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ABSTRACT 

 

 

ISOMORPHISM THEOREMS OF LINEAR GROUPS 

 

 

The goal in this thesis is the isomorphism theory of linear groups over fields as 

illustrated by the theorem 

 

H(V1) ≅ H(V2) ⇔ dim V1 = dim V2  and  F1 ≅  F2 

 

where F1 and F2 are the underlying fields of finite dimensional vector spaces V1 and V2 

respectively and H is any subset of the (projective) collinear transformations, (projective) 

general linear groups or (projective) special linear groups for dimension ≥ 3. The theory 

that follows is typical of much of the research between the years 50’s and 60’s on the 

isomorphisms of the classical groups over rings. The thesis will start from the basic facts of 

calculus of residues and transvections. Then, in particular, the fundamental theorem of 

projective geometry will be proved and whatever is needed from projective geometry will 

be developed. Via reorganizing the literature on the isomorphisms of the classical groups, 

it will be possible to extend the known theory from groups of linear transformations to 

groups of collinear transformations, and also to improve the isomorphism theory from 

dimension  ≥ 5 to dimension  ≥ 3.   

 



 v 

ÖZET 

 

 

LİNEER GRUPLARIN İZOMORFİZMA TEOREMLERİ 

 

 

Bu tezin amacı aşağıdaki teoremde de gösterildiği gibi cisimler üzerindeki lineer 

grupların izomorfizma teorisidir: 

 

H(V1) ≅ H(V2) ⇔ dim V1 = dim V2  and  F1 ≅  F2 

 

Burada F1 ve F2, sırasıyla sonlu boyutlu V1 ve V2 vektör uzaylarının üzerinde bulundukları 

cisimleri, H ise (projektif) kolineer transformasyonların, (projektif) genel lineer grupların 

veya (projektif) özel lineer grupların boyutu 3’e eşit veya daha büyük olan alt uzayını 

göstermektedir. Sunulacak olan teori 50’li ve 60’lı yıllarda halkalar üzerindeki klasik 

grupların izomorfizmaları üzerine yapılan çalışmalarla benzerlikler göstermektedir. Bu tez 

çalışması reziü hesabı ve transveksiyonların temel özellikleriyle başlayacaktır. Ardından 

özelde Projektif Geometri’nin Temel Teoremi ispatlanacak ve projektif geometriden 

ihtiyacımız olan neyse geliştirilecektir. Klasik grupların izomorfizmaları üzerine var olan 

materyalin yeniden düzenlenmesiyle lineer transformasyon gruplarındaki bilinen teorinin 

kolineer transformasyon gruplarına genişletilmesi ve yine izomorfizma teorisinin, boyutun 

5’e eşit veya büyük olması koşulundan, 3’e eşit veya büyük olma koşuluna geliştirilmesi 

mümkün olmaktadır.   
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1. INTRODUCTION 

 

One of the most important problems in group theory is the description of isomorphisms 

(automorphisms) for a given class of groups.  The corresponding problem for the class of 

linear groups is even of greater importance due to the prominent position which linear 

groups occupy in mathematics. 

 

The theory of isomorphisms of linear groups was initiated in a paper [12] of 1928 by 

Schreier and van der Waerden in which they described the isomorphisms of finite-

dimensional projective special linear groups over fields. It turned out that the isomorphism 

type of the projective linear group PSL(V) of a vector space V of finite dimension ≥ 3 over 

a field F was fully determined by the dimension of V and the (isomorphism type of) 

underlying field F. In other words, if V1 and V2 are vectors spaces of dimension ≥ 3 over 

fields F1and F2 respectively, then  

 

PSL(V1) ≅ PSL(V2) ⇔ dim V1 = dim V2  and  F1 ≅  F2. 

 

Suppose that V is a finite-dimensional vector space of dimension ≥ 3 over a field F. The 

main (and fundamental!) idea of the quoted paper [12] is that 

 

the geometry of V can be reconstructed in PSL(V) by means of group theory. 

 

Namely, Schreier and van der Waerden suggested to ‘code’ lines and hyperplanes 

of V by suitable pairs of transvections. Recall that a linear transformation τ∈GL(V) is a 

transvection if there is a linear functional δ: V → F and a vector a ∈  V such that 

 

τ x = x + δ (x) a 

 

for all x∈V. Recall also that the projective image of τ in the group PGL(V) is called a 

projective transvection. 
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Thus τ  (the projective image of τ) determines a line of V (namely a ) and a 

hyperplane of V (namely the kernel of δ) Schreier and van der Waerden show then that the 

product τ1τ2 of (projective) transvections is a (projective) transvection if and only if τ1 and 

τ2 have a mutual line or a mutual hyperplane. Accordingly, if one has a group−theoretic 

description of projective transvections in PSL(V), —and Schreier and van der Waerden 

showed that such a description did exist— then any isomorphism Λ: PSL(V1) → PSL(V2) 

takes transvections to transvections and thereby induces a map Λ* from the projective 

space P(V1) over V1 onto the projective space P(V2) over V2 or onto the projective space 

P(V2'), where V2' is the dual space of V2. The first case is realized when Λ takes pairs of 

projective transvections with mutual lines to pairs of projective transvections with mutual 

lines, and the second one when pairs with mutual lines go to the pairs with mutual 

hyperplanes and vice versa. 

 

Furthermore, it can be proved that Λ* can be extended to a projectivity from P(V1) 

onto P(V2) or onto P(V2') and so the projective space P(V1) is isomorphic to P(V2) or to 

P(V2') (the latter two spaces being isomorphic.) By applying the Fundamental Theorem of 

Projective Geometry, one shows finally that the dimensions of V1 and V2 are the same and 

the underlying fields F1 and F2 are isomorphic. 

 

It was understood in the 20-40s of the last century that the approach by Schreier-

van der Waerden could be applied for the study of isomorphisms of the other types of 

linear groups. However, instead of the use of transvections the authors that followed 

Schreier and van der Waerden preferred to use involutions, that is, the linear 

transformations of order two. The reason here is obvious: involutions can be immediately 

described by group-theoretic means in any linear group (by the condition x2 = 1), whereas a 

group-theoretic characterization of transvections can be rather tricky. An involution σ of 

the general linear group GL(V) of a vector space V determines (as a tranvections does) a 

pair of subspaces of V. For instance, in the case when the characteristic of underlying field 

F is not 2, these subspaces are eigenspaces of σ corresponding to eigenvalues 1 and −1. 

 

Mackey [6] in his study of isomorphism types of the automorphisms linear normed 

spaces found a group-theoretic condition which was satisfied by a pair of involutions if and 

only if they had a mutual line or a mutual hyperplane. Later Dieudonné [1] and Rickart [9, 
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10] adapted Mackey's ideas to the description of isomorphism types of various linear 

groups over division rings. In 1951 Rickart [11] also started the program of description of 

isomorphism types infinite-dimensional linear groups (which had been not completed till 

1977.) 

 

The use of involutions also lead to a significant progress in the study of the 

isomorphism types of linear groups over principal ideal domains: Hua and Reiner 

described in [3] isomorphisms of general linear groups of free modules of finite rank over 

the ring of integers (unimodular groups), Landin and Reiner considered then the linear 

groups over the ring of Gaussian numbers [4] and then obtained the general description of 

isomorphisms of linear groups over principal ideal domains [5]. 

 

However, methods that were based upon the properties of involutions a given linear 

group did not work for certain important types of linear groups and/or their subgroups. For 

instance, O'Meara found `large' linear groups that contained no involutions. To overcome 

this and other difficulties, O'Meara developed in a series of papers the calculus of the 

residues (see Section 1.2 for details) of linear transformations. He also once again placed 

the main stress on the properties of transvections of a given linear group. This enabled him 

to develop a very impressive general theory of isomorphisms of finite-dimensional linear 

group over large class of rings and to complete the program of description of isomorphisms 

of some important types of infinite-dimensional linear groups started by Rickart; all these 

results were published in a paper [8] of 1977. 

 

The aim of the present work is to provide an enlarged version of the ‘core’ part of 

the famous work ‘Lectures on Linear Groups’ [7] by O'Meara in which his main ideas and 

methods are reproduced in a rather concise, though a very elegant way. One quickly finds 

that O'Meara's work is mainly addressed to professional mathematicians rather than, for 

instance, to graduate students. To follow the author of [7] is sometimes hard enough even 

as we think for a professional mathematician: some proofs are just sketched, it is required 

of the reader to work out the material very thoroughly indeed in order to follow author's 

steps etc. Thus we make an effort to supply missing details and to rework some of the 

proofs of results in [7] to make the important work by O'Meara understandable to senior 

graduate students. We believe that the present thesis can be used in teaching of an 
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(advanced) course in linear groups for graduate students. Our work presents a complete 

proof of the fact that the isomorphism type of a linear group H(V) of a vector space V of 

dimension ≥ 3 over a field F which is full of (projective) transvections is fully determined 

by dimV and the isomorphism type of F. In particular, it gives the description of 

isomorphisms of linear groups of types H = ΓL, PΓL, GL, PGL, SL and PSL and, as a 

consequence, the following classical theorem: 

 

H(V1) ≅ H(V2) ⇔  dim V1 = dim V2   and   F1 ≅ F2, 

 

where F1 and F2 are the underlying fields of V1 and V2, respectively provided that the 

dimension of both V1 and V2 is at least three. 

 

1.1. Radiations 

 

For any nonzero α in F define the linear transformation rα by 

 

rα x = α x ∀ x ∈  V       (1.1) 

 

 

Thus rα is in GLn(V). Any σ in GLn which has the form σ = rα for some such α will 

be called a radiation of V. The set of radiations of V is a normal subgroup of GLn(V) which 

will be written RLn(V). The isomorphism RLn → 
•

F  is obvious. 

 

 

1.1.1. Let σ be any element of GLn(V). Then σ is in RLn(V) if and only if σL=L for 

all lines L in V. In particular 

 

ker(P| GLn )= RLn , ker(P| SLn )= SLn ∩  RLn   (1.2a) 

 

and 

 

PGLn ≅  GLn / RLn, PSLn ≅  SLn / SLn ∩  RL   (1.2b) 
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PROOF. Fix z in 
•

V . There is then a β  in 
•

F such that σz = β z. We have to prove that 

σx = β x for a typical x in 
•

V . By hypothesis, σx=α x  for some α in 
•

F . If x is in Fz, then x 

has the form x = λ z, so 

 

σ x = σ(λ z) = λ(σ z) = λ β z = β x.     (1.3) 

 

If x is not in Fz, then 

 

α x + β z = σ(x+z) = γ(x+z),                   (1.4) 

 

so α = γ = β  by the independence of x and z.        □ 

 

1.2. Residues 

 

Consider σ ∈  GLn(V). We define the residual space R=R(σ) by 

 

R = (σ − 1V)V = { σ x − x : x ∈V},    (1.5) 

 

the fixed space P = P(σ) by 

 

P = ker(σ − 1V) = { x ∈V : σ x = x },    (1.6) 

 

and the residual index res σ by 

 

res σ = dim R = codim P.            (1.7) 

 

The latter equation follows from the theorem on the sum of rank and nullity of a given 

linear transformation ρ of V: 

 

rank ρ + nullity(ρ) = dim(ρV) + dim(ker ρ) = dim V.   (1.8) 
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The subspaces R(σ) and P(σ) are called the spaces of σ. Clearly, both subspaces of σ are 

σ−invariant: 

 

σ R(σ) = R(σ)  and  σ P(σ) = P(σ).     (1.9) 

 

Let us check, for instance, the first statement. We have 

 

σ R(σ) = σ (σ − 1V) V = (σ − 1V) (σ V) = (σ − 1V) V,   (1.10) 

 

since σ is in GLn(V) and hence surjective which means that σV =V. It is evident that 

 

res σ = 0 ⇔  σ = 1V.      (1.11) 

 

Note also that the residual space (fixed space) of the inverse transformation  σ−1 coincides 

with that one of σ: 

 

R(σ−1) = R(σ)  and P(σ−1) = P(σ).     (1.12) 

 

For instance, for the residual spaces we have 

 

R(σ−1) = (σ−1
− 1V) V = (σ−1

− 1V) (σ V) = (σ − 1V) V;   (1.13) 

 

the justification of the latter equation is as follows: for all x ∈  V 

 

 (σ−1
− 1V)(σ x) = σ

−1 (σ x) −σ x = x − σ x = − (σ x −x) ∈  (σ − 1V) V.   (1.14) 

 

Convention: 

whenever a σ ∈  GLn(V) is under discussion, the letter R automatically refer to its 

residual and the letter P to its fixed space. 

 

1.2.1. Let σ1 and σ2 be elements of GLn(V) and put σ = σ1σ2. Then 

 

 R ⊆  R1 + R2,  P ⊇  P1 ∩  P2,    (1.15) 
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res σ1σ2 ≤  res σ1 + res σ2.     (1.16) 

 

PROOF.  We have 

 

σ1σ2(x) − x = {σ1(σ2 x) − σ2x} + {σ2x − x};    (1.17) 

 

the first element in the curly brackets in the right-hand side belongs to R1 and the second 

one to R2. Hence R ⊆  R1 + R2, whence 

 

res σ = dim R ≤  dim(R1 + R2) ≤  dim R1 + dim R2 = res σ1+ res σ2.   (1.18) 

 

The statement about the fixed spaces is trivial.       □ 

 

1.2.2. Let σ1 and σ2 be elements of GLn(V) and put σ = σ1σ2. Then 

(1) V = P1 + P2 ⇒  R = R1 + R2,           (1.19) 

(2) R1 ∩  R2 = 0 ⇒  P = P1 ∩  P2.            (1.20) 

 

PROOF.  Let us prove the part (1) first. 

 

R1 = (σ1 − 1V)V = (σ1 − 1V) (P1 + P2).    (1.21) 

 

Since P1 is the kernel of  σ1 − 1V  we get 

 

R1 = (σ1 − 1V) P2.      (1.22) 

 

Now σ2P2 = P2 and then 

 

R1 = (σ1 − 1V) P2 = (σ1σ2 − 1V) P2 ⊆  (σ1σ2 − 1V) V = (σ − 1V) V = R.   (1.23) 

 

So R1 ⊆  R. In other words, 

 

R(σ1) ⊆  R(σ1σ2).      (1.24) 
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By symmetry our argument can be applied to the transformations σ2
−1 and σ1

−1 (because 

P(σ1
−1) = P1 and P(σ2

−1) = P2) and their product σ2
−1
σ1

−1. This 

means that 

 

R(σ2
−1) ⊆  R(σ2

−1
 σ1

−1)     (1.25) 

 

or 

 

R2 ⊆  R(σ−1) = R.      (1.26) 

 

Therefore  R1 + R2 ⊆  R. By 1.2.1 we obtain that R = R1 + R2. 

Let us prove (2). Take x∈P and consider the element 

 

y = σ1σ2(x) − σ2(x) = σ1(σ2x) − σ2 x = ( σ1 − 1V) σ2 x.    (1.27) 

 

On one hand it is an element of R1. On the other hand since x ∈  P  

 

y = σ1σ2(x) − σ2(x) = σ(x) − σ2(x) = − (σ2x − x).    (1.28) 

 

and hence y ∈  R2. Then y ∈  R1 ∩ R2 and by the condition y = 0. Then (1.28) implies that  

P ⊆  P2. Similarly, let y' be in P = P(σ2
−1
σ1

−1) = P(σ−1) 

 

x' = σ2
−1
σ1

−1(y') − σ1
−1(y') = σ2

−1(σ1
−1

y') − σ1
−1

y' = (σ2
−1 −1V) σ1

−1
y'.  (1.29) 

 

Then x'∈  R2. And again, 

 

x' = σ2
−1
σ1

−1(y') − σ1
−1(y') = σ−1(y') − σ1

−1(y') = − (σ1
−1(y') − y').   (1.30) 

 

and hence x' ∈  R1. Then x' ∈  R1 ∩ R2 and by the condition x' = 0. Then (1.30) implies that     

P ⊆  P1. And as a conclusion P ⊆  P1 ∩ P2. Applying 1.2.1. once again we have that  

P = P1 ∩ P2 as we promised.            □ 
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1.2.3. Let σ and Σ be elements of GLn(V). Then the residual and fixed spaces of ΣσΣ−1 are 

ΣR and ΣP respectively. In particular, res(ΣσΣ−1) = res σ; and if σΣ = Σσ implies that ΣR = 

R and ΣP = P. 

 

1.2.4. Let σ1 and σ2 be elements of GLn (V). Then R1 ⊆  P2 and R2 ⊆  P1 makes σ1σ2 = σ2σ1, 

that is, σ1 and σ2 are commuting linear transformations. 

 

PROOF.  First, note that the condition R2 ⊆  P1 implies that 

 

σ1(σ2x − x) = σ2x − x      (1.31) 

 

for every x ∈  V. Then for all x ∈  V 

 

σ1σ2x = σ1(σ2x − x) + σ1x = σ2x − x + σ1x    (1.32) 

                     = σ1x − x + σ2x = σ2(σ1x − x) + σ2x 

                     = σ2σ1x.         □ 

 

1.2.5. Let σ1 and σ2 be elements of GLn(V) with σ1σ2 = σ2σ1. Then 

 

R1 ⊆  P2 and R2 ⊆  P1,      (1.33) 

 

provided that either R1 ∩ R2 = 0  or V = P1 + P2. 

 

PROOF.  Since σ1 and σ2 are commuting we have by 1.2.3 that, for instance, 

 

σ1R2 = R2  and  σ1P2 = P2.     (1.34) 

 

Suppose first that R1 ∩ R2 = 0. By (1.34) 

 

(σ1 − 1V)R2 ⊆  R2;      (1.35) 

 

evidently, (σ1 − 1V)R2 ⊆  R1. Then 
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(σ1 − 1V)R2 ⊆  R2 ∩ R1 = 0.      (1.36) 

 

This implies that R2 is in the kernel of σ1 − 1V, that is, in P1: R2 ⊆  P1. By symmetry  

R1 ⊆  P2. 

Now assume that V = P1 + P2. We have 

 

R1 = (σ1 − 1V) V = (σ1 − 1V) (P1 + P2) = (σ1 − 1V) P2.   (1.37) 

 

By (1.34) σ1P2 = P2 and hence 

 

R1 = (σ1 − 1V) P2 ⊆  P2.     (1.38) 

 

Similarly, R2 ⊆  P1.            □ 

 

 

1.2.6. Let σ be an element of GLn(V). Then σ2 = 1V  if and only if σ|R, the restriction of σ on 

R, is −1R. 

 

PROOF.   

σ
2 = 1V ⇔  σ2 x = x  ∀  x ∈  V,          (1.39) 

                ⇔ σ(σ x − x) = −(σ x − x)   ∀  x ∈  V, 

                ⇔ σ y = − y    ∀  y ∈  R, 

                ⇔  σ|R = −1R. 

