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ABSTRACT

SOLUTIONS OF THE NAVIER-STOKES EQUATIONS AND
TECHNOLOGICAL APPLICATIONS USING MATRIX-DISTRIBUTION
WITH N-METHODS

The interaction of an externally imposed magnetic and electric field on the laminar
flow of a conducting fluid in a channel is studied using computational techniques. The
Navier-Stokes (N-S) equations and the equations describing the electromagnetic field
(MHD) are solved simultaneously in a computational fluid dynamics code that utilizes a
matrix distribution scheme. The flow considered is two-dimensional on x-y plane. The
MHD flow includes an imposed electric and magnetic field acting also on this plane along
the central region of the channel and activated by a switch at a specified time (after the
vertical flow reaches steady state). A magnet is placed on both sides of the channel and an
external magnetic field configuration is obtained in the direction connecting the left and
right walls. In addition, an external electric field is applied in perpendicular direction such
that ExB becomes opposite to gravitational acceleration direction. This is done to slow
down (or even control) the vertical velocity in the channel. The calculations are done with
a new solver using a matrix distribution scheme that works on structured and unstructured
triangular meshes. The N-S and MHD equations are first written in nondimensional forms
and the numerical scheme was obtained. For time iterations , a 3-stage Runga-kutta
method is used. The numerical results show that this computer code is capable of

resolving different types of problems in different geometries.



OZET

NAVIER-STOKES DENKLEMLERININ MATRIiS DAGILIMI VE N METODU
ILE NUMERIK COZUMLERI VE TEKNOLOJIK UYGULAMALARI

Dss elektrik ve manyetik alanlarin kanallarda akan iletken akigkanlara etkisi niimerik
tekniklerle incelenmistir. Hidrodinamigi, N-S ve elektromanyetik alanlari tanimlayan
Maxwell denklemleri, matris dagilimi metodu ile birlikte Magneto. Hidrodinamik
Denklemler (MHD) ¢6ziilmiistiir. MHD akig1 dik bir kanalda ortadaki bélgede bir anahtarla
aniden devreye giren dis elektrik ve manyetik alan icermektedir. Kanalin iki tarafina
yerlestirilen magnet ile soldan saga duvara dogru y6nelen dis manyetik alan uygulanmustir,
Ayrica bu diizleme dik (+z) yoniinde ExB yergekimine dik olacak sekilde bir dig elektrik
alan uygulanmistir. Bunun nedeni, diisgey hiz1 yavaslatmak ve hatta kontrol edebilmektir.
Sonuglar, bunun baz elektrik alan siddetlerinde miimk{in oldugunu géstermektedir.
Hesaplamalar, diizenli ve diizensiz 1zgaralar icin ¢6zen yeni bir bilgisayar kodu ile
yaptlmistir. N-S ve MHD denklemleri ilk 6nce boyutsuz hale getirilmis ve numerik durum
elde edilmistir. Zaman iterasyonlar: i¢in {i¢ kademeli Runga-Kutta metodu kullanilmistir.
Elde edilen sonuglar gelistirilen bu kodun birgok problemi rahathikla ¢dzebilecek
kapasitede oldugunu gostermektedir.
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1. INTRODUCTION

~ The fluid mechanics and plasma physics engineering are two main research fields
which are crucial in understanding the nature of the particle motions under the effects of
internal or external forces. These fields are so important that by carefully examining the
motion of the gases or liquids under the effects of internal or external fields, important
simulated and then manufactured. Writing the conservation equations for all the
constituents (i.e., atoms or molecules) in the system is impossible because of the
requirement of huge number of equations. That’s why, fluid mechanics can be used as a
tool in order to understand the gross behavior of collectively moving particles. If all the
properties of fluids and how these properties affect the fluid’s motion are known, the flow
behavior can be realized. In this thesis, we will first define and classify fluids and discuss
their properties. This will be done in a systematical way by deriving the conservation laws
from the kinetic formulation (i.e., Boltzmann equation: an equation describing the behavior
of the particle distribution function). It will be shown that the moments of Boltzmann
equation lead to the conservation of mass, momentum, and energy in order to describe
hydrdynamics behavior. If the fluid particles can carry charged, Maxwell’s equations must
accompany these conservation laws giving rise to magneto-hydrodynamics (MHD)
equations. This thesis deals with the regular fluid hydrodynamics described by Navier-
Stokes (NS) equations and the MHD in which the motions are affected from electric and
magnetic fields.

A fundamental problem of fluid engineering is to predict the aerodynamic forces,
moments and the heat-transfer rates during the fluid motion within an enclosed volume or
around vehicles or obstacles. In order to predict these aerodynamic forces and moments
with reasonable accuracy, it is necessary to be able to describe the flow pattern in the
medium. The resultant flow pattern depends on the geometry of the medium or the vehicle,
their orientation with respect to the undisturbed free stream, altitude and speed at which the
fluid or vehicle is traveling. In analyzing the various flows that the fluid engineers may
encounter, some assumptions about the fluid or medium properties should be introduced.

In some applications, the temperature variations are so small that they do not affect the



velocity field. In addition, for those applications where the temperature variations have a
negligible effect on the flow field, it is often assumed that the density is essentially
constant.

However, in analyzing high-speed flows, the density variations cannot be neglected.
In that case, the density may be expressed in terms of pressure and temperature. In fact,
for a gas in thermodynamic equilibrium, any thermodynamic property may be expressed as
a function of two other independent, thermodynamic properties. Thus, it is possible to
formulate the governing equations using the enthalpy and the entropy as the flow
properties instead of the pressure and the temperature. In this thesis, incompressible low-
speed flows are considered so that constant density cases are considered. From the point of
view of fluid mechanics, matter can be in one of two states, either solid or fluid. The
technical distinction between these two states lies in their response to an applied shear, or
tangential, stress. A solid can resist a shear stress by a static deformation; a fluid cannot. A
fluid is a substance that deforms continuously under the action of shearing forces. An
important corollary of this definition is that there can be no shear stresses acting on fluid
particles if there is no relative motion within the fluid; that is, such fluid particles are not
deformed. Thus, if the fluid particles are at rest or if they are all moving at the same
velocity, there are no shear stresses in the fluid. This zero shear stress condition is known

as the hydrostatic stress condition.

In problems of interest to this thesis, our primary concern is not with the motion of
individual molecules, but with the general behavior of the fluid. Thus, we are concerned
with describing the fluid motion in spaces that are very large compared to molecular di-
mensions and that, therefore, contain a large number of molecules. The fluid in these
problems may be considered to be a continuous material whose properties can be de-
termined from a statistical average for the particles in the volume, that is, a macroscopic
representation. The assumption of a continuous fluid is valid when the smallest volume of
fluid that is of interest contains so many molecules that statistical averages are meaningful.
In this thesis the properties of fluids which are the temperature, the pressure, the density,

and the viscosity are explained in detail.



The plasma will be explained in the third section of this thesis. A meaningful
definition will be given as in Ref.[1]. Also we will see the applications of plasma physics
in this section. On the other hand we will look at the macroscopic properties of plasma
where we will be able to find the distribution function. As already known the moments of
the distribution function gives us the continuity equations which are the basic equations for

us to solve the magneto-hydrodynamic equations.

Basic conservation laws and the effects of them on Navier-Stokes and MHD
equations will be shown on the fifth section. The a1m of this section is to derive the set of
equations which results from the physical laws of conservation of mass, momentum, and
energy. First of all, the statistical and the continuum methods will be explained to derive
the conservation laws. Then, the Eulerian and the Lagrangian coordinates will be
employed which are the two basic coordinate systems to formulate the conservation laws.
In the Eulerian framework the independent variables are the spatial coordinates x,y,z, and
time t. Most of the problems are solved in this framework. The attention is focused on the
fluid which passes through a control volume which is fixed in space; whereas, in the
Lagrangian approach, attention is fixed on a particular mass of fluid as it flows. This will
be explained more detailly in the fifth section.

The mathematical model of any fundamental fluid dynamics problem is governed by
the Navier-Stokes equations. These equations are important and represent the fluid as a
continuum. The equations conserve mass, momentum, and energy, and can be derived
either an integral or a differential approach. The integral form of the equations is derived
using Reynolds Transport Theorem (RTT). [2], [3]. The approach we follow in this thesis

is given briefly in section six.

The definition of magnetohydrodynamics (MHD) which is used in this thesis, is,
when a conducting fluid or an ionized gas, a plasma, moves in a rﬁagnetic field an electric
field is produced and an electric current appears. In turn, the interaction of the current with
the magnetic field changes the motion of the fluid and changes the magnetic field.
Magnetohydrodynamics is that part of the mechanics of continuous media which studies



the motion of electrically conducting media in the presence of a magnetic field. [4]. In
other words, magnetohydrodynamics studies the physics of fluid, or gaseous conductors in
a magnetic field. Apart from this definition, in which the subject of the studies is
indicated, but not the approximation which is applied (MHD in the wider sense), one
understands by magnetohydrodynamics the low-frequency limit when one neglects not
only kinetic effects, which occur due to the thermal spread of the particles, but also the

difference in motion of the various kinds of ions, and neutral particles. [5]

In this thesis, we studied with the incompressible fluids which is described in detail
in the next paragraph.

The Navier-Stokes equations simplify considerably for incompressible fluids for
which the specific mass may be considered as constant. This leads generally to a separation
of the energy equation from the other conservation laws if the flow remains isothermal.

This is the case for many applications which do not involve heat transfer.

For flows involving temperature variations the coupling between the temperature
field and the fluid motion can occur through various effects, such as variations of
viscosity or heat conductivity with temperature; the influence of external forces as a
function of temperature (for example, buoyancy forces in atmospheric flows); and

electrically, mechanically or chemically generated heat sources.

In the case of incompressible flows the mass conservation equation reduces to
V.V =0 which appears as a kind of constraint to the general time-dependent equation of

motion.

For incompressible flows, an alternative formulation can be obtained through the

Helmbholtz vorticity .

If no density stratification is to be considered the contribution of the pressure term
disappears completely from the vorticity equation. Moreover, for plane two-dimensional
flows the first term of the right-hand side vanishes. The system of equations for
incompressible flow presents a particular situation in which one of the five unknowns,

namely the pressure, does not appear under a time-dependence form due to the non-



evolutionary character of the continuity equation. This actually creates a difficult situation
for the numerical schemes and special techniques have to be adapted in order to treat the
continuity equation. For more details we refer the reader to the corresponding sections of
the thesis.An equation for the pressure can be obtained by taking the divergence of the
momentum equation which can be considered as a Poisson equation for the pressure for a

given velocity field.

For laminar, incompressible, isothermal flows no additional input is necessary to.
solve the system of flow equations besides the value of the fluid constant p. Therefore it
can be considered that the domain of laminar flows can be completely described for any set
of initial and boundary conditions by computation, without having to resort to additional
empirical information. Today, this phase can be considered to be close to realization, even

for three-dimensional flow situations at reasonable computer times.

Direct simulation for large-scale coherent structures. The numerical simulation of
vortex shedding behind bluff bodies is of importance in view of applications such as
atmospheric flows around buildings, vehicle aerodynamics or combustor flows. An
impressive example of computation of the vortex shedding created by the flow around a
square cylinder has been reported by Davis et al (1984). The calculated flow field with a
visualization under similar conditions in a wind tunnel at a Reynolds number of Re = 550.
An illustration of a sumlar computation by these authors of an unstable mixing layer

compared with visualization under the same conditions.

These results emphasize the stage achieved nowadays in the numerical computation
of complex flow fields via the resolution of Navier-Stokes equations. Although, as can be
seen from the above results, many aspects of the flow can be reproduced, they are still to
be considered as first approximations, since these computations are two-dimensional and

do not contain the effect of the small-scale turbulence.

The system of Navier-Stokes equations is indeed valid for the laminar flow of a
viscous, Newtonian fluid. In reality, the flow will remain laminar up to a certain critical
value of the Reynolds number V = Ly, where V and L are representative values of velocity
and length scales for the considered flow system. Above this critical value the flow
becomes turbulent and is characterized by the appearance of fluctuations of all the



variables (velocity, pressure, density, temperature, etc.) around mean values. These
fluctuations are of a statistical nature and hence cannot be described in a deterministic way.
However, they could be computed numerically in direct simulations of turbulence, such as
the ‘large eddy simulation’ approach, whereby only the small-scale turbulent fluctuations
are modeled and the larger-scale fluctuations are computed directly. The reader can find a
review of the state of the art of direct numerical simulation of turbulence in Rogallo and
Moin (1984) and Moin (1984). Although this approach requires considerable computer
resources, it has already led to very encouraging results.

At present these approaches are still far from being applicable for practical
calculations in industrial environments, due to the considerable requirements they put on
computational resources. There is no doubt, however, that these methods will become
increasingly important in the future, since they require the lowest possible amount of

external information in addition to the basic Navier-Stokes equations.



2. THE PROPERTIES OF FLUIDS

From the point of view of fluid mechanics, matter can be in one of two states, either
solid or fluid. The technical distinction between these two states lies in their response to an
applied shear, or tangential, stress. A solid can resist a shear stress by a static deformation;
a fluid cannot. A fluid is a substance that deforms continuously under the action of
shearing forces. An important corollary of this definition is that there can be no shear
stresses acting on fluid particles if there is no relative motion within the fluid; that is, such
fluid particles are not deformed. Thus, if the fluid particles are at rest or if they are all
moving at the same velocity, there are no shear stresses in the fluid. This zero shear stress

condition is known as the hydrostatic stress condition.

A fluid can be either a liquid or a gas. A liquid is composed of relatively close
packed molecules with strong cohesive forces. As a result, a given mass of liquid will
occupy a definite volume of space. If a liquid is poured into a container, it assumes the
shape of the container up to the volume it occupies and will form a free surface in a
gravitational field if unconfined from above. The upper (or free) surface is planar and
perpendicular to the direction of gravity. Gas molecules are widely spaced with relatively
small cohesive forces. Therefore, if a gas is placed in a closed container, it will expand
until it fills the entire volume of the container. A gas has no definite volume. Thus, if it is

unconfined, it forms an atmosphere that is essentially hydrostatic.

