
OPTIMIZATION TECHNIQUES USED IN LOGIC CIRCUIT SYNTHESIS

AND A STUDY OF THE OPTIMALITY OF SYNTHESIS RESULTS

by

Nusret Utku Altunkaya

Submitted to the Institute of Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

in

Electrical and Electronics Engineering

Yeditepe University

2006

ii

OPTIMIZATION TECHNIQUES USED IN LOGIC CIRCUIT SYNTHESIS

AND A STUDY OF THE OPTIMALITY OF SYNTHESIS RESULTS

APPROVED BY:

Prof. Dr. Ahmet Dervişoğlu ……………………………

(Thesis Supervisor)

Prof. Dr. Uğur Çilingiroğlu ……………………………

Assoc. Prof. Herman Sedef ……………………………

DATE OF APPROVAL: 21.09.2006

iii

ACKNOWLEDGEMENTS

I’d like to thank my family, first of all, for supporting me and helping me whenever I

need them, wherever I need them; and especially my parents, to whom I owe my interest in

science and technology, which eventually led me to become an electronics engineer.

I am grateful to Prof. Dr. Ahmet Dervişoğlu for the inspiration and guidance he has

been providing me with for the past 7 years on both academic and real life issues, with his

extraordinary, good-humored personality and his respectable enthusiasm for all things

technological and innovative.

Without doubt, every member of the Yeditepe EE academic staff, both full-time and

part-time, past and present, has had some valuable influence on my view of the academic

world, the electronics profession, and human relations. I’ve learned a lot here. Thank you

all for the experience.

Most of the illustrations in Chapters 2 and 3 are by Clive Maxfield, who was kind

enough to include the original drawings on CD accompanying his book “The Design

Warrior’s Guide to FPGAs” (ISBN 0750676043, 2004, Mentor Graphics Corp.), to be

freely used for preparing educational material.

Lastly, I should also thank Çağlayan Bookstore in Taksim, İstanbul for their

excellent service and kind attention in quickly finding and supplying the books I have

asked for. Without those books, most of which I have listed in the reference section, this

work would have been much shallower.

iv

ABSTRACT

OPTIMIZATION TECHNIQUES USED IN LOGIC CIRCUIT SYNTHESIS

AND A STUDY OF THE OPTIMALITY OF SYNTHESIS RESULTS

From the 1960s to present day, the rapid pace of development in integrated circuit

(IC) manufacturing technology has doubled the number of transistors that can be fitted on a

chip every 1.5 to 2 years. Circuit complexities have grown far beyond what is manageable

with conventional pen-and-paper based design methods, and new electronic design

automation (EDA) tools have emerged that can synthesize complete circuits from verbal

behavioral descriptions written in a Hardware Description Language (HDL).

This thesis focuses on logic circuit synthesis and investigates the optimization

techniques used by these synthesis tools. A sample circuit written in Verilog HDL has also

been implemented on a Spartan-3E field programmable gate array (FPGA) with Xilinx’s

ISE 8.2i development software, using various different optimization settings in its XST

synthesis tool. The resulting circuits have been compared in terms of device utilization and

maximum operating speed, in order to find out how optimization settings affect the

synthesis tool’s performance.

By trying out all possible combinations of a small subset of the XST settings, several

synthesis iterations were performed. The fastest implementation that could be achieved

occupied 235 slices on the FPGA and had a maximum clock frequency of 186.78 MHz. In

comparison, the smallest implementation occupied 214 slices, but the clock frequency was

decreased to 160.88 MHz.

Synthesis results have also shown that automatic settings do not always produce

optimal results. Manual adjustments and several design iterations are necessary if the

automatic settings fail to produce a circuit meeting the design objectives, and a better

implementation is required. Even then, a universally optimal implementation cannot be

guaranteed for large designs because computational power and time restrictions prohibit an

exhaustive search for the best implementation within all possible implementations.

v

ÖZET

LOJİK DEVRE SENTEZİNDE KULLANILAN OPTİMİZASYON YÖNTEMLERİ

VE SENTEZ SONUÇLARININ OPTİMALLİĞİNİN İNCELENMESİ

1960’lardan itibaren tümdevre üretim teknolojisinde yaşanan hızlı gelişme, bir çip

üzerine sığdırılabilen transistör sayısını her 1.5 ila 2 yılda bir ikiye katlamış ve devre

karmaşıklıkları kalem kağıda dayalı eski tasarım yöntemleriyle altından kalkılamayacak

düzeye gelmiştir. Bu sıkıntılara paralel olarak, bir donanım tanımlama dilinde yazılmış

davranışsal tanımlamadan yola çıkarak lojik devre sentezi yapabilen yeni elektronik

tasarım programları ortaya çıkmıştır.

Bu tez çalışması, lojik devrelerin sentezlenmesini ele almakta ve sentez programları

tarafından kullanılan optimizasyon yöntemlerini incelemektedir. Ayrıca, Verilog dilinde

yazılmış örnek bir devre, Spartan-3E FPGA üzerinde gerçeklenmek üzere Xilinx

firmasının ISE 8.2i geliştirme ortamının parçası olan XST sentez programında, değişik

optimizasyon ayarları denenmek suretiyle sentezlenmiştir. Denemeler sonucunda elde

edilen devreler boyut ve maksimum çalışma hızı açılarından birbirleriyle karşılaştırılarak

yazılımdaki optimizasyon ayarlarının sentez performansını nasıl etkilediği araştırılmıştır.

XST’de mevcut ayarların küçük bir kısmıyla, oluşturulabilecek olası bütün

kombinezonlar denenerek sentez işlemi defalarca tekrarlanmış, sonuçta elde edilebilen en

hızlı devrenin saat frekansı üst sınırı 186.78 MHz olmuş ve devre FPGA’de 235 dilimlik

yer kaplamıştır. Buna karşın en küçük boyutlu devre 214 dilime sığarken, maksimum saat

frekansı ise 160.88 MHz’e gerilemiştir.

Yapılan denemeler sonunda, sentez programı ayarlarını otomatik değerlerde

bırakmanın her zaman optimal sonuç vermediği de görülmüştür. Tasarım hedeflerini

karşılayan bir devreye otomatik ayarlarda ulaşılamazsa, tasarımcının yazılım ayarlarını

bizzat kendisinin seçmesi gerekmektedir. O durumda dahi, büyük boyutlu tasarımlarda

sentez sonucu elde edilecek devrenin gerçekten optimal bir devre olduğu garanti

edilememekte, bilgi işlem kapasitesinin ve zamanın sınırlı oluşu yüzünden, olası bütün

gerçeklemeler arasından evrensel en iyiyi arayıp bulmak imkansız hale gelmektedir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS..iii

ABSTRACT..iv

ÖZET ...v

TABLE OF CONTENTS..vi

LIST OF FIGURES ..xi

LIST OF TABLES..xiii

LIST OF ABBREVIATIONS...xiv

1. INTRODUCTION ..1

1.1. Thesis Outline..2

2. ALTERNATIVE TECHNOLOGIES FOR IMPLEMENTATION OF LOGIC

CIRCUITS ..3

2.1. Standard Parts..3

2.2. Simple Programmable Logic Devices (SPLDs)..3

2.2.1. Programmable Read-Only Memories (PROMs) ...4

2.2.2. Programmable Logic Arrays (PLAs)...5

2.2.3. Programmable Array Logic (PAL)..7

vii

2.3. Application Specific Integrated Circuits (ASICs)...8

2.3.1. Full-Custom Devices ...8

2.3.2. Gate Arrays..9

2.3.3. Standard Cell Devices ...12

2.4. Complex Programmable Logic Devices (CPLDs) ..13

2.5. Field Programmable Gate Arrays (FPGAs) ..14

2.5.1. Fine-Grained vs. Coarse-Grained CLBs..16

2.5.2. Embedded Devices ..17

3. EVOLUTION OF ELECTRONIC DESIGN AUTOMATION......................................19

3.1. The Early Days of Electronic Design Automation..19

3.2. Back-End Tools...21

3.3. Computer-Aided Design and Engineering ..22

3.4. Hardware Description Languages ...23

3.4.1. Different Levels of Abstraction...23

3.4.2. An early HDL-based ASIC flow ...26

3.4.3. An early HDL-based FPGA flow ..27

3.4.4. Graphical Design Entry vs. HDLs...28

3.5. Modern Hardware Description Languages..29

viii

3.5.1. Verilog HDL..30

3.5.2. VHDL and VITAL ..32

3.5.3. UDL/I...34

3.5.4. SystemC...35

3.5.5. Superlog and SystemVerilog ...35

3.5.6. Mixed-Language Designs..36

3.6. Top-Down Design Methodology...37

4. THE VERILOG HARDWARE DESCRIPTION LANGUAGE39

4.1. The Verilog module...39

4.2. Module Ports ...40

4.3. Module Instances...40

4.4. Gate Level Modeling of Circuits...41

4.5. Dataflow Modeling..44

4.6. Behavioral Modeling...45

4.6.1. Behavioral Description of Flip-Flops ..48

4.6.2. Modeling of Finite State Machines ...50

4.7. Structural Description..52

4.8. Writing A Test Bench..53

ix

5. WRITING SYNTHESIZABLE VERILOG CODE..57

5.1. Overview of The Synthesis Process ..57

5.2. Synthesis of Combinational Logic ..58

5.2.1. Synthesis of Priority Structures ...59

5.2.2. Exploiting Don’t-Care Conditions...59

5.2.3. Accidental Synthesis of Latches..59

5.2.4. Resource Sharing...60

5.3. Synthesis of Sequential Logic with Flip-Flops ...61

5.4. Synthesis of Finite State Machines ...61

5.4.1. Finite State Machine Extraction in Xilinx XST Synthesis Software...........61

5.4.2. Optimization of State Encodings...62

5.5. Synthesis of Other Common Logic Elements ...64

5.6. Resets and Clock Enables..64

5.7. Anticipating The Results of Synthesis ..65

6. AN FPGA IMPLEMENTATION EXAMPLE ...66

6.1. Xilinx Spartan-3E Starter Kit ..70

6.2. Xilinx Spartan-3E FPGA Family ..66

6.2.1. Spartan-3E FPGA Features ...66

x

6.2.2. Spartan-3E FPGA Architectural Overview ...68

6.3. Implementation Details ...72

6.4. Synthesis Results For The Sample Circuit ..74

7. CONCLUSION...77

APPENDIX A. VERILOG SOURCE CODE LISTINGS FOR THE SAMPLE FPGA

IMPLEMENTATION...79

A.1. main.v ...79

A.2. rotary.v..83

A.3. amp_conf.v ...84

A.4. adc_driver.v ..86

A.5. dac_driver.v ..87

A.6. dsp_module.v..90

A.7. wavegen.v...91

REFERENCES ..92

REFERENCES NOT CITED ..95

xi

LIST OF FIGURES

Figure 2.1. The structure of a PROM ..5

Figure 2.2. Structure of a PLA...6

Figure 2.3. Structure of a PAL...7

Figure 2.4. Examples of gate array basic cells ..9

Figure 2.5. Channeled gate array architectures..10

Figure 2.6. Sea-of-gates architecture ...10

Figure 2.7. Assigning functions to basic cells ...11

Figure 2.8. A Generic CPLD Architecture ..13

Figure 2.9. The structure of a basic FPGA configurable logic block14

Figure 2.10 Implementation of a Boolean function in a look-up table................................15

Figure 2.11. A generic FPGA architecture ..15

Figure 2.12. The clock tree within an FPGA...16

Figure 3.1. Different levels of abstraction ...24

Figure 3.2. Simple HDL-based ASIC design flow ..27

Figure 3.3. Simple HDL-based FPGA design flow...28

Figure 3.4. Using a mixture of different design entry methods...29

Figure 3.5. Levels of abstraction supported by Verilog ..31

xii

Figure 3.6. Comparison of abstraction levels (Verilog vs. VHDL).....................................33

