the target vector.

The target vector is chosen as 5 column binary vector. Meaning, first class has a
target vector as [0 0 0 O 1], the second class has [0 0 0 1 0], third class has [0 0 0 1 1];
which are in fact 5 bit binary numbers in an increasing motion. This choice makes the

system more general and the class numbers can be increased automatically.

There are a total of 600 gestures in ASL dataset, in most cases %10 of this total is
used as test input (60 gestures) and the rest (540 gestures) is used for training. In some of
the networks %15 of the total dataset is used as test input. Tables show the number of test
and train vectors used in each class and also the correct and false classes. 9 vector input is
generally used for one hand gestures. This 9 vector input includes: compactness,

eccentricity and 7 invariant moments.

For comparison Gradient Descent Backpropogation is tested on the ASL database,
but it is seen that even modifying momentum term or learning parameters doesn’t give
good results. One example for the training process of ASL dataset is shown in Figure 5.16.
As can be seen, MSE can not fall below 0.1 after 1000 epochs and does the system can not
recognize its own training set. Rprop backpropogation is found to be more robust than the
Gradient Descent algorithm, also this algorithm is the most memory efficient and fast
algorithm compared to other backpropogation algorithms like Levenberg-Marquardt or
Quasi-Newton Algorithms [17]. All the networks below use Rprop algorithm for training,

with different input and hidden layer numbers.

59

UD Performance is 0.145817, Goal is 0.0001
1 F T T T T) L T T

S

10 F 3

Sunre], SN
=}
N
1

—
[)

&
T
¥

10

5 —_ N | I |

I 1 1 1 1
0 00 200 300 400 500 600 700 600 SO0 1000
1000 Epochs

10

Figure 5.16. ASL dataset trained with Gradient Descent Algorithm.

5.5.1 ASL Network 1

9 column input vector with features ; compactness, eccentricity and 7 invariant
moments are used. 1 hidden layer with 15 nodes is used. In 1000 epochs MSE reached
0.032 (Figure 5.17) with Rprop algorithm.As can be seen in Table 5.1, 80 per cent of the

training set was correctly classified, and 79 per cent of the test set was correctly classified.

A| B C D L A\ w Y
Train Correct | 66 | 44 49 49 52 51 64 54
Train False | 9 16 26 11 23 9 11 6
Test Correct | 6 6 7 5 7 5 6 6

Test Fail 3 1 1 1 1 2 2 1

Table 5.1. ASL dataset, 9x15x5 network, 9 vector input

60

Performance is 0.0323349, Goal is 0.0001

~—

10

—_
o,
A

Buures] IS
=)

&
i

-
o

10

10‘5 i 1 i 1
0 200 400 600 800 1000

1000 Epochs

Figure 5.17. ASL 9x15x5 Network MSE graph

5.5.2. ASL Network 2

9 column input vector with features ; compactness, eccentricity and 7 invariant
moments are used. 1 hidden layer with 30 nodes is used. In 1000 epochs MSE reached
0.028 (Figure 5.18) with Rprop algorithm. 82 per cent of the training set was correctly
classified, and 71 per cent of the test set was correctly classified (Table 5.2). It seems that

A and D signs were the bare misclassifed classes.

A|B|C|D|L|V|(W]Y

Train Correct| 68 | 45 | 51 | 45 | 59 | 48 | 72 | 56

TrainFalse | 7 | 15124 | 1516 (12| 3 | 4

TestCorrect | 5 | 7 [6 | 3 |16 |3 7] 6

Test Fail 41012 (3]|214|1]1
Table 5.2. ASL 9x30x5 network

61

Performance is 0.0287295, Goal is 0.0001

10°

pry
(=]
ES

]
T
L

Buures| IS
3

10 1 i 1 1 1 1 1 i 1
0 100 200 300 400 500 600 700 800 800 1000
1000 Epochs

Figure 5.18. ASL 9x30x5 network MSE graph

5.5.3. ASL Network 3

9 column input vector with features ; compactness, eccentricity and 7 invariant
moments are used. 2 hidden layers with 15 and 30 nodes was used. In 1000 epochs MSE
reached 0.016 (Figure 5.19) with Rprop algorithm. 92 per cent of the training set was

correctly classified, and 81 per cent of the test set was correctly classified (Table 5.3).

