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ABSTRACT 
 

 

PERFORMANCE ANALYSIS OF HYPERHEURISTICS  

AND THEIR USE WITH HILL-CLIMBERS 
 

Hyperheuristics are iterative approaches that are proposed as a higher level 

abstraction as compared to the metaheuristics. Hyperheuristic methods manage a set of 

heuristics for solving a problem.  A typical iteration in a hyperheuristic framework consists 

of two phases: heuristic selection and move acceptance. After the selection and application 

of an appropriate heuristic to a single candidate solution at hand, a decision is made 

whether to keep the new candidate solution, or not. This decision is based on only 

nonproblem-specific data, such as, fitness change or heuristic execution time. In this thesis, 

the traditional framework is extended and three new frameworks are proposed in order to 

make better use of hill-climbers. These frameworks and several heuristic selection method 

and acceptance criterion combinations are analyzed in depth. Their performances are 

evaluated on well-known benchmark functions. The performance variances of the 

hyperheuristics are further investigated on the examination timetabling benchmark 

problem instances. 
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ÖZET 
 

 

 YARDIMLI BULUŞSAL ALGORİTMALARIN VE BUNLARIN TEPE 

TIRMANMA OPERATÖRLERİ İLE KULLANIMININ BAŞARIM 

ÇÖZÜMLEMESİ 
 

Yardımlı buluşsal algoritmalar buluşsalüstü algoritmalara göre daha yüksek 

seviyede bir soyutlama olacak şekilde önerilen döngüsel yaklaşımlardır. Yardımlı buluşsal 

yöntemler problem çözümü için bir buluşsallar kümesini yönetir. Tipik bir yardımlı 

buluşsal döngüsü iki aşamadan oluşur: buluşsal seçme yöntemi ve hareket kabul etme. 

Uygun bir buluşsal seçildikten ve tek çözüm adayına uygulandıktan sonra yeni çözüm 

adayının kabul edilip edilmeyeceği kararı alınır. Bu karar sadece probleme özgü olmayan, 

uygunluk değeri, buluşsal işletim süresi gibi veriler kullanılarak alınır. Bu tezde geleneksel 

yardımlı buluşsal çerçeve modeli geliştirilmiş ve tepe tırmanıcıları daha iyi kullanmak için 

üç yeni çerçeve model önerilmiştir. Bu çerçeve modeller ve çeşitli buluşsal seçme yöntemi 

ve kabul kriteri çiftleri derinlemesine çözümlenmiştir. Bunların başarımları iyi bilinen 

matematiksel denektaşı fonksiyonlarında ölçülmüştür. Yardımlı Buluşsalların başarım 

varyansları ayrıca denektaşı sınav zaman çizelgeleme problem örnekleri üzerinde 

araştırılmıştır. 
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1.  INTRODUCTION 
 

 

A heuristic is an algorithm that obtains a good solution in a reasonable amount of 

time for a given problem. Hopefully, the resulting solution will be the optimal and the 

running time complexity will be polynomial. A metaheuristic is a heuristic algorithm for 

solving a very general class of problems. They are generally used for solving problems that 

are NP-hard for which there exists no satisfactory heuristic, such as, combinatorial 

optimization problems. The term hyperheuristic refers to a recent approach used as a 

search methodology [1, 2, 3, 4, 5, 6, 7 and 8]. It is a higher level abstraction than 

metaheuristic methods. Hyperheuristics involve an iterative strategy that selects a heuristic 

to apply to a candidate solution of the problem at hand at each step. Cowling et al. defined 

properties of hyperheuristics in [1]. Each iteration of a hyperheuristic can be subdivided 

into two parts: heuristic selection and move acceptance. Hill-climbers can be deployed as 

heuristics in the traditional hyperheuristic framework. However additional steps in the 

traditional hyperheuristic framework can increase the efficiency of the hill-climbers and 

the efficiency of the hyperheuristic algorithm in general. Therefore three further 

hyperheuristic frameworks which involve additional steps to utilize hill-climbers are 

proposed in this thesis. The performance of the traditional and the proposed hyperheuristic 

frameworks are measured on benchmark functions. In the hyperheuristic literature, several 

heuristic selection methods and acceptance criteria are used [1, 2, 3, 4, 5, 6, 7 and 8]. 

However, no comprehensive study exists that compare the performances of these different 

methods and criteria in depth. In this thesis, seven heuristic selection methods and five 

different acceptance criteria are analyzed. Their performance is measured on well-known 

benchmark functions. Extensive experiments were performed on benchmark functions by 

coupling all heuristic selection methods and all acceptance criteria with each other. 

 

Timetabling problems are real world constraint optimization problems. Due to their 

NP complete nature [9], traditional approaches might fail to generate a solution to a 

timetabling problem instance. Timetabling problems require assignment of time-slots 

(periods) and possibly some other resources to a set of events, subject to a set of 

constraints. Numerous researchers deal with different types of timetabling problems based 

on different types of constraints utilizing variety of approaches. Employee timetabling, 
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course timetabling and examination timetabling are the research fields that attract 

attention. The focus of this thesis is on examination timetabling. Hyperheuristics are 

applied to the examination timetabling problem. All heuristic selection methods combined 

with all of the acceptance criteria is tested on a set of Carter’s benchmark examination 

timetabling problem instances [10].  

 

This thesis is organized as follows. Literature survey on hyperheuristics, heuristic 

selection methods and acceptance criteria are presented in Chapter 2. Literature survey on 

benchmark functions, heuristics for benchmark functions, experimental settings and results 

on benchmark functions are presented in Chapter 3. Literature survey on examination 

timetabling, heuristics for examination timetabling, experimental settings and results on 

examination timetabling are presented in Chapter 4. Conclusions on the literature study, 

proposed hyperheuristic frameworks and combinations, experiments and results are 

presented in Chapter 5. The tables which present the experimental results of hyperheuristic 

frameworks on benchmark functions are presented on Appendix A. The tables which 

present the experimental results of hyperheuristic combinations on benchmark functions 

are presented on Appendix B. The tables which present the experimental results of 

hyperheuristic combinations on examination timetabling are presented on Appendix C. 
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2.  HYPERHEURISTICS 

 
 

Combinatorial optimization problems are typically NP-hard problems. Such 

problems encountered in practical situations are often characterized by large search spaces 

and a set of restricting constraints [2]. These facts make a convenient enumeration 

impossible. Therefore an exhaustive search is not applicable to most of these problems and 

if applicable an optimal solution cannot be found in a reasonable amount of computation 

time. Commercial organizations need solutions to such optimization problems that are 

“good enough, soon enough, cheap enough” and deploy simple heuristics to obtain such 

solutions. Although heuristics are easy to implement and reach satisfactory solutions in a 

reasonable amount of computation time, they lack the guarantee to find optimal or even 

near optimal solutions. The term heuristic refers to a single step which takes a candidate 

solution as an input and involves a decision criterion to modify it in a way. This single step 

of modification is considered as a move in the search space. Heuristics are called 

iteratively in search algorithms to reach satisfactory solutions [2 and 7]. 

 

Artificial intelligence research in the area of operations research is focused on the 

development of metaheuristics which are high-level algorithmic approaches to tackle 

optimization problems [2]. State-of-the-art solution methods for many optimization 

problems are metaheuristic methods. The high performance of metaheuristics is mostly due 

to their problem-specific and knowledge-rich nature. On the other side, metaheuristics 

have a variety of disadvantages. Most state-of-the-art metaheuristics are designed and fine 

tuned for a specific problem and commonly for a specific type or instance of a specific 

problem. They involve a variety of parameters which require to be adjusted for each 

problem type or instance. This fact prevents the reuse of a metaheuristic implementation on 

a different problem than it is designed for. This fact also makes the implementation and 

deployment of metaheuristics to require expert level knowledge and experience on both the 

optimization problem and the metaheuristic method applied. Metaheuristic methods require 

vast amounts of computation resources and long convergence durations. They also involve 

randomized processes which results in variances in performance. Theoretical and 

computational analysis on metaheuristics is not satisfactory and operation principles of 

most of these methods are not easy to understand which arouses doubts about these 
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methods. Due to these disadvantages metaheuristics are not commonly deployed in 

industry [2, 3 and 7]. 

 

The term hyperheuristic refers to an optimization method which is developed to 

avoid the disadvantages of metaheuristics [1]. Hyperheuristics do not use problem-specific 

information [1, 2, 3 and 7]. They deploy a set of simple, easy to implement, low level 

heuristics and conduct the search using these heuristics. Due to this property 

hyperheuristics are called “heuristics to choose heuristics” [2]. Hyperheuristics operate at a 

higher level of abstraction than metaheuristics [1]. Hyperheuristics work on search spaces 

of heuristics where metaheuristics work on search spaces of candidate solutions [3 and 7]. 

Hyperheuristics take advantage of strengths and avoid the weaknesses of each heuristics 

[7]. A further advantage of hyperheuristics is that a set of well-performing heuristics are 

already handy for the practical problems. These heuristics can be deployed in a 

hyperheuristics framework easily [7]. These properties make the implementation and 

deployment of hyperheuristics fast, easy and cheap. Once the hyperheuristic method is 

implemented it can be applied to any problem with appropriate low level heuristics and a 

fitness function. The implementation and deployment of the hyperheuristic will not require 

high levels of knowledge or expertise in problem domain and heuristics [1]. There are 

further properties that a hyperheuristic method should satisfy. Hyperheuristics should have 

a comprehensible structure without the vast number of parameters and details as it is the 

case in metaheuristics. They should produce good quality solutions in a reasonable amount 

of time and exhibit satisfactory worst-case behavior. They should work robust and in a 

repeatable manner [1 and 7].  

 

Hyperheuristic framework is a three layer approach [11]. Hyperheuristic algorithm 

operates at the lop layer and a set of heuristics in the middle. The problem tackled, is 

defined at the bottom layer. The communication between hyperheuristic algorithm and the 

low level heuristics is carried out on a common interface [1]. This interface also acts as a 

barrier between hyperheuristic algorithm and the low level heuristics by avoiding the 

passing of problem specific data from low level heuristics to hyperheuristic [2 and 7]. This 

interface is used to pass information about the performance of the low level heuristics and 

the selection and acceptance of each low level heuristic by hyperheuristic [1]. 
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Figure 2.1.  Three layer hyperheuristic approach 

 

The execution of a hyperheuristic algorithm consists of an iterative step which is 

repeated continuously until a termination criterion is met. The termination criterion can be 

one or combination of the termination of execution time, termination of a given number of 

evaluations or iterations, or finding the optimum solution. Termination of the execution 

time is mostly used as the termination criterion in research [1 and 3]. If examined closely it 

can be observed that any hyperheuristic algorithm makes two decisions during a single 

iteration. First it selects a heuristic and applies it to the candidate solution and second it 

accepts or declines the modified candidate solution as the new candidate solution.  

 

At the early stages of the hyperheuristic research the focus was on the first decisive 

step: the selection of low-level heuristics. At this stage hyperheuristics were named after 

their heuristic selection method. Examples are Simple, Choice Function, Tabu Search and 

Genetic Algorithm Hyperheuristics [1, 2, 3, 4 and 7]. These early examples used two 

simple decision criteria for the second step of the hyperheuristic algorithm: the acceptance 

of the modified candidate solution. These were All Moves Accepted (AM) and Only 
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Improving Moves Accepted (OI). The focus of the research moved to the second step of 

the algorithm with time. More complex acceptance criteria were introduced in [5 and 6]. 

However these complex acceptance criteria were used with the heuristic selection method 

Simple Random. 

  

According to this survey several heuristic selection methods and acceptance criteria 

are introduced for hyperheuristics framework. Each one of the heuristic selection methods 

and acceptance criteria can be combined to one hyperheuristic algorithm. Despite this fact 

this kind of combinations are not studied in the literature. In this thesis various heuristic 

selection methods are combined with various acceptance criteria and resulting 

hyperheuristics are tested on a broad range of benchmark functions as well as on 

examination timetabling problem. Seven heuristic selection methods, which are Simple 

Random, Random Descent, Random Permutation, Random Permutation Descent, Choice 

Function, Tabu Search, and Greedy are implemented. For each heuristic selection method 

five acceptance criteria: AM, OI, IE (Improving and Equal Moves Accepted), the Great 

Deluge and the Monte Carlo are implemented. As a result, a broad range of hyperheuristic 

combinations are obtained. These combinations are tested on benchmark functions and 

examination timetabling problems. 

 

2.1.  Heuristic Selection Methods  

 

2.1.1.  Simple Hyperheuristics 

 

Simple Hyperheuristics utilize simple randomized processes to select the heuristic 

that will be applied next [1]. They are used in most of the hyperheuristic research and the 

performances of the newly proposed approaches are compared against these methods. 

There are four types of Simple Hyperheuristics: Simple Random, Random Descent, 

Random Permutation and Random Permutation Descent. 

 

2.1.1.1.  Simple Random. Simple Random is the most trivial heuristic selection method. It 

randomly selects a heuristic by assigning equal probability to each low level heuristic in 

the set [1]. This method is also used within other hyperheuristic methods which emphasize 

the acceptance criterion [5 and 6]. 
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2.1.1.2.  Random Descent. Random Descent selects a heuristic randomly like the Simple 

Random. However this method repeatedly applies the selected heuristic as long as it makes 

an improvement on the candidate solution [1]. 

 

2.1.1.3.  Random Permutation. Random Permutation initially creates a random permutation 

of all low level heuristics in the set. At each iteration the next heuristic in the permutation 

gets selected. If the end of the permutation is reached the method cycles around the 

permutation and continues with the first low level heuristic in the permutation [11]. 

 

2.1.1.4.  Random Permutation Descent. Random Permutation Descent operates similar to 

Random Permutation. The only difference is that the selected heuristic is reapplied each 

time it improves the candidate solution [1]. 

 

2.1.2.  Greedy Hyperheuristic 

 

Greedy Hyperheuristic calls all low level heuristics at each iteration. The low level 

heuristic that produces the most improvement is selected [1]. 

 

2.1.3.  Choice Function Hyperheuristic 

 

In this heuristic selection method a Choice Function is utilized that considers various 

data [1]. The Choice Function measures the previous performance of each single and each 

pair of low level heuristics. The performance measure depends on improvement and 

execution time. It also considers the time elapsed from the last call of each low level 

heuristic. Using these criteria Choice Function makes a selection among the low level 

heuristics [1]. 

 

In this method a linear combination is calculated for each low level heuristic at each 

step [1]. This linear combination consists of three different quantities which measure 

different properties of the low level heuristics under consideration. The first quantity is the 

measurement of the previous performance of the low level heuristic. The second quantity is 

the measurement of the previous performance of the consecutive calls of two low level 
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heuristics and this way the synergy between them. The last quantity is the time elapsed 

since the last call of the low level heuristic [1]. 

 

The first quantity, f1 (Nj) (Formula 2.1), measures the previous performance of the 

low level heuristic Nj. In this formula In (Nj) is a positive quantity of the improvement 

accomplished by Nj at the nth iteration, Tn (Nj) is the execution time of Nj at the nth iteration, 

and α refers to a constant between 0 and 1.  
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(2.1) 

 

f1 (Nj) is calculated in the algorithm using the iterative Formula 2.2. In this formula 

the previous performance value is multiplied by the constant α which reduces the weight 

of the previous performance in the new quantity. The importance of current performance is 

emphasized this way. 
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The second quantity, f2 (Nj, Nk) (Formula 2.3), measures the previous performance of 

the low level heuristic Nj when it is called directly after the last called low level heuristic 

Nk. This quantity can be considered as to measure the synergy between the low level 

heuristics. In this formula In (Nj, Nk) is a positive quantity of the improvement 

accomplished by Nj when it is called directly after the last called low level heuristic Nk at 

the nth iteration. Tn (Nj, Nk) is the execution time of Nj when it is called directly after the 

last called low level heuristic Nk at the nth iteration, and β refers to a constant between 0 

and 1.  
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f2 (Nj, Nk) is calculated in the algorithm similarly to f1 (Nj) as in Formula 2.4. Again 

the previous performance value is multiplied by the constant β and the weight of the 

previous performance is reduced in the new quantity. And again the emphasis is given to 

the current performance this way. 
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),(
),(

),( 22 jk
previous

jk

jk
jk
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NNT
NNI

NNf ⋅+= β  (2.4) 

 

The third quantity f3 (Nj) is the time elapsed since the last call of the low level 

heuristic Nj. This quantity is measured in number of seconds of CPU time.  

 

Each quantity has a different purpose in the method. The first and second quantities, 

f1 (Nj) and f2 (Nj, Nk), are there to intensify the search by giving the emphasis on low level 

heuristics which performed better currently. The second quantity f2 (Nj, Nk) measures also 

the synergy between low level heuristics. The third quantity f3 (Nj) has the purpose to 

diversify the search by giving the emphasis to low level heuristics which are not called 

lately [1]. 