Figure 4.1. Representation of a D-type flip-flop as a module ...39

Figure 4.2. Modeling a 4-bit register comprising four D-type flip-flops41

Figure 4.3. Examples of Verilog primitives ..42

Figure 4.4. A simple combinational circuit ...42

Figure 4.5. Tri-state gates in Verilog...43

Figure 4.6. Implementing a 2-to-1 multiplexer with tri-state gates43

Figure 4.7. Signal levels are monitored for a level sensitive event46

Figure 4.8. Rising and falling transitions of a signal trigger edge sensitive events.............47

Figure 4.9. A sample state diagram ...50

Figure 4.10. A sample sequential circuit ...52

Figure 4.11. Timing diagram showing signal values in the example testbench56

Figure 6.1 Xilinx Spartan-3E Starter Kit board...70

Figure 6.2 Xilinx Spartan-3E FPGA Family Architecture ...69

Figure 6.3 Spartan-3E Starter Kit A/D conversion circuitry ...73

Figure 6.4 Spartan-3E Starter Kit D/A conversion circuitry ...73

xiii

LIST OF TABLES

Table 4.1 Some logical and arithmetic operators used in Verilog.......................................44

Table 6.1 Summary of Spartan-3E FPGA family attributes ..66

Table 6.2 Synthesis results for the sample circuit ...75

xiv

LIST OF ABBREVIATIONS

ADC Analog to Digital Converter

ALU Arithmetic Logic Unit

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

BGA Ball-Grid Array

BIST Built-in Self-Test

CAD Computer Aided Design

CAE Computer Aided Engineering

CLB Configurable Logic Block

CMOS Complementary Metal-Oxide Semiconductor

CPLD Complex Programmable Logic Device

CPU Central Processing Unit

DAC Design Automation Conference / Digital to Analog Converter

DCE Data Communications Equipment

DCM Digital Clock Manager

DDR Double Data Rate

DIP Dual In-Line Package

DOD Department of Defense

DSP Digital Signal Processing/Processor

DTE Data Terminal Equipment

DUT Device Under Test

EDA Electronic Design Automation

EEPROM Electrically Erasable Programmable Read-Only Memory

EPROM Erasable Programmable Read-Only Memory

xv

FBGA Fine Ball-Grid Array

FFT Fast Fourier Transform

FIFO First-In First-Out

FPGA Field Programmable Gate Array

FSM Finite State Machine

HDL Hardware Description Language

HSTL High-Speed Transceiver Logic

I/O Input/Output

IC Integrated Circuit

IOB Input/Output Block

IEEE Institute of Electrical and Electronics Engineers

IP Intellectual Property

JEDEC Joint Electronic Device Engineering Council

JEIDA Japan Electronic Industry Development Association

JTAG Joint Test Action Group

LCD Liquid Crystal Display

LED Light Emitting Diode

LFSR Linear Feedback Shift Register

LRM Language Reference Manual

LSB Least Significant Bit

LSI Large-Scale Integration

LSSD Level-Sensitive Scan Device

LUT Look-Up Table

LVCMOS Low Voltage CMOS

LVDS Low Voltage Differential Signaling

LVTTL Low Voltage TTL

xvi

MAC Medium Access Control / Multiply and Accumulate

MSB Most Significant Bit

MSI Medium Scale Integration

NRE Non-Recurring Engineering

OVI Open Verilog International

PAL Programmable Array Logic

PCB Printed Circuit Board

PCI Peripheral Component Interconnect

PLA Programmable Logic Array

PLD Programmable Logic Device

PLI Programming Language Interface

POS Product of Sums

PROM Programmable Read-Only Memory

QFP Quad Flat Pack

RAM Random Access Memory

ROM Read Only Memory

RSDS Reduced Swing Differential Signaling

RTL Register Transfer Level

SDF Standard Delay Format

SDRAM Synchronous Dynamic Random Access Memory

SHA Secure Hash Algorithm

SMA Sub-Miniature version A (Connector)

SOC System On A Chip

SOP Sum of Products

SOPC System On A Programmable Chip

SPI Serial Peripheral Interface

xvii

SPICE Simulation Program with Integrated Circuit Emphasis

SPLD Simple Programmable Logic Device

SRAM Static RAM

SSTL Stub-Series-Terminated Logic

TTL Transistor-to-Transistor Logic

UDL/I Unified Design Language for Integrated Circuits

USB Universal Serial Bus

UV Ultra-Violet

VGA Video Graphics Array

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VI VHDL International

VITAL VHDL Initiative Toward ASIC Libraries

VLSI Very-Large-Scale Integration

1

1. INTRODUCTION

There has been a dramatic change in the way digital design is performed in the past

20 years. The technological advances and new innovative electronic design automation

(EDA) software tools, together with the need to reduce the time to market, have all helped

to fuel this dramatic change. In terms of technology, current mass-produced integrated

circuits (ICs) have reached transistor channel widths as small as 65nm, while 45nm and

smaller width prototypes have been demonstrated. Smaller transistors result in improved

switching speed and increase the number of transistors that can be fitted per unit area. This

size reduction has enabled the production of silicon chips containing over one billion

transistors on a single die (Intel’s “Montecito” Itanium 2 server processor, officially

launched on July 18, 2006, is built using a 90nm process technology and has 1.72 billion

transistors on a 596mm2 die [1]).

The need to be able to design chips of such size, and in a timely manner, has led to

innovative EDA tools being developed, with automatic synthesis tools being the major

advance. Synthesis is the process of translating a high-level, implementation independent,

abstract model of hardware into an optimized, technology specific, gate level

implementation. These high-level models are written in a hardware description language

(HDL) using algorithmic definitions comprising a sequence of operations on data being

transferred between various registers. This is hence called register transfer level (RTL)

modeling.

The introduction of commercial synthesis tools has enabled top down design

methodologies to be adopted, starting with an abstract description of a circuit’s behavior

written in a hardware description language. The main benefits of adopting a top-down

design methodology, and adhering to the use of these standards is that, 1) design source

files are transportable between different EDA tools and, 2) the design is independent of

any particular silicon vendor's manufacturing process technology. More recently, the rate

of change has slowed and the introduction of standards has enabled EDA software vendors

to develop integrated design tools with far less risk [2].

2

1.1. Thesis Outline

This thesis focuses on the synthesis of logic circuits from circuit descriptions written

in a hardware description language, with emphasis on the optimization techniques

performed by synthesis tools during the process.

Chapter Two gives an overview of the current technologies used for the realization of

logic circuits. The target technology for a design heavily influences the way synthesis tools

construct and optimize the physical circuit.

Chapter Three relates the evolution of electronic design automation software, the

emergence of hardware description languages and the reasons that led to their

development. This chapter also covers some of the widely known hardware description

languages in use today.

Chapter Four introduces the fundamentals of the Verilog hardware description

language with its code syntax, language constructs, operators and various circuit modeling

techniques supported by synthesis tools.

Chapter Five examines various optimization techniques employed by synthesis tools,

the effects of coding style on synthesis results, elaborates on how to write synthesis

friendly code and points out some common coding mistakes that lead to synthesis of

unintentional redundant logic.

Chapter Six presents a sample field programmable gate array (FPGA)

implementation of a circuit developed for Xilinx’s Spartan-3E Starter Kit FPGA

development board. The circuit description is written in Verilog and synthesized by

Xilinx’s ISE 8.2i development software, with various optimization settings enabled or

disabled in its XST synthesis tool. The resulting circuits are then compared in terms of

device utilization and operating speed.

Chapter Seven concludes this work with a review of the results achieved and also

gives some pointers on the future of electronic design software and methodologies.

3

2. ALTERNATIVE TECHNOLOGIES FOR IMPLEMENTATION OF

LOGIC CIRCUITS

As designs grow more complex, synthesizing a high performance logic circuit that

also satisfies the associated area, timing and power constraints becomes more and more

difficult. Without an intimate knowledge of the target technology on which the circuits will

be implemented, successful synthesis results cannot be achieved. This is why synthesis

tools have become “physically aware” in recent years [3].

Below is an overview of the various technologies and devices that have been used

over the years for realization of digital circuits, followed by the current state-of-the-art in

logic implementation.

2.1. Standard Parts

The 74xx, 54xx and similar logic family ICs are called standard parts. They contain a

small number of basic logic gates and the number code of each IC states the type of logic

gates contained within the chip. For example, a 7400 chip contains four two-input NAND

gates, a 7404 chip contains six inverters.

Implementing complex logic circuits with standard parts is very difficult and

expensive, so they are only used in small scale, simple circuits. Standard parts have largely

been replaced by programmable logic devices.

2.2. Simple Programmable Logic Devices (SPLDs)

Programmable logic devices (PLDs) have progressed through a long evolution to

reach the complexity today to support an entire system on a chip (SOC). In order to

distinguish the older generation of these devices, they are now generally referred to as

Simple PLDs.

4

2.2.1. Programmable Read-Only Memories (PROMs)

These first field programmable devices were created as alternatives to expensive

mask-programmed ROMs. Storing code in a ROM was an expensive process that required

the ROM vendor to create a unique semiconductor mask set for each customer. Changes to

the code were impossible without creating a new mask set and fabricating a new chip. The

lead time for making changes to the code and getting back a chip to test was far too long.

PROMs solved this problem by allowing the user, rather than the chip vendor, to store

code in the device using a simple and relatively inexpensive desktop programmer. This

new device was called a programmable read only memory (PROM). PROMs, like ROMs,

retain their contents even after power has been turned off.

Eventually, erasable PROMs were developed which allowed users to program, erase,

and reprogram the devices using an inexpensive, desktop programmer. Typically, PROMs

now refer to devices that cannot be erased after being programmed. Erasable PROMS

include erasable programmable read only memories (EPROMs) that are programmed by

applying high-voltage electrical signals and erased by flooding the devices with ultra-violet

(UV) light. Electrically erasable programmable read only memories (EEPROMs) are

programmed and erased by applying high voltages to the device. Flash EPROMs are

programmed and erased electrically and have sections that can be erased electrically in a

short time and independently of other sections within the device.

Although PROMs were initially intended for storing code and constant data, design

engineers also used them for implementing Boolean functions (BFs). Figure 2.1 shows the

structure of a simple PROM.

PROMs consist of a fixed array of AND gates driving a programmable array of OR

gates. They can be used for implementing m Boolean functions of n variables in

sum-of-products canonical form, where n is the number of address lines the PROM has,

and m the number of PROM outputs. Thus, the PROM has 2n x m bits of storage capacity

[4]. The PROM is programmed as if it was a simple truth table, such that each data output

bit has the corresponding value of the Boolean function.

5

a b c

l l l

Address 0 &

Address 1 &

Address 2 &

Address 3 &

Address 4 &

Address 5 &

Address 6 &

Address 7 &
a a’ b b’ c c’

Predefined AND array

P
ro

gr
am

m
ab

le
 O

R
 a

rr
ay

f g h

Predefined link
Programmable link

Figure 2.1. The structure of a PROM

For sequential logic, external clocked devices such as flip-flops or microprocessors

were added to the design. State machine logic was programmed into a PROM, which

combined inputs with bits representing the current state of the machine, to produce outputs

and the next state of the machine. This allowed the creation of very complex state

machines. Another benefit was that these state machines could be easily reprogrammed in

order to fix bugs, test new functions, optimize existing designs, or make changes to

systems that were already shipped and in the field.

The problem with PROMs is that they tend to be extremely slow (even today, access

times are on the order of 40 nanoseconds or more), so they are not useful for applications

where speed is an issue. Also, PROMs require a different manufacturing technology than

for logic circuits, and thus, integrating PROMs onto a chip with logic circuitry involves

extra masks and extra processing steps, all leading to extra costs.