AlIB|C|D|L |V WY
Train Correct |73 56 | 69 | 54 | 63 | 56 |75] 55
TrainFalse (2| 4 | 6 | 6 |12 | 4 (0] 5
TestCorrect |7| 6 | 7 [4 | 7 | 5 [8] 5
TestFail |2 1 1 {21} 2 0] 2
Table 5.3. ASL 9x15x30x5 Network Results

62

Performance is 0.0161921, Goal is 0.0001

10°

=
M o'} 1
—|
)
“ 10% 4
10°F J
10* 3
]
I RN DI
1000 Epochs
Figure 5.19. ASL 9x15x30x5 MSE Graph
5.5.4. ASL Network 4

9 column input vector with features; compactness, eccentricity and 7 invariant
moments are used. 2 hidden layers with 30 and 15 nodes were used, instead of 15 and 30 in
the network 4. In 1000 epochs MSE reached 0.007 (Figure 5.20) with Rprop algorithm. 96
per cent of the training set was correctly classified, and 81 per cent of the test set was
correctly classified (Table 5.4). Changing the order of hidden layers seems to have a good
effect.

Train Correct{ 70 | 59 | 74 | 56 | 73 | 58 | 74 | 56
TrainFalse | 5 | 1 | 1 |4 |2 2] 1] 4
TestCorrect | 6 | S [6 | S| 6 | 6| 8 | 7
Test Fail 3 (22 (11211010
Table 5.4. ASL 9x30x15x5 Network Results

63

Performance is 0.00794867, Goal is 0.0001

10° 3
=
m .
5 z
g]
10°} 4
10"]
O s s #p B e T @5 sm w0
1000 Epochs
Figure 5.20. ASL 9x30x15x5 MSE Graph
5.5.5. ASL Network 5

In all the above networks, delta increase factor of Rprop was 1.3 and delta decrease
was 0.3, when we modifiy these factors and make them 1.1 and 0.1 , the network
performance drops down (Figure 5.21), also results are also not good (Table 5.5). Also
increasing these factors (1.9 and 0.9) makes the network worse (Figure 5.22). It seems that

delta increase and delta decrease are best set to 1.3 and 0.3 respectively for proper results.

A |B|C D L V |W| Y
Train Correct | 68 |49 | 42 | 34 | 42 43 | 64 | 42
Train False 7 11 [33 | 26 | 33 17 | 11| 18
Test Correct 6 6 6 4 5 3 5 5
Test Fail 3 1 2 2 3 4 3 2
Table 5.5. ASL 9x30x15x5 Network Results modified delta

Performance is 0.0451368, Goal is 0.0001

10 T T T T T T —T — T

10" \\-
;

-
o,
)

y——
NITET |

Bututel | IS

S 1 1 1 i I 1 1 1
0 100 200 300 400 500 600 700 800 800 1000
1000 Epochs

Figure 5.21. ASL 9x30x15x5 MSE Graph (Delta inc=1.3, Delta dec=0.3)

Performance is 0.466655, Goal is

0.000
’ [_\/,_/1_\/‘\/_\,;
10"k 4
=
(24 2
m 2L J
3
2' 4
2]
5
'D 4
10°} 4
i
4
4
10 o
q
10° : ! 1 ; 1 o ! L
0 2 4 8 8 10 12 14 16 18

18 Epochs

Figure 5.22. ASL 9x30x15x5 MSE Graph (Delta inc=1.9, Delta dec=0.9)

64

65

5.5.6. ASL Network 6

In this test 3 hidden layer structure was used. First hidden layer has 30 nodes, second
20 nodes and the third one 15 nodes. Input was 9x1 input, including moment invariants,
compactness and eccentricity. This test achieved a training correct ratio of 94 per cent and
training correct ratio of 89 per cent, which was the best result comparing to other ASL
tests. Table 5.6 shows the output of network for each class of the training set, and Table
5.7 shows the output of network for each class of the test set.