2.1. Fluid As A Continuum

When developing equations to describe the motion of a system of fluid particles,
one can either define the motion of each and every molecule or one can define the average
behavior of the molecules within a given control volume. The size of the control volume is
important, but only in relation to the number of fluid particles contained in the volume and
to the physical dimensions of the flow field. Thus, the control volume should be large
compared with the volume occupied by a single molecule so that it contains a large number
of molecules at any instant of time. Furthermore, the number of molecules within the

volume will remain essentially constant even though there is a continuous flux of



molecules through the boundaries. If the control volume is too large, there could be a
noticeable variation in the fluid properties determined statistically at various points in the

volume.

In problems of interest to this thesis, our primary concern is not with the motion of
individual molecules, but with the general behavior of the fluid. Thus, we are concerned
with describing the fluid motion in spaces that are very large compared to molecular di-
mensions and that, therefore, contain a large number of molecules. The fluid in these
problems may be considered to be a continuous material whose properties can be de-
termined from a statistical average for the particles in the volume, that is, a macroscopic
representation. The assumption of a continuous fluid is valid when the smallest volume of

fluid that is of interest contains so many molecules that statistical averages are meaningful.

The number of molecules in a cubic meter of air at room temperature and at sea-level
pressure is approximately 2.5x10%. Thus, there are 2.5x10° molecules in a cube 0.01 mm
on a side. The mean free path at sea level is 6.6x 10 m. There are sufficient molecules in
this volume for the fluid to be considered a continuum, and the fluid properties can be
determined from statistical averages. However, at an altitude of 130 km, there are only
1.6x10"" molecules in a cube 1 m on a side. The mean free path at this altitude is 10.2 m.

Thus, at this altitude the fluid cannot be considered a continuum.

2.2. Fluid Properties

By employing the concept of a continuum, we can describe the gross behavior of
the fluid motion using certain observable, macroscopic properties. Properties used to de-
scribe a general fluid motion include the temperature, the pressure, the density, and the vis-

cosity.



2.2.1. Temperature

We are all familiar with temperature in qualitative terms; that is, an object feels hot
(or cold) if it is touched. However, because of the difficulty in quantitatively defining the
temperature, we define the equality of temperature. Two bodies that are in thermal contact
have equal temperature when no observable property changes. Statistically, the number of
possible states is related to the energy of the particles. The temperature is a quantity which
shows how the number of states changes with energy changes.

2.2.2. Pressure

Because of the random motion due to their thermal energy, the individual molecules
of a fluid would continually strike a surface that is placed in the fluid. These collisions
occur even though the surface is at rest relative to the fluid. By Newton’s second law, a
force is exerted on the surface equal to the time rate of change of the momentum of the
rebounding molecules. Pressure is the magnitude of this force per unit area of surface.
Since a fluid that is at rest cannot sustain tangential forces, the pressure on the surface must
act in the direction perpendicular to that surface. Furthermore, the pressure acting at a point
in a fluid at rest is the same in all directions. Standard atmospheric pressure is defined as
the pressure that can support a column of mercury 760 mm in length when the density of
the mercury is 13.5951 g/cm® and the acceleration due to gravity is the standard value. The
standard atmospheric pressure is 1.01325x10° N/m% In many fluid flow applications, the
difference between the local pressure and the atmospheric pressure is utilized. Many
pressure gages indicate the difference between the absolute pressure and the atmospheric
pressure existing at the gage. In this thesis, the pressure differences will be utilized in

deriving a physically meaningful dimensionless momentum equation.

2.2.3. Density

The density of a fluid at a point in space is the mass of the fluid per unit volume sur-
rounding the point. As is the case when evaluating the other fluid properties, the

incremental volume must be large compared to molecular dimensions but smaller than the
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size of the system. Thus, provided that the fluid may be assumed to be a continuum, the
density at a point is defined as:

. Om
P=imso @

where m is the mass, Q is the volume. In general, the density of a gas is a function of the

composition of the gas, its temperature T, and its pressure P, the relation
p (composition,T,P) (2.2)

is known as an equation of state. For a thermally perfect gas, the equation of state is

P=RT 2.3)
where p is the density, P is the pressure,T is the temperature, and R is the gas constant
which has a particular value for each substance. The gas constant for air has the value
287.05 N.m/kg .K in SI units. The temperature in Equation (2.3) should be in absolute
units. Thus, the temperature is in K but never in °C. For the fluid flows at approximately
100 m/s, or less, the density of the air flowing is assumed constant when obtaining a
solution for the flow field. Rigorous application of Equation (2.3) would require that the
pressure and the temperature remain constant (or change proportionally) in order for the
density to remain constant throughout the flow field. The assumption of constant density
for velocities below 100 m/s is a valid approximation because the pressure changes that
occur from one point to another in the flow field are small relative to the absolute value of
the pressure. In this thesis, slow motions are considered such that the density remains
constant at all times and that the flows that are investigated display incompressible

behavior.
2.2.4. Viscosity

In all real fluids, a shearing deformation is accompanied by a shearing stress. The

fluids of interest in this thesis are Newtonian in nature; that is, the shearing stress is
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proportional to the rate shearing deformation. The constant of proportionality is called the
coefficient of viscosity, u .Thus,

shear stress = x4 . (transverse gradient of velocity) 2.4)

Being a transport property, viscosity of a fluid relates to the transport of momentum
in the direction of the velocity gradient (but opposite in sense). In general, the coefficient
of viscosity is a function of the composition of the gas, its temperature, and its pressure.
For temperatures below 3000 K, the viscosity of air is independent of pressure. In this
temperature range, we could use Sutherland’s equation to calculate the coefficient of
viscosity[3]:

Tl.S

p=1458x10"" ————
T+110.4

2.5)

where T is the temperature in K and the units for p are kg/s . m.

Equations used to calculate the coefficient of viscosity depend on the model used to
describe the intermolecular forces of the gas molecules, so that it is necessary to define the
potential energy of the interaction of the colliding molecules. It is noted that the potential
for the Sutherland model is described physically as a rigid, impenetrable sphere,
surrounded by an inverse-power attractive force. This model is qualitatively correct in that
the molecules attract one another when they are far apart and exert strong repulsive forces

upon one another when they are close together.

Equation (2.5) closely represents the variation of p with temperature over a “fairly”
wide range of temperatures. They caution, however, that the success of Sutherland’s
equation in representing the variation of p with temperature for several gases does not
establish the validity of Sutherland’s molecular model for those gases. “In general it is not
adequate to represent the core of a molecule as a rigid sphere, or to take molecular
attractions into account to a first order only. The greater rapidity of the experimental
increase of x with T, as compared with that for non-attracting rigid spheres, has to be

explained as due partly to the ‘softness’ of the repulsive field at small distances and partly

to
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attractive forces which have more than a first-order effect. The chief value of Sutherland’s
formula seems to be as a simple interpolation formula over restricted ranges of tem-

perature.”

The Lennard-Jones model for the potential energy of an interaction, which takes into
account both the sofiness of the molecules and their mutual attraction at large distances,
has been used [8] to calculate the viscosity and the thermal conductivity of gases at high
temperatures. The coefficients of viscosity for air as tabulated by Svehla are compared
with the values calculated using Equation (2.5) in Table 2.1. These comments are made to
emphasize the fact that even the basic fluid properties may involve approximate models

that have a limited range of applicability.

Table 2.1 Comparison of the coefficient of viscosity for air as tabulated [8] and
as calculated using Sutherland’s equation, Equation (2.5).

T H H X10°
10°
® (ke (kg/m-5)
S)Ref[ 7 Equation (2.5)
2 1.36 1.329
4C 227 2.285
6C 2.99 3.016
8C 3.61 3.624
1€
417 4.152
0
12
4.69 4.625
0
14
5.19 5.057
0
1¢
5.67 5.456
0
18
6.12 5.828
0
2C
6.55 6.179
0
22
697 6.512

24
1.37 6.829
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2.2.5. Kinematic Viscosity

The fluid engineer may encounter many applications where the ratio p/p has been
replaced by a single parameter. Because this ratio appears frequently, it has been given a
special name, the kinematic viscosity. The symbol used to represent the kinematic vis-

cosity is v:

(2.6)

<
Il
=

In this ratio, the force units (or, equivalently, the mass units) cancel. Thus, v has the
dimensions of LT .
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3. THE DEFINITION OF PLASMA

It is often said that 99% of the matter in the universe is in the plasma state; that is, in
the form of an electrified gas with the atoms dissociated into positive ions and negative
electrons. This estimate may not be very accurate, but it is certainly a reasonable one in
view of the fact that stellar interiors and atmospheres, gaseous nebulae, and much of the
interstellar hydrogen are plasmas. In our own neighbourhood, as soon as one leaves the
earth’s atmosphere, one encounters the plasma comprising the Van Allen radiation belts
and the solar wind. On the other hand, in our everyday lives encounters with plasmas are
not limited to a few examples: the flash of a lightning bolt, the soft glow of the Aurora
Borealis, the conducting gas inside a fluorescent tube or neon sign, and the slight amount
of jonization in a rocket exhaust. Any ionized gas cannot be called a plasma, of course;
there is always some small degree of ionization in any gas. A useful definition is as

follows:

A plasma is a quasineutral gas of charged and neutral particles which exhibits

collective behavior. [1]

Consider the forces acting on a molecule of ordinary air. Since the molecule is

neutral, there is no net electromagnetic force on it, and the force of gravity is negligible.

The molecule moves undisturbed until it makes a collision with another molecule,
and these collisions control the particle’s motion. A macroscopic force applied to a neutral
gas, such as from a loudspeaker generating sound waves, is transmitted to the individual
atoms by collisions. The situation is totally different in a plasma, which has charged
particles. As these charges move around, they can generate local concentrations of
positive or negative charge, which give rise to electric fields. Motion of charges also
generates currents, and hence magnetic fields. These fields affect the motion of other

charged particles far away.
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Let us consider the effect on each other two slightly charged regions of plasma
separated by a distance r (Fig.3.1). The Coulomb force between A and B diminishes as

1/r*. However, for a given solid angle (that is, Ar/r = constant ), the volume of plasma in

B that can affect A increases as r°.

Figure 3.1. The long range of electrostatic forces in a plasma

Therefore, elements of plasma exert a force on one another even at large distances.
It is this long-ranged Coulomb force that gives the plasma a large repertoire of possible
motions and enriches the field of study known as plasma physics. In fact, the most
interesting results concern so-called ‘collisionless’ plasmas, in which the long-range
electromagnetic forces are so much larger than the forces due to ordinary local collisions
that the latter can be neglected altogether. By ‘collective behavior’ we mean motions that
depend not only on local conditions but on the state of the plasma in remote regions as

well.

3.1 Applications of Plasma Physics

Plasmas can be characterized by the two parameters n and kT.. Plasma applications
cover an extremely wide range of n and kT,: n varies over 28 orders of magnitude from 10°
to 10** m3, and kT can vary over seven orders from 0.1 to 10° eV. Some of these
applications are discussed very briefly below. The tremendous range of density can be
appreciated when one realizes that air and water differ in density by only 10%, while water
and white dwarf stars are separated by only a factor of 10°. Even neutron stars are only 10

times denser than water. Yet gaseous plasmas in the entire density range of 10*® can be
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described by the same set of equations, since only the classical (non-quantum mechanical)

laws of physics are needed.

3.1.1. Gas Discharges (Gaseous Electronics)

The earliest work with plasmas was that of Langmuir, Tonks, and their collaborators
in the 1920°s. This research was inspired by the need to develop vacuum tubes that could
carry large currents, and therefore had to be filled with ionized gases. The research was
done with weakly ionized glow discharges and positive columns typically with kT.=2 eV
and 10<n<10"® m?, It was here that the shielding phenomenon was discovered; the sheath
surrounding an electrode could be seen visually as a dark layer. Gas discharges are
encountered nowadays in mercury rectifiers, hydrogen thyratrons, ignitrons, spark gaps,
welding arcs, neon and fluorescent lights, and lightning discharges. Thus, understanding
the behavior of the gas discharges is crucial in the development of such high-tech

equipments.

3.1.2. Controlled Thermonuclear Fusion

Modern plasma physics had it beginnings around 1952, when it was proposed that
the hydrogen bomb fusion reaction be controlled to make a reactor. The principal

reactions, which involve deuterium (D) and tritium (T) atoms, are as follows:

D+ D—*He+n+32MeV

D+D—>T+p+4.0MeV

D+T—’He+n+17.6MeV

The cross sections for these fusion reactions are appreciable only for incident
energies of D or T above 5 keV (extremely hot). Accelerated beams of deuterons
bombarding a target will not work, because most of the deuterons will lose their energy by
scattering before undergoing a fusion reaction. It is necessary to create a plasma in which the

thermal energies are in the 10-keV range. The problem of heating and containing such a
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plasma is responsible for the rapid growth of the science of plasma physics since 1952. The
problem is not totally solved, and most of the active research in plasma physics is directed

toward the solution of this problem.

3.1.3. Space Physics

Another important application of plasma physics is in the study of the earth’s
environment in space. A continuous stream of charged particles, called the solar wind,
impinges _on the earth’s magnetosphere, which shields us from this radiation and is
distorted by it in the process. Typical parameters in the solar wind are n =5 x 106 m>, kT; =
10 eV, kT, =50 eV, B = 5x10™T, and drift velocity 300 km/sec. The ionosphere, extending
from an altitude of 50 km to 10 earth radii, is populated by a weakly ionized plasma with
density varying with altitude up to n = 10" m™ . The temperature is only 10" ¢V. The Van
Allen belts are composed of charged particles trapped by the earth’s magnetic field. Here
we have n<10° m™, kT, <1keV, kT;- 1 €V, and B =500 x 10°T.

3.1.4. Modern Astrophysics

Stellar interiors and atmospheres are hot enough to be in the plasma state. The
temperature at the core of the sun, for instance, is estimated to be 2 keV; thermonuclear
reactions occurring at this temperature are responsible for the sun’s radiation. The solar
corona is a tenuous plasma with temperatures up to 200 eV. The interstellar medium
contains ionized hydrogen with n=10® m™. Various plasma theories have been used to
explain the acceleration of cosmic rays. Although the stars in a galaxy are not charged,
they behave like particles in a plasma; and plasma kinetic theory has been used to predict
the development of galaxies. Radio astronomy has uncovered numerous sources of
radiation that most likely originate from plasmas. The Crab nebula is a rich source of
plasma phenomena because it; is known to contain a magnetic field. It also contains a
visual pulsar. Current theories of pulsars picture them as rapidly rotating neutron stars with

plasmas emitting synchrotron radiation from the surface.
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3.1.5. MHD Energy Conversion and Ion Propulsion
Getting back down to earth, we come to two practical applications of plasma physics.

MHD energy conversion utilizes a dense plasma jet propelled across a magnetic field to

generate electricity Figure 3.2.

S)

Figure 3.2. Principle of the MHD generator.

The Lorentz force gv X B, where v is the jet velocity, causes the ions to drift upward
and the electrons downward, charging the two electrodes to different potentials. Electrical

current can the be drawn from the electrodes without the inefficiency of a heat cycle.

The same principle in reverse has been used to develop engines for interplanetary
missions. In Figure 3.3, a current is driven through a plasma by applying a voltage to the
two electrodes. The jxB force shoots the plasma out of the rocket, and the ensuing reaction
force accelerates the rocket. The plasma ejected must always be neutral; otherwise, the

space ship will be charged to a high potential.

Figure 3.3. Principle of plasma-jet engine for spacecraft propulsion.
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3.1.6. Solid State Plasmas

The free electrons and holes in semiconductors constitute a plasma exhibiting the
same sort of oscillations and instabilities as a gaseous (plasma. Plasmas injected into InSb
have been particularly useful in studies of these phenomena. Because of the lattice effects,
the effective collision frequency is much less than one would expect in a solid with n= 10%
m™. Furthermore, the holes in a semiconductor can have a very low effective mass—as
little as 0.01 m.~—and therefore have high cyclotron frequencies even in moderate magnetic
fields. If one were to calculate Np for a solid state plasma, it would be less than unity
because of the low temperature and high density. Quantum mechanical effects (uncertainty
principle), however, give the plasma an effective temperature high enough to make Np
respectably large. Certain liquids, such as solutions of sodium in ammonia, have been

found to behave like plasmas also.

3.1.7. Gas Lasers

The most common method to “pump” a gas laser—that is, to invert the population in
the states that give rise to light amplification—is to use a gas discharge. This can be a low-
pressure glow discharge for a dc laser or a high-pressure avalanche discharge in a pulsed
laser. The He-Ne lasers commonly used for alignment and surveying and the Ar and Kr
lasers used in light shows are examples of dc gas lasers. The powerful COz laser is finding
commercial application as a cutting tool. Molecular lasers make possible studies of the
hitherto inaccessible far infrared region of the electromagnetic spectrum. These can be
directly excited by an electrical discharge, as in the hydrogen cyanide (HCN) laser, or can
be optically pumped by a CO; laser, as with the methyl fluoride (CH3F) or methyl alcohol
(CH3;0H) lasers. Even solid state lasers, such as Nd-glass, depend on a plasma for their
operation, since the flash tubes used for pumping contain gas discharges.
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4. MACROSCOPIC PROPERTIES OF PLASMAS

Although an exact knowledge of the state of a many-body system requires that the
position and velocity of all the particles in the system be known, much of the behavior of
such a system can be described in terms of macroscopic variables such as the density, the
temperature, the average velocity, and the pressure. These quantities are related through
the conservation laws and through the dynamical equations for momentum and energy
transport. The purpose of this thesis is to define these variables and their relationships,
starting from an exact many-body description, and then solve these equations to illustrate
some macroscopic properties of plasmas. These variables and equations are a reduced
description of the plasma, i.e., they contain less information than the complete many-body
description. Therefore there are some plasma properties they cannot describe (for
example, Landau damping and velocity-space instabilities). However, they are sufficient

to describe a wide variety of plasma effects and applications.

The macroscopic variables for a plasma are defined in terms of velocity moments of
the distribution function f(r,v,t), which containes the statistical description of the system.
The relationships between these macroscopic variables are derived from the differential

equation for the distribution function.

4.1. Macroscopic Variables of a Plasma

The one-body distribution is a reduced description of the plasma state; however, it is
not a macroscopic observable of either a plasma or neutral gas. The macroscopically
observable quantities are found from the velocity moments of the one-body distribution
function.

4.1.1 Density

The number of particles of species o at point r confined in the volume in

configuration space (i.e., r-v space) at time t is given by
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n,(r.t)= [8,f,(r,v.t)d’ @4.1)

where f, is the one-body distribution function (4.1), and 1, =N, /Q is the number

density. The mass density p,,, and the charge density p,, are similarly defined; i.e.,

Pue(r,t)=8,m, [£,(r,v,1)d’v 4.2)
pqa(r’ t)= -ﬁaqu Jlfa (l', v,t)l3v (43)

4.1.2. Particle Flux and Velocity

The flux of particles of species o crossing a unit area in configuration space per unit

time at the point x and at time t is

T ()=, [vf,@c,v, v =0 (r. )V, (1) (4.4)

where V_ is the average velocity of particles of species o defined by

.“Vf"- (r=V,t)d3v ﬁa. 3
Jlfa (l‘, Vat)dBV - na(r, t) J.Vfu (I',V,t)i v (45)

v (r.t)=

4.1.3. Current Density

The electric current density for charged particles of species a at the point r in

configuration space at time t is

Ja(ra t)= Qoll, IVfadsv = qara (l", 1:) = qana(r, t)va(r, t) (4.6)
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4.1.4. Heat Flux

The flux of kinetic energy for particles of species a crossing a unit area in

configuration space per unit time at the point r and at time t is

H,(r,t)= —;—ﬁamu [v(v-vE. @ v.t)d (4.7)

4.1.5. Pressure Tensor

The pressure tensor for particles of species & at the point r in configuration space at
time t is
P (r,t)=7,m, I(V—VQXV—Vu)fu(I‘,V,t)d3V (4.8)

For a sypherically symmetric velocity distribution this reduces to a diagonal

pressure tensor
p, 0 O
P,={0 p, O (4.9)
0 0 p,
and p , is the scalar pressure given by
p, = 53—“- [6r=V,) £,8v =n,xT, (4.10)

The lack of spherical symmetry of the pressure tensor is often related to collision
rates (e.g., to the viscosity of the fluid), and therefore the pressure tensor is normally

broken up into two parts, one traceless, the other diagonal: P, =II+1Ip,, where p, is
defined by (4.10), and

1= Iﬁumafu[(v —VaXv—Va)—él(v -V,)- (v—Va)]d3v (4.11)

where II includes the off-diagonal terms of pressure tensor.
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4.2.Macroscopic Equations for a Plasma: Fluid Equations

Just as the velocity moments of the distribution function give the macroscopic
variables, so do the velocity moments of the plasma kinetic equation (i.e., Boltzmann
equation) gives the equations that are satisfied by the macroscopic variables, and that
describe the time evolution of the plasma from a macroscopic point of view. Because the
equations obtained are identical with the continuum hydrodynamic equations, the theories

using the macroscopic equation are calledfluid theories .

4.2.1. Continuity Equation (0™ Moment)

The integral of Boltzmann equation over all velocity space is

of 5. q vxB\ &, Bf ).,
gy f 430 (g 2 f =l 4.12
J’(at v61'“-'_mm<—l_ c>6v" &)dv (*12)

where f, =f, (r,v,t) is the distribution function and &f, /8t represents the collisional

terms. The right side of Equation (4.12) and the third term on the left-hand side of it both

vanish, since both are of the form

%. Ial (r,,-,ry Jidr, ---drdv, ---va]dBvl (4.13)
1

which is zero, since (V] = ioo) = 0. This shows that collisions change the velocity of the
particles in the system but do not directly affect the spatial density. Eq. (4.12) is nothing

but the continuity equation obtained after integrating over d’v , is

2 o 4V, Y, (0= 0 an

Note that V = 6/0x + 0/0y + 0/0z has been used in this macroscopic equation, along
with the fact that
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jv-gfd3v=% [fvd*v=V-nV (4.15)

This continuity equation represents conservation of particles. Source or sink terms
on the right-hand side of Equation (4.15) would represent ionization or recombination.
The equation for mass continuity is obtained from Equation (4.15) by multiplying through
by the mass per particle m, ; that is,

AR A AR @.16)

where p.,,=n,m is the mass density. The equation for continuity of charge is obtained

from Equation (4.15) by multiplying through by the charge per particle g, ; that is,

562 e )+ V- (0,07, )=0 (4.17)

where p,, =n,q, isthe electric charge density.

4.2.2. Momentum Transfer Equation

The integral over all velocity space of the product of the plasma kinetic equation

(Boltzmann equation) and the momentum m,v of a particle of species « is

o, 8. q vxB\ 8 )., 5, s
e yy.Pp 19 (g, g latv= Sagiy . (4.18
Im“v(at Ve Tm < c > ov “) Y Imuv st (4.18)

o

With the aid of the continuity equation and in terms of previously defined variables,
Equation (4.18) reduces to the momentum transfer equation for particles of species a ;
that is,
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B
n,m, %(Va)'l_ n,m,V, -VV, —naq.,<E+ Vex >+V-Pm
C

o (4.19)
=m, Iﬁav E“d3v ~ -zﬁlnumu(Va -V, Xv,#,)

where <va,,> is a mean collision frequency for momentum transfer from all other types of

plasma particles. By conservation of momentum, the right-hand side of (4.19) vanishes for
collisions between like particles and, for instance, represents a momentum loss for a fast-
moving population due to collisions with a slower moving group of particles. The right-

hand side of Equation (4.19) is often a valid simplification of this resistive term. In (4.19),

P, is the pressure tensor, and the average fields (E) , (B) must be consistent with the

average plasma properties n,, V,, etc., through Maxwell’s equations,

V-(E)=Y 4mn q, +4mp,, (4.20)
10(E) 4x 4n
Vx(B)= r%?) +7Znaanu T (4.21)

a

The first two terms in Equation (4.19) combine to form a ‘comoving’ derivative (that
is, 0/0t+V -0/0r =D/Dt). The combined terms represent the change of momentum per

unit time in the element moving with velocity V_,. The next term is the change of

momentum per unit volume per unit time due to forces exerted by the average fields. The
divergence of the pressure tensor gives the change of momentum per unit volume per unit
time due to spatial inhomogeneities. This term includes the effect of viscosity. If particle
collisions are sufficiently frequent, the pressure term reduces to the gradient of a scalar
pressure (that is, V-P — Vp). This is a frequently used approximation. In this thesis
only simple closure schemes are used; even these lead to considerable complexity. It

should be clear that the fluid theory, though of great practical use, relies heavily on the

cunning of its user
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It is clearly advantageous to choose as simple a closure scheme as possible.
However, the choice of model determines the plasma properties that can be studied, since

the approximations used eliminate certain features of plasma behavior.

Even without specifying a closure scheme, there are two general approaches to a
macroscopic description of a plasma. In one, the ions and electrons are treated as separate
but interacting fluids, each having its own set of equations and properties. In the other, the
plasma is described as one fluid with a net density, velocity, and current at each point. In

this thesis, the second approach is considered.
4.3. One-Fluid Plasma Theory:
4.3.1. Magnetohydrodynamics

By combining the density and velocity of ions and electrons, fluid equations whose
variables are the total mass density, center-of-mass velocity, electric current, and charge
density can be obtained. The one-fluid theory so obtained is a simpler starting point for

many problems, and will be examined in detail.

4.3.2. One-fluid Variables

The mass density in the fluid is defined by

Pm (r, t) = anmnL =n,m, +n,m, (4.22)

where the subscripts e and i refer to electrons and ions respectively. The charge density is

p (r.)= Y n,q, =eln, -n,) (4.23)
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The center-of-mass velocity is given by

Zun“m“va — nemeve + nimivi

V(r, t) - Z:anumm n,m, +n;m,

(4.24)

Note that this form of velocity is identical to Equation (4.5) with the only exception
that the sum is used instead of integration. The total current is

J=Yq,n,V, (4.25)

and the pressure of electrons and ions in the center-of-mass frame is

PM =m,m, [(v—V)v-V),dv (4.26)
and the total pressure is

P=>pM (4.27)

Note that Equation (4.26) is identical to Equation (4.8).

4.3.3. One-Fluid Equations

The differential equations satisfied by the one-fluid variables are obtained by adding
and subtracting the fluid Equations (4.1) to (4.5), which separately describe the behavior of

ions and electrons. Equations for continuity of mass and charge density are simply
obtained from (4.16). Multiplying (4.16) by m, and adding the equations for ions and

clectrons gives

)
%‘—+V-pmV =0 (4.28)

while multiplying (4.1) by q, and adding the equations for ions and electrons gives

%pq +V-J=0 (4.29)
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Similarly, summing Equation (4.19) over ions and electrons gives the equation for

momentum transport in the one-fluid theory.

JxB

d
pm§V+pm(V-V)V=pqE+ ~-V-P (4.30)

The current density is obtained from the generalized Ohm’s law for a plasma, since it

relates the current to the electric field. The collision term, which is 8J /56t

lcol]isions ’ is
often estimated by a linear approximation
of
Y 1.4, IVE‘E— | d*v = —0J (431)

where v is an average collision frequency. In terms of v, the resistivity and conductivity
are defined by

n=—y,0=— (4.32)

Note that the current density satisfies the Ohm’s law, E =nJ in the, static, uniform-

pressure limit.  Equations (4.28) to (4.29) constitute a set of equations for the one-fluid

variables, but of course these equations are also not closed, i.e.,there are more unknowns .
than equations. This situation is not remedied by taking higher moments of the kinetic

equations (4.12), since each new equation contains an additional variable. Closure of

(4.28) to (4.29) is generally achieved by assuming an equation of state. Sometimes the

choice of equation of state (EOS) is plausible. In any event, the choice has a strong effect

on the results found from the fluid equations, and should not be made arbitrarily.

Thermodynamics is an effective tool in deriving physically meaningful EOS.
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4.4. Approximations Commonly Used In One-fluid Theory

Even with a choice of an equation of state, the fluid equations are cumbersome. In
practice, these equations are simplified by a set of assumptions valid for a wide range of
phenomena. Since the assumptions do limit the applicability of the equations, it is
important to take note of them before writing down the commonly used form of the fluid

equations:
Quasineutrality, p,, = p,, (4.33)

A major simplification is achieved by assuming that the charge density vanishes,

p, =0. However, since the charge density does not in fact vanish, the assumption that
n, = Zn, represents an approximation and a loss of information. Yet, because the plasma

as a whole is neutral (N, = ZN, .}, there must be some scale on which (4.33) is valid. This
scale is the Debye length: an excess charge at rest is shielded, i.e., surrounded by a charge

equal and opposite its own, in a distance 4,. Thus, if slow motions of fluid elements of

size greater than 4, are studied, it may be assumed that n, =n,.

2

)
<«<lif =21’ >>1 (4.34)
n T /m

e

n, —n,

where L is the length scale under study. If a system is being studied with a spatial

resolution better than A, or if a phenomenon involves spatial variations on scales L~4,,,

then quasineutrality is a bad assumption. Note that, in general, the assumption (4.33)

implies also
V-J=0 (4.35)
another approximation frequently made is

neV-VV =0 or v-(0v)=0 (4.36)
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these simplifications are valid for a wide class of phenomena. For example, in problems
involving perturbations about an initial state, the initial state will have V=0 in some frame,

and in that frame terms V-V are second-order in the perturbation.

A trivial approximation is to neglect m, /m,, since
e <1 4.37)

However, when used in connection with (4.33), this implies further that
Pm =1,m, (4.38)

In many examples, only phenomena of very low frequency @ and very long spatial
scale L are considered. In these cases, since J = (c/ 41t)(V x B) from Maxwell’s equations,

both JxB and dJ/dt are neglected in Ohm’s law:

114 o JxB B? VxB
—<<1 ~— << ne

I—J—Im_p_{i? ~ o, c L c

(4.39)

Of course, there are problems in which pressure gradients dominate electric fields,
and the JxB term will be important. Another frequent assumption is of isotropic

pressure,

V.P, =Vp, (4.40)

this approximation neglects viscosity effects; it is certainly valid when interparticle
collisions are sufficiently frequent. This statement cannot be made quantitative without
some theory for collisional effects. If the frequency of ion-ion collisions is greater than the
cyclotron frequency or any other frequency considered in the problem, one particular

model, the Navier-Stokes (NS) theory, gives
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R, =LV, —lv, >>1 4.41)
kT

as the criterion for neglecting off-diagonal terms in the pressure tensor. R is called the
Reynolds number. In (4.41) L is a characteristic length, and V|, is a characteristic velocity
of the medium under examination. Because of the simplifications it produces, the
approximation (4.40) is used in the study of nearly collision-free plasma, where (4.41) is
not satisfied. It is a fortunate fact that the plasma equations with V-P = Vp agree with a

wide range of experiments, despite the lack of a clear basis for that approximation. It is

presumed that the plasma frequency @, acts as a ‘collision frequency’ in wiping out off-

diagonal pressure tensor elements.

When the terms JxB, 8J/6t,and Vp are all neglected, the simplified form of
Ohm’s law,

J- G(E+ V:B] 4.42)

is obtained, with o defined by (4.32). Even this simple form of Ohm’s law leads to some
interesting conclusions about the dynamics of a plasma in a strong magnetic field. In
discussing the validity of the simplified Ohm’s law, it should be noted that dimensional
analysis alone shows that the JxB term can be neglected when the characteristic length
scale within which the field properties change is sufficiently long. The criterion for (4.42)
can be expressed explicitly in terms of the length and velocity scales of interest for the

problem. Let L be the length scale for spatial variation of the plasma parameters and V,
be a characteristic velocity of the plasma fluid. Ohm’s law would be made simpler if the

conductivity were infinite. This approximation is valid as follows:

V,
4 anbe neglected in Ohm’s law when R, = 47:0% 4
o c

>>1 (4.43)
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R,, is called the magnetic Reynolds number, and if R,, >>1, Ohm’s law is

VxB
c

E+ 0.

(4.44)

4.5. Simplified One-Fluid Equations And The MHD Equation

A simplified set of one-fluid equations can be obtained in order to describe plasma

phenomena on a long space scale (L - 00). From the discussion in the preceding section,
the approximation n, =#, is valid on a long space scale. In addition, gradient terms (for
example, Vp,VB,V:V, etc.) can be treated as small compared with field terms (for
example, B,E,J,V, etc.). With these approximations, and the neglect of the ratio m, /m,

compared with unity, the one-fluid equations become

op
—2+V-p_ V=0 4.45
=2V, 40,)- [V, V-2, -V, +p.)] (4.46)
VxB m, DJ
E+ = J+ L 4.47
i ne’ Dt (447
vxB=12E, 4 (4.48)
c ot c
16B
VxE=--— 4.49
- (4.49)
along with the boundary condition
V:B=0 (4.50)

and the definition of the comoving derivative
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Y|l

D_%.vy (4.51)
Dt

It is not inconsistent to neglect Vp compared with VxB in Ohm’s law (4.47) and

still retain it in the momentum transport Equation (4.46). This is because all terms on the
right-hand side of (4.46) are proportional to gradients of the physical variable (since
4n/c = VxB). Equation (4.47), on the other hand, includes terms not proportional to

gradients. These terms are treated as large, and gradients are neglected compared with
them.

The set of Equations (4.45) to (4.50) are closed by an equation of state or by some
other model relating the pressure to the density. The usual approximation of
magnetohydrodynamics is to use the assumption of incompressible fluid

V-V=0 (4.52)
or adiabatic fluid
Lop =0 4.53)
or isothermal fluid
f{i =0 (4.54)

or some other closure equation. The one-fluid equation obtained from the transport theory
can also be derived from the continuum approach by assuming control volumes in the fluid
and considering possible forces on them. This procedure will be explained in detail in the
fifth unit.
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5. BASIC CONSERVATION LAWS

The purpose of this chapter is to derive the set of equations which results from the
physical laws of conservation of mass, momentum, and energy. In order to realize this
objective, it is necessary to discuss certain preliminary topics. The first topic of discussion
is the two basic ways in which the conservation equations may be derived, the statistical
method and the continuum method. Having established the basic method to be employed
and the tools to be used, the basic conservation laws are then derived. The conservation of
mass yields the so-called continuity equation. The conservation of momentum leads
ultimately to the Navier-Stokes equations, while the conservation of thermal energy leads
to the energy equation. The derivation is followed by a discussion of charged particle
rotations and Maxwell’s equations to be added to the conservation equations, and finally a
summary of the basic conservation laws that can be used for charged or neutral fluid flows

is given.

5.1. Statistical and Continuum Method

There are basically two ways of deriving the conservation equations which govern
the motion of a fluid. One of these methods approaches the question from the molecular
point of view. That is, this method treats the fluid as consisting of molecules whose
motion is governed by the laws of dynamics. The macroscopic phenomena are assumed to
arise from the molecular motion of the molecules, and the theory attempts to predict the

macroscopic behavior of the fluid from the laws of mechanics and probability theory.

For a fluid which is in a state not too far removed from equilibrium, this approach
yields the equations of mass, momentum, and energy conservation. The molecular
approach also yields expressions for the transport coefficients, such as the coefficient of
viscosity and the thermal conductivity, in terms of molecular quantities such as the forces
acting between molecules or molecular diameters. The theory is well developed for light
gases, but it is incomplete for polyatomic gas molecules and for liquids. It must be noted

that this theory was explained in detail in unit four.
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The alternative method which is used to derive the equations which govern the
motion of a fluid uses the continuum concept. In the continuum approach, individual
molecules are ignored and it is assumed that the fluid consists of continuous matter. At
each point of this continuous fluid there is supposed to be a unique value of the velocity,
pressure, density, and other so-called ‘field variables.” The continuous matter is then
required to obey the conservation laws of mass, momentum, and energy, which give rise to
a set of differential equations governing the field variables. The solution to these
differential equations then defines the variation of each field variable with space and time
which corresponds to the mean value of the molecular magnitude of that field variable at

each corresponding position and time.

The molecular statistical method is rather elegant, and it may be used to treat gas
flows in situations where the continuum concept is no longer valid. However, as was
mentioned before, the theory is incomplete for dense gases and for liquids. The continuum
approach requires that the mean free path of the molecules be very small compared with
the smallest physical-length scale of the flow field (such as the diameter of a cylinder or
other body about which the fluid is flowing.) Only in this way can meaningful averages
over the molecules at a ‘point’ be made and the molecular structure of the fluid be ignored.
However, if this condition is satisfied, there is no distinction amongst light gases, dense
gases, or even liquids the results apply equally to all. Since the vast majority of
phenomena encountered in fluid mechanics fall within the continuum domain and may
involve liquids as well as gases, the continuum method will be used in this thesis. With
this background, the meaning and validity of the continuum concept will be explored in

some detail.

The field variables such as the density p and the velocity vector v will in general be
functions of the spatial coordinates and time. In symbolic form this is written as
p= p(r, t) and v= v(r,t), where r is the position vector whose cartesian coordinates are
X, Y, and z. At any particular point in space these continuum variables are defined in terms

of the properties of the various molecules which occupy a small volume in the
neighbourhood of that point.
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Consider a small volume of fluid AQ containing a large number of molecules. Let
Amand v be the mass and velocity of any individual molecule contained within the
volume AQ as indicated in Figure 5.1. The density and the velocity at a point in the

continuum are then defined by the following limits:

Figure.5.1. An individual molecule in a small volume AQ having a mass Am and

a velocity v.

p=w11i§%(;f‘EJ v= lim [me) (5.1

A Va0, Z Am

where Q, is a volume which is sufficiently small that Q. is small compared with the

smallest significant length scale in the flow field but is sufficiently large that it contains a
large number of molecules. The summations in the above expressions are taken over all
the molecules contained within the volume AQ. The other field variables may be defined
in terms of the molecular properties in an analogous way. A sufficient condition for the

continuum approach to be valid is;
1 3
N <<Q, << L (5.2)

where N is the number of molecules per unit volume and L is the smallest significant
length scale in the flow field, which is usually called the macroscopic length scale. The
characteristic microscopic length scale is the mean free path between collisions of the
molecules. Then the above condition states that the continuum concept will certainly be

valid if some volume Q, can be found which is much larger than the volume occupied by

a single molecule of the fluid but which is much smaller than the cube of the smallest



37

macroscopic length scale (such as cylinder diameter). Since a cube of gas, at normal
temperature and pressure, whose side is 2 micrometers contains about 2x10® molecules

and the corresponding Figure for a liquid is about 2x10" molecules, the continuum
condition is readily met in the vast majority of flow situations encountered in physics and
engineering. It may be expected to break down in situations where the smallest
macroscopic length scale approaches microscopic dimensions, such as in the structure of a
shock wave, and where the microscopic length scale approaches macroscopic dimensions,
such as when a rocket passes through the edge of the atmosphere. In this thesis, the
incompressible magnetized and neutral flows are considered and the flows do not exhibit

steep gradients.

5.2. Eulerian and Lagrangian Coordinates

Having selected the continuum approach as the method which will be used to derive
the basic conservation laws, one is next faced with a choice of reference frames in which to
formulate the conservation laws. There are two basic coordinate systems which may be

employed, these being Eulerian and Lagrangian coordinates.

In the Eulerian framework the independent variables are the spatial coordinates x, v,
z, and time t. This is the familiar framework in which most problems are solved. In order
to derive the basic conservation equations in this framework, attention is focused on the
fluid which passes through a control volume which is fixed in in space. The. fluid inside
the control volume at any instant in time will consist of different fluid particles from that
which was there at some previous instant in time. If the principles of conservation of mass,
momentum, and energy are applied to the fluid which passes through the control volume,
the basic conservation equations are obtained in Eulerian coordinates in order to determine

the dynamics of the fluid.

In the Lagrangian approach, attention is fixed on a particular mass of fluid as it
flows. Suppose we could color a small portion of the fluid without changing its density.
Then in the Lagrangian framework we follow this colored portion as it flows and changes

its shape, but we are always considering the same particles of fluid. The principles of
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mass, momentum, and energy conservation are then applied to this particular element of
fluid as it flows, resulting in a set of conservation equations in Lagrangian coordinates. In
this reference frame x, y, z, and t are no longer independent variables, since if it is known

that our colored portion of fluid passed through the coordinates x,,y,, and z, at some

time £, , then its position at some later time may be calculated if the velocity components u,

v, and w are known.

The choice of which coordinate system to employ is largely a matter of taste. It is
probably more convincing to apply the conservation laws to a control volume which
always consists of the same fluid particles rather than one through which different fluid
particles pass. This is particularly true when invoking the law of conservation of energy,
which consists of applying the first law of thermodynamics, since the same fluid particles
are more readily justified as a thermodynamic system. For this reason, the Lagrangian
coordinate system will be used to derive the basic conservation equations. Although the
Lagrangian system will be used to derive the basic equations, the Eulerian system is the

one which is used in this thesis for solving the majority of problems.

5.3. Control Volumes

The concept of a control volume, as required to derive the basic conservation
equations, has been mentioned in connection with both the Lagrangian and the Eulerian
approaches. Irrespective of which coordinate system is used, there are two principal

control volumes from which to choose. One of these is a parallelpiped of sides &,& , and

oz . Each fluid property, such as the velocity or pressure, is expanded in a Taylor series
about the center of the control volume to give expressions for that property at each face of
the control volume. The conservation principle is then invoked, and when &, & , and &
are permitted to become vanishingly small (i.e., the volume — 0), the differential equation
for that conservation principle is obtained. Frequently, shortcuts are taken and the control

volume is taken to have sides of length dx, dy, and dz with only the first term of the Taylor

series being carried out.
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The second type of control volume is arbitrary in shape, and each conservation

principle is applied to an integral over the control volume. For example, the mass within

the control volume is Lde, where p is the fluid density and the integration is carried

out over the entire volume Q of the fluid contained within the control volume. The result

of applying each conservation principle will be an integro-differential equation of the type

RadQ =0 (5.3)
f

where R is some differential operator and « is some property of the fluid. But since the
control volume dQ was arbitrarily chosen, the only way this equation can be satisfied is
by setting Ra =0, which gives the differential equation of the conservation law. If the
integrand in the above equation was not equal to zero, it would be possible to redefine the
control volume Q in such a way that the integral of Ra was equal to zero. In this thesis,

the arbitrary control volume will be used in the derivation of the basic conservation laws.
5.4. Conservation of Mass

Consider a specific mass of fluid whose volume Q is arbitrarily chosen. If this
given fluid mass is followed as it flows, its size and shape will be observed to change but
its mass will remain unchanged. This is the principle of mass conservation which applies
to fluids in which no nuclear reactions are taking place. The mathematical equivalence of

the statement of mass conservation is to set the Lagrangian derivative D/Dt of the mass of
fluid contained in €, which is _Lde, equal to zero. That is, the equation which

expresses conservation of mass is

~—D—[ Ipdﬂ} =0 where _II;_(’: = —aa% +VVa (5.4

is the Lagrangian derivative of the scalar quantity, o. This equation may be converted to a
volume integral in which the integrand contains only Eulerian derivatives by use of

Reynolds’ transport theorem in which the fluid property « is, in this case, the mass density
o
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Ll:~2—?+—a—%(pvk)}1ﬂ=0 55

Since the volume Q is arbitrarily chosen, the only way in which the above equation
can be satisfied for all possible choices of Q is for the integrand to be zero. Then the

equation expressing conservation of mass becomes

op O Op
It AT, =_ AoV)=0. .
6t+ k(pvk) at+V (p ) 0 (5.6)

This equation expresses more than the fact that mass is conserved. Since it is a
partial differential equation, the implication is that the velocity is continuous. For this
reason the above equation is usually called the continuity equation. The derivation which
has been given here is for a single-phase fluid in which no change of phase is taking place.
If two phases were present, such as water and steam, the starting statement would be that
the rate at which the mass of fluid 1 is increasing is equal to the rate at which the mass of
fluid 2 is decreasing. The generalization to cases of multiphase fluids and to cases of
nuclear reactions is obvious. Since such cases cause no changes in the basic ideas or

principles, they will not be included in this treatment of the fundamentals.

In many practical cases of fluid flow, the variation of density of the fluid may be
ignored, as for most cases of the flow of liquids. In such cases the fluid is said to be
incompressible, which means that as a given mass of fluid is followed, not only will its
mass be observed to remain constant but its volume, and hence its density, will be

observed to remain constant. Mathematically, this statement may be written as

Dp _

=~ (5.7)

In order to use this special simplification, the continuity equation is first expanded by use

of a vector identity which is given;
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%Hkv.vﬁpv.v:o. (5.8)

The first and second terms in this form of the continuity equation will be recognized
as being the Eulerian form of the material derivative as given by Equation (5.4). That is,

an alternative form of Equation (5.8) is
Dp
—+pV:-V=0. 59
D¢ TP (5.9)

This mixed form of the continuity equation in which one term is given as a
Lagrangian derivative and the other as an Eulerian derivative is not useful for actually
solving fluid-flow problems. However, it is frequently used in the manipulations which
reduce the governing equations to alternative forms, and for this reason it has been

identified for future reference. Since Dp/Dt =0 for incompressible fluids, Equation (5.9)
above shows that the continuity equation assumes the simplier form pV -V =0. Since p

cannot be zero in general, the continuity equation for an incompressible fluid becomes

V-V =0 (incompressible) (5.10)
Y4 P=p
P=pP,
P=P3
> x

Figure.5.2. The constant density streamlines.
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It should be noted that equation above is valid not only for the special case of
Dp/Dt =0 in which p=constant everywhere, but also for stratified-fluid flows of the
type depicted in Figure.5.2. A fluid particle which follows the lines p=p, or p=p,
will have its density remain fixed at p = p, or p = p, so that Dp/Dt =0. However, p
is not constant everywhere, so that Op/0x#0 and Op/Oy#0. Such density
stratifications may occur in the ocean (owing to salinity variations) or in the atmosphere
(owing to temperature variations). However, in the majority of cases in which the fluid
may be considered to be incompressible, the density is constant everywhere. Equation
(5.4), in either the general form (5.6) or the incompressible form (5.10), is the first
condition which has to be satisfied by the velocity and the density. No dynamical relations

have been used to this point, but the conservation-of~momentum principle will utilize

dynamics.

5.5. Conservation of Momentum

The principle of conservation of momentum is, in effect, an application of Newton’s
second law of motion to an element of the fluid. That is, when considering a given mass of
fluid in a Lagrangian frame of reference, it is stated that the rate at which the momentum of
the fluid mass is changing is equal to the net external force acting on the mass. Some
individuals prefer to think of forces only and restate this law in the form that the inertia
force (due to acceleration of the element) is equal to the net external force acting on the

element.

The external forces which may act on a mass of the fluid may be classed as either
body forces, such as gravitational or electromagnetic forces, or surface forces, such as
pressure forces or viscous stresses. Then if F is a vector which represents the resultant of

the body forces per unit mass, the net external body force acting on a mass of volume Q

will be LdeQ. Also, if P is a surface vector which represents the resultant surface

force per unit area, the net external surface force acting on the surface S containing Q will

be IPds . According to the statement of the physical law which is being imposed in this

section, the sum of the resultant forces evaluated above is equal to the rate of change of
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momentum (or inertia force). The mass per unit volume is p and its momentum is pv, so
that the momentum contained in the volume Q is L pvdQ. Then, if the mass of the

arbitrarily chosen volume Q is observed in the Lagrangian frame of reference, the rate of

change of momentum of the mass contained within Q will be (D /Dt _vadQ). Thus the

mathematical equation which results from imposing the physical law of conservation of

momentum is

% [pva= [Pds+ [ pFdQ (5.11)

5.5.1. Stress and Pressure

In order to determine the correct behavior of fluid, the pressure and stress effects of
the medium in which it moves must be considered. In general, there are nine of stress ¢ at
any given point, one normal component and two shear components on each coordinate
plane. These nine components of stress are easily illustrated by assuming that the fluid
element considered is made of a cubical element in which the faces of the cube are
orthogonal to the cartesian coordinates, as shown in Figure.5.3, and in which the stress
components will act at a point as the length of the fluid cube teﬁds to zero. Note that the

normal components of stress, 6,,,0,,,0;; are nothing but scalar pressure defined in
Equation (4.9) and (4.10). In Figure 5.3 the cartesian coordinates x,y, and z have been
denoted by x,,x, and x,, respectively. This permits the components of stress to be

identified by a double-subscript notation. In this notation, a particular component of the

stress may be represented by the quantity o, in which the first subscript indicates that this

g' ?
stress component acts on the plane x, = constant and second subscript indicates that it acts
in the x; direction. The fact that the stress may be represented by the quantity o, in

which i and j may be 1,2, or 3, means that the stress at a point may be represented by a
tensor of rank 2. However, on the surface of our control volume it was observed that there

would be a vector force at each point, and this force was represented by P. The surface
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force vector P may be related to the stress tensor o, as follows: The three stress
components acting on the plane x, = constant are o,,,0,,, and o,,. Since the unit

normal vector acting on this surface is #;, the resulting force acting in the x, direction is

P, = oyn,. Likewise, the forces acting in the x,,x; directions are, respectively,

O
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Figure.5.3. Representation of the nine components of stress which may act at on

the surface of control volume of a fluid. ¢,,;,5,,,0,; are scalar pressures.

P, =o,n, and P, =oyn,. Then, for an arbitrarily oriented surface whose unit normal has
components n,,n,, and n,, the surface force will be given by P, =o,n, in which i is

summed from 1 to 3. That is, in tensor notation the equation expressing conservation of

momentum becomes

% [ pvidQ= [on,dS + [ pf,d0 (5.12)

The left-hand side of this equation may be converted to a volume integral in which

the integrand contains only eulerian derivatives by use of Reynolds’transport theorem,
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Equation (5.2), in which the fluid property @ here is the momentum per unit volume pv,
in the r; direction. At the same time the surface integral on the right-hand side may be

converted into a volume integral by use of Gauss’ theorem.

In this way the equation which evolved from Newton’s second law becomes

L[g(ﬁ"j )+ ari(pvjvk)j'dﬂ= L%iidﬂ+ LpfidQ (5.13)
k i

All these volume integrals may be collected to express this equation in the form
oo,
L[ —ar—“+ Lpfi]dﬂ =0, where the integrand is a differential equation in eulerian

coordinates. As before, the arbitrariness of the choice of the control volume Q is now
used to show that the integrand of the above integro-differential equation must be zero.
This gives the following differential equation to be satisfied by the field variables in order
that the basic law of dynamics may be satisfied:

%(ovj)+arik(pvjvk)=i—;i+pfi (.14)

.
b

The left-hand side of this equation may be further simplified if the two terms involved

are expanded in which the quantity pv,v, is considered to be the product of pv, and v;.

ov, 6Uﬁ

4 j
+v —-(pv +pv, — = ——+of, 5.15
jak k) Pkak or. p1; ( )

1

ov, )
AL B
Pt T Vi

The second and third terms on the left-hand side of this equation are now seen to sum

to zero, since they amount to the continuity Equation (5.6) multiplied by the velocity v;.
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With this simplification, the equation which expresses conservation of momentum

becomes

Mo, 2% o (5.16)
Pat kaark—ari P .

It is useful to recall this equation came from an application of Newton’s second law
to an element of the fluid. The left-hand side of Equation (5.16) represents the rate of
change of momentum of a unit volume of the fluid (or the inertia force per unit volume).
The first term is the familiar temporal acceleration term, while the second term is a
convective acceleration and accounts for local accelerations (around obstacles, etc.) even
when the flow is steady. Note also that this second term is non-linear, since the velocity
appears quadratically. On the right-hand side of Equation.(5.16) are the forces which are
causing the acceleration. The first of these is due to the gradient of surface shear stresses
while the second is due to body forces, such as gravity, which act on the mass of the fluid.
A clear understanding of the physical significance of each of the terms in Equation (5.16)
is essential when approximations to the full governing equations must be made. The

surface-stress tensor o; has not been fully explained up to this point, but it will be

investigated in detail in a later section.

5.6 Conservation of Energy

The principle of conservation of energy is an application of the first law of
thermodynamics to a fluid element as it flows. The first law of thermodynamics applies to
a thermodynamic system which is originally at rest and, after some event, is finally at rest
again. Under these conditions it is stated that the change in internal energy, due to the
event, is equal to the sum of the total work done on the system during the course of the
event and any heat which was added. Although a specified mass of fluid in a Lagrangian
frame of reference may be considered to be a thermodynamic system, it is, in general,
never at rest and therefore never in equilibrium. However, in the thermodynamic sense a

flowing fluid is seldom far from a state of equilibrium, and the apparent difficulty may be



47

overcome by considering the instantaneous energy of the fluid to consist of two parts,
intrinsic or internal energy and kinetic energy. That is, when applying the first law of

thermodynamics, the energy referred to is considered to be the sum of the internal energy
per unit mass & and the kinetic energy per unit mass %v -v. In this way the modified

form of the first law of thermodynamics which will be applied to an element of the fluid
states that the rate of change of the total energy (internal plus kinetic) of the fluid as it
flows is equal to the sum of the rate at which work is being done on the fluid by external

forces and the rate at which heat is being added by conduction.

With this basic law in mind, we again consider any arbitrary mass of fluid of volume

Q and follow it in a Lagrangian frame of reference as it flows. The total energy of this

mass per unit volume is pe + % pv - v, so that the total energy contained in Q will be

L(ps+%pv-v)dﬂ. 5.17)

As was established in the previous section, there are two types of external forces
which may act on the fluid mass under consideration. The work done on the fluid by these
forces is given by the product of the velocity and the component of each force which is
collinear with thé velocity. That is, the work done is the scalar product of the velocity
vector and the force vector. One type of force which may act on the fluid is a surface

stress whose magnitude per unit area is represented by the vector P. Then the total work

done owing to such forces will be .[v -PdS, where S is the surface area enclosing Q. The

other type of force which may act on the fluid is a body force whose magnitude per unit
mass is denoted by the vector F. Then the total work done on the fluid due to such forces

will be Lv -pFdQ. Finally, an expression for the heat added to the fluid is required. Let

the vector q denote the conductive heat flux leaving the control volume. Then the

quantity of heat leaving the fluid mass per unit time per unit surface area will be q-n,
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where 7 is the unit outward normal, so that the net amount of heat leaving the fluid per
unit time will be _[q.ﬁdS.

Having evaluated each of the terms which appear in the physical law which is to be
imposed, the statement may now be written down in analytic form. In doing so, it must be
born in mind that the physical law is being applied to a specific, though arbitrarily chosen,
mass of fluid so that Lagrangian derivatives must be employed. In this way the expression
of the statement that the rate of change of total energy is equal to the rate at which work is

being done plus the rate at which heat is being added becomes:

D 1 o
= (ps+5pv-v)dﬂ=_[v-PdS+Lv-deQ—_[q-ndS (5.18)

This equation may be converted to one involving Eulerian derivatives only by use of

Reynolds’ transport theorem, Equation (5.18), in which the fluid property « is here the

total energy per unit volume (pe + %pv . v) . The resulting integro-differential equation

L{E(pe + ~l—pv . v)+—a—[(pe +lpv . v)vk]}dﬂ
&) 5t 2 or, 2 (5.19)

= [v-Pds+ [ v-pfdQ- [q-nds

is

The next step is to convert the two surface integrals into volume integrals so that the
arbitrariness of Q2 may be exploited to obtain a differential equation only. Using the fact

that the force vector P is related to the stress tensor o; by the equation P, = on,, as was

shown in the previous section, the first surface integral may be converted to a volume

integral as follows:

[v-Pds= [viopmds= L%(vjcﬁ)dg. (5.20)
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Gauss’ theorem may be applied directly to the heat-flux term to give

[a-nds= [qnjas = L%’idg

(5.21)

Since the stress tensor o, has been brought into the energy equation, it is necessary

to use the tensor notation from this point on. Then the expression for conservation of
energy becomes

(5.22)

Having converted each term to volume integrals, the conservation equation may be
considered to be of the form L{ }dQ =0, where the choice of Q is arbitrary.Then the

quantity inside the brackets in the integrand must be zero, which results in the following
differential equation:

0 1 0 1 ;, oq;
E(pe+~2—pvjvj)+5r:[(pe +§pvjvj )vk] = g(vjcij)+ v;pf; —Fr’— (5.23)

i j

This equation may be made considerably simpler by using the equations which have

been already derived, as will now be demonstrated. The first term on the left-hand side

may be expanded by considering pe and % pv.v. to be the products (p)(e) and

3]
(p( V; J), respectively. Then
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—(pe+%pvjvj)=p—+e—+p§(5vjvj)+—;—'v.v.@ (5.24)

Similarly, the second term on the left-hand side of the basic equation may be

expanded by considering pev, to be the product (e)(pvk) and %pvj v, v, to be the product

(-;— \A\Z )(pvk ). Thus the equation becomes:

? 1 ~
-a-;k— pe+—2—pvjvj Vi | =

e (v )+pv, Lt lvv 2 (ov ) +pv, 2 Lvy
or, k pkark ijark k p"arkz”

(5.25)

In this last equation, the quantity (6/ or, )(pvk), which appears in the first and third
terms on the right-hand side, may be replaced by —Jdp/d¢ in view of the continuity
equation (5.6). Hence it follows that

Now when the two components constituting the left-hand side of the basic
conservation equation are added, the two terms with minus signs above are cancelled by

corresponding terms with plus signs to give
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Oe Oe an avj
= iov, Loy T oy, o 52
P pvkark PYi pV,vkark (5.27)
Then, noting that
0o ov;
+0, — (5.28)

%("j"ij)= Vigr % 5y

the equation which expresses the conservation of energy becomes

o W AW AN 4SRN
Pa P, P e P Ve T Vi T iy

rvipf -5 (529)
oL~ G

J

Now it can be seen that the third and fourth terms on the left-hand side are cancelled
by the first and third terms on the right-hand side, since these terms collectively amount to

the product of v, with the momentum Equation (5.16). Thus the equation which expresses

conservation of thermal energy becomes

p@ﬂwk =0, b — - (5.30)

The terms which were dropped in the last simplification were the mechanical-energy
terms. The equation of conservation of momentum, Equation (5.16), may be regarded as

an equation of balancing forces with j as the free subscript. Therefore, the scalar product
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of each force with the velocity vector, or the multiplication by v, gives the rate of doing

work by the mechanical forces, which is the mechanical energy. On the other hand,
Equation (5.30) is a balance of thermal energy, which is what is left when the mechanical
energy is subtracted from the balance of total energy, and is usually referred to as simply

the energy equation.

As was the case with the equation of momentum conservation, it is instructive to
interpret each of the terms appearing in Equation (5.30) physically. The entire left-hand
side represents the rate of change of internal energy, the first term being the temporal
change while the second is due to local convective changes caused by the fluid flowing
from one area to another. The entire right-hand side represents the cause of the change in
internal energy. The first of these terms represents the conversion of mechanical energy
into thermal energy due to the action of the surface stresses. As will be seen later, part of
this conversion is reversible and part is irreversible. The final term in the equation

represents the rate at which heat is being added by conduction from outside.
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6. INCOMPRESSIBLE NAVIER-STOKES AND MAGNETO-
HYDRODYNAMIC EQUATIONS

The Navier-Stokes (NS) equations for a conductive fluid are given by the following

continuity, momentum, and energy equations:

V-V=0 6.1)
ov 2
pa—+V-VV +VP =puv?V +pg + Fyy, 6.2)
T T
pC, éI+u£+v§£ =kV2T+J J (6.3)
ot ox oy c

where p is the density, V is the velocity, P is the pressure, T is the temperature, 1 and g=-

gé, are viscosity and gravitational acceleration respectively, C, is the specific heat, k and

o are thermal and electrical conductivities. And Fy,, is the Lorentz force given by
Fey=p E" +J" xB” (6.4)

where p, is the charge density, E¥,BT are total electric and magnetic fields and J” is the

total current density. Note that the last term in Equation (6.3) denotes the Joule heating due
to the currents. Since the fluid is conductive, the NS equations must be accompanied with

the Maxwell’s equations given as:

B
VxE=-— 6.5
x o (6.5)

oE
VxB=p,J+p,g, B = 1od (6.6)
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v-E=Penp 6.7)
80
V-B=0 6.8)

where E is the internal electric field, p, is the internal charge density which is ignored
since it is assumed that there is no charge seperation in the fluid. In that case the Lorentz
force reduces to Fgy =J" xB”. In addition, €, and u, are the dielectric constant and

magnetic permeability respectively. The magnetic and electric fields in Equations
(6.5,6.6,6.7, and 6.8) are internal and induced fields and the term with the time rate of the
electric field represents the displacement current (when the high frequency phenomena are
ignored, this term is very small comparing with others, thus it is neglected). In the present
problem, the external magnetic and electric fields are considered to be time-independent.
When the system is-assumed to be under the influence of such external electric and
magnetic fields, one must guarantee that these fields satisfy the following stationary

Maxwell’s equations:

VxE= =0, V-E= =Pt yyget_ J7  v.B=-g (6.9)

€

Note that, NS and Maxwell’s equations are coupled through the current density and

charge. These are related by means of the following equation of charge conservation:

0q 0q
=24V J=0, —=41V.J  =0. 6.10

Notice that the divergence of Equation (6.6) yields V -J =0 thus the internal and external
charges are assumed to be constant in time.(i.e;Equation (6.10) leads to
V.- I=0V-J_ =0).
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The current density and electric field are related in the local rest frame ® of the fluid by
Ohm’s Law:

J® = oER (6.11)

since fluid is incompressible (v<<c; speed of light) the laboratory and rest frame values are

related by;

JR=J-p Val, (6.12)

F,=p, ET +J7 xB”. (6.13)

If Equations (6.11 and 6.13) are combined the obtained equations would be like:

VxB

3 =olE= +VxB_)=YBT

Ho Ho

J=o(E+VxB)= (6.14)

Since the internal charge density in Lorentz Force is ignored the current density becomes:

J'=(VxB+B,)) 4.

Thus the x and y components of momentum equations in two dimensions become:

du du ou 18P B, (3B, &B,
—tU—+V—t+——+ -
ox oy

]=\'V2u_B;xt B _9BY
ot O0x Oy pox Pl

x 6.15
PRy | O oy ] ( )

oB = (B  gpe
LA, G, 2 Bx( v_an}zvvzv_gﬁx v 9B (6.16)
&t ox Oy poy pHy\ Ox Oy PH,{ Ox Oy

Since the electric field is given (see Equation (6.14)) by;
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E=(J/0)-(VxB)=[(VxB)/ 1,c]-VxB, (6.17)
The Faraday’s Law given by Equation (6.5) becomes:

2
E—Vx(VxB)bV B
ot HoO

(6.18)

since Vx(VxB)=-V?B because V-B=0. For the fluid under consideration, this has

the form as diffusion equation. It is noted that when the fluid is highly conductive the
characteristic time scale for the induced transient magnetic field gets longer (high magnetic
Reynold’s number). Thus the magnetic field lines are said to be frozen in not fully diffused
in the fluid. In two dimensions, the Faraday’s Law can be written as;

OB
u——l—Byjagﬁv
& ¥

OB

e p O 8B, 1
o

=—V’B
HoO

6.19
at X x ( )

OB OB
S g 0B p &, 51 g (6.20)
o Tox  x & X o

Equations (6.19 and 6.20) are not symmetric and creates difficulties in determining
the eigen-system of the equation set. Thus the terms: — VV-B and BV-V are added to
the rhs of Equation (6.19). So that not only the equation set is made symmetric but also
numerical errors due to divergence conditions are eliminated. In that case Faraday’s Law

turns into:

B, B2y B g 2, B 1 g (6.21)
& ok ek oy oy mo

oB oB oB

By g v_ By v, Byl g (6.22)
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By using the Ohm’s Law (i.e.; J = p(E + V xB)) the energy equation becomes:

2
V x B|? 2 olVxB*
or, o, OF k. ofVxBl ol olVxBT[
ot & o pC, oC, pC, PC,

where E~0 was considered since %f'—: 0, V.:E=0 and p, =0 so that the current

density balances V xB currents so that E=i]-—Vsz0. Since V><B=(uBy —va)éz,
P

this equation can be written as:

. cr(uBy —VBX)Z +0'(uB;’“ ~ Bf{"‘)2 +0-E§_,n .

= (6.24)
ot ox oy pC, pC, pC

v v

Notice that the existence of external magnetic and electric fields have a positive effect in

temperature increase.

6.1. Artificial Compressibility and Monopole Function

Major advances in the state of the art in CFD (Computational Fluid Dynamics) have
been made in conjunction with compressible flow computations. Therefore, it is of
significant interest to be able to use some of these compressible flow algorithms for
incompressible flows. To do this,the artificial compressibility method of Chorin (1967)
can be used. In this formulation, the continuity equation is modified by adding a pseudo-

time derivative of the pressure,resulting in

1oP o _, 6.25
= (629)
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where B is an artificial compressibility parameter and 7 is a pseudo-time parameter.This

forms a hyperbolic-parabolic type of pseudo-time dependent system of equations. Thus,
implicit schemes developed for compressible flows can be implemented to solve for
steady-state solution. In the steady-state formulation the equations are to be marched in a
time-like fashion until the divergence of velocity in equation (6.25) converges to a
specified tolerance. The time variable for this process no longer represents physical time,
so in the momentum equations t is replaced with 7, which can be thought of as a pseudo-

time or iteration parameter.

Physically, this means that waves of finite speed are introduced into the
incompressible flow field as a medium to distribute the pressure. For a truly
incompressible flow, the wave speed is infinite,whereas the speed of propagation of these
pseudo waves depend on the magnitude of the artificial compressibility parameter. In a
truly incompressible flow, the pressure field is affected instantaneously by a disturbance in
the flow, but with artificial compressibility, there is a time lag between the flow
disturbance and its effect on the pressure field. Ideally, the value of the artificial
compressibility parameter is to be chosen as high as the particular choice of algorithm will
allow so that the incompressibility is recovered quickly. This has to be done without
lessening the accuracy and the stability property of the numerical method implemented.
On the other hand, if the artificial compressibility parameter is chosen such that these
waves travel too slowly, then the variation of the pressure field accompanying these waves
is very slow. This will interfere with the proper development of the viscous boundary
layer. In viscous flows, the behavior of the boundary layer is very sensitive to the
streamwise pressure gradient, especially when the boundary layer is separated. If
separation is present, a pressure wave travelling with finite speed will cause a change in the
local pressure gradient which will affect the location of the flow separation. This change
in separated flow will feed back to the pressure field, possibly preventing convergence to a
steady state. When the viscous effect is important for the entire flow field as in most
internal flow problems, the interaction between the pseudo-pressure waves and the viscous

flow field is especially important.

Artificial compressibility relaxes the strict requirement of satisfying mass

conservation in each step. However, to utilize this convinient feature, it is essential to
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understand the nature of the artificial compressibility both physically and mathematically.
Chang and Kwak (1984) reported details of the artificial compressibility, and suggested
some guidelines for choosing the artificial compressibility parameter. Various applications
which evolved from this concept have been reported for obtaining steady-state solutions
(e.g., Steger and Kutler, 1977; Kwak et al. 1986; Chang et al. 1988; Choi and Merkle,
1985). To obtain time-dependent solutions using this method, an iterative procedure can
be applied in each physical time step such that the continuity equation is satisfied (see,
Merkle and Athavale, 1987, Rogers and Kwak, 1988, Rogers, Kwak and Kiris, 1991,
Belov et al. 1995). Further discussions on the artificial compressibility approach can be
found in the literature (see, Temam, 1979, Rizzi and Eriksson, 1985).

Combining equation (6.25) and the momentum equations gives the following system
of equations:
0 ~ s o = ~
2 p=-2(§-E,)+5=-R (6.26)

where R is the right-hand-side of the momentum equation and can be defined as the

residual for steady-state computations, and where

2
. [puw . Jo
“, E,:['B % } EW.={A J (6.27)
v
w

When the governing equations are solved in a steadily rotating reference frames, the
source term, S , represents centrifugal and Coriolis terms. If the relative reference frame

is rotating around the x-axis, the source term S is given by

%))
|

Q(Qy +2w) (628)

Q(Qz —2v)
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where Q is the rotational speed. In this report, the source term, S, is set to zero other than
for rotational steady solutions. Relative velocity components are written in terms of

absolute velocity components u,,v,, and w, as

u=u,, v=v,+Qz, w=w, -y. (6.29)

Time-dependent calculation of incompressible flows are especially time consuming
due to the eliptic nature of the governing equations. This means that any local change in
the flow has to be propagated throughout the entire flow field. Numerically, this means
that in each time step, the pressure field has to go through one complete steady-state
iteration cycle, for example, by Poisson-solver-type pressure iteration or artificial
compressibility iteration method. In transient flow, the physical time step has to be small
and consequently the change in the flow field may be small. In this situation, the number
of iterations in each time step for getting a divergence-free flow field may not be as high as
regular steady-state computations. However, the time- accurate computations are generally
an order of magnitude more time-consuming than steady-state computation. Therefore, it
is particularly desirable to develope computationally efficient methods either by
implementing a fast algorittm and by utilizing computer characteristics such as

vectorization and parallel processing.