2.2.2. Programmable Logic Arrays (PLAs)

Programmable logic arrays (PLAs) were a solution to the speed and input limitations

of PROMs. Ron Cline from Signetics (which was later purchased by Philips and then

6

eventually Xilinx) came up with the idea of two programmable planes [5]. PLAs consist of

a large number of inputs connected to an AND plane, where different combinations of

signals can be logically ANDed together according to how the part is programmed. The

outputs of the AND plane go into an OR plane, where the terms are ORed together in

different combinations and finally outputs are produced (Figure 2.2). There are inverters at

the inputs (and sometimes also at the outputs) so that logical NOTs can be obtained. These

devices can implement a large number of Boolean functions in reduced sum-of-products

(SOP) form, but, unlike a PROM, they can’t implement every possible combination of

their inputs within the AND plane. However, they generally have many more inputs and

are much faster PROMs.

P
ro

gr
am

m
ab

le

O
R

 a
rr

ay

l l l

Figure 2.2. Structure of a PLA

As with PROMs, PLAs could be connected externally to flip-flops to create state

machines, which are the essential building blocks for all sequential logic.

Each connection in the AND and OR planes of a PLA could be programmed to

connect or disconnect. In other words, terms of Boolean functions could be created by

selectively connecting wires within the AND and OR planes. Simple high level languages

were developed to convert Boolean functions such as f (&) | (! &! &)x y x y z= into files

that would program these connections within the PLA. This added a new dimension to

programmable devices in that logic could now be described in readable programs at a level

higher than groups of ones and zeroes.

7

The PLA architecture was very flexible, but at the time, wafer geometries of 10 µm

made the input-to-output delays high, which made these devices relatively slow.

2.2.3. Programmable Array Logic (PAL)

The programmable array logic (PAL) is a variation of the PLA. MMI (later

purchased by AMD) was enlisted as a second source for the PLA array. After several

fabrication issues, it was modified to become the PAL architecture by fixing one of the

programmable planes [5].

Like the PLA, it has a wide, programmable AND plane for ANDing inputs together.

Programming elements at each intersection in the AND plane allow perpendicular traces to

be connected or left open, creating product terms, which are multiple logical signals

ANDed together. The product terms are then ORed together (Figure 2.3).

Figure 2.3. Structure of a PAL

In a PAL, unlike a PLA, the OR plane is fixed, limiting the number of terms that can

be ORed together. This still allows a large number of Boolean functions to be

implemented.

8

The reason for this can be demonstrated by DeMorgan's Law, which states that

()a b a b+ = ⋅ . That means if inverters are used on the inputs and outputs, any logic

function can be created with either a wide AND plane or a wide OR plane; there’s no need

to have both.

Including inverters reduced the need for the large OR plane, which in turn allowed

the extra silicon area on the chip to be used for other basic logic devices such as

multiplexers, exclusive ORs, and latches. Most importantly, clocked elements, typically

flip-flops, could be included in PALs. These devices were now able to implement a large

number of logic functions, including clocked sequential logic needed for state machines.

This was an important development that allowed PALs to replace much of the standard

logic in many designs. PALs are also extremely fast, allowing high-speed controllers be to

be implemented in programmable logic.

The inclusion of extra logic devices, particularly flip-flops, greatly increased the

complexity and potential uses of PALs, creating a need for new methods of programming

that were flexible and readable. Thus the first hardware description languages (HDLs)

were born. These simple HDLs included ABEL, CUPL, and PALASM, the precursors of

Verilog and VHDL. These programming languages also allowed the use of simulation test

vectors in the code. This simulation capability brought better reliability and verification of

programmable devices, something that was critical when CPLDs and FPGAs were

developed.

2.3. Application Specific Integrated Circuits (ASICs)

Application specific integrated circuits (ASICs) are chips that are custom designed

and built to order for use in a specific application. ASICs can be implemented either as a

full-custom design, or in a gate array device or a standard cell device [6].

2.3.1. Full-Custom Devices

In the case of full-custom devices, design engineers have complete control over

every mask layer used to fabricate the silicon chip. The ASIC vendor does not prefabricate

9

any components on the silicon and does not provide any libraries of predefined logic gates

and functions. By using design software, the engineers can manually specify the

dimensions of individual transistors and then create higher-level functions based on these

elements. For example, if the engineers require a slightly faster logic gate, they can alter

the dimensions of the transistors used to build that gate. The design of full-custom devices

is highly complex and time-consuming, but the resulting chips contain the maximum

amount of logic with minimal waste of silicon area.

2.3.2. Gate Arrays

Gate arrays are based on the idea of a basic cell, shown in Figure 2.4, consisting of a

collection of unconnected transistors and resistors. Each ASIC vendor determines what it

considers to be the optimum mix of components provided in its particular basic cell.

(a) Pure CMOS basic cell (b) BiCMOS basic cell

Figure 2.4. Examples of gate array basic cells

The ASIC vendor manufactures many unrouted die that contain the arrays of gates as

shown in Figure 2.5. These can be used for any gate array customer. In the case of

channeled gate arrays, the basic cells are typically presented as either single-column or

dual-column arrays. The free areas between the arrays are known as the channels and are

used for routing the connections between cells.

10

Figure 2.5. Channeled gate array architectures

By comparison, in the case of channel-less or channel-free devices, the basic cells are

presented as a single large array (Figure 2.6). The surface of the device is covered in a

“sea” of basic cells, and there are no dedicated channels for the interconnections. Thus,

these devices are popularly referred to as sea-of-gates or sea-of-cells.

Figure 2.6. Sea-of-gates architecture

An integrated circuit consists of many layers of materials, including semiconductor

material (e.g., silicon), insulators (e.g., oxides), and conductors (e.g., metal). An unrouted

die is processed with all of the layers except for the final metal layers that connect the

gates together. The ASIC vendor defines a set of logic functions such as primitive gates,

multiplexers, and registers that can be used by the design engineers. Each of these building

block functions is referred to as a cell, not to be confused with a basic cell, and the set of

functions supported by the ASIC vendor is known as the cell library.

11

Once given a design, the layout software assigns the functions selected by the

engineers to basic cells on the silicon (Figure 2.7), and figures out which transistors to

connect by placing metal connections on top of the die. First, the low level functions are

connected together. For example, six transistors could be connected to create a D-type

flip-flop. These six transistors would be located physically very close to each other. After

the low level functions have been routed, they would in turn be connected together. The

software would continue this process until the entire design is complete.

Figure 2.7. Assigning functions to basic cells

The channels in channeled devices are used for the tracks that connect the logic gates

together. By comparison, in channel-less devices, the connections between logic gates have

to be deposited over the top of other basic cells. In the case of early processes based on two

layers of metallization, any basic cell overlaid by a track was no longer available to the

user. Due to limited space in the routing channels of channeled devices, the design

engineers could only actually use between 70% and 90% of the total number of available

gates. Sea-of-gates architectures provided significantly more available gates than those of

channeled devices because they don’t contain any dedicated wiring channels. However, in

practice, only about 40% of the gates were usable in devices with two layers of

metallization, rising to 60% or 70% in devices with three or four metallization layers, and

even higher as the number of metallization layers increases [7].

12

When the design is complete, the vendor simply needs to add the last metal layers to

the die to create the final chip, using photo masks for each metal layer. For this reason, it is

sometimes referred to as a “masked gate array” to differentiate it from a field

programmable gate array.

The advantage of a gate array is that the internal circuitry is very fast; the circuit is

dense, allowing lots of functionality on a die; and the cost is low for high volume

production. The disadvantage is that most designs leave significant amounts of internal

resources unutilized, the placement of gates is constrained, and the routing of internal

tracks is less than optimal. All of these factors negatively impact the performance and

power consumption of the design [8]. Also, it takes time for the ASIC vendor to

manufacture and test the parts. The customer incurs a large charge up front, called a

non-recurring engineering (NRE) expense, which the ASIC vendor charges to begin the

entire ASIC manufacturing process. And if there's a mistake, it's a long, expensive process

to fix it and manufacture new ASICs.

2.3.3. Standard Cell Devices

Standard cell devices bear many similarities to gate arrays. The ASIC vendor defines

the cell library that can be used by the design engineers. The vendor also supplies hard-

macro and soft-macro libraries, which include elements such as processors, communication

functions, and a selection of RAM and ROM functions. Last but not least, the design

engineers may decide to reuse previously designed functions or to purchase blocks of

intellectual property (IP).

The design software synthesizes the circuit into a gate-level netlist, which describes

the logic gates and the connections between them. However, unlike gate arrays, standard

cell devices do not use the concept of a basic cell, and no components are prefabricated on

the chip. Special tools are used to place each logic gate individually in the netlist and to

determine the optimum way in which the gates are to be routed. The results are then used

to create custom photo-masks for every layer in the device’s fabrication.

13

The standard cell concept allows each logic function to be created using the

minimum number of transistors with no redundant components, and the related functions

can be positioned close together so as to easily route any connections between them.

Standard cell devices, therefore, provide a closer-to-optimal utilization of the silicon than

do gate arrays.

2.4. Complex Programmable Logic Devices (CPLDs)

Complex Programmable Logic Devices (CPLDs) contain a large number of

SPLD-like blocks (PAL or PLA) in a single chip, connected to each other through a

programmable interconnect matrix so that, in addition to programming the individual

SPLD blocks, the connections between the blocks can also be configured. This architecture

made them familiar to their target market, the printed circuit (PC) board designers who

were already designing SPLDs in their boards. CPLDs were used to simply combine

multiple SPLDs in order to save real estate on a PC board. CPLDs use the same

development tools and programmers as SPLDs, and are based on the same technologies as

SPLDs, but they can realize much more complex logic and more of it.

Figure 2.8 shows the internal architecture of a generic CPLD. Although each

manufacturer has a different variation, in general they are all similar in that they consist of

SPLD-like function blocks, input/output blocks, and an interconnection matrix.

Figure 2.8. A Generic CPLD Architecture

14

2.5. Field Programmable Gate Arrays (FPGAs)

Around the beginning of the 1980s, it became apparent that there was a gap in the

digital IC implementation technologies. At one end, there were programmable devices like

SPLDs and CPLDs, which were highly configurable and had fast design and modification

times, but which couldn’t support large or complex functions. At the other end of the

spectrum were ASICs. These could support extremely large and complex functions, but

they were quite expensive and time consuming to design. Furthermore, once a design had

been implemented as an ASIC it was impossible to modify the design or correct errors.

In order to address this gap, Xilinx developed a new class of ICs called a

field-programmable gate array (FPGA), which was made available to the market in 1984.

The early FPGA devices were based on the concept of a configurable logic block

(CLB) that comprised a 3-input lookup table (LUT), a register that could act as a flip-flop

or a latch, and a multiplexer, along with a few other elements, as shown in Figure 2.9.

Figure 2.9. The structure of a basic FPGA configurable logic block

Each FPGA contains a large number of these programmable logic blocks. By means

of appropriate Static RAM (SRAM) programming cells, every logic block in the device

can be configured to perform a different function. Each register can be configured to

initialize containing a logic 0 or a logic 1 and to act either as a flip-flop or a latch. As a

flip-flop, the register can be configured to be triggered by a rising or falling edge clock.

The multiplexer feeding the flip-flop can be configured to accept the output from the LUT

or a separate input to the logic block.

15

The LUT can be configured to represent any 3-variable Boolean function. For

example, to implement the function y = ab + c’, the LUT is loaded with the appropriate

output values (Figure 2.10).

+

•
a
b

c
y

f = ab + c’

Required function Truth table

1
0
1
0
1
0
1

000
001
010
011
100
101
110
1111

f

a b c f
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

1
0
1
0
1
0
1
1

SRAM cells

Programmed LUT

8:
1

M
ul

tip
le

xe
r

a b c

Figure 2.10 Implementation of a Boolean function in a look-up table

Although the structure varies from vendor to vendor, a typical FPGA comprises a

large number of programmable logic blocks surrounded by a network of programmable

interconnects, as shown in Figure 2.11.