Table 5.7 shows that mainly letter “D” is misclassified as B and letter “W” has a
misclassification of being either “L”, “D” or “V”. In same cases letters “B” and “Y” could

not be separated to any class.

CLASSIFIED AS
Classes | None A B C D L \% A% Y
A 1 73 0 0 0 0 1 0 0
B 1 0 58 1 0 0 0 0 0
C 0 1 0 72 0 0 0 2 0
D 0 0 0 0 58 2 0 0 0
L 0 0 0 0 0 70 0 5 0
\% 0 0 1 0 0 3 55 1 0
\%% 0 0 0 0 0 2 1 72 0
Y 4 1 1 0 0 0 0 1 53
Table 5.6. ASL Network 5 Training results
CLASSIFIED AS
Classes | None A B C D L \% W Y
A 1 16 0 0 0 0 0 0 0
B 3 0 29 1 0 0 0 0 0
C 0 0 0 17 0 0 0 0 0
D 0 0 3 0 27 0 1 1 0
L 0 0 0 0 0 16 0 2 0
A\ 0 0 2 0 0 2 27 1 0
W 0 0 0 0 0 0 0 18 0
Y 2 0 1 0 0 1 0 0 29

Table 5.7. ASL Network 5 Test results

66

5.5.7. Discussion on ASL results

For one hand ASL signs, provided that the gestures are barely different (as in the
case), invariant moments with Rprop neural network training gives good results.

Recognition rates can be improved by using more training data.

5.6. TSL Results

TSL database is built in the same manner as ASL. But this time there are both two
hand and one hand gestures to be considered. It is assumed that one hand gestures can be
classified in an independent network or manner than two hand ones. Each hand can be
tracked independently then if these hands regions collapse then the system can assume

there is two hand input for the classifier.

There are 525 one hand signs (7 classes, 15 people, each person has 5 gestures in a
class) and 1050 two hand signs (14 classes, 15 people, each person has 5 gestures in a
class) in the database. 1575 Overall gestures in TSL database. %16 of the total number (87
for one hand and 175 for two-hand case) is used for test and rest (438 for one hand and 875
for two hands) is used for training. Selected gesture for one hand set were: C,I,L,O,P,U and
V; and for two hand set: A, B,D,E,F, G, K, M,N,R,S, T, Y, Z.

For comparison with the ASL features, a 9 column input: compactness, eccentricity
and invariant moment vector is also tested with two hand dataset. But it is found that this

information is not enough when increasing the number of classes.

Other features considered are Fourier transform of signature information, and

approximate finger position vector (which can be found from the signature plot).
5.6.1. TSL Network 1
9 column input vector with features ; compactness, eccentricity and 7 invariant

moments are used to compare the dataset with ASL recognition. 2 hidden layers with 90
and 30 nodes was used. For the one hand gestures, in 1000 epochs MSE reached 0.003

67

(Figure 5.23).Although 96 per cent of the training set was correctly classified, only 71 per
cent of the test set was classified correctly (Table 5.6). This is in fact due to the shape of
the signs. Filled Images of L,U and V, C are infact very similar.

C I L 0 P U A%
Train Correct 60 63 63 61 62 61 62

Train False 3 0 0 1 0 1 1
Test Correct 8 9 9 8 8 11 9
Test Fail 5 4 4 4 4 1 3

Table 5.8. TSL 9x90x30x5 Network Results, One Hand

Performance is 0.00366854, Goal is 0.0001

10° —

butuies] ISV

1 1 1 —_— 1 1 1
0 100 200 300 400 500 600 700 800 €00 1000
1000 Epochs

Figure 5.23. TSL 9x90x30x5 MSE Graph, One Hand

Using the same network on two hand signs gives near 0.06 MSE performance (Figure

24) and thus cannot correctly classify even the training set (Table 5.7).