  □ 

 

 

1.2.7. Suppose that V is finite−dimensional. Then for every σ ∈  GLn(V) 

 

det σ = det(σ|R).       (1.40) 

 

PROOF.  Assume dim V = n. Let e1, ... , es be a base of R. Extend it to a base of V 

 

e1, ... ,es, es+1, ... ,en.       (1.41) 
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Now for every base vector ek with k > s 

 

σek − ek ∈  R        (1.42) 

 

and hence 

 

σek = ek + rk         (1.43) 

 

where rk is a linear combination of vectors e1, ... ,es . Then the matrix [σ] of σ in the base  

e1, ... ,es, es+1, ... ,en is as follows 

 










E

M

0

*
      (1.44) 

 

where M is an s ×  s matrix (in fact the matrix of σ|R in the base e1, ... , es of R), 0 denote a 

zero block, and E is (n − s)× (n − s) identity matrix. Therefore 

 

det σ = det[σ] = det M ⋅ det E = det [σ|R] = det (σ|R),   (1.45) 

 

as desired.             □ 

 

1.2.8. If  V = V1 ⊕ V2 and σ = σ1 ⊕ σ2 with σ1 ∈  GL
1n
(V1) and σ2 ∈  GL

2n
(V2). Then 

 

R = R1 ⊕ R2  and  P = P1 ⊕ P2.     (1.46) 

 

PROOF.  Suppose that x = x1 + x2, where x1 ∈  V1 and x2 ∈  V2. Then according to the 

definition of the map σ = σ1 ⊕ σ2, 

 

σ(x) = σ1 x1 + σ2 x2.      (1.47) 

 

Therefore 
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σx − x = σ1x1 + σ2x2 − (x1 + x2) = (σ1x1 − x1) + (σ2x2 − x2)    (1.48) 

 

and hence R = R1 ⊕  R2.           □ 

 

1.2.9. Let σ be an element of GLn(V) and let W be a subspace of V with R ⊆  W or P ⊆  W. 

Then σW = W. 

 

PROOF.  For instance, the condition R ⊆  W means that for all y ∈  W 

 

σy − y ∈W,       (1.49) 

 

whence σy ∈  W  for all y ∈  W.          □ 

 

1.3. Transvections 

 

Let σ be an element of GLn(V). We say that σ is a transvection, if either σ = 1V, or 

 

res σ = 1, det σ = 1.      (1.50) 

 

We say that σ is a dilation if 

 

res σ = 1, det σ ≠  1.      (1.51) 

 

In view of 1.2.3 it is clear that any conjugate ΣσΣ−1 of a transvection (dilation) σ by 

an element Σ of GLn(V) is also a transvection (dilation). Note also the condition res σ = 1 

implies that P is a hyperplane. 

 

1.3.1. Let n ≥  2 and σ ∈  GLn(V) is of residue 1. Then 

1) σ is a transvection if and only if R ⊆ P; 

2) σ is a dilation if and only if V = R ⊕  P; 

3) if σ is a transvection, then the (only) eigenspace of σ is P and the only eigenvalue of σ is 

1; 
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4) if σ is a dilation, then the set of all eigenvectors of σ is 
•

R ∪
•

P , and 1 and det σ are the 

eigenvalues of σ. 

 

PROOF.  Since σ is a transvection resσ = 1. Then suppose that R = a  and that e1, ... ,en-1 is 

a base of P. 

1) By 1.2.7 we have that 

 

det σ|R = det σ = 1.      (1.52) 

 

Now since σ|R is a radiation (because we have σR = R or by the notation of transvections  

σa = τa,ρ a = a + ρ(a)a = a(1+ρ(a)) and since 1+ρ(a)∈  F then σa = αa, σ is a radiation 

where α = 1 + ρ(a)), we have 

 

σa = (detσ|R)a = a.      (1.53) 

 

Then a ∈  P, whence R ⊆  P. Conversely, if R ⊆  P, then 

 

σa = a.           (1.54) 

 

It then follows that det σ|R = 1, and, again by 1.2.7 det σ = 1. Since we have resσ = 1 then σ 

is a transvection. 

The second part 2) is an immediate consequence of 1): as σ is a dilation and P is a 

hyperplane then det σ ≠  1 and σa = αa where α ≠ 1. Then a ∉ P and R ⊄ P as by 1), then  

V = R ⊕  P, as required. 

3) Extend the above chosen base of P to a base of V by a vector b. Since 

 

σb = β b + p       (1.55) 

 

for suitable p ∈  P, we get that 
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det [σ] = 

100*

0*

010*

001*

000

K

OMM

K

K

Kβ

 = β  = 1.    (1.56) 

 

Then the matrix [σ] of σ in the base (b,e1, ..., en-1) is so−called lower unitriangular. This 

means that all diagonal elements are 1 and the elements above the main diagonal are 0. It 

then easily follows that the only eigenvalue of σ is 1 and all eigenvectors of σ are non−zero 

elements of P. 

To prove 4) we consider the matrix of σ in a base e1, ... ,en-1, a. The result then 

follows easily.              □ 

 

Notation: Consider a vector a∈V and a (non−zero) linear functional ρ∈V'. We 

define the map τa,ρ, a linear operator of V: 

 

τa,ρ(x) = x + ρ(x)a,  ∀  x ∈  V.     (1.57) 

 

The check that τa,ρ is linear is straightforward. 

Since 

 

τa,ρ x − x = ρ(x) a      (1.58)  

 

we have that R=R(τa,x) ⊆ a . Then if τa,ρ is in GLn(V) its residual space is 

one−dimensional. Hence τa,ρ is either a transvection, or a dilation. 

Recall one useful fact we shall frequently use in this section. 

 

1.3.2. Let ρ: V →  F be a non−zero linear functional. Then the kernel kerρ of ρ is a 

hyperplane of V. 

 

PROOF.  Suppose that a∈V  is such that ρa ≠ 0. Let now a, e1, ..., en−1 be a base of V. Then 

for appropriate scalars λ1, ... , λn−1 we have that 
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ρ(e1) = λ1 ρa, ... , ρ(en−1) = λ n−1 ρa.     (1.60) 

 

This implies that 

 

ρ(e1− λ1a) =  ...  = ρ(en−1 − λ n−1a) = 0.    (1.61) 

 

It is clear that the vectors 

 

e1 − λ1a, ... , en−1 − λ n−1a     (1.62) 

 

are linearly independent. Thus dim kerρ ≥  n−1. Since ρ is non−zero, hence kerρ≠ V and 

the result follows.            □ 

 

We shall use the following formulae: 

If we have (τa,ρ − 1V)V ⊆  Fa, so τa,ρ is either a transvection or a dilation when it is 

invertible (det τ ≠  0) as we said above. Note that 

 

τa,ρ = 1V  ⇔  a = 0       or      ρ = 0     (1.63) 

 

and 

 

τλ a,ρ(x) = (x) + ρ(x)λa = (x) + λρ(x)a = τa,λρ  ∀ λ ∈  F   (1.64) 

 

So we have this statement: 

 

1.3.3. Suppose a, a′ are nonzero vectors, and ρ, ρ′ are nonzero linear functionals, and  

ρa = ρ'a' = 0. So τa,ρ and τa′,ρ′ are elements of GLn(V) which are not equal to 1V. Then  

τa,ρ = τ a′, ρ′  if and only if there is a λ in 
•

F  with a′ = λa and ρ′ =λ−1
ρ. 

 

PROOF.  τa,ρ is either a transvection or a dilation then we have 

 

τλ a,ρ = τa,ρ λ ∀ λ ∈  F      (1.65) 
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then 

 

τλ a,ρ = τλ a′, ρ′  = τ a′,λ ρ′      (1.66)  

 

then 

 

 a′ = λa   and  ρ′ = λ−1
ρ      (1.67) 

 

Converse is the same            □ 

 

1.3.4. det τa,ρ= 1 + ρa. 

 

PROOF.  If ρ is the zero functional, then τa,ρ = 1V and the conclusion of the proposition is 

trivially true. 

Suppose that ρ ≠  0. By 1.3.2 the kernel H of ρ is a hyperplane of V. Consider a 

base e1, ... ,en-1 of this hyperplane. 

We have two cases to consider. 

1) ρ(a) = 0. Then we extend the system e1, ... ,en-1  to a base of V by a vector en. By 

the definition 

 

τa,ρ en  = en + ρ(en)a.      (1.68) 

 

As a ∈  H and by τa,ρ en = en + ρ(en)a, since a = R ⊆  P we get a = β1 e1 + ... + βn-1en-1 for 

appropriate βi ∈  F where 1 ≤  i ≤  n −1. And since en ∉ H, ρ(en) ≠  0 then we have 

 

τa,ρ en = en + ρ(en)a = en + α1 e1 + ... + αn−1 en−1    (1.69) 

 

for a suitable α1,  ... , αn−1 ∈F. Then the matrix of our operator in the base (en, e1, ... ,en−1) 

is a lower unitriangular. Hence its determinant is 1, that is, 1 + ρ(a) = 1 + 0, as desired. 

2) ρ(a) ≠ 0. If so, a ∉ H and then (e1, ... ,en−1,a) is a base of V. We have 
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τa,ρ a = a + ρ(a)a = (1+ρ(a)) a.     (1.70) 

 

Since, furthermore, τa,ρ ek = ek where k = 1, ... ,n−1, we see that τa,ρ is diagonalizable in our 

base, that is, 

 

[τa,ρ] = 





















 +

1000

0

0100

0010

000)(1

L

OMMM

L

L

Laρ

           (1.71) 

 

Hence detτa,ρ = 1 + ρa          □ 

 

Therefore τa,ρ is in GLn(V) if and only if ρa ≠ −1; it is a transvection if and only if 

ρa = 0; and it is a dilation if and only if ρa ≠ 0, −1. If σ is an element of GLn(V) with σ≠ 1V  

and σ = τa,ρ, then R = Fa and P = ρ−1(0). In general, 

 

τa,ρτb,φ  = {x + (ρx)a + (φ x)b} + (φ x)(ρb)a          (1.72) 

 

If τa,ρ and τb,ρ are transvection, then 

 

τa,ρτb,ρ = τa+b,ρ,      (1.73) 

 

and if τa,ρ and τa, φ  are transvections, then 

 

τa,ρτa,φ  = τa,ρ + φ       (1.74) 

 

In particular, if τa,ρ is a transvection and n is a rational integer, then 

 

τn
a,ρ=τna,ρ.            (1.75) 

 

For any σ in GLn(V), 
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στa,ρσ
−1 = τσ a,ρσ

−1       (1.76) 

 

Notation: In the case when P is a hyperplane of V we shall denote by P
0 the set of all 

linear functionals whose kernel is P. 

 

1.3.5. Let σ be an element of GL(V) with resσ = 1. So R is a line and P is a hyperplane. 

If ρ ∈  P
0, then there is an a ∈  R such that σ = τa,ρ. 

If b ∈  R, then there is a φ ∈  P
0
 such that σ = τb, φ . 

 

PROOF.  Suppose that ρ ∈P
0. Since the image of V under ρ is F, then there is a vector z ∈  V 

with ρz = 1. Clearly, z ∉ P. Put a = σz − z. Then it is immediate to check that σ and τa,ρ 

agree both on R and P. Hence σ = τa,ρ. 

Now take a nonzero b in R. Since R is a line, in particular, b = λ a. We have already 

shown that σ = τa,ρ  then 

 

σ =τa,ρ = τλ
−1

 (λ a), ρ = τλ a, λ
−1
ρ = τb,φ      (1.77) 

 

where φ  = λ−1
ρ.            □ 

 

1.3.6.  Let τ1, τ2 be transvections in GLn(V) and let α  be a scalar. Then τ2 = α τ1 if and 

only if α =1 with τ1 = τ2. In particular, α τ1 is not a transvection when α ≠  1. 

 

PROOF.  Suppose that τ2 = α τ1. The only eigenvalue of a transvection is 1. The condition 

implies therefore that α  is an eigenvalue of τ2, whence α =1.      □ 

 

1.3.7. Let σ1, σ2 be elements of GLn(V) of residue 1 and the product σ1σ2 is non−trivial. 

Then 

 

res σ1σ2 =1 ⇔ R1 = R2      or      P1 = P2.       (1.78) 

 

PROOF.  Put σ = σ1σ2. 
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( ⇐ ). We know that R ⊆  R1 + R2. Then if R1= R2 we have R = R1 = R2 and then resσ = 1. 

Suppose that P1 = P2. Now, dually to the first case, we have P ⊇ P1 ∩ P2. Since σ ≠  1V  we 

have P = P1 = P2. Now P is a hyperplane and therefore resσ = 1, as required. 

 

(⇒ ). Let resσ = 1. If P1 = P2, we are done. Assume P1 ≠  P2. This implies that V = P1 + P2. 

Hence by 1.2.2 we have that R = R1 + R2. But R is a line, and then R1 and R2 are to be equal 

lines.               □ 

 

1.3.8. Let σ1, σ2 be transvections of GLn(V). Then σ1σ2 is a transvection if and only if  

R1 = R2 or P1=P2. 

 

PROOF.  The result is an immediate corollary of 1.3.7. One has only to take into account 

that the product σ1σ2 is of determinant 1 (i.e. det σ1σ2 = detσ1 detσ2 = 1 · 1 = 1).    □ 

 

1.3.9. Let X be a subgroup of GLn(V) all whose elements are transvections. Then either the 

elements of X have the same residual line, or they all have the same fixed hyperplane. 

 

PROOF. In the case when all elements of X have the same residual space we are through. 

Suppose then that there σ1,σ2 in X such that R1 ≠ R2. Since X is a subgroup, σ1σ2∈  X 

and a transvection. Then by 1.3.8 we get that P1 = P2. Take any nontrivial element σ of X. 

We want to show P = P1 = P2. Let P ≠ P1, it is impossible that P ≠ P1, since X is a subgroup 

again and by applying 1.3.8 to the pairs σ, σ1 and σ, σ2, are transvections and we see that  

R = R1 and R = R2. This implies that R1 = R2, which is absurd.      □ 

 

1.3.10. Two nontrivial transvections σ1,σ2 ∈  GLn(V) are commuting if and only if 

 

R1 ⊆ P2 and R2 ⊆  P1.       (1.79) 

 

PROOF.  The sufficiency part follows from 1.2.4. Since σk is a tranvection, we have Rk ⊆  Pk, 

where k = 1,2. In the case when R1 ∩ R2 = 0, or, in other words, in the case when R1 are 

distinct lines we have the desired by 1.2.5. If R1 = R2 we have that R1 = R2 ⊆  P2 and  

R2 = R1 ⊆  P1.           □ 
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1.3.11. Let x, y be distinct vectors of V. Let further H be a hyperplane that contains y − x 

but not x. Then there is a transvection with P = H and R = xy −  which takes x to y:  

σ x = y. 

 

PROOF.  The conditions imply that n > 1. Pick a linear functional from V to F as ρ whose 

kernel is H and such that ρx = 1. As y − x ∈  H, ρ(y − x) = 0. Consider the linear map 

σ = τy−x,ρ. It is easy to check that P = H and R = xy − ; furthermore, σ is a transvection by 

1.3.4. Finally, 

 

σ x = τy−x,ρ x = x + ρ(x) (y − x) = x + 1(y − x) = y.    (1.80) 

□ 

 

Our next result is a dual version to 1.3.11: lines are replaced by hyperplanes and vice 

versa. 

 

1.3.12. Let H, H' be hyperplanes, and let L be a line that is contained neither in H, nor in 

H'. Then there is a transvection τ whose residual space is L and which takes H to H': τ H = 

H'. 

 

PROOF.  Suppose that x1, ... , xn-1 is a base of H and L= a . The conditions imply that 

 

V = H ⊕  L = H' ⊕ L.        (1.81) 

 

The second equality implies that for each i = 1, ... , n−1 there exist a vector xi' of H' and a 

scalar λ i of F with 

 

xi = x'i + λ i a.      (1.82) 

 

It is clear that the vectors x'1, ... , x'n−1 are linearly independent, and so they form a base of 

H'. 

Consider the following linear functional in V': 
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ρa = 0  and  ρxi = − λ i,  i = 1, ... , n−1.   (1.83) 

 

One then easily checks that σ = τa,ρ is a non−trivial transvection with the residual line  

L = a . To complete the proof we see that σ H=H'. But 

 

σ xi = τa,ρ xi = xi + ρ(xi) a = xi − λ i a = x'i         (1.84) 

 

for all i = 1, ... , n −1. Then σ takes the base x1, ... ,xn-1 to the base x'1, ... ,x'n−1, and hence 

H to H'.            □ 
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2. COLLINEAR TRANSFORMATION AND PROJECTIVE GEOMETRY 

 

 

A geometric transformation g of V onto V1 is a bijection g: V →V1 which has the 

following property for all subsets X  of V: X  is a subspace of V if and only if gX is a 

subspace of V1. And a projectivity π of V onto V1 is a bijection π: P(V) →P(V1) (P as the set 

of all subspaces) which has the following property for all U, W in P(V): U ⊆ W  if and only 

if πU ⊆πW. 

 

2.1. The Fundamental Theorem of Projective Geometry 

 

2.1.1. Let π be a bijection of the lines of V onto the lines of V1, i.e. let π: P1(V) →P
1(V1). 

Suppose π satisfies 

 

L1 ⊆  L2 + L3  ⇔  π L1 ⊆  π L2 + π L3     (2.1) 

 

for all L1, L2, L3 in P1(V). Then π can be extended uniquely to a projectivity   

Π: P(V) →P(V1). 

 

PROOF.  Existence, by induction on r that 

  

 L ⊆  L1 + ... + Lr ⇔ πL ⊆  πL1 + ... + πLr    (2.2) 

  

 Define Π0 = 0.  For any U in P(V) with U ≠ 0 express U as the sum of lines 

  

 U = L1 + ... + Lr      (2.3) 

  

 and define 

  

 ΠU = πL1 + ... + πLr      (2.4) 

  

We find that Π is a well−defined, order preserving, bijection of P(V) onto P(V1) that 

induces π on lines.            □ 
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2.1.2. Let π : P(V) →P(V1) be a bijection such that 

   

U ⊆ W ⇒  πU ⊆  πW      (2.5) 

   

Suppose dimFV = dimF1V1. Then π is a projectivity. 

 

PROOF.  We have to show πU ⊆  πW ⇒  U ⊆  W (Because if π is a projectivity then  

U ⊆  W ⇔ πU ⊆  πW). Write πW = πU ⊕  πT. Then 

     

π (U ∩  T) ⊆  πU ∩  πT = 0.      (2.6) 

     

Since π(U ∩  T) = 0 and π0 = 0 then U ∩  T = 0 and obviously U + T = U ⊕  T. We obtain 

π(U ⊕  T) ⊇  πU ⊕  πT = πW; hence π(U ⊕  T) = πW  by dimension argument, and hence 

U ⊆ U ⊕ T = W.            □ 

 

2.1.3. Let π be a bijection of the lines of V onto the lines of V1. Suppose dimFV = dimF1V1, 

and 

 

L1 ⊆  L2 + L3 ⇒  πL1 ⊆  πL2 + π L3.     (2.7) 

 

Then π can be extended uniquely to a projectivity Π: P(V) →P(V1). 

 

PROOF.   (1) By induction, 

 

L ⊆  L1 + ...+ Lr ⇒  πL ⊆  πL1 + ... + πLr.    (2.8) 

 

Hence 

 

V = L1 + ... + Ln ⇒  V1 = πL1 + ... + π Ln.    (2.9) 

 

Hence 
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L1,  ... , Lr  independent ⇒  πL1,  ... , πLr        independent.      (2.10) 

 

(2) Define Π0 = 0. For any U in P(V) with U ≠ 0 express U = L1 + ... + Lr and define  

ΠU = πL1 + ...  + πLr. Then Π  is well−defined prolongation of π to P(V) by step (1). And it 

is clear that π preserves + and dim. It is easily verified that π is surjective, also that 

  

 U ⊆ W ⇒  ΠU ⊆ΠW.      (2.11) 

  

Therefore, in the light of 2.1.2., it remains for us to prove injectivity, i.e. that ΠU = ΠW 

implies U = W. It is enough to show that ΠL ⊆  ΠW implies L ⊆ W. And this is true since 

 

 dim(W + L) = dim Π(W + L) = dim(ΠW + ΠL) = dim ΠW = dim W.  (2.12) 

               □ 

 

2.1.4.  Let π be a bijection of the lines of V onto the lines of V1, and let dimF V = dimF1V1. 

Suppose there is a fixed p (2 ≤ p ≤ n−1) such that for each p−dimensional subspace U of V, 

all the lines πL (with L ⊆ U) fall in a p−dimensional subspace of V1. Then π can be 

extended uniquely to a projectivity Π: P(V) →P(V1) 

 

PROOF.  (1) If p = 2 the results follows easily from 2.1.3. So let (3 ≤ p ≤ n−1). We will 

prove that the property then holds for p −1, so ultimately for 2, and we will be through. 

(2) For any subspace X of V, let X* denote the subspace of V1 generated by πL (with 

L ⊆ X). Clearly 

 

dim X ≤  p ⇒  dim X* ≤  p     (2.13) 

 

We have to show that 

 

dim U = p−1 ⇒  dim U* ≤  p−1.         (2.14) 
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Suppose not. Then we would have a U with dim U = p − 1, dim U* = p. Pick a line K ⊆ V 

with K* ⊄  U*. Then K ⊄  U. So dim (K + U) = p , so we claim that (K + U)* ⊇  K* + U*. 

Take a line N as N ⊆  K* + U* then ∃ N1, N2 such that N1 ⊆  K*, N2 ⊆ U*. Then we have  

N ⊆  N1 + N2 and then πN ⊆  πN1 + πN2. So L1 ⊆  K and L2 ⊆ U 

dim(K + U)*  ≥  dim(K* + U*) = p + 1,    (2.15) 

 

which is absurd.          □ 

 

2.1.5. Suppose dimF V ≥  3. Then every projectivity of V onto V1 is a projective collinear 

transformation. 

 

PROOF.  (1) For any a in 
•

V , ‹a› will be the line Fa; for any a' in 
•

V 1, ‹a'› will be the 

line F1a'. Let π: P(V)→P(V1) be a given projectivity of V onto V1. Fix a base x1, ..., xn for V. 

It is easily seen that there is a base x'1, ..., x'n for V1 such that 

 

π ‹ xi › = ‹ xi '› ( 1≤ i ≤ n ),     (2.16) 

 

π ‹ x1 + xi › = ‹ x1' + xi '› ( 2≤  i ≤  n ).     (2.17) 

 

(2) Since π is a projectivity, each α in F determines an element α' of F1 such that  

π‹ x1 + α x2 › = ‹ x1' + α' x2' ›. Clearly 0' = 0, 1' = 1, and α' = β ' implies α = β . So we have 

an injection, easily seen to be a bijection, 

 

' : F→ F1       (2.18) 

 

(3) Let us show that π‹ x1+α xi › = ‹ x1' + α'xi' › for any i ≥ 2. By step (2) we have  

~: F→ F1 such that π‹ x1 + αxi › = ‹ x1'+ α~ xi' › and 0
~

= 0, 1
~

= 1. Now 

 

‹α x2 − α xi › ⊆  




 +++

+

›‹ ›‹

›‹ ›‹

121

i2

ixxxx

xx

αα
   (2.19) 
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so 

 

π ‹α x2 − α xi› ⊆




 ′+′+′′+′

′+′

›.~‹ ›‹

›‹ ›‹

121

i2

ixxxx

xx

αα
   (2.20) 

 

Hence π‹α x2 − α xi› = ‹α'x2'−α~ xi'›. In particular π‹x2 − xi› = ‹x2' − xi'›. But  

π‹αx2 − α xi› = π ‹x2 − xi›. Hence α ' = α~ . 

(4) Next we observe that 

 

π‹x1+α2 x2+ ... +αn xn› = ‹x'1+α'2 x'2+ ... +α'n x'n›.    (2.21) 

 

For 

 

π‹x1+α2 x2+ ... +αn xn› = ‹x'1+*2 x'2+ ... +*n x'n›.    (2.22) 

 

π‹x1+α2 x2+ ... +αnxn› ⊆ ‹x'1+α'i x'i›+‹x'2› ... + ‹x'n›.   (2.23) 

 

(omit ‹x'i›), whence *i=α'i as required. 

(5) We also have 

 

π‹α2 x2+ ... +αn xn› = ‹α'2 x'2+ ... +α'n x'n›.             (2.24) 

 

since π‹α2 x2+ ... +αn xn› = ‹*2 x'2+ ... +*n x'n›. and π‹α2x2+ ... +αn xn› ⊆  

‹x'1+α'2x'2+ ... +α'nx'n› + ‹x'1›, whence *i = α'i, can be arranged. 

(6) The bijection  ': F→ F1  is in fact a field isomorphism. For 

 

‹x'1+(α+ β )'x'2+ x'3› = π‹x1+(α+ β )x2 + x3›⊆ ‹x'1+α'x'2›+‹ β 'x'2 + x'3›.   (2.25) 
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whence (α + β )' = α'+ β ', and ‹x'1+(α β )'x'2 + β 'x'3› = π‹x1+(α β )x2 + x3› ⊆  

‹x'1› + ‹α'x'2+x'3› whence (α β )' = α' β '.  

(7) If we now use from O'Meara §4.1 to define a collinear transformation k: V→V1 with 

respect to '  by 

 

k(α1 x1+ ... +αn xn) = (α'1 x'1+ ... +α'n x'n)         (2.26) 

 

we find that k  and π agree on lines, hence π is the projective collinear transformation k . 

 

2.2. The Isomorphisms Φ g 

 

We now introduce group isomorphisms Φ g where g is first a collinear 

transformation g: V→V1 of V onto V1, and secondly a projective collinear transformation 

 g: P(V)→P(V1) of V onto V1. 

 

First consider a collinear transformation g: V→V1. Let µ: F→F1 be the associated 

field isomorphisms. Here n = n1 follows. Then it is clear that the Φ g defined by 

 

Φ g k = gkg
−1   ∀ k ∈  Γ Ln(V)    (2.27) 

 

is actually a group isomorphism 

 

Φ g : Γ Ln(V)→ Γ Ln1 (V1).         (2.28) 

 

Under composition and inversion, 

 

Φ g1 g = Φ g1 Φ g,  Φ −1
g = Φ 1−g

.    (2.29) 

 

We find that Φ g induces 

 

Φ g : GLn(V)→ GLn1(V1),     (2.30) 
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Φ g : SLn(V)→ SLn1(V1),     (2.31) 

 

Φ g : RLn(V)→ RLn1(V1).     (2.32) 

 

If σ is in GLn(V), then 

 

det ( Φ gσ) = (det σ)µ;      (2.33) 

 

and the residual and fixed spaces of Φ gσ are gR and gP respectively; in particular 

 

res Φ g σ = res σ.     (2.34) 

 

If H is a hyperplane and L is a line with L ⊆ H, then gL is a line contained in the hyperplane 

gH of V1, and Φ g carries the set of transvections with spaces L ⊆ H onto the set of 

transvections with spaces gL ⊆ gH. If σ is the transvection σ = τa,ρ in usual form, then 

 

Φ gτ ρ,a = τ 1, −gga µρ
 .      (2.35) 

 

Now consider a projective collinear transformation g: P(V)→P(V1) of V onto V1. We again 

have n = n1. This time define 

 

Φ gk = gkg
−1   ∀ k∈  P Γ Ln(V)     (2.36) 

 

and obtain a group isomorphism 

 

Φ g : P Γ Ln(V) → P Γ Ln1(V1).     (2.37) 

 

Under composition and inversion, 

 

Φ g1 g = Φ g1 Φ g,  Φ −1
g = Φ 1−g

     (2.38) 
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Since g is a projective collinear transformation it is of the form g = h  for some collinear 

transformation h: V→V1. We find that 

 

Φ g j  = Φ
h

j  = jhΦ  ∀ j ∈  Γ Ln(V).    (2.39) 

 

We conclude that φ g induces 

 

φ g: PGLn(V) → PGLn1(V1),        (2.40) 

 

φ g: PSLn(V) → PSLn1(V1),        (2.41) 

 

and also that φ g carries the set of projective transvections with spaces L ⊆ H onto the set 

with spaces gL ⊆ gH. 

 

2.2.1. Suppose n = n1 ≥  2. If g1 and g2 are collinear transformations of V onto V1, then the 

following statements are equivalent: 

    (1) φ
1g
=φ

2g
. 

    (2) g 1 = g 2. 

    (3) g1 = g2r for some r in RLn(V). 

    (4) g1 = r1g2 for some r1 in RLn1(V1). 

 

2.3. The Contragradient 

 

Consider a semilinear mapping k: V→V1 with respect to the field isomorphism µ: F→F1 . 

For each  ρ1∈V1'  it is clear that µ−1
ρ1k ∈V'. So each semilinear k defines a mapping 

 

 kt: V1' → V',       (2.42)   

 

called the transpose of k, whose action is determined by sending a typical ρ1 in V1' to  

µ
−1
ρ1k  in V'. Thus 
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k
t(ρ1) = µ−1

ρ1k.      (2.43) 

 

In other words, each k determines exactly one map kt such that 

   

‹x, kt
ρ1›µ = ‹kx, ρ1›  ∀ x∈V, ρ1∈  V1'.    (2.44) 

   

This equation is the defining equation of kt. 

We find that k
t: V1' → V'  is semilinear with respect to µ−1: F1→F. For any two 

semilinear maps k and l of V into V1 we have  

   

k
t = 0 ⇔ k = 0,      (2.45) 

    

k
t = lt ⇔ k = l.       (2.46) 

   

If k: V→V1 and k1: V1→V2 are semilinear, then k1k: V→V2 is semilinear with  

(k1k)t = kt
k1

t . If we fix bases X and D for V and V1 respectively, if X' and D' denote the 

corresponding dual bases for V' and V1' respectively, if A is the matrix of k with respect to 

X,D, and if  B  is the matrix of kt with respect to  D', X', then 

   

B
µ = At

.          (2.47) 

   

To prove this, just establish the equations 

 

aij = ‹
λ
Σ aλ j yλ, yi' › = ‹kxj, yi'› = ‹xj, k

t 
yi'›µ          (2.48) 

= ‹xj, 
λ
Σ bλi xλ' ›µ = bji

µ    (2.49) 

   

In particular, 

 

k bijective ⇔  kt  bijective      (2.50) 
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If k: V → V1  is bijective, then (k−1)t  and (kt)−1 are both semilinear bijections of V' onto V1'  

with respect to µ: F→F1 and, in fact, we find that 

 

(k−1)t = (kt)−1.       (2.51) 

   

Accordingly, the contragradient k
(

 is defined for any collinear transformation k by the 

equation 

   

k
(

= ( )t
k 1− .       (2.52) 

   

The associated field isomorphism is the same for k
(

 as for k and we have the diagrams 

 

k: V → V1,  µ: F → F1,  k
(

: V' → V1'.     (2.53) 

   

Behaviour under composition and inversion is given by 

 

tkk L
(

1  = k
(

1 ... k
(

t  and )( 1−k
(

 = ( k
(

)−1.         (2.54) 

   

Now fix V and consider the action of the contragradient on the collinear transformations of 

V , i.e. on Γ Ln(V). Then it is easily seen that we have an isomorphism 

 

˘: Γ Ln(V)  →  Γ Ln(V')     (2.55) 

   

which preserves associated field automorphisms and which induces 

 

˘: GLn(V) → GLn(V'),     (2.56) 

   

˘: SLn(V) → SLn(V'),      (2.57) 

 

˘: RLn(V) → RLn(V').     (2.58) 
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Furthermore we have 

   

matX k = A ⇔ matX' k
(

= A
(

     (2.59) 

 

where X' denotes the dual base of X, and A
(

 is defined for the invertible matrix A by 

   

A
(

= ( )t
A 1− .      (2.60) 

   

And for any k in Γ Ln(V) and any subspace U of V we have 

 

k
(

U
0= (kU)0.      (2.61) 

   

We call ˘: Γ Ln(V) →Γ Ln(V') the contragradient isomorphism of V  

 

2.3.1. Let ˘ be the contragradient isomorphism of V and consider a typical σ in GLn(V). 

Then 

(1) The residual space of σ
(

 is P0. 

(2) The fixed space of σ
(

 is R0 . 

(3) resσ
(

= res σ. 

(4) ˘carries the set of transvections with spaces L ⊆ H onto the set of transvections 

with spaces H
0 ⊆ L

0. 

(5) If σ is the transvection σ = τa,ρ in the usual form, then τ
(

a,ρ = a~,−ρτ , where a~ ∈  

V''  is defined by ‹φ , a~ › = ‹a,φ ›. 

 

PROOF. It is enough to prove (1)−(4) for σt  instead of σ
(

, and to prove τt
a,ρ = a~,ρτ  instead of 

(5). Let Rt  and Pt  denote the residual and fixed spaces of  σt. If ρ∈R
0, then for any x in V 

we have 

 

‹x, σt
ρ − ρ› = ‹σx − x, ρ›∈‹R, R

0› = 0;    (2.62) 
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so  σt
ρ = ρ ; so R0 ⊆ Pt . On the other hand, if ρ∈Pt , then, for typical x in V, 

   

‹x, σt
ρ − ρ› = ‹σ x − x ,ρ› = 0;     (2.63) 

   

so Pt ⊆ R
0 . Therefore Pt = R0 . This proves (2). Hence (3). Now for any p∈  P, ρ∈V', 

 

‹p, σt
ρ − ρ› = ‹σp − p, ρ› = 0;     (2.64) 

 

so Rt ⊆  P
0; so Rt = P

0 by dimensions. We now have (1), (2) and (3). And (4) is a 

consequence of (1) and (2). For (5), establish the equations 

 

‹x, τt
a,ρ φ › = ‹x + (ρx)a,φ › = ‹x,φ › + ‹x, ρ›‹a, φ ›   

= ‹x, φ › + a~ (φ )‹x, ρ› = ‹x,φ  + a~ (φ )ρ› = ‹x, a~,ρτ φ ›.            (2.65)

          □ 
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2.4. Comments 

 

The following diagrams illustrate our results for n ≥ 2 ( but excluding n = 2 with  F= F2, 

F3). 

 

ΞLn      PΞLn 

 

        

       1 if n ≥ 3 
 

 

 

ΓLn      PΓLn 

 

 

   aut F       aut F 

 

 

GLn     

       PGLn 

 

  

 SLn              F*/ F*
n
  

  

            RLn 

 

         Simple       PSLn 
         

          SLn ∩ RLn 

 

 

       ( n 1  in F*)  
 

            1 
      1V 

 

 

Figure 2.1. Inclusion scheme



 35 

3. THE ISOMORPHISMS OF LINEAR GROUPS 

 

 

3.1. Preliminaries 

 

We use CA(X) denote the centralizer in A of a nonempty subset X of an abstract group A 

(i.e. CA(X) = {a∈A | ax = xa   ∀ x∈X}). Thus CA(X) is a subgroup of A, and 

 

X1 ⊆ X2 ⇒  CA(X1) ⊇ CA(X2),      (3.1) 

 

X ⊆ CACA(X).       (3.2) 

 

If φ  is an isomorphism of a  onto φ A, then 

 

φ  CA(X) = Cφ A(φ X),            (3.3) 

 

For short we put CV(X)= )()( XC VGLn
 whenever we are working in GLn(V), and  

CV(X) = )()( XC VPGLn
 whenever we are working in PGLn(V). The symbol C will be reserved 

for the centralizers CG and C∆ of groups G and ∆ to be defined later. 

 

3.1.1. If  σ∈  GL2(V) − RL2(V), then DCV(σ) = 1V. 

 

PROOF.  σ has to move a line since σ ∉  RL2. Hence there is a base X for V in which σ has 

matrix of the form 








α

β

1

0
. By matrix calculation we find that the matrix of any Σ in CV(σ) 

has the form 

 










+ rpr

rp

α

β
       (3.4) 

 

in the base X. Any two such matrices commute.      □ 
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3.1.2. If n = 2, if L and K are distinct lines in V, and if τL and τK are transvections with 

residual lines L and K respectively, then τLτKτL
−1τK

−1 is an element of GL2−RL2 with 

residual space V. If TK is a transvection, distinct from τK, with residual line K, then 

τLτKτL
−1τK

−1 and τLTK τL
−1TK

−1 do not permute. 

 

PROOF.  (1) All characteristic vectors of τL fall in L, so J =τLK is a line distinct from K. But 

τJ =τLτKτL
−1 is a transvection with residual line J by 1.2.3. So the residual space of 

τLτKτL
−1τK

−1=τJτK
−1 is equal to V=J+K because we know that any product of different 

transvections has a residual space as R1 + R1. Since τLτKτL
−1τK

−1 is a product of two 

transvections, it cannot be in RL2. This proves the first part. 

    (2) Now choose a base x1, x2 with Fx1 = L and Fx2 = K. In this base 

 

τL ~ 








1

1 α
,   τK ~ 









1

1

β
,   TK ~ 









1

1

γ
        (3.5) 

 

with α β γ ≠ 0 and β ≠ γ . By computing with matrices we find that the given 

commutators do not permute.          □ 

 

Recall from linear algebra that σ∈GLn(V) is called unipotent if (σ −1V)k = 0 holds for some 

k > 0, i.e. if (σ −1V) is nilpotent. If σ is unipotent and U is a nonzero subspace of V for 

which σU=U, then (σ|U) is also unipotent. The following statements which can be found, 

for instance, in [3] are equivalent: 

    (1) σ is unipotent. 

    (2) All characteristic roots of σ are 1 

    (3) There is a base for V in which σ is upper−triangular with 1's on the diagonal. 

 

3.1.3. If char F = p > 0, then σ∈GLn(V) is unipotent if and only if σ
υp = 1V for some ν ≥ 0. 

 

PROOF.  By the binomial theorem for permuting linear transformations, 

 

(σ − 1V)
υp = σ

υp − 1V.      (3.6) 
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So σ
υp = 1V  implies that σ is unipotent . Conversely, if (σ − 1V)k = 0 for some k > 0, then  

(σ − 1V)
υp = 0 for all pν > k, so σ

υp = 1V.         □ 

 

We call an element Σ of P Γ Ln(V) a projective unipotent transformation if it is of 

the form Σ=σ  for some unipotent transformation σ in GLn(V) (σ as a unipotent 

representative of Σ and it is unique.) 

We note that all transvections are unipotent transformations and all projective 

transvections are projective unipotent transformations. Indeed, as we saw above any 

transvection has an upper−triangular matrix in a suitable base of V (see the proof of 1.3.1.) 

We say that two elements k1 and k2 of Γ Ln(V) permute projectively if k 1 and k 2 

permute. Evidently,  

 

Permutability⇒  projective permutability,        (3.7) 

 

but the converse statement is not true in general. Below we examine a number of natural 

conditions under which projective permutability in GLn(V) becomes the usual 

permutability. 

 

3.1.4. Let σ be any element of GLn(V) which satisfies any one of the following conditions: 

(1) resσ < 
2

1
n 

(2) resσ = 
2

1
n with σ not a big dilation. 

(3) σ has exactly one characteristic root in F. 

(4) σ is unipotent. 

Then if σ permutes projectively with Σ in GLn(V), it permutes with Σ. 

 

PROOF.  We assume (in the proofs of all our statements) that σ permutes projectively with  

Σ of GLn(V) and 

 

Σ σ Σ-1 = α σ,       (3.8) 
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where  α ∈  F*  is a non−zero scalar. 

(1) If the residue of σ is less than n/2,  then the dimension of the fixed space P(σ) of 

σ is greater than n/2 due to 

   

dim R(σ) + dim P(σ) = n.           (3.9) 

   

Let  e1, ... ,ek,  where k > n/2 are linearly independent vectors of P(σ).  

 

(3.8) implies that 

   

res (Σ σ Σ-1) = res σ = res(α σ).     (3.10) 

   

We consider the vectors 

   

a1 = (α σ − 1V) (e1), ... , ak = (ασ − 1V)(ek)         (3.11) 

   

in R(ασ).  Clearly, 

   

a1= (α − 1)e1, ..., ak = (α−1) ek.     (3.12) 

   

If  α ≠ 1,  then the system a1, ... ,ak  is a linearly independent system of vectors of R(ασ),  

and hence 

 

res(ασ) ≥ k > n/2,      (3.13) 

   

which is absurd, since res(ασ) < n/2. Then α=1 and σ commutes with Σ. 

(2) The condition res(σ) = n/2 means that the dimension of the fixed space is also 

n/2. Suppose that 

   

Σ σ Σ-1 = α σ,              (3.14) 

   

where  α≠ 1.  For all  x∈P(σ) we have 
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σ Σ-1 (x) = α Σ-1 
σ(x) = α Σ-1 (x).     (3.15) 

   

It follows that the subspace S = Σ-1
P(σ) of dimension n/2 is the eigenspace of σ 

corresponding to the characteristic value α≠ 1. Then V = P(σ) ⊕  S  and σ is a big dilation, 

a contradiction. 

(3) Recall that  spec(σ) denotes the set of all characteristic roots of σ. We know that 

any conjugate transformation Σ σ Σ-1 has the same characteristic roots as σ does. Let λ be 

the only characteristic value of σ. Supposing that α≠ 1  in (3.8) we get 

   

{λ} = spec(Σ σ Σ-1) = spec(σ) = spec(ασ) ={α λ},    (3.16) 

 

which is impossible. 

(4) By (3), since any unipotent transformation has exactly one characteristic root.  □ 

 

3.1.5. If  σ and Σ are elements of GLn(V), and if σ permutes projectively with Σ, then  σn  

permutes with Σ. 

 

PROOF.  Suppose that 

   

Σ σ Σ-1 = α σ,               (3.17) 

   

where  α ∈  F*.  It follows 

   

Σ σ Σ-1
σ

-1 = α ·1V.      (3.18) 

   

In the left hand side we have a transformation from  SLn(V) (that is, of determinant 1). If 

so, we have 

   

1 = det(α ·1V) = αn.      (3.19) 

   

Clearly, for every integer m  

   

(Σ σ Σ-1)m = Σ σ
m Σ-1.      (3.20) 
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Then for  m=n  we have 

   

Σ σ
n Σ-1 

= (ασ)n = αn
σ

n = σn     (3.21) 

   

So  σn Σ = Σ σ
n,  as desired.         □ 

 

3.1.6. Example. Let us consider the case n = 3 with σ an element of GL3(V) with resσ = 2. 

We claim there is a Σ in GL3(V) which does not permute, but which does permute 

projectively, with σ if and only if σ satisfies 

   

det σ = 1, σ diagonalizable over F, σ
3 = 1    (3.22) 

   

First suppose the conditions are satisfied. Then there is a base for V  in which σ has matrix 

  

σ ~ 

















2

1

ω

ω  (ω≠ 1, ω
3=1).    (3.23) 

 

Let  Σ be the transformation in GL3(V) defined by 

 

Σ ~ 

















−

010

001

100

, Σ
-1 

~ 















 −

001

100

010

.     (3.24) 

     

Then  Σ σ Σ-1 = ω2
σ, so Σ does not permute, but does permute projectively, with σ. 

Conversely, suppose we have a Σ and an α with α≠ 0,1, such that α(Σ σ Σ-1) = σ. Clearly 

α
3=1. We have a nonzero x in V such that  σx = x  since resσ = 2. But σ(Σx) = α(Σx) and  

σ(Σ2
x) = α2(Σ2

x). Hence 

   

σ ~ 

















2

1

α

α       (3.25) 
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since 1, α, α2 are distinct. So the conditions are satisfied. Note that if our σ in GL3(V) with 

res σ = 2 satisfies the above conditions, then ‹(CV(σ ))3› is abelian. To see this fix a base 

x1, x2, x3 in which σ is diagonal. So σ xi = αi xi with distinct αi for i = 1, 2, 3. Consider a 

representative Σ of a typical Σ  in CV(σ ). Then Σ permutes projectively with σ, so Σ3 

permutes with σ by 3.1.5. So each element φ  of ‹(CV(σ ))3› has a representativeφ  which 

permutes with σ, i.e. φ σφ −1 = σ. Now Fxi is the only line on which σ has characteristic root 

αi. But σ(φ xi) = αi(φ xi). So φ (Fxi) = Fxi for i = 1, 2, 3. Thus all the φ 's permute among 

themselves. So ‹(CV(σ ))3› is abelian, as asserted. 

 

3.2. Full Groups 

 

A subgroup G of Γ Ln(V) is full of transvections if n ≥ 2 and for each hyperplane H 

of V and each line L ⊆ H, there is at least one transvection σ in G with R=L and P=H. 

 

Similarly, a subgroup ∆ of P Γ Ln(V) is said to be full of projective transvections if 

n ≥ 2 and for each hyperplane H of V and each line L ⊆ H, there is at least one projective 

transvection σ in ∆ with R=L and P=H. 

 

Example. Clearly, SLn(V) is full of transvections, and PSLn(V) is full of projective 

transvections. It is then evident that every which contains SLn(V) (resp. PSLn(V)) is full of 

transvection (resp. of projective transvections.) 

 

From now on G will denote a subgroup of Γ Ln(V) that is full of transvections, and 

∆ will denote a subgroup of P Γ Ln(V) that is full of projective transvections. And G1 and ∆1 

will denote similar groups in the V1, n1, F1 situation. Λ will denote a group isomorphism  

Λ: ∆→∆1. 

 

Λ preserves the projective transvection σ in ∆ if Λσ is a projective transvection in 

∆1, it preserves the projective transvection σ1 in ∆1 if Λ
−1
σ is a projective transvection in ∆, 
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and it preserves projective transvections if it preserves all projective transvections in ∆ and 

∆1. 

 

3.2.1. The groups G
(

 and ∆
(

 are also full, or, in other words, the fullness is preserved 

under the contragradient isomorphism. 

 

PROOF.  Recall from Section 2.3. that if K is a subspace of V, then K0 is the subspace of all 

linear functionals of V' that send all vectors of K to zero. Let us take a line L and a 

hyperplane H of V with L ⊆ H. As G is full of transvection then there exists at least one 

transvection σ∈G with R=L and P=H. According to the results in the section 2.3, the 

subspaces of the transformation σ
(

∈ G
(

 are then L0 and H0 and H0 ⊆ L
0 and hence G

(
 is 

also full.           □ 

 

3.2.2. Suppose that n ≥ 3. The commutator subgroup DG of G (resp. ∆) is also full. 

 

PROOF.  Let us first demonstrate that the fact that DG is full implies that D∆ is full. Really, 

consider the preimage P-1
∆ of ∆ in GLn(V). Evidently, P-1

∆ is full, and hence DP
-1
∆ is full, 

whence we get that D∆ = PDP
-1
∆ is full. 

Now let L be a line and H a hyperplane of V with L ⊆  H. We have to find a transvection  

τ ∈DG, whose subspaces are L and H. There is a base x1, ... ,xn-1, xn of V such that 

 

L = ‹x1›  and  H = σ‹x1, ... ,xn-1›.     (3.26) 

 

Let ρ1, ... ,ρn be the dual base of V' of the base x1, ... ,xn. Since G is full there is a 

transvection τ1 with the subspaces σ‹x1› ⊆  ker(ρ2) and a transvection τ2 with the subspaces 

‹x2› ⊆  ker(ρn). Then for suitable non−zero scalars α, β of F we have 

 

τ1 = 
21 ,αρτ x  and τ2 = 

nx βρτ ,2
.         (3.27) 

 

We claim that 
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σ = [τ1, τ2] = 
nx αβρτ ,1
.      (3.28) 

 

It implies that R(σ) = ‹x1› = L and P(σ) = ker(ρn) = H, as desired. 

 

We have 

 

σ = τ1τ2τ1
-1τ2

-1.      (3.29) 

 

By the results of Section 1.3 

 

τ1 τ2 τ1
-1 =τ1

nx βρτ ,2
τ1

-1
 = τ 

( ) 1
121 , −τβρτ

τ
nx

    (3.30) 

 

Now 

 

τ1(x2) = 
21 ,αρτ x (x2) = x2 + αρ2(x2)x1 = x2 + α x1    (3.31) 

 

and for all x ∈  V 

 

β ρnτ1
-1(x) = βρn 

21 ,αρτ x− (x2) = βρn(x − αρ2(x)x1).    (3.32) 

   

Since  ρn(x1) = 0,  we arrive at the equation 

   

βρnτ1
-1(x) = βρn(x)  ∀ x ∈  V.     (3.33) 

   

Therefore 

   

σ = τ1τ2τ1
-1τ2

-1 = 
nxx βρατ ,12 + nx βρτ ,2−  = 

nxxx βρατ ,212 −+ = 
nx βρατ ,1
 =

nx αβρτ ,1
  (3.34) 

   

(we used formulas from Section 1.3; see 1.3.3).      □ 
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3.2.3 Let R0  and P0  be any two subspaces of V with dim R0 + dim P0 = n. If R0  is a line, 

assume in addition that R0 ⊆  P0 . Then there is a product σ of dim R0 transvections in G 

such that R = R0  and P = P0 . 

 

PROOF.  If R0 is 0 or is a line then the result is obvious. 

Now let R0  be a plane. We can always choose lines L1 , L2 and hyperplanes H1 , H2 

such that 

 

L1 ⊆ H1,   L2 ⊆ H2,     (3.35) 

R0 = L1 + L2,  P0 = H1 ∩  H2.    (3.36) 

 

Indeed, there are three cases to consider: when R0 ∩  P0 is respectively, 0, a line and a 

plane. 

a) If R0 ∩  P0 = 0,  then L1  and L2 can be taken as the spans of the vectors of some 

base of R0  and 

   

H1 = L1 ⊕  P0  and  H2 = L2 ⊕  P0.     (3.37) 

   

b) If R0 ∩  P0 is a line, then the subspace R0 + P0 is of codimension one. Hence there is a 

line L with 

   

V = L ⊕  (R0 + P0).      (3.38) 

   

Take any vector a ∈  R0 \ P0.  Then our choice of L1, L2, H1, H2 is as follows: 

 

L1 = ‹a›,   H1 = R0 + P0,    (3.39) 

 

L2 = R0 ∩  P0,   H2 = L ⊕  P0.     (3.40) 

 

c) The last case is the case when R0 ⊆  P0.  Then we take two distinct lines L1, L2 of R0 with 

R0 = L1 ⊕ L2 and take some subspaces K1, K2 with 

   

V = K1 ⊕  P0  and  P0 = R0 ⊕  K2.     (3.41) 
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Now 

   

H1 = K1 ⊕  L1 ⊕  K2  and  H2 = K1 ⊕  L2 ⊕  K2.    (3.42) 

   

Since G is full of transvections, we can pick transvections σ1 and σ2 in G with R1=L1, 

P1=H1, R2=L2, P2=H2. Put  σ=σ1σ2.  According to 1.2.2 we have the following implications: 

 

(1) V = P1+P2 ⇒  R = R1 + R2,              (3.43) 

(2) R1 ∩  R2 =0 ⇒  P = P1 ∩  P2,             (3.44) 

 

Thus the transformation σ does the job. 

Now we apply induction on dim R0, the cases dim R0 ≤ 2 being considered as the 

induction base. Suppose that dim R0 ≥ 3. Then dim P0 ≤ n−3. 

Now let P1 be a hyperplane that contains P0. If so, for some line L we have 

 

V = L ⊕  P1.       (3.45) 

 

Put P2 = L ⊕  P0. In particular, V = P1 + P2 (once again, we are going to apply 1.2.2.) 

The intersection R0 ∩  P1  is of dimension at least 2; it is then possible to pick up a 

line R1  in this intersection. Choose then a subspace R2 of R0  which is a direct complement 

of R1 to R0 : 

   

R = R1 ⊕  R2 (⇒  R1 ∩  R2 = 0).     (3.46) 

   

Being full of transvections, G has a transvection σ1 with the subspaces R1 ⊆  P1. By the 

induction hypothesis, a transformation σ2, product of at most ≤ dim R2 transvections has 

the subspaces R2, P2. Application of 1.2.2 completes the proof.     □ 

 

As a corollary we get the following fact. 

 

3.2.4. Let n ≥ 2.  Then DG contains an element σ with R(σ) = V.  
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PROOF.  If n ≥ 3 we use 3.2.2 and 3.2.3. For the case when n = 2 we apply 3.1.2.  □ 

 

3.2.5.  Suppose n ≥  2. Then 

(1) The centralizer of G in Γ Ln is contained in RLn, in particular 

   

G ∩ cen Γ Ln ⊆  cen G ⊆  cen GLn.     (3.47) 

   

(2) The centralizer of ∆  in P Γ Ln  is trivial. In particular, ∆  is centerless. 

 

PROOF.  (1) As G is full, then for every line L there is a transvection τ with R(τ) = L. A 

transformation of GLn(V) which commutes with τ  must stabilize R(τ). So any element of 

the centralizer of G stabilizes all lines of V, and hence it is a radiation. This proves (1). 

(2) is an immediate consequence of (1).      □ 

 

3.2.6. Suppose n ≥ 2. Then CV(G) = RLn(V), and  cen G = G ∩  RLn(V). 

 

PROOF.  It is merely a reformulation of the previous result.     □ 

 

3.2.7. Let n ≥  3 and F ≠ F2. Then for each hyperplane H in V and each line L ⊆ H there are 

at least two distinct transvections in G, and at least two distinct projective transvections in 

∆ , with residual line L and fixed hyperplane H. 

 

PROOF.  Let ρ ∈  V' describe H, that is H = ker ρ. Pick a line L of H; then since G is full, 

there is an element a, a base vector of L such τa,ρ is in G. Also an element b ∈  H with b ∉  

‹a› can be found such that τb,ρ ∈  G. The product of the tranvections we have found, the 

transvection τa+b, ρ is also in G. 

Since F ≠ F2 there is a line ‹λ a + µ b› in the plane ‹a, b› that is distinct from the 

three lines  ‹a›, ‹b›, ‹a+b›, and is such that τλa+µ b, ρ ∈  G. 

 

a) If µ = 1, then λ ≠ 0, 1; hence 
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τ(1−λ)a,ρ = τa,ρτ
−1

λ a+µ b, ρ τb,ρ ∈  G    (3.48) 

 

with 1−λ ≠ 0,1. 

b) So let µ ≠ 1 and let σ be a transvection G whose residual line is L and whose 

fixed hyperplane contains L but not b. Since σ is a transvection whose line is the linear 

span of a, then 

 

σb = b + ν a,      (3.49) 

 

where ν≠ 0, since b ∉  P(σ). Now for any X  in V, the vector σ x − x, an element of R(σ) = L 

is in H and hence 

 

ρ(σ x − x) = 0 ⇒  ρ(σ x) = ρ x.           (3.50) 

 

Thus ρσ = ρ, whence ρσ−1 = ρ. Therefore 

 

τνa,ρ = τσ b−b, ρ = σ τb,ρ σ 
−1τ 

−1
b,ρ ∈  G     (3.51) 

 

(recall that π τc,ψ π
-1

 =  1, −ψππ
τ

c
,  for all  c∈V  and  ψ∈V';  see Section 1.3). 

Similarly, 

τµνa, ρ = τµ(σ b−b),ρ = τσ (λ a+µ b),ρ τ 
−1

λa+µ b,ρ  

      = σ τλ a+µ b,ρ σ
−1τ 

−1
λa+µ b,ρ ;            (3.52) 

 

since all the transformations  σ, τλ a+µ b,ρ,τ 
−1

λ a+µ b,ρ are in G, we obtain that τµνa,ρ  is also in 

G. As µ≠ 1, τνa,ρ and τµνa,ρ are distinct transvections in G with spaces L ⊆ H. Their 

projective images are distinct, too; this proves the result for ∆ .     □ 

 

3.2.8. If G ⊆  GLn, then 

(1) CV(DG) = RLn(V) if n ≥  3,  

(2) CV(DG) = RLn(V) if n ≥  2 and G contains at least two distinct transvections having the 

same residual line,  

(3) the only unipotent transformation in CV(DG) is 1V  
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PROOF. (1) If n ≥  3 we know that by 3.2.2 and 3.2.6 

(2) DG is not abelian by 3.1.1. Then for any  σ ∈  CV(DG),  

   

CV(σ ) ⊇ CV(CV(DG)) = CVCV(DG) ⊇ DG,       (3.53) 

   

so  CV(σ) is not abelian, so DCV(σ) ≠ 1V, so σ ∈  RL2 by 3.1.1. Then CV(DG) = RL2. 

(3) If CV(DG) = RLn the result holds. We need therefore just consider the situation 

n = 2. Here a typical unipotent σ in CV(DG) is a transvection, say with the residual line L. 

Let K be a line in V, distinct from L. Transvections τL and τK in G with residual lines L and 

K. Then  σigma permutes with τLτKτL
−1τK

−1, it permutes with τL, so it permutes with the 

transvection τKτL
−1τK

−1 of the residual line τKL. So σ fixes each of the lines L and τKL. But 

these lines are distinct since L ≠ K. Hence σ = 1 since σ is unipotent.   □ 

 

3.3. CDC in the Linear Case 

 

If just ∆  is given and we define G to be the set of representatives of the elements of ∆  in 

Γ Ln(V) (If we define G to be the inverse image of ∆ under the homomorphism (P| Γ Ln)), 

then G is a subgroup of Γ Ln(V) that is full of transvections, and the theory in the previous 

section (3.2) will apply to it. If ∆ satisfies ∆⊆ PGLn(V), the G just constructed will satisfy 

G ⊆ GLn(V). Throughout this and the next chapter we assume that our G and ∆ have these 

additional properties: 

   

∆⊆ PGLn, G = P−1
∆∩ Γ Ln, G ⊆ GLn    (3.54) 

   

and G
(

 and ∆
(

 are related in the same way over V'  

   

∆
(

⊆ PGLn  G
(

= P−1 ∆
(

∩ Γ Ln,   G
(

⊆ GLn    (3.55) 

   

C denotes the centralizer C∆, Cg, ∆
(C , 

G
C (  when we are working respectively in ∆, G, ∆

(
, 

G
(

. 
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3.3.1. For any element σ of G  , 

   

)(σC ⊆ C(σ ), )(σDC ⊆ DC(σ ).    (3.56) 

   

If σ has the additional property that it permutes with an element of G whenever it permutes 

projectively with it, then 

   

)(σC  = C(σ ),  )(σDC =DC(σ ).    (3.57) 

  

For any two subspaces U and W of V we define 

   

G(U, W) = {σ∈  G| R ⊆ U, P ⊇ W}, ∆(U, W) = ),( WUG .            (3.58) 

   

By 1.2.1. both G(U, W) and ∆(U, W) are subgroups of G and ∆ respectively; and ∆(U, W) 

consists of those Σ in ∆ which have at least one representative σ with R ⊆ U  and P ⊇ W. 

Note that 

   

σU = U,  σW = W ∀ σ ∈  G(U, W)    (3.59) 

   

and 

   

ΣU = U, ΣW = W  ∀Σ ∈  ∆(U, W).    (3.60) 

   

Example. If H is a hyperplane of V and L is a line with L ⊆ H, then G(L, H) is the 

group consisting of all transvections in G with residual line L and fixed hyperplane H, plus  

1V; while ∆(L, H) is the group consisting of all projective transvections in ∆ with residual 

line L and fixed hyperplane H, plus 1. 

 

3.3.2. If U and W are subspaces of V, then 

   

),( WUG
(

= G
(

(W0,U0), ),( WU
(

∆  = ∆
(

(W0,U0).     (3.61) 
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3.3.3. Let σ1 and σ2 be nontrivial transvections in G. Then the following statements are 

equivalent: 

(1) R1=R2   and   P1=P2.  

(2) C(σ 1) = C(σ 2). 

(3) C(σ 1) = C(σ 2). 

 

PROOF.  (1) ⇒  (2). Here R1=R2 and P1=P2. Consider σ ∈  C(σ1). Write  σ1=τa,ρ  and 

 σ2=τα a,ρ  in the usual way. We have 

   

τa,ρ= Στa,ρ Σ 
−1= 1, −ΣΣ ρ

τ
a

    (3.62) 

and so  Σa=λa,  ρΣ−1=λ−1
ρ for some λ in 

•

F , whence 

   

Σ ταa,ρ Σ
−1 = 1, −ΣΣ ρα

τ
a

 = 
ρλαλ

τ 1, −
a

=ταa,ρ        (3.63) 

   

so  σ∈C(σ2). Hence C(σ1) = C(σ2). (2) ⇒  (3). Just an application of 3.3.1. (3) ⇒  (1). 

Suppose if possible that P1 ≠ P2. Then there is a line L with L ⊆ P2 but L ⊄ P1. Since G is 

full of transvections there is a transvection σ3 with R3=L and P3=P2. Then σ3∈C(σ2) and  

σ3∉C(σ1) by 1.3.10, hence σ 3∈C(σ 2) and σ 3∉  C(σ 1) by 3.1.4., hence C(σ 2) ≠ C(σ 1), 

contrary to hypothesis. So P1= P2. And R1 = R2 follows by applying ˘.   □ 

 

3.3.4. If n ≥  3 and σ is a nontrivial transvection in G, then 

   

G(R, P) ∩  DC(σ) ≠ 1V,     (3.64) 

   

DC(σ) contains a nontrivial transvection with the same spaces as the given transvection σ 

 

PROOF.  There is a base  x1,... , xn  for V  with dual base ρ1,... , ρn  such that  σ=
nx ρτ ,1
. So 

R=Fx1  and P=ker ρn. Since G is full of transvections we have α, β  in 
•

F  such that 

21 ,αρτ x ∈G and 
nx βρτ ,2

∈G. Then 
21 ,αρτ x ∈C(σ) and 

nx βρτ ,2
∈C(σ). Put Σ = 

nx αβρτ ,1
. So Σ is a 

transvection in G with residual line R and fixed hyperplane P . But 
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Σ = [
nxx βραρ ττ ,, 221

, ]      (3.65) 

   

So  Σ ∈  DC(σ).          □ 

 

3.3.5. If n ≥  3 and H is a hyperplane of V  and L is a line in H, then there is a nontrivial 

transvection τ  in G with spaces L ⊆ H such that τ ∈DC(τ). 

 

PROOF.  Let σ be a transvection in G with spaces L ⊆ H. By previous proposition we have a 

transvection τ  in G with spaces L ⊆ H such that τ ∈  DC(σ). But C(τ) = C(σ) by 3.3.3. □ 

 

3.3.6. If n ≥  4 and σ is a nontrivial transvection in G, then 

   

G(L, P) ∩  DC(σ) ≠ 1V,     (3.66) 

   

for all lines L in P . 

 

PROOF.  Fix a line K in P with K ⊄ R+L. Let M  be a hyperplane of V containing R+L but 

not K. LetτL be a transvection in G with spaces L ⊆ M , letτK be a transvection in G with 

spaces K ⊆ P. By 1.3.10, τL andτK are in C(σ). Put Σ=τLτKτ−1
Lτ−1

K. Clearly Σ∈DC(σ). 

NowτLK ≠ K  since K ⊄ M , hence τLτKτ 
−1

L is a transvection with residual line τLK  distinct 

from K, and with fixed hyperplane τLP=P, hence Σ=(τLτKτ−1
L)τ−1

K is a nontrivial 

transvection with fixed hyperplane P. Similarly Σ=τL(τKτ−1
Lτ−1

K) has residual line L. Hence 

Σ is a nontrivial element of G(L, P) ∩ DC(σ).      □ 

 

3.3.7. Let σ be a nontrivial transvection in G. Then 

 

CC(σ ) = ∆(R, P) if  n ≥ 2,     (3.67) 

CDC(σ ) = ∆(R, P)  if  n ≥ 4,     (3.68) 
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PROOF. (1) If Σ  is a typical nontrivial element of ∆(R, P), then  C( Σ ) = C(σ ) by 3.3.3. 

Hence 

 

Σ ∈  CC( Σ ) = CC(σ );     (3.69) 

 

hence ∆(R, P) ⊆ CC(σ ).  

(1a) First let n ≥  3. Consider  Σ∈G  with Σ ∈  CC(σ ). Then for each line L ⊆ P  there is a 

projective transvection in ∆ with residual line L and fixed hyperplane P; this projective 

transvections is in C(σ ) by from O'Meara §1.6; hence Σ  permutes with it; hence Σ 

permutes with its representative transvection; hence ΣL = L for all L in P; hence there is an 

α in 
•

F such that the fixed space of αΣ contains P. Applying this result to Σ
(

 and σ
(

 gives 

us β ∈
•

F such that the residual space of β Σ is contained in R. It is easily seen that α = β . 

Then αΣ∈  G(R, P). Hence Σ ∈∆(R, P). Hence CC(σ ) = ∆(R, P) is established for n ≥  3. 

(1b) Now n=2. Consider Σ∈G with Σ ∈CC(σ ). Then σ ∈C(σ ), so Σ ∈C(σ ), so Σ∈C(σ) 

by 3.1.4. If we take a base for V  in which σ has matrix 








1

1 λ
 we find that the matrix of  

Σ in the base will have to be of the form  








p

qp
 ( Σ  will have a representative whose 

matrix has the form  








1

1 α
, i.e. Σ ∈∆(R, P).) Therefore CC(σ ) = ∆(R, P) when n = 2. 

(2) Now let n ≥  4. Clearly ∆(R, P) = CC(σ ) ⊆ CDC(σ ). To show the reverse inclusion we 

shall use 3.3.6 and (1a).     

 

3.3.8. Assume n ≥  3. Let σ be an element of G with resσ = 2 and suppose that (σ|R) is not a 

radiation. Exclude the situation where n = 3, detσ = 1, σ is diagonalizable over F, σ3 = 1. 

Then ∆(R, P) ⊆ CDC(σ ). 

 

PROOF.  (1) First suppose DC(σ) ⊆ G(P, R). Consider typical Σ  in DC(σ ). Then DC(σ ) = 

)(σDC  by 3.1.4, 3.1.6, 3.3.1; so Σ  has a representative Σ in DC(σ). Then Σ ⊆  G(P, R) by 

our assumption. So, for each φ ∈  G(R, P), 
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RΣ ⊆  P ⊆  Pφ , PΣ ⊇  R ⊇  Rφ ,   (3.70) 

 

each element φ  of G(R, P) permutes with Σ, i.e. each element φ  of ∆(R, P) permutes with 

each element Σ  of DC(φ ) {φ ∈  CDC(σ )} therefore ∆(R, P) ⊆ CDC(σ ). 

(2) If σ satisfies the given conditions with G, then σ
(

 will satisfy the given 

conditions with G
(

 (to prove this consider the possibility that (σ
(

|P0) is first a nontrivial 

radiation and then a trivial one). If we can prove that σ3∈  DC(σ) ⇒  R ⊆  P3, we will have 

P ⊇ R3 by duality, hence DC(σ) ⊆ G(P, R) and we will be through. Consider the 

implication, then (σ|R) ∈  GL2(R) − RL2(R) by hypothesis; hence DCR(σ|R) = 1R by 3.1.1. 

But it is easily verified that 

     

DC(σ)|R ⊆  DCR(σ|R).     (3.71) 

     

Hence (σ3|R) = 1R. Hence R ⊆  P3, as required.      □ 

 

3.3.9. Assume n ≥  4. Let σ be an element of G with resσ = 2 and suppose that R ∩ P = 0 

with σ not a big dilation. Exclude the situation n = 4 with F = F2. Then ∆(R, P) = CDC(σ ). 

 

PROOF.  By 3.3.8 we have to show that CDC(σ ) ⊆  ∆(R, P). 

(1) For each hyperplane H of P and each line L in H fix a transvection τL,H in G 

with residual line L and fixed hyperplane R + H. (When n = 4 we have F ≠ F2 so by 3.2.7 

we can, and do, fix two distinct τL,H  and τ'L,H  for each such L and H.) Clearly τL, H 

stabilizes both R and P, and (τL,H |P ) is a transvection with spaces L ⊆ H, and (τL,H|R) = 1R. 

(Similarly with τ'L,H.) Let Gp  denote the subgroup of GLn−2(P) that is generated by all the 

(τL,H|P ) and (τ'L,H|P ). It is obvious that Gp is full of transvections (doubly full when 

necessary), and 

 

1R ⊕  GP ⊆ C(σ), 1R ⊕  DGp = D(1R ⊕ GP) ⊆ DC(σ),  CP(DGP) = RLn−2(P),  (3.72) 

 

the last equation being a consequence of 3.2.8. 
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(2) First assume  n ≥  5. Consider a typical Σ  in CDC(σ ) and let Σ be one of its 

representatives. Then Σ permutes projectively with each element of 1R ⊕ DGP . Now for 

each line L in P  there is a transvection in DGP  with residual line L since DGP  is full of 

transvections by 3.2.2; hence 1R ⊕ DGP  contains a transvection with residual line L; but Σ 

will then permute with it by 3.1.4; hence ΣL = L for all L in P . In particular, ΣP = P  and 

(Σ|P) ∈  RLn−2(P). By duality, ΣR = R. Hence Σ ∈∆(R, P). 

(3) Now n = 4. Here our τL,H’s can be written τL. Again consider typical Σ  in 

CDC(σ ) and let Σ be one of its representatives. Let L and K be any two distinct lines in P . 

Then 

 

(τLτKτ−1
Lτ−1

K)|P = (τL|P)(τK|P)(τL|P)−1(τK|P)−1    (3.73) 

 

is an element of residual index 2 in GL2(P) − RL2(P), by 3.1.2. Hence τLτKτ−1
Lτ−1

K has 

residual space P  and fixed space R, it is not a big dilation, and it belongs to DC(σ). Hence 

Σ permutes projectively, indeed permutes, with τLτKτ−1
Lτ−1

K and so ΣR = R and ΣP = P . 

Now Σ permutes projectively with all elements of 

 

1R ⊕ DGP ⊆ DC(σ);      (3.74) 

 

hence Σ permutes with all elements of 1R ⊕ DGP which are not big dilations of residue 2 by 

3.1.4; but it obviously permutes with all big dilations of residue 2 in this group; hence Σ 

permutes with all elements of 1R ⊕ DGP , so 

 

(σ |P) ∈  CP(DGP) = RL2(P)          (3.75) 

 

 hence Σ ∈∆(R, P).          □ 

 

3.3.10. Assume n ≥  4. Let σ be an element of G with resσ = 2 and suppose that R ∩ P = 0 

with σ not a big dilation. Then every projective unipotent transformation in CDC(σ ) is a 

projective transvection in ∆(R, P). 
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PROOF.  If n ≥  5, or if n = 4 with F ≠  F2, apply the result of 3.3.8. If n = 4 and F = F2, 

proceed as in the proof of 3.3.8, using the third part of 3.2.8.    □ 

 

3.3.11. Assume n ≥  4. Let σ be an element of G with resσ = 2 and suppose that R ∩ P = 0 

with σ not a big dilation. Then σ ∉  DC(σ ). 

 

3.3.12. If  Σ is an element of G such that Σ ∈DC(σ ), then Σ n! is unipotent. 

 

PROOF.  A moment's reflection will show that there is no loss of generality in assuming that 

F is algebraically closed and G = GLn(V). Let us make these assumptions. 

Let α, β, ...  be the distinct characteristic roots of Σ. The Jordan canonical form of Σ 

then provides parallel splittings 

 

V=Vα⊕  Vβ ⊕ ...,  Σ= Σ α⊕  Σβ⊕ ...,         (3.76) 

 

such that all the roots of  Σα  are α, those of  Σβ are β, etc. Note that det Σα = αα n where nα = 

dimVα, etc. Now Vα = {x∈V | (Σ −α 1V)k x = 0  for some k > 0}, etc., and from this it 

follows that  T∈C(Σ ) ⇒TVα = Vα, etc. Hence any Ψ in DC(Σ ) will have the form 

 

Ψ = Ψα ⊕  Ψ β ⊕ ...      (3.77) 

 

with Ψα ∈  SL
αn (Vα) etc. In particular, Σ α∈SL

αn (Vα), so αα n = 1 , so αn! = 1 , etc. Hence 

the characteristic roots of  Σ 
n!  are all 1.       □ 

 

3.3.13. Assume n = 3. Let σ be an element of DG with σ ∈  DC(σ ). Then 

(1) σ is a transvection if it is unipotent. 

(2) σ18 is a transvection. 

(3) σ2 is a transvection if char F = 3. 

(4) σ9  is a transvection if char F = 2. 

 

PROOF.  We can assume that  σ≠ 1V . 
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(1) Here σ is unipotent, so resσ is 1 or 2, say. Assume if possible that resσ = 2. We 

have σR = R  with (σ|R)∈GL2(R)−RL2(R), again since σ is unipotent. Now each element of  

C(σ) acts on R , so it follows from 3.1.1 that each element of DC(σ) has action 1R on R. On 

the other hand σ ∈DC(σ ) = )(σDC  by 3.1.4 and 3.3.1. So ασ has action 1R on R for some 

αa, but σ is unipotent, so α = 1 and σ has action 1R on R, contradicting the fact that resσ = 

2. Hence resσ is indeed 1. But detσ = 1 since σ∈DG. So σ is a transvection as asserted. 

(2) By 3.1.5 we have C(σ ) ⊆ )( 3σC , so σ∈DC(σ ) ⊆ )( 3σDC , so ασ∈DC(σ3),  

but α3=1 by determinants, so σ3∈DC(σ3) so σ18 is unipotent by 3.3.12. But 

σ 18∈DC(σ ) ⊆ DC(σ 18). Apply step (1). 

(3) By step (2), 
232 )(σ is a transvection; hence 

332 )(σ =1V since the characteristic is 

3; hence σ2 is unipotent by 3.1.3. But σ 2∈DC(σ ) ⊆ DC(σ 2). Apply step (1). 

(4) As in step (3)         □ 

 

3.4. Preservation of Projective Transvections in the Linear Case 

 

Recall that in §3.3 and 3.4 we are assuming that G and ∆ have these additional properties: 

 

∆ ⊆ PGLn,  G= P−1
∆ ∩ Γ Ln,  G ⊆ GLn.    (3.78) 

 

In order to apply the results of §3.3 to the groups G1 and ∆1 as well as to the groups G and 

∆ we assume throughout §3.4 that G1 and ∆1 also have the additional properties: 

 

∆1 ⊆ PGLn1, G1= P−1
∆1 ∩ Γ Ln1,  G1 ⊆ GLn1.    (3.79) 

 

Our object in §3.4 is to show that, under these assumptions, any isomorphism Λ: ∆→∆1 

preserves projective transvections whenever the underlying dimensions are ≥  3. We start 

by proving, so to speak, that Λ preserves residue 2 at least once. 

 

3.4.1. Let n ≥  3, n1 ≥  3. Exclude the possibility of char F ≠ 2 with  F1 = F2. Then there are 

elements σ∈DG, σ1∈DG1 with resσ = 2 = resσ1 such that Λσ = σ 1. Indeed, given any 

transvection τ ∈  G with spaces L ⊆ H, σ and σ1 can be so chosen such that  στ ≠ τσ  with 



 57 

 

L ⊆ R,   H ⊇ P,   (σ|R) ∉  RL2(R)       (3.80) 

 

and 

 

R1 ∩ P1 = 0,   (σ1|R1) ∉  RL2(R1).    (3.81) 

 

PROOF.  (1) Write Λτ = Φ  with Φ ∈G1. Since Φ  is nontrivial, there will be a line L1=F1a 

in V1 with Φ L1 ≠ L1. Pick a hyperplane H1 of V1 such that L1 ⊆ H1, Φ L1 ⊄ H1, Φ −1
L1 ⊄ H1. 

We have , 

 

L1 ⊄ΦH1,  H1 ≠ ΦH1       (3.82) 

 

and 

 

dim(L1+ΦL1) = 2,  dim (H1 ∩ΦH1) = n1 − 2    (3.83) 

 

and 

 

V1 = (L1 + ΦL1) ⊕  (H1 ∩ΦH1).     (3.84) 

 

(2) Fix ρ∈V'1 with ker ρ = H1. Of course there are several nonzero a in L1 with τa,ρ ∈  G1 

since G1 is full of transvections. We claim there is at least one such a for which Φ will not 

permute projectively with τa,ρΦ
−1τ−1

a,ρ. Suppose this does not hold for a first choice of a. 

Then there is a scalar α in F1 such that 

 

Φτa,ρΦ
−1τ 

−1
a,ρ = ατa,ρΦ

−1 τ 
−1

a,ρΦ,     (3.85) 

 

i.e. τ_ 1, −ΦΦ ρa
τ−a, ρ = ατa,ρ τ 

ΦΦ− − ρ,1
a

. Hence 

 

(α − 1)x + ((α + 1)(ρ x) − α(ρΦ x)(ρΦ−1
a))a + ((ρ x)(ρΦ−1

a) − (ρΦ−1
x))Φ a = α(ρΦ x)Φ−1

a 

(3.86) 
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for all X  in V1. Putting x = a shows that a, Φ a, Φ −1
a are dependent, i.e. they all fall in a 

plane; taking x outside this plane shows that α = 1; so 

 

(2(ρ x) − (ρΦ x)(ρΦ−1
a))a + ((ρx)(ρΦ−1

a) − (ρΦ−1
x))Φa = (ρΦx)Φ−1

a.      (3.87) 

 

If F1 ≠ F2 we can replace a by λa for some λ ≠ 0, 1 by 3.2.7. Together these equations (for 

a and λ a) then yield 

 

(ρΦ x)(ρΦ−1
a) = λ (ρΦ x)(ρΦ−1

a)     (3.88) 

 

which is absurd since λ ≠ 1 and ρΦ−1
a ≠  0. Therefore when F1 ≠ F2, if a  does not work, 

then λa will. On the other hand, when F1 = F2 we have char F = 2 by hypothesis; so Φ 2 = 

1
1V  since τ is a transvection and 1 is the only nonzero scalar in F1; so our equality becomes 

 

(ρΦx)(ρΦa)a + (ρx)(ρΦa)Φa = 0     (3.89) 

 

and this contradicts the independence of a and Φ a. Our claim is established. 

 

(3) We now have ρ∈  V'1 with ker ρ = H1 and a nonzero a in L1 such that τa,ρ ∈  G1 with Φ  

not permuting projectively with τa,ρΦ
−1τ 

−1
a,ρ. Choose ψ ∈G with Λψ =τ a,ρ and define 

 

σ = τ ψ τ −1
ψ 

−1∈  DG,  σ1= Φτa,ρΦ
−1τ −1

a,ρ ∈  DG1   (3.90) 

 

Clearly Λσ  = σ 1. And τ  does not permute with ψτ 
−1
ψ

−1 so στ ≠ τσ 

 

(4) As far as σ1 is concerned, it is enough to verify that 

 

R1 = L1 + ΦL1,  P1 = H1 ∩  ΦH1.    (3.91) 

 

For then res σ1=2 and R1 ∩ P1=0 are obviously true, while (σ1|R1)∉RL2(R1) is a 

consequence of the fact that a big dilation of residue 2 cannot be expressed as a product of 
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two transvections, by O'Meara §2.1. Now σ1 is a product of two transvections with 

spacesφ L1 ⊆ΦH1 and L1 ⊆ H1; and Φ H1+H1=V1, so R1=L1+ΦL1 by 1.2.2; and L1 ∩ΦL1=0, 

so P1 = H1 ∩ΦH1 again by 1.2.2. 

 

(5) Now consider σ. Here it is enough to verify that 

 

ψL ≠ L,  R = L+ψL, P = H ∩ψH,       R ⊄ P.      (3.92) 

 

For then resσ = 2, L ⊆ R , H ⊇ P  are obvious, while (σ|R) ∉  RL2(R) follows from O'Meara 

§2.1 as above. Clearly ψL ≠ L, for otherwise the transvection τ would permute with the 

transvection ψτ−1
ψ

−1 ; ditto ψH ≠ H; so R and P have the desired form; and R ⊄ P  since 

otherwise L + ψL ⊆ H ∩ψH, i. e. L ⊆ψH and ψL ⊆ H, i.e. τ would permute with ψτ−1
ψ 

−1  

by 1.3.10. 

Next we prove that Λ preserves residue 1, at least once.      □ 

 

3.4.2. If  n ≥  3, n1 ≥  3 there are elements τ∈  DG, τ1∈  DG1 with resτ = 1 = resτ1 such that 

Λτ =τ 1. 

 

PROOF.  (1) Both dimensions ≥  4. By interchanging V, n, F and V1, n1, F1 and considering 

Λ−1 instead of Λ, if necessary, we can assume that char F = 2 if F1= F2. Consider an 

arbitrary nontrivial transvection T in G which satisfies T∈DC(T). Let L ⊆ H denote the 

spaces of T. By 3.4.1 we have σ∈  DG, σ1∈  DG1 with resσ = 2 = resσ1 such that  Λσ =σ 1  

with  σT ≠ Tσ and 

 

L ⊆ R,   H ⊇ P,    (σ|R) ∉RL2(R),    (3.93) 

R1 ∩ P1=0,     (σ1|R1) ∉RL2(R1).    (3.94) 

 

It is clear that T  is a nontrivial projective transvection in ∆(R, P); but ∆(R, P) ⊆ CDC(σ ), 

by 3.3.8; hence T ∈CDC(σ ); but σ T ≠ T σ  and  σ ∈∆(R, P) ⊆ CDC(σ ), so T  is a 

noncentral element of CDC(σ ) such that T ∈DC(T ). Therefore ΛT  is a noncentral 

element of CDC(σ 1) with ΛT  in DC(ΛT ). 
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(la) First suppose that we do not have F1 = F2 with n1 = 4. Then by 3.3.9,  

ΛT ∈CDC(σ 1) = Λ(R1, P1). So ΛT  has a representative σ3 in G1 with R3 ⊆  R1 and P3 ⊇  

P1. In fact R3 ⊂ R1 ; for if not, we would have R3 = R1 and P3 = P1; if σ3 were not a big 

dilation, then σ 3∉DC(σ 3) by 3.3.11, and this contradicts ΛT ∈DC(ΛT ); if σ3 were a big 

dilation it would be central in G1(R1, P1), contradicting the fact that ΛT  is noncentral in 

CDC(σ 1). So indeed R3 ⊂ R1. We have therefore shown that if T is an arbitrary 

transvection in G with  T∈DC(T), then ΛT = σ 3 for some σ3 in G1 with resσ3 = 1. Now 

for given L ⊆ H you always have a transvection T in G with spaces L ⊆ H and  T∈DC(T) 

by 3.3.5; looking at elementary transvections we can easily find transvections   

Ti (1≤  i ≤  3) in G with  Ti ∈  DC(Ti) such that T1=[ T2, T3]. Then, by what we have just 

proved, each ΛT i has a representativeφ i in G1 with resφ i = 1. So ΛT 1 has a representative 

in G1 of residue 1, and another in DG1 of residue ≤ 2. Since n1 ≥  4, these representatives 

must be equal. In other words, ΛT 1 =τ 1 for someτ1∈  DG1 with resτ1 = 1. Put τ = T1. 

(1b) We must complete the excluded situation F1 = F2 with n1 = 4. This of course 

makes char F = 2. So T
2 = 1 since T is a transvection in characteristic 2, so ΛT  has a 

representative σ3 in G1 with σ3
2=1 since F1 = F2, i.e. ΛT  is a projective unipotent 

transformation in CDC(σ 1). This makes ΛT  a projective transvection by 3.3.10. Now we 

always have a nontrivial transvection T in G which satisfies T∈  DC(T) by 3.3.5. For this 

T, ΛT  must therefore have a representative τ1 with τ1 a transvection in G1. In particular  

resτ1 = 1. But G1= SL4(V1) since F1 = F2. So  τ1 ∈  G1 = DG1  by O'Meara §3.3. Put τ = T. 

(2) One dimension = 3, the other ≥  4. By reversing the situation, if necessary, we 

can assume that n = 3 with n1 ≥  4. 

(2a) First suppose char F = 2 if F1 = F2. the procedure here is exactly the same as in 

step (1) except for the possibility that the σ that turns up may be an element of residue 2 

with n = 3, det σ = 1, σ is diagonalizable over F, σ3 = 1, in which case 3.3.8 cannot be 

applied. Actually this cannot happen. For suppose it did. If char F1 = 3, then σ 3 = 1. So 

σ 1
3 = 1, so σ1

3 = 1V1 since resσ1 = 2, so (σ1|R1)
3 = 1R1, so (σ1|R1) is unipotent on the plane 

R1, so (σ1|R1) is a transvection, so σ1 is a transvection since R1 ∩ P1 = 0, and this is absurd 

since resσ1 = 2. On the other hand, if char F1 ≠ 3, we use the fact that ‹(CV(σ ))3› is abelian 
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by 3.1.6; then ‹(C(σ ))3› is abelian; hence ‹(C(σ 1))
3› is abelian; but C(σ1) clearly contains 

transvections which do not permute, their cubes do not permute since the characteristics is 

not 3, so the projective images of their cubes do not permute, therefore ‹(C(σ 1))
3› is not 

abelian; this is also absurd. 

(2b) Now char F ≠ 2 with F1= F2. Fix a hyperplane H1 in V1 and let L1 be a variable 

line in H1. We have a transvection τ1 in G 1 with spaces L1 ⊆ H1 and τ 1∈  D∆1 since D∆1 is 

full of projective transvections, then Λ−1τ 1 belongs to D∆= DG , so Λ−1τ 1 has a 

representative σ in DG, in particular with det σ = 1. Now τ 
2

1 = 1V1 since τ1 is a transvection 

in characteristic 2, so σ2 = α 1V with α3 = 1. Replacing τ1 by its cube allows us to assume 

that in fact σ2 = 1V. Now H1 contains at least four distinct lines. We can therefore find 

distinct transvections τ1, ...,τ5 in G1(with exactly one of them, say τ5, trivial) which are 

pairwise permutable such that the corresponding σ1, ..., σ5 (with σ5 = 1V are involutions of 

determinant 1 which permute projectively in pairs. Now −σ1, ..., −σ4, σ5 are easily seen to 

be involutions of residue ≤ 1 by 1.2.6, hence σ1, ..., σ5 permute in pairs by 3.1.4. Therefore 

 

card (σ 1, ..., σ 5) ≤ 23−1 = 4          (3.95) 

 

by O'Meara §1.6 and this is absurd sinceτ 1, ... , τ 5 are distinct. 

(3) Both dimensions 3. By 3.3.5 there is a transvection τ  in G with τ ∈  DC(τ). In 

particular τ ∈  DG with res τ =1. Then τ ∈DC(τ ), so 

 

Λτ ∈  DC(Λτ ) ⊆  D∆1 = 1DG .        (3.96) 

 

We can therefore pick τ1∈  DG1 such that Λτ =τ 1 and τ 1∈  DC(τ 1). 

(3a) If at least one of the characteristic ≠ 2, 3, we can assume that in fact char F ≠ 2, 

3. Then τ 
18

1 is a transvection by 3.3.13. Replace τ  by τ 
18. 

(3b) If both characteristics are 3, then τ2
1 is a transvection by 3.3.13. Replace τ  by 

τ 
2. 

(3c) If both characteristics are 2, do the same thing withτ 
9. 
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(3d) We are left with one characteristic 3, the other 2. In fact we can assume that 

char F = 3 and char F1 = 2. If F1 ≠ F2, proceed as in step (2b). So let F1= F2. Then ∆1 = 

PSL3(V1), so card ∆1 = 168 by O'Meara §3.1. If F= F3 we have PSL3(V) ⊆∆⊆ PGL3(V) 

with card PSL3(V) = 5616, and so Λ: ∆→∆1 is impossible here. If card F > 3 (with char F = 

3), then V contains q2 
+ q + 1 lines with q = card F, so V has at least 91 lines, so ∆ has at 

least 182 projective transvections, therefore Λ: ∆→∆1 is again impossible.  □ 

 

3.4.3 Λ preserves projective transvections when n ≥  3, n1 ≥  3 

 

PROOF.  (1) First note that if Λ preserves the projective transvection σ  in ∆ and if τ  is any 

projective transvection in ∆ with the same spaces asσ , then Λ preserves τ , and the spaces 

of Λτ  are the same spaces of Λσ . This follows from 

     

Λτ ∈Λ∆(R, P)= ΛCC(σ ) = CC(Λσ ) = ∆1(R1, P1)    (3.97) 

     

(Λσ =σ 1) which comes from 3.3.7 

(2) Next we observe that if Λ preserves the projective transvections σ  and τ  in ∆, 

and if σ  and τ  have the same fixed hyperplane, then Λσ  and Λτ  either have the same 

fixed hyperplane or they have the same residual line. To prove this we can assume, by step 

(1), that σ  and τ  have distinct residual lines. We can then find a base x1, ... , xn for V with 

dual base ρ1, ..., ρn such that σ =τ
nx ρ,1
, τ =τ

nx ρ,2
. Let τ

21 ,ρα x
 be a nontrivial projective 

transvection in ∆. Then 

     

    τ
nx ρα ,1
= [τ

21 ,ρα x
,τ

nx ρ,2
]      (3.98) 

     

is a nontrivial projective transvection in ∆ with the same spaces as σ ; hence, by step (1), 

Λτ
nx ρα ,1
 is a projective transvection in ∆1 with the same spaces as Λσ . But 

     

(Λτ
nx ρα ,1
) · (Λτ ) = (Λτ

21 ,ρα x
) · (Λτ ) · (Λτ

21 ,ρα x
)−1   (3.99) 
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by the above commutator relation, so this expression is a projective transvection, so the 

projective transvections Λτ
nx ρα ,1
 and Λτ  have the same fixed hyperplane or the same 

residual line by O'Meara §1.6, so Λσ  and Λτ  do. 

(3) Now let us show that if Λ preserves the nontrivial projective transvectionσ  in 

∆, then Λ preserves all projective transvections in ∆ with the same fixed hyperplane as σ . 

Let τ  be such a transvection. We can again assume that we have a base in which 

σ =τ
nx ρ,1
,τ =τ

nx ρ,2
. Let τ

12 ,ρα x
 be a nontrivial projective transvection in ∆. Then 

 

τ
nx ρα ,2
= [τ

12 ,ρα x
,τ

nx ρ,1
] 

= (τ
12 ,ρα x
τ

nx ρ,1
τ −1

12 ,ρα x
)τ −1

nx ρ,1
 

       =τ
nxx ρα ,21+ τ −1

nx ρ,1
.          (3.100) 

 

It is obvious that τ
nxx ρα ,21+  and τ

nx ρ,1
= σ  are conjugate projective transvections with the 

same fixed hyperplane in ∆, and Λσ  is a projective transvection by hypothesis, so 

Λτ
nxx ρα ,21+  is a projective transvection by conjugacy, and it either has the same residual 

line or the same fixed hyperplane as Λσ  by step (2). Hence Λτ
nx ρα ,2
, being a product of 

projective transvections with the same line or hyperplane, is a projective transvection. 

Hence Λτ =Λτ
nx ρ,2
 is a projective transvection by step (1). 

(4) If Λ preserves the nontrivial projective transvectionσ  in ∆, then it preserves all 

projective transvections in ∆ with the same residual line asσ . proof by the duality 

(5) Λ preserves at least one nontrivial projective transvection σ  in ∆, by 3.4.2. Let 

τ  be any other nontrivial projective transvection in ∆. Let L ⊆ H be the spaces of τ . Then 

Λ preserves σ  so it preserves a projective transvection in ∆ with the same fixed 

hyperplane as σ  and with residual line contained in P ∩  H by step (3), hence it preserves 

a projective transvection in ∆ having this as its residual line and H as its fixed hyperplane 

by step (4), hence it preserves τ  by step (3). So Λ preserves all projective transvections in 

∆. And Λ−1 preserves all in ∆1. So Λ preserves projective transvections.   □ 
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3.5. The Isomorphism Theorems in General 

 

We now return to the general situation, i.e. G is an arbitrary subgroup of Γ Ln(V) 

that is full of transvections, and ∆ is an arbitrary subgroup of P Γ Ln(V) that is full of 

projective transvections. Similarly in the V1, n1, F1, G1, ∆1 situation. And Ψ: G→G1,  

Λ: ∆ →∆1 are group isomorphisms. 

We let L, H, X be the subsets 

 

L = P1(V) H = Pn−1(V)    X = L∪H     (3.101) 

 

of the projective space P(V), i.e. L is the set of lines in V, H the set of hyperplanes, X their 

union. Of course L∪H = ∅  if n ≥  3 and L = H if n = 2. We ignore the case n = 1 since 

full groups are not defined there. For each L∈L, H∈H with L ⊆ H define ∆(L, H) as the 

group consisting of all projective transvections in ∆ with spaces L ⊆  H plus 1. This is 

consistent with the use of ∆(L, H) in the special situation of §3.3 and 3.4. For any L∈L 

define ∆(L) as the group consisting of all projective transvections in ∆ with residual line L, 

plus 1; and ∆(H) as the group consisting of all projective transvections in ∆ with fixed 

hyperplane H, plus 1; for any X  in X define ∆(X) by ∆(X) = ∆(L) if X = L∈L, and by  

∆(X) = ∆(H) if X = H∈H. The two definitions of ∆(X) clearly coincide when n = 2. 

In keeping with the convention used in the special situation of §3.3 and 3.4 we use 

C to denote the centralizer C∆, CG, 
∆
(C , 

G
C (  when we are working, respectively, in ∆, G, ∆

(
, 

G
(

.  

The quantities L1, H1, X1, ∆1(L1,H1), ∆1(L1), ∆1(H1), ∆1(X1), C are defined in the 

same way for the ∆1 situation. 

If  σ 1 and σ 2 are nontrivial projective transvections in ∆, then it follows by 

applying 3.3.3 to the full group ∆∩ PGLn(V) that 

   

C(σ 1) = C(σ 2) ⇒  R1=R2 and P1=P2          (3.102) 

   



 65 

3.5.1. Suppose n ≥  3. If ∆* is a subgroup of ∆∩ PGLn(V) that is full of projective 

transvections, and if σ   is a nontrivial projective transvection in ∆*, then C∆C∆*(σ ) = 

∆(R, P). In particular, CC(σ ) ⊆∆(R, P) for any nontrivial projective transvection in ∆. 

 

PROOF. Put ∆** = ∆∩ PGLn(V). Then ∆** is full of projective transvections, and ∆* ⊆∆**. 

So, by 3.3.7, 

   

∆(R, P) = ∆**(R, P) = C∆**C∆**(σ ) ⊆ C∆C∆**(σ ) ⊆ C∆C∆*(σ ).   (3.103) 

   

To reverse this inequality, proceed as in the proof of 3.3.7, and by O'Meara §4.3 and 4.4. 

Finally, if σ  is any nontrivial projective transvection in ∆, then σ ∈∆**, and 

C(σ ) ⊇ C∆**(σ ); so 

   

CC(σ ) ⊆ C∆C∆**(σ ) = ∆(R, P).       (3.104) 

□ 

 

3.5.2. EXAMPLE.  Let us show that the results 

   

C(σ 1) = C(σ 2) ⇔ R1 = R2 and P1 = P2   (3.105) 

   

and 

   

CC(σ 1) = ∆(R, P)           (3.106) 

   

for projective transvections in the special situation of §3.3 and 3.4 do not hold here. To this 

end consider ∆ = P Γ Ln(V) with n ≥ 3 over a field F which possesses a nontrivial field 

automorphism µ. Let α be an element of F for which αµ≠ α, let x1, ..., xn  be a base for V  

with dual ρ1, ...,ρn, and let k be the element of Γ Ln(V) with associated field automorphism 

µ and with matrix diag(α, 1,  ... , 1, α) in x1, ..., xn . It is easily verified that   

 

µρn k
−1 = α−1

ρn            (3.107) 
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whence, by O'Meara §4.4, 

   

k
nx ρτ ,1
k

−1=
nx ρτ ,1
 and k

nx ρατ ,1
k

−1=
nx ρα µτ

,1
≠

nx ρατ ,1
.   (3.108) 

 

In other words, k  permutes with 
nx ρτ ,1 but not with 

nx ρατ ,1 . In particular, we have two 

projective transvections in ∆ with the same spaces but with different centralizers. 

Furthermore, 
nx ρατ ,1  is clearly in ∆(R, P) (where σ =

nx ρτ ,1 ) but it is not in CC(σ ) since it 

does not permute with k ∈  (σ ). 

 

3.5.3.  If n ≥ 3, n1 ≥ 2, there is a subgroup ∆
0
 of ∆ that is still full of projective transvections 

and satisfies 

   

∆
0 ⊆ PSLn(V),  Λ∆0 ⊆ PSLn1(V1).    (3.109) 

 

PROOF.  (1) First let us show that Λ sends at least one nontrivial projective transvection in 

∆ into PSLn1(V1). Start with a nontrivial projective transvectionτ  in ∆. Since  Λ∆ = ∆1 with 

∆1 full, there is an element ψ  of ∆ such that Λψ  is an element of PSLn1(V1) (in fact a 

projective transvection in ∆1) which does not permute with Λτ (apply 3.2.5 to the group 

generated by all projective transvections in ∆1). Let σ  be the element σ = ψ τ ψ −1τ −1 of 

∆. Thenσ  is in PSLn(V) and Λσ  is in PSLn1(V1) by O'Meara §4.3; and σ  and Λσ  are 

nontrivial by choice of  Λψ . Obviouslyσ  has a representative σ in SLn(V) with 1 ≤ resσ ≤ 

2. If resσ = 1 we are through. So assume resσ = 2. By adapting the "second simplicity 

trick" of the proof of Theorem 3.4.1 from O'Meara we can findτ a,ρ ∈  ∆ such that σ τ a,ρ 

σ −1τ −1
a,ρ  is a nontrivial projective transvection in ∆. Then 

   

Λ (σ ,τ a,ρ , σ
−1, τ −1

a,ρ) ∈PSLn1(V1)    (3.110) 

   

and again we are through. 
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(2) Next we note that if Λ sends a nontrivial projective transvection σ  in ∆ into 

PSLn1(V1), then for each line L in P  there is at least one nontrivial projective trasvectionτ  

in ∆ with spaces L ⊆ P  such that Λτ  falls in PSLn1(V1). To verify this we can assume that 

L ≠ Fx1, and then take a base x1, ..., xn for V with dual ρ1, ..., ρn such that σ =
nx ρτ ,1 , L = Fx2. 

Let α ∈  
•

F   be such that 12 ,ρατ x ∈∆  . The result then follows from the commutator relation 

   

nx ρατ ,2 = [ 12 ,ρατ x , 
nx ρτ ,1 ].     (3.111) 

   

(3) By duality, if  Λ sends a nontrivial projective transvection σ  in ∆ into 

PSLn1(V1), then for each hyperplane H containing R there is at least one nontrivial 

projective transvectionτ  in ∆ with spaces R ⊆ H such that Λτ  falls in PSLn1(V1). 

(4) The result now follows easily using the argument of step (5) of the proof of 

3.4.3.             □ 

 

3.5.4. If n ≥  3, n1 ≥  2, there is a subgroup G0 of G that is still full of transvections and 

satisfies 

   

G
0 ⊆ SLn(V),   ΨG

0 ⊆ SLn1(V1)    (3.112) 

 

PROOF. The proof is similar to the proof of 3.5.3. Just take care to choose the non−trivial 

transvection τ in G at the beginning of step (1) in such a way that Ψτ ∉  RLn1(V1). The 

existence of such a τ follows easily from the commutator relations for elementary 

transvections.           □ 

 

3.5.5.  Λ preserves projective transvections when n ≥  3, n1 ≥  3. 

 

PROOF.  (1) Applying 3.5.3 to Λ gives a subgroup ∆0 of ∆∩ PSLn(V) that is full of 

projective transvections such that Λ∆0 ⊆∆1 ∩ PSLn1(V1). Applying it to Λ−1 gives a 

subgroup ∆0
1 of ∆1 ∩ PSLn1(V1) that is full of projective transvections such that 

Λ−1
∆

0
1 ⊆∆∩ PSLn(V). Then the groups ∆* = ‹∆0, Λ−1

∆
0
1›, ∆*1 = ‹Λ ∆0, ∆0

1› satisfy 
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∆
0 ⊆∆* ⊆∆∩ PSLn(V),     (3.113) 

 

∆
0

1 ⊆∆*1 ⊆∆1 ∩ PSLn1(V1)     (3.114) 

 

and are, in particular, full of projective transvections. Furthermore Λ: ∆*→∆*1. 

(2) Now consider a typical projective transvectionσ  in ∆. Let σ * be a projective 

transvection in ∆* with the same spaces R ⊆ P  as σ . Then σ *1=Λ σ *  is a projective 

transvection by 3.4.3. And by 3.5.1 we have 

 

Λσ ∈Λ ∆(R, P) = ΛC∆C∆*(σ *) = 
1∆C

1
*∆

C (σ 1*) = ∆1(R1*, P1*).   (3.115) 

   

So  Λσ  is a projective transvection. So Λ preserves each projective transvection in ∆. So 

by symmetry  Λ−1  preserves each projective transvection in ∆1. So Λ preserves projective 

transvections.           □ 

 

3.5.6. Ψ(G ∩ RLn(V)) = G1 ∩ RLn1(V1) when n ≥ 3, n1 ≥  3. 

 

PROOF.  Proceeding as in step (1) of the proof of 3.5.4 we can find subgroups 

G* ⊆ G ∩ SLn(V) and G1* ⊆ G1 ∩ SLn1(V1) that are full of transvections such that  

Ψ: G*→G1*. Then for any σ in G ∩ RLn(V) we have σ∈  C(G*). Hence Ψσ ∈  C(G1*), so 

Ψσ is in the centralizer of G1* in Γ Ln1(V1); but G1* is full of transvections, so Ψσ is in 

RLn1(V1) by 3.2.5. Hence Ψ(G ∩ RLn(V)) ⊆ G1 ∩ RLn1(V1). Equality follows by considering 

Ψ
−1  instead of Ψ.                □ 

 

Throughout these lectures V is an n−dimensional vector space over the field F with  

1≤ n < ∞ , and ∆ is a subgroup of P Γ Ln(V) (or PGLn(V) in §3.3 and §3.4) that is full of 

projective transvections. In order to simplify the statement of exceptional situations we will 

say, for example, that ∆ is PSL2 over F7 if F = F7, n = 2, and ∆ is equal to PSL2(V). 

Similarly with PSL3 over F2, and so on. 

 

Let us recall that a power of any transvection is calculated via the formula 
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τ 
n

a,ρ = τna,ρ,          (3.116) 

 

which means that if  char F = 2, then the square of any transvection (as then of a projective 

transvection) is the identity map: 

 

τ2
a,ρ = τ2a,ρ = τ0,ρ = 1V.     (3.117) 

 

3.5.7.  There can be no isomorphism Λ: ∆ →∆1 when n ≥  3 with n1=2 except, possibly, 

when ∆ is  PSL3 over  F2  with ∆1 equal to PSL2 over F 7 . 

 

PROOF.  For suppose we have an isomorphism Λ: ∆→∆ 1 with n ≥  3 with n1 = 2. By 3.5.3 

there is a subgroup ∆0 of ∆∩ PSLn(V) that is full of projective transvections such that 

Λ∆0 ⊆ PSL2(V1). 

(1) Suppose char F ≠ 2. Take a nontrivial projective transvection σ  in ∆0.  Then by 

the projective version of 3.3.5 we have σ ∈ 0∆
DC (σ ) and, in particular, 0∆

DC (σ ) ≠ 1 . 

Since  Λ∆0 ⊆ PSL2(V1) there is therefore an element σ1 in SL2(V1) such that 

Λσ =σ 1 with 
1VDC (σ 1) ≠ 1. Clearly, 

   

1VC (σ 1) ⊆
1VC (σ 1

2) =  )(
2

11
σVC ,     (3.118) 

   

where the latter equality is based upon the fact that all transvections are unipotent and all 

projective transvections are projective unipotent transvections. But σ 2 ≠ 1 since σ  is a 

projective transvection and char F ≠ 2, so σ2
1∈  GL2(V1)−RL2(V1), so 

1VDC (σ2
1) = 1 by 

3.1.1, so 
1VDC (σ 1) = 1. This is absurd. So the case when char F ≠ 2 cannot occur. 

(2) Suppose char F = 2, char F1=2. Again let σ  be a nontrivial projective 

transvection in ∆0 such that 0∆
DC (σ ) ≠ 1. Again we have Λ∆0 ⊆ PSL2(V1) and σ1 in 

SL2(V1) with Λσ =σ 1. This time σ 2 = 1, so σ1
2 = α 

1
1V  with α2 = (det σ1)

2 = 1, since  

σ ∈SLn(V). Due to the fact that characteristic of F1 is two, we get that α = 1. So σ1 is a 
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nontrivial element in  SL2(V1) with σ1
2 = 

1
1V . Since char F1=2, σ1 is unipotent and therefore 

a nontrivial transvection. By 3.3.1 and 3.1.1, 

   

0Λ∆
DC (σ 1) ⊆  

1VDC (σ 1) = )( 11
σVDC =1    (3.119) 

   

which contradicts the fact that 0∆
DC (σ ) ≠ 1 . So this situation cannot occur either. 

(3) Suppose char F = 2, char F1 ≠ 2, but exclude n = 3 with  F = F2. Consider any 

nontrivial projective transvection σ  in ∆0. Then σ 2 = 1 with σ ≠  1. Express Λσ =σ 1  

with σ1 in SL2(V1). We have σ 1
2=1 with σ 1 ≠ 1. Thus σ 1

2 = α1
1V  for some αa in 

•

F 1. But 

detσ1 = 1, so α2 = 1, i.e. α= ± 1. So σ1
2 = ± 1

1V . Now we cannot have σ 1
2= 1

1V for this 

equation would imply, by O'Meara §1.6 and the fact that detσ1 = 1, that σ =1 (the quoted 

result states that any involution is diagonalizable; since detσ1 = 1  the only choices here are 

 σ1= ± 1
1V ). 

Therefore σ 1
2 = −1

1V . In other words, with each nontrivial projective transvection 

σ  in ∆0 we can associate an element σ1 of SL2(V1) such that 

 

σ 1 = Λσ ≠ 1,      (3.120) 

σ 2
1 = −1

1V , det σ 1=1.     (3.121) 

 

We suggested that F ≠  F2;  keeping in mind that F is of characteristic two, we have that  

|F| ≥ 22 = 4.  Then each hyperplane of V contains at least five distinct lines, so we have five 

distinct non−trivial pairwise permuting projective transvections in ∆0; so we have σ1, σ2, σ3, 

σ4, σ5 in SL2(V1) such that the corresponding σi are distinct, nontrivial, permute in pairs, 

and such that 

   

σ i
2 = −1

1V , det σi = 1 (1≤ i ≤ 5).    (3.122) 

   

The projective permutability conditions give 

 

σi σj = ±  σj σi         (3.123) 
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for all  i  and  j : 

   

σi σj σi
−1 = β σj ⇒  σj

2 = −1
1V  =− β 2 1

1V     (3.124) 

   

and β  = ±  1.  The fact that  σ1
2 = −1

1V implies that there is a base for V1 in which σ1 has 

matrix 

   








 −

01

10
.       (3.125) 

   

Indeed, if there is a nonzero x∈V1 such that the vectors x, σx  are linearly independent, we 

are done. Suppose that for all  x ∈  V1  the Vectors  x, σ x  are linearly dependent: 

   

σ x = γ x ⇒  σ(σ x) = γ σ x ⇒  −x = γ σ x,    (3.126) 

   

whence γ  =−γ −1 or γ 2=−1. Now if x, y is a base of V1 then σ1 has the matrix 

   










± γ

γ

0

0
      (3.127) 

   

in this base. Then case when the second element on the main diagonal is γ  is impossible, 

for in this case σ  = 1. In the either case the vectors 

   

x + y   and  σ1(x + y) =γ  x −γ  x     (3.128) 

   

are clearly linearly independent, a contradiction. 

 

Consider now the condition for a matrix of GL2(F1) to commute with the matrix of σ1: 

   










dc

ba
 







 −

01

10
 = 







 −

01

10
 









dc

ba
    (3.129) 
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This implies that b + c = 0 and a = d. Now consider the square of a matrix commuting with 

the matrix of σ1: 

   

2










− ab

ba
= 











−−

−
22

22

2

2

baab

abba
 = 









−

−

10

01
        (3.130) 

   

Then ab = 0. In the case when a = 0 and b ≠  0 we get the matrix 

   










− 0

0

b

b
      (3.131) 

   

and clearly a linear transformation π which has such a matrix has the same projective 

image as σ1 has. In the either case the projective image of π is trivial. Then by (3.123) the 

only possibility for σi, i = 2, ... ,5 is to commute with σ1 projectively: 

 

σi σ1 = −σ1 σi.      (3.132) 

 

Arguing as before one quickly sees that the matrices of σi in our base must be of the form 

   










− ii

ii

pq

qp
       (3.133) 

 

for suitable scalars in F1, for 2 ≤ i ≤ 5. At most one of the pi (2 ≤ i ≤ 5) can be 0 since the 

σ j are distinct, so in fact we can assume that σ 2, σ 3, σ 4 have representatives σ2', σ3', σ4' 

with matrices  

 










−1

1

α

α
, 









−1

1

β

β
,  









−1

1

γ

γ
    (3.134) 

     

with α, β , γ  distinct. We can then assume, in addition, that 1 + α β ≠ 0. Indeed, otherwise 

we would have that 
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 1 + α β  = 0,      (3.135) 

 1+ α γ  = 0,      (3.136) 

 1 + β γ  = 0      (3.137) 

 

whence assuming, for instance, that α ≠  0,  we deduce 

 

1+ α β  = 1 + αγ  ⇒  α( β  −γ ) = 0    (3.138) 

 

and β =γ , contradicting to the choice above. But then σ 2 and σ 3 do not permute: one 

easily checks that the condition 1+α β  = 0 is necessary for the projective permutability of 

σ2 and σ3 (recall that σ2 σ3 = −σ3 σ2.) This is absurd.  

So the situation in (3) also cannot arise. 

(4) Finally suppose n = 3, F= F2, char F1 ≠ 2. Since the field F2 has no nontrivial 

automorphisms, we have P Γ L3(V) = PSL3(V); furthermore, in this situation we clearly 

have PSL3(V) = ∆=∆
0. 

 

Next, by a well−known formula 

 

|PSLn(Fq)| = 
( )

( ) ( )nqq

qq
innn

,1gcd1

11
2/)1(

−−

−Π−

.     (3.139) 

 

In particular, straightforward calculation shows that card ∆=168. 

And Λ∆ = ∆1, is a subgroup of PSL2(V1) that is full of projective transvections. Put 

p = char F1, q = card F1. Clearly q < ∞ , so p > 0. Let G1 be a subgroup of SL2(V1) that is 

full of transvections and for which PG1 = ∆1. Now V1 has (q + 1) distinct lines, and we see 

by taking powers that there are at least (p − 1) distinct nontrivial transvections in G1 on 

each given line, so G1 contains at least, (p − 1)(q + 1) distinct nontrivial transvections. 

Now if you fix a line L and form τLτK as τL runs through all the nontrivial transvections in 

G1 with line L and τK runs through all nontrivial transvections in G1 with lines K distinct 

from L, you get at least (p−1)2
q distinct elements, none of them a transvection (apply 

1.3.8). Therefore 
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card G1 ≥  (p − 1)(q + 1) + (p − 1)2
q + 1.    (3.140) 

 

But the kernel of P|SL2(V1) has 2 elements, so 

 

card ∆1 ≥
2

1
 p ((p − 1) q + 1) = f (p, q).    (3.141) 

 

But then f (11, 3) = 341/2 > 168, and, in particular P ≤ 7 since card ∆1 = 168. Indeed, F1 

can only be F3, F5, F7, F9, F27. But card ∆1 must divide card PSL2(V1), i.e. 168 must divide 

12, 60, 168, 360, 9828. The only case in which this happens is the third. 

(5) Therefore, by the process of elimination, we have shown that if you have an 

isomorphism Λ: ∆→∆1 then n = 3, F = F2 and F1 = F7. Of course n1 = 2 by hypothesis. Now 

PSL3(V) is the only full group in 3−dimensions over F2, so ∆ is PSL3 over F2. In particular 

card ∆ = 168, so card ∆1=168. On the other hand, every full group in 2−dimensions over F7 

must contain PSL2(V1) since F7 is a prime field; hence ∆1 ⊇  PSL2(V1); but card ∆1 = 168 = 

card PSL2(V1); hence ∆1 is PSL2 over F7.       □ 

 

3.5.8. There can be no isomorphism Ψ: G→ G1 when n ≥  3 with n1 = 2. 

 

PROOF.  For suppose we had an isomorphism Ψ: G→ G1 with  n ≥  3 and n1 = 2. By 3.5.4 

there is a subgroup G0 of G ∩ SLn(V) that is full of transvections such that ΨG
0 ⊆ SL2(V1). 

By considering two transvections in G0 which do not permute we see that there must be a 

nontrivial transvection σ in G0 with Ψσ ∉  RL2(V1),  for a radiation commutes with every 

element of . By 3.3.4 0G
DC (σ) ≠ 1V. Then σ1 = Ψσ is an element of SL2(V1) with 

0G
DC

Ψ
(σ1) ≠ 1V, i.e. σ1 is an element of GL2(V1) − RL2(V1) with 

1VDC (σ1) ≠
1

1V  and this is 

impossible by 3.1.1.          □ 

 

3.5.9. Let X, Y ∈X; and L, K∈L and H, J ∈  H; with L ⊆ H and K ⊆ J. Then 

(1) ∆(X) = ∆(Y) ⇔ X = Y. 

     (2) ∆(L, H) = ∆(K, J) ⇔ L = K and H = J. 
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(3) )( X
(

∆ = )( 0X∆
(

 

(4) ),( HL
(

∆ = ),( 00 LH∆
(

 

(5) ∆(X) ∩∆(Y) ⊃ 1 ⇔  X ⊆  Y  or  Y ⊆  X. 

(6) ∆(X) is a maximal group of projective transvections in ∆. 

(7) Every maximal group of projective transvections in ∆ is a ∆(X). 

 

PROOF.  The observations in (1−7) are rather easy consequences of the results from Chapter 

1 and Chapter 3. We shall remark only (for the proof of (7)) that by 1.3.9 a given family of 

projective transvections is subgroup of PGLn(V) if and only if the elements has either the 

same fixed hyperplane or the same residual line. The result then follows easily.  □ 

 

When n ≥  3, n1 ≥  3, we can derive a mapping π: X⇒X1 from the isomorphism Λ as 

follows. For each X∈  X, ∆(X) is a maximal group of projective transvections in ∆ by 3.5.9; 

hence Λ∆(X) is a maximal group of projective transvections in ∆1 by 3.5.5; hence Λ∆(X) 

has the form Λ∆(X) = ∆1(X1) for some unique X1 in X1 by 3.5.9. Define π X = X1. 

 

3.5.10. The mapping π derived from Λ in the above way n ≥  3, n1 ≥  3, satisfies the 

following properties: 

(1) π: X →  X1 is bijective. 

(2) Its defining equation is Λ∆(X) = ∆1(πX) for all X  in X. 

(3) X ⊆ Y or Y ⊆ X ⇔  πX ⊆πY or πY ⊆πX 

(4) (πL = L1 and πH = H1) or (πL = H1 and πH =L1) 

 

PROOF.  The first two results are immediate, the third follows from (5) of \ref{5.5.9}. So let 

us prove the fourth. 

Suppose πL∈L1 for some L∈L; then for any hyperplane H ⊇ L we have πL ⊆πH or 

πL ⊇πH by step (3); but πL ≠ πH by injectivity; hence πL ⊆πH since πL is a line; in other 

words, if πL∈  L1, for some L∈L, then πH ∈  H1 for all hyperplanes H containing L. Dual 

reasoning shows that if πH∈H1 for some hyperplane H of V, then πL∈L1 for all lines 

L ⊆ H. Similarly, if πL∈H1 for some L∈L, then πH∈L1 for all hyperplanes H containing 

L. And if πH∈L1 for some H∈  H then πL∈H1, for all lines L, contained in H. 
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Suppose now that there is an L0 in L with πL0 ∈  L1. Then by surrounding L0 and an 

arbitrary line L in V by a common hyperplane and applying the above facts, we see that 

πL⊆L1. By applying the above to a typical hyperplane and one of its lines, we see that  

πH ⊆  H1. But π(L ∪H)=L1 ∪H1. Hence πL=L1 and πH=H1. 

We may therefore suppose that πL⊆H1. The above reasoning then makes πH⊆L1. 

Hence πL=H1 and πH=L1.         □ 

 

3.5.11. An isomorphism Λ: ∆→∆1 with n ≥  2, n1 ≥  2 makes n = n1 except, possibly, when 

one of the ∆'s is PSL3 over F2 and the other is PSL2 over F7. 

 

PROOF.  By 3.5.7 we can assume that n ≥  3, n1 ≥  3. By interchanging the two groups if 

necessary we can assume that n ≥  n1 ≥  3. In particular the mapping π: X→ X1 is now 

available. By passing to the dual 

 

∆ →Λ  ∆1 → 1∆
(

      (3.142) 

 

if necessary we can assume that π L = L1, πH = H1. For any subspace U of V define 

 

ΠU = 
UL⊆

Σ  πL          (3.143) 

 

Then Π agrees with π on X = L∪H by 3.5.10. And 

 

U ⊆ W ⇒  πU ⊆πW.      (3.144) 

 

By considering a strictly ascending chain of n+1 subspaces of V we see that we will be 

through if we can verify that U ⊂  W⇒  πU ⊂  πW. To this end consider U ⊂ W and pick a 

line L and a hyperplane H, both in V, with L ⊆ W, U ⊆ H, L ⊄  H. Then 

 

πL ⊆πW,  πU ⊆πH,  πL ⊄πH,    (3.145) 
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since Π agrees with π on L and H. If we had ΠU = ΠW we would have ΠL ⊆ΠW = 

ΠU ⊆ΠH, and this is absurd. So ΠU ⊂ΠW as required.     □ 

 

3.5.12. Suppose n ≥  3, n1 ≥  3 and that the mapping π associated with Λ satisfies πL = L1 

and πH = H1. Let Φ  be an isomorphism of ∆ into P Γ Ln1(V1) such that every element of 

Φ∆(L) is a projective transvection with residual line πL, for each L in L. Then Φ  = Λ. 

 

PROOF.  Let k be a typical element of ∆. We must show that Φ k = Λk. Consider a typical 

line L in V. Then πL is a typical line in V1. Let τL denote a projective transvection in ∆ with 

residual line L. Then, by O'Meara  §4.4, kτL k
−1 is a projective transvection in ∆ with 

residual line kL and we write it τkL. Now Φ τL is a projective transvection in P Γ Ln1(V1) 

with residual line πL; accordingly it can be written in the form Φ τL =τπL. Similarly Φ τkL is 

a projective transvection in P Γ Ln1(V1) with residual line π(kL) and can be written Φ τkL = 

τπ (kL). We have 

 

τπ (kL) = Φ(τkL) = Φ(kτLk
−1) = (Φk)(τπL)(Φk)−1       (3.146) 

 

and so 

 

(Φk) (πL) = π (kL)     (3.147) 

 

by O'Meara §4.4. Now Λ is a Φ  so 

 

(Λk)(πL) = π(kL)          (3.148) 

 

Hence 

 

(ΦK)(πL) = (Λk)(πL)            (3.149) 

 

In other words, Φ k and Λk agree on the lines of V1. Therefore Φ k = Λk. Therefore Φ =Λ 

□ 
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3.5.13. THEOREM. Let ∆ and ∆1 be subgroups of P Γ Ln(V) and P Γ Ln1(V1) respectively that 

are full of projective transvections, and suppose n ≥  3 and n1 ≥  3. Then each isomorphism 

Λ: ∆→∆1 has exactly one of the forms: 

 

Λk = gkg
−1 ∀ k ∈  ∆     (3.150) 

 

for a unique projective collinear transformation g of V onto V1; or 

 

Λk = h k
(

h
−1 ∀ k ∈  ∆     (3.151) 

 

for a unique projective collinear transformation H of V' onto V1. 

 

PROOF. By 3.5.11 we have n = n1 ≥ 3. 

 

(1) By considering the dual situation 

∆
(

 
 
 
 
 
 
∆    ∆1 

 
Figure 3.1: The dual situation 

 

we see that, as far as existence is concerned, it will be enough to assume that the mapping π 

of 3.5.10 satisfies πL=L1 and πH=H1 and then deduce the existence of a g for which  

Λk = gkg
−1 for all k in ∆. 

 

Now, by 3.5.10, for any L∈L, H∈H with L ⊆ H we have πL ⊆πH. So 2.1.4 applies and π 

can be extended uniquely to a projectivity g: P(V)→P(V1). By the Fundamental Theorem 

of Projective Geometry, g is a projective collinear transformation. Then the restriction 

 

Φgk = gkg
−1 ∀ k ∈  ∆     (3.152) 
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of the mapping Φ g of O'Meara §4.4 is an isomorphism of ∆ into P Γ Ln1(V1). And every 

element of Φ g(∆(L)) is a projective transvection in P Γ Ln1(V1) with residual line gL = πL, 

by O'Meara §4.4. Hence Φ g = Λ by 3.5.12, i.e. 

 

Λk = gkg
−1 ∀ k ∈  ∆     (3.153) 

 

as required. 

 

(2) Now the question of uniqueness. If we have two projective collinear transformations g 

and j of V onto V1 such that gkg
−1= Λk = jkj

−1  ∀ k∈∆, then for any line L in L we have 

 

gτLg
−1 = jτLj

−1          (3.154) 

 

for a nontrivial projective transvection τL in ∆ with residual line L. So gL= jL by §4.4. But 

g and j, being projectivities, are determined by their values on lines, hence g = j. The 

uniqueness of h then follows by applying the uniqueness of g to the dual situation ∆
(
→∆1. 

Finally, we cannot have 

 

gkg
-1 = h k

(
h

-1  ∀ k ∈  ∆    (3.155) 

 

To see this consider projective transvections τ1 and τ2 in ∆ with the same residual lines but 

distinct fixed hyperplanes; then gτ1g
−1 and gτ2g

−1 have the same property; while h 1τ
(

h
−1 and 

h 2τ
(

h
−1 do not.           □ 

 

Now we consider a number of important corollaries of 3.5.13 

 

3.5.13A THEOREM.  Isomorphic projective groups of collinear transformations that are full 

of projective transvections have the same underlying dimension except, possibly, when one 

of the groups is PSL3 over F2 and the other is PSL2 over F7. 

 

PROOF.  By 3.5.11 and 3.5.13.         □ 
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3.5.13B THEOREM.  Isomorphic projective groups of collinear transformations that are full 

of projective transvections have isomorphic underlying fields when their common 

underlying dimension is ≥  3. 

 

PROOF.  The fact that groups ∆ and ∆1 are isomorphic implies by 3.5.13 existence of a 

projective collinear transformation from P(V) or P(V') onto P(V1) both over vector spaces 

of dimension ≥ 3. The Fundamental Theorem of Projective Geometry implies then that the 

fields F and F1 are isomorphic (see O'Meara the proof of 4.5.2).    □ 

 

3.5.13C THEOREM.  Isomorphisms between subgroups of P Γ Ln(V) that are full of 

projective transvections are induced by automorphisms of  P Γ Ln(V) when n ≥  3. 

 

PROOF.  Indeed, an isomorphism between two full subgroups of P Γ Ln(V) is determined by 

a projective collineation. The latter one determines in turn an automorphism of P Γ Ln(V).□ 

 

As usual, Aut(X )stands for the group of automorphisms of an arbitrary group X , and  

Inn(X) stands for the normal subgroup of Aut(X) consisting of all inner automorphisms of 

X . For any X  the group Inn(X) is a normal subgroup of Aut(X). 

 

3.5.13D THEOREM.  ( Aut P Γ Ln(V) : Inn P Γ Ln(V)) = 2 when n ≥  3. 

 

PROOF.  The inner automorphisms P Γ Ln(V) are maps of the first form (3.150) among the 

automorphism given in Theorem 3.5.13: 

 

k →  gkg
-1,      (3.156) 

 

where g∈P Γ Ln(V). Thus it remains to prove that two automorphisms of P Γ Ln(V) of the 

second kind described by the formula (3.151)  are congruent modulo Inn P Γ Ln(V).  

First of all, let us note that for any projective collineation h: V' →V, the mapping t
h 

is formally a map from V' onto V''. It is known however that V'' ≅ V and hence we can 

identify V'' and V. Thus we consider h
(

 as a map from V' to V. Now we claim that the 

inverse map of an automorphism of the form 
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Φ k = h k
(

h
-1,  ∀ k ∈P Γ Ln(V)    (3.157) 

 

is 

 

Ψk = th k
(

 (t
h

-1),   ∀ k ∈  P Γ Ln(V)    (3.158) 

 

Really, keeping in mind that according to our identification of V and V'', k
(

=k for all  

k ∈  P Γ Ln(V) we have that 

 

    Φ (Ψ k) = h (t
h k
(

 (t
h

-1))˘ h
-1 

= h (t
h)˘ ( k

(
)˘(t(h-1)) ˘ h-1 

  = h h
-1

k h h
-1 = k ∀ k ∈  P Γ Ln(V).    (3.159) 

 

In particular, our considerations imply that the inverse of an automorphism of the form 

(3.151) is an automorphism of the same form. Finally, it is now easy to check that the 

product of two automorphisms of the form (3.151) is an automorphism 

of the form (3.150), that is an inner automorphism. 

Suppose that 

 

Φ 1(k) = h1 k
(

h1
-1  and  Φ 2(k) = h2 k

(
h2

-1    (3.160) 

 

for all k ∈  P Γ Ln(V). Now 

 

Φ 1( Φ 2 k) = h1(h2 k
(

h2
-1)˘ h1

-1= h1 2h
(

k (h2
-1)˘ h1.    (3.161) 

 

Clearly, the transformation h1 2h
(

 is a projective collineation from V to V and we proved the 

desired.           □ 

 

3.5.14 THEOREM.  Let G and G1 be subgroups of Γ Ln(V) and Γ Ln1(V)1 respectively that 

are full of transvections, and suppose n ≥  3 and n1 ≥  3. Then each isomorphism Ψ: G→G1 

has exactly one of the forms: 
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Ψk = χ(k)gkg
−1 ∀ k ∈  G    (3.162) 

 

for a mapping χ of G into RLn1(V1) and a collinear transformation g of V onto V1; or 

 

Ψk = χ(k)h k
(

h
−1 ∀ k ∈  G    (3.163) 

 

for a mapping χ of G into RLn1(V1) and a collinear transformation H of V' onto V1. 

 

PROOF.  It is clear that the groups G  and 1G  are full of projective transvections. If we 

define Ψ by 

 

Ψ k = kΨ  ∀ k ∈ G      (3.164) 

 

then, by 3.5.6, Ψ is a well−defined isomorphism Ψ : G→ 1G . Therefore, by Theorem 

3.5.13, Ψ  has exactly one of the forms 

 

Ψ k = g k g
−1 ∀ k  ∈  G    (3.165) 

 

for some projective collinear transformation g  of V onto V1; or 

 

Ψ k = h { k }˘ h
−1 ∀ k ∈  G.    (3.166) 

for some projective collinear transformation h  of V' onto V1. In the first case we have a 

collinear transformation g of V onto V1 such that the elements Ψk and gkg
−1 of Γ Ln1(V1) 

satisfy 

 

kΨ  = 1−
gkg   ∀ k  ∈  G.    (3.167) 

 

There is accordingly an element χ(k), in the kernel RLn1(V1) and dependent on k such that 

 

Ψk = χ(k)gkg
−1 ∀ k ∈  G.    (3.168) 
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Similarly with the h situation. By applying Theorem 3.5.13 we see that Ψ cannot have both 

the g − and the h−forms.         □ 

 

As before we consider a number of important corollaries of the last theorem. 

 

3.5.14A. THEOREM. Isomorphic groups of collinear transformations that are full of 

transvections have the same underlying dimension, when both underlying dimensions are 

≥  2. 

 

PROOF.  By 3.5.14 if n, n1 ≥ 3 we are done. By 3.5.8 the case when n ≥ 3 and n1 = 2 is 

impossible.           □ 

 

3.5.14B THEOREM.  Isomorphic groups of collinear transformations that are full of 

transvections have isomorphic underlying fields when their common underlying dimension 

is ≥  3. 

 

PROOF.  Similarly to 3.5.13B. We just note that the condition n, n1 ≥ 3 was essential in the 

course of the proof of the result we refer to.       □ 

 

3.5.14C REMARK.  If the groups G and G1 of Theorem 3.5.14 are groups of linear 

transformations, i.e. if they are contained in GLn(V) and GLn1(V1) respectively, then: χ is a 

group homomorphism; and χ is uniquely determined by Ψ; and g (resp. h) is unique up to 

premultiplication by a radiation of V1. 

 

3.5.14D REMARK.  If the groups G and G 1 of Theorem 3.5.14 are not only linear but also 

satisfy DG = G and DG1 = G1 (for example if G= SLn(V) and G1= SLn1(V1), then the χ 

function is trivial, i. e. 

 

Ψk = gkg
−1 ∀ k ∈  G or Ψk = h k

(
h

−1 ∀ k ∈  G   (3.169) 

 

It easily follows from the fact that χ is a homomorphism and the fact that F is 

commutative: 
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χ(k) = χ([k1,k2]) = χ(k1
-1) χ(k2

-1) χ(k1) χ(k2) = χ(k1
-1) χ(k1) χ(k2

-1) χ(k2) = 1.      (3.170) 
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