Figure 2.11. A generic FPGA architecture

In addition to the local interconnect, there are also global (high speed)

interconnection paths for transporting time-critical signals across the chip without having

to go through multiple switching elements. There are also clock manager circuits that

16

condition the incoming clock signals and then drive the clock trees throughout the device,

ensuring synchronous operation of flip-flops (Figure 2.12).

Figure 2.12. The clock tree within an FPGA

FPGAs also include input/output (I/O) blocks that drive the I/O pins on the chip. By

programming the interconnect, the inputs to the device can be connected to the inputs of

one or more programmable logic blocks, and the outputs from any logic block can be used

to drive the inputs to any other logic block, the outputs from the device, or both.

2.5.1. Fine-Grained vs. Coarse-Grained CLBs

In theory, there are two types of CLBs, depending on the amount and type of logic

that is contained within them. These two types are called “large grain” and “fine grain”.

In a large grain FPGA, the CLB contains larger functionality logic. For example, it

can contain two or more flip-flops. A design that does not need many flip-flops will leave

many of these flip-flops unused, poorly utilizing the logic resources in the CLBs and in the

chip. A design that requires lots of combinational logic will be required to use up the LUTs

in the CLBs while leaving the flip-flops untouched.

17

Fine grain FPGAs resemble ASIC gate arrays in that the CLBs contain only small,

very basic elements such as NAND gates, NOR gates, etc. The philosophy is that small

elements can be connected to make larger functions without wasting too much logic. If a

flip-flop is needed, one can be constructed by connecting NAND gates. If it’s not needed,

then the NAND gates can be used for other features. In theory, this apparent efficiency

seems to be an advantage. Also, because they more closely resemble ASICs, conversion of

a design from an FPGA to an ASIC is much more straightforward.

However, in practice, one key fact renders the fine grain architecture less useful and

less efficient. The routing resources are the bottleneck in any FPGA design in terms of

utilization and speed [9]. It is often difficult to connect CLBs together using the limited

routing resources on the chip. Also, in an FPGA, unlike an ASIC, the majority of the delay

comes from routing, not logic. In an ASIC, signals are routed using metal layers, leading to

RC delays that are insignificant with respect to the delay through logic gates. In an FPGA,

the routing is done through programmed multiplexers in the case of SRAM-based devices

and through conducting vias in the case of antifuse devices. Both of these structures add

significant delay to a signal. The multiplexers have a gate delay associated with them. The

conducting vias have a high resistance, causing greater RC delay. Fine grain architectures

require many more routing resources, which take up space and insert a large amount of

delay, which can hinder the performance of a design, in spite of the better CLB utilization.

This is why all FPGA vendors currently use large grain architectures for their CLBs.

2.5.2. Embedded Devices

Many newer FPGA architectures incorporate complex devices inside the FPGA

fabric. These devices range from relatively simple functions, such as address decoders or

multipliers, all the way through arithmetic & logic units (ALUs), digital signal processors

(DSPs), microprocessors and microcontrollers. These embedded devices are optimized and

already tested, just like a standalone chip, so there’s no need to design the circuit from

scratch and verify its functionality. FPGAs with embedded devices offer the possibility of

integrating an entire system onto a single chip, creating what is called a “system on a

programmable chip” (SOPC), providing significant savings in printed circuit board area

and power consumption.

18

One disadvantage of these devices is that designs implemented in them are tied into a

single FPGA from a single FPGA vendor, losing some of the portability that engineers

prefer. Each vendor has specific devices embedded into their FPGAs. In the case of

embedded processors, each FPGA vendor usually licenses a specific processor core from a

different processor manufacturer. This is good for the FPGA vendor because once they

have a design win, that design is committed to their FPGA for some time.

By providing an embedded device that is in demand or soon will be, smaller FPGA

vendors try to differentiate themselves and create a niche market for their devices, allowing

them to compete with the bigger vendors.

19

3. EVOLUTION OF ELECTRONIC DESIGN AUTOMATION

In the early 1960s, electronic circuits were crafted by hand. Circuit diagrams, also

known as schematic diagrams or just schematics, were hand-drawn using pen, paper, and

stencils. These diagrams showed the symbols for the logic gates and functions that were to

be used to implement the design, along with the connections between them. Similarly, the

copper tracks on a circuit board were drawn using red and blue pencils to represent the top

and bottom of the board [10].

Each design team usually had at least one member who was really good at performing

logic minimization and optimization. Functional verification, i.e. checking that the design

would work as planned insofar as its logical implementation, was typically performed by a

group of engineers by manually working through the schematics. Similarly, timing

verification, checking that the design met its required input-to-output and internal path delays

and that no parameters associated with the timing of any of the internal registers (such as

setup and hold times) were violated, was performed using pencil and paper and mechanical

calculators.

Finally, a set of drawings representing the structures used to form the logic gates (or,

more accurately, the transistors forming the logic gates) and the interconnections between

them were drawn by hand. These drawings, which were formed from groups of simple

polygons such as squares and rectangles, were subsequently used to create the photo-masks,

which were themselves used to create the actual silicon chip.

3.1. The Early Days of Electronic Design Automation

Not surprisingly, the handcrafted way of designing circuits was time-consuming and

prone to error. Something had to be done, and a number of companies and universities began

research in a variety of different directions. In the case of functional verification, for

example, special computer programs known as simulators were developed. These programs

allowed students and engineers to emulate the operation of an electronic circuit without

actually having to build it first. Perhaps the most famous of the early simulators was the

Simulation Program with Integrated Circuit Emphasis (SPICE) [11]. SPICE was developed

20

by the University of California in Berkeley and was made available for widespread use

around the beginning of the 1970s. SPICE was designed to simulate the behavior of analog

circuits. Other programs called logic simulators were developed to simulate the behavior of

digital circuits.

In order to use the logic simulator, the engineers first needed to create a textual

representation of the circuit called a gate-level netlist. In those times, the engineers would

typically have been using a mainframe computer, and the netlist would have been captured

as a set of punched cards called a deck. As computers (along with storage devices like hard

disks) became more accessible, netlists began to be stored as text files.

It was also possible to associate delays with each logic gate. These delays were

typically referenced as integer multiples of some core simulation time unit.

All of the early logic simulators had internal representations of primitive gates like

AND, NAND, OR, NOR, etc. These were referred to as simulation primitives. Some

simulators also had internal representations of more sophisticated functions like D-type

flip-flops. Alternatively, one could create a subcircuit called DFF to represent a D-type

flip-flop, whose functionality was captured as a netlist of primitive AND, NAND, etc. gates.

In this case, DFF would actually be seen by the simulator as a call to instantiate a copy of

this subcircuit.

Next, the user would create a set of test vectors, also called stimulus, which were

patterns of logic 0 and logic 1 values to be applied to the circuit’s inputs. Once again, these

test vectors were textual in nature, and they were typically presented in a tabular form. In

today’s terminology, the file of test vectors would be considered a rudimentary testbench.

Once again, time values were typically specified as integer multiples of some core simulation

time unit.

The engineer would then invoke the logic simulator, which would read in the

gate-level netlist and construct a virtual representation of the circuit in the computer’s

memory. The simulator would then read in the first test vector (the first line from the

stimulus file), apply those values to the appropriate virtual inputs, and propagate their effects

through the circuit. This would be repeated for each of the subsequent test vectors forming

21

the testbench. The simulator would also use one or more control files (or online commands)

to tell it which internal nodes (wires) and output pins to monitor, how long to simulate for,

and so forth. The results, along with the original stimulus, would be stored in tabular form in

a textual output file.

It wasn’t long before engineers were working with circuits that could contain

thousands of gates and internal nodes along with simulation runs that could encompass

thousands of time steps. It took hours to examine output files trying to see if a circuit was

working as expected, and also attempting to track down the problem if it wasn’t.

3.2. Back-End Tools

As opposed to tools like logic simulators that were intended to aid the engineers who

were defining the function of ICs (and circuit boards), some companies focused on creating

tools that would help in the process of laying the ICs out. In this context, “layout” refers to

determining where to place the logic gates (actually, the transistors forming the logic gates)

on the surface of the chip and how to route the wires between them.

In the early 1970s, companies like Calma, ComputerVision, and Applicon created

special computer programs that helped personnel in the drafting department capture digital

representations of hand-drawn designs. In this case, a design was placed on a large-scale

digitizing table, and then a mouse-like tool was used to digitize the boundaries of the shapes

(polygons) used to define the transistors and the interconnect. These digital files were

subsequently used to create the photo-masks, which were themselves used to create the

actual silicon chip.

Over time, these early computer-aided drafting tools evolved into interactive programs

called polygon editors that allowed users to draw the polygons directly onto the computer

screen. Other companies like Racal-Redac, SCI-Cards, and Telesis created equivalent layout

programs for printed circuit boards. Descendants of these tools eventually gained the ability

to accept the same netlist used to drive the logic simulator and to perform the layout

(place-and-route) tasks automatically.

22

3.3. Computer-Aided Design and Engineering

Tools that were used in the front-end (logical design capture and functional

verification) portion of the design flow were originally gathered together under the umbrella

name of computer-aided engineering (CAE). By comparison, tools like layout

(place-and-route) that were used in the back-end (physical) portion of the design flow were

originally gathered together under the name of computer-aided design (CAD).

For historical reasons that are largely based on the origins of the terms CAE and CAD,

the term design engineer, or simply engineer, typically refers to someone who works in the

front-end of the design flow; that is, someone who performs tasks like conceiving and

describing (capturing) the functionality of an IC (what it does and how it does it). By

comparison, the term layout designer, or simply designer, commonly refers to someone who

works at the back-end of the design flow; that is, someone who performs tasks such as laying

out an IC (determining the locations of the gates and the routes of the tracks connecting them

together). During the 1980s, all of the CAE and CAD tools used to design electronic

components and systems were gathered under the name of electronic design automation

(EDA).

Toward the end of the 1970s and the beginning of the 1980s, companies like Daisy,

Mentor, and Valid started providing graphical schematic capture programs that allowed

engineers to create circuit (schematic) diagrams interactively. Using the mouse, an engineer

could select symbols representing such entities as I/O pins and logic gates and functions

from a special symbol library and place them on the screen. The engineer could then use the

mouse to draw lines (wires) on the screen connecting the symbols together.

Once the circuit had been entered, the schematic capture package could be instructed

to generate a corresponding gate-level netlist. This netlist could first be used to drive a logic

simulator in order to verify the functionality of the design. The same netlist could then be

used to drive the place-and-route software.

23

3.4. Hardware Description Languages

Toward the end of the 1980s, as designs grew in size and complexity, schematic

based ASIC flows became a limiting factor. Visualizing, capturing, debugging,

understanding, and maintaining a design at the gate level of abstraction became

increasingly difficult and inefficient when dealing with 5,000 or more gates and a vast

number of schematic pages.

In addition to the fact that capturing a large design at the gate level of abstraction is

prone to error, it is also extremely time-consuming. Thus, some EDA vendors started to

develop design tools and flows based on the use of hardware description languages

(HDLs).

In a wider context, the term hardware is used to refer to any of the physical portions

of an electronics system, including the ICs, printed circuit boards, cabinets, cables, and

even the nuts and bolts holding the system together. In the context of an HDL, however,

“hardware” refers only to the electronic portions (components and wires) of ICs and

printed circuit boards. (The HDL may also be used to provide limited representations of

the cables and connectors linking circuit boards together.)

In the beginning, almost all EDA tool vendors created their own HDLs to go with

the tools. Some of these were analog HDLs in that they were intended to represent circuits

in the analog domain, while others were focused on representing digital functionality. This

text covers HDLs only in the context of designing digital ICs in the form of ASICs and

FPGAs.

3.4.1. Different Levels of Abstraction

The functionality of a digital circuit can be represented at different levels of

abstraction, and different HDLs support these levels of abstraction to a greater or lesser

extent (Figure 3.1).