68

A/B(DIE|F|GIKIMIN[RIS|T|[Y|Z

Train Correct |58 (31 (53132494856 (32(50[43|30{21(63|34

Train False 17(19(22 18|26 2 [19|18 25| 7 |45(29 (12|16

Test Correct 81418 |8 |5]7|8(4|6|4|5]7(6]4

Test Fail 7167121013 |7]6|9|6|1013}9]6
Table 5.9. TSL 9x90x30x5 Network Results, Two Hand

Performance is 0.059292, Goal is 0.0001

10

Bujures), 3N
3,

-
o
[
—
1

10

10 1 1 1 1 1 L L L

I
o 80 100 150 200 250 300 350 400 450 500
500 Epochs

Figure 5.24 TSL 9x90x30x5 MSE Graph, Two Hands

5.6.2. TSL Network 2

Next network types used additional signature information for training. It is seen that
in nearly 300 epochs all of these types achieve MSE less than 0.001, thus this gives

training set recognition rate above 95 per cent.

In TSL Network 2, 50 column input vector with features; compactness, eccentricity,
7 invariant moments with first 41 values of the Fourier of the signature signal were used. 1

hidden layer with 30 nodes was used.

69

In the one hand dataset, 98 per cent of the training set was correctly classified, but
test set was just on the 58 per cent recognition ratio (Table 5.8). Although near all the

training data was correctly classified, also the two hand test classification was bad giving a
34 per cent overall ratio (Table 5.9).

Train Correct 65|66 |67|66|65|66]|67
Train False 21007012110

Test Correct 5151518143]|4
Test Fail 414 |13({0(4|5]4

Table 5.10. TSL 50x30x5 Network Results, One Hand

A B|IDIE|F|IG|KIM|IN|IR|S|T|Y|Z
Train Correct |65(66|62|61[64|65]66|62(65|/65|64|66]|66|65
Train False 211 (553214123]1]0]2

Test Correct 4 (512124244231]|1]5
Test Fail 514171816 |4|(6[4|4|6|5]|717]3
Table 5.11. TSL 50x30x5 Network Results, Two Hands

5.6.3. TSL Network 3

Increasing the hidden layers did not give any improvements. 2 hidden layers with 90
and 30 nodes was used,but test recognition overall ratio was 44 per cent for one hand signs

and 21 per cent for two hand signs (Table 5.10 and Table 5.11).

C | L 0 P U A\
Train Correct 65 66 | 66 66 | 66 | 65 67

Train False 2 0 1 0 1 2 0

Test Correct 6 5 3 4 3 1 4

Test Fail 3 4 5 4 5 7 4

Table 5.12. TSL 50x90x30x5 Network Results, One Hand

A/B|(D|E KIM|N|IR|S|T|Y|Z

Train Correct |66 |64 |64 66|67 |67 |67|64|65|65(66]|67|65|67
Train False 11313160 21110110
Test Correct 411 (1311 2(1312]0]1
Test Fail 518618 6|5(6|8]7

Table 5.13. TSL 50x90x30x5 Network Results, Two Hands

5.6.4. TSL Network 4

70

In this example full 360 column signature vector (360 degrees) was used as input.

And test results was again disappointing for one hand set (Table 5.12).

C|I|L|O|P|U|V

Train Correct (4146 (52|34 (565558
Train False 22117111 (286 7|5
Test Correct 416 (817|516]1
Test Fail 91715157611

Table 5.14. TSL 360x400x5 Network Results, One Hand

5.6.5. TSL Network 5

In this test a 84 column vector with invariant moments, compactness, every 10th

average of signature vector, with additional number of holes in the image features were

used.

By using 2 hidden layers with 160 and 20 nodes; one hand set gave a test recognition

ratio of 73 per cent (Table 5.13) , and two hand set gave 60 per cent ratio (Table 5.14). The

signs that were mixed in two hand set was mostly B, D, F, S and Z, due to fact that B is

like D and S is like Z.