A time-accurate method using artificial compressibility developed by Rogers, Kwak,
and Kiris (1991) is summarized next. In this formulation the time derivatives in the
momentum equations are differenced using a second-order, three-point, backward-

difference formula;

3ﬁn+1 __41771 +ﬁn_1 _ _;;H.]
2At

(6.30)

where the superscript » denotes the quantities at time # = nAr and 7 is the right-hand side

given in equation;
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%,;:_5‘2_(@. _8)+5=—F. (6.31)

i

To solve equation (6.30) for a divergence free velocity field at the (n +1) time level, a

pseudo-time level is introduced and is denoted by a superscript m. The equations are

~n+lm+]

iteratively solved such that % #

approaches the new velocity #"" as the divergence of

~n+l,m+1

i approaches zero. To drive the divergence of this velocity to zero, the following

artificial compressibility relation is introduced:

nelm+l

AT

n+l,m

p 4

= —ﬂV . ﬁn+1,m+l (632)

where 7 denotes pseudo-time and S is an artificial compressibility parameter.

Combining equation (6.32) with the momentum equations gives;

Itr (Bn+l,m+l _l’jn+1,m )____ _R‘n+1,m+l —%(1.5ﬁn+1’m - zﬁn + 0.513"_1) (633)

where D is the same vector defined in equation (6.30), R is the same residual vector

defined in equation (6.26), and I, is a diagonal matrix given by;

(6.34)

Finally, the residual term at the m+1 pseudo-time level is solved by multistage
Runga-Kutta algorithm. The MHD equations (Egs.6.1, 6.15, 6.16, 6.20, 6.21, 6.24 )
derived here are used for incompressible flows, so that the divergence constraints for
velocity and magnetic field (i.e., V-V =0, V-B =0) should be satisfied. In this work,

these conditions are modified to read as;
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P BV.V=0 (6.35)
ot
¥ 4 e?V.B=0 (6.36)
or

wheret is the pseudo-time step, B* is the artificial compressibility parameter, a® is the
artificial magnetic monopole parameter and v is the magnetic monopole function which is
used to correct the magnetic fields. These equations are solved as sub-iterations between

each time step to force the velocity and magnetic fields to satisfy the divergence

constraints. As sub-iterations converge (i.e., 6/t —0), P and v relax to the necessary

values which will be able to correct the velocity and magnetic fields in such a way that the

divergence conditions are satisfied.

Note that the artificial compressibility parameter were first introduced in [9] and the
magnetic monopole equation, Equation (6.36), is similar to that is given in [9]and this
procedure is called the relaxation scheme. In order relaxation scheme to fix the magnetic

fields, the corrective effect of y is introduced into the Faraday’s equation by inserting

the terms: Oy /0x and oy /0Oy into Equations (6.20, 6.21) respectively [9]

In order this procedure to be consistent, with the relaxation scheme described here, it

can be shown that the term: [(B, / pC, Joy/ ox)+ (By / pCvxaw/ 8y)] should be added to

the left hand side of the energy equation, Equation (6.24).

By considering all the derivations so far, the resulting MHD equations including the
effects of y turn into the following equation set:

a_P.+/32V~V=0,2Z+a2V‘B=O (6.37)
ot ot
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ou ou, ou 18P B, (BB an)_vvzu_B;’“ 0By oB™
ataxaypaxpuoaxay PHo{ Ox Oy

v v v 18P B, (aBy anJ
— Ut V—F = - =

J (6.38)

v
o & O py pu\ x
g (0B ape (6.39)
Vv2v+ x y__ x __g
Pl | o &
9B, —Bx@ﬁuuan —By@w-@!—ﬁﬂ:—l—v@x (6.40)
ot ok Ox & Oy X po

&B oB &B
T g N Ty g NPy WL g (6.41)
a oy Ty e U oy meo
B,
Tl O B v By K gopy
ot ox oy pC ox pC oy pC

6.42
o o +0'( y—va)Z+<)'(uB:,"‘—ij’:‘t)2 (6.42)
pC, ™ pC, pC

v

v

Note that the continuity equation, Equation (6.1), states that the density is constant.
However, when temperature gradients exist in the solution domain, the natural convection
occurs with slight changes in the density. In this work, it is assumed that the density
variations are very small so that the Boussinesq approximation holds. In this case, the

density can be written as a function of temperature as follows:

p=p.[l-B(T-T,)] (6.43)

where p, and T, are ambient density and temperature (usually taken as outside
parameters) and § is the expansion coefficient. Inserting this form of density to the right
hand side of the momentum equations, and defining a new pressure as P =P’'+P_ (where

P'=P —P, is the reduced pressure) the y component of the momentum equation becomes:
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v v v 1
—+u—+Vv—t—
&t ox oy p

oP' B, (EBBy _ 8B,
Oy PHo\ Ox Oy

) =vWv+gB(T-T,) (6.44)

For the energy equation, we define a new variable,0 = T;IT” where AT is the

temperature difference and write the heat Equation (6.42) as follows:

B
9,490,809, B v, y v _ k g,
o0 & & ppCAT &x  ppCAT & pC,
2
2 oV xB*™

+
pC,AT = pC,oulAT  pC,AT

(6.45)

6.2. Dimensionless Form of MHD Equations

In this work, we use the following dimensionless parameters in order to write the

dimension-less form of MHD equations:

x =

X
T
LO tO

where the procedure of making the MHD equations dimensionless produces the following

parameters:

Reynold’s Number Re=L,V,/v (6.46)

_oBIL,

Po Vo

Interaction Parameter N (6.47)
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Ko VoL

Magnetic Reynold’s Number Re, =p,oV,L, = (6.48)
Hartmann Number Ha=.,NR, =B,L,/ c/p (6.49)
3
Rayleigh Number Ra= BRATL, (6.50)
vK
) k
Prandtl Number Pr=—, x= (6.51)
K pOCv
V2
Eckert Number E=—2 (6.52)
C,AT

Using these parameters, the dimensionless form of the MHD equations can be cast into:

W Vg, g _g g (6.53)
ot ot ox oy

where U= [P',u,v, g, Bx,By,y/J is the state vector, I_ = diag[O,l,l,l,l,l,O] is the diagonal
matrix, A and B are coefficient matrices of 6U/éx and 6U/dy, and S,, S are viscous

and external sources. This equation in detail is given below:
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[P Plfo g# 0 0 0 0 0O P
U u 1 u 0 0 O 0 u
A V 0 O u 0 0 -X 0 v
) ) )
—| @ |[+I,—| 8 |[+|0 0 0 u 0 0 EB ||06|+
or ot T ox
B, B,llo -B" 0 0 u 0 1 B,
B, B,/i10o0 0 -Bf 0 0 u O B,
vl  lwllo o o 08 0o o] |v]
0 o B2 0 0 o o] [PT] o J7Tl0]
0 v 0 0-Y 0 O u 1/ReV?y S,
0 O v 0 X 0 O 3 v 1/ReV?y S,
0 0 0 v 0 0 EB 3 6 |=|1/RePrv?g |+| 8,
0-B 0 0 v 0 0 B.| |1/Re,V?*B,| | 0
0 0 -B 0 0 v 1 B, | [1/Re,V?B,| | 0
0 0 0 0 0 @ 0 [w]{ 0 J[0] (659

where

ext OB ext
s,-Npe| By BT g N g @y By, RO (55
Re, 7| & oy Re_ ox oy PrRe

S, =NE [E; +(uB, - vB, J +(uBS —va;“)zJ andx — 1;3 Ly = I;By ...(6.56)
[ (5]

m

m

Note that the first and last elements of Equation (6.54) are exactly the same as
Equations (6.35, 6.36) and that the time rates of P’ and w are seperated from original

equations by means of I,

6.3. Numerical Solution : Matrix Distribution Scheme

The incompressible MHD equations can be discretized by several discretization
techniques (such as finite difference, finite volume, finite element etc.). In this work, a
new method called “matrix distribution scheme” is used [10].
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In this scheme, the discretized form of the system of MHD equations is obtained by
integrating it over the area of a triangle, Q,., which has the nodes of i, j, k, see Figure 6.1.

(6.57)

Figure.6.1. Triangular mesh structure showing the triangle area, Q,., the Veroni

area, S;, surrounding node: i, and the interior normals of a typical mesh: m.

By using forward difference formula for the time derivative and employing Gauss
law for the convection terms on the left hand side of Equation (6.57), one obtains the
following update formula at node “i” which is located at one of the vertices of triangle
G‘T”:

1
Ut -

= Qi+i£T(An,+Bny)Ud€T=(S,?+Sf)QT (6.58)

where Q,, is the Veroni area surrounding node i (see Figure.6.1) and At is the time

interval. By using numerical trapezoidal method for the flux integral (contour integral in
Equation 6.58) and considering all the triangles surrounding node i, Equation (6.58) can be

written as;



68

v ext
g oo pr - At 5 or - QxS +87) (6.59)
i o) . ! 3
i | triangles ;

for the state vector at the node “i” . As seen, the source terms are distributed equally
among the nodes of “T” while ®%; is the cell fluctuation (a fraction of total fluctuation ®r)

629
1

assigned to the node “i” given by

3
®’=B®" =B K,U,_. (6.60)
m=1

where B; is the distribution matrix which is responsible in determining how much of @7

should be distributed among the nodes of “T™.

Here, Km = (Anxt+Bny)n/2 is called the 2D Jacobian matrix (at node m=i, j, k of
triangle T) and it is given by;

0 B’n, B°n, O 0 0 0
NB, NB,
n, V, 0 0 - n, n, 0
R R
0 0 v, 0 NB, n, —-—n, 0
K,= R R, (6.61)
0 0 0 Vv, 0 0 EB,
0 -B, 0 0 v, 0 n,
0 0 -BI 0 0 Vv, v
0 0 0 0 8’n, 8’n, 0 |

where ny and ny are the x and y components of the normal vectors (see Figure.6.1) whose

magnitudes are equal to the associated side lengths, Vi=un,+vny is the tangential velocity



69

along streamlines. It should be noted here that the numerical integrations were performed

by assuming that the state variables are assumed to vary linearly over the triangle.

The matrix B; assumes the role of distributing appropriate fractions of the total
fluctuation to the nodes of triangle. The different forms for B; results in different methods
all of which produce similar results. For example, when B;=1/3, where I is the unit matrix,
the method is called classical Galerkin Finite Element method which has some stability
problems. In the method presented here, the classical second order accurate Lax-Wendroff
method is used such that the distribution matrix (Galerkin form plus extra dissipation) is
defined

[+l g (6.62)

where “At7” is a characteristic local time step for the triangle considered and the second
term is extra numerical dissipation. It is noted that, the careful design of this matrix is very
important for numerical accuracy and that regardless of the method used, the distribution
matrices on the nodes of “T” should satisfy the following property for consistency:

B;+B;+B, =1. (6.63)

When the updating procedure is performed triangle by triangle, the updating formula
given by Equation (6.59) turns into the following update at node i due to the triangle T:

U Uf——ét—[CDiT—QT(S?+S?)]+ tfot (6.64)

1

where “tfot” represents the terms from other triangles surrounding node “i”. When all

triangles are visited and their associated fluctuations are distributed to their nodes by
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means of the distribution matrix, all the nodes in the mesh will have been updated at new
time step.

6.4. Temporal Discretization:Dual Time Stepping

The incompressible system given by is very stiff numerically since the ratio of the
convection speed to the speed of sound is very small. To overcome this difficulty,
preconditioning techniques can be used to carefully alter the time evolution of the
equations. If the preconditioning is applied to real time advancements, the time evolution
loses its meaning turning into just some iterations to reach the steady-state. If the time
accurate (transient) solutions are seeked, then this procedure must be applied as pseudo

iterations at each real time step. To do this,

P OV, 4%V  gOU _ g  gettm (6.65)
ox &y

where P is the preconditioning matrix and 7 is the pseudo-time. Different forms of P exist
in literature, but here a simple form given by P = dz’ag[%,l,l,l,l} is used. Upon

multiplying Equation (6.65) by the inverse of P, the preconditioned system can be written

as:

ot I Al BT =, v (666

where this operation did not change the sources and time evolution of U but only modified

the continuity equation by changing only the first row elements of matrices A and B (i.e.,

1s in the first row are replaced by f°, artificial compressibility parameter). Actually, this
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procedure is nothing but modifying the divergence condition to employ an artificial

equation for pressure to be advanced in pseudo-time:

*

oP 2
—=-pV.V 6.6
5 =P (6.67)

in order to drive the velocity divergence to zero before the new time level is reached. Note
that, in numerical time derivatives it is better to utilize implicit time stepping by Newton
type algorithm. But this method is very complicated for unstructured triangular grids.
That’s why the pseudo-time iterations in this work were carried out by explicit multistage
Runga-Kutta algorithm in which the pseudo-time step must be carefully found by the

spectral radii of P~(4,B) as Az = ACFfL where A is the eigenvalue of P7(4,B) and L

max

is minimum cell length. When this modified equation system reaches steady-state in

pseudo-time (Z—U - 0) , the time accurate solution is recovered;
T

I, U _Re s(U, P) (6.68)
or
Where
Res(U,P)= —A(ﬂz)%%— B(ﬂz)%J+ S, +S. (6.69)

is called preconditioned residual vector. As done in (?), the real time derivative is

approximated by the following 3-level formula;

6U_l_‘|ﬁ n+1__ n___¢_ n _rrr-l
S o -v) AI(U U (6.70)
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where ¢ =0 gives explicit first order while ¢ = 0.5 (this was used in this work) gives the

second order accuracy in time. By combining the real time levels with those of the

pseudo-time, one gets

Un+1,m+l - Un+1,m N Im B(Un+1,m+l _ Un ) 5 (Un _ Un—l)
ot 2At 2A¢

} =Res™ (6.71)

where U” and U™ are frozen in pseudo iterations since there is no way of changing
them. By a slight modification of the above equation some implicitness can be introduced

into the pseudo iterations as

Un+1,m+l _ Un+1,m _r [3(Un+l,m ~yr ) _ (Un _ Un—-l)

= +Re s (6.72)
At 2At 2At

-1
where I is the unit matrix and I, = [I +1.5 %I m} I,, is the modified diagonal matrix.

By this way, the time derivative term was made explicit but the residual still requires the
implicit treatment. To establish that, implicit time stepping or explicit RK time algorithm
can be used. Although the implicit time stepping provides very quick convergence rates, it
is very difficult to implement it here as discussed before. Instead, multi-stage RK

algorithm given below was used to improve the residual for the next pseudo-time iteration:

-1
Shacac iy gL o r a"[[ + 15%]»{‘ [Res'“'l’kﬂ]‘ (673)

[Re sn+1,k+1]‘ — Re 5™ Im[3(U"+21"‘N— U’ ) - (U" Z_AIIJH ):] (6.74)

where k is the RK stage and ¢, are the RK parameters. After RK steps are completed, one

gets U™# 5 U™ 1 and by the end of pseudo iterations, —aag- —>0 and thus
T
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U™ 5 U™ recovering and obtaining the corrected solution at the new time level n+1.
The numerical experience shows that the pseudo iterations usually converges within 5 to
10 iterations. Note that this implicit procedure is more accurate than the explicit treatment

considered.

6.5. The Runga-Kutta Schemes

An important family of time-integration techniques which are of a high order of
accuracy, explicit but non-linear, and limited to two time levels is provided by Runge-
Kutta methods. Compared with the linear multi-step method the Runge-Kutta schemes
achieve high orders of accuracy by sacrificing the linearity of the method but maintaining
the advantages of the one-step method, while the former are basically of a linear nature but
achieve great accuracy by involving multiple time steps. A detailed description of the
Runge-Kutta method can be found in Gear (1971), Lambert (1974) and Van der Houwen
(1977). These methods have recently been applied to the solution of Euler equations by
Jameson et al. (1981) and further developed to highly efficient operational codes (Jameson
and Baker, 1983, 1984).

The basic idea of the Runge-Kutta methods is to evaluate the right-hand side of the
differential system at several values of U in the interval between» Atand (n +1) Atand to
combine them in order to obtain a high-order approximation of U"*!, The general form of a

K-stage Runge-Kutta method is as follows:
U =y

U®P =U" + Ata, Res(UV)
U® =U" + Are, Res[U®) (6.75)

U =U" + Ata, Res(U*)
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Note that Equation (6.75) is not the most general form of the Runge-Kutta schemes,
since Res is only a function of U. The most popular version is the fourth-order Runge-
Kutta method, defined by the coefficients

1 1
B =P; =3 Bs 3 (6.76)

leading to (6.75)
Ut =U" + %’-(Re s(U” )+ 2Res(U® )+ 2Res(U®)+ ResU®)) (6.77)
where Res(U? ) has been written as Res(U?).

A well-known two-stage Runge-Kutta method (Heun’s method) is defined by the
predictor-corrector scheme. With the restriction to order two there exists an infinite
number of two-stage Runge-Kutta methods with order two but none with an order higher
than two. They all can be considered as predictor-corrector schemes Note that for each
number of stages K there is an infinite number of possible Runge-Kutta schemes, with

maximum order of accuracy. An even larger member of free parameters can be selected

when the requirements on the order of accuracy are relaxed.
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7. NUMERICAL RESULTS

This chapter presents two dimensional numerical results in order to show the capability
and accuracy of the scheme introduced. First, NS solutions with no electric and magnetic
fields are presented for steady state and unsteady (time dependent) problems. After
showing the correctness and robustness of the code by means of these numerical results, a
test problem in MHD (including E and B fields) will be presented.

7.1. The steady lid-driven cavity problem

The calculation of laminar incompressible driven flows in a square unit cavity whose
top wall moves with a uniform velocity has often been used as a model problem for testing
numerical techniques devoted to steady calculations. For low to moderately high values of
the Reynolds number (based on the constant velocity of the upper wall: Re=uL/v),
several results have been published using various solution procedures and different mesh
sizes. A reference solution for steady flows is given in [11], where accurate calculations

are performed for Reynolds numbers from 100-1000 in uniform meshes.

The present calculations have been done starting with an initial zero velocity field

and using CFL =2, f = 1. An example of isotropic mesh used for these calculations are

shown in Figure7.1 for two different grid sizes:33x33 and 133x133.

4 top wall
y =
(u=1,v=0)
1

left wall A right wall
(u,v=0) 1 (u,v=0)

0 bottom 1 x

wall

Figure 7.1. An example of square isotropic mesh used for the steady lid
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The u-velocity profiles versus y at the geometric center (passing from point A on
Figure.7.1) of the cavity (aty = 0.5) are presented in Figure 7.1 for Re = 100 and 400. In
addition, the v-velocity profiles versus x at the geometric center of the cavity (at x = 0.5)
are presented in Figure 7.1 for Re = 100 and 400.

Although higher Reynolds numbers usually require finer grid resolution as the
viscous effect is concentrated very close to the wall, the results for Re=400 show that no
such grid stretching is required. The u and v;-profiles, presented in Figures 7.2 and 7.3

show excellent agreement with the results given in [11].

Lid Test Problem, Re=100
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Figure7.2. The” profile of “u” for the Lid test for Re=100 and 400 at two
different isotropic mesh.
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Figure 7.3. The”x” profile of “v” for the Lid test for Re=100 and 400 at two

different isotropic mesh.

In order to have an idea of the convergence speed, we show in Figure 7.3 the

convergence history (based on all the variables) for the different Re numbers and meshes.

The residual drops by four orders of magnitude within 500 iterations and the steady state is

achieved. We stop the calculations when the relative error (the maximum change in the

state between two time levels). As seen, the convergence is quite rapid although no

additional acceleration process, such as the multigrid technique is used here. This result

shows that the code presented can be used to investigate the steady behaviour of flows.



78

Lid Test Problem, Re=100
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Figure7.4. The time history of residul for the Lid test for Re=100 at two
different isotropic mesh.

7.2. Unsteady lid-driven cavity problem

A review of the lid-driven cavity problem for steady and unsteady laminar "incompressible
flows and numerous results were published by Gustafson and Halasi [14] for several cavity

geometries.

In this test, an impulsively starting flow in a lid-driven cavity of aspect ratio 4 = 1
(square medium) is considered. The velocity of the moving lid is given by a step function
defined by

Uyy=0 , t<0
{ lid (71)

Ulid=1 s tZO

This problem was solved on the same mesh introduced in previous test and the time
history of u-velocity at the center (see point A on Figure 7.1) was followed. For Re=400
and dt=0.025, the resulting time history is shown in Figure 7.5.
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As seen from the figure, the coarse and fine mesh results match succesfully.
Showing excellent agreement with [13], this result shows that the code can be used
accurately for the time dependent (unsteady) problems.

Lid Problem Test, Isotropic Mesh, Re=400, dt=0.025
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20
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Figure7.5. The time history of the u velocity at the center of the cavity (the
node at the center) for Re=400.

7.3. Unsteady Oscillatory lid-driven cavity problem

In this test case, we consider an oscillatory flow with of time-periodic lid velocity
defined as Ujy(t)=Uy cos t . The Reynolds number is based on the maximum lid velocity
Uy and the aspect ratio 4 still equals one. In this test, the initial condition was taken to be
zero velocity except the oscillating top velocity which starts from Upe(?)=1 since Up=1 was

considered.

As time proceeds, sinusoidally changing lid velocity controls the flow inside the
cavity and peridicity is achieved after nerly r=5. The drag at the top boundary was
numerically calculated from

1
D= J‘[@] dx = 24 4;;-1 T ax (7.2)

where J is the index for the nodes at y=1 (the top boundary) and Ax and 4y are the x and y

increments. This test problem was run on a square mesh shown in Figure 7.6 for x,ye [0,1]
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at two different grid resolution (i.e., 33x33 and 133x133, as done before). The resulting
drag profile is shown in Figure 7.6. As seen the coarse and fine solutions agree and the
time periodicity is achieved after t+=5. These results agree very well with those presented
in [14].

Drag Problem Test, di=0.01
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Figure7.6. The time history of the Drag at the top lid for Re=400.

7.4. Decaying Vortices

The temporal and spatial accuracy of the present numerical method is verified by
simulating the following two-dimensional unsteady flow, which has been investigated by

previous researchers:

27t /Re

u(x,y,t) = —cos(nx)sin(my)e

v(X,Y,t) = sin(nx) cos(my)e 2"/

—4n%t/Re

p(x,y,t) = —%(cos 27X + cos2my)e
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The computational domain is —1/2 <x, y < 1/2 and computations are carried out at
Re = 10, where Re = UL/ and U is the initial maximum velocity and L is the size of a
vortex. The initial velocity condition at # = 0 and the velocities at the boundaries in time are
provided from the exact solution. Four different sizes of uniformly-distributed right-angled
triangles are used to determine the overall accuracy of the present numerical method:
numbers of cells used are 200, 800, 3200, and 12800, respectively. In this study, with mesh
refinement, each triangle is split into four right-angled triangles as shown in Figure 7.1.

First, computations are performed with varying the mesh size but keeping the maximum
CFL number constant. Figure 7.2 shows the variation of the maximum error in u with mesh
refinement and the effect of the second term in Equation (7.2) on the overall accuracy for
three different maximum CFL numbers. It is clear that the present numerical method
including the second term in Equation (7.2) is second-order accurate for all the CFL
numbers investigated. However, when the term is neglected, the error becomes larger and
the accuracy is not second order. Note that the accuracy without the second term in
Equation (7.2) becomes nearly a second order with CFL = 3 because the spatial-
interpolation error contributes less to total error as the CFL (time step) increases. The same
result is also obtained for v.

Second, the spatial and temporal accuracies are investigated, respectively. Figure 7.2
shows the variation of the maximum error in u by varying mesh size but keeping the
computational time step constant and therefore the slope shown in Figure 7.2 denotes the
spatial accuracy. Note that the computational time step in this case is determined to be a
small value (A = 0.001) such that temporal error has negligible effect on total error. It is
clear that inclusion of the second term in Equation (7.2) makes the spatial accuracy
second-order. Similarly, the temporal accuracy is investigated by varying the time step but
keeping the mesh size constant. Here, the finest grid of 12800 cells is used to minimize the
spatial error. Figure 7.2 shows that the present time integration scheme is indeed second-

order accurate.
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7.4. The natural flow in cavity by different wall temperatures

This test case presents the temperature variation in a square cavity whose walls are
kept at two different temperatures. The buoyancy effects drives natural flow along the
walls and creates circulation in the cavity. The boundary conditions and the example of

the mesh (64x64 isotropic mesh) used is shown in Figure 7.7.

top wall
(u=1,v=0)

right wall
(u,v=0, T=0.5)

left wall
(u,v=0, T=-0.5)

0 bottomwall 1 X
(u,v=0)

Figure7.7. The temperature profiles in cavity for Re=400 and Ra=1000, 10000, and
100000.
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Figure7.8. The temperature profiles in cavity for Re=400 and Ra=1000, 10000, and
100000.

(c)

7.5. Electromagnetic Breaking Test

This test case presents the slowing down of vertical flow of liquid metals through
pipes by means of externally applied electric and magnetic fields. The flow and system
structure is shown in Figure 7.9. As seen from this figure, the flow which is downward
through the rectangular pipe is slowed down by applying an external force (ExB force)

opposite to the gravitational force in —y direction.
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Figure7.9 Electromagnetic brake system by using B and E fields. ExB force is

opposite to the gravitational force.

The external magnetic field (which is directed in +x direction) is created by the
magnets placed on both sides of the channel. The electric field is produced by charging
two plates and placing them along the +z direction. Figure 7.9 shows this configuration.
Since external magnetic field contribution sould be found by solving the steady-state
Maxwell’s equations (i.e., V-B,, =0, VxB,, =0) and carefully chosen boundary
conditions. The electric and magnetic field are activated by using a switch and opening

this switch some time after the steady vertical flow is established. Figure 7.10 shows the

resulting magnetic field configuration and the temperature increase because of the external

field region along the channel.
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Figure7.10. The external magnetic and electric field configuration and the temperature

increase along the channel.

The purpose of this study is to find out if there is a slow down in the vertical velocity
when the strength of externally applied electric is increased. This is done by choosing a
point (at which the vertical velocity is maximum) at the exit of the channel and following
the vertical velocity at that point as a function of time for different values of external
electric field. This result is shown in Figure 7.11. As seen, the results fulfill the physical
expectations since the magnitude of the vertical flow reduces as the strength of the external

electric field is increased.
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Figure7.11. The effect of external electric field strength on the vertlcq[ velocity

measured at the centerline at the exit of the channel.



86

8. CONCLUSION

This thesis is about the laminar flows through cavities and channels. The laminar
flows in channels were investigated by the solutions of Navier-Stokes (N-S) equations.
The numerical method was developed by using a matrix distribution scheme that operates
on the structured or unstructured triangular meshes. The time advancement was established
by using a dual time stepping scheme in which pseudo time iterations causes a relaxation
scheme to drive the divergence of the velocity reduces to a lower value before
advancement to the new time level. The Navier-Stokes equations and the equations
describing the electromagnetic field (MHD) were solved in order to investigate two-
dimensional flows on x-y plane. The external electric and magnetic fields are applied in
perpendicular direction such that ExB becomes opposite to gravitational acceleration
direction so that the vertical velocity is slowed down the channel. The numerical results
show that this computer code is capable of resolving different types of problems in

different geometries.
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