24

Figure 3.1. Different levels of abstraction

The lowest level of abstraction for a digital HDL would be the switch level, which

refers to the ability to describe the circuit as a netlist of transistor switches. A slightly

higher level of abstraction would be the gate-level, which refers to the ability to describe

the circuit as a netlist of primitive logic gates and functions. Thus, the early gate-level

netlist formats generated by schematic capture packages were in fact rudimentary HDLs.

Both switch-level and gate-level netlists may be classified as structural

representations. It should be noted, however, that the term “structural” may also be used to

refer to a hierarchical block-level netlist in which each block may have its contents

specified using any of the levels of abstraction shown in Figure 3.1.

The next level of HDL sophistication is the ability to support functional

representations, which covers a range of constructs. At the lower end is the capability to

describe a circuit using Boolean functions. For example, after declaring a set of signals

called Y, SELECT, DATA_A, and DATA_B, the functionality of a simple 2:1 multiplexer

can be written using the following Boolean equation:

Y = (SELECT & DATA_A) | (!SELECT & DATA_B);

25

This is a generic syntax that does not favor any particular HDL and is used only for

the purposes of this example. Here, the “&” character represents a logical AND, the “|”

character represents an OR, and the “!” character represents a NOT.

The functional level of abstraction also encompasses register transfer level (RTL)

representations. The term RTL generally refers to a design formed from a collection of

registers linked by combinational logic. These registers are often controlled by a common

clock signal. With two signals called CLOCK and CONTROL, along with a set of registers

called REGA, REGB, REGC, and REGD, an RTL-type statement might be written similar

to the following:

when CLOCK rises

 if CONTROL == “1" then REGA = REGB & REGC;

 else REGA = REGB | REGD;

 end if;

end when;

In this case, symbols like when, rises, if, then, else, and the like are

keywords whose semantics are defined by the owners of the HDL. Once again, this is a

generic syntax that does not favor any particular HDL and is used only for the purposes of

this example.

The highest level of abstraction supported by traditional HDLs is known as

behavioral, which refers to the ability to describe the behavior of a circuit using abstract

constructs like loops and processes. This also encompasses using algorithmic elements like

adders and multipliers in equations; for example:

Y = (DATA_A + DATA_B) * DATA_C;

There is also a system level of abstraction (not shown in Figure 3.1) that features

constructs intended for system-level design applications.

Many of the early digital HDLs supported only structural representations in the

form of switch or gate-level netlists. Others such as ABEL, CUPL, and PALASM were

used to capture the required functionality for programmable logic devices. These languages

26

supported different levels of functional abstraction, such as Boolean functions, text-based

truth tables, and text-based finite state machine (FSM) descriptions.

The next generation of HDLs, which were predominantly targeted toward logic

simulation, supported more sophisticated levels of abstraction such as RTL and some

behavioral constructs. It was these HDLs that formed the core of the first true HDL-based

design flows.

3.4.2. An early HDL-based ASIC flow

The key feature of HDL-based ASIC design flows is their use of logic synthesis

technology, which began to appear on the market around the mid-1980s. These tools could

accept an RTL representation of a design along with a set of timing constraints. In this

case, the timing constraints were presented in a side file containing statements along the

lines of “the maximum delay from input X to output Y should be no greater than N

nanoseconds”.

The logic synthesis application automatically converted the RTL representation

into a mixture of registers and Boolean equations, performed a variety of minimizations

and optimizations (including optimizing for area and timing), and then generated a

gate-level netlist that would (or at least, should) meet the original timing constraints

(Figure 3.2).

There were a number of advantages to this new type of flow. First of all, the

productivity of the design engineers rose dramatically because it was much easier to

specify, understand, discuss, and debug the required functionality of the design at the RTL

level of abstraction as opposed to working with heaps of gate-level schematics. Also, logic

simulators could run designs described in RTL much more quickly than their gate-level

counterparts.

27

Register
transfer level

RTL

Logic
Simulator

RTL functional
verification

Logic
Synthesis

Gate-level
netlist

Logic
Simulator

Place-and-
Route

Gate-level functional
verification

Figure 3.2. Simple HDL-based ASIC design flow

One slight glitch was that logic simulators could work with designs specified at

high levels of abstraction that included behavioral constructs, but early synthesis tools

could only accept functional representations up to the level of RTL. Thus, design engineers

were obliged to work with a synthesizable subset of their HDL of choice.

Once the synthesis tool had generated a gate-level netlist, the flow became very

similar to schematic-based ASIC flows. The gate-level netlist could be simulated to ensure

its functional validity, and it could also be used to perform timing analysis based on

estimated values for tracks and other circuit elements. The netlist could then be used to

drive the place-and-route software, following which a more accurate timing analysis could

be performed using extracted resistance and linefeed capacitance values.

3.4.3. An early HDL-based FPGA flow

It took some time for HDL-based flows to flourish within the ASIC community.

Meanwhile, design engineers were still unfamiliar with the concept of FPGAs. Thus, it

wasn’t until the very early 1990s that HDL-based flows featuring logic synthesis

technology became fully available for FPGA designs (Figure 3.3).

28

Register
transfer level

RTL

Logic
Simulator

RTL functional
verification

Logic
Synthesis

Gate-level
netlist

Logic
Simulator

Mapping
Packing

Place-and-
Route

Gate-level functional
verification

Figure 3.3. Simple HDL-based FPGA design flow

As before, once the synthesis tool had generated a gate-level netlist, it could be

simulated to ensure functional validity, and it could also be used to perform timing analysis

based on estimated values for tracks and other circuit elements. The netlist could then be

used to drive the mapping, packing, and place-and-route software for the FPGA. Following

place-and-route, a more accurate timing report could be generated using real world

(physical) values.

3.4.4. Graphical Design Entry vs. HDLs

When the first HDL-based flows appeared on the scene, many assumed that

graphical design entry and visualization tools, such as schematic capture systems, were

going to become obsolete. Indeed, for some time, many design engineers used text editors

like VI (from Visual Interface) or EMACS as their only design entry mechanism [8].

However, graphical entry techniques remain popular at a variety of levels. For

example, it is extremely common to use a block-level schematic editor to capture the

design as a collection of high-level blocks that are connected together. The system might

then be used to automatically create a skeleton HDL framework with all of the block

names and inputs and outputs declared. Alternatively, the user might create a skeleton

framework in HDL, and the system might use this to create a block-level schematic

automatically.

29

From the user’s viewpoint, “pushing” down into one of these schematic blocks

might automatically open an HDL editor. This could be a pure text and command based

editor like VI, or it might be a more sophisticated HDL-specific editor featuring the ability

to show language keywords in different colors, automatically complete statements, and so

forth. Furthermore, when pushing down into a schematic block, modern design systems

often give the engineer a choice between entering and viewing the contents of that block as

another, lower level block-level schematic, raw HDL code, a graphical state diagram (used

to represent an FSM), or a graphical flowchart. In the case of the graphical representations

like state diagrams and flowcharts, these can subsequently be used to generate their RTL

equivalents automatically (Figure 3.4).

Graphical State Diagram

Graphical Flowchart

When clock rises
 If (s == 0)
 then y = (a & b) | c;
 else y = c & !(d ^ e);

Textual HDL

Top-level
block-level
schematic

Block-level schematic

Figure 3.4. Using a mixture of different design entry methods

It is common to have a tabular file containing information relating to the device’s

external inputs and outputs. In this case, both the top-level block diagram and the tabular

file will be directly linked to the same data and will simply provide different views of that

data. Making a change in any view will update the central data and be reflected

immediately in all of the other views.

3.5. Modern Hardware Description Languages

As previously noted, in the early days of digital electronics design (around the

1970s), HDL-based design tool vendors typically created their own languages to

30

accompany their design tools. The result was confusion. What was needed was an industry

standard HDL that could be used by multiple EDA tools and vendors.

3.5.1. Verilog HDL

Sometime around the mid-1980s, Phil Moorby (one of the original members of the

team that created the famous HILO logic simulator) designed a new HDL called Verilog

for his company, Gateway Design Automation. In 1985 the company introduced this

language to the market along with an accompanying logic simulator called Verilog-XL.

One very useful concept that accompanied Verilog and Verilog-XL was the Verilog

programming language interface (PLI), which was basically an application programming

interface (API). An API is a library of software functions that allow external software

programs to pass data into an application and access data from that application. Thus, the

Verilog PLI is an API that allows users to extend the functionality of the Verilog language

and simulator.

As one simple example, assume that an engineer is designing a circuit that makes

use of an existing module to perform a mathematical function such as a Fast Fourier

Transform (FFT). A Verilog representation of this function might take a long time to

simulate, which would be impractical if the engineer only wanted to verify the new portion

of the circuit. In this case, the engineer might create a model of this function in the C

programming language, which would simulate many times faster than its Verilog

equivalent. This model would incorporate PLI constructs, allowing it to be linked into the

simulation environment. The model could subsequently be accessed from the Verilog

description of the rest of the circuit by means of a PLI call providing a bidirectional link to

pass data back and forth between the main circuit (represented in Verilog) and the FFT

(captured in C).

Yet one more really useful feature associated with Verilog and Verilog-XL was the

ability to have timing information specified in an external text file known as a standard

delay format (SDF) file. This allowed tools like post-place-and-route timing analysis

31

packages to generate SDF files that could be used by the simulator to provide more

accurate results.

As a language, the original Verilog was reasonably strong at the structural (switch

and gate) level of abstraction (especially with regard to delay modeling capability); it was

very strong at the functional (Boolean equation and RTL) level of abstraction; and it

supported some behavioral (algorithmic) constructs (Figure 3.5).

Structural
(Gate, Switch)

Functional
(RTL,

Boolean)

Behavioral
(Algorithmic)

System

V
er

ilo
g

Figure 3.5. Levels of abstraction supported by Verilog

In 1989, Gateway Design Automation, along with Verilog (the HDL) and

Verilog-XL (the simulator), were acquired by Cadence Design Systems. The most likely

scenario at that time was for Verilog to remain as just another proprietary HDL. However,

with a move that took the industry by surprise, Cadence put the Verilog HDL, Verilog PLI,

and Verilog SDF specifications into the public domain in 1990.

This was a very brave move because it meant that anybody could develop a Verilog

simulator, thereby becoming a potential competitor to Cadence. The reason for Cadence’s

decision was that the VHDL language (introduced later in this section) was starting to gain

a significant user base. The benefit of placing Verilog in the public domain was that a wide

variety of companies developing HDL-based tools, such as logic synthesis applications,

now felt comfortable using Verilog as their language of choice.

32

Having a single design representation that could be used by simulation, synthesis,

and other tools made engineers’ job a lot easier. However, Verilog was originally

conceived with simulation in mind, and applications like synthesis were something of an

afterthought. This means that when creating a Verilog representation to be used for both

simulation and synthesis, one is restricted to using a synthesizable subset of the language,

which can be loosely defined as whatever collection of language constructs that the

particular logic synthesis package understands and supports.

Verilog quickly became very popular. The problem was that different companies

started to extend the language in different directions. In order to restrict this, a nonprofit

body called Open Verilog International (OVI) was established in 1991. With

representatives from all of the major EDA vendors of the time, OVI’s mandate was to

manage and standardize Verilog HDL and the Verilog PLI. The popularity of Verilog

continued to rise exponentially, with the result that OVI eventually asked the IEEE to form

a working committee to establish Verilog as an IEEE standard. Known as IEEE 1364, this

committee was formed in 1993.

May 1995 saw the first official IEEE Verilog release, which is formally known as

IEEE 1364-1995, and whose unofficial designation has come to be Verilog 95 [12]. Minor

modifications were made to this standard in 2001; hence, it is often referred to as the

Verilog 2001 (or Verilog 2K1) release [13]. Recently, in April 2006, Verilog has been

updated once more, under the standard designation IEEE 1364-2005 [14].

3.5.2. VHDL and VITAL

In 1980, the U.S. Department of Defense (DoD) launched the very high speed

integrated circuit (VHSIC) program, whose primary objective was to advance the state of

the art in digital IC technology.