71

C|I|L|O(P|U|V
Train Correct |63 |63 |61|62|62|62]|63
Train False 01]0]2(0J010]0
Test Correct 7 (10(11(10|10| 8 | 8
Test Fail 6 (322244
Table 5.15. TSL 84x160x20x5 Network Results, One Hand

A|B|D| E|F|(G|IKIM|N|R|S|T|Y|Z
Train Correct |75|49[73|48|72|50]|75|50(74 (4670149 |75 |47
Train False o|j1(2{21310|0|0|1}4|5|1]0}3
Test Correct 10417778117 |11|5(5]9]|8]|5
Test Fail 5168 (3|8[2|4|3|4 (5101715

Table 5.16. TSL 84x160x20x5 Network Results, Two Hands

5.6.6. TSL Network 6

This example we used additional approximate finger information instead of signature.
Also the invariant moments were used as input. With this modification and using 2 layer
hidden networks one hand set gave 70 per cent test recognition (Table 5.15) and two hand
set gave an improved 73 per cent recognition. Near 100 per cent of all training set was

recognized. From Table 5.16 it seems that most mixed signs were E and R.

C/|I|L|O|P|U|V
Train Correct |61 (636362626163
Train False 2(1010(0]10(17]0
Test Correct 4 (11| 8 (10] 9 (11| 8
Test Fail 912 (51213114
Table 5.17. TSL 79x100x20x5 Network Results, One Hand

72

A|/B|D|E|([FIGIKIM|N|/R|S|T|Y|Z

Train Correct |75|50|75|50175]50|75|50(75|49|75)|50|74|49

Train False ojofofojojojojofjofrjojo|1j|i

Test Correct 10(7 (116|117 |10|10|12|6 |12|7 (12| 7

Test Fail 5/3|4|14(4|3[5]0[3]4]3|3[3]3
Table 5.18. TSL 79x100x20x5 Network Results, Two Hands

5.6.7. TSL Network 7

Again using additional finger information and moments, this time node number of
hidden layers were increased to 120 and 50 instead of 100 and 20. Slight imrovement of 74

per cent was seen on two hand set (Table 5.18), but one hand set failed to 66 per cent

(Table 5.17).

C|I|L|(O|P|U|V
Train Correct |63 |63 [63]62|62|62]|63
Train False 0j10(0j0|0)0]0O
Test Correct 6|19 (12|11 8|8 (4
Test Fail 714111448
Table 5.19. TSL 79x120x50x5 Network Results, One Hand

AIBIDIE|F|G|IKIM(N(R|S|T|Y|Z
Train Correct |73 |50|75(48|75|50|75|50(75|49|7249]75]50
Train False 210(0(2)J0(0j0j0]0}113[|1}|0]0
Test Correct 1217 (1318108 (10| 9 |11]|6 109 |10]| 7
Test Fail 33121215 (2(511{414}5(1}151]3

Table 5.20. TSL 79x120x50x5 Network Results, Two Hands

73

5.6.8 TSL Network 8

In this test input was fed as every 5™ average of 360 degree signature vector with
additional invariant moment information, eccentricity and compactness. Input was an 80x1
vector. Three hidden layers with node sizes 100, 40 and 15 were used respectively. 80 per
cent of TSL two-hand dataset were used as training and the rest 20 per cent were used as
test. In this test results just 65 per cent of the test data were recognized correctly. Table
5.21 shows the letters being correctly and incorrectly detected for training and test data.
Table 5.22 and Table 5.23 shows detailed recognition results for training and test data
respectively. It is seen that in B, D, E and G letters misclassify with each other, and E, F,
K, D letters has also a misclassification in themselves. Also letter Z is sometimes

misclassifiedas Tor Y.

A|/B| DI E|F|G|IKIM|N|R|S|T|Y|Z

Train Correct| 60| 60| 60| 59| 60| 60} 60| 60| 60f 60| 60| 60| 59| 60

Train False 0f 0 0y 1] O 0] O] O 0] 0, O

Test Correct | 10; 10 9 9| 11| 10 9 11(10| 12| 10

0O
o0 |~ |—
A0 (O

Test Fail 5| 5] 6| 6| 4| 5| 6/ 4| 5| 3] 5

Table 5.21. TSL Two-hand Network 8, 80x100x40x15x5

74

CLASSIFIED AS

60

59

T|Y | Z

S

60

Classes([None| A | B| D | E| F | GI K M| N|R

Table 5.22. TSL Network 8, Training Data Recognition Results

CLASSIFIED AS

T | Y| Z

S

10

Classes|None, A | B | D | E | F | G K/ M| N[R

Table 5.23. TSL Network 8, Test Data Recognition Results

75

5.6.9. TSL Results Discussion

From the overall results it seems that best input for a two hand set was approximate
finger information which gave good results. One hand set was not correctly classified, this
in fact due to fact that C, U, V and L signs are similar; which all have just 2 finger location
information. Another reason is the semi-automatic training construction system which in

fact was not manually cut and pasted, in contrary to most works in the literature.

It is well known that when the training set was manually created by cropping the
hand regions manually, when the test inputs are from that set system will in fact have a

recognition rate of 90 per cent and above.

76

5.7. Conclusion and Future Work

The system proposed here is a fast and easy way of recognizing geometrically
seperable hand gestures. The training gestures used in this system are semi-automatically
constructed, instead of manually cropping hand area from each image (as the case in the
literature). Because of this feature this system can grow itself easily for adapting class sizes

or people.

In the ASL dataset with 8 classes more than 81 per cent correct recognition was
achieved with only a 9x1 geometrical feature vector, this was due to the fact that 8 classes

was geometrically seperable; meaning that their shape were not similar.

In the TSL one hand dataset, it is seen that C, V, U and L signs all have nearly same
geometrical features (only two finger positions used to identify), so system was not good at
recognizing these shapes with just image moments. On the other hand a 74 per cent correct
recognition rate of 14 different two hand gestures is good. Additional finger information

vector seems to have good results.

The drop-down in recognition rate can be described by the training sets robustness.
Since the training set is semi-automatically constructed in some cases not all the hand
information can be obtained, this gets noisy pixels in the binary image. A solution to this
problem can be training the color-probability tracker with a lot more than 20 the class

images in the dataset.

Most of the work on the literature seems to work on one hand gestures, using either
finger positions or geometric properties. Rarely researcher work on two-hand recognition
systems, those who do that use dynamic models for two hand recognition. System
proposed here uses the features used in static one-hand gesture recognition literature for
two-hand gesture recognition. 74 per cent recognition rate is a nice introduction for two

hand gesture recognition systems.

77

Off-line gesture recognition system proposed in thesis is a flexible system. As
introduced by using CAMSHIFT color tracker, with some hand gesture flags, this system
can easily work in an on-line fashion. This can provide us to navigate a robot, or navigate

mouse pointer and use keyboard with visual hand gestures.

Future work on this gesture recognition system can be adding dynamic hand gesture
recognition system, which can be classified as time —delayed neural networks or Hidden
Markov Models.

78

APPENDIX A: DATABASE

In this thesis all the experiments are done using Matlab 7.0.1 computer program.
Image capture is done with a simple USB camera. The gesture database was constructed
and Matlab program was tested on a Pentium IV 3 GHz. Computer with 1 GB memory.

Gesture database constructed can be found in the delivered via CD.

79

REFERENCES

[1] C. Lee and Y. Xu, “Online, Interactive Learning of Gestures for Human/Robot
Interfaces”, IEEE International Conference on Robotics and Automation, vol. 4, pp 2982-
2987, Minneapolis, 1996

[2] G.D. Kessler, L.F. Hodges and N. Walker. "Evaluation of the CyberGlove(TM) as a
Whole Hand Input Device", ACM Transactions on Computer-Human Interaction, vol. 2,
No. 4, pp. 263-283, Dec. 1995

[3] S. Akyol, U. Canzler, K. Bengler and W. Hahn,. “Gestensteuerung fiir
Fahrzeugbordsystem ”, Mustererkennung 2000, 22. DAGM-Symposium, pp. 139-146, Kiel,
September 2000

[4] W.Juan, Hand Gesture Telerobotic System using Fuzzy Clustering Algorithms, MSc.
Thesis, Ben-Gurion University of the Negev, Israel , 2001

[5] S. Marcel S., “Hand posture recognition in a body-face centered space”, Proceedings

of the Conference on Human Factors in Computer Systems (CHI), 1999

[6] S.Marcel, “Hand Gesture Recognition Using Input-Output Hidden Markov Models”,
Fourth IEEE International Conference on Automatic Face and Gesture Recognition, pp.
456, Grenoble, France, 2000

[7] W.T. Freeman and M. Roth, “Orientation Histograms for Hand Gesture
Recognition”, IEEE International Workshop on Automatic Face and Gesture Recognition,
Zurich, Switzerland, 1995.

[8] M. Kohler, “Vision Based Hand Gesture Recognition Systems™ [webpage]. Available
at HTTP: http://ls7-www.cs.uni-dortmund.de/research/gesture/vbgr-table. html

[9] R.C. Gonzales and R. E. Woods, Digital Image Processing, 2" Ed., Prentice-Hall,
2002.

80

[10] Matlab 7.0.1 Image Processing Toolbox, Users Guide, Version 5, The MathWorks
Inc., Natick, MA, 2004.

[11] W. Burger, “Connected Component Labeling Algotithms”, [webpage]. Available at
HTTP: http://webster.fh-hagenberg.at/staff/burger/Iva/dim/uebungen/region-labeling.pdf

[12] R.C. Gonzales, R. E. Woods and S.L. Eddins, Digital Image Processing using
Matlab, Prentice-Hall, 2004.

[13] M.J. Jones and J.M. Regh, “Statistical color models with application to skin
detection”, Proc. Of the CVPR '99, vol.1 , pp. 274-280, 1999,

[14] D. Comaniciu and P. Meer, “Robust analysis of feature spaces: Color image
segmentation”, International Conference on Computer Vision and Pattern Recognition,
pp. 750-755, San Juan, Puerto Rico, 1997

[15] “Open Source Computer Vision Library”, [webpage] (2005, May) Available at
HTTP: http://www.intel.com/research/mrl/research /opencv

[16] W.T. Freeman, K. Tanaka, J. Ohta, and K. Kyuma, “Computer Vision for Computer
Games”, Int. Conf- On Automatic Face and Gesture Recognition, pp.100-105, 1996.

[17] M.K.Hu, "Visual pattern recognition by moment invariants", IRE Trans. Inform.
Theory, vol. IT-8, pp. 179-187, Feb. 1962.

[18] S. Haykin, Neural Networks: A Comprehensive Foundation, 2" Ed., Prentice-Hall,
1999.

[19] W.S. McCulloch and W.H. Pitts, “A logical calculus of the ideas immanent in
nervous activity”, Bulletin of Mathematical Biophysics, pp. 115-133, 1943

81

[20] D. Rumelhart, G. Hinton, and R. Williams, “Learning internal representations by
error propagation”, in Parallel Distributed Processing, ch.8, MIT Press, Cambridge, MA,
1986

[21] Matlab 7.0.1 Neural Networks Toolbox, Users Guide, Version 4.0.1, The
MathWorks Inc., Natick, MA, 2004.

[22] M. Riedmiller and H. Braun, “A direct adaptive method for faster backpropagation
learning: The RPROP algorithm”, Proceedings International Conference on Neural
Networks, pp. 586-591. San Francisco, 1993.

[23] “Turkish Sign Language”, [webpage] (2005, May) Available at HTTP:
http://turkisaretdili. ku.edu.tr”