 

2.1.4.  Non-Stationary Reinforcement Learning Heuristic Selection Method 

 

Nareyek introduced a heuristic selection method which uses Non-Stationary 

Reinforcement Learning in [12]. This method computes and maintains a “utility value” 

wj≥1 for each heuristic j. Utility value is a measurement for the expected performance of 

the heuristic to be selected. The utility values are modified during the search according to 

the performance of the low level heuristic using the Non-Stationary Reinforcement 

Learning mechanism. Mostly the utility values are adapted to the specific region of the 

search space where the search is carried on. Two different approaches are proposed to 

make selection between low level heuristics using these utility values. The first approach is 

the Roulette Wheel Approach. The second approach selects the low level heuristic with the 

highest utility value and if there exists more than one low level heuristics with the highest 

utility value a random one is selected among these. Utility values are adapted according to 

various positive and negative reinforcement learning strategies [12]. 
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Positive reinforcement learning strategies are Additive Adaptation, Escalating 

Additive Adaptation, Multiplicative Adaptation, Escalating Multiplicative Adaptation, and 

Power Adaptation. Negative reinforcement learning strategies are Subtractive Adaptation, 

Escalating Subtractive Adaptation, Divisional Adaptation, Escalating Divisional 

Adaptation, and Root Adaptation. The formula for each of the reinforcement learning is 

given in Table 2.1. A maximum and a minimum value for each of the utility values are also 

defined to keep the values in a useful range. In Escalating Adaptation strategies the 

escalation values are doubled each time if there is a consecutive improvement or 

worsening. They are set to 1 otherwise. The utility values are maintained as integers. If 

floating point values occur during reinforcement learning phase the values are rounded 

down to the next integer [12]. 

 

Table 2.1. Reinforcement learning strategies 

 

Additive Adaptation 1+⎯⎯← aa ww  

Escalating Additive Adaptation 
promotionaa mww +⎯⎯←  

Multiplicative Adaptation 2×⎯⎯← aa ww  

Escalating Multiplicative Adaptation 
promotionaa mww ×⎯⎯←  

Power Adaptation 

⎩
⎨
⎧

=⇐
>⇐×

⎯⎯←
12

1

a

aaa
a w

www
w  

Subtractive Adaptation 1−⎯⎯← aa ww  

Escalating Subtractive Adaptation 
promotionaa mww −⎯⎯←  

Divisional Adaptation 2aa ww ⎯⎯←  

Escalating Divisional Adaptation 
promotionaa mww ⎯⎯←  

Root Adaptation 
aa ww ⎯⎯←  
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2.1.5.  Tabu Search Hyperheuristic 

 

Burke and Soubeiga proposed various hyperheuristic frameworks in [3]. These 

frameworks make use of the heuristic selection method introduced in [12]. They also 

improved the frameworks by utilizing a tabu list in the framework [3].  

 

The proposed hyperheuristic frameworks involve a score for each low level heuristic. 

At each hyperheuristic iteration the low level heuristic with the highest score is selected. If 

there is a tie between the low level heuristics with the highest score one of them is selected 

randomly. The score of the low level heuristic is updated according to its performance at 

each time it is selected. This type of maintenance of a score for each low level heuristic is 

called reinforcement learning. At the beginning of the optimization process the score of 

each low level heuristic is equal to 0. The score is increased by adding a positive 

reinforcement rate to the score and decreased by subtracting a negative reinforcement rate 

from the score. A range is defined by a lower bound and upper bound and the score of low 

level heuristics cannot exceed this range [3].  

 

In the first hyperheuristic framework positive and negative reinforcement rates are 

equal to 1. The lower bound is equal to 0 and the upper bound is equal to the number of the 

low level heuristics. A closer study of this framework exposes a weakness. Suppose that 

there exists a considerable amount of difference between the scores of the low level 

heuristic with the highest score and the remaining low level heuristics. If this low level 

heuristic reaches its local optimum it will start to worsen the candidate solution. Despite 

this fact the framework will continue to call it until there is no more difference between its 

score and the score of the remaining low level heuristics. Another weakness is that in some 

cases this framework will call a subset of heuristics cyclically by increasing and decreasing 

their scores [3]. 

 

The second hyperheuristic framework avoids the weakness of the first by involving a 

higher negative reinforcement rate which is equal to the number of low level heuristics. 

This framework uses the same positive reinforcement rate as the first. In this framework 

once a low level heuristic makes a non-improving move its score is set to 0. This way it is 
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avoided that the non-improving low level heuristic is called further and non-improving 

moves are made [3].  

 

If analyzed closely there are two possible cases at heuristic selection phase of the 

second hyperheuristic framework. The first case is when the last move was a non-

improving move. In this case all the low level heuristics have the same score of 0 and a 

random low level heuristic is selected among these. In the second case the last move was 

an improving move and low level heuristic selected at the last move will be repeatedly 

selected until it makes a non-improving move. This low level heuristic selection pattern is 

the same as the heuristic selection pattern of Random Descent Hyperheuristic. Another 

weakness of the second hyperheuristic framework is that although it tries to avoid the 

selection of the non-improving low level heuristic it assigns the same score to it as the 

remaining heuristics. This facts show that the learning potential of the framework is not 

fully utilized [3].  

 

A tabu list is added to the first framework to overcome the weaknesses of both 

frameworks. Non-improving low level heuristics are added to the tabu list and are not 

called as long as they stay in this list. The immediate call of the non-improving low level 

heuristics are avoided this way. The length of the tabu list is variable but there is a 

maximum value which cannot be exceeded [3]. 

 

2.1.6.  Graph-Based Hyperheuristic 

 

Burke et al. [8] introduced a simple generic hyperheuristic which utilizes constructive 

heuristics (graph coloring heuristics) to tackle timetabling problems. A tabu search 

algorithm chooses among permutations of constructive heuristics according to their ability 

to construct complete, feasible and low cost timetables. At each iteration of the algorithm, 

if the selected permutations produce a feasible timetable, a deepest descent algorithm is 

applied to the obtained timetable. Burke et al. applied this hyperheuristic method to both 

examination and university course timetabling problem instances. The results of this 

experiments showed that the proposed method works well on benchmark examination and 

university course timetabling problem instances [8]. 
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2.1.7.  Case-Based Heuristic Selection 

 

Burke et al. [13] propose a Case-Based Heuristic Selection Method. In this method a 

knowledge discovery method is employed to find the problem instances and situations 

where a specific heuristic works well. The proposed method also explores for similarities 

with the problem instance to be solved and the source cases, to predict the heuristic that 

will perform best. Burke et al. applied Case-Based Heuristic Selection Method to the 

examination and university course timetabling [13]. 

 

2.2.  Acceptance Criteria 

 

2.2.1.  Simple Acceptance Criteria 

 

Simple Acceptance Criteria consist of a single decisive step based on a simple rule. 

Two types of Simple Acceptance Criteria are defined in the literature [1] and a third type is 

attained intuitively. These are All Moves Accepted (AM), Only Improving Moves 

Accepted (OI), and Improving and Equal Moves Accepted (IE) criteria. The names of 

these acceptance criteria clearly define the rules they involve.  

 

2.2.2.  Monte Carlo Acceptance Criteria 

 

Ayob and Kendall [5] emphasized the role of the acceptance criterion in the 

hyperheuristic. They introduced the Monte Carlo Hyperheuristic which has a more 

complex acceptance criterion than AM or OI criteria. In this criterion, all of the improving 

moves are accepted and the non-improving moves can be accepted based on a probabilistic 

framework. Ayob and Kendall defined three probabilistic approaches to accept the non-

improving moves. First approach, named as Linear Monte Carlo (LMC), uses a negative 

linear ratio of the probability of acceptance to the fitness worsening. Second approach 

named as, Exponential Monte Carlo (EMC), uses a negative exponential ratio of the 

probability of acceptance to the fitness worsening. Third approach, named as Exponential 

Monte Carlo with Counter (EMCQ), is an improvement over Exponential Monte Carlo. 

The probability of acceptance of worsening moves decreases as the time passes and if there 
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is no improvement over a series of consecutive iterations then the probability increases. As 

the heuristic selection method, they all use the Simple Random [5]. 

 

2.2.3.  Great Deluge Acceptance Criteria 

 

Kendall and Mohamad [6] introduced another hyperheuristic method which also 

focuses on the acceptance criterion rather than the heuristic selection method. They used 

the Great Deluge Algorithm as the acceptance criterion and Simple Random as the 

heuristic selection method. In the Great Deluge Algorithm initial fitness is set as initial 

level. At each step, the moves which produce fitness values less than the level are 

accepted. At each step the level is also decreased by a factor [6]. 
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3.  HYPERHEURISTICS FOR BENCHMARK OPTIMIZATION 

 

 

3.1.  Benchmark Functions  

 

Well-defined problem sets are useful to measure the performance of optimization 

methods such as genetic algorithms, memetic algorithms and hyperheuristics. Benchmark 

functions which are based on mathematical functions or bit strings can be used as objective 

functions to carry out such tests. If the benchmark function is based on a mathematical 

function than the search space is defined by lower and upper bounds.  

 

The nature, complexity and other properties of the benchmark functions can be easily 

obtained from their definitions. Properties of benchmark functions give clues about the 

nature, complexity and difficulty levels of them. The term modality refers to the number of 

optima of a benchmark function in the defined search space. Unimodal benchmark 

functions have a single optimum in the search space where multimodal functions have 

more than one. Multimodal benchmark functions which have large Hamming distance 

between their local optima and the global optimum are categorized as deceptive functions. 

A benchmark function is continuous if it is based on a mathematical objective function 

which is continuous on the search space defined. Benchmark functions which are defined 

on bit strings and which are not continuous are called discrete.  

 

The difficulty levels of most benchmark functions are adjustable by setting their 

parameters. The adjustable parameters of the benchmark functions are the number of the 

dimensions and number of the bits per dimension. The difficulty level of the benchmark 

function can be increased by increasing the number of the dimensions or the number of the 

bits per dimensions. 

 

3.1.1.  Sphere Function 

 

Sphere Function, defined as a benchmark function in [14], is the most trivial function 

in the set. Any optimization algorithm is expected to easily locate the global optimum of 

this function. Sphere function is a unimodal, continuous function [14]. It is based on the 
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mathematical function defined in the Formula (3.1) on [-5.12, 5.12]. The global optimum is 

at the point (0, 0, … , 0) with the global optimum value 0. 
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3.1.2.  Rosenbrock Function 

 

Rosenbrock Function is defined as a benchmark function in [14]. Although this is a 

unimodal and continuous function it is not easy to find the global optimum due to the flat 

valley in the search space of this function. Rosenbrock Function is based on the 

mathematical function defined in the Formula (3.2) on [-2.048, 2.048]. The global 

optimum is at the point (1, 1, … , 1) with the global optimum value 0. 
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3.1.3.  Step Function 

 

Step Function, defined as a benchmark function in [14], is a unimodal and continuous 

function. The search space of Step Function consists of flat surfaces. Step Function is 

based on the mathematical function defined in the Formula (3.3) on [-5.12, 5.12]. The 

global optimum is on the surface ([-5.12, 5.0), [-5.12, 5.0), … , [-5.12, 5.0)) with the global 

optimum value 0. 
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3.1.4.  Quartic Function with Random Noise 

 

Quartic Function with Random Noise is defined as a benchmark function in [14]. 

This function is unimodal, continuous and dynamic. This function is based on the 

mathematical function defined in the Formula (3.4) on [-1.28, 1.28]. It involves a random 

noise U(0, 1). U(0, 1) returns a random value between 0 and 1 at each call. Due to its 

dynamic nature this function does not have a fixed global optimum point or value. A 

threshold value is defined in the experiments which utilize this function. If a value less 

then the threshold value is found then the optimization process is terminated. 
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3.1.5.  Foxhole Function 

 

Foxhole Function, defined as a benchmark function in [14], is a highly multimodal, 

continuous function. The dimension parameter of this function cannot be adjusted since it 

is defined as a two-dimensional function. It is based on the mathematical function defined 

in the Formula (3.5) on [-65.536, 65.536]. The global optimum is at the point (-32, -32, ... , 

-32) with the global optimum value 0.998004. 
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3.1.6.  Rastrigin Function 

 

Rastrigin Function, defined as a benchmark function in [15], is highly multimodal 

and continuous. It is based on the mathematical function defined in the Formula (3.6) on    

[-5.12, 5.12]. The global optimum is at the point (0, 0, … , 0) with the global optimum 

value 0. 
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3.1.7.  Schwefel Function 

 

Schwefel Function, defined as a benchmark function in [16], is multimodal and 

continuous. The global optimum and the best local optimum lie geometrically distant on 

the search space. This fact makes this function a rather hard problem for optimization 

methods. Schwefel Function is based on the mathematical function defined in the Formula 

(3.7) on [-500, 500]. The global optimum is at the point (420.9687, 420.9687, … , 

420.9687) with the global optimum value 418.9829. 
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3.1.8.  Griewangk Function 

 

Griewangk Function, defined as a benchmark function in [17], is highly multimodal 

and continuous. It is based on the mathematical function defined in the Formula (3.8) on    

[-600, 600]. The global optimum is at the point (0, 0, … , 0) with the global optimum value 

0. 
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3.1.9.  Ackley Function 

 

Ackley Function is defined as a benchmark function in [18]. This function is 

multimodal and continuous. Ackley Function is based on the mathematical function 

defined in the Formula (3.9) on [-32.768, 32.768]. The global optimum is at the point (0, 0, 

… , 0) with the global optimum value 0. 
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3.1.10.  Easom Function 

 

Easom Function, defined as a benchmark function in [19], is unimodal and 

continuous. This function involves flat surfaces which makes the optimization process 

harder. The degree of the flatness of the surfaces increases with the number of dimensions 

of the function. Easom Function is based on the mathematical function defined in the 

Formula (3.10) on [-100, 100]. The global optimum is at the point (π,π, … , π) with the 

global optimum value -1. 
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3.1.11.  Rotated Hyper-Ellipsoid Function 

 

Rotated Hyper-Ellipsoid Function, defined as a benchmark function in [14], is 

unimodal and continuous. Rotated Hyper-Ellipsoid Function is based on the mathematical 

function defined in the Formula (3.11) on [-65.536, 65.536]. The global optimum is at the 

point (0, 0, ... , 0) with the global optimum value 0. 
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3.1.12.  Royal Road Function 

 

Royal Road Function is a unimodal, discrete benchmark function based on bit strings 

[20]. The fitness function of this benchmark function is defined in the Formula (3.12). The 

global optimum is the bit string (11… 1) with the global optimum value 0. 
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3.1.13.  Goldberg’s Deceptive Function 

 

Goldberg’s Deceptive Function is a discrete function based on bit strings [21 and 22]. 

This function can be used as both fitness minimizing and maximizing function. Specific 

fitness values are assigned to each permutation of 3 bit strings (Table 3.1). To make the 

problem multidimensional and increase the difficulty level, a sequence of 3 bit strings is 

treated as a single chromosome. The fitness of this chromosome is the sum of fitness value 

of each 3 bit string. 

 

Table 3.1. Fitness values for bit strings in Goldberg’s Deceptive Function 

 

String Fitness 
Maximizing 

Fitness 
Minimizing 

000 7 1 
001 5 3 
010 5 3 
011 0 8 
100 3 5 
101 0 8 
110 0 8 
111 8 0 
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3.1.14.  Whitley’s Deceptive Function 

 

Whitley’s Deceptive Function is a discrete function based on bit strings [23]. This 

function can be used as both fitness minimizing and maximizing function. Specific fitness 

values are assigned to each permutation of 4 bit strings (Table 3.2). By treating a sequence 

of 4 bit strings as a single chromosome, the problem is made multidimensional and the 

difficulty level is increased. The sum of fitness value of each 4 bit string is assigned as the 

fitness to the chromosome. 

 
Table 3.2.  Fitness values for bit strings in Whitley’s Deceptive Function 

 

String Fitness 
Maximizing 

Fitness 
Minimizing 

0000 28 2 
0001 26 4 
0010 24 6 
0011 18 12 
0100 22 8 
0101 16 14 
0110 14 16 
0111 0 30 
1000 20 10 
1001 12 18 
1010 10 20 
1011 2 28 
1100 8 22 
1101 4 26 
1110 6 24 
1111 30 0 

 

3.2.  Heuristics for Benchmark Function Optimization 

 

Benchmark Functions that are used to evaluate the performance of the hyperheuristic 

combinations are encoded as bit strings. Therefore bit string modifying heuristics are 

required to search the global optimum of these functions in a hyperheuristic framework. 

There exist two types of bit string modifying heuristics which are hill-climbing and 

mutational heuristics. The details and versions of hill-climbing and mutational heuristics 

are explained in chapters 3.2.1 and 3.2.2 respectively. 
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3.2.1.  Hill-Climbing Operators  

 

There are four types of hill-climbing operators for bit strings defined in the literature 

which are Steepest Ascent, Next Ascent, Davis’ Bit, and Random Bit Mutation Hill-

Climbing Operators. These operators make bit inversions using predefined rules and accept 

the resulting candidate solution only if it is an improvement on the input candidate 

solution. 

 

Steepest Ascent Hill-Climbing Operator (SAHC) checks each single bit inversion 

variant of the input candidate and accepts the one with the highest improvement [20]. 

 

Next Ascent Hill-Climbing Operator (NAHC) inverts a bit in the candidate solution 

and the resulting candidate solution is accepted only if there is an improvement on the 

previous candidate solution. This process is repeated starting from the first bit and 

selecting the next bit at each iteration [20].  

 

Davis’ Bit Hill-Climbing Operator (DBHC) functions similar to the Next Ascent 

Hill-Climbing Operator. The only difference is that this hill-climber creates a random 

permutation and inverts the bits in the candidate solution according to the sequence in this 

permutation [24].  

 

Random Bit Mutation Hill-Climbing Operator (RBHC) selects a random bit at each 

iteration and inverts it. The resulting candidate solution is accepted only if there is an 

improvement on the previous candidate solution [20]. 

 

3.2.2.  Mutational Heuristics 

 

It is obvious that any approach utilizing only hill-climbing operators will fail to find 

global optimum solutions to multimodal or deceptive optimization problems. Therefore 

three further operators are defined for bit strings that can either improve or worsen the 

candidate solution. These operators involve random processes and due to their character 

they are called mutational heuristics. 
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Swap Dimension Operator (SWPD) can be deployed only if the problem tackled is a 

multidimensional problem. This operator randomly selects two dimensions and the bit 

strings representing these dimensions are swapped. 

 

Dimensional Mutation Operator (DIMM), like the Swap Dimension, can be deployed 

only if the problem tackled is a multidimensional problem. This operator randomly selects 

a dimension and inverts all the bits representing this dimension with the probability 0.5. 

Practically this operator assigns new random values to the bits representing the selected 

dimension. 

 

Hyper-Mutation Operator (HYPM) inverts all the bits in the candidate solution with 

the probability 0.5 which means that new random values are assigned to all the bits in the 

candidate solution. 

 

3.3.  Hyperheuristic Frameworks for Utilizing Hill-Climbers 

 

A recent study shows that using a single and efficient hill-climber instead of a set 

of hill-climbers where the operator selection is done self adaptively might yield better 

solutions in evolutionary algorithms in [25 and 26]. As a result, different frameworks 

based on the general hyperheuristic approach can be defined in order to make better use of 

hill-climbers as heuristics. In this study, four different frameworks are used; FA, FB, FC and 

FD, as summarized in Figure 3.1.  

 

FA is the traditional framework and the others are the newly proposed ones. Hill-

climbers are used together with the mutational heuristics. In some situations, after applying 

a mutational heuristic a hill-climbing might be desirable. For example, if IE acceptance 

criterion is used in the hyperheuristic, then most of the mutational heuristic moves will be 

declined. To avoid this phenomenon and to make better use of diversity provided by 

mutational heuristics, a hill-climber can be utilized additionally. FB represents such a 

framework. If the hyperheuristic chooses a mutational heuristic, then a predefined single 

hill-climber is applied to the configuration. Notice that FB still uses all heuristics together. 

In FC, hill-climbers are separated from the mutational heuristics. Hyperheuristic chooses 

only an appropriate mutational heuristic. Application of a selected heuristic to a 
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configuration is followed by a hill-climbing. A single hill-climber is predefined by the 

user. FD is a more general form of FC. Two hyperheuristic modules are used; one for 

selecting an appropriate mutational heuristic and one for selecting an appropriate hill-

climber. FD can be implemented in two ways. The acceptance mechanism of the 

hyperheuristic for hill-climbers can get a feedback from the intermediate configuration 

(Figure 3.1 - FD, marked solid lines) or from the input configuration (Figure 3.1 - FD, 

dashed line). 

 

 
Figure 3.1.  Different hyperheuristic frameworks combining mutational heuristics and hill-

climbers 
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3.4.  Experimental Settings 

 

Two sets of experiments are executed on the benchmark functions. The performances 

of the hyperheuristic frameworks deploying various heuristic sets are evaluated in the first 

set of experiments. The performances of various heuristic selection method and acceptance 

criterion combinations are evaluated in the second set of experiments. 

 

The performances of four hyperheuristic frameworks are evaluated on fourteen 

benchmark functions. Choice Function IE is used during the performance evaluations of 

FA, FB and FC. Simple Random AM is used over the mutational heuristic set and Choice 

Function IE is used over the hill-climber set during the performance evaluation of FD. 

Various heuristic and hill-climber sets are deployed within the hyperheuristic frameworks 

FA and FB to evaluate the contribution of each heuristic and hill-climber. The performance 

of five different heuristic and hill-climber sets are evaluated within the hyperheuristic 

framework FA: hill-climbers only, all hill-climbers and one of the mutational heuristics at a 

time and all hill-climbers with all of the mutational heuristics. The performance of four 

different heuristic and hill-climber sets are evaluated within the hyperheuristic framework 

FB: all hill-climbers and one of the mutational heuristics at a time and all hill-climbers with 

all of the mutational heuristics. The single hill-climber applied after the mutational 

heuristic in the framework FB is DBHC. All mutational heuristics are deployed and the 

DBHC is used as the single hill-climber during the performance evaluations of the 

framework FC. All mutational heuristics and all hill-climbers are deployed during the 

performance evaluations of the framework FD.  

 

Table 3. 3.  Heuristic sets and the frameworks used in each hyperheuristic pattern H1-H11   

(+ and * indicate that the corresponding heuristic is controlled  by the same hyperheuristic) 

Sets H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 
NAHC + + + + + + + + +  + 
DBHC + + + + + + + + +  + 
RBHC + + + + + + + + +  + 
SAHC + + + + + + + + +  + 
SWPD  +   +   + + + * 
DIMM   +   +  + + + * 
HYPM    +   + + + + * 

Framework FA FA FA FA FB FB FB FB FA FC FD 
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Another series of experiments are executed to evaluate the performance of various 

heuristic selection method and acceptance criterion combinations within the hyperheuristic 

framework FB. Seven heuristic selection methods and five acceptance criteria are 

combined to 35 hyperheuristic algorithms. The performance of these algorithms are 

evaluated on benchmark functions. The heuristic selection methods used in the 

experiments are Simple Random, Random Descent, Random Permutation, Random 

Permutation Descent, Choice Function, Tabu Search and Greedy. The acceptance criteria 

used in the experiments are AM, OI, IE, Monte Carlo and Great Deluge. The heuristic set 

deployed in these experiments consists of three hill-climbers and three mutational 

heuristics. Hill-climbers are NAHC, DBHC and RBHC. Mutational heuristics are SWPD, 

DIMM, HYPM. The single hill-climber used after mutational heuristics is DBHC. 

 

The candidate solutions to all the continuous functions are encoded as bit strings 

using Gray Code. The discrete functions have their own specific representation.  

 

Table 3.4.  Dimensions and Bits per Dimension parameters used in experiments 

 

Name dim bits 
Sphere 10 30 
Rosenbrock 10 30 
Step 10 30 
Quartic with noise 10 30 
Foxhole 2 30 
Rastrigin 10 30 
Schwefel 10 30 
Griewangk 10 30 
Ackley 10 30 
Easom 10 30 
Rotated Hyper-ellipsoid 10 30 
Royal Road 8 8 
Goldberg 30 3 
Whitley 6 4 

 

3.5.  Experimental Results 

 

Each hyperheuristic pattern (hyperheuristic framework with a specific heuristic set) is 

run on each benchmark function 50 times. The average number of fitness evaluations to 
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converge to global optimum is used as the performance criterion for all benchmark 

functions except the Quartic Function. No hyperheuristic pattern converged to the global 

optimum on the Quartic Function. Therefore average best fitness value is used as the 

performance criterion on this function. The results are statistically evaluated using t-test 

with 95 per cent confidence level. The results for each benchmark function are presented in 

Appendix A. A general table on the performance of hyperheuristic patterns on benchmark 

functions is given in Table 3.5. In this table the patterns which performed better then the 

rest are marked with the sign +. 

 

The hyperheuristic pattern H10, which deploys all mutational heuristics with the 

DBHC as the single hill-climber within the framework FC, performed significantly better 

then the rest of the hyperheuristic patterns on Step, Rastrigin, Schwefel, Easom, Royal 

Road, Goldberg and Whitley. Step and Easom are unimodal benchmark functions which 

involve flat surfaces in their search space. Rastrigin and Schwefel are highly multimodal 

benchmark functions. Royal Road, Goldberg and Whitley Functions are discrete functions 

where Goldberg and Whitley Functions are also deceptive. 

 

The hyperheuristic pattern H11, which involves the framework FD and deploys all of 

the mutational heuristics and the entire hill-climbers separately, performed significantly 

better then the rest of the hyperheuristic patterns on Foxhole and Griewangk functions. 

Foxhole and Griewangk are both highly multimodal benchmark functions. 

 

The hyperheuristic pattern H5, which deploys all the hill-climbers and SWPD 

mutational heuristic within the framework FB, performed significantly better then the rest 

of the hyperheuristic patterns on Rosenbrock Function. Rosenbrock Function is a unimodal 

benchmark function which involves flat surfaces in its search space. 

 

The hyperheuristic patterns H5 and H10 performed significantly better then the rest 

of the hyperheuristic patterns on Rotated Hyper-Ellipsoid Function, which is a unimodal 

benchmark function and involves flat surfaces in its search space. 
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The hyperheuristic patterns H5, H7, H8 and H10 performed significantly better then 

the rest of the hyperheuristic patterns on Quartic Function, which is a unimodal and 

dynamic benchmark function. 

 

The hyperheuristic patterns H3, H6, H7, H8, H9 and H10 performed significantly 

better then the rest of the hyperheuristic patterns on Ackley Function. The hyperheuristic 

patterns H1, H2, H3, H4, H5, H6, H7, H8 and H9 performed significantly better then the 

rest of the hyperheuristic patterns on Sphere Function.  

 

Table 3.5.  Hyperheuristic patterns – benchmark functions performance 

 

 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 

Sphere + + + + + + + + +   

Rosenbrock     +       

Step          +  

Quartic     +  + +  +  

Foxhole           + 

Rastrigin          +  

Schwefel          +  

Griewangk           + 

Ackley   +   + + + + +  

Easom          +  

Rotated H.     +     +  

Royal Road          +  

Goldberg          +  

Whitley          +  

 

Each heuristic selection method and acceptance criterion combination is run on each 

benchmark function 50 times. The runs where the global optimum of the benchmark 

function is found by the optimization method is considered to be successful. The average 

number of fitness evaluations to converge to global optimum is used as the performance 

criterion for the experiments with 100 per cent success rate. The average best fitness 
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reached is used as the performance criterion for the experiments with success rates lower 

than 100 per cent. The results are statistically evaluated using t-test with 95 per cent 

confidence level. The results for each benchmark function are presented in Appendix B.  

 

All heuristic selection methods except Greedy combined with the acceptance criteria 

OI and IE performed significantly better than the rest of the hyperheuristic combinations 

on Step, Rastrigin, Schwefel, Royal Road, Goldberg, and Whitley Functions. 

 

All heuristic selection methods except Greedy combined with the acceptance criteria 

OI and IE and the heuristic selection method Greedy combined with all acceptance criteria 

except OI performed significantly better than the rest of the hyperheuristic combinations 

on Rosenbrock and Easom Functions. 

 

The heuristic selection methods Simple Random, Random Descent, Random 

Permutation, Random Permutation Descent and Choice Function combined with the 

acceptance criteria OI and IE performed significantly better than the rest of the 

hyperheuristic combinations on Rotated Hyper-Ellipsoid Function.  

 

The heuristic selection method Choice Function combined with the acceptance 

criteria AM, Monte Carlo and Great Deluge performed significantly better than the rest of 

the hyperheuristic combinations on Griewangk Function.  

 

The heuristic selection methods Simple Random and Choice Function combined with 

all acceptance criteria and the heuristic selection method Random Permutation combined 

with the acceptance criteria OI, IE, and Monte Carlo performed significantly better than 

the rest of the hyperheuristic combinations on Sphere Function.  

 

All heuristic selection methods except Greedy combined with the acceptance 

criterion Monte Carlo and all heuristic selection methods except Random Permutation and 

Greedy combined with the acceptance criteria AM and Great Deluge performed 

significantly better than the rest of the hyperheuristic combinations on Foxhole Function. 
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All heuristic selection methods except Greedy combined with all acceptance criteria 

except AM and the heuristic selection method Greedy combined with all acceptance 

criteria except OI performed significantly better than the rest of the hyperheuristic 

combinations on Quartic Function. 

 

All hyperheuristic combinations except Random Permutation combined with the 

acceptance criteria AM and Great Deluge and the heuristic selection method Greedy 

combined with the acceptance criterion OI performed significantly better than the rest of 

the hyperheuristic combinations on Ackley Function.  
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4.  HYPERHEURISTICS FOR EXAMINATION TIMETABLING 
 

 

4.1.  Examination Timetabling 

 

Examination timetabling involves a search for a solution, where values from domains 

(timeslots) are assigned to all variables while satisfying all the constraints. Examination 

timetabling problem tackled in this thesis can be formulated as a linear integer program. 

The parameters, vectors and the matrices involved in the problem are presented in the 

Formula (4.1). The Formula (4.2) enforces that each exam is scheduled one and only one 

time. The student-exam clash constraint is stated in the Formula (4.3). The capacity 

constraint for each slot is expressed in the Formula (4.4). Another constraint enforces that 

there must be at least an empty slot between two exams taken by a student at a day. This 

constraint is expressed in the Formula (4.5). The number of constraint violations are used 

to calculate the evaluation function in the Formula (4.6). In this formula wi indicates the 

weight associated to the constraint i, gi indicates the number of violations of the constraint 

i. The value 0.4 is used as the weight for the constraints in the Formulae (4.3) and (4.4). 

The value 0.2 is used as the weight for the constraint in the Formula (4.5).  

 

M = number of slots 

N = number of exams 

C = total capacity for a slot  

                                                                

 

bj = number of students taking exam j 

cjk = number of students taking both exams j and k 
 

(4.1) 
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Burke et al. [27 and 28] applied a light or a heavy mutation, randomly selecting one, 

followed by a hill-climbing. Investigation of various combinations of Constraint 

Satisfaction Strategies with Genetic Algorithms for solving examination timetabling 

problems can be found in [29]. Paquete et al. [30] applied a Multiobjective Evolutionary 

Algorithm (MOEA) based on Pareto Ranking for solving the examination timetabling 

problem in the Unit of Exact and Human Sciences at University of Algarve. Two 

objectives were determined as to minimize the number of conflicts within the same group 

and between groups. Wong et al. [31] used a Genetic Algorithm utilizing a Non-Elitist 

Replacement Strategy to solve a single examination timetabling problem at École de 

Technologie Supérieure. After genetic operators were applied, violations were fixed in a 

hill-climbing procedure. 

  

Carter et al. [10] applied Different Heuristic Orderings based on Graph Coloring. 

Their experimental data became one of the commonly used benchmark examination 

timetabling problem instances. Gaspero and Schaerf [32] analyzed Tabu Search Approach 

using Graph Coloring based Heuristics. Merlot et al. [32] explored a hybrid approach for 

solving the examination timetabling problem that produces an initial feasible timetable via 

Constraint Programming, and then apply Simulated Annealing with Hill-Climbing to 

improve the solution. Petrovic et al. [34] introduced a Case Based Reasoning System to 

create initial solutions to be used by Great Deluge Algorithm.  Burke et al. [35] proposed a 

general and fast adaptive method that arranges the heuristic to be used for ordering exams 

to be scheduled next. Their algorithm produced comparable results on a benchmark of 

problems with the current state of the art. Özcan and Ersoy [36] used a Violation Directed 
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Adaptive Hill-Climber within a Memetic Algorithm to solve the examination timetabling 

problem at Yeditepe University, Faculty of Engineering and Architecture.  A Java tool 

named FES is introduced that utilizes XML as input/output format, proposed by Özcan in 

[37]. 

 

4.2.  Heuristics for Examination Timetabling 

 

Candidate solutions are encoded as an array of timeslots where the indices are final 

exams. Four heuristics are implemented to be used with hyperheuristics on examination 

timetabling problems. Three of these utilize tournament selection and assignment methods 

to improve the candidate solution, and the other one is a mutation operator. Each 

improving heuristic targets a different conflict. Heuristics which targets the conflicts stated 

Formulae (4.3) and (4.5) work in a similar way. They randomly choose a predetermined 

number of exams and select the exam with the highest number of targeted conflict among 

these. They randomly choose a predetermined number of timeslots and check the number 

of targeted conflicts if the exam was assigned to that timeslot. The timeslot with the 

minimum number of targeted conflict is then assigned to the selected exam.  

 

The heuristic which targets the capacity conflict randomly chooses a predetermined 

number of timeslots and selects the timeslot with the maximum capacity conflict violations 

among these. A predetermined number of exams that are scheduled to this timeslot are 

chosen randomly and the exam that has the most attendants is selected among these. A 

predetermined number of timeslots are chosen randomly and the timeslot with the 

minimum number of attendants among these is assigned to the selected exam. Mutational 

heuristic passes over each exam in the array and assigns a random timeslot to the exam 

with a predetermined probability (1/number of courses). 

 

4.3.  Experimental Data 

 

Hyperheuristic combinations are tested on Carter’s Benchmark and the examination 

timetabling problem data of Yeditepe University, Faculty of Engineering. Properties and 

parameters for each problem instance are presented in the Table 4.1. Three slots are 

allocated for each day.  
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The candidate solutions are arrays of integers. Each item in the array represents an 

exam and the value of the array is the timeslot assigned to that exam. So the candidate 

solutions have the length of the number of exams.  

 

Table 4.1.  Properties and parameters of the examination timetabling problem instances 

used in the experiments 

 

Instance Exams Students Enrollment Density Days Capacity 

Carf92 543 18419 54062 0.14 12 2000

Cars91 682 16925 59022 0.13 17 1550

Earf83 181 941 6029 0.27 8 350

Hecs92 81 2823 10634 0.20 6 650

Kfus93 486 5349 25118 0.06 7 1955

Lsef91 381 2726 10919 0.06 6 635

Purs93 2419 30032 120690 0.03 10 5000

Ryes93 486 11483 45051 0.07 8 2055

Staf83 139 611 5539 0.14 4 3024

Tres92 261 4360 14901 0.18 10 655

Utas92 622 21267 58981 0.13 12 2800

Utes92 184 2749 11796 0.08 3 1240

Yorf83 190 1125 8108 0.29 7 300

Yue20011 140 559 3488 0.14 6 450

Yue20012 158 591 3706 0.14 6 450

Yue20013 30 234 447 0.19 2 150

Yue20021 168 826 5757 0.16 7 550

Yue20022 187 896 5860 0.16 7 550

Yue20023 40 420 790 0.19 2 150

Yue20031 177 1125 6716 0.15 6 550

Yue20032 210 1185 6837 0.14 6 550
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4.4.  Experimental Results 

 

Each heuristic selection method and acceptance criterion combination is run on each 

problem instance 50 times. The average best fitness reached is used as the performance 

criterion for all experiments. The results for each benchmark function are presented in the 

Appendix C. There are two rows for each heuristic selection method and acceptance 

criterion combination in the tables in the Appendix C. The first row is the average value 

for the given performance criterion and the second row is the standard deviation for this 

average. The performances are evaluated statistically using t-test. Confidence interval is set 

to 95 per cent in t-test to determine significant performance variance. For each problem 

instance the heuristic selection method and acceptance criterion combinations which 

performed significantly better than the rest of the combinations are typed in boldface 

characters in the tables. 

 

The heuristic selection method Choice Function combined with the acceptance 

criterion Monte Carlo performed significantly better than the rest of the hyperheuristic 

combinations on Ear-f-83, Lse-f-91, Rye-s-93, Ute-s-91, Yor-f-83, Yue20022, Yue20031 

and Yue20032. The heuristic selection methods Choice Function and Random Descent 

combined with the acceptance criterion Monte Carlo performed significantly better than 

the rest of the hyperheuristic combinations on Yue20023. The heuristic selection methods 

Choice Function and Greedy combined with the acceptance criterion Monte Carlo 

performed significantly better than the rest of the hyperheuristic combinations on Hecs92.  

 

The heuristic selection method Simple Random combined with the acceptance 

criterion Great Deluge performed significantly better than the rest of the hyperheuristic 

combinations on Kfu-s-93, Tre-s-92, Yue20011, Yue20012 and Yue20021. The heuristic 

selection method Simple Random combined with the acceptance criterion IE performed 

significantly better than the rest of the hyperheuristic combinations on Pur-s-93. All 

heuristic selection methods combined with the acceptance criterion Monte Carlo performed 

significantly better than the rest of the hyperheuristic combinations on Yue20013. All 

heuristic selection methods combined with the acceptance criterion Monte Carlo and the 

heuristic selection method Simple Random combined with the acceptance criterion Great 
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Deluge performed significantly better than the rest of the hyperheuristic combinations on 

Sta-f-83.  

 

All heuristic selection methods except Greedy combined with the acceptance 

criterion IE performed significantly better than the rest of the hyperheuristic combinations 

on Uta-s-92. All heuristic selection methods except Simple Random and Greedy combined 

with the acceptance criterion IE performed significantly better than the rest of the 

hyperheuristic combinations on Car-s-91. All heuristic selection methods except Simple 

Random combined with the acceptance criteria IE and Monte Carlo and the heuristic 

selection method Simple Random combined with the acceptance criteria IE and Great 

Deluge performed significantly better than the rest of the hyperheuristic combinations on 

Car-f-92.  

 

Average best fitness values for best performing heuristic selection method and 

acceptance criterion combinations are provided in Table 4.2. If several hyperheuristics 

share the same ranking, than only one of them appears in the table, marked with *. 

Rankings are assigned to each hyperheuristic combination to indicate their performance 

variances on examination timetabling problems. The combinations that do not have 

significant performance variances according to the t-test are assigned the same ranking. 

The combinations with better performance are placed higher in the ranking and therefore 

lower ranking numbers indicate better performance. The rankings are given in the Table 

4.3. Seven combinations that have the top average rankings are presented in Figure 4.1.  
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Table 4.2.  Average best fitness values for the best performing heuristic selection method 

and acceptance criterion combinations on each problem instance 

 

Instance Average Best Fitness Standard Deviation Algorithm 

Carf92 -1.02E-02  1.18E-03 TABU_IE *

Cars91 -1.93E-01 1.20E-01 TABU_IE *

Earf83 -7.27E-03 4.94E-04 CF_MC

Hecs92 -2.19E-02 2.43E-03 CF_MC *

Kfus93 -3.40E-02  4.30E-03 SR_GD

Lsef91 -1.42E-02 1.38E-03 CF_MC

Purs93 -1.41E-03 6.98E-05 SR_IE

Ryes93 -1.08E-02 1.37E-03 CF_MC

Staf83 -2.68E-03 1.04E-05 SR_MC *

Tres92 -6.79E-02 1.08E-02 SR_GD

Utas92 -1.87E-02 1.79E-03 TABU_IE *

Utes92 -2.27E-03 8.64E-05 CF_MC

Yorf83 -8.32E-03 4.57E-04 CF_MC

Yue20011 -9.02E-02 1.07E-02 SR_GD

Yue20012 -7.54E-02  9.38E-03 SR_GD

Yue20013 -2.50E-01 0.00E+00 SR_MC *

Yue20021 -3.45E-02 4.55E-03 SR_GD

Yue20022 -1.26E-02 9.08E-04 CF_MC

Yue20023 -1.52E-02 2.69E-04 CF_MC *

Yue20031 -1.59E-02 1.65E-03 CF_MC

Yue20032 -5.42E-03 3.68E-04 CF_MC
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Table 4.3.  The performance rankings of each heuristic selection method and acceptance 

criterion combination on all problem instances 

(a) 

H.Heuristic Carf92 Cars91 Earf83 Hecs92 Kfus93 Lsef91 Purs93 

SR_AM 30.5 26.5 26.0 26.0 26.0 26.0 26.0

SR_OI 19.5 19.0 12.5 16.0 19.0 16.0 8.0

SR_IE 7.5 7.5 12.5 16.0 9.0 11.5 1.0

SR_MC 15.0 15.0 7.0 7.5 15.0 11.5 23.0

SR_GD 7.5 6.0 8.0 7.5 1.0 4.5 9.0

RD_AM 30.5 31.5 30.0 31.0 31.0 29.5 31.5

RD_OI 19.5 19.0 20.0 16.0 19.0 20.0 12.5

RD_IE 7.5 3.0 12.5 16.0 9.0 11.5 4.0

RD_MC 7.5 11.5 3.5 4.5 9.0 4.5 20.5

RD_GD 30.5 31.5 30.0 31.0 31.0 29.5 31.5

RP_AM 30.5 31.5 34.5 31.0 31.0 34.5 34.5

RP_OI 19.5 19.0 20.0 16.0 19.0 20.0 12.5

RP_IE 7.5 3.0 12.5 16.0 9.0 11.5 4.0

RP_MC 7.5 11.5 3.5 4.5 9.0 4.5 20.5

RP_GD 30.5 31.5 34.5 31.0 31.0 34.5 34.5

RPD_AM 30.5 31.5 30.0 31.0 31.0 29.5 31.5

RPD_OI 19.5 19.0 20.0 16.0 19.0 20.0 12.5

RPD_IE 7.5 3.0 12.5 16.0 9.0 11.5 4.0

RPD_MC 7.5 11.5 3.5 4.5 9.0 4.5 20.5

RPD_GD 30.5 31.5 30.0 31.0 31.0 29.5 31.5

CF_AM 30.5 26.5 30.0 31.0 31.0 33.5 27.0

CF_OI 19.5 19.0 20.0 16.0 19.0 20.0 12.5

CF_IE 7.5 3.0 12.5 16.0 9.0 11.5 4.0

CF_MC 7.5 9.0 1.0 1.5 3.0 1.0 16.5

CF_GD 19.5 19.0 20.0 16.0 19.0 20.0 12.5

TABU_AM 30.5 31.5 30.0 31.0 31.0 29.5 28.5

TABU_OI 19.5 19.0 20.0 16.0 19.0 20.0 12.5
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TABU_IE 7.5 3.0 12.5 16.0 9.0 11.5 4.0

TABU_MC 7.5 11.5 3.5 4.5 9.0 4.5 20.5

TABU_GD 30.5 31.5 30.0 31.0 31.0 29.5 28.5

GR_AM 24.5 24.5 24.0 24.5 24.5 24.5 24.5

GR_OI 19.5 23.0 20.0 16.0 23.0 20.0 16.5

GR_IE 7.5 7.5 12.5 16.0 9.0 11.5 7.0

GR_MC 7.5 14.0 6.0 1.5 2.0 4.5 18.0

GR_GD 24.5 24.5 25.0 24.5 24.5 24.5 24.5

(b) 

H.Heuristic Ryes93 Staf83 Tres92 Utas92 Utes92 Yorf83 Y011 

SR_AM 26.0 31.0 26.0 26.0 26.0 26.0 26.0

SR_OI 19.5 16.0 19.5 15.0 16.0 19.5 19.5

SR_IE 8.0 16.0 8.5 3.5 16.0 12.0 12.0

SR_MC 15.0 4.5 15.0 19.0 7.0 7.0 6.0

SR_GD 8.0 4.5 1.0 9.0 8.0 8.0 1.0

RD_AM 31.0 31.0 31.0 32.5 31.0 29.5 31.0

RD_OI 19.5 16.0 19.5 19.0 16.0 19.5 19.5

RD_IE 8.0 16.0 8.5 3.5 16.0 12.0 12.0

RD_MC 8.0 4.5 8.5 11.5 4.0 3.5 6.0

RD_GD 31.0 31.0 31.0 32.5 31.0 29.5 31.0

RP_AM 31.0 31.0 31.0 32.5 31.0 34.5 31.0

RP_OI 19.5 16.0 19.5 19.0 16.0 19.5 19.5

RP_IE 8.0 16.0 8.5 3.5 16.0 12.0 12.0

RP_MC 8.0 4.5 8.5 11.5 4.0 3.5 6.0

RP_GD 31.0 31.0 31.0 32.5 31.0 34.5 31.0

RPD_AM 31.0 31.0 31.0 32.5 31.0 29.5 31.0

RPD_OI 19.5 16.0 19.5 19.0 16.0 19.5 19.5

RPD_IE 8.0 16.0 8.5 3.5 16.0 12.0 12.0

RPD_MC 8.0 4.5 8.5 11.5 4.0 3.5 6.0

RPD_GD 31.0 31.0 31.0 32.5 31.0 29.5 31.0

CF_AM 31.0 26.0 31.0 27.0 31.0 33.0 31.0
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CF_OI 19.5 16.0 19.5 19.0 16.0 19.5 19.5

CF_IE 8.0 16.0 8.5 3.5 16.0 12.0 12.0

CF_MC 1.0 4.5 2.0 8.0 1.0 1.0 3.0

CF_GD 19.5 16.0 19.5 19.0 16.0 19.5 19.5

TABU_AM 31.0 31.0 31.0 28.5 31.0 29.5 31.0

TABU_OI 19.5 16.0 19.5 19.0 16.0 19.5 19.5

TABU_IE 8.0 16.0 8.5 3.5 16.0 12.0 12.0

TABU_MC 8.0 4.5 8.5 11.5 4.0 3.5 6.0

TABU_GD 31.0 31.0 31.0 28.5 31.0 29.5 31.0

GR_AM 24.5 24.5 24.5 24.5 24.5 24.5 24.5

GR_OI 19.5 16.0 19.5 23.0 16.0 19.5 19.5

GR_IE 8.0 16.0 8.5 7.0 16.0 12.0 12.0

GR_MC 8.0 4.5 8.5 14.0 4.0 6.0 2.0

GR_GD 24.5 24.5 24.5 24.5 24.5 24.5 24.5

(c) 

H.Heuristic Y012 Y013 Y021 Y022 Y023 Y031 Y032 

SR_AM 26.0 22.5 26.0 26.0 9.5 26.0 28.5

SR_OI 19.5 31.5 19.5 16.0 17.5 16.0 17.5

SR_IE 11.5 14.0 12.0 12.0 17.5 16.0 9.0

SR_MC 11.5 4.0 8.0 7.5 3.5 7.5 6.5

SR_GD 1.0 8.0 1.0 7.5 7.0 7.5 8.0

RD_AM 31.0 22.5 30.0 29.5 9.5 30.0 28.5

RD_OI 19.5 31.5 19.5 20.0 17.5 16.0 17.5

RD_IE 11.5 14.0 12.0 12.0 17.5 16.0 17.5

RD_MC 5.0 4.0 4.5 4.0 1.5 4.0 3.5

RD_GD 31.0 22.5 30.0 29.5 9.5 30.0 28.5

RP_AM 31.0 22.5 34.5 34.5 34.5 34.5 34.5

RP_OI 19.5 31.5 19.5 20.0 28.0 16.0 17.5

RP_IE 11.5 14.0 12.0 12.0 17.5 16.0 17.5

RP_MC 5.0 4.0 4.5 4.0 25.0 4.0 3.5

RP_GD 31.0 22.5 34.5 34.5 34.5 34.5 34.5
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RPD_AM 31.0 22.5 30.0 29.5 31.5 30.0 28.5

RPD_OI 19.5 31.5 19.5 20.0 28.0 16.0 17.5

RPD_IE 11.5 14.0 12.0 12.0 17.5 16.0 17.5

RPD_MC 5.0 4.0 4.5 4.0 25.0 4.0 3.5

RPD_GD 31.0 22.5 30.0 29.5 31.5 30.0 32.5

CF_AM 31.0 22.5 30.0 33.0 9.5 30.0 32.5

CF_OI 19.5 31.5 19.5 20.0 17.5 16.0 17.5

CF_IE 11.5 14.0 12.0 12.0 17.5 16.0 17.5

CF_MC 5.0 4.0 4.5 1.0 1.5 1.0 1.0

CF_GD 19.5 31.5 19.5 20.0 17.5 16.0 17.5

TABU_AM 31.0 22.5 30.0 29.5 31.5 30.0 28.5

TABU_OI 19.5 31.5 19.5 20.0 28.0 16.0 17.5

TABU_IE 11.5 14.0 12.0 12.0 17.5 16.0 17.5

TABU_MC 5.0 4.0 4.5 4.0 25.0 4.0 3.5

TABU_GD 31.0 22.5 30.0 29.5 31.5 30.0 28.5

GR_AM 24.5 9.5 24.5 24.5 5.5 24.5 17.5

GR_OI 19.5 31.5 19.5 20.0 17.5 16.0 17.5

GR_IE 11.5 14.0 12.0 12.0 17.5 16.0 17.5

GR_MC 2.0 4.0 4.5 4.0 3.5 4.0 6.5

GR_GD 24.5 9.5 24.5 24.5 5.5 24.5 17.5
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Figure 4.1.  Top seven heuristic selection method and acceptance criterion combinations 

considering  the average ranking 

 

These results show that the number of enrollment parameter is the key parameter 

when applying hyperheuristics to the examination timetabling problem. According to this 

parameter the examination timetabling problem instances can be divided into two groups. 

There are seventeen instances in the first group and three instances in the second group. 

The timetabling problem instance Car-f-92 is on the border between these two groups. First 

group consists of instances with total number of enrollments less or equal to 45051. 

Second group consists of instances with total number of enrollments greater or equal to 

58981. The timetabling instance Car-f-92 has 54062 enrollments. 

 

The heuristic selection method Choice Function combined with the acceptance 

criterion Monte Carlo performed significantly better than the rest of the hyperheuristic 

combinations on eight instances of the first group. The heuristic selection method Simple 

Random combined with the acceptance criterion Great Deluge performed significantly 

better than the rest of the hyperheuristic combinations on five instances of the first group. 

Various subsets of the heuristic selection methods combined with either acceptance criteria 

Monte Carlo or Great Deluge performed significantly better than the rest of the 

hyperheuristic combinations on four instances of the first group. 
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The heuristic selection method Simple Random combined with the acceptance 

criterion IE performed significantly better than the rest of the hyperheuristic combinations 

on Pur-s-93, which belongs to the second group and has the largest number of students, 

exams and enrollments in the whole set. Various subsets of the heuristic selection methods 

combined with the acceptance criterion IE performed significantly better than the rest of 

the hyperheuristic combinations on two instances of the second group. Various subsets of 

the heuristic selection methods combined with the acceptance criteria IE or Monte Carlo 

and the heuristic selection method Simple Random combined with the acceptance criterion 

Great Deluge performed significantly better than the rest of the hyperheuristic 

combinations on the instance Car-f-92. 

 

Since the same CPU time is given to all of the experiments it can be concluded that if 

enough CPU time is given to the heuristic selection method Choice Function with the 

acceptance criterion Monte Carlo or the heuristic selection method Simple Random 

combined with the acceptance criterion Great Deluge than they will perform significantly 

better then the rest of the hyperheuristic combinations on examination timetabling 

problem.   
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5.  CONCLUSIONS 
 

 

Although hyperheuristics are called “heuristics to choose heuristics” there is a 

second decisive step involved in them which is the acceptance of the candidate solution 

modified by the chosen heuristic. At the early stage of the research on hyperheuristics the 

focus was on the first step: the heuristic selection. Various heuristic selection methods have 

been developed and successfully applied to the real world problems. At these stage simple 

acceptance criteria AM and OI was used. However the focus of the research shifted from  

heuristic selection methods to acceptance criteria at recent work. Researchers deployed 

complex acceptance criteria in hyperheuristics combining them with the heuristic selection 

method Simple Random. The results showed that the choice of the acceptance criterion 

used in the hyperheuristics resulted in significant performance variances. 

 

The idea behind the work presented in this thesis was the choice of the heuristic 

selection method and acceptance criterion combination and the choice of heuristic set will 

produce performance variances on different optimization problems. The soundness of this 

statement is empirically evaluated. A hyperheuristic framework with seven heuristic 

selection methods and five acceptance criteria is implemented. As a result 35 

hyperheuristic combinations are ready to be applied to any optimization problem deploying 

any kind of heuristic set. All of the hyperheuristic combinations are applied to 14 

benchmark functions with different properties and 21 real world examination timetabling 

problem instances with various sizes from various institutions. 

 

The results of the experiments on benchmark functions yielded that various subsets 

of the heuristic selection methods combined with the acceptance criteria OI and IE 

performed well on nine benchmark functions. These functions consist of all of the discrete 

and deceptive functions, and various multimodal functions and unimodal functions with 

flat surfaces in the search space. The acceptance criteria OI and IE performed significantly 

better than the rest of the acceptance criteria on nine benchmark functions but there were 

two examples, Foxhole and Griewangk Functions, where they were significantly 

outperformed by the acceptance criteria AM, Monte Carlo and Great Deluge. Although the 

choice of the acceptance criterion was critical in the performance on eleven benchmark 
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functions the results on two examples, which are Griewangk and Sphere Functions, pointed 

out the importance of the heuristic selection methods.  

 

During the research three further hyperheuristic frameworks are proposed which 

utilize hill-climbers in their own specific ways. The contributions of mutational heuristics 

are also evaluated within two frameworks. As a result it is found out that hill-climbers 

alone do not perform well on benchmark functions. Different types of mutational heuristics 

are needed to escape the local optima of the benchmark functions. Different hyperheuristic 

frameworks performed better than the rest on different benchmark functions. This fact 

shows that each of the proposed frameworks is useful on specific types of problems.  

 

It is observed from the experimental results on the examination timetabling 

problem that the heuristic selection method Choice Function combined with the acceptance 

criterion Monte Carlo and the heuristic selection method Simple Random combined with 

the acceptance criterion Great Deluge performs better then the rest of the hyperheuristic 

combinations on most of the examination timetabling problems. However the number of 

enrollment parameter is very important when applying the hyperheuristics to the 

examination timetabling problem. The hyperheuristic combinations mentioned in this 

paragraph were not among the top performers on the problem instances with higher 

number of enrollments. This fact leads to the conclusion that the problem instances with 

higher number of enrollments might require more execution time.  

 

The experimental results on both the benchmark functions and examination 

timetabling problem instances supported the statement that there will be significant 

performance variances between different heuristic selection methods combined with 

different acceptance criteria applied on different problems and even on different instances 

of the same type of problems. Therefore the knowledge of hyperheuristic combination 

performances on specific types of optimization problems and even on specific types of 

instances is critical for successful applications. In this thesis the performance of 35 such 

hyperheuristic combinations are evaluated on 14 benchmark functions and 21 examination 

timetabling problem instances. The results are presented and generalized. Future work may 

involve development and implementation of further heuristic selection methods and 
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acceptance criteria and the performance evaluations of the resulting hyperheuristic 

combinations on different optimization problems.  
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APPENDIX A:  EXPERIMENTAL RESULTS TABLES OF 

HYPERHEURISTICS PATTERNS ON BENCHMARK FUNCTIONS 
 

 

Results of performance evaluations of hyperheuristic patterns H1 – H11 are given 

in Table A.1 - Table A.14. Two columns are given for each: “Average Best Fitness 

Obtained” and “Average Number of Evaluations to Converge”. The mean value is given in 

the first column and the standard deviation in the second column. The runs where the 

global optimum of the benchmark function is found by the optimization method is 

considered to be successful. “S. R.” stands for the ratio of successful runs to all runs. The 

performance criterion is the “Average Number of Evaluations to Convergence” where at 

least one hyperheuristic pattern converges to the global optimum. If non of the 

hyperheuristic patterns converged to the global optimum the performance criterion is the 

“Average Best Fitness”. The results of the experiments are statistically evaluated using t-

test with 95 per cent confidence level. The hyperheuristic patterns which perform 

significantly better then the rest of the hyperheuristic patterns are highlighted using 

boldface characters. 
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Table A.1.  Results of performance evaluations of hyperheuristic patterns on Sphere 

Function 

 
 Average Best Fitness Average Num. of Eval. S. R. 

H1 0.00E+00 0.00E+00 1.46E+03 4.37E+02 100.00% 

H2 0.00E+00 0.00E+00 1.48E+03 5.61E+02 100.00% 

H3 0.00E+00 0.00E+00 1.55E+03 5.38E+02 100.00% 

H4 0.00E+00 0.00E+00 1.53E+03 5.55E+02 100.00% 

H5 0.00E+00 0.00E+00 1.49E+03 5.07E+02 100.00% 

H6 0.00E+00 0.00E+00 1.53E+03 4.60E+02 100.00% 

H7 0.00E+00 0.00E+00 1.62E+03 4.99E+02 100.00% 

H8 0.00E+00 0.00E+00 1.73E+03 5.80E+02 100.00% 

H9 0.00E+00 0.00E+00 1.44E+03 5.67E+02 100.00% 

H10 0.00E+00 0.00E+00 1.08E+04 1.15E+03 100.00% 

H11 0.00E+00 0.00E+00 4.06E+03 3.18E+03 100.00% 

 

 

Table A.2.  Results of performance evaluations of hyperheuristic patterns on Rosenbrock 

Function 

 

 Average Best Fitness Average Num. of Eval. S. R. 

H1 1.70E-12 4.61E-14 - - 0.00% 

H2 1.70E-12 5.90E-14 - - 0.00% 

H3 1.70E-12 4.70E-14 - - 0.00% 

H4 1.70E-12 4.96E-14 - - 0.00% 

H5 4.03E-28 0.00E+00 1.43E+07 7.18E+06 100.00% 

H6 1.70E-12 6.23E-14 - - 0.00% 

H7 1.70E-12 4.13E-14 - - 0.00% 

H8 2.03E-15 1.27E-14 - - 90.00% 

H9 1.71E-12 4.30E-14 - - 0.00% 

H10 4.03E-28 0.00E+00 2.20E+07 5.40E+06 100.00% 

H11 3.16E-03 2.60E-03 - - 0.00% 
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Table A.3. Results of performance evaluations of hyperheuristic patterns on Step Function 

 

 Average Best Fitness Average Num. of Eval. S. R. 

H1 1.05E+01 2.89E+00 - - 0.00% 

H2 1.11E+01 3.02E+00 - - 0.00% 

H3 0.00E+00 0.00E+00 6.83E+05 3.58E+05 100.00% 

H4 1.06E+01 2.95E+00 - - 0.00% 

H5 1.05E+01 3.23E+00 - - 0.00% 

H6 0.00E+00 0.00E+00 2.51E+05 1.33E+05 100.00% 

H7 3.76E+00 9.71E-01 - - 0.00% 

H8 0.00E+00 0.00E+00 3.24E+05 1.24E+05 100.00% 

H9 0.00E+00 0.00E+00 7.88E+05 5.46E+05 100.00% 

H10 0.00E+00 0.00E+00 1.36E+05 5.92E+04 100.00% 

H11 5.20E-01 5.00E-01 - - 48.00% 

 

 

Table A.4.  Results of performance evaluations of hyperheuristic patterns on Quartic 

Function 

 

 Average Best Fitness Average Num. of Eval. S. R. 

H1 1.78E+00 7.76E-01 - - 8.00% 

H2 1.89E+00 7.78E-01 - - 0.00% 

H3 1.53E+00 4.16E-01 - - 8.00% 

H4 1.65E+00 5.93E-01 - - 12.00% 

H5 1.33E+00 3.04E-01 - - 12.00% 

H6 1.55E+00 4.27E-01 - - 4.00% 

H7 1.24E+00 2.57E-01 - - 18.00% 

H8 1.20E+00 2.70E-01 - - 26.00% 

H9 1.52E+00 4.71E-01 - - 6.00% 

H10 1.18E+00 1.40E-01 - - 8.00% 

H11 1.47E+00 1.48E-01 - - 4.00% 
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Table A.5.  Results of performance evaluations of hyperheuristic patterns on Foxhole 

Function 

 

 Average Best Fitness Average Num. of Eval. S. R. 

H1 3.66E+00 2.53E+00 - - 0.00% 

H2 2.32E+00 1.90E+00 - - 6.00% 

H3 9.98E-01 6.75E-16 - - 12.00% 

H4 9.98E-01 6.97E-16 - - 4.00% 

H5 2.07E+00 1.68E+00 - - 0.00% 

H6 9.98E-01 3.12E-16 - - 34.00% 

H7 9.98E-01 7.54E-15 - - 4.00% 

H8 9.98E-01 2.85E-16 - - 46.00% 

H9 9.98E-01 8.01E-16 - - 14.00% 

H10 9.98E-01 2.75E-16 - - 40.00% 

H11 9.98E-01 1.11E-16 1.39E+05 1.07E+05 100.00% 

 

Table A.6.  Results of performance evaluations of hyperheuristic patterns on Rastrigin 

Function 

 

 Average Best Fitness Average Num. of Eval. S. R. 

H1 2.36E+01 5.97E+00 - - 0.00% 

H2 2.31E+01 4.56E+00 - - 0.00% 

H3 0.00E+00 0.00E+00 2.28E+06 9.62E+05 100.00% 

H4 2.24E+01 4.79E+00 - - 0.00% 

H5 2.30E+01 5.81E+00 - - 0.00% 

H6 0.00E+00 0.00E+00 3.88E+05 1.69E+05 100.00% 

H7 6.25E+00 1.44E+00 - - 0.00% 

H8 0.00E+00 0.00E+00 5.33E+05 2.11E+05 100.00% 

H9 0.00E+00 0.00E+00 2.33E+06 1.40E+06 100.00% 

H10 0.00E+00 0.00E+00 2.52E+05 1.17E+05 100.00% 

H11 2.51E+00 5.59E-01 - - 0.00% 
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Table A.7.  Results of performance evaluations of hyperheuristic patterns on Schwefel 

Function 

 

 Average Best Fitness Average Num. of Eval. S. R. 

H1 1.48E+03 4.12E+02 - - 0.00% 

H2 1.39E+03 3.79E+02 - - 0.00% 

H3 1.27E-04 1.27E-13 - - 98.00% 

H4 1.19E+03 2.75E+02 - - 0.00% 

H5 1.48E+03 3.42E+02 - - 0.00% 

H6 1.27E-04 0.00E+00 1.57E+05 6.75E+04 100.00% 

H7 2.09E+02 2.09E+02 - - 2.00% 

H8 1.27E-04 0.00E+00 1.98E+05 1.09E+05 100.00% 

H9 1.27E-04 0.00E+00 6.08E+05 2.88E+05 100.00% 

H10 1.27E-04 0.00E+00 9.81E+04 4.34E+04 100.00% 

H11 1.66E+01 4.11E+01 - - 82.00% 

 

 

Table A.8.  Results of performance evaluations of hyperheuristic patterns on Griewangk 

Function 

 
 Average Best Fitness Average Num. of Eval. S. R. 

H1 5.87E-01 1.11E+00 - - 4.00% 

H2 9.32E-01 1.63E+00 - - 4.00% 

H3 5.19E-02 2.38E-02 - - 4.00% 

H4 5.42E-01 5.44E-01 - - 6.00% 

H5 0.00E+00 0.00E+00 4.34E+06 2.79E+06 100.00% 

H6 1.03E-02 5.42E-03 - - 12.00% 

H7 4.54E-01 3.92E-01 - - 4.00% 

H8 0.00E+00 0.00E+00 4.88E+06 3.91E+06 100.00% 

H9 5.04E-02 2.72E-02 - - 4.00% 

H10 0.00E+00 0.00E+00 2.37E+06 1.52E+06 100.00% 

H11 0.00E+00 0.00E+00 2.95E+05 2.87E+05 100.00% 
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Table A.9.  Results of performance evaluations of hyperheuristic patterns on Ackley 

Function 

 

 Average Best Fitness Average Num. of Eval. S. R. 

H1 4.32E+00 7.74E+00 - - 76.00% 

H2 5.44E+00 8.33E+00 - - 70.00% 

H3 2.89E-14 0.00E+00 9.35E+03 1.88E+04 100.00% 

H4 2.51E-01 1.75E+00 - - 98.00% 

H5 4.00E+00 7.58E+00 - - 78.00% 

H6 2.89E-14 0.00E+00 4.00E+03 4.16E+03 100.00% 

H7 2.89E-14 0.00E+00 1.08E+04 3.44E+04 100.00% 

H8 2.89E-14 0.00E+00 3.02E+03 2.45E+03 100.00% 

H9 2.89E-14 0.00E+00 5.79E+03 1.02E+04 100.00% 

H10 2.89E-14 0.00E+00 1.10E+04 1.69E+03 100.00% 

H11 2.89E-14 0.00E+00 2.20E+04 2.00E+04 100.00% 

 

Table A.10.  Results of performance evaluations of hyperheuristic patterns on Easom 

Function 

 
 Average Best Fitness Average Num. of Eval. S. R. 

H1 0.00E+00 0.00E+00 - - 0.00% 

H2 0.00E+00 0.00E+00 - - 0.00% 

H3 -6.00E-02 2.37E-01 - - 6.00% 

H4 -2.00E-02 1.40E-01 - - 2.00% 

H5 0.00E+00 0.00E+00 - - 0.00% 

H6 -1.00E+00 9.99E-16 6.66E+06 5.94E+06 100.00% 

H7 -2.01E-02 1.40E-01 - - 2.00% 

H8 -1.00E+00 9.99E-16 4.16E+06 3.13E+06 100.00% 

H9 -3.08E-05 3.94E-05 - - 0.00% 

H10 -1.00E+00 9.99E-16 1.71E+06 1.16E+06 100.00% 

H11 -4.07E-01 4.64E-01 - - 34.00% 
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Table A.11.  Results of performance evaluations of hyperheuristic patterns on Rotated 

Hyper-Ellipsoid Function 

 

 Average Best Fitness Average Num. of Eval. S. R. 

H1 1.48E-12 5.23E-13 - - 0.00% 

H2 1.36E-12 6.02E-13 - - 0.00% 

H3 1.67E-12 4.22E-13 - - 0.00% 

H4 1.58E-12 5.80E-13 - - 0.00% 

H5 7.78E-26 0.00E+00 2.48E+05 7.52E+04 100.00% 

H6 1.70E-12 6.22E-13 - - 0.00% 

H7 1.58E-12 5.55E-13 - - 0.00% 

H8 7.78E-26 0.00E+00 3.58E+05 1.23E+05 100.00% 

H9 1.31E-12 5.32E-13 - - 0.00% 

H10 7.78E-26 0.00E+00 2.41E+05 5.04E+04 100.00% 

H11 4.26E+01 1.88E+01 - - 0.00% 

 

Table A.12.  Results of performance evaluations of hyperheuristic patterns on Royal Road 

Function 

 

 Average Best Fitness Average Num. of Eval. S. R. 

H1 7.76E+00 4.72E-01 - - 0.00% 

H2 7.76E+00 4.72E-01 - - 0.00% 

H3 0.00E+00 0.00E+00 1.61E+05 6.89E+04 100.00% 

H4 4.24E+00 5.12E-01 - - 0.00% 

H5 7.76E+00 4.72E-01 - - 0.00% 

H6 0.00E+00 0.00E+00 2.06E+05 9.74E+04 100.00% 

H7 2.96E+00 1.96E-01 - - 0.00% 

H8 0.00E+00 0.00E+00 2.46E+05 9.46E+04 100.00% 

H9 0.00E+00 0.00E+00 1.62E+05 6.63E+04 100.00% 

H10 0.00E+00 0.00E+00 1.14E+05 5.53E+04 100.00% 

H11 2.82E+00 3.84E-01 - - 0.00% 
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Table A.13.  Results of performance evaluations of hyperheuristic patterns on Goldberg 

Function 

 

 Average Best Fitness Average Num. of Eval. S. R. 

H1 4.20E+01 5.62E+00 - - 0.00% 

H2 4.14E+01 6.47E+00 - - 0.00% 

H3 0.00E+00 0.00E+00 3.19E+05 8.87E+04 100.00% 

H4 4.07E+01 7.28E+00 - - 0.00% 

H5 4.22E+01 5.05E+00 - - 0.00% 

H6 0.00E+00 0.00E+00 2.05E+05 5.57E+04 100.00% 

H7 2.04E+01 1.61E+00 - - 0.00% 

H8 0.00E+00 0.00E+00 2.73E+05 9.73E+04 100.00% 

H9 0.00E+00 0.00E+00 3.84E+05 1.35E+05 100.00% 

H10 0.00E+00 0.00E+00 1.02E+05 3.91E+04 100.00% 

H11 1.96E+01 1.42E+00 - - 0.00% 

 

Table A.14.  Results of performance evaluations of hyperheuristic patterns on Whitley 

Function 

 
 Average Best Fitness Average Num. of Eval. S. R. 

H1 9.96E+00 1.30E+00 - - 0.00% 

H2 1.02E+01 1.74E+00 - - 0.00% 

H3 0.00E+00 0.00E+00 3.44E+04 1.15E+04 100.00% 

H4 1.56E+00 9.20E-01 - - 24.00% 

H5 1.01E+01 1.72E+00 - - 0.00% 

H6 0.00E+00 0.00E+00 1.73E+04 9.05E+03 100.00% 

H7 0.00E+00 0.00E+00 2.97E+07 3.02E+07 100.00% 

H8 0.00E+00 0.00E+00 1.49E+04 9.34E+03 100.00% 

H9 0.00E+00 0.00E+00 3.33E+04 1.28E+04 100.00% 

H10 0.00E+00 0.00E+00 7.90E+03 5.18E+03 100.00% 

H11 0.00E+00 0.00E+00 6.73E+06 5.96E+06 100.00% 
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APPENDIX B:  EXPERIMENTAL RESULTS TABLES AND 

GRAPHICS OF HYPERHEURISTICS ON BENCHMARK 

FUNCTIONS 
 

 

Results of performance evaluations of hyperheuristic algorithms composed of 

various heuristic selection methods and acceptance criteria are given in Table B.1 - Table 

B.14. Two rows are given for each algorithm. The mean value is given in the first row and 

the standard deviation in the second row. The runs where the global optimum of the 

benchmark function is found by the optimization method is considered to be successful. 

The performance criterion is the “Average Number of Evaluations to Convergence” where 

at least one hyperheuristic pattern converges to the global optimum. If non of the 

hyperheuristic patterns converged to the global optimum the performance criterion is the 

“Average Best Fitness”. The results of the experiments are statistically evaluated using t-

test with 95 per cent confidence level. The hyperheuristic algorithms which perform 

significantly better then the rest of the hyperheuristic algorithms are highlighted using 

boldface characters. NC stands for “Not Converged” throughout the tables. 
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Table B.1.  Average number of fitness evaluations to convergence for Sphere Function 

 

 AM OI IE MC GD 

2.86E+03 2.15E+03 2.15E+03 2.69E+03 2.86E+03 
SR 

2.65E+03 1.38E+03 1.38E+03 2.04E+03 2.65E+03 

5.61E+03 4.74E+03 4.74E+03 5.31E+03 5.61E+03 
RD 

2.94E+03 2.54E+03 2.54E+03 3.72E+03 2.94E+03 

6.95E+03 1.55E+03 1.55E+03 2.62E+03 6.95E+03 
RP 

2.83E+04 3.67E+02 3.67E+02 2.06E+03 2.83E+04 

5.18E+03 4.64E+03 4.64E+03 5.75E+03 5.18E+03 
RPD 

2.37E+03 2.42E+03 2.42E+03 2.41E+03 2.37E+03 

2.19E+03 1.76E+03 1.58E+03 1.75E+03 2.02E+03 
CF 

9.10E+02 5.77E+02 5.09E+02 5.63E+02 9.30E+02 

5.73E+03 5.11E+03 5.11E+03 4.84E+03 5.73E+03 
TABU 

2.58E+03 2.36E+03 2.36E+03 2.50E+03 2.58E+03 

6.80E+03 6.80E+03 6.80E+03 6.80E+03 6.80E+03 
GR 

3.01E+03 3.01E+03 3.01E+03 3.01E+03 3.01E+03 
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Figure B.1.  Average number of fitness evaluations to convergence for Sphere Function 
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Table B.2.  Average best fitness values for Rosenbrock Function 

 
 AM OI IE MC GD 

3.52E-05 5.38E-17 5.88E-16 1.04E-05 6.28E-06 
SR 

4.40E-05 3.77E-16 3.03E-15 1.64E-05 1.05E-05 

7.95E-13 1.79E-15 1.79E-15 5.96E-13 5.83E-13 
RD 

5.57E-13 1.18E-14 1.18E-14 4.60E-13 5.04E-13 

8.77E-03 3.44E-16 1.85E-15 1.11E-04 2.13E-04 
RP 

6.48E-03 1.13E-15 1.09E-14 2.09E-04 4.92E-04 

1.25E-12 4.74E-16 2.66E-16 1.07E-12 1.02E-12 
RPD 

5.72E-13 1.57E-15 1.53E-15 5.53E-13 6.85E-13 

5.50E-07 1.28E-16 1.82E-16 3.28E-07 3.81E-07 
CF 

6.68E-07 8.98E-16 9.67E-16 4.73E-07 5.59E-07 

5.22E-13 2.57E-16 2.57E-16 3.47E-13 3.60E-13 
TABU 

4.21E-13 1.26E-15 1.26E-15 2.95E-13 3.97E-13 

2.04E-16 1.50E-12 5.38E-17 1.50E-16 7.26E-16 
GR 

8.42E-16 4.39E-13 3.77E-16 7.64E-16 3.13E-15 
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Figure B.2.  Average best fitness values for Rosenbrock Function 
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Table B.3.  Average number of fitness evaluations to convergence for Step Function 

 

 AM OI IE MC GD 

NC 4.34E+05 3.27E+05 NC 4.12E+07 
SR 

NC 2.22E+05 1.94E+05 NC 5.01E+06 

NC 3.81E+05 2.81E+05 NC 4.16E+07 
RD 

NC 1.75E+05 1.54E+05 NC 9.01E+05 

NC 4.34E+05 2.98E+05 NC 4.21E+07 
RP 

NC 2.16E+05 1.38E+05 NC 1.06E+06 

NC 4.17E+05 3.27E+05 NC 4.12E+07 
RPD 

NC 2.68E+05 1.52E+05 NC 3.62E+06 

NC 3.88E+05 2.90E+05 NC 4.15E+07 
CF 

NC 2.12E+05 1.25E+05 NC 1.43E+06 

NC 3.93E+05 3.00E+05 NC 4.14E+07 
TABU 

NC 1.88E+05 1.68E+05 NC 1.00E+06 

6.75E+05 NC 6.75E+05 6.04E+05 6.75E+05 
GR 

2.70E+05 NC 2.70E+05 2.56E+05 2.70E+05 
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Figure B.3.  Average number of fitness evaluations to convergence for Step Function 
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Table B.4.  Average best fitness values for Quatic Function 

 

 AM OI IE MC GD 

1.50E+00 1.25E+00 1.20E+00 1.31E+00 1.20E+00 
SR 

1.32E-01 2.34E-01 2.63E-01 1.33E-01 1.57E-01 

1.41E+00 1.25E+00 1.21E+00 1.30E+00 1.18E+00 
RD 

1.44E-01 2.60E-01 2.10E-01 1.08E-01 1.56E-01 

1.55E+00 1.22E+00 1.25E+00 1.30E+00 1.20E+00 
RP 

1.60E-01 2.58E-01 1.65E-01 1.58E-01 1.64E-01 

1.49E+00 1.24E+00 1.21E+00 1.28E+00 1.19E+00 
RPD 

1.40E-01 2.03E-01 2.17E-01 1.08E-01 1.32E-01 

1.45E+00 1.22E+00 1.21E+00 1.30E+00 1.17E+00 
CF 

1.32E-01 2.15E-01 2.23E-01 1.22E-01 1.74E-01 

1.39E+00 1.19E+00 1.20E+00 1.26E+00 1.18E+00 
TABU 

1.37E-01 1.88E-01 2.16E-01 1.35E-01 1.40E-01 

1.26E+00 1.87E+00 1.30E+00 1.23E+00 1.26E+00 
GR 

2.49E-01 6.20E-01 2.54E-01 2.23E-01 2.16E-01 
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Figure B.4.  Average best fitness values for Quartic Function 
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Table B.5.  Average number of fitness evaluations to convergence for Foxhole Function 

 

 AM OI IE MC GD 

4.72E+04 NC NC 4.09E+04 4.61E+04 
SR 

4.42E+04 NC NC 4.04E+04 4.31E+04 

4.44E+04 NC NC 3.18E+04 3.94E+04 
RD 

3.86E+04 NC NC 2.95E+04 3.28E+04 

1.04E+05 NC NC 5.55E+04 1.09E+05 
RP 

1.40E+05 NC NC 6.49E+04 1.69E+05 

3.40E+04 NC NC 5.36E+04 3.31E+04 
RPD 

3.54E+04 NC NC 7.07E+04 3.40E+04 

2.63E+04 NC NC 3.82E+04 3.37E+04 
CF 

2.58E+04 NC NC 3.82E+04 3.25E+04 

4.94E+04 NC NC 4.63E+04 4.52E+04 
TABU 

4.04E+04 NC NC 4.05E+04 4.31E+04 

NC NC NC NC NC 
GR 

NC NC NC NC NC 
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Figure B.5.  Average number of fitness evaluations to convergence for Foxhole Function 
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Table B.6.  Average number of fitness evaluations to convergence for Rastrigin Function 

 

 AM OI IE MC GD 

NC 4.69E+05 5.11E+05 NC NC 
SR 

NC 2.07E+05 2.25E+05 NC NC 

NC 4.56E+05 4.49E+05 NC NC 
RD 

NC 2.39E+05 1.76E+05 NC NC 

NC 4.79E+05 4.66E+05 NC NC 
RP 

NC 2.05E+05 2.09E+05 NC NC 

NC 4.82E+05 4.76E+05 NC NC 
RPD 

NC 1.84E+05 2.07E+05 NC NC 

NC 4.53E+05 4.82E+05 NC NC 
CF 

NC 2.03E+05 2.06E+05 NC NC 

NC 4.59E+05 4.98E+05 NC NC 
TABU 

NC 1.46E+05 2.30E+05 NC NC 

8.37E+05 NC 8.37E+05 8.72E+05 8.37E+05 
GR 

2.88E+05 NC 2.88E+05 3.39E+05 2.88E+05 
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Figure B.6.  Average number of fitness evaluations to convergence for Rastrigin Function 
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Table B.7.  Average number of fitness evaluations to convergence for Schwefel Function 

 

 AM OI IE MC GD 

NC 1.60E+05 1.68E+05 3.78E+07 3.56E+07 
SR 

NC 1.04E+05 1.07E+05 3.41E+06 2.23E+06 

NC 1.47E+05 1.72E+05 4.02E+07 3.75E+07 
RD 

NC 7.67E+04 9.38E+04 3.35E+06 2.17E+06 

NC 1.51E+05 1.68E+05 3.67E+07 3.34E+07 
RP 

NC 7.17E+04 7.84E+04 6.75E+06 4.97E+06 

NC 1.76E+05 1.78E+05 3.95E+07 3.70E+07 
RPD 

NC 8.07E+04 9.35E+04 7.28E+06 5.20E+06 

NC 1.73E+05 1.57E+05 3.74E+07 3.45E+07 
CF 

NC 8.29E+04 7.60E+04 8.12E+06 6.57E+06 

NC 1.35E+05 1.95E+05 3.91E+07 3.51E+07 
TABU 

NC 5.59E+04 1.00E+05 2.50E+06 3.01E+06 

2.64E+05 NC 2.64E+05 3.11E+05 2.64E+05 
GR 

1.48E+05 NC 1.48E+05 1.55E+05 1.48E+05 
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Figure B.7.  Average number of fitness evaluations to convergence for Schwefel Function 
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Table B.8.  Average number of fitness evaluations to convergence for Griewangk Function 

 
 AM OI IE MC GD 

3.64E+05 5.72E+06 5.72E+06 4.40E+05 3.64E+05 
SR 

2.88E+05 5.16E+06 5.16E+06 4.61E+05 2.88E+05 

8.36E+05 6.03E+06 6.03E+06 6.92E+05 8.36E+05 
RD 

6.98E+05 5.03E+06 5.03E+06 7.06E+05 6.98E+05 

6.30E+05 5.15E+06 5.15E+06 5.10E+05 6.30E+05 
RP 

1.83E+06 4.02E+06 4.02E+06 7.05E+05 1.83E+06 

7.60E+05 4.23E+06 4.23E+06 1.05E+06 7.60E+05 
RPD 

9.03E+05 3.20E+06 3.20E+06 1.36E+06 9.03E+05 

2.21E+05 5.29E+06 4.65E+06 1.71E+05 1.86E+05 
CF 

2.00E+05 3.90E+06 3.33E+06 1.09E+05 1.40E+05 

9.85E+05 5.27E+06 5.27E+06 1.08E+06 9.85E+05 
TABU 

8.69E+05 5.10E+06 5.10E+06 9.06E+05 8.69E+05 

4.36E+06 NC 4.36E+06 4.83E+06 4.36E+06 
GR 

3.58E+06 NC 3.58E+06 3.45E+06 3.58E+06 
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Figure B.8.  Average number of fitness evaluations to convergence for Griewangk 

Function 
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Table B.9.  Average number of fitness evaluations to convergence for Ackley Function 

 

 AM OI IE MC GD 

7.25E+03 3.17E+03 3.17E+03 4.69E+03 7.25E+03 
SR 

6.39E+03 1.60E+03 1.60E+03 3.59E+03 6.39E+03 

7.37E+03 5.45E+03 6.10E+03 6.55E+03 7.37E+03 
RD 

4.86E+03 3.69E+03 4.39E+03 4.40E+03 4.86E+03 

1.03E+06 3.43E+03 3.01E+03 4.26E+03 3.01E+05 
RP 

4.31E+06 2.74E+03 1.28E+03 2.25E+03 8.02E+05 

7.96E+03 5.54E+03 6.08E+03 7.27E+03 7.96E+03 
RPD 

6.88E+03 3.55E+03 3.59E+03 5.48E+03 6.88E+03 

4.82E+03 3.15E+03 2.80E+03 3.80E+03 5.56E+03 
CF 

3.25E+03 2.09E+03 1.20E+03 2.72E+03 3.86E+03 

7.68E+03 6.75E+03 6.44E+03 8.58E+03 7.68E+03 
TABU 

6.83E+03 4.10E+03 4.79E+03 6.47E+03 6.83E+03 

9.18E+03 NC 9.18E+03 9.18E+03 9.18E+03 
GR 

3.69E+03 NC 3.69E+03 3.54E+03 3.69E+03 
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Figure B.9.  Average number of fitness evaluations to convergence for Ackley Function 
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Table B.10.  Average number of fitness evaluations to convergence for Easom Function 

 

 AM OI IE MC GD 

NC 5.12E+06 3.63E+06 NC NC 
SR 

NC 3.55E+06 2.41E+06 NC NC 

NC 5.12E+06 3.51E+06 NC NC 
RD 

NC 3.70E+06 2.40E+06 NC NC 

NC 5.25E+06 4.37E+06 NC NC 
RP 

NC 3.76E+06 3.45E+06 NC NC 

NC 5.41E+06 3.52E+06 NC NC 
RPD 

NC 3.90E+06 2.82E+06 NC NC 

NC 4.60E+06 2.94E+06 NC NC 
CF 

NC 4.14E+06 2.51E+06 NC NC 

NC 5.94E+06 3.78E+06 NC NC 
TABU 

NC 4.02E+06 3.10E+06 NC NC 

8.17E+06 NC 8.17E+06 7.27E+06 8.17E+06 
GR 

5.43E+06 NC 5.43E+06 5.42E+06 5.43E+06 
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Figure B.10.  Average number of fitness evaluations to convergence for Easom Function 
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Table B.11.  Average number of fitness evaluations to convergence for Rotated Hyper-

Ellipsoid Function 

 

 AM OI IE MC GD 

NC 3.58E+05 3.23E+05 NC NC 
SR 

NC 1.21E+05 9.26E+04 NC NC 

NC 3.10E+05 2.97E+05 NC NC 
RD 

NC 1.26E+05 1.32E+05 NC NC 

NC 3.51E+05 3.43E+05 NC NC 
RP 

NC 1.29E+05 1.44E+05 NC NC 

NC 2.94E+05 2.80E+05 NC NC 
RPD 

NC 1.02E+05 1.04E+05 NC NC 

NC 3.24E+05 3.23E+05 NC NC 
CF 

NC 1.16E+05 1.55E+05 NC NC 

NC NC NC NC NC 
TABU 

NC NC NC NC NC 

5.04E+05 NC 5.04E+05 4.77E+05 5.04E+05 
GR 

1.07E+05 NC 1.07E+05 9.33E+04 1.07E+05 
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Figure B.11.  Average number of fitness evaluations to convergence for Rotated Hyper-

Ellipsoid Function 
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Table B.12.  Average number of fitness evaluations to convergence for Royal Road 

Function 

 

 AM OI IE MC GD 

NC 2.21E+05 2.06E+05 3.47E+08 2.08E+08 
SR 

NC 1.06E+05 9.28E+04 1.36E+06 1.50E+07 

NC 2.23E+05 2.25E+05 3.44E+08 2.20E+08 
RD 

NC 1.15E+05 1.17E+05 2.22E+06 8.97E+06 

NC 2.39E+05 2.19E+05 3.46E+08 2.15E+08 
RP 

NC 1.23E+05 1.09E+05 1.37E+06 1.14E+07 

NC 2.21E+05 2.19E+05 3.43E+08 2.15E+08 
RPD 

NC 1.36E+05 1.27E+05 2.01E+06 1.44E+07 

NC 2.18E+05 2.44E+05 3.09E+08 2.12E+08 
CF 

NC 1.21E+05 1.20E+05 2.38E+06 1.30E+07 

NC 2.22E+05 2.28E+05 3.49E+08 2.19E+08 
TABU 

NC 9.99E+04 9.81E+04 2.38E+06 1.27E+07 

4.57E+05 NC 4.57E+05 4.71E+05 NC 
GR 

1.84E+05 NC 1.84E+05 2.16E+05 NC 
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Figure B.12.  Average number of fitness evaluations to convergence for Royal Road 

Function 
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Table B.13.  Average number of fitness evaluations to convergence for Goldberg Function 

 

 AM OI IE MC GD 

NC 2.36E+05 2.13E+05 NC 1.96E+08 
SR 

NC 7.91E+04 7.64E+04 NC 5.82E+05 

NC 2.45E+05 2.34E+05 NC 1.89E+08 
RD 

NC 9.52E+04 8.90E+04 NC 5.32E+05 

NC 2.48E+05 2.10E+05 1.99E+08 1.98E+08 
RP 

NC 1.04E+05 7.40E+04 2.71E+05 1.09E+06 

NC 2.13E+05 2.25E+05 NC 1.92E+08 
RPD 

NC 8.85E+04 9.69E+04 NC 7.04E+05 

NC 2.36E+05 2.08E+05 1.98E+08 1.95E+08 
CF 

NC 7.22E+04 5.82E+04 1.45E+05 7.08E+05 

NC 2.10E+05 2.12E+05 1.90E+08 1.87E+08 
TABU 

NC 8.73E+04 7.98E+04 1.25E+05 4.57E+05 

4.34E+05 NC 4.34E+05 4.62E+05 4.34E+05 
GR 

1.50E+05 NC 1.50E+05 1.45E+05 1.50E+05 
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Figure B.13.  Average number of fitness evaluations to convergence for Goldberg Function 
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Table B.14.  Average number of fitness evaluations to convergence for Whitley Function 

 

 AM OI IE MC GD 

2.12E+07 1.47E+04 1.46E+04 1.97E+07 2.12E+07 
SR 

2.90E+07 7.02E+03 8.02E+03 2.10E+07 2.90E+07 

2.75E+07 1.61E+04 1.45E+04 2.10E+07 2.75E+07 
RD 

2.73E+07 7.75E+03 7.71E+03 2.05E+07 2.73E+07 

2.08E+07 1.28E+04 1.43E+04 2.35E+07 2.08E+07 
RP 

2.31E+07 5.74E+03 7.19E+03 2.19E+07 2.31E+07 

3.30E+07 1.36E+04 1.50E+04 2.18E+07 3.30E+07 
RPD 

3.97E+07 6.28E+03 8.79E+03 2.36E+07 3.97E+07 

2.41E+07 1.39E+04 1.33E+04 1.97E+07 1.86E+07 
CF 

2.49E+07 8.18E+03 8.35E+03 1.68E+07 1.66E+07 

2.97E+07 1.42E+04 1.30E+04 2.40E+07 2.97E+07 
TABU 

2.78E+07 9.53E+03 7.30E+03 2.25E+07 2.78E+07 

2.73E+04 NC 2.73E+04 2.72E+04 2.73E+04 
GR 

1.34E+04 NC 1.34E+04 1.25E+04 1.34E+04 
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Figure B.14.  Average number of fitness evaluations to convergence for Whitley Function 
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APPENDIX C:  EXPERIMENTAL RESULTS TABLES AND 

GRAPHICS OF HYPERHEURISTICS ON EXAMINATION 

TIMETABLING 
 

 

Results of the performance evaluations of the hyperheuristic algorithms composed of 

various heuristic selection methods and acceptance criteria are given in Table C.1 - Table 

C.21. Two rows are given for each algorithm. The mean value is given in the first row and 

the standard deviation in the second row. The performance criterion is the “Average Best 

Fitness Value”. The results of the experiments are statistically evaluated using t-test with 

95 per cent confidence level. The hyperheuristic algorithm which perform significantly 

better then the rest of the hyperheuristic algorithms are highlighted using boldface 

characters. 
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Table C.1.  Average best fitness values for Car-f-92 

 

 AM OI IE MC GD 

-1.11E-03 -6.03E-03 -9.91E-03 -7.08E-03 -9.42E-03 
SR 

2.56E-05 5.49E-04 1.09E-03 4.97E-04 1.01E-03 

-1.13E-03 -5.77E-03 -9.87E-03 -8.56E-03 -1.12E-03 
RD 

2.30E-05 5.07E-04 1.12E-03 5.64E-04 1.95E-05 

-1.12E-03 -5.68E-03 -1.01E-02 -8.72E-03 -1.12E-03 
RP 

1.89E-05 4.32E-04 1.02E-03 6.68E-04 1.98E-05 

-1.12E-03 -5.69E-03 -1.01E-02 -8.56E-03 -1.12E-03 
RPD 

1.63E-05 4.94E-04 1.08E-03 7.22E-04 1.70E-05 

-1.11E-03 -5.75E-03 -9.68E-03 -1.02E-02 -5.85E-03 
CF 

1.60E-05 4.89E-04 1.30E-03 5.85E-04 5.59E-04 

-1.13E-03 -5.73E-03 -1.02E-02 -8.49E-03 -1.13E-03 
TABU 

2.41E-05 4.68E-04 1.18E-03 6.88E-04 2.06E-05 

-2.31E-03 -5.57E-03 -9.06E-03 -8.82E-03 -2.32E-03 
GR 

5.76E-05 4.82E-04 9.19E-04 5.82E-04 6.66E-05 
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Figure C.1.  Average best fitness values for Car-f-92 
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Table C.2.  Average best fitness values for Car-s-91 

 

 AM OI IE MC GD 

-1.37E-03 -1.48E-02 -8.71E-02 -1.58E-02 -1.06E-01 
SR 

3.18E-05 1.75E-03 2.13E-02 1.53E-03 3.84E-02 

-1.33E-03 -1.41E-02 -1.62E-01 -2.46E-02 -1.34E-03 
RD 

2.57E-05 1.70E-03 6.12E-02 2.71E-03 2.11E-05 

-1.34E-03 -1.41E-02 -1.64E-01 -2.53E-02 -1.33E-03 
RP 

2.01E-05 1.47E-03 6.70E-02 3.52E-03 2.63E-05 

-1.34E-03 -1.42E-02 -1.88E-01 -2.48E-02 -1.34E-03 
RPD 

1.87E-05 1.37E-03 1.03E-01 2.68E-03 1.98E-05 

-1.37E-03 -1.40E-02 -1.52E-01 -3.90E-02 -1.42E-02 
CF 

2.37E-05 1.37E-03 5.31E-02 6.46E-03 1.41E-03 

-1.34E-03 -1.40E-02 -1.93E-01 -2.48E-02 -1.34E-03 
TABU 

2.01E-05 1.76E-03 1.20E-01 2.82E-03 2.75E-05 

-3.01E-03 -1.27E-02 -8.23E-02 -2.17E-02 -3.02E-03 
GR 

7.36E-05 1.36E-03 2.36E-02 2.19E-03 7.54E-05 
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Figure C.2.  Average best fitness values for Car-s-91 
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Table C.3.  Average best fitness values for Ear-f-83 

 

 AM OI IE MC GD 

-2.03E-03 -4.43E-03 -4.69E-03 -5.71E-03 -5.35E-03 
SR 

3.66E-05 3.03E-04 3.88E-04 3.55E-04 4.38E-04 

-1.91E-03 -4.11E-03 -4.54E-03 -6.66E-03 -1.90E-03 
RD 

4.23E-05 3.31E-04 3.85E-04 4.03E-04 4.69E-05 

-1.85E-03 -4.22E-03 -4.56E-03 -6.58E-03 -1.84E-03 
RP 

4.97E-05 3.34E-04 4.02E-04 5.14E-04 4.16E-05 

-1.89E-03 -4.15E-03 -4.53E-03 -6.55E-03 -1.88E-03 
RPD 

4.66E-05 3.37E-04 3.78E-04 3.44E-04 3.90E-05 

-1.88E-03 -4.22E-03 -4.54E-03 -7.27E-03 -4.10E-03 
CF 

4.27E-05 3.32E-04 3.40E-04 4.94E-04 3.31E-04 

-1.91E-03 -4.16E-03 -4.52E-03 -6.48E-03 -1.90E-03 
TABU 

3.84E-05 3.05E-04 3.88E-04 3.63E-04 3.20E-05 

-2.84E-03 -4.16E-03 -4.66E-03 -6.22E-03 -2.81E-03 
GR 

6.90E-05 3.76E-04 4.04E-04 4.21E-04 6.02E-05 
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Figure C.3.  Average best fitness values for Ear-f-83 



 74

Table C.4.  Average best fitness values for Hec-s-92 

 

 AM OI IE MC GD 

-3.21E-03 -7.84E-03 -7.97E-03 -1.68E-02 -1.67E-02 
SR 

1.49E-04 1.56E-03 1.61E-03 2.26E-03 3.99E-03 

-2.72E-03 -7.81E-03 -8.42E-03 -1.93E-02 -2.71E-03 
RD 

1.22E-04 2.01E-03 1.79E-03 2.44E-03 1.31E-04 

-2.70E-03 -7.62E-03 -8.29E-03 -1.90E-02 -2.66E-03 
RP 

1.24E-04 1.87E-03 2.02E-03 1.84E-03 1.24E-04 

-2.77E-03 -7.92E-03 -8.32E-03 -1.90E-02 -2.72E-03 
RPD 

2.10E-04 1.54E-03 2.05E-03 2.10E-03 1.33E-04 

-2.74E-03 -7.87E-03 -8.65E-03 -2.19E-02 -7.59E-03 
CF 

2.29E-04 1.57E-03 2.06E-03 2.43E-03 1.70E-03 

-2.74E-03 -8.42E-03 -8.12E-03 -1.86E-02 -2.70E-03 
TABU 

1.70E-04 2.46E-03 1.43E-03 2.03E-03 1.29E-04 

-5.86E-03 -8.25E-03 -8.42E-03 -2.13E-02 -5.86E-03 
GR 

3.99E-04 1.69E-03 1.81E-03 3.54E-03 3.90E-04 
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Figure C.4.  Average best fitness values for Hec-s-92 
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Table C.5.  Average best fitness values for Kfu-s-93 

 

 AM OI IE MC GD 

-1.69E-03 -1.31E-02 -2.47E-02 -2.20E-02 -3.40E-02 
SR 

5.87E-05 2.23E-03 4.88E-03 2.57E-03 4.30E-03 

-1.44E-03 -1.20E-02 -2.47E-02 -2.50E-02 -1.43E-03 
RD 

3.64E-05 2.38E-03 4.08E-03 3.34E-03 3.34E-05 

-1.43E-03 -1.29E-02 -2.50E-02 -2.55E-02 -1.42E-03 
RP 

3.67E-05 2.48E-03 4.60E-03 3.24E-03 3.26E-05 

-1.44E-03 -1.21E-02 -2.47E-02 -2.52E-02 -1.43E-03 
RPD 

3.79E-05 2.14E-03 4.21E-03 3.61E-03 3.38E-05 

-1.42E-03 -1.29E-02 -2.50E-02 -2.79E-02 -1.21E-02 
CF 

4.13E-05 2.86E-03 3.45E-03 4.02E-03 1.99E-03 

-1.43E-03 -1.26E-02 -2.43E-02 -2.55E-02 -1.42E-03 
TABU 

3.29E-05 2.21E-03 4.74E-03 3.64E-03 3.39E-05 

-4.93E-03 -9.13E-03 -2.41E-02 -3.06E-02 -5.03E-03 
GR 

2.67E-04 1.93E-03 4.57E-03 3.02E-03 2.62E-04 
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Figure C.5.  Average best fitness values for Kfu-s-93 
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Table C.6.  Average best fitness values for Lse-f-91 

 

 AM OI IE MC GD 

-2.65E-03 -7.20E-03 -1.06E-02 -1.09E-02 -1.19E-02 
SR 

5.75E-05 8.84E-04 1.69E-03 1.04E-03 1.42E-03 

-2.50E-03 -6.82E-03 -9.94E-03 -1.24E-02 -2.50E-03 
RD 

5.10E-05 8.25E-04 1.53E-03 1.12E-03 5.91E-05 

-2.39E-03 -6.57E-03 -1.04E-02 -1.23E-02 -2.40E-03 
RP 

4.66E-05 9.07E-04 1.74E-03 1.44E-03 6.74E-05 

-2.51E-03 -6.81E-03 -1.02E-02 -1.20E-02 -2.49E-03 
RPD 

6.51E-05 6.25E-04 1.30E-03 1.16E-03 6.34E-05 

-2.47E-03 -6.64E-03 -1.00E-02 -1.42E-02 -6.75E-03 
CF 

5.66E-05 6.90E-04 1.15E-03 1.38E-03 8.38E-04 

-2.51E-03 -6.64E-03 -1.02E-02 -1.22E-02 -2.50E-03 
TABU 

6.08E-05 8.32E-04 1.33E-03 1.21E-03 5.44E-05 

-4.41E-03 -6.64E-03 -1.02E-02 -1.25E-02 -4.47E-03 
GR 

1.74E-04 7.76E-04 1.45E-03 1.41E-03 1.34E-04 
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Figure C.6.  Average best fitness values for Lse-f-91 
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Table C.7.  Average best fitness values for Pur-s-93 

 

 AM OI IE MC GD 

-3.11E-04 -1.08E-03 -1.41E-03 -6.37E-04 -1.06E-03 
SR 

4.52E-06 3.97E-05 6.98E-05 1.64E-05 4.15E-05 

-2.86E-04 -9.89E-04 -1.37E-03 -7.77E-04 -2.88E-04 
RD 

4.00E-06 4.56E-05 6.18E-05 2.12E-05 4.25E-06 

-2.81E-04 -1.00E-03 -1.38E-03 -7.83E-04 -2.81E-04 
RP 

3.75E-06 3.92E-05 6.60E-05 2.32E-05 4.11E-06 

-2.87E-04 -9.97E-04 -1.38E-03 -7.74E-04 -2.86E-04 
RPD 

4.11E-06 4.28E-05 6.24E-05 1.84E-05 4.89E-06 

-2.97E-04 -1.00E-03 -1.36E-03 -9.39E-04 -1.00E-03 
CF 

5.98E-06 5.97E-05 6.14E-05 2.92E-05 4.75E-05 

-2.92E-04 -1.01E-03 -1.37E-03 -7.70E-04 -2.92E-04 
TABU 

5.53E-06 4.22E-05 6.77E-05 2.36E-05 4.46E-06 

-5.90E-04 -9.44E-04 -1.29E-03 -8.57E-04 -5.89E-04 
GR 

8.83E-06 3.66E-05 6.60E-05 2.68E-05 8.72E-06 
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Figure C.7.  Average best fitness Values for Pur-s-93 
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Table C.8.  Average best fitness values for Rye-s-93 

 

 AM OI IE MC GD 

-7.86E-04 -5.47E-03 -9.35E-03 -7.28E-03 -9.39E-03 
SR 

3.06E-05 8.58E-04 1.89E-03 8.88E-04 1.30E-03 

-7.37E-04 -5.33E-03 -9.08E-03 -8.70E-03 -7.37E-04 
RD 

1.65E-05 8.87E-04 2.00E-03 1.16E-03 2.33E-05 

-7.20E-04 -5.16E-03 -9.19E-03 -8.84E-03 -7.20E-04 
RP 

2.13E-05 8.85E-04 1.48E-03 1.34E-03 1.92E-05 

-7.32E-04 -4.82E-03 -9.46E-03 -8.69E-03 -7.33E-04 
RPD 

1.87E-05 6.52E-04 1.94E-03 8.83E-04 1.77E-05 

-7.26E-04 -5.37E-03 -9.45E-03 -1.08E-02 -5.28E-03 
CF 

1.50E-05 1.04E-03 1.79E-03 1.37E-03 7.78E-04 

-7.41E-04 -4.88E-03 -8.88E-03 -9.39E-03 -7.43E-04 
TABU 

2.27E-05 8.17E-04 1.71E-03 1.44E-03 2.26E-05 

-1.99E-03 -4.76E-03 -8.33E-03 -9.51E-03 -2.00E-03 
GR 

7.73E-05 5.82E-04 1.66E-03 1.07E-03 8.68E-05 
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Figure C.8.  Average best fitness values for Rye-s-93 
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Table C.9.  Average best fitness values for Sta-f-83 

 

 AM OI IE MC GD 

-1.25E-03 -2.60E-03 -2.64E-03 -2.68E-03 -2.68E-03 
SR 

2.17E-05 7.58E-05 4.49E-05 1.04E-05 1.26E-05 

-1.26E-03 -2.61E-03 -2.64E-03 -2.67E-03 -1.26E-03 
RD 

2.11E-05 7.14E-05 5.11E-05 1.18E-05 1.76E-05 

-1.25E-03 -2.62E-03 -2.63E-03 -2.68E-03 -1.25E-03 
RP 

2.39E-05 6.57E-05 5.34E-05 1.46E-05 2.32E-05 

-1.25E-03 -2.62E-03 -2.63E-03 -2.68E-03 -1.25E-03 
RPD 

2.09E-05 6.75E-05 5.75E-05 1.14E-05 1.99E-05 

-1.29E-03 -2.61E-03 -2.62E-03 -2.68E-03 -2.63E-03 
CF 

2.21E-05 6.50E-05 6.53E-05 9.08E-06 5.43E-05 

-1.27E-03 -2.64E-03 -2.63E-03 -2.68E-03 -1.26E-03 
TABU 

2.21E-05 4.57E-05 6.28E-05 1.52E-05 2.17E-05 

-1.93E-03 -2.59E-03 -2.63E-03 -2.68E-03 -1.92E-03 
GR 

4.23E-05 8.21E-05 5.28E-05 1.19E-05 4.24E-05 
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Figure C.9.  Average best fitness values for Sta-f-83 
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Table C.10.  Average best fitness values for Tre-s-92 

 

 AM OI IE MC GD 

-4.15E-03 -1.91E-02 -3.95E-02 -3.43E-02 -6.79E-02 
SR 

8.23E-05 2.04E-03 7.55E-03 4.02E-03 1.08E-02 

-3.78E-03 -1.83E-02 -4.16E-02 -4.00E-02 -3.78E-03 
RD 

8.82E-05 2.12E-03 8.70E-03 5.19E-03 7.48E-05 

-3.76E-03 -1.90E-02 -4.22E-02 -3.99E-02 -3.73E-03 
RP 

1.06E-04 1.83E-03 7.18E-03 4.20E-03 9.18E-05 

-3.77E-03 -1.88E-02 -4.15E-02 -3.90E-02 -3.81E-03 
RPD 

9.34E-05 1.67E-03 5.46E-03 4.20E-03 1.15E-04 

-3.73E-03 -1.88E-02 -4.03E-02 -4.53E-02 -1.82E-02 
CF 

8.46E-05 2.01E-03 7.57E-03 5.90E-03 1.99E-03 

-3.81E-03 -1.89E-02 -4.25E-02 -3.96E-02 -3.79E-03 
TABU 

8.28E-05 2.35E-03 7.83E-03 4.29E-03 8.31E-05 

-7.45E-03 -1.82E-02 -3.83E-02 -4.28E-02 -7.44E-03 
GR 

2.51E-04 2.00E-03 6.62E-03 4.52E-03 2.15E-04 
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Figure C.10.  Average best fitness values for Tre-s-92 
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Table C.11.  Average best fitness values for Uta-s-92 