This program sought to address, among other things, the fact that it was difficult to

reproduce ICs (and circuit boards) over the long life cycles of military equipment because

the function of the parts wasn’t documented in a rigorous fashion. Furthermore, different

33

components forming a system were often designed and verified using diverse and

incompatible simulation languages and design tools.

In order to address these issues, a project to develop a new hardware description

language called VHSIC HDL (or VHDL for short) was launched in 1981. One unique

feature of this process was that industry was involved from a very early stage. In 1983, a

team comprising Intermetrics, IBM, and Texas Instruments was awarded a contract to

develop VHDL, the first official release of which occurred in 1985.

In order to encourage acceptance by the industry, the DoD subsequently donated all

rights to the VHDL language definition to the IEEE in 1986. After making some

modifications to address a few known problems, VHDL was released as official standard

IEEE 1076 in 1987, which was also the first IEEE standard for EDA.

As a language, VHDL is very strong at the functional (Boolean equation and RTL)

and behavioral (algorithmic) levels of abstraction, and it also supports some system-level

design constructs. However, VHDL is a little weak when it comes to the structural (switch

and gate) level of abstraction, especially with regard to its delay modeling capability

(Figure 3.6).

Structural
(Gate, Switch)

Functional
(RTL,

Boolean)

Behavioral
(Algorithmic)

System

V
er

ilo
g

V
H

D
L

VITAL

- Relatively easy to learn
- Fixed data types
- Interpreted constructs
- Good gate-level timing
- Limited design reusability
- Limited design management
- No structure replication

- Relatively difficult to learn
- Abstract data types
- Compiled constructs
- Less good gate-level timing
- Good design reusability
- Good design management
- Supports structure replication

Figure 3.6. Comparison of abstraction levels (Verilog vs. VHDL)

34

It quickly became apparent that VHDL had insufficient timing accuracy to be used

as a sign-off simulator. For this reason, the VHDL Initiative Toward ASIC Libraries

(VITAL) was launched at the Design Automation Conference (DAC) in 1992. VITAL was

an effort to enhance VHDL’s abilities for modeling timing in ASIC and FPGA design

environments. The end result encompassed both a library of ASIC/FPGA primitive

functions and an associated method for back-annotating delay information into these

library models, where this delay mechanism was based on the same underlying tabular

format used by Verilog.

The language was further extended in a 1993 release and again in 1999 and 2002

with several child standards (1164, 1076.2, 1076.3) introduced to extend the functionality

of the language. In June 2006, VHDL Technical Committee of Accellera (delegated by

IEEE to work on next update of the standard) approved so called Draft 3.0 of the new

VHDL specification. While maintaining full compatibility with older versions, this

proposed standard provides numerous extensions that make writing and managing VHDL

code easier. Key changes include incorporation of child standards into the main 1076

standard, extended set of operators, and more flexible syntax for ‘case’ and ‘generate'

statements. These changes should improve quality of synthesizable VHDL code, make

testbenches more flexible, and allow wider use of VHDL for system-level descriptions.

This new VHDL specification is targeted to become the IEEE Standard 1076-2006 [15].

3.5.3. UDL/I

As previously noted, Verilog was originally designed with simulation in mind.

Similarly, VHDL was created as a design documentation and specification language that

took simulation into account. As a result one can use both of these languages to describe

constructs that can be simulated, but not synthesized.

In order to address these problems, the Japan Electronic Industry Development

Association (JEIDA) introduced its own HDL, the Unified Design Language for Integrated

Circuits (UDL/I) in 1990.

35

The key advantage of UDL/I was that it was designed from the ground up with both

simulation and synthesis in mind. The UDL/I environment includes a simulator and a

synthesis tool and is available for free (including the source code). However, by the time

UDL/I arrived on the scene, Verilog and VHDL already held the high ground, and UDL/I

never really managed to attract much interest outside of Japan.

3.5.4. SystemC

SystemC can be used to describe designs at the RTL level of abstraction. These

descriptions can subsequently be simulated 5 to 10 times faster than their Verilog or

VHDL counterparts, and synthesis tools are available to convert the SystemC RTL into

gate-level netlists. In reality, SystemC is more applicable to a system-level versus an RTL

design environment.

One big argument for SystemC is that it provides a more natural environment for

hardware/software codesign and coverification. One big argument against it is that the

majority of design engineers are very familiar with Verilog or VHDL, but they are not

familiar with the object-orientated aspects of SystemC. Another consideration is that the

majority of today’s synthesis offerings represent hundreds of engineer years of

development in translating Verilog or VHDL into gate-level netlists. By comparison, there

are far fewer SystemC-based synthesis tools, and those that are available tend to be

somewhat less sophisticated than their more traditional counterparts.

3.5.5. Superlog and SystemVerilog

Formed in 1997, Co-Design Automation was the developer of the Superlog

language. Superlog was an amazing tool that combined the simplicity of Verilog with the

power of the C programming language. It also included things like temporal logic,

sophisticated design verification capabilities, a dynamic API, and the concept of assertions

that are key to the formal verification strategy known as model checking (VHDL already

had a simple assert construct, but the original Verilog had no such feature).

36

The two main problems with Superlog were (a) it was essentially another

proprietary language, and (b) it was so much more sophisticated than Verilog 95 (and later

Verilog 2001) that getting other EDA vendors to enhance their tools to support it would

have been a major feat.

Meanwhile, as everyone in the electronics industry was wondering what the future

held, the OVI group linked up with their equivalent VHDL organization called VHDL

International to form a new body called Accellera. The mission of this new organization

was to focus on developing new standards and formats, and to foster the adoption of new

methodologies based on these standards and formats.

In the summer of 2002, Accellera released the specification for a hybrid language

called SystemVerilog 3.0. The great advantage to this language was that it was an

incremental enhancement to the existing Verilog, rather than the big leap represented by a

full-up Superlog implementation. Actually, SystemVerilog 3.0 featured many of

Superlog’s language constructs donated by Co-Design. It included things like the assertion

and extended synthesis capabilities that everyone wanted and, being an Accellera standard,

it was well placed to quickly gain widespread adoption.

Co-Design was acquired by Synopsys in the fall of 2002. Synopsys maintained the

policy of donating language constructs from Superlog to SystemVerilog, but Superlog is

no longer seen as an independent language anymore. After some time, all of the

mainstream EDA vendors officially endorsed SystemVerilog and augmented their tools to

accept various subsets of the language, depending on their particular application areas and

requirements. SystemVerilog 3.1 was released in the summer of 2003, followed by a 3.1a

release (to add a few enhancements and fix some problems) around the beginning of 2004.

Accellera then donated their SystemVerilog 3.1a copyright to the IEEE, and

SystemVerilog has recently been established as the IEEE Standard 1800-2005 [14].

3.5.6. Mixed-Language Designs

At the beginning, it was fairly common for an entire design to be captured using a

single HDL (Verilog or VHDL). As designs increased in size and complexity, however, it

37

became more common for different portions of the design to be created by different teams.

These teams could be based in different companies or even reside in different countries,

and it was not uncommon for the different groups to be using different design languages.

Another consideration was the increasing use of legacy design blocks or third-party

intellectual property (IP), where the latter refers to a design team purchasing a predefined

function from an external supplier.

The early 1990s saw a period known as the HDL Wars, in which the supporters of

one language (Verilog or VHDL) predicted that the other language would soon become

obsolete, but the years passed and both languages more or less retained their user base. The

end result was that EDA vendors began to support mixed-language design environments

featuring logic simulators, logic synthesis applications, and other tools that could work

with designs composed from a mixture of Verilog and VHDL blocks or modules (for

reference, a comparison of VHDL, Verilog, and SystemVerilog can be found in [16])

3.6. Top-Down Design Methodology

In recent years, designers have increasingly adopted top-down design methodologies

even though it takes them away from logic and transistor level design to abstract

programming. The introduction of industry standard hardware description languages and

commercially available synthesis tools have helped establish this revolutionary design

methodology. Some of the advantages of a top-down design methodology are [17]:

• increased productivity yields and shorter development cycles with more

product features and reduced time to market,

• reduced Non-Recurring Engineering (NRE) costs,

• design reuse,

• increased flexibility for design changes,

• faster exploration of alternative architectures,

• faster exploration of alternative technology libraries,

38

• the ability to use of synthesis to rapidly sweep the design space of area and

timing, and to automatically generate testable circuits,

• better and easier design auditing and verification.

In an ideal world, a true top-down system level design methodology would mean

describing a complete system at an abstract level using a hardware description language

and the use of automated tools, for example, design partitioners and synthesizers. This

would drive the abstract level description to implementation on printed circuit boards

which contain standard ICs, ASICs, FPGAs, PLDs, and full-custom ICs. This ideal has not

yet been fulfilled; however, EDA tools are constantly being improved towards this vision.

This means designers must constantly take on new roles and learn new skills. More time is

now spent designing HDL models, considering different architectures and considering

system testability and debug issues. Practically no time is spent designing at the gate level.

Technological advancements over the last years has increased the complexity of

standard ICs and ASICs and resulted in the concept of “system on a chip (SOC)”. A

top-down design methodology is the only practical option to design such chips.

Any ASIC or FPGA design in a hardware development project is usually on the

critical path of the development schedule. Although, in rare cases for reasons of cost, a

schematic entry tool may still be a viable design method for small devices such as PLDs, a

top-down design approach using a hardware description language, is by far the best design

philosophy to adopt, provided the budget is available for simulation and synthesis tools.

39

4. THE VERILOG HARDWARE DESCRIPTION LANGUAGE

In accordance with the commonly used, hierarchical, top-down design methodology,

a circuit description in Verilog is specified by defining modules that correspond to the

various functional blocks at different levels within the circuit.

4.1. The Verilog module

A module is the basic building block in Verilog. Circuits are described using one or

more modules. Modules can represent:

• a physical block, such as an IC or ASIC cell,

• a logical block, such as the ALU portion of a processor design,

• a Device Under Test (DUT),

• a testbench,

• or a complete system.

Every module description starts with the keyword module, followed by the name of

the module (MUX, DFF, ALU, etc.), and a list of the module’s ports. The description ends

with the keyword endmodule.

Figure 4.1. Representation of a D-type flip-flop as a module

40

The module description for the D-type flip-flop in Figure 4.1 is given below:

module DFF (q, qn, d, clk, rstn);

 output q, qn;

 input d, clk, rstn;

 D-type flip-flop definition

endmodule

4.2. Module Ports

Modules communicate with their environment through ports. Module ports represent

device pins and board connectors. All ports are listed in parentheses after the module

name. Then, within the module definition, each port is declared to be of type input,

output, or inout (bidirectional).

Inputs and outputs having multiple-bit widths are called vectors:

input [0:5] x;

output [2:0] y;

The examples above declare an input vector x with six bits (0 to 5) and an output

vector y with three bits (2 to 0). First number listed is the most significant bit of the vector.

The individual bits can be accessed by specifying them within square brackets, like x[3]

or y[1].

4.3. Module Instances

Each Verilog module defines a new scope, i.e. a new level of hierarchy within the

circuit description. A module may include any number of other modules and connect them

together to form more complex circuits. For example, a multiplier circuit that includes a

number of shift registers and adders can be modeled in Verilog by first writing the

descriptions for a shift register and an adder as individual modules, and then calling these

modules as many times as required from within the multiplier description. Each call to a

module creates an instance of that module in the circuit.

41

Figure 4.2. Modeling a 4-bit register comprising four D-type flip-flops

module REG4 (q, qn, data, clk, clrn);

 output [3:0] q, qn;

 input [3:0] data;

 input clk, clrn;

 DFF d0 (q[0], qn[0], data[0], clk, clrn);

 DFF d1 (q[1], qn[1], data[1], clk, clrn);

 DFF d2 (q[2], qn[2], data[2], clk, clrn);

 DFF d3 (q[3], qn[3], data[3], clk, clrn);

endmodule

The Verilog description of the REG4 module in Figure 4.2 instantiates the DFF

module four times. Each DFF module has a unique instance name (d0, d1, d2, and d3). The

instance name uniquely identifies the instance. Each instance is a complete, independent,

and concurrently active copy of the module.

4.4. Gate Level Modeling of Circuits

Gate level modeling represents a textual description of a schematic diagram. Verilog

recognizes twelve basic gates as predefined primitives. They are declared with the

keywords buf, not, and, nand, or, nor, xor, xnor, bufif1, bufif0, notif1, notif0. Some of

these are two-state gates and some of them are tri-state gates.

There are eight two-state gates predefined in Verilog. These are buf, not, and, nand,

or, nor, xor, xnor. The declaration for a two-state gate consists of the gate type keyword,

42

followed by a name for the gate, and then a comma separated list of ports in parenthesis

specifying in order the output and the data inputs of the gate:

Figure 4.3. Examples of Verilog primitives

Figure 4.4. A simple combinational circuit

// Gate level description of the circuit in Figure 4.4

module circuit(X, Y, A, B, C);

 input A, B, C;

 output X, Y;

 wire D;

 or g1(X, A, B);

 not g2(D, X);

 and g3(Y, C, D);

endmodule

The module is declared as module circuit (X, Y, A, B, C). Here, (X, Y, A, B, C)

are the ports of the circuit. A, B, C are declared as input, and X, Y are declared as output.

The internal connection between the output of the inverter and the input of the AND gate is

declared as a wire with name D. Each gate is given a unique name (such as g1, g2, etc…).

For example, the or gate has gate name g1, its output is X, and its inputs are A and B.

The four tri-state gates predefined in Verilog are bufif1, bufif0, notif1, notif0. The

declaration for a tri-state gate consists of the gate type keyword, followed by a name for

43

the gate, and then a comma separated list of ports in parenthesis, specifying the output, the

data input and the control input of the gate. Here are two examples of tri-state gates:

Figure 4.5. Tri-state gates in Verilog

For the first example (bufif1), if CONTROL is 1, IN is transferred to OUT;

otherwise, OUT behaves as an open circuit (high impedance, denoted by Z). For the

second example (bufif0), if CONTROL is 0, IN is transferred to OUT; otherwise, OUT

becomes Z.

Figure 4.6. Implementing a 2-to-1 multiplexer with tri-state gates

// Gate level description of the

// 2-to-1 multiplexer in Figure 4.6

module mux_2to1(A, B, Select, OUT);

 input A, B, Select;

 output OUT;

 tri OUT;

 bufif1 g1(OUT, A, Select);

 bufif0 g2(OUT, B, Select);

endmodule

44

As seen in Figure 4.6, the outputs of the buffers are connected to a common node to

form a single output. For such connections, the tri keyword must be used to indicate that

the output has multiple tri-stated drivers.

4.5. Dataflow Modeling

Dataflow modeling uses some operators that act on operands to produce the desired

results. Data flow modeling is used for describing the combinational circuits by their

function rather than by their gate structure. It is not used for describing sequential circuits.

Some of the operators used for dataflow modeling are given in Table 4.1.

Table 4.1 Logical and arithmetic operators in Verilog

& bit-wise AND + addition

| bit-wise OR - subtraction

~ bit-wise NOT {} concatenation

^ bit-wise XOR ?: conditional assignment

It is important to distinguish between arithmetic and logic operations. For example,

“+” represents arithmetic addition; for logical OR operation, the symbol “|” is used.

Dataflow modeling uses continuous assignment, declared using the keyword assign.

A continuous assignment is a statement that assigns a value to a net which defines a gate

output declared by an output or a wire statement. The keyword assign is followed by the

target output name, an equal sign (=), and then an expression comprised of operands and

operators, the result of which will be assigned to the target output.

Here is the dataflow description of a 2-to-1 line multiplexer:

// Dataflow description of the 2-to-1 line multiplexer

module mux_2to1(A, B, Select, OUT);

 input A, B, Select;

 output OUT;

 assign OUT = (A & Select) | (B & ~Select);

endmodule

45

Next is the dataflow description of a 4-bit full adder:

// Dataflow description of a 4-bit full adder

module fadder4bit (A, B, Cin, SUM, Cout);

 input [3:0] A, B;

 input Cin;

 output [3:0] SUM;

 output Cout;

 assign {Cout , SUM} = A + B + Cin;

endmodule

The inputs A and B are declared as 4 bit vectors. Binary addition of A, B and the

carry input Cin is specified by the plus symbol (+). The 5 bit result of the addition

operation is assigned to {Cout, SUM}, the concatenation of Cout and SUM. Cout receives

the most significant bit of the result, and SUM receives the remaining 4 bits (the least

significant bit of SUM, SUM[0], is assigned the least significant bit of the result).

4.6. Behavioral Modeling

Behavioral modeling represents digital circuits at the functional and algorithmic

level. Behavioral modeling can be used for describing both sequential and combinational

circuits.

Initial conditions for a circuit (or a simulation) are declared with the keyword initial.

initial blocks execute only once at the beginning of a simulation, and end after all the

statements have completed. The initial keyword is followed by either a single statement, or

a block of statements enclosed within the keywords begin and end:

initial

 begin

 clock = 1’b0;

 repeat(30);

 #10 clock = ~clock;

 end

46

In the example above, clock is initially assigned a value of 0 (1’b0 represents a 1 bit

constant with a value of 0) and the simulation engine is set to complement the clock 30

times every 10 time units (#10 specifies a delay of 10 time units between each repetition).

The behavior of the circuit itself is described using always blocks in the form

always @(event control expression);

 Procedural description of circuit

Here the procedural description can be either a single statement, or a block of

multiple statements enclosed within begin and end keywords. Procedural statements

define flow control and value assignment to variables within the module. The left hand

side variable in an assignment statement must be a register, declared as type reg. Registers

declared with the reg keyword retain their values until a new value is assigned, and thus

are used for modeling flip-flops and memory devices.

The event control expression specifies the condition (or conditions) that will trigger

the execution of the procedural assignment statements in the always block. These

statements are executed on every occurrence of the condition(s) given in the event control

expression. Multiple trigger conditions in an expression must be separated by the or

keyword.

The event control expression can contain both level sensitive and edge sensitive

trigger conditions. Level sensitive event controls cause execution of the always block each

time the value of a variable in the expression changes (Figure 4.7), whereas edge sensitive

event controls only respond to rising edge or falling edge transitions of the variables

(Figure 4.8), specified by the keywords posedge or negedge, respectively.

Figure 4.7. Signal levels are monitored for a level sensitive event

47

Figure 4.8. Rising and falling transitions of a signal trigger edge sensitive events

Level sensitive events are included in always blocks with only the signal names in

the sensitivity list:

always @(A)

always @(B or C)

Edge sensitive events require the specific signal transition to be declared within the

sensitivity list:

always @(negedge D)

always @(posedge E or negedge F)

The behavioral description of a 2:1 multiplexer would be as follows:

// Behavioral description of a 2-to-1 line multiplexer

module mux_2to1(A, B, Select, OUT);

 input A, B, Select;

 output OUT;

 reg OUT;

 always @ (Select or A or B)

 if (Select == 1) OUT = A;

 else OUT = B;

endmodule

If the event control expression involves a vector, the case statement can be used to

decide what action to take. The definition of a case statement begins with the keyword

48

case and a control expression in parentheses, followed by a list of conditional branches,

and terminated with the keyword endcase. The branch whose label matches the current

value of the control expression gets selected and its contents are executed.

In the example below, a 4:1 multiplexer is described using the case statement. A

change in the values of i0, i1, i2, i3 or Select triggers the always block. Select is evaluated

and compared with the labels of the conditional branches listed in the case statement. Here,

the branch labels are all 2-bit binary numbers representing the possible values the Select

vector can have. The matching branch is then executed.

// Behavioral description of a 4-to-1 line multiplexer

module mux_4to1(i0, i1, i2, i3, Select, y);

 input i0, i1, i2, i3;

 input [1:0] Select;

 output y;

 reg y;

 always @(i0 or i1 or i2 or i3 or Select)

 case (Select)

 2'b00: y = i0;

 2'b01: y = i1;

 2'b10: y = i2;

 2'b11: y = i3;

 endcase

endmodule

4.6.1. Behavioral Description of Flip-Flops

Behavioral descriptions of various types of flip-flops are given below. The operation

of the flip-flops are defined in edge sensitive always blocks by writing their state equations

as Boolean functions assigned to a register variable declared as type reg.

49

D-type flip-flop:

module D_FF(D, Q, CLK, RST);

 input D, CLK, RST;

 output Q;

 reg Q;

 always @(negedge RST or posedge CLK)

 if (RST == 0) Q = 1'b0;

 else Q = D;

endmodule

T-type flip-flop:

module T_FF(T, Q, CLK, RST);

 input T, CLK, RST;

 output Q;

 reg Q;

 always @(negedge RST or posedge CLK)

 if (RST == 0) Q = 1'b0;

 else Q = Q ^ T;

endmodule

JK-type flip-flop:

module JK_FF(J, K, Q, CLK, RST);

 input J, K, CLK, RST;

 output Q;

 reg Q;

 always @(negedge RST or posedge CLK)

 if (RST == 0) Q = 1'b0;

 else Q = (J & ~Q) | (~K & Q);

endmodule

50

4.6.2. Modeling of Finite State Machines

Two or three always blocks are usually used for modeling state diagrams in Verilog,

one for describing the sequential behavior of the circuit, one for describing the

combinational next state logic, and one, if necessary, for describing the output logic. This

approach presents a standard way of modeling any state diagram in Verilog and it is

readily recognized by synthesis tools, enabling further optimizations to be performed on

the circuit such as the reduction and re-encoding of states to obtain a smaller or faster

circuit.

The behavioral description of the state diagram in Figure 4.9 is given below:

Figure 4.9. A sample state diagram

// Behavioral description for the state diagram in Figure 4.9

module StateMachine(X, CLK, RST, Z);

 input X, CLK, RST;

 output Z;

 reg Z;

 reg [1:0] PState, NState;

 parameter T0 = 2'b00, T1 = 2'b01, T2 = 2'b10, T3 = 2'b11;

51

 always @(posedge CLK or negedge RST)

 if (RST == 0) PState = T0;

 else PState = NState;

 always @(X or PState)

 case(PState)

 T0: if (X == 0) NState = T0;

 else NState = T1;

 T1: if (X == 0) NState = T3;

 else NState = T1;

 T2: if (X == 0) NState = T0;

 else NState = T1;

 T3: if (X == 0) NState = T0;

 else NState = T2;

 endcase

 always @(X or PState)

 case(PState)

 T0: Z = 1'b0;

 T1: if(X == 0) Z = 1'b1;

 else Z = 1'b0;

 T2: Z = 1'b1;

 T3: Z = 1'b0;

 endcase

endmodule

Here, the previous and next states of the circuit are assigned to register variables with

identifiers NState and PState. The parameter keyword is used to assign a label to each

state code. There are three always blocks. The first always block controls the synchronous

state transitions in the machine and the asynchronous reset operation. The second always

block determines the next state of the machine according to the present state and the input,

and the third always block generates the output of the circuit.

52

4.7. Structural Description

In Verilog, combinational circuits are described using gate level or dataflow

modeling, and sequential circuits are described using behavioral statements for the

flip-flops’ operation. Since all sequential circuits are made up of flip-flops and

combinational logic, its structure can be described by a mix of data flow and behavioral

modeling statements in separate modules, which are then combined by instantiation.

A sequential circuit is given below in Figure 4.10. This circuit will be modeled using

the structural description style:

Figure 4.10. A sample sequential circuit

// Structural description of the

// sequential circuit in Fig. 4.10

module SeqCircuit(X, RST, CLK, Y, A, B);

 input X, RST, CLK;

 output A, B, Y;

 wire TA, TB;

 T_FF TFF_A(TA, A, CLK, RST); // Instantiation of flip-flop A

 T_FF TFF_B(TB, B, CLK, RST); // Instantiation of flip-flop B

53

 assign TA = B & X;

 assign TB = X;

 assign Y = A & B;

endmodule

// Behavioral description of T-type flip-flop

module T_FF(T, Q, CLK, RST);

 input T, Q, CLK;

 output Q;

 reg Q;

 always @(posedge CLK or negedge RST)

 if (RST == 0) Q = 1'b0;

 else Q = Q ^ T;

endmodule

4.8. Writing A Test Bench

A test bench is used for verifying the operation of a design by applying some

stimulus and observing the response. Test benches use the initial and always statements to

describe the stimulus to be applied to the circuit under test. The initial statement executes

only once at the beginning of the simulation. The always statement executes repeatedly in

a loop. Each operation can be delayed for a desired number of time units by using the #

symbol:

initial

 begin

 A = 0;

 B = 0;

 #10 A = 1;

 #20 A = 0;

 B = 1;

 end

54

• At Time = 0, both variables A and B are set to 0

• 10 time units later at Time = 10, A is changed to 1

• 20 time units later at Time = 30, A is changed to 0 and B to 1

A test module typically has no inputs and outputs. The signals that are applied as

inputs to the design module for simulation are declared in the stimulus module as local

registers. The outputs of the design module that are to be displayed for testing are declared

in the stimulus module as local wires.

A stimulus module has the following form:

module test

 - Declare local reg and wire identifiers

 - Instantiate the design module under test

 - Generate the stimulus using initial and always statements

 - Display output response

endmodule

Output of the simulator can be plotted as timing diagrams. It is also possible to

display text messages and values of circuit variables using Verilog system tasks. System

tasks are recognized by keywords that begin with the dollar sign ($):

• $display: Display variables or strings and move to a new line

• $write: Same as $display but does not move to a new line

• $monitor: Display variables whenever a specified value changes during

simulation

• $time: Print the current simulation time

• $finish: Terminate the simulation

The $display, $write, and $monitor system task calls have the form

task_name (format specifier, argument list);

55

The format specifier is a string enclosed in quotes (“ ”); it contains format

placeholders that start with the percent sign (%), and may also contain regular text. Each

format placeholder specifies how the value of its corresponding variable in the argument

list will be printed. Values can be printed in binary, octal, decimal or hexadecimal notation,

identified with the placeholders %b, %o, %d, and %h respectively:

$monitor(“time = %d A = %b B = %b”, $time, A, B);

The Verilog description of a sample testbench is given below:

// A sample testbench

module test_circuit;

 reg [3:1] TA;

 wire TX, TY;

 circuit cr(TA, TX, TY);

 initial

 begin

 TA = 3'b000;

 repeat(7)

 #10 TA = TA + 1'b1;

 end

 initial

 $monitor("A = %b X = %b Y = %b Time = %0d", TA, TX, TY,

$time);

endmodule

// A simple circuit

module circuit(A, X, Y);

 input [3:1] A;

56

 output X, Y;

 assign X = (A[3] & A[2]) | A[1];

 assign Y = A[2] ^ A[1];

endmodule

When this testbench is run, the Verilog simulator generates the following output:

A=000 X=0 Y=0 Time=0

A=001 X=1 Y=1 Time=10

A=010 X=0 Y=1 Time=20

A=011 X=1 Y=0 Time=30

A=100 X=0 Y=0 Time=40

A=101 X=1 Y=1 Time=50

A=110 X=1 Y=1 Time=60

A=111 X=1 Y=0 Time=70

Besides textual output, nodes within the circuit can also be selected for display in a

timing diagram. For the example testbench above, if signals TA, TX, TY are selected for

graphical display, the Verilog simulator produces the following timing diagram:

Figure 4.11. Timing diagram showing signal values in the example testbench

57

5. WRITING SYNTHESIZABLE VERILOG CODE

“Just as understanding Karnaugh maps is the key to manual design methods,

understanding how to write synthesis-friendly HDL models is the key to automated design

methods.” - Michael D. Ciletti, Advanced Digital Design with the Verilog HDL [18]

Design entry is one of the crucial stages in the design flow, and the design engineer

is responsible for coding the hardware description according to the guidelines set forth by

the synthesis tool vendor in order to fully use the capabilities of the tool.

In a design, the same functionality can be expressed using different coding styles and

different HDL constructs. Although any experienced engineer can easily tell that all these

different pieces of code represent the same implementation, it is a challenge for the

synthesis tool to recognize so many alternative coding styles and figure out the designer’s

intention from them. Thus, synthesis tools are programmed to work with only a limited

number of commands and constructs of the HDL, which are listed together with coding

guidelines in the user manuals of every synthesis tool. To take full advantage of the tools’

optimization capabilities, these guidelines must be strictly followed when writing HDL

code for synthesis.

5.1. Overview of The Synthesis Process

Synthesizing and optimizing a network of logic gates involves evaluating many

different factors (such as simplification by exploiting don’t-cares and common factors

without violating fan-in and fan-out restrictions or delay constraints), and finding a balance

between these to achieve the specified size or performance criteria. As designs get larger in

size, the number of alternative implementations reach such enormous levels that it

becomes impractical, and at some point impossible, to exhaustively search through all of

them to find the optimal solution. Instead, heuristic approaches are used that yield

acceptable solutions [18, 19]. To help manage this complex task, logic synthesis is divided

into two phases: first, technology-independent optimizations operate on a model of the

described logic that does not directly represent logic gates; then, technology-dependent

optimizations improve the network’s gate-level implementation [20].

58

Technology-independent optimizations can be grouped into three categories based on

how they change the Boolean function:

• Simplification: Minimizing the sum-of-products expressions of the Boolean

functions that make up the network by combining minterms and exploiting

don’t-cares.

• Network restructuring: Creating new nodes in the network that can be used as

common factors and collapsing sections of the network into a single node in

preparation for finding new common factors.

• Delay restructuring: Changing the factorization of a subnetwork to reduce the

number of nodes through which a delay-critical signal must pass.

Technology-dependent optimizations cover the mapping, placement, and routing of

the design according to the specified constraints. After the completion of the first phase,

resulting Boolean functions are then mapped to the logic elements available in the target

technology. These logic elements can range from simple logic gates (or LUTs in FPGAs)

to pre-designed library macros for commonly used functions such as adders, multipliers,

shift registers and multiplexers. Macros are either called explicitly by the designer, or

inferred from the HDL code and substituted automatically by the synthesis tools. Inferred

macros are listed in the synthesis reports produced by the tools, and these reports must be

reviewed by the designer to ensure that macro substitutions are consistent with the design

intent.

5.2. Synthesis of Combinational Logic

Synthesizable combinational logic can be described by

• a netlist of structural primitives (see Section 4.4)

• a set of continuous assignment statements (see Section 4.5)

• a level sensitive cyclic behavior (see Section 4.6)

59

A level-sensitive cyclic behavior will synthesize to combinational logic if it assigns a

value to each output for every possible value of its inputs. This implies that the event

control expression of the behavior must be sensitive to every input, and that every path of

the activity flow must assign value to every output.

5.2.1. Synthesis of Priority Structures

A case statement gives higher priority to the first item that it decodes than to the last

one, and an if statement gives higher priority to the first branch than to the remaining

branches. A synthesis tool will determine whether the case items of a case statement are

mutually exclusive. If they are mutually exclusive, the synthesis tool will treat them as

though they had equal priority and will synthesize a multiplexer rather than a priority

structure. Similarly, an if statement will synthesize to a multiplexer when the branching is

specified by mutually exclusive conditions. When branching is not mutually exclusive, a

priority structure will be created.

5.2.2. Exploiting Don’t-Care Conditions

An assignment to x in a case or an if statement will be treated as a don’t-care

condition in synthesis. For example, a default item that assigns x values to all outputs can

be included in a case statement to represent unused input combinations. The synthesized

hardware will produce either a 0 or a 1, but the HDL model will produce an x in

simulation. This may lead to a mismatch between simulation results and real-world

operation.

5.2.3. Accidental Synthesis of Latches

Level-sensitive cyclic behaviors will synthesize to combinational logic if the

description does not imply the need for storage. If storage is implied by the model, a latch

will be introduced into the implementation. To avoid latches, all of the variables that are

assigned value by the behavior must be assigned a value under every possible input.

Failure to do so will yield a design with unwanted latches.

60

Verilog case and if statements that do not include all possible cases or conditions are

incompletely specified and may lead to synthesis of unwanted latches. When a case or an if

statement in a level-sensitive cyclic behavior does not specify an output for all of the

possible inputs, the synthesis tool infers a latch, because the description implies that the

output should retain its present value under the conditions that were left unspecified.

Caution must be taken to ensure that case and if statements are complete.

5.2.4. Resource Sharing

When optimizing the design for size, synthesis tools must share logic resources as

much as possible to minimize needless duplication of circuitry. The tool must recognize

whether the physical resources required to implement complex functions can be shared. If

the data flows within the function do not conflict, the resource can be shared between one

or more paths. For example, the addition operators in the continuous assignment below are

in mutually exclusive datapaths and can be shared in hardware.

assign output = select ? data_1 + data_2 : data_1 + constant;

This operation can be implemented by a shared adder with multiplexed input

datapaths. If the synthesis tool does not automatically implement resource sharing, the

Verilog description must be written so as to force sharing of the resource:

assign output = data_1 + (select ? data_2 : constant);

Failure to include the parentheses in the expression for output above will lead to

synthesis of a circuit that uses two adders. The most efficient implementation multiplexes

the datapaths and shares the adder between them, rather than multiplexing the outputs of

separate adders. The important design tradeoff here is that the multiplexer will occupy

significantly less area than the adder it replaces.

As a general guideline, if arithmetic functions are to be inferred from HDL operators,

the operators should be grouped as much as possible within a single cyclic behavior to

allow the synthesis engine to share the hardware resources that will be used to implement

the function.

61

5.3. Synthesis of Sequential Logic with Flip-Flops

A register variable in an edge-sensitive behavior will be synthesized to a flip-flop

• if it is referenced outside the scope of the behavior,

• if it is referenced within the behavior before it is assigned value, or

• if it is assigned value in only some of the branches of the activity within the

behavior.

All of these situations imply the need for memory, as the register has to retain its

value under the conditions that do not assign a new value to the register. The fact that these

conditions are contained in an edge-sensitive behavior dictates that the memory be realized

as a flip-flop, rather than a latch.

In a level-sensitive cyclic behavior, incomplete case or if statements lead to the

synthesis of latches. However, if the behavior is edge-sensitive, these types of statements

will not create latches, but will synthesize logic that implements a “clock enable”

mechanism, because the incomplete statements imply that the contents of the affected

registers should not change under the conditions that were left unspecified, even if the

clock signal makes a transition.

5.4. Synthesis of Finite State Machines

There are many ways to describe FSMs. A traditional FSM representation

incorporates two or three always blocks, one for describing the sequential behavior of the

circuit, one for describing the combinational next state logic, and one, if necessary, for

describing the output logic. Sample code for a state machine was given in Section 4.6.2

5.4.1. Finite State Machine Extraction in Xilinx XST Synthesis Software

Xilinx’s synthesis software XST tries to distinguish finite state machines from

VHDL/Verilog code (called FSM extraction), and apply several state encoding techniques,

62

such as re-encoding the original state codes given in the HDL file, to get better

performance or less area. FSM extraction can be enabled or disabled by the user. Note that

XST can handle only synchronous state machines [21].

XST can also detect unreachable states in an FSM and lists them in the HDL

synthesis report. If Safe Implementation mode is enabled, XST automatically adds logic to

the FSM implementation that will let the state machine recover from an invalid state. If

during its execution, a state machine gets into an invalid state, the logic added by XST will

bring it back to a known state, called a recovery state. By default, XST automatically

selