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ABSTRACT

ISOMORPHISM THEOREMS OF LINEAR GROUPS

The goal in this thesis is the isomorphism theory of linear groups over fields as

illustrated by the theorem

H(V)) zH(V,) & dim V;=dim V, and F; = F»

where F| and F, are the underlying fields of finite dimensional vector spaces V; and V,
respectively and H is any subset of the (projective) collinear transformations, (projective)
general linear groups or (projective) special linear groups for dimension > 3. The theory
that follows is typical of much of the research between the years 50’s and 60’s on the
isomorphisms of the classical groups over rings. The thesis will start from the basic facts of
calculus of residues and transvections. Then, in particular, the fundamental theorem of
projective geometry will be proved and whatever is needed from projective geometry will
be developed. Via reorganizing the literature on the isomorphisms of the classical groups,
it will be possible to extend the known theory from groups of linear transformations to
groups of collinear transformations, and also to improve the isomorphism theory from

dimension > 5 to dimension > 3.



OZET

LINEER GRUPLARIN iZOMORFIiZMA TEOREMLERI

Bu tezin amaci asagidaki teoremde de gosterildigi gibi cisimler iizerindeki lineer

gruplarin izomorfizma teorisidir:

H(V)) zH(V,) & dim V;=dim V, and F; = F»

Burada F; ve F, sirastyla sonlu boyutlu V; ve V, vektor uzaylarinin iizerinde bulunduklari
cisimleri, H ise (projektif) kolineer transformasyonlarin, (projektif) genel lineer gruplarin
veya (projektif) 6zel lineer gruplarin boyutu 3’e esit veya daha biiyiik olan alt uzayim
gostermektedir. Sunulacak olan teori 50°li ve 60’l1 yillarda halkalar {izerindeki klasik
gruplarin izomorfizmalar {izerine yapilan ¢alismalarla benzerlikler gostermektedir. Bu tez
calismasi reziii hesab1 ve transveksiyonlarin temel 6zellikleriyle baslayacaktir. Ardindan
ozelde Projektif Geometri’nin Temel Teoremi ispatlanacak ve projektif geometriden
ihtiyacimiz olan neyse gelistirilecektir. Klasik gruplarin izomorfizmalar1 iizerine var olan
materyalin yeniden diizenlenmesiyle lineer transformasyon gruplarindaki bilinen teorinin
kolineer transformasyon gruplarina genisletilmesi ve yine izomorfizma teorisinin, boyutun
5’e esit veya biiylik olmasi kosulundan, 3’e esit veya biiyilk olma kosuluna gelistirilmesi

mumkiin olmaktadir.
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1. INTRODUCTION

One of the most important problems in group theory is the description of isomorphisms
(automorphisms) for a given class of groups. The corresponding problem for the class of
linear groups is even of greater importance due to the prominent position which linear

groups occupy in mathematics.

The theory of isomorphisms of linear groups was initiated in a paper [12] of 1928 by
Schreier and van der Waerden in which they described the isomorphisms of finite-
dimensional projective special linear groups over fields. It turned out that the isomorphism
type of the projective linear group PSL(V) of a vector space V of finite dimension > 3 over
a field F was fully determined by the dimension of V and the (isomorphism type of)
underlying field F. In other words, if V| and V, are vectors spaces of dimension > 3 over

fields Fiand F, respectively, then

PSL(Vl) = PSL(VZ) < dim V] =dim V2 and F1 = Fz.

Suppose that V is a finite-dimensional vector space of dimension > 3 over a field F. The

main (and fundamental!) idea of the quoted paper [12] is that

the geometry of 'V can be reconstructed in PSL(V) by means of group theory.

Namely, Schreier and van der Waerden suggested to ‘code’ lines and hyperplanes

of V by suitable pairs of transvections. Recall that a linear transformation re GL(V) is a

transvection if there is a linear functional 6: V — F and a vector a € V such that

TX=Xx+0(x)a

for all xe V. Recall also that the projective image of 7 in the group PGL(V) is called a

projective transvection.



Thus 7 (the projective image of 7) determines a line of V (namely <a>) and a

hyperplane of V (namely the kernel of d) Schreier and van der Waerden show then that the
product 7,7, of (projective) transvections is a (projective) transvection if and only if 7; and
7, have a mutual line or a mutual hyperplane. Accordingly, if one has a group—theoretic
description of projective transvections in PSL(V), —and Schreier and van der Waerden
showed that such a description did exist— then any isomorphism A: PSL(V;) — PSL(V>)
takes transvections to transvections and thereby induces a map A* from the projective
space P(V)) over V; onto the projective space P(V;) over V, or onto the projective space
P(V,"), where V' is the dual space of V,. The first case is realized when A takes pairs of
projective transvections with mutual lines to pairs of projective transvections with mutual
lines, and the second one when pairs with mutual lines go to the pairs with mutual

hyperplanes and vice versa.

Furthermore, it can be proved that A* can be extended to a projectivity from P(V))
onto P(V,) or onto P(V,') and so the projective space P(V;) is isomorphic to P(V;) or to
P(V,") (the latter two spaces being isomorphic.) By applying the Fundamental Theorem of
Projective Geometry, one shows finally that the dimensions of V; and V, are the same and

the underlying fields F'; and F are isomorphic.

It was understood in the 20-40s of the last century that the approach by Schreier-
van der Waerden could be applied for the study of isomorphisms of the other types of
linear groups. However, instead of the use of transvections the authors that followed
Schreier and van der Waerden preferred to use involutions, that is, the linear
transformations of order two. The reason here is obvious: involutions can be immediately
described by group-theoretic means in any linear group (by the condition x* = 1), whereas a
group-theoretic characterization of transvections can be rather tricky. An involution ¢ of
the general linear group GL(V) of a vector space V determines (as a tranvections does) a
pair of subspaces of V. For instance, in the case when the characteristic of underlying field

F is not 2, these subspaces are eigenspaces of ¢ corresponding to eigenvalues 1 and —1.

Mackey [6] in his study of isomorphism types of the automorphisms linear normed
spaces found a group-theoretic condition which was satisfied by a pair of involutions if and

only if they had a mutual line or a mutual hyperplane. Later Dieudonné [1] and Rickart [9,



10] adapted Mackey's ideas to the description of isomorphism types of various linear
groups over division rings. In 1951 Rickart [11] also started the program of description of
isomorphism types infinite-dimensional linear groups (which had been not completed till

1977.)

The use of involutions also lead to a significant progress in the study of the
isomorphism types of linear groups over principal ideal domains: Hua and Reiner
described in [3] isomorphisms of general linear groups of free modules of finite rank over
the ring of integers (unimodular groups), Landin and Reiner considered then the linear
groups over the ring of Gaussian numbers [4] and then obtained the general description of

isomorphisms of linear groups over principal ideal domains [5].

However, methods that were based upon the properties of involutions a given linear
group did not work for certain important types of linear groups and/or their subgroups. For
instance, O'Meara found “large' linear groups that contained no involutions. To overcome
this and other difficulties, O'Meara developed in a series of papers the calculus of the
residues (see Section 1.2 for details) of linear transformations. He also once again placed
the main stress on the properties of transvections of a given linear group. This enabled him
to develop a very impressive general theory of isomorphisms of finite-dimensional linear
group over large class of rings and to complete the program of description of isomorphisms
of some important types of infinite-dimensional linear groups started by Rickart; all these

results were published in a paper [8] of 1977.

The aim of the present work is to provide an enlarged version of the ‘core’ part of
the famous work ‘Lectures on Linear Groups’ [7] by O'Meara in which his main ideas and
methods are reproduced in a rather concise, though a very elegant way. One quickly finds
that O'Meara's work is mainly addressed to professional mathematicians rather than, for
instance, to graduate students. To follow the author of [7] is sometimes hard enough even
as we think for a professional mathematician: some proofs are just sketched, it is required
of the reader to work out the material very thoroughly indeed in order to follow author's
steps etc. Thus we make an effort to supply missing details and to rework some of the
proofs of results in [7] to make the important work by O'Meara understandable to senior

graduate students. We believe that the present thesis can be used in teaching of an



(advanced) course in linear groups for graduate students. Our work presents a complete
proof of the fact that the isomorphism type of a linear group H(V) of a vector space V of
dimension >3 over a field F which is full of (projective) transvections is fully determined
by dimV and the isomorphism type of F. In particular, it gives the description of
isomorphisms of linear groups of types H = I'L, PI'L, GL, PGL, SL and PSL and, as a

consequence, the following classical theorem:
HV) =zH(V,) & dim V;=dimV, and F, =F>,

where F) and F, are the underlying fields of V; and V, respectively provided that the

dimension of both V; and V5 is at least three.
1.1. Radiations
For any nonzero a in F define the linear transformation r, by
FaX=0Xx VxeV (1.1)

Thus r, is in GL,(V). Any ¢ in GL, which has the form ¢ = r, for some such a will

be called a radiation of V. The set of radiations of V is a normal subgroup of GL,(V) which

will be written RL,(V). The isomorphism RL,, — F is obvious.
1.1.1. Let o be any element of GL,(V). Then o is in RL,(V) if and only if cL=L for
all lines L in V. In particular
ker(PI GL, )=RL,, ker(PISL,)=SL, N RL, (1.2a)
and

PGL, = GL,/RL,, PSL,= SL,/SL, n RL (1.2b)



PROOF. Fix z in V . There is then a £ in F such that oz = 7. We have to prove that

ox = [ x for a typical x in V . By hypothesis, ox=a x for some ain F .If x is in Fz, then x

has the form x = Az, so

ox=0lz)=MNoz)=ABz=F~x

If x is not in Fz, then

ax + fz=o(x+z) = y(x+2),

so @ =y =/ by the independence of x and z.

1.2. Residues

Consider o € GL,(V). We define the residual space R=R(c) by

R=(0-1y)V={ox—-x:xeV},

the fixed space P = P(o) by

P=ker(c-1y)={xeV:ox=x},

and the residual index res o by

res o = dim R = codim P.

(1.3)

(1.4)

(1.5)

(1.6)

1.7)

The latter equation follows from the theorem on the sum of rank and nullity of a given

linear transformation p of V:

rank p + nullity(p) = dim(pV) + dim(ker p) = dim V.

(1.8)



The subspaces R(o¢) and P(o) are called the spaces of o. Clearly, both subspaces of ¢ are

o—invariant:

o R(o) =R(0) and o P(o) = P(0). (1.9)

Let us check, for instance, the first statement. We have

oR(0)=0(0-1)V=(0-1n(@V)=(@-1vV, (1.10)

since o 1s in GL,(V) and hence surjective which means that gV =V. It is evident that

reso=0 & o=1y. (1.11)

Note also that the residual space (fixed space) of the inverse transformation o' coincides

with that one of o:
R(c™") = R(0) and P(c") = P(0). (1.12)
For instance, for the residual spaces we have
RoH=0"=1)V=(@"=1n©@V)=(~-1)V; (1.13)
the justification of the latter equation is as follows: forallx € V
(6= 1Wex)=0"'(6x) —ox=x-0x=—(cx-x) € (6 1) V. (1.14)
Convention:
whenever a ¢ € GL,(V) is under discussion, the letter R automatically refer to its
residual and the letter P to its fixed space.

1.2.1. Let o and o, be elements of GL,(V) and put ¢ = 010,. Then

R Cc R+ Ry, P o PN Py, (115)



res 010, < res oy + res os.

PrOOF. We have

0102(x) — x = {01(02x) — 02x} + {02x — X}

(1.16)

(1.17)

the first element in the curly brackets in the right-hand side belongs to R, and the second

one to R,. Hence R < R; + R,, whence

res 0 =dim R < dim(R; + Ry) < dim R; + dim R, = res o+ res o».

The statement about the fixed spaces is trivial.

1.2.2. Let o) and o, be elements of GL,(V) and put 6 = 6,0>. Then

(1) V=P, +P,= R=R|+ R,

(2) RlﬁRQZO:>P:P1(WP2.

PROOF. Let us prove the part (1) first.

Ry = (01— 1y)V=(01-1y) (P1 + P>).

Since P is the kernel of o;— 1y we get

Ry =(o1-1y) Ps.

Now o,P, = P, and then

Ri=(o1—1y) P, =(0102— 1y) P, < (0102—1y) V=(o6—-1y) V=R.

So R; < R. In other words,

R(01) < R(0107).

(1.18)

(1.19)
(1.20)

(1.21)

(1.22)

(1.23)

(1.24)



By symmetry our argument can be applied to the transformations o' and o, (because
P(al_l) = P; and P(a{l) = P») and their product 0> o', This
means that

R € R o) (1.25)
or

R, c R ) =R. (1.26)

Therefore R;+ R, < R. By 1.2.1 we obtain that R = R; + R;.

Let us prove (2). Take xe P and consider the element

y = 0102(x) — 02(x) = 01(02%) — o2 x = (01— 1y) o2 . (1.27)

On one hand it is an element of R;. On the other hand since x € P

y = 0102(x) = 02(x) = 0(x) = 02(x) = = (02X — X). (1.28)

and hence y € R,. Then y € R; nR; and by the condition y = 0. Then (1.28) implies that
P C P, Similarly, let y'be in P = P(o;"'01™") = P(c™")

M=o ) a0 = @ Y) —e Ty =@ =l a7y (1.29)
Then x'e R,. And again,

X=0 o () —o () =0 () —o () =~ (617 () =y (1.30)
and hence x' € R;. Then x" € R~ R, and by the condition x" = 0. Then (1.30) implies that

P < P;. And as a conclusion P < Py P, Applying 1.2.1. once again we have that

P = Py~ P; as we promised. O



1.2.3. Let o and X be elements of GL,(V). Then the residual and fixed spaces of ZoX™" are

YR and TP respectively. In particular, res(26X™") = res o; and if 6% = X implies that IR =

R and 2P = P.

1.2.4. Let 0y and o0, be elements of GL,, (V). Then R\ c P, and R, ¢ P, makes 0,10, = 0,01,

that is, o and o, are commuting linear transformations.

PrOOF. First, note that the condition R, < P; implies that

o1(ox —x) =0o0x — X

foreveryx € V. Then forallxe V

102X = 01(02X — X) + 01X = 00X — X + 01X

= 01X — X + 00X = 0x(01X — X) + 00X

= 0201X.

1.2.5. Let 0, and o, be elements of GL,(V) with 6,10, = 0,0,. Then

Ry c Pyand R, C P,

provided that either RiNR, =0 or V=P + P,.

PRrROOF. Since o) and g, are commuting we have by 1.2.3 that, for instance,

O'1R2 = R2 and O'1P2= Pz.

Suppose first that Ry "R, = 0. By (1.34)

(1= 1v)Ry € Ro;

evidently, (1 — 1y)R, < R;. Then

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)
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(o1—1y)R, € RoN R, =0. (1.36)
This implies that R, is in the kernel of ¢; — 1y, that is, in P;: R, < P;. By symmetry
R1 c Pz.
Now assume that V = P+ P,. We have

Ri=(o1-1y) V=(01-1y) (P1+ P2) = (01 = 1y) P». (1.37)

By (1.34) 6,P, = P, and hence
Ri=(o1—1y) P, C P». (1.38)
Similarly, R, < P;. O

1.2.6. Let o be an element of GL,(V). Then =1y if and only if alg, the restriction of o on
R, is —1R.

PROOF.
=1y e dx=x VxeV, (1.39)
Solox—x)=—(ox—x) VxelV,
Soy=-y V ye R,
& olg=—1p.
m

1.2.7. Suppose that V is finite—dimensional. Then for every o € GL,(V)

det o = det(alg). (1.40)

PrOOF. Assume dim V=n. Let ey, ..., e, be a base of R. Extend it to a base of V

€1, oo ,Cs Csil, . ,Cn. (1.41)
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Now for every base vector e, with k> s

oe,—er € R (1.42)
and hence
o€, =¢€;+ ry (143)
where 7, 1s a linear combination of vectors ¢y, ... ,e, . Then the matrix [o] of ¢ in the base
€1, ..., sy, ... €y 18 as follows
M ES
1.44
0 E (1.44)
where M is an s X s matrix (in fact the matrix of ol in the base ey, ..., e;0f R), 0 denote a

zero block, and E is (n — s)X(n — s) identity matrix. Therefore
det o = det[o] = det M - det E = det [olg] = det (olg), (1.45)
as desired. i

1.28. If V=V, ®V,and 6 =0,® 0, with g, € GLn (V1) and 0, € Gan (V3). Then

R=R1@R2 and P=P1@P2. (146)

PROOF. Suppose that x = x; + x, where x; € V; and x, € V,. Then according to the

definition of the map o = 7| @ 07,
o(x) = 01 x1 + 02 x2. (1.47)

Therefore
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oxX — X = 01X + 022 — (X1 + x2) = (o1x1 — Xx1) + (02X — X2) (1.48)

and hence R=R; @ R,. O

1.2.9. Let o be an element of GL,(V) and let W be a subspace of VwithR < Wor P < W.
Then cW=W.

Proor. For instance, the condition R € W means that forally e W
oy—yeWw, (1.49)
whence oy € W forally e W. O
1.3. Transvections
Let o be an element of GL,(V). We say that o is a transvection, if either o = 1y, or
reso=1,deto=1. (1.50)
We say that ¢ is a dilation if
reso=1,deto # 1. (1.51)
In view of 1.2.3 it is clear that any conjugate X' of a transvection (dilation) o by
an element X of GL,(V) is also a transvection (dilation). Note also the condition res o = 1

implies that P is a hyperplane.

1.3.1. Let n =2 2 and 0 € GL,(V) is of residue 1. Then

1) o is a transvection if and only if R C P;

2) o is a dilation if and only if V=R ® P,

3) if o is a transvection, then the (only) eigenspace of o is P and the only eigenvalue of o is

I;
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4) if o is a dilation, then the set of all eigenvectors of o is R U P, and 1 and det o are the

eigenvalues of o.

PROOF. Since o is a transvection reso = 1. Then suppose that R = <a> and that ey, ... ,e,.1 1S

a base of P.
1) By 1.2.7 we have that

detolg=deto=1. (1.52)

Now since alg is a radiation (because we have oR = R or by the notation of transvections
oa = T,,a = a + p(a)a = a(1+p(a)) and since 1+p(a)e F then oa = aa, o is a radiation

where =1 + p(a)), we have
oa = (detolg)a = a. (1.53)
Then a € P, whence R < P. Conversely, if R < P, then
oa=a. (1.54)
It then follows that det glg= 1, and, again by 1.2.7 det ¢ = 1. Since we have reso = 1 then ¢
is a transvection.
The second part 2) is an immediate consequence of 1): as o is a dilation and P is a
hyperplane then det ¢ # 1 and oa = aa where & #1. Thena ¢ P and Rz P as by 1), then

V=R ® P, as required.
3) Extend the above chosen base of P to a base of V by a vector b. Since

ob=Lb+p (1.55)

for suitable p € P, we get that
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S 0 0 0
* o ... 0
det[o]=|* O 1 ... O=p=1. (1.56)
¥ o0 00
* 0 0 1
Then the matrix [o] of o in the base (b,e, ..., e,.;) 1s so—called lower unitriangular. This

means that all diagonal elements are 1 and the elements above the main diagonal are 0. It
then easily follows that the only eigenvalue of ¢ is 1 and all eigenvectors of ¢ are non—zero
elements of P.

To prove 4) we consider the matrix of ¢ in a base ey, ... ,e,.;, a. The result then

follows easily. o

Notation: Consider a vector ae V and a (non-zero) linear functional pe V'. We

define the map 7, a linear operator of V:
T,p(X) = x + p(x)a, VxelV. (1.57)

The check that 7, , is linear is straightforward.

Since
TpX—x=px)a (1.58)

we have that R=R( Ta,x)g<a>. Then if 7, is in GL,(V) its residual space is

one—dimensional. Hence 7, , is either a transvection, or a dilation.

Recall one useful fact we shall frequently use in this section.

1.3.2. Let p: V. — F be a non—zero linear functional. Then the kernel kerp of p is a

hyperplane of V.

PROOF. Suppose that ae V is such that pa#0. Let now q, ey, ..., e,—1 be a base of V. Then

for appropriate scalars A, ..., 4,-; we have that
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ple) = A pa, ..., p(en—1) = A1 pa. (1.60)
This implies that
plei— ia)= ... =plep—1— An-1a) =0. (1.61)
It is clear that the vectors
eir—Aa, ..., e,1— An_1a (1.62)

are linearly independent. Thus dim kerp > n—1. Since p is non—zero, hence kerp # V and

the result follows. O

We shall use the following formulae:
If we have (7, — 1y)V < Fa, so 7,, is either a transvection or a dilation when it is

invertible (det 7 # 0) as we said above. Note that
Tp=ly & a=0 or p=0 (1.63)
and
Thap(X) = (X) + p(0)Aa = (x) + Ap(X)a = 7,4, VAe F (1.64)
So we have this statement:

1.3.3. Suppose a, a’ are nonzero vectors, and p, p”~ are nonzero linear functionals, and

pa =p'a =0.So 1, and 1, are elements of GL,(V) which are not equal to 1y. Then

T.p= Ta’, ifand only if there isa Ain F with a’= Aa and p'=1"p.
PROOF. 7, is either a transvection or a dilation then we have

fﬂa,p: Z'a,pﬂ VYAeF (1.65)
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then

Qap= Thalp” = Tasip’ (1.66)
then

a’=Aa and p’=1""p (1.67)
Converse is the same i

1.3.4.det 7, ,= 1 + pa.

PrOOF. If p is the zero functional, then 7,, = 1y and the conclusion of the proposition is
trivially true.

Suppose that p # 0. By 1.3.2 the kernel H of p is a hyperplane of V. Consider a
base e, ... ,e,.; of this hyperplane.

We have two cases to consider.

1) p(a) = 0. Then we extend the system ey, ... ,e,.; to a base of V by a vector e,. By

the definition
Tupen = e+ pleya. (1.68)

Asa e Hand by 7,, e,= e, + p(e,)a, since <a>= R c Pwegeta=pf e +...+ Be, for

appropriate € F where 1< i < n—-1. And since e, ¢ H, p(e,)# 0 then we have
Tpen=eyt+ple)a=e,+0e+..+ e, (1.69)
for a suitable ¢, ..., &,—; € F. Then the matrix of our operator in the base (e,, ey, ... ,€,-1)

is a lower unitriangular. Hence its determinant is 1, that is, 1 + p(a) = 1 + 0, as desired.

2) p(a)#0.If so, a ¢ H and then (ey, ... ,e,-1,a) is a base of V. We have
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Tpa=a+pla)a=1+p(a)) a. (1.70)

Since, furthermore, 7., ex= ey where k = 1, ... ,n—1, we see that 7, , is diagonalizable in our

base, that is,

I+pa@ 0 O 0
0 1 0 0
[7,] = 0 0 1 0 (1.71)
Do 0
0 0O -~ 0 1
Hence detz,, =1 + pa O

Therefore 7, is in GL,(V) if and only if pa #—1; it is a transvection if and only if
pa = 0; and it is a dilation if and only if pa+ 0, —1. If ¢ is an element of GL,(V) with 6# 1y
and o= 7,,, then R=Fa and P = p'l(O). In general,

TupTh, ¢ = {x+ (px)a+ ($x)b} + ($x)(pb)a (1.72)
If 7,, and 7, , are transvection, then

Ta,p To,p = Ta+b,ps (173)

and if 7, and 7, ¢ are transvections, then

TapTa, @ = Tup+ @ (1.74)

In particular, if 7, , is a transvection and »n is a rational integer, then

T 0 p=Ta,p- (1.75)

For any ¢ in GL,(V),
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O-Ta,po-_l =1 a,po_l (176)

Notation: In the case when P is a hyperplane of V we shall denote by P° the set of all

linear functionals whose kernel is P.

1.3.5. Let o be an element of GL(V) with resc = 1. So R is a line and P is a hyperplane.
Ifp e P, then there is an a € R such that o = 1.

Ifb € R, then thereisa ¢ € P’ such that o = T, ¢

PROOF. Suppose that p € P’. Since the image of V under p is F, then there is a vector z € V
with pz = 1. Clearly, z ¢ P. Put a = 0z — z. Then it is immediate to check that ¢ and 7,
agree both on R and P. Hence 0 = 7.

Now take a nonzero b in R. Since R is a line, in particular, b =4 a. We have already

shown that o = 7, then
0=T,= Tﬂ_l Aa),p = Tha, /l_lp = T, ¢ (177)
where ¢ = A7'p. m

1.3.6. Let 71, 7 be transvections in GL,(V) and let & be a scalar. Then 7, = a 7 if and

only if & =1 with 1y = 5. In particular, a 7 is not a transvection when o # 1.

PROOF. Suppose that » = « 7;. The only eigenvalue of a transvection is 1. The condition

implies therefore that & is an eigenvalue of 7, whence a =1. O

1.3.7. Let o1, 0, be elements of GL,(V) of residue 1 and the product o106, is non—trivial.

Then
resoioo=1 @R =R, or Pi=P>. (178)

PROOF. Put o = 0105.
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(). We know that R € R; + R,. Then if Ri= R, we have R = R; = R, and then reso = 1.
Suppose that P; = P,. Now, dually to the first case, we have P 2P, P,. Since ¢ # 1y we

have P = P, = P,. Now P is a hyperplane and therefore reso = 1, as required.

(=). Letreso = 1. If P; = P,, we are done. Assume P; # P,. This implies that V = P; + P;.
Hence by 1.2.2 we have that R = R; + R,. But R is a line, and then R; and R, are to be equal

lines. H

1.3.8. Let a1, o, be transvections of GL,(V). Then o0, is a transvection if and only if

R1:R2 01"P1:P2.

PROOF. The result is an immediate corollary of 1.3.7. One has only to take into account

that the product o0, is of determinant 1 (i.e. det o0, = deto; deto,=1-1=1). O

1.3.9. Let X be a subgroup of GL,(V) all whose elements are transvections. Then either the

elements of X have the same residual line, or they all have the same fixed hyperplane.

PRrROOF. In the case when all elements of X have the same residual space we are through.
Suppose then that there 1,0, in X such that R; # R,. Since X is a subgroup, gj0,€ X
and a transvection. Then by 1.3.8 we get that P; = P,. Take any nontrivial element ¢ of X.
We want to show P = Py = P,. Let P # Py, it is impossible that P # P;, since X is a subgroup
again and by applying 1.3.8 to the pairs o, o) and o, g5, are transvections and we see that

R = Ry and R = R,. This implies that R; = R, which is absurd. O

1.3.10. Two nontrivial transvections 1,0, € GL,(V) are commuting if and only if

Ry cP,and R, < P;. (1.79)

ProoF. The sufficiency part follows from 1.2.4. Since oy is a tranvection, we have R, < Py,
where k = 1,2. In the case when Ry R, = 0, or, in other words, in the case when R, are
distinct lines we have the desired by 1.2.5. If R; = R, we have that Ry = R, < P, and
Ry=R,C P,. mi
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1.3.11. Let x, y be distinct vectors of V. Let further H be a hyperplane that contains y — x

but not x. Then there is a transvection with P = H and R =< y —x> which takes x to y:

ogx=Yy.

ProoF. The conditions imply that n > 1. Pick a linear functional from V to F as p whose

kernel is H and such that px=1. Asy —x € H, p(y — x) = 0. Consider the linear map

0 = Ty_x,p. It is easy to check that P = H and R = <y — x> ; furthermore, o is a transvection by

1.3.4. Finally,

OX=TxpX=x+px)(y—x)=x+1(y—-x)=y. (1.80)
Our next result is a dual version to 1.3.11: lines are replaced by hyperplanes and vice
versa.
1.3.12. Let H, H' be hyperplanes, and let L be a line that is contained neither in H, nor in

H'. Then there is a transvection Twhose residual space is L and which takes H to H: TH =

H'.

PROOF. Suppose that xj, ..., x,,.1 is a base of H and L= <a> . The conditions imply that

V=H® L=H ®L. (1.81)

The second equality implies that for each i = 1, ... , n—1 there exist a vector x;' of H' and a
scalar A ; of F with

xi=xi+ A;a. (1.82)

It is clear that the vectors x';, ..., x',-; are linearly independent, and so they form a base of

H.

Consider the following linear functional in V"
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pa=0 and px;=-A1,, i=1,..,n-1. (1.83)

One then easily checks that ¢ = 7,, is a non—trivial transvection with the residual line

L =<a> . To complete the proof we see that 0 H=H'. But

oX;= z-a,pxl-:x,-+p(xi)a:x,-—/iia:x'i (184)

foralli=1, ..., n —1. Then o takes the base x, ... ,x,.; to the base x', ... ,x',—;, and hence

Hto H. O
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2. COLLINEAR TRANSFORMATION AND PROJECTIVE GEOMETRY

A geometric transformation g of V onto V) is a bijection g: V— V; which has the
following property for all subsets X of V: X is a subspace of V if and only if gX is a
subspace of V;. And a projectivity z of V onto V; is a bijection 7: P(V) — P(V) (P as the set
of all subspaces) which has the following property for all U, Win P(V): U c W if and only
if zU caW.

2.1. The Fundamental Theorem of Projective Geometry

2.1.1. Let & be a bijection of the lines of V onto the lines of Vi, i.e. let w: P'(V) — P'(V)).

Suppose w satisfies

Liclh+ls ©anlicranl+nls (21)

forall Ly, Ly, Ly in P'(V). Then & can be extended uniquely to a projectivity
IT: P(V)—> P(V)).

PrOOF. Existence, by induction on r that

LclLi+.+L onLcnal +..+xL, 2.2)

Define I10 = 0. For any U in P(V) with U # 0 express U as the sum of lines

U=Li+..+L, (2.3)

and define

NNU ==L + ... + oL, (2.4)

We find that IT is a well-defined, order preserving, bijection of P(V) onto P(V)) that

induces 7 on lines. O
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2.1.2. Let w : P(V)— P(V)) be a bijection such that

UcW=zUc W (2.5

Suppose dimgV = dimg Vy. Then « is a projectivity.

PrOOF. We have to show zU < 7W = U < W (Because if 7 is a projectivity then

Uc WeoerU c aW). Write zW =zU @ #T. Then

r(UNT) caUn aT=0. (2.6)
Since 7(U N T)=0and 70 =0 then U N T=0 and obviously U + T= U @ T. We obtain
U@ T) 2 raU ® oT = zW, hence 7(U @ T) = W by dimension argument, and hence

UcUD®T=W. O

2.1.3. Let  be a bijection of the lines of V onto the lines of V). Suppose dimgV = dimg, V},

and

Liclh+ls=7alic al,+rlLs. (27)

Then &t can be extended uniquely to a projectivity I1: P(V)— P(V)).

PROOF. (1) By induction,

LclLi+.+L =L czal +..+7znL,. (2.8)
Hence

V=Lli1+..+L, = Vi=aLi+..+7xL,. 2.9)

Hence



24

L, ..., L, independent = zL,, ..., 7L, independent. (2.10)

(2) Define T10 = 0. For any U in P(V) with U#0 express U = L; + ... + L, and define
MU =xnL; + ... +zL,. ThenII is well-defined prolongation of z to P(V) by step (1). And it

is clear that 7 preserves + and dim. It is easily verified that 7 is surjective, also that

UcW = IIU cIlIW. (2.11)

Therefore, in the light of 2.1.2., it remains for us to prove injectivity, i.e. that IIU = I[TW
implies U = W. It is enough to show that I[1L < ITW implies L W. And this is true since

dim(W + L) = dim II(W + L) = dim(I1W + IIL) = dim [IW = dim W. (2.12)

O

2.1.4. Let & be a bijection of the lines of V onto the lines of Vi, and let dimg V = dimg; V.
Suppose there is a fixed p (2 < p <n—1) such that for each p—dimensional subspace U of V,
all the lines nl (with Lc U) fall in a p—dimensional subspace of Vi. Then m can be

extended uniquely to a projectivity I1: P(V) — P(V})
ProOF. (1) If p = 2 the results follows easily from 2.1.3. So let (3 < p < n-1). We will
prove that the property then holds for p —1, so ultimately for 2, and we will be through.
(2) For any subspace X of V, let X+ denote the subspace of V; generated by zL (with
LcX). Clearly
dmX<p=dimX:<p (2.13)

We have to show that

dim U =p-1 = dim Us < p-1. (2.14)
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Suppose not. Then we would have a U with dim U = p — 1, dim U« = p. Pick a line KV
with K+ & U« Then K ¢ U. So dim (K + U) = p, so we claim that (K + U)+ 2 K«+ U-.
Take a line N as N ¢ K+ + U« then 3N;, N, such that Ny ¢ K+, Noc U«. Then we have
N c N1+ Ny and then zN < aN,+zN>. SoLic Kand L,c U

dim(K + U)+ > dim(K«+ U«) =p + 1, (2.15)

which is absurd. O

2.1.5. Suppose dimg V > 3. Then every projectivity of V onto Vy is a projective collinear

transformation.

PROOF. (1) For any a in V , <a> will be the line Fa; for any a'in V |, <a'> will be the

line Fia'. Let r: P(V)—P(V)) be a given projectivity of V onto V. Fix a base x, ..., x, for V.

It is easily seen that there is a base x'j, ..., x', for V; such that
TXx> =<x" (1<i<n), (2.16)
TLXI+Xx> =<x1"+x;» (2£i<n). 2.17)

(2) Since 7 is a projectivity, each o in F determines an element o' of F; such that
<X+ axy> =<x;'"+a x'> Clearly0'=0, 1'=1, and &' = 8" implies o = . So we have

an injection, easily seen to be a bijection,

"t F— F (2.18)

(3) Let us show that 7< xj+a x; > = < x;' + a'x;" > for any i>2. By step (2) we have
~: F— F;such that < x;+ ox;> = <x1'+ & x;' > and 6:0, 1=1.Now
<x2>+<xi>

axa—axi> C (2.19)
<X, + o, +<x; +ox)>
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SO

<x;>+<x;>
Toax—oxp> <5, ,, L, (2.20)
X FaXxy+ X Hox).

Hence 7<a x, — o x> = <o'xy'— & x;>. In particular z<x, — x> = <xp' — x;>. But

m<ax,— o x> =mw<x,—xp>. Hence a'= & .

(4) Next we observe that

<X +00 Xot ... +0, X> = <x'1+0'y X'o+ ...+, XD (2.21)

For

X1 +H00 XoF ... +0p X0 = <X 1+ X0t . +5, XD, (2.22)
X1 +00 Xot ... +0X> C <X 140 X' D +H<x'> L+ <. (2.23)
(omit <x'»), whence *=a/; as required.
(5) We also have
O XoF ... 0, Xp> = <A'2 X'oF ... +0'y X' (2.24)

since <oy Xo+ ... +0, x> = <Fp x'»+ ... +%, X', and w<ox+ ... +a, x> C

X'140x" o+ ... +a' x> + <x'p>, whence *;= a;, can be arranged.

(6) The bijection ": F— F is in fact a field isomorphism. For

X+(at B)' X'+ X'y = (ot fxn + x3> S+ XD +< X + X' (2.25)
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whence (a + ) =a'+ ', and <x'1+(a f)x'2 + f'x'p> = w<xi+(o fxa + x3> <

X'+ <a'x'r+x's> whence (a ) =a' B

(7) If we now use from O'Meara §4.1 to define a collinear transformation k: V—V; with

respect to ' by
k(on x1+ ... +a, x) = (a'y X1+ ... +a'y x7) (2.26)
we find that k and 7 agree on lines, hence 7 is the projective collinear transformation k.
2.2. The Isomorphisms @,
We now introduce group isomorphisms @, where g is first a collinear
transformation g: V—V; of V onto V}, and secondly a projective collinear transformation

g: P(V)—P(V)) of V onto V.

First consider a collinear transformation g: V—V|. Let u: F—F) be the associated

field isomorphisms. Here n = n; follows. Then it is clear that the ® , defined by
@, k=gkg Vke TLyV) (2.27)
is actually a group isomorphism
d,: T'L,(V)— I'L,;y (V). (2.28)
Under composition and inversion,

D= Py D, D=0 . (2.29)

We find that @, induces

®, : GL,(V)— GL,1(Vy), (2.30)
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P, : SL,(V)— SL.i(Vh), (2.31)

@, : RL,(V)— RL, (V). (2.32)
If o is in GL,(V), then

det (® ,0) = (det 0)"; (2.33)

and the residual and fixed spaces of ® ,o are gR and gP respectively; in particular
res®,0=reso. (2.34)

If H is a hyperplane and L is a line with L £ H, then gL is a line contained in the hyperplane
gH of Vi, and ®, carries the set of transvections with spaces Lc H onto the set of

transvections with spaces gL c gH. If o is the transvection ¢ = 7, in usual form, then

D7, =T . (2.35)

a.p ga,1pg~

Now consider a projective collinear transformation g: P(V)—P(V) of V onto V;. We again

have n = n;. This time define

@k =gkg™ Vke PTL,(V) (2.36)
and obtain a group isomorphism

®,:PI'L,(V) — PI'L.u(Vy). (2.37)
Under composition and inversion,

D= Dy P,y D= (2.38)

8
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Since g is a projective collinear transformation it is of the form g =h for some collinear

transformation 4: V—V,. We find that

D, j=C_j=®,j Vje TLyV).

We conclude that ¢, induces

¢ ¢ PGL,(V) — PGL,,1(V1),

¢ g PSLi(V) — PSL,u(V),

(2.39)

(2.40)

(2.41)

and also that ¢, carries the set of projective transvections with spaces L — H onto the set

with spaces gL c gH.

2.2.1. Suppose n =ny = 2. If g| and g, are collinear transformations of V onto V,, then the

following statements are equivalent:

)¢ =g

2)g1= g
(3) g1 = gor for some r in RL,(V).
(4) g1 = r1ga for some ry in RL,,;(V)).

2.3. The Contragradient

Consider a semilinear mapping k: V—V,| with respect to the field isomorphism u: F—F .

For each pje V' itis clear that 4 'pik € V. So each semilinear k defines a mapping

kti V1' — V,

(2.42)

called the transpose of k, whose action is determined by sending a typical p; in V}' to

w'pik in V'. Thus
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K(p1) = pik. (2.43)
In other words, each k determines exactly one map k' such that
@, Kpp'=<kx, pp  VxeV,pe V. (2.44)
This equation is the defining equation of k'.
We find that k": V|' — V' is semilinear with respect to ,u'l: F,—F. For any two
semilinear maps k and / of V into V| we have
K=0sk=0, (2.45)
K=Iek=1. (2.46)
If &# V=V, and k;: V,—V, are semilinear, then kk: V—V, is semilinear with
(kik)' = K'k," . If we fix bases L and D for V and V; respectively, if L and D' denote the
corresponding dual bases for V' and V' respectively, if A is the matrix of k£ with respect to
AP, and if B is the matrix of k' with respect to P', L', then

B‘=A' (2.47)

To prove this, just establish the equations

aij=<Xa;yp yi'> = <k, yi> = <x; K y>" (2.48)

= <X, %bﬂix/l' YU = bj,"u (249)

In particular,

k bijective < k' bijective (2.50)
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If k: V— V| is bijective, then (k'l)’ and (k’)'1 are both semilinear bijections of V' onto V'

with respect to u: F—F, and, in fact, we find that
&K =)™ (2.51)

Accordingly, the contragradient k is defined for any collinear transformation k by the

equation
k=("). (2.52)
The associated field isomorphism is the same for k as for k and we have the diagrams
VoV, wF—F, k:V->V. (2.53)
Behaviour under composition and inversion is given by
k,=k =k..k,and (k™) =(k)™" (2.54)

t

Now fix V and consider the action of the contragradient on the collinear transformations of

V,i.e.on I'L,(V). Then it is easily seen that we have an isomorphism
“TL(V) > T'Ly(V) (2.55)
which preserves associated field automorphisms and which induces
" GL(V) = GL(V"), (2.56)
7 SL(V) — SL.(V"), (2.57)

“: RL,(V) = RL,(V). (2.58)
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Furthermore we have
matek=A & matek = A (2.59)
where &' denotes the dual base of &, and A is defined for the invertible matrix A by
A=(a"). (2.60)
And for any k in I'L,(V) and any subspace U of V we have
k U= (kU)". (2.61)
We call ":T'L,(V) —»T'L,(V') the contragradient isomorphism of V

2.3.1. Let ~ be the contragradient isomorphism of V and consider a typical ¢ in GL,(V).
Then
(1) The residual space of & is P°.
(2) The fixed space of & is R" .
(3)reso =res o.
(4) “carries the set of transvections with spaces L H onto the set of transvections
with spaces H° gLo.

(5) If o is the transvection o = 7,, in the usual form, then T ,,= T where a €

p.—a?

V" is defined by <@ ,a > = <a, ¢>.
PROOF. It is enough to prove (1)—(4) for ¢ instead of & , and to prove 7, ,=7 ,a instead of
(5). Let R, and P, denote the residual and fixed spaces of d. If pPE RO, then for any x in V

we have

&, 0'p —p> = <ox —x, p>e <R, R> =0; (2.62)
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SO a’p =p ;S0 R’ c P, . On the other hand, if pe P, , then, for typical xin V,

x,0p—p>=<ocx—x,p>=0; (2.63)

SO P,gRO . Therefore P; = R . This proves (2). Hence (3). Now for any pe P, peV,

p,dp—p> =<ap-p,p =0 (2.64)

soR < P% soR =P by dimensions. We now have (1), (2) and (3). And (4) is a

consequence of (1) and (2). For (5), establish the equations

&, Tap > = <x + (pX)a, @> = <x, P> + <x, p><a, ¢>

=<X, §> + a(P)x, p> =<, @ + a(P)p> =<x,7,; ¢>. (2.65)
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2.4. Comments

The following diagrams illustrate our results for n > 2 ( but excluding n = 2 with F=F,,

F5).

ZL, PZL,
lifn>3
'L, PI'L,
aut F' aut F'
GL,
/ PGL,
SL, F¥/ F*"
RL,
Simple / PSL,
SL, "RL,
(41 in F*)
1
Iy

Figure 2.1. Inclusion scheme
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3. THE ISOMORPHISMS OF LINEAR GROUPS

3.1. Preliminaries

We use C4(X) denote the centralizer in A of a nonempty subset X of an abstract group A

(i.e. Ca(X)={ac Al ax=xa ¥V xeX}). Thus Co(X) is a subgroup of A, and
X1 Xo = Ca(X1) 2Ca(Xy), (3.1)
X CaCa(X). (3.2)

If ¢ is an isomorphism of @ onto ¢ A, then

¢ CaX)=Cga(0X), (3.3)

For short we put Cy(X)= Co ) (X) whenever we are working in GL,(V), and
CuX) =Cpg, vy (X) whenever we are working in PGL,(V). The symbol C will be reserved

for the centralizers Cg and Cy of groups G and A to be defined later.
3.1.1. If o GLy(V) — RLy(V), then DCy(0) = 1y.

PROOF. ¢ has to move a line since o ¢ RL,. Hence there is a base & for V in which ¢ has
: 0 B . : : . :
matrix of the form ] . By matrix calculation we find that the matrix of any X in Cy(0)
o

has the form

(p pr j (3.4)

r ptar

in the base L. Any two such matrices commute. O
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3.1.2. If n =2, if L and K are distinct lines in V, and if 1, and tx are transvections with
residual lines L and K respectively, then TLTKTL_ITK_I is an element of GL,—RL, with
residual space V. If Tk is a transvection, distinct from 7Tk, with residual line K, then

TLTKTL_I TK_I and 7 Tk Z'L_ITK_1 do not permute.

Proor. (1) All characteristic vectors of 7 fall in L, so J =7 K is a line distinct from K. But
T =TLTKTL_1 is a transvection with residual line J by 1.2.3. So the residual space of
TLTKTL_ITK_1=2'JTK_1 is equal to V=J/+K because we know that any product of different
transvections has a residual space as R; + R;. Since TLTKTL_ITK_I is a product of two
transvections, it cannot be in RL,. This proves the first part.

(2) Now choose a base x1, x, with Fx; = L and Fx, = K. In this base

1 1
SRR ANES

with afy#0 and S # y. By computing with matrices we find that the given

commutators do not permute. O

Recall from linear algebra that o€ GL, (V) is called unipotent if (o —1V)k = 0 holds for some
k > 0, i.e. if (¢ —1y) is nilpotent. If ¢ is unipotent and U is a nonzero subspace of V for
which cU=U, then (0lU) is also unipotent. The following statements which can be found,
for instance, in [3] are equivalent:

(1) o is unipotent.

(2) All characteristic roots of ¢ are 1

(3) There is a base for V in which ¢ is upper—triangular with 1's on the diagonal.

3.1.3. If char F = p > 0, then o€ GL,(V) is unipotent if and only ifa”u = ly for some v >0.

PrOOF. By the binomial theorem for permuting linear transformations,

c-1n)"=c" - 1y. (3.6)



37

Sog” = 1y implies that ¢ is unipotent . Conversely, if (o — 1V)k = (0 for some k > 0, then

(a—lv)”"=0f0rallpv> k,soc” =1y. o

We call an element £ of PI"'L,(V) a projective unipotent transformation if it is of

the form =0 for some unipotent transformation ¢ in GL,(V) (¢ as a unipotent
representative of £ and it is unique.)

We note that all transvections are unipotent transformations and all projective
transvections are projective unipotent transformations. Indeed, as we saw above any

transvection has an upper—triangular matrix in a suitable base of V (see the proof of 1.3.1.)

We say that two elements k; and k, of I'L,(V) permute projectively if %1 and %2

permute. Evidently,
Permutability = projective permutability, (3.7)

but the converse statement is not true in general. Below we examine a number of natural
conditions under which projective permutability in GL,(V) becomes the usual

permutability.

3.1.4. Let o be any element of GL,(V) which satisfies any one of the following conditions:

1
Dreso< —n
(D 5

(2) reso = %n with o not a big dilation.

(3) 0 has exactly one characteristic root in F.
(4) o is unipotent.

Then if o permutes projectively with ¥ in GL,(V), it permutes with X.

PrROOF. We assume (in the proofs of all our statements) that ¢ permutes projectively with

2 of GL,(V) and

YoX'=uao, (3.8)
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where a € F* is a non—zero scalar.
(1) If the residue of o is less than n/2, then the dimension of the fixed space P(o) of
o is greater than n/2 due to
dim R(o) + dim P(0) = n. 3.9)

Let ey, ... ,ex, where k> n/2 are linearly independent vectors of P(o).

(3.8) implies that

res (X o X) = res o = res(a ). (3.10)
We consider the vectors
ar=(ao—-1y) (e1), ..., ar=(ao — 1y)(er) (3.11)
in R(ao). Clearly,
a= (o — Dey, ..., ap = (a—1) ey. (3.12)
If a #1, then the system ay, ... ,ax is a linearly independent system of vectors of R(ao),
and hence
res(ao) > k > n/2, (3.13)

which is absurd, since res(ao) < n/2. Then a=1 and ¢ commutes with X.
(2) The condition res(o) = n/2 means that the dimension of the fixed space is also
n/2. Suppose that

*o¥X'=ao, (3.14)

where a# 1. For all xe P(c) we have
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oX' (W =aZ o(x)=a X" (x). (3.15)

It follows that the subspace S = X 'P(¢) of dimension n/2 is the eigenspace of o

corresponding to the characteristic value a# 1. Then V= P(6) @ § and o is a big dilation,
a contradiction.

(3) Recall that spec(o) denotes the set of all characteristic roots of . We know that

any conjugate transformation £ ¢ £ has the same characteristic roots as ¢ does. Let A be

the only characteristic value of ¢. Supposing that a# 1 in (3.8) we get

{1} =specEZ o Z'l) = spec(o) = spec(ao) ={a A}, (3.16)

which is impossible.

(4) By (3), since any unipotent transformation has exactly one characteristic root. O

3.1.5. If o and X are elements of GL,(V), and if o permutes projectively with X, then o

permutes with X.

PROOF. Suppose that

YoX'l=uo, (3.17)

where o € F*. It follows

Yoxlo'=a 1y. (3.18)

In the left hand side we have a transformation from SL,(V) (that is, of determinant 1). If

so, we have

1 =det(a-1y) =a". (3.19)

Clearly, for every integer m

Eoxhy"=xs"3" (3.20)
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Then for m=n we have

'3 = (a0) = d"d" = " (3.21)
So ¢"X =X 4", as desired. o
3.1.6. Example. Let us consider the case n = 3 with ¢ an element of GL3(V) with reso = 2.

We claim there is a X in GL3(V) which does not permute, but which does permute

projectively, with o if and only if o satisfies

deto=1, o diagonalizable over F, =1 (3.22)

First suppose the conditions are satisfied. Then there is a base for V' in which ¢ has matrix

o~ @ (w#1, @’=1). (3.23)

Let X be the transformation in GL3(V) defined by

0 0 -1 0
X~[-1 0 0}, >0 0 1] (3.24)
0 1 0
Then X ¢ X' = w0, so T does not permute, but does permute projectively, with o.

Conversely, suppose we have a £ and an a with a# 0,1, such that a(Z ¢ L) = 6. Clearly
o’=1. We have a nonzero x in V such that ox = x since reso = 2. But o(Zx) = a(Zx) and

o(2x) = o*(Zx). Hence

o~ o (3.25)
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since 1, a, o are distinct. So the conditions are satisfied. Note that if our & in GL;5(V) with
res o = 2 satisfies the above conditions, then <(CV(c_7))3> is abelian. To see this fix a base
X1, X2, X3 in which ¢ is diagonal. So ¢ x; = a; x; with distinct ¢; for i = 1, 2, 3. Consider a
representative £ of a typical T in Cv(c_f). Then X permutes projectively with o, so ¥’
permutes with ¢ by 3.1.5. So each element Z) of <(CV(E))3> has a representative ¢ which
permutes with o, i.e. o ¢~ = 0. Now Fy; is the only line on which ¢ has characteristic root
0;. But o(¢x;) = ai(Px;). So ¢ (Fx;) = Fx; for i = 1, 2, 3. Thus all the ¢'s permute among

themselves. So <(CV(c_7))3> is abelian, as asserted.

3.2. Full Groups

A subgroup G of I'L,(V) is full of transvections if n=2 and for each hyperplane H

of V and each line L c H, there is at least one transvection ¢ in G with R=L and P=H.

Similarly, a subgroup A of PI'L,(V) is said to be full of projective transvections if
n>2 and for each hyperplane H of V and each line L C H, there is at least one projective

transvection o in A with R=L and P=H.

Example. Clearly, SL,(V) is full of transvections, and PSL,(V) is full of projective
transvections. It is then evident that every which contains SL,(V) (resp. PSL,(V)) is full of

transvection (resp. of projective transvections.)

From now on G will denote a subgroup of I"L,(V) that is full of transvections, and
A will denote a subgroup of PI'L,(V) that is full of projective transvections. And G| and A,
will denote similar groups in the V\, ny, Fy situation. A will denote a group isomorphism

A: A—’Al.

A preserves the projective transvection ¢ in A if Ao is a projective transvection in

. . . . . . -1 . . . . .
Ay, it preserves the projective transvection g; in A if A” ¢ is a projective transvection in A,
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and it preserves projective transvections if it preserves all projective transvections in A and

Ay

3.2.1. The groups G and A are also full, or, in other words, the fullness is preserved

under the contragradient isomorphism.

PrOOF. Recall from Section 2.3. that if K is a subspace of V, then K is the subspace of all
linear functionals of V' that send all vectors of K to zero. Let us take a line L and a
hyperplane H of V with LCH. As G is full of transvection then there exists at least one

transvection o€ G with R=L and P=H. According to the results in the section 2.3, the

subspaces of the transformation & € G are then L° and H° and H° gLO and hence G is

also full. i
3.2.2. Suppose that n > 3. The commutator subgroup DG of G (resp. A) is also full.

PROOF. Let us first demonstrate that the fact that DG is full implies that DA is full. Really,
consider the preimage P'A of A in GL,(V). Evidently, P'Ais full, and hence DP'A is full,
whence we get that DA = PDP'A is full.

Now let L be a line and H a hyperplane of V with L < H. We have to find a transvection

7 € DG, whose subspaces are L and H. There is a base xy, ... ,x,.1, X, of V such that

L=<x> and H = o<xy, ... ,Xp.1>. (3.26)

Let pi, ... ,p, be the dual base of V' of the base xj, ... ,x,. Since G is full there is a

transvection 7; with the subspaces o<x;> < ker(p;) and a transvection 7, with the subspaces

<x»> < ker(p,). Then for suitable non—zero scalars a, f of F we have

=7, . andB=17_ 4 . (3.27)

ap,

We claim that



It implies that R(¢) = <x;> = L and P(0) = ker(p,) = H, as desired.
We have

c=nnn 5.
By the results of Section 1.3

-1 _ -1 _
ot =0T,p, 0 =T (mpn’

Now

Ti(x) = T, op, (x2) = x24 apa(x2)x1 = X2+ 0 X3

and forallx e V

Bpn® () = Bpn T, o, (062) = Bl = apa(x)x1).

Since pn(x;) =0, we arrive at the equation

Bonti () = Ppu(x)  Vxe V.

Therefore

— R P — _
c=0n0 n = TX2+axl!ﬁp/x T—Xzsﬁpu - sz*'wf]—xzﬁﬂu =7

(we used formulas from Section 1.3; see 1.3.3).

ax.fp,
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(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)
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3.2.3 Let Ry and Py be any two subspaces of V with dim Ry + dim Py = n. If Ry is a line,
assume in addition that Ryc Py . Then there is a product ¢ of dim Ry transvections in G

such that R=Ry and P =Py .
PrROOF. If Ry is O or is a line then the result is obvious.
Now let Ry be a plane. We can always choose lines L; , L, and hyperplanes H, , H,

such that

LicH,, L,cH,, (3.35)
R() = L1 + Lz, P() :Hl M Hz. (336)

Indeed, there are three cases to consider: when Ry N Py is respectively, 0, a line and a
plane.

a) If Ry N Py =0, then L; and L, can be taken as the spans of the vectors of some
base of Ry and

H] =L1 @ P() and H2=L2 @ P(). (337)

b) If Ry N Py is a line, then the subspace Ry + Py is of codimension one. Hence there is a

line L with

V=L ® (Ry+ Py). (3.38)

Take any vector a € Ry\ Py. Then our choice of L, L,, H, H; is as follows:

L=<, H; =Ry + Py, (339)

L, =Ry N Py, H,=L @ Po. (340)

¢) The last case is the case when Ry — Py. Then we take two distinct lines L;, L, of Ry with

Ro=L; ® L, and take some subspaces K, K, with

V= K] @ Po and P0=R0 @ Kz. (341)
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Now

H1 :Kl @ L1 @ K2 and H2:K1 @ L2 @ Kz. (342)

Since G is full of transvections, we can pick transvections o; and o, in G with R=L,,

P=H,, R)=L,, P,=H;. Put o=0,0,. According to 1.2.2 we have the following implications:

()  V=P+P, = R=R + Ry, (3.43)
2) RiNnR,=0= P=P N Py, (3.44)

Thus the transformation ¢ does the job.
Now we apply induction on dim Ry, the cases dim Ry < 2 being considered as the
induction base. Suppose that dim Ry > 3. Then dim Py < n-3.

Now let P; be a hyperplane that contains P,. If so, for some line L we have
V=L ® P,. (3.45)
Put P, =L ® Py. In particular, V = P; + P, (once again, we are going to apply 1.2.2.)
The intersection Ry N P; is of dimension at least 2; it is then possible to pick up a
line R; in this intersection. Choose then a subspace R, of Ry which is a direct complement
of Rito Ry :

R=R; @ R, (:> Ry N R2:0). (346)

Being full of transvections, G has a transvection o; with the subspaces R; < P;. By the
induction hypothesis, a transformation ,, product of at most < dim R, transvections has

the subspaces R, P,. Application of 1.2.2 completes the proof. i

As a corollary we get the following fact.

3.2.4. Let n>2. Then DG contains an element o with R(o) = V.
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PrROOF. If n >3 we use 3.2.2 and 3.2.3. For the case when n =2 we apply 3.1.2. O

3.2.5. Suppose n> 2. Then

(1) The centralizer of G in ' L, is contained in RL,, in particular

Gncen I'L, € cen G < cen GL,. (3.47)

(2) The centralizer of A inPI'L, is trivial. In particular, A is centerless.

PROOF. (1) As G is full, then for every line L there is a transvection 7 with R(7) = L. A
transformation of GL,(V) which commutes with 7 must stabilize R(7). So any element of
the centralizer of G stabilizes all lines of V, and hence it is a radiation. This proves (1).

(2) is an immediate consequence of (1). i

3.2.6. Suppose n > 2. Then C\(G) = RL,(V), and cen G=G N RL,(V).

PrOOF. It is merely a reformulation of the previous result. O

3.2.7. Let n= 3 and F#F,. Then for each hyperplane H in V and each line LC H there are
at least two distinct transvections in G, and at least two distinct projective transvections in

A, with residual line L and fixed hyperplane H.

PROOF. Let p € V' describe H, that is H = ker p. Pick a line L of H; then since G is full,

there is an element a, a base vector of L such 7,, is in G. Also an element b € H with b ¢
<a> can be found such that 7,,, € G. The product of the tranvections we have found, the
transvection 7,5 , is also in G.

Since F#F, there is a line <A a + u b> in the plane <a, b> that is distinct from the

three lines <a>, <b>, <a+b>, and is such that 7y, , € G.

a)If u=1, then A#0, 1; hence
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=1
T1-Dap= TapT La+ub, p Thsp € G (348)

with 1-4 #0,1.
b) So let # #1 and let ¢ be a transvection G whose residual line is L and whose
fixed hyperplane contains L but not b. Since ¢ is a transvection whose line is the linear

span of a, then
ob=b+va, (3.49)

where v# 0, since b ¢ P(c). Now for any X in V, the vector ¢ x — x, an element of R(g) = L

is in H and hence
plox—x)=0 = plox)=px. (3.50)
Thus po = p, whence po' = p. Therefore
Cap=Tobob p=0 Tpp0 T 'ppe G (3.51)

(recall that 7 7., rl= T forall ce V and ye V'; see Section 1.3).
Similarly,

-1
Twa,p= Tuob-blp = To(Aa+ub)p T Aatubp

-1_.-1
=0 Tha+ubp O T Ja+ubps (352)

since all the transformations @, 73 444 b,p,f_l La+ubp are in G, we obtain that 7,,,, is also in
G. As u#1, 14, and 7,,, are distinct transvections in G with spaces Lc H. Their

projective images are distinct, too; this proves the result for A. i

3.2.8.If G ¢ GL,, then

(1) CUDG) =RL,(V)if n =2 3,

(2) Cu(DG) =RL,(V) if n = 2 and G contains at least two distinct transvections having the
same residual line,

(3) the only unipotent transformation in C\/(DG) is 1y
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PROOF. (1) If n = 3 we know that by 3.2.2 and 3.2.6
(2) DG is not abelian by 3.1.1. Then for any ¢ € C/(DG),

Cv(c) 2 CUCUDG)) = CyC(DG) 2 DG, (3.53)

so Cy(0) is not abelian, so DCy(o) # 1y, so 6 € RL, by 3.1.1. Then C\{DG) = RL,.

(3) If C(DG) = RL, the result holds. We need therefore just consider the situation
n = 2. Here a typical unipotent ¢ in Cy(DG) is a transvection, say with the residual line L.
Let K be a line in V, distinct from L. Transvections 7 and 7x in G with residual lines L and
K. Then oigma permutes with Z'LTKTL_ITK_I, it permutes with 77, so it permutes with the
transvection TKTL_I TK_I of the residual line zxL. So o fixes each of the lines L and 7xL. But

these lines are distinct since L# K. Hence ¢ = 1 since ¢ is unipotent. O
3.3. CDC in the Linear Case

If just A is given and we define G to be the set of representatives of the elements of A in
I'L,(V) (If we define G to be the inverse image of A under the homomorphism (PII"L,)),
then G is a subgroup of I'L,(V) that is full of transvections, and the theory in the previous
section (3.2) will apply to it. If A satisfies A € PGL,(V), the G just constructed will satisfy

G < GL,(V). Throughout this and the next chapter we assume that our G and A have these

additional properties:

AcPGL,, G=P'ANTL, GcGL, (3.54)
and G and A are related in the same way over V'
AcPGL, G=P'AnTL, G cGL, (3.55)

C denotes the centralizer Cy, C,, C;, C G when we are working respectively in A, G, E,
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3.3.1. For any element o of G ,

C(o) cC(o), DC(c) cDC(0). (3.56)

If o has the additional property that it permutes with an element of G whenever it permutes

projectively with it, then

C(o) =C(0), DC(0)=DC(0). (3.57)

For any two subspaces U and W of V we define

G(U, W)={oe GIRCU, P2oW}, AU, W)= GU,W). (3.58)

By 1.2.1. both G(U, W) and A(U, W) are subgroups of G and A respectively; and A(U, W)
consists of those £ in A which have at least one representative ¢ with RcU and P D W.

Note that
cU=U, ocW=W Voe GU W) (3.59)
and
XU=U, SW=Ww Ve AU W). (3.60)
Example. If H is a hyperplane of V and L is a line with Lc H, then G(L, H) is the
group consisting of all transvections in G with residual line L and fixed hyperplane H, plus
1v; while A(L, H) is the group consisting of all projective transvections in A with residual

line L and fixed hyperplane H, plus 1.

3.3.2. If U and W are subspaces of V, then

G(U,W)= G (W, U, AU,W) = A(W°,UP). (3.61)
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3.3.3. Let o and o, be nontrivial transvections in G. Then the following statements are
equivalent:

(1) Ri=R, and P=P,.

(2) C(o 1) =C(02).

(3) C(01) = C(0).

Proor. (1) = (2). Here R=R, and P,=P,. Consider o € C(0y). Write 01=7,, and
0,=T,4, 1n the usual way. We have

T,=27,,2 =t (3.62)

- Ea,p):_l

and so Xa=Aa, pZ'I:IIp for some Ain F , whence

Y TpyX =T =7 (3.63)

aa,pr”! Aa lp Taap

so o€ C(a,). Hence C(a)) = C(02). (2) = (3). Just an application of 3.3.1. (3) = (1).
Suppose if possible that P;# P,. Then there is a line L with Lc P, but Lz P;. Since G is
full of transvections there is a transvection o3 with R3=L and P;=P,. Then o3 C(0,) and
o3¢ C(o1) by 1.3.10, hence 0 3€ C(0,) and o3¢ C(0 1) by 3.1.4., hence C(0 ) # C(0 1),

contrary to hypothesis. So P;= P,. And R| = R, follows by applying ~. i

3.3.4. If n = 3 and o is a nontrivial transvection in G, then
G(R, P) N DC(0) # 1y, (3.64)
DC(o) contains a nontrivial transvection with the same spaces as the given transvection o

PROOF. There is a base xi,..., x, for V with dual base pj,... , p, such that =7, , So

R=Fx,; and P=ker p,. Since G is full of transvections we have a, in F such that

T o, €Gand 7_, €G. Then 7 .SoXisa

X1,0p.

. € C(0) and T, €ECl0).PutX =7

ap x1,000,

transvection in G with residual line R and fixed hyperplane P . But
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(3.65)

So X € DC(o0). ]

3.3.5.Ifn= 3 and H is a hyperplane of V and L is a line in H, then there is a nontrivial

transvection T in G with spaces L H such that T € DC(7).

PROOF. Let o be a transvection in G with spaces L H. By previous proposition we have a

transvection 7 in G with spaces L € H such that 7e DC(o). But C(7) = C(o) by 3.3.3. O

3.3.6. If n=> 4 and o is a nontrivial transvection in G, then
G(L, P) n DC(0) # 1y, (3.66)
for all lines L in P .

ProoOF. Fix a line K in P with K& R+L. Let M be a hyperplane of V containing R+L but
not K. Let7; be a transvection in G with spaces LM , let7g be a transvection in G with
spaces Kc P. By 1.3.10, 77 and7zx are in C(o). Put ZZZZTKT_ILT_IK. Clearly Xe DC(o).
Now 7 K# K since K& M , hence Z'LTKT_IL is a transvection with residual line 77K distinct
from K, and with fixed hyperplane 7;P=P, hence Z=(TLTKT_1L) 7! x 1s a nontrivial
transvection with fixed hyperplane P. Similarly X=17;( Z'KZ'_I L 7! x) has residual line L. Hence

2 is a nontrivial element of G(L, P) N DC(o). O

3.3.7. Let ¢ be a nontrivial transvection in G. Then

CC(o)=AR P) if n=2, (3.67)
CDC(c)=AR, P) if n>4, (3.68)
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PROOF. (1) If ¥ is a typical nontrivial element of A(R, P), then C(X) = C(o) by 3.3.3.

Hence
Ye CC(X)=CC(o); (3.69)

hence A(R, P) c CC(0).

(1a) First let n = 3. Consider Xe G with Ye CC(E'). Then for each line Lc P there is a

projective transvection in A with residual line L and fixed hyperplane P; this projective

transvections 1is in C(E) by from O'Meara §1.6; hence ) permutes with it; hence X

permutes with its representative transvection; hence XL = L for all L in P; hence there is an
o in F such that the fixed space of aX contains P. Applying this result to £ and & gives

us [ € F such that the residual space of £ X is contained in R. It is easily seen that a = 5.

Then aSe G(R, P). Hence ¥ € A(R, P). Hence CC(0 ) = A(R, P) is established for n> 3.
(1b) Now n=2. Consider e G with £ e CC(c). Then o € C(0), soX € C(0), so e C(o)

1 A
by 3.1.4. If we take a base for V in which ¢ has matrix ( J we find that the matrix of

Y in the base will have to be of the form (p qj (X will have a representative whose
p

l o = —
matrix has the form ( J ,i.e. X e AR, P).) Therefore CC(o ) = AR, P) when n = 2.

(2) Now let n > 4. Clearly A(R, P) = CC(E ) QCDC(E ). To show the reverse inclusion we
shall use 3.3.6 and (1a).

3.3.8. Assume n > 3. Let o be an element of G with resa = 2 and suppose that (¢lR) is not a

radiation. Exclude the situation where n = 3, deto = 1, o is diagonalizable over F, o =1.

Then AR, P) cCDC(0).

ProOOF. (1) First suppose DC(c) < G(P, R). Consider typical Y in DC(E). Then DC(E) =

DC(o) by 3.1.4,3.1.6,3.3.1; so Y hasa representative X in DC(o). Then X < G(P, R) by

our assumption. So, for each ¢ € G(R, P),
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Rz P C Py, Pz 2 R 2 Ry, (3.70)

each element ¢ of G(R, P) permutes with Z, i.e. each element Z) of A(R, P) permutes with

each element T of DC(;Tﬁ) {g?ﬁe CDC(E)} therefore A(R, P) gCDC(E).

(2) If o satisfies the given conditions with G, then & will satisfy the given
conditions with G (to prove this consider the possibility that (& IP") is first a nontrivial
radiation and then a trivial one). If we can prove that o3¢ DC(06) = R < P3, we will have
P2 R; by duality, hence DC(o)cG(P, R) and we will be through. Consider the
implication, then (glR) € GL,(R) — RL,(R) by hypothesis; hence DCg(clR) = 1 by 3.1.1.

But it is easily verified that
DC(0)IR < DCg(clR). (3.71)
Hence (03IR) = 1. Hence Rc P3, as required. O

3.3.9. Assume n > 4. Let ¢ be an element of G with rese = 2 and suppose that RNP =0

with o not a big dilation. Exclude the situation n = 4 with F = F,. Then A(R, P) = CDC(E).

ProOF. By 3.3.8 we have to show that CDC(E) c AR, P).

(1) For each hyperplane H of P and each line L in H fix a transvection 7,5 in G
with residual line L and fixed hyperplane R + H. (When n = 4 we have F# F, so by 3.2.7
we can, and do, fix two distinct 7,5 and 7,y for each such L and H.) Clearly 7, y
stabilizes both R and P, and (7.4 |P ) is a transvection with spaces L H, and (7, zIR) = 1.
(Similarly with 77 5.) Let G, denote the subgroup of GL,_»(P) that is generated by all the
(7,alP ) and (7P ). It is obvious that G, is full of transvections (doubly full when

necessary), and
1x® Gp < C(0), 1r® DG,=D(1r® Gp) <DC(0), Cp(DGp) =RL,2(P), (3.72)

the last equation being a consequence of 3.2.8.
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(2) First assume n2> 5. Consider a typical T in CDC(E) and let £ be one of its
representatives. Then £ permutes projectively with each element of 1x® DGp . Now for
each line L in P there is a transvection in DGp with residual line L since DGp is full of
transvections by 3.2.2; hence 1 ®@ DGp contains a transvection with residual line L; but

will then permute with it by 3.1.4; hence £L = L for all L in P . In particular, XP = P and
(ZIP) € RL,-»(P). By duality, ZR = R. Hence Ye A(R, P).
(3) Now n = 4. Here our 7. 4’s can be written 7;. Again consider typical T in

CDC(o ) and let  be one of its representatives. Let L and K be any two distinct lines in P .
Then

(T L7 IP = (qIP) (5 P)(gIP) " (P)™! (3.73)

is an element of residual index 2 in GL,(P) — RL,(P), by 3.1.2. Hence TLTKT_I 1T ! x has
residual space P and fixed space R, it is not a big dilation, and it belongs to DC(o). Hence
Y permutes projectively, indeed permutes, with 7,77 ! .7 ! xand sOXR=Rand XP=P .

Now X permutes projectively with all elements of
1® DGp < DC(0); (3.74)
hence £ permutes with all elements of 1z @ DGp which are not big dilations of residue 2 by
3.1.4; but it obviously permutes with all big dilations of residue 2 in this group; hence X
permutes with all elements of 1z ® DGp , so
(o IP) € Cp(DGp) =RL,(P) (3.75)

hence ¥ € A(R, P). O

3.3.10. Assume n = 4. Let o be an element of G with resc = 2 and suppose that RNP =0

with ¢ not a big dilation. Then every projective unipotent transformation in CDC(E) isa

projective transvection in A(R, P).
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PrOOF. If n = 5, or if n = 4 with F # F,, apply the result of 3.3.8. If n =4 and F = F;,
proceed as in the proof of 3.3.8, using the third part of 3.2.8. i

3.3.11. Assume n = 4. Let o be an element of G with resc = 2 and suppose that RNP =0

with o not a big dilation. Then o¢ DC(E).
3.3.12. If X is an element of G such that £ € DC(c ), then M is unipotent.

PROOF. A moment's reflection will show that there is no loss of generality in assuming that
F is algebraically closed and G = GL,(V). Let us make these assumptions.
Let a, f, ... be the distinct characteristic roots of X. The Jordan canonical form of

then provides parallel splittings
V=V, ® V; @ ..., 2=2,0 %®.., (3.76)

such that all the roots of X, are a, those of X are f, etc. Note that det X, = " where n, =
dimV,, etc. Now V,= {xe V| (X -a lv)k x =0 for some k > 0}, etc., and from this it

follows that Te C(X) =TV, = V,, etc. Hence any ¥ in DC(X ) will have the form
Y=Y, ®¥Ys®.. (3.77)

with ¥, € SLna (V,) etc. In particular, £ ,€ SL " (V),so a" =1, so a' =1 , etc. Hence

the characteristic roots of " are all 1. O

3.3.13. Assume n = 3. Let ¢ be an element of DG with ¢ € DC(E' ). Then
(1) o is a transvection if it is unipotent.

(2) ¢'® is a transvection.

3) o is a transvection if char F = 3.

(@Y) & is a transvection if char F = 2.

PrROOF. We can assume that o# 1y .
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(1) Here o is unipotent, so reso is 1 or 2, say. Assume if possible that reso = 2. We
have R = R with (dlR)e GL,(R)-RL,(R), again since ¢ is unipotent. Now each element of

C(o) acts on R, so it follows from 3.1.1 that each element of DC(o) has action 1z on R. On

the other hand o € DC(E) =DC(0) by 3.1.4 and 3.3.1. So ao has action 1z on R for some

oa, but ¢ is unipotent, so & = 1 and ¢ has action 1z on R, contradicting the fact that reso =

2. Hence reso is indeed 1. But deto = 1 since o€ DG. So o is a transvection as asserted.

(2) By 3.1.5 we have C(o)c C(c?), so e DC(0)c DC(6?), so ase DC(6),

18

but o’=1 by determinants, so o€ DC(¢’) so o&'° is unipotent by 3.3.12. But

o %e DC(o)=DC(c ). Apply step (1).
(3) By step (2), (02) is a transvection; hence (02)* =1y since the characteristic is

3; hence ¢” is unipotent by 3.1.3. But o’e DC(E)QDC(EZ). Apply step (1).
(4) As in step (3) i

3.4. Preservation of Projective Transvections in the Linear Case
Recall that in §3.3 and 3.4 we are assuming that G and A have these additional properties:
A cPGL, G=P'ANTL, GcGL, (3.78)

In order to apply the results of §3.3 to the groups G; and A; as well as to the groups G and

A we assume throughout §3.4 that G, and A, also have the additional properties:
AcPGL,;, G=P'AinTL,, G cGL,. (3.79)

Our object in §3.4 is to show that, under these assumptions, any isomorphism A: A—A;
preserves projective transvections whenever the underlying dimensions are = 3. We start

by proving, so to speak, that A preserves residue 2 at least once.

34.1. Let n = 3, n; = 3. Exclude the possibility of char F+#2 with F,=F,. Then there are
elements oc DG, o€ DG, with resc = 2 = reso; such that Ao = 51. Indeed, given any

transvection Te€ G with spaces LC H, o and o, can be so chosen such that o7 # 10 with
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LCR, HDOP, (0lR) ¢ RLx(R) (3.80)

and

RiNnP; =0, (01lR1) ¢ RLx(Ry). (3.81)

PrOOF. (1) Write AT=® with ®e G;. Since D is nontrivial, there will be a line L;=F,a

in V) with ® L, # L,. Pick a hyperplane H, of V| such that L,c H,, L,z H,, CI>_1L1 ¢ H;.

We have ,
Lz ®H,, H,+ ®OH, (3.82)
and
dim(L+®L;) =2, dim (HiNn®H))=n; -2 (3.83)
and
Vi=(L; +OL)) © (HNDH)). (3.84)

(2) Fix pe V'; with ker p = H;. Of course there are several nonzero a in L; with 7,, € G,
since G is full of transvections. We claim there is at least one such a for which ® will not
permute projectively with zzz,pd)_lf la,p. Suppose this does not hold for a first choice of a.

Then there is a scalar a in F; such that
o7, ', ,=az,,®" 7,0, (3.85)

ie. T

_<I>a,/z)CI:fl T_a’p = az:l,p T ! . Hence

a,p®

(a— Dx + (o + D(p x) — a(p® x)(p® 'a))a + (p x)(pD'a) — (p® X)) a = a(p® ) 'a
(3.86)
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for all X in V). Putting x = a shows that a, CDa,qD_la are dependent, i.e. they all fall in a

plane; taking x outside this plane shows that & = 1; so
2(p x) — (p® X)(pD @) + (px)(pD'a) — (p®'x))Da = (pDx)D a. (3.87)

If F1#F, we can replace a by Aa for some A#0, 1 by 3.2.7. Together these equations (for
a and A a) then yield

(p® x)(p®'a) = A (p® x)(pd 'a) (3.88)

which is absurd since A# 1 and p(D'la # 0. Therefore when F1#F,, if a does not work,
then Aa will. On the other hand, when F; = F, we have char F = 2 by hypothesis; so ® 2=

1, since 7is a transvection and 1 is the only nonzero scalar in Fi; so our equality becomes
(pDx)(pDPa)a + (px)(pDa)da = 0 (3.89)
and this contradicts the independence of @ and & a. Our claim is established.

(3) We now have pe V'| with ker p = H; and a nonzero a in L; such that 7,, € G; with ®

not permuting projectively with Z'a,pCI)'1 T'la,p. Choose y € G with AJ:% ap and define
o=ty 7'y ‘e DG, o= 01,0t , € DG (3.90)
Clearly Ao = 0. And 7 does not permute with wr'lw'l SO OT # 0
(4) As far as g is concerned, it is enough to verify that
Ri=L,+®L,, Py=H, n ®H,. (3.91)

For then res 0/=2 and R nP;=0 are obviously true, while (glR|)¢ RL,(R;) is a

consequence of the fact that a big dilation of residue 2 cannot be expressed as a product of
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two transvections, by O'Meara §2.1. Now ¢; is a product of two transvections with
spaces¢@ L c ®H, and L, c Hy; and ® H\+H,=V}, so Ri=L;+®L; by 1.2.2; and L; " DL;=0,
so Py = H N ®H; again by 1.2.2.

(5) Now consider o. Here it is enough to verify that
wL#L, R=L+ylL, P=H nNnyH, RaP. (3.92)

For then resoc =2, LCR, H D P are obvious, while (¢lR) ¢ RL,(R) follows from O'Meara
§2.1 as above. Clearly wL# L, for otherwise the transvection 7 would permute with the

transvection t//z"lw'l ; ditto wH # H; so R and P have the desired form; and RZ P since
otherwise L + wLc HNyH, i. e. LCyH and wLcH, i.e. 7 would permute with w7 'y ™
by 1.3.10.

Next we prove that A preserves residue 1, at least once. i

34.2.If n =2 3, n, 2 3 there are elements 7€ DG, tie DG withrest= 1 =rest such that

At=1,.

PrROOF. (1) Both dimensions > 4. By interchanging V, n, F and V|, n;, F; and considering
A~ instead of A, if necessary, we can assume that char F = 2 if Fi= F,. Consider an

arbitrary nontrivial transvection T in G which satisfies Te DC(T). Let L H denote the

spaces of T. By 3.4.1 we have e DG, o,€ DG, with resg = 2 = reso such that AE:E‘l

with ¢T# To and

LCR, HoP, (0lR) ¢ RLy(R), (3.93)
RN P=0, (01lR1) ¢ RLy(R)). (3.94)

It is clear that 7 is a nontrivial projective transvection in A(R, P); but A(R, P) gCDC(E),
by 3.3.8; hence TeCDC(o); but 6T #T ¢ and o eAR, P) cCDC(c),so T is a
noncentral element of CDC(E) such that feDC(f). Therefore AT is a noncentral

element of CDC(o ) with AT in DC(AT).



60

(la) First suppose that we do not have F, = F, with n; = 4. Then by 3.3.9,
AT CDC(E' D = ARy, Py). So AT has a representative o3 in G; with R3 € R and P3; D
Py. In fact R3C R, ; for if not, we would have R; = R; and P; = Pj; if 03 were not a big
dilation, then o 3E DC(E3) by 3.3.11, and this contradicts AT € DC(A?); if o3 were a big
dilation it would be central in G{(R;, P;), contradicting the fact that AT is noncentral in
CDC(E' 1). So indeed R; —R;. We have therefore shown that if T is an arbitrary

transvection in G with Te DC(T), then AT = 53 for some o3 in G| with reso; = 1. Now
for given L H you always have a transvection T in G with spaces Lc H and Te DC(T)
by 3.3.5; looking at elementary transvections we can easily find transvections
T; (1< 1 < 3)in G with T; € DC(T)) such that T,=[ T,, Ts]. Then, by what we have just
proved, each Afi has a representative @ ; in G; withres¢; = 1. So Afl has a representative
in G of residue 1, and another in DG, of residue < 2. Since n; > 4, these representatives
must be equal. In other words, AT 1 =7 | for somezie DG withreszi=1. Put 7=T;.

(1b) We must complete the excluded situation F; = F, with n; = 4. This of course
makes char F = 2. So T2 = 1 since T is a transvection in characteristic 2, SO AT has a
representative o3 in G; with 032=1 since F; = F,, ie. AT is a projective unipotent
transformation in CDC(E 1). This makes AT a projective transvection by 3.3.10. Now we
always have a nontrivial transvection T in G which satisfies Te DC(T) by 3.3.5. For this
T, AT must therefore have a representative 7; with 7; a transvection in Gj. In particular
res7 = 1. But G;= SL4(V)) since F; =F,. So 71 € G; = DG; by O'Meara §3.3. Put 7="T.

(2) One dimension = 3, the other> 4. By reversing the situation, if necessary, we
can assume that n = 3 with n; = 4.

(2a) First suppose char F = 2 if F| = F,. the procedure here is exactly the same as in
step (1) except for the possibility that the ¢ that turns up may be an element of residue 2
with n = 3, det ¢ = 1, o is diagonalizable over F, o = 1, in which case 3.3.8 cannot be
applied. Actually this cannot happen. For suppose it did. If char F| = 3, then c’=1.So0
o 13 =1, so 013 = 1y, since reso; = 2, so (01IR1)3 = lgi, so (a1lR;) is unipotent on the plane
R1, so (01lRy) is a transvection, so o is a transvection since Ry N Py = 0, and this is absurd

since reso; = 2. On the other hand, if char F; # 3, we use the fact that <(CV(5' ))3> is abelian
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by 3.1.6; then <(C(5'))3> is abelian; hence <(C(5' 1))3> is abelian; but C(o)) clearly contains
transvections which do not permute, their cubes do not permute since the characteristics is
not 3, so the projective images of their cubes do not permute, therefore <(C(5' 1))3 > is not
abelian; this is also absurd.

(2b) Now char F# 2 with Fi=F,. Fix a hyperplane H; in V| and let L; be a variable
line in H;. We have a transvection 7j in G | with spaces L;  H; and T 1€ DA since DA, is
full of projective transvections, then A'l%l belongs to DA= D_G, SO A'lz'l has a
representative ¢ in DG, in particular with det 0 = 1. Now 72 1= 1y since 7j is a transvection
in characteristic 2, so 6° = a 1y with o’ = 1. Replacing 7 by its cube allows us to assume
that in fact ¢ = 1y. Now H; contains at least four distinct lines. We can therefore find
distinct transvections 7, ..., % in Gi(with exactly one of them, say 7, trivial) which are
pairwise permutable such that the corresponding oy, ..., o5 (with g5 = 1y are involutions of

determinant 1 which permute projectively in pairs. Now —ay, ..., —a4, 05 are easily seen to

be involutions of residue < 1 by 1.2.6, hence o1, ..., g5 permute in pairs by 3.1.4. Therefore

card (04, ..., 05)<2>'=4 (3.95)

by O'Meara §1.6 and this is absurd since L e s T 5 are distinct.

(3) Both dimensions 3. By 3.3.5 there is a transvection 7 in G with 7€ DC(7). In

particular 7€ DG with res 7=1. Then Te DC(;' ), SO

ATe DC(AT) C DA, = DG, . (3.96)

We can therefore pick 77€ DG; such that AT=T 1 and T = DC(;' 1).
(3a) If at least one of the characteristic # 2, 3, we can assume that in fact char F'# 2,
3. Then 7'®| is a transvection by 3.3.13. Replace 7 by '8,

(3b) If both characteristics are 3, then 7 is a transvection by 3.3.13. Replace 7 by

(3c) If both characteristics are 2, do the same thing with 7°.
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(3d) We are left with one characteristic 3, the other 2. In fact we can assume that
char F = 3 and char F| = 2. If F#F,, proceed as in step (2b). So let F;= F,. Then A| =
PSL;(V)), so card A; = 168 by O'Meara §3.1. If F= F3 we have PSL3(V) c AcPGL3(V)
with card PSL3(V) = 5616, and so A: A—A, is impossible here. If card F' > 3 (with char F =
3), then V contains q2 + g + 1 lines with g = card F, so V has at least 91 lines, so A has at

least 182 projective transvections, therefore A: A—A, is again impossible. O

3.4.3 A preserves projective transvections whenn > 3,n; = 3

PrOOF. (1) First note that if A preserves the projective transvection o inAandif 7 is any
projective transvection in A with the same spaces aso, then A preserves 7, and the spaces

of A7 are the same spaces of Ao . This follows from
AT € AA(R, P)= ACC(0) = CC(AG) = Ai(Ry, P1) (3.97)

(AE:E 1) which comes from 3.3.7
(2) Next we observe that if A preserves the projective transvections o and 7 inA,

and if o and 7 have the same fixed hyperplane, then Ao and A7 either have the same

fixed hyperplane or they have the same residual line. To prove this we can assume, by step
(1), that o and 7 have distinct residual lines. We can then find a base xi, ... , x, for V with

dual base py, ..., p, such that o=t o =7 oop, - Let T axp, be a nontrivial projective

P

transvection in A. Then

v X xp,Pp = [T Xxp,p, T X2~Pn]

(3.98)

is a nontrivial projective transvection in A with the same spaces as o ; hence, by step (1),

At , , Isaprojective transvection in A; with the same spaces as Ao . But

AT, ) AT)=(AT,, ) (AT)-(AT,, )" (3.99)
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by the above commutator relation, so this expression is a projective transvection, so the

projective transvections AT a. , and AT have the same fixed hyperplane or the same

1P
residual line by O'Meara §1.6, so Ao and AT do.

(3) Now let us show that if A preserves the nontrivial projective transvectiono in
A, then A preserves all projective transvections in A with the same fixed hyperplane as .
Let 7 be such a transvection. We can again assume that we have a base in which

o=T

Xp5Py ° X25Pn

T=T etz be a nontrivial projective transvection in A. Then

& x5, 0 > X15Pp

_ -1 -1
- (T A x,,p 3 Xp5Pp 3 X x).p )Z. X15Pn

=T ey T (3.100)

Xp5Py "

It is obvious that 7 , ., , and 7 , = o are conjugate projective transvections with the

same fixed hyperplane in A, and Ao is a projective transvection by hypothesis, so

AT ., p 18 @ projective transvection by conjugacy, and it either has the same residual

line or the same fixed hyperplane as Ao by step (2). Hence AT anp, being a product of

projective transvections with the same line or hyperplane, is a projective transvection.

Hence AT=AT ..p, 18 @ projective transvection by step (1).

Pn
(4) If A preserves the nontrivial projective transvection o in A, then it preserves all
projective transvections in A with the same residual line aso . proof by the duality
(5) A preserves at least one nontrivial projective transvection o inA, by 3.4.2. Let
T be any other nontrivial projective transvection in A. Let L < H be the spaces of 7. Then
A preserves o so it preserves a projective transvection in A with the same fixed

hyperplane as o and with residual line contained in P N H by step (3), hence it preserves

a projective transvection in A having this as its residual line and H as its fixed hyperplane

by step (4), hence it preserves T by step (3). So A preserves all projective transvections in

A. And A™' preserves all in A;. So A preserves projective transvections. i
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3.5. The Isomorphism Theorems in General

We now return to the general situation, i.e. G is an arbitrary subgroup of I'L,(V)
that is full of transvections, and A is an arbitrary subgroup of PI'L,(V) that is full of
projective transvections. Similarly in the Vi, ny, Fy, Gy, A; situation. And ¥: G—Gj,
A: A —A; are group isomorphisms.

We let £, F, X be the subsets
L=P(V) F#=P"'(V) L=LU%HK (3.101)

of the projective space P(V), i.e. L is the set of lines in V, #€ the set of hyperplanes, & their
union. Of course LU FE = J if n > 3 and L = F if n = 2. We ignore the case n = 1 since
full groups are not defined there. For each Le £, He € with Lc H define A(L, H) as the
group consisting of all projective transvections in A with spaces L < H plus 1. This is
consistent with the use of A(L, H) in the special situation of §3.3 and 3.4. For any Le £
define A(L) as the group consisting of all projective transvections in A with residual line L,
plus 1; and A(H) as the group consisting of all projective transvections in A with fixed
hyperplane H, plus 1; for any X in & define A(X) by A(X) = A(L) if X = Le £, and by
A(X) = A(H) if X = He €. The two definitions of A(X) clearly coincide when n = 2.

In keeping with the convention used in the special situation of §3.3 and 3.4 we use

C to denote the centralizer Ca, Cg, C;, C P when we are working, respectively, in A, G, E,

G.
The quantities B], ﬂ], .‘Il, Al(Ll,Hl), A](L]), A](H]), A](X]), C are defined in the

same way for the A; situation.

If 51 and 52 are nontrivial projective transvections in A, then it follows by

applying 3.3.3 to the full group A N PGL,(V) that

C(o1)=C(0,) = Ri=R, and P,=P, (3.102)
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3.5.1. Suppose n> 3. If A* is a subgroup of ANPGL,(V) that is full of projective
transvections, and if o is a nontrivial projective transvection in A*, then CACA*(E) =

A(R, P). In particular, C C(g' ) S A(R, P) for any nontrivial projective transvection in A.

PROOF. Put A** = AN PGL,(V). Then A** is full of projective transvections, and A* C A**,

So, by 3.3.7,

AR, P) = A¥*(R, P) = CpssCps( 0 ) C CACps+( ) S CACax(T). (3.103)

To reverse this inequality, proceed as in the proof of 3.3.7, and by O'Meara §4.3 and 4.4.
Finally, if o is any nontrivial projective transvection in A, then o e A**, and

C(E)QCA**(E); SO

CC(0 )= CaCrr(0) = AR, P). (3.104)

|

3.5.2. ExaMPLE. Let us show that the results

C(oc)=C(0,) ©R =R, and P;=P, (3.105)

and

CC(c 1) = AR, P) (3.106)

for projective transvections in the special situation of §3.3 and 3.4 do not hold here. To this
end consider A = PI'L,(V) with n >3 over a field F which possesses a nontrivial field
automorphism u. Let a be an element of F for which o # a, let xy, ..., x, be a base for V
with dual py, ...,p,, and let k be the element of I'L,(V) with associated field automorphism

1 and with matrix diag(a, 1, ..., 1, &) in xj, ..., x, . It is easily verified that

upn K= 0a"'p, (3.107)
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whence, by O'Meara §4.4,

kz, , k'=1,, and  kr, ,kK'=t, #7, . (3.108)

In other words, k permutes with %xl,pn but not with %axl,pn. In particular, we have two
projective transvections in A with the same spaces but with different centralizers.

Furthermore, ;axl ., 1s clearly in A(R, P) (where Ez%xl p, ) but it is not in CC(E) since it

does not permute with ke (5‘ ).

3.5.3. If n=3, n1 22, there is a subgroup A° of A that is still full of projective transvections

and satisfies
A’ cPSL(V), AN’ PSL, (V). (3.109)

ProoF. (1) First let us show that A sends at least one nontrivial projective transvection in
A into PSL,;(V). Start with a nontrivial projective transvection 7 in A. Since AA = A1 with

A full, there is an element l/_/ of A such that Al/_/ is an element of PSL,;(V;) (in fact a

projective transvection in A;) which does not permute with AT (apply 3.2.5 to the group

generated by all projective transvections in Aj). Let o be the element o = vty 77 of
A. Theno is in PSL,(V) and Ao is in PSL,1(V1) by O'Meara §4.3; and o and Ao are
nontrivial by choice of AJ. Obviouslyg has a representative o in SL,(V) with 1 <reso <
2. If resc = 1 we are through. So assume reso = 2. By adapting the "second simplicity
trick" of the proof of Theorem 3.4.1 from O'Meara we can find;a,p € A such that o ;a,p
1

o't ap 18 a nontrivial projective transvection in A. Then

A(C.Tap, 07" 77, € PSLu(V)) (3.110)

and again we are through.
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(2) Next we note that if A sends a nontrivial projective transvection o in A into
PSL,1(V1), then for each line L in P there is at least one nontrivial projective trasvection 7
in A with spaces Lc P such that A7 falls in PSL,1(V}). To verify this we can assume that

L+ Fxi, and then take a base xj, ..., x, for V with dual py, ..., p, such that E:%x, 2 L=Fxy.

Leta € F be such that E’mz, p € A . The result then follows from the commutator relation
Tarp, = [Tavp > Tupy |- G.111)

(3) By duality, if A sends a nontrivial projective transvection o in A into
PSL,(V}), then for each hyperplane H containing R there is at least one nontrivial
projective transvection 7 in A with spaces R < H such that A7 falls in PSL,1(V}).

(4) The result now follows easily using the argument of step (5) of the proof of

3.4.3. O

354.If n =2 3, ny = 2, there is a subgroup G’ of G that is still full of transvections and

satisfies
G’ = SL.(V), YG° = SLu(Vh) (3.112)

ProOOF. The proof is similar to the proof of 3.5.3. Just take care to choose the non—trivial
transvection 7in G at the beginning of step (1) in such a way that ¥z ¢ RL,;(V;). The
existence of such a 7 follows easily from the commutator relations for elementary

transvections. i
3.5.5. A preserves projective transvections whenn > 3, n; = 3.

Prook. (1) Applying 3.5.3 to A gives a subgroup A’ of ANPSL,(V) that is full of
projective transvections such that AA’C A PSL, (V). Applying it to A gives a

subgroup A01 of AiNPSL,(Vy) that is full of projective transvections such that

A'A%, c AN PSL,(V). Then the groups A* = <A°, A'A% >, A% = <A A%, A”)> satisfy
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A’ c A* c ANPSL,(V), (3.113)
A%, c A* c Ay A PSL.(V)) (3.114)

and are, in particular, full of projective transvections. Furthermore A: A*—A*.
(2) Now consider a typical projective transvection o in A. Let o * be a projective

transvection in A* with the same spaces RC P as o.Then oc*=A o* isa projective

transvection by 3.4.3. And by 3.5.1 we have

Ao e AAR, P)=ACsCa(0*¥) = C, C, (0 1%) = Mi(Ri*, Pr¥). (3.115)

So Ao isa projective transvection. So A preserves each projective transvection in A. So
by symmetry A preserves each projective transvection in A;. So A preserves projective

transvections. O
3.5.6. Y(GNRL,(V))=G;NnRL,(V)) whenn =23, n,2 3.

PROOF.  Proceeding as in step (1) of the proof of 3.5.4 we can find subgroups
G*cGNSL,(V) and G*cGinSL,1(V;) that are full of transvections such that
Y: G*—G*. Then for any o in GNRL,(V) we have ce C(G*). Hence Yo € C(G:¥), so
Yo is in the centralizer of G1* in I'L,1(V1); but G* is full of transvections, so Yo is in
RL,1(V}) by 3.2.5. Hence Y(G N RL,(V)) € G; N RL,;(V}). Equality follows by considering
¢! instead of V. i

Throughout these lectures V is an n—dimensional vector space over the field F with
1< n <o, and A is a subgroup of PI'L,(V) (or PGL,(V) in §3.3 and §3.4) that is full of
projective transvections. In order to simplify the statement of exceptional situations we will
say, for example, that A is PSL, over F; if F = F; n = 2, and A is equal to PSLy(V).

Similarly with PSLs over F,, and so on.

Let us recall that a power of any transvection is calculated via the formula
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z'na,p = Thaps (31 16)

which means that if char F = 2, then the square of any transvection (as then of a projective

transvection) is the identity map:
Cap= Bap=T,=lv. (3.117)

3.5.7. There can be no isomorphism A: A —A, when n > 3 with n;=2 except, possibly,

when A is PSLs over ¥, with Ay equal to PSL; over F ;.

PrROOF. For suppose we have an isomorphism A: A—A | with n = 3 with n; = 2. By 3.5.3
there is a subgroup A’ of ANPSL,(V) that is full of projective transvections such that
AN’ CPSLy(Vy).

(1) Suppose char F+# 2. Take a nontrivial projective transvection o inA°. Then by
the projective version of 3.3.5 we have oe DC 0 (5‘) and, in particular, DC (E )=1.
Since AAOQPSLZ(Vl) there is therefore an element o; in SL,(V;) such that

Ao =0 with DC, (o 1)# 1. Clearly,

C,(c1) cC,(c1)= C,(0), (3.118)

where the latter equality is based upon the fact that all transvections are unipotent and all
projective transvections are projective unipotent transvections. But o2#1 since o is a

projective transvection and char F #2, so 0'216 GL,(V1)-RLy(V1), so DCV] (021) =1 by
3.1.1, so DCVl (E 1) = 1. This is absurd. So the case when char F'# 2 cannot occur.

(2) Suppose char F = 2, char F;=2. Again let o be a nontrivial projective

transvection in A’ such that DC 0 (E) #1. Again we have AAOQPSLQ(Vl) and oy in

SLy(V1) with Ao =0 1. This time o” =1, s0 0" = & 1, with o’ = (det 07)* = 1, since

o € SL,(V). Due to the fact that characteristic of F is two, we get that o = 1. So g is a
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nontrivial element in SL,(V;) with 012 = 1‘,l . Since char F=2, o} is unipotent and therefore

a nontrivial transvection. By 3.3.1 and 3.1.1,

DC, (o)< DC, (o1)= DC, (0,)=I (3.119)

which contradicts the fact that DC (5‘) # 1. So this situation cannot occur either.
(3) Suppose char F = 2, char F#2, but exclude n = 3 with F = F,. Consider any

nontrivial projective transvection o in A°. Then o%=1 with o # 1. Express AC=0,

with o in SL,(V7). We have o 12:1 with c_71¢ 1. Thus o 12: al v, for some aa in F ;. But
deto; = 1, so o = 1, 1.e. a=%1. So 012 =+ 1‘,1. Now we cannot have o 12= lv1 for this

equation would imply, by O'Meara §1.6 and the fact that deto; = 1, that o=l (the quoted
result states that any involution is diagonalizable; since detg; = 1 the only choices here are

o1= t1 v, )
Therefore ¢ > = -1 v, - In other words, with each nontrivial projective transvection

o in A" we can associate an element o1 of SL,(V1) such that

oi1=A0 #1, (3.120)
cl=-1,, deto =l (3.121)

We suggested that ' # F,; keeping in mind that F is of characteristic two, we have that
IFl > 2> = 4. Then each hyperplane of V contains at least five distinct lines, so we have five
distinct non—trivial pairwise permuting projective transvections in AO; so we have g, 02, 03,
o4, 05 in SL,(V)) such that the corresponding o; are distinct, nontrivial, permute in pairs,

and such that

oif=-1,, detg=1  (I<i<5). (3.122)

The projective permutability conditions give

o;0j=* ojo; (3.123)
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forall i and j:
giojoi = fo; = o’ =-1, =" 1, (3.124)

and B == 1. The fact that 012 =-1 v, implies that there is a base for V; in which o, has

matrix

0 -1 (3.125)
1 0) '

Indeed, if there is a nonzero xe V| such that the vectors x, ox are linearly independent, we

are done. Suppose that for all x € V| the Vectors x, g x are linearly dependent:
oxX=Yx =>0(0X)=Y0X = —X= YOX, (3.126)

whence ¥ =—y ' or y?=—1. Now if x, y is a base of V; then o, has the matrix

(7 0 ] (3.127)

in this base. Then case when the second element on the main diagonal is ¥ is impossible,

for in this case o = 1. In the either case the vectors
x+y and o(x+y)=y x—-y x (3.128)
are clearly linearly independent, a contradiction.

Consider now the condition for a matrix of GL,(F;) to commute with the matrix of o:

TR [
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This implies that b + ¢ = 0 and a = d. Now consider the square of a matrix commuting with

the matrix of oy:

bY (a’-b> 2 -1 0
L P (3.130)
-b a ~2ab a’-b’ 0 -1
Then ab = 0. In the case when a =0 and b # 0 we get the matrix
0 b (3.131)
-b 0 '

and clearly a linear transformation 7 which has such a matrix has the same projective
image as o) has. In the either case the projective image of x is trivial. Then by (3.123) the
only possibility for g;, i = 2, ... ,5 is to commute with o) projectively:

0, 01 = —0] 0;. (3.132)

Arguing as before one quickly sees that the matrices of ¢; in our base must be of the form

(p" q"j (3.133)
q, —D;

for suitable scalars in F, for 2 <i < 5. At most one of the p; (2 <i <5) can be 0 since the

o ; are distinct, so in fact we can assume that 0 ,, 03, 0 4 have representatives o>, 03', 04’

P A R
a -1 B -1 y -1

with a, B, y distinct. We can then assume, in addition, that 1 + a 8 # 0. Indeed, otherwise

with matrices

we would have that
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l+a =0, (3.135)
l+a y =0, (3.136)
1+ B7=0 (3.137)

whence assuming, for instance, that o # 0, we deduce

l+afB =1+ay = a(f -7)=0 (3.138)

and =y, contradicting to the choice above. But then 0, and 03 do not permute: one
easily checks that the condition 1+a # = 0 is necessary for the projective permutability of
0, and o3 (recall that 0, 035 = —03 0».) This is absurd.

So the situation in (3) also cannot arise.

(4) Finally suppose n = 3, F=F,, char F;# 2. Since the field F, has no nontrivial
automorphisms, we have PI'Ls(V) = PSL3(V); furthermore, in this situation we clearly

have PSL3(V) = A=A".
Next, by a well-known formula

qn(n—l)/ZHIL (qi _ 1) |
(¢—1)ged(g—1.n)

IPSL,(Fg)l = (3.139)

In particular, straightforward calculation shows that card A=168.

And AA = Ay, is a subgroup of PSL,(V)) that is full of projective transvections. Put
p =char Fy, g = card F;. Clearly g < oo, so p > 0. Let G; be a subgroup of SL,(V)) that is
full of transvections and for which PG; = A;. Now V| has (g + 1) distinct lines, and we see
by taking powers that there are at least (p — 1) distinct nontrivial transvections in G; on
each given line, so G; contains at least, (p — 1)(¢ + 1) distinct nontrivial transvections.
Now if you fix a line L and form 7; 7x as 7;, runs through all the nontrivial transvections in
G, with line L and 7k runs through all nontrivial transvections in G; with lines K distinct
from L, you get at least (p—1)°¢ distinct elements, none of them a transvection (apply

1.3.8). Therefore
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card G, = (p— )(g+ 1)+ (p— 1)’g + 1. (3.140)

But the kernel of PISL,(V;) has 2 elements, so
card A4 2%p((p—l)q+l):f(p, q). (3.141)

But then f (11, 3) = 341/2 > 168, and, in particular P < 7 since card A; = 168. Indeed, F}
can only be F3, Fs, F7, Fy, F»7. But card A; must divide card PSL,(V)), i.e. 168 must divide
12, 60, 168, 360, 9828. The only case in which this happens is the third.

(5) Therefore, by the process of elimination, we have shown that if you have an
isomorphism A: A—A then n =3, F =F, and F, = F;. Of course n; = 2 by hypothesis. Now
PSL;(V) is the only full group in 3—dimensions over F», so A is PSL; over F,. In particular
card A = 168, so card A;=168. On the other hand, every full group in 2—dimensions over F;
must contain PSL,(V)) since F7 is a prime field; hence A; 2 PSL,(V)); but card A; = 168 =
card PSL,(V1); hence A, is PSL, over F. O

3.5.8. There can be no isomorphism ¥: G— Gy when n = 3 withn; = 2.

ProOF. For suppose we had an isomorphism ¥: G— G, with n = 3 and n;=2. By 3.5.4
there is a subgroup G’ of G SL,(V) that is full of transvections such that 1 7ed < SLy(V)).
By considering two transvections in G’ which do not permute we see that there must be a
nontrivial transvection ¢ in G° with o ¢ RL,(V}), for a radiation commutes with every

element of . By 3.3.4 DC o (0) # 1y. Then o1 = Yo is an element of SL,(V;) with
DC, ., (o1) # 1y, i.e. o1 is an element of GL,(V;) — RL,(V;) with DC, (o1) # 1, and this is

impossible by 3.1.1. m

359. Let X, Ye XL and L,Ke Land H,J € F, with Lc Hand K cJ. Then
(HDAX)=AY) X=Y.
)AL H=AK,J) L=Kand H = J.
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(3)A(X)= AX")
DAL HY=AH",L)
OAXNNAY) Dl © XcYorYcX

(6) A(X) is a maximal group of projective transvections in A.

(7) Every maximal group of projective transvections in A is a A(X).

PROOF. The observations in (1-7) are rather easy consequences of the results from Chapter
1 and Chapter 3. We shall remark only (for the proof of (7)) that by 1.3.9 a given family of
projective transvections is subgroup of PGL,(V) if and only if the elements has either the

same fixed hyperplane or the same residual line. The result then follows easily. i

When n > 3, n;> 3, we can derive a mapping 7: L= X, from the isomorphism A as
follows. For each Xe &, A(X) is a maximal group of projective transvections in A by 3.5.9;
hence AA(X) is a maximal group of projective transvections in A; by 3.5.5; hence AA(X)
has the form AA(X) = A;(X;) for some unique X; in &; by 3.5.9. Define 7 X = X

3.5.10. The mapping r derived from A in the above way n = 3, n; = 3, satisfies the
following properties:
(1) @ & — A is bijective.
(2) Its defining equation is AA(X) = Aj(zX) for all X in L.
B)XcYorYcX © X caYorznY caX
@) (L = L, and nF€ = F€)) or (wL = F€, and nF€ =L,)

PrOOF. The first two results are immediate, the third follows from (5) of \ref{5.5.9}. So let
us prove the fourth.

Suppose zLe L, for some Le L; then for any hyperplane H 2> L we have L c 7H or
wL D> H by step (3); but zL# 7H by injectivity; hence zL c 7H since zL is a line; in other
words, if zLe £, for some Le £, then 7H € %, for all hyperplanes H containing L. Dual
reasoning shows that if zHe €, for some hyperplane H of V, then zLe £, for all lines
Lc H. Similarly, if zLe %€, for some Le £, then zHe £, for all hyperplanes H containing
L. And if zHe £, for some He J€ then nlLe J€,, for all lines L, contained in H.
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Suppose now that there is an Ly in £ with 7Ly € £,. Then by surrounding L, and an
arbitrary line L in V by a common hyperplane and applying the above facts, we see that

rLc L. By applying the above to a typical hyperplane and one of its lines, we see that
nd€ . But m(L U FO=L, U H,. Hence nL=L, and nFH=%¢,
We may therefore suppose that 7. C #,. The above reasoning then makes 7 c L.

Hence n.L=%€, and nF€=.L,. O

3.5.11. An isomorphism A: A—Ay withn = 2, ny = 2 makes n = n; except, possibly, when

one of the A's is PSL3 over ¥, and the other is PSL, over F.
PROOF. By 3.5.7 we can assume that n > 3, n; = 3. By interchanging the two groups if

necessary we can assume that n> n;2> 3. In particular the mapping z: 24— 2 is now

available. By passing to the dual
A—L5 A — A, (3.142)

if necessary we can assume that 7 £ = £, z# = #,. For any subspace U of V define

MU= ¥ L (3.143)

LcU

Then IT agrees with 7 on £ = LU F by 3.5.10. And

UcW = nU caW. (3.144)
By considering a strictly ascending chain of n+1 subspaces of V we see that we will be
through if we can verify that U ¢ W= zU < «W. To this end consider U W and pick a

line L and a hyperplane H, both in V, with Lc W, Uc H, L& H. Then

rLc oW, U cnH, rL¢ nH, (3.145)
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since IT agrees with 7 on L and H. If we had I1U = IIW we would have TILCIIW =
[1U cT1H, and this is absurd. So I[1U cIIW as required. O

3.5.12. Suppose n = 3, ny = 3 and that the mapping n associated with A satisfies L = £,
and 3t = F,. Let @ be an isomorphism of A into PI"L,(V}) such that every element of

® A(L) is a projective transvection with residual line nL, for each L in L. Then ® = A.

PROOF. Let k be a typical element of A. We must show that & k = Ak. Consider a typical
line L in V. Then zL is a typical line in V;. Let 7; denote a projective transvection in A with
residual line L. Then, by O'Meara §4.4, k7 K'is a projective transvection in A with
residual line kL and we write it 7,. Now ® 77 is a projective transvection in PI'L,;(V))
with residual line zL; accordingly it can be written in the form ® 7, =7;;. Similarly ® 7, is
a projective transvection in PI'L,;(V;) with residual line m(kL) and can be written ® 7, =

% ). We have
Tty = D() = DT ) = (D)7 ) (DK (3.146)

and so
(®k) (zL) = 7 (kL) (3.147)

by O'Meara §4.4. Now Aisa @ so

(Ak)(zL) = n(kL) (3.148)

Hence
(DK)(zL) = (Ak)(zL) (3.149)

In other words, ® k and Ak agree on the lines of V;. Therefore ® k = Ak. Therefore ® =A

O
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3.5.13. THEOREM. Let A and A, be subgroups of PI'L,(V) and PI"L,(V}) respectively that

are full of projective transvections, and suppose n > 3 and n; > 3. Then each isomorphism

A: A—A; has exactly one of the forms:

Ak=gkg' Vke A

for a unique projective collinear transformation g of V onto Vy; or

Ak=hkh' Vke A

for a unique projective collinear transformation H of V' onto V.

PrROOF. By 3.5.11 we have n =n;>3.

(1) By considering the dual situation

A

A > Ay

Figure 3.1: The dual situation

(3.150)

(3.151)

we see that, as far as existence is concerned, it will be enough to assume that the mapping 7

of 3.5.10 satisfies 7.L=L,; and =%, and then deduce the existence of a g for which

Ak = gkg™" for all k in A.

Now, by 3.5.10, for any Le £, He %€ with Lc H we have L. czH. So 2.1.4 applies and 7

can be extended uniquely to a projectivity g: P(V)—P(V}). By the Fundamental Theorem

of Projective Geometry, g is a projective collinear transformation. Then the restriction

Ok =gkg™' Vke A

(3.152)
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of the mapping ® , of O'Meara §4.4 is an isomorphism of A into PI'L,;(V;). And every
element of ® ,(A(L)) is a projective transvection in PI'L,(V;) with residual line gL = znL,

by O'Meara §4.4. Hence ® ,= A by 3.5.12, 1.e.

Ak=gkg' Vke A (3.153)

as required.

(2) Now the question of uniqueness. If we have two projective collinear transformations g

and j of V onto V, such that gkg™'= Ak = jkj' ¥ ke A, then for any line L in £ we have

gug ' =juj (3.154)

for a nontrivial projective transvection 7 in A with residual line L. So gL=jL by §4.4. But
g and j, being projectivities, are determined by their values on lines, hence g = j. The

uniqueness of % then follows by applying the uniqueness of g to the dual situation A —A,.

Finally, we cannot have

gkg' =hk h! Vke A (3.155)

To see this consider projective transvections 7; and 7 in A with the same residual lines but
distinct fixed hyperplanes; then g7 ¢ ' and g7g™" have the same property; while i 7, h~" and

h%,h™" do not. O

Now we consider a number of important corollaries of 3.5.13

3.5.13A THEOREM. Isomorphic projective groups of collinear transformations that are full
of projective transvections have the same underlying dimension except, possibly, when one

of the groups is PSLs over ¥, and the other is PSL; over F.

PrOOF. By 3.5.11 and 3.5.13. O
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3.5.13B THEOREM. Isomorphic projective groups of collinear transformations that are full
of projective transvections have isomorphic underlying fields when their common

underlying dimension is > 3.

PrOOF. The fact that groups A and A; are isomorphic implies by 3.5.13 existence of a
projective collinear transformation from P(V) or P(V') onto P(V}) both over vector spaces
of dimension > 3. The Fundamental Theorem of Projective Geometry implies then that the

fields F and F; are isomorphic (see O'Meara the proof of 4.5.2). i

3.5.13C THEOREM. [Isomorphisms between subgroups of PI'L,(V) that are full of

projective transvections are induced by automorphisms of PI'L,(V) when n > 3.

PrOOF. Indeed, an isomorphism between two full subgroups of PI'L,(V) is determined by

a projective collineation. The latter one determines in turn an automorphism of PI'L,(V).o

As usual, Aut(X )stands for the group of automorphisms of an arbitrary group X , and
Inn(X) stands for the normal subgroup of Aut(X) consisting of all inner automorphisms of

X . For any X the group Inn(X) is a normal subgroup of Aut(X).
3.5.13D THEOREM. (Aut PI'L,(V):Inn PI'L,(V)) =2 when n= 3.

PrOOF. The inner automorphisms PI" L, (V) are maps of the first form (3.150) among the

automorphism given in Theorem 3.5.13:
k — gkg™, (3.156)

where ge PI'L,(V). Thus it remains to prove that two automorphisms of PI'L,(V) of the
second kind described by the formula (3.151) are congruent modulo Inn PI"L,(V).
First of all, let us note that for any projective collineation h: V' — V, the mapping 'h

is formally a map from V' onto V". It is known however that V'=V and hence we can

identify V" and V. Thus we consider h asa map from V' to V. Now we claim that the

inverse map of an automorphism of the form
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CIDk:hI;h'l, VkePI'L,(V) (3.157)
is
Yk="h k (’h‘l), Vke PI'L,(V) (3.158)

Really, keeping in mind that according to our identification of V and V", k =k for all

k e PI'L,(V) we have that

Sk =h(Chk (K'Y h!
=h (h)” (k) () n!
=hh'khh'=k Yke PLLyV). (3.159)

In particular, our considerations imply that the inverse of an automorphism of the form
(3.151) is an automorphism of the same form. Finally, it is now easy to check that the
product of two automorphisms of the form (3.151) is an automorphism

of the form (3.150), that is an inner automorphism.

Suppose that

® (k) =h k by and ® (k) = hak hy! (3.160)

forall k € PI'L,(V). Now

@ (D k) =hi(hak ") b= by hyk (") by (3.161)

Clearly, the transformation A ﬁz is a projective collineation from V to V and we proved the

desired. O

3.5.14 THEOREM. Let G and G, be subgroups of I'L,(V) and T L, (V) respectively that
are full of transvections, and suppose n = 3 and ny = 3. Then each isomorphism ¥: G—G,

has exactly one of the forms:
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Pk = y(k)gkg™" Vke G (3.162)
for a mapping y of G into RL,,1(V}) and a collinear transformation g of V onto Vy; or

Pk = y(k)hk h™' Vke G (3.163)
for a mapping y of G into RL,,1(V)) and a collinear transformation H of V' onto V.

PrROOF. It is clear that the groups G and 51 are full of projective transvections. If we

define W by

Yik=Wk VkeG (3.164)

then, by 3.5.6, Wis a well-defined isomorphism v 5—’51 Therefore, by Theorem

3.5.13, ¥ has exactly one of the forms

¢! VkeG (3.165)

=

Pk=g

for some projective collinear transformation E of V onto Vy; or

Yk=h{k}"h' VkeG (3.166)

for some projective collinear transformation h of V' onto V. In the first case we have a
collinear transformation g of V onto V) such that the elements Wk and gkg'1 of I'L,1(Vy)
satisfy

Wk = gkg™ VkeG. (3.167)

There is accordingly an element y(k), in the kernel RL,;(V;) and dependent on k such that

Pk = y(k)gkg™" Vke G. (3.168)
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Similarly with the 4 situation. By applying Theorem 3.5.13 we see that ¥ cannot have both
the g — and the h—forms. i

As before we consider a number of important corollaries of the last theorem.

3.5.14A. THEOREM. Isomorphic groups of collinear transformations that are full of
transvections have the same underlying dimension, when both underlying dimensions are

> 2.

PrROOF. By 3.5.14 if n, n; > 3 we are done. By 3.5.8 the case when n > 3 and n; = 2 is

impossible. i

3.5.14B THEOREM. Isomorphic groups of collinear transformations that are full of
transvections have isomorphic underlying fields when their common underlying dimension

is= 3.

PrROOF. Similarly to 3.5.13B. We just note that the condition n, n; > 3 was essential in the

course of the proof of the result we refer to. i

3.5.14C REMARK. If the groups G and G; of Theorem 3.5.14 are groups of linear
transformations, i.e. if they are contained in GL,(V) and GL,,;(V;) respectively, then: x is a
group homomorphism; and 7 is uniquely determined by ¥; and g (resp. /) is unique up to

premultiplication by a radiation of V;.
3.5.14D REMARK. If the groups G and G | of Theorem 3.5.14 are not only linear but also

satisfy DG = G and DG, = G, (for example if G= SL,(V) and G,= SL,;(V}), then the y

function is trivial, i. e.

Yk=gkg' VkeG or WYk=hkh' VkeG (3.169)

It easily follows from the fact that y is a homomorphism and the fact that F is

commutative:
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200 = x([kika]) = xka ™) yka™) k) x(ka) = xkr™) k) xka™) (ko) = 1. (3.170)
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