 

 AM OI IE MC GD 

-1.34E-03 -8.66E-03 -1.81E-02 -8.35E-03 -1.25E-02 
SR 

2.90E-05 5.37E-04 1.65E-03 4.96E-04 9.83E-04 

-1.20E-03 -8.24E-03 -1.81E-02 -1.15E-02 -1.20E-03 
RD 

2.37E-05 4.21E-04 1.56E-03 7.01E-04 1.44E-05 

-1.19E-03 -8.37E-03 -1.81E-02 -1.13E-02 -1.19E-03 
RP 

1.53E-05 6.01E-04 1.74E-03 7.32E-04 1.92E-05 

-1.19E-03 -8.32E-03 -1.84E-02 -1.13E-02 -1.19E-03 
RPD 

1.89E-05 5.60E-04 1.57E-03 7.09E-04 1.35E-05 

-1.23E-03 -8.34E-03 -1.78E-02 -1.41E-02 -8.27E-03 
CF 

2.91E-05 5.76E-04 1.57E-03 8.51E-04 5.39E-04 

-1.21E-03 -8.21E-03 -1.87E-02 -1.12E-02 -1.21E-03 
TABU 

1.92E-05 4.86E-04 1.79E-03 5.68E-04 2.32E-05 

-2.47E-03 -7.55E-03 -1.66E-02 -9.85E-03 -2.46E-03 
GR 

7.78E-05 5.13E-04 1.49E-03 5.47E-04 5.18E-05 
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Figure C.11.  Average best fitness values for Uta-s-92 



 82

Table C.12.  Average best fitness values for Ute-s-91 

 

 AM OI IE MC GD 

-1.00E-03 -1.52E-03 -1.58E-03 -1.95E-03 -1.69E-03 
SR 

1.91E-05 9.45E-05 1.12E-04 1.09E-04 1.31E-04 

-9.76E-04 -1.48E-03 -1.54E-03 -2.15E-03 -9.72E-04 
RD 

1.79E-05 9.40E-05 9.78E-05 9.83E-05 1.72E-05 

-9.68E-04 -1.49E-03 -1.55E-03 -2.15E-03 -9.68E-04 
RP 

1.66E-05 1.00E-04 1.02E-04 8.61E-05 2.14E-05 

-9.78E-04 -1.48E-03 -1.54E-03 -2.16E-03 -9.73E-04 
RPD 

2.05E-05 9.79E-05 7.41E-05 9.49E-05 1.72E-05 

-9.66E-04 -1.47E-03 -1.57E-03 -2.27E-03 -1.50E-03 
CF 

1.89E-05 1.13E-04 1.03E-04 8.64E-05 8.21E-05 

-9.73E-04 -1.47E-03 -1.55E-03 -2.17E-03 -9.77E-04 
TABU 

1.49E-05 9.27E-05 8.85E-05 9.50E-05 1.84E-05 

-1.43E-03 -1.48E-03 -1.57E-03 -2.13E-03 -1.43E-03 
GR 

3.24E-05 1.06E-04 8.66E-05 8.25E-05 3.49E-05 
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Figure C.12.  Average best fitness values for Ute-s-91 
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Table C.13.  Average best fitness values for Yor-f-83 

 

 AM OI IE MC GD 

-2.55E-03 -4.92E-03 -5.26E-03 -6.50E-03 -6.24E-03 
SR 

4.55E-05 2.94E-04 3.38E-04 4.05E-04 4.71E-04 

-2.40E-03 -4.84E-03 -5.24E-03 -7.47E-03 -2.38E-03 
RD 

3.54E-05 3.07E-04 4.04E-04 4.04E-04 3.20E-05 

-2.34E-03 -4.77E-03 -5.27E-03 -7.48E-03 -2.33E-03 
RP 

3.98E-05 3.87E-04 3.47E-04 5.42E-04 3.83E-05 

-2.39E-03 -4.78E-03 -5.28E-03 -7.60E-03 -2.38E-03 
RPD 

4.43E-05 3.98E-04 3.87E-04 5.03E-04 3.73E-05 

-2.36E-03 -4.78E-03 -5.28E-03 -8.32E-03 -4.76E-03 
CF 

2.81E-05 2.42E-04 3.55E-04 4.57E-04 3.61E-04 

-2.41E-03 -4.83E-03 -5.32E-03 -7.45E-03 -2.41E-03 
TABU 

4.44E-05 3.45E-04 3.99E-04 4.02E-04 4.47E-05 

-3.13E-03 -4.73E-03 -5.22E-03 -6.80E-03 -3.13E-03 
GR 

6.92E-05 2.84E-04 3.73E-04 4.54E-04 6.84E-05 
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Figure C.13.  Average best fitness values for Yor-f-83 
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Table C.14.  Average best fitness values for Yue20011 

 

 AM OI IE MC GD 

-9.76E-03 -3.09E-02 -5.89E-02 -6.55E-02 -9.02E-02 
SR 

2.50E-04 4.18E-03 1.02E-02 8.03E-03 1.07E-02 

-8.65E-03 -3.01E-02 -5.93E-02 -7.06E-02 -8.60E-03 
RD 

2.70E-04 3.48E-03 1.01E-02 8.13E-03 2.47E-04 

-8.61E-03 -2.94E-02 -5.66E-02 -7.05E-02 -8.59E-03 
RP 

2.26E-04 4.42E-03 1.06E-02 9.73E-03 3.12E-04 

-8.65E-03 -2.94E-02 -5.93E-02 -7.09E-02 -8.69E-03 
RPD 

3.11E-04 4.47E-03 1.22E-02 9.08E-03 3.08E-04 

-8.49E-03 -3.02E-02 -5.85E-02 -7.49E-02 -3.03E-02 
CF 

2.74E-04 5.10E-03 1.20E-02 9.06E-03 4.59E-03 

-8.69E-03 -2.94E-02 -5.76E-02 -6.81E-02 -8.68E-03 
TABU 

3.30E-04 3.99E-03 1.22E-02 9.57E-03 3.47E-04 

-1.92E-02 -2.81E-02 -5.98E-02 -8.55E-02 -1.92E-02 
GR 

1.10E-03 4.54E-03 1.32E-02 9.19E-03 1.29E-03 
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Figure C.14.  Average best fitness values for Yue20011 
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Table C.15.  Average best fitness values for Yue20012 

 

 AM OI IE MC GD 

-6.61E-03 -2.46E-02 -4.82E-02 -5.05E-02 -7.54E-02 
SR 

1.83E-04 3.76E-03 7.40E-03 6.04E-03 9.38E-03 

-6.15E-03 -2.29E-02 -4.84E-02 -5.42E-02 -6.06E-03 
RD 

1.87E-04 2.98E-03 8.35E-03 7.56E-03 1.56E-04 

-6.10E-03 -2.32E-02 -4.81E-02 -5.43E-02 -6.06E-03 
RP 

1.81E-04 3.84E-03 7.23E-03 6.25E-03 1.32E-04 

-6.12E-03 -2.33E-02 -4.73E-02 -5.52E-02 -6.11E-03 
RPD 

1.81E-04 3.09E-03 8.82E-03 5.74E-03 1.87E-04 

-6.08E-03 -2.34E-02 -4.80E-02 -5.80E-02 -2.35E-02 
CF 

1.79E-04 2.94E-03 7.51E-03 6.59E-03 3.40E-03 

-6.10E-03 -2.28E-02 -4.79E-02 -5.55E-02 -6.05E-03 
TABU 

1.83E-04 3.33E-03 6.38E-03 6.19E-03 1.32E-04 

-1.31E-02 -2.27E-02 -4.89E-02 -6.32E-02 -1.31E-02 
GR 

5.40E-04 3.66E-03 7.07E-03 5.90E-03 5.50E-04 
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Figure C.15.  Average best fitness values for Yue20012 
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Table C.16.  Average best fitness values for Yue20013 

 

 AM OI IE MC GD 

-1.40E-01 -9.64E-02 -1.66E-01 -2.50E-01 -2.37E-01 
SR 

9.03E-03 2.69E-02 3.91E-02 0.00E+00 1.87E-02 

-1.40E-01 -9.53E-02 -1.67E-01 -2.50E-01 -1.38E-01 
RD 

8.67E-03 2.68E-02 3.70E-02 0.00E+00 8.80E-03 

-1.43E-01 -9.82E-02 -1.68E-01 -2.50E-01 -1.41E-01 
RP 

1.07E-02 2.64E-02 3.06E-02 0.00E+00 9.82E-03 

-1.38E-01 -1.03E-01 -1.61E-01 -2.50E-01 -1.40E-01 
RPD 

7.26E-03 2.48E-02 3.54E-02 0.00E+00 1.22E-02 

-1.37E-01 -1.00E-01 -1.59E-01 -2.50E-01 -9.82E-02 
CF 

9.78E-03 2.81E-02 3.37E-02 0.00E+00 2.22E-02 

-1.38E-01 -9.70E-02 -1.60E-01 -2.50E-01 -1.40E-01 
TABU 

9.10E-03 2.70E-02 3.20E-02 0.00E+00 8.81E-03 

-1.96E-01 -9.02E-02 -1.70E-01 -2.50E-01 -1.99E-01 
GR 

1.26E-02 1.90E-02 3.82E-02 0.00E+00 1.09E-02 
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Figure C.16.  Average best fitness values for Yue20013 
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Table C.17.  Average best fitness values for Yue20021 

 

 AM OI IE MC GD 

-3.73E-03 -1.38E-02 -2.04E-02 -2.65E-02 -3.45E-02 
SR 

1.38E-04 2.80E-03 4.30E-03 2.64E-03 4.55E-03 

-3.36E-03 -1.27E-02 -1.83E-02 -2.93E-02 -3.35E-03 
RD 

1.25E-04 2.26E-03 4.11E-03 3.18E-03 1.17E-04 

-3.25E-03 -1.26E-02 -1.74E-02 -2.89E-02 -3.23E-03 
RP 

1.15E-04 3.39E-03 3.65E-03 3.32E-03 1.41E-04 

-3.35E-03 -1.31E-02 -1.89E-02 -2.87E-02 -3.38E-03 
RPD 

1.42E-04 2.02E-03 4.19E-03 3.56E-03 1.24E-04 

-3.31E-03 -1.24E-02 -1.93E-02 -3.20E-02 -1.23E-02 
CF 

1.21E-04 2.78E-03 4.08E-03 3.76E-03 2.51E-03 

-3.35E-03 -1.31E-02 -1.83E-02 -2.95E-02 -3.38E-03 
TABU 

1.03E-04 2.25E-03 3.78E-03 3.62E-03 1.38E-04 

-7.69E-03 -1.24E-02 -1.87E-02 -3.11E-02 -7.82E-03 
GR 

4.89E-04 2.74E-03 5.11E-03 5.20E-03 4.97E-04 
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Figure C.17.  Average best fitness values for Yue20021 
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Table C.18.  Average best fitness values for Yue20022 

 

 AM OI IE MC GD 

-2.68E-03 -7.37E-03 -8.48E-03 -1.09E-02 -1.09E-02 
SR 

7.14E-05 6.37E-04 1.05E-03 8.94E-04 9.83E-04 

-2.51E-03 -7.05E-03 -8.31E-03 -1.16E-02 -2.50E-03 
RD 

8.98E-05 6.69E-04 9.36E-04 8.07E-04 8.03E-05 

-2.38E-03 -6.98E-03 -8.26E-03 -1.17E-02 -2.39E-03 
RP 

6.61E-05 9.46E-04 8.74E-04 8.95E-04 8.32E-05 

-2.49E-03 -6.86E-03 -8.23E-03 -1.16E-02 -2.49E-03 
RPD 

7.92E-05 6.80E-04 1.04E-03 7.06E-04 7.54E-05 

-2.44E-03 -7.01E-03 -8.02E-03 -1.26E-02 -6.98E-03 
CF 

6.34E-05 7.06E-04 9.67E-04 9.08E-04 7.23E-04 

-2.52E-03 -6.98E-03 -8.30E-03 -1.16E-02 -2.52E-03 
TABU 

9.85E-05 7.71E-04 9.17E-04 7.28E-04 8.36E-05 

-5.00E-03 -6.77E-03 -8.26E-03 -1.15E-02 -4.94E-03 
GR 

2.18E-04 7.73E-04 9.48E-04 8.97E-04 2.22E-04 

 

-0.016

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0

C
F_

M
C

R
P_

M
C

SR
_G

D

SR
_I

E

SR
_O

I

R
D

_O
I

G
R

_A
M

SR
_A

M

C
F_

AM

R
P_

G
D

 
 

Figure C.18.  Average best fitness values for Yue20022 
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Table C.19.  Average best fitness values for Yue20023 

 

 AM OI IE MC GD 

-1.35E-02 -1.22E-02 -1.26E-02 -1.49E-02 -1.42E-02 
SR 

2.47E-04 7.65E-04 6.88E-04 3.02E-04 4.89E-04 

-1.34E-02 -1.20E-02 -1.26E-02 -1.51E-02 -1.34E-02 
RD 

1.84E-04 6.79E-04 8.57E-04 3.37E-04 1.94E-04 

-2.38E-03 -6.98E-03 -1.24E-02 -1.17E-02 -2.39E-03 
RP 

6.61E-05 9.46E-04 6.77E-04 8.95E-04 8.32E-05 

-2.49E-03 -6.86E-03 -1.23E-02 -1.16E-02 -2.49E-03 
RPD 

7.92E-05 6.80E-04 8.60E-04 7.06E-04 7.54E-05 

-1.34E-02 -1.21E-02 -1.26E-02 -1.52E-02 -1.20E-02 
CF 

1.93E-04 6.61E-04 8.27E-04 2.69E-04 7.02E-04 

-2.52E-03 -6.98E-03 -1.24E-02 -1.16E-02 -2.52E-03 
TABU 

9.85E-05 7.71E-04 6.94E-04 7.28E-04 8.36E-05 

-1.45E-02 -1.22E-02 -1.24E-02 -1.50E-02 -1.45E-02 
GR 

1.64E-04 7.23E-04 7.75E-04 2.71E-04 1.84E-04 
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Figure C.19.  Average best fitness values for Yue20023 
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Table C.20.  Average best fitness values for Yue20031 

 

 AM OI IE MC GD 

-2.92E-03 -7.54E-03 -8.69E-03 -1.26E-02 -1.31E-02 
SR 

8.20E-05 1.15E-03 1.39E-03 9.62E-04 1.89E-03 

-2.75E-03 -7.23E-03 -8.06E-03 -1.42E-02 -2.72E-03 
RD 

1.11E-04 1.21E-03 1.48E-03 1.42E-03 8.47E-05 

-2.63E-03 -6.92E-03 -8.64E-03 -1.42E-02 -2.60E-03 
RP 

8.81E-05 1.11E-03 1.73E-03 1.40E-03 6.77E-05 

-2.72E-03 -7.32E-03 -8.16E-03 -1.42E-02 -2.67E-03 
RPD 

1.16E-04 1.10E-03 1.44E-03 1.56E-03 7.73E-05 

-2.68E-03 -6.99E-03 -8.44E-03 -1.59E-02 -7.19E-03 
CF 

1.07E-04 1.09E-03 1.62E-03 1.65E-03 1.10E-03 

-2.73E-03 -7.11E-03 -8.07E-03 -1.41E-02 -2.71E-03 
TABU 

9.07E-05 1.21E-03 1.79E-03 1.51E-03 8.47E-05 

-5.14E-03 -7.45E-03 -8.29E-03 -1.42E-02 -5.14E-03 
GR 

2.23E-04 1.28E-03 1.87E-03 1.75E-03 2.15E-04 
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Figure C.20.  Average best fitness values for Yue20031 
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Table C.21.  Average best fitness values for Yue20032 

 

 AM OI IE MC GD 

-1.83E-03 -3.42E-03 -3.63E-03 -4.61E-03 -4.14E-03 
SR 

5.64E-05 2.70E-04 3.59E-04 3.64E-04 4.04E-04 

-1.81E-03 -3.06E-03 -3.29E-03 -4.92E-03 -1.81E-03 
RD 

5.02E-05 2.42E-04 2.89E-04 4.25E-04 5.46E-05 

-1.72E-03 -3.12E-03 -3.33E-03 -4.90E-03 -1.72E-03 
RP 

5.38E-05 2.79E-04 3.17E-04 3.68E-04 5.89E-05 

-1.80E-03 -3.11E-03 -3.34E-03 -5.02E-03 -1.78E-03 
RPD 

5.70E-05 2.91E-04 3.62E-04 3.65E-04 4.02E-05 

-1.77E-03 -3.09E-03 -3.32E-03 -5.42E-03 -3.10E-03 
CF 

5.70E-05 2.41E-04 3.66E-04 3.68E-04 2.73E-04 

-1.82E-03 -3.20E-03 -3.19E-03 -4.99E-03 -1.82E-03 
TABU 

5.58E-05 2.72E-04 3.14E-04 3.83E-04 3.98E-05 

-3.07E-03 -3.18E-03 -3.43E-03 -4.73E-03 -3.07E-03 
GR 

9.31E-05 3.01E-04 3.80E-04 2.91E-04 9.36E-05 
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Figure C.21.  Average best fitness values for Yue20032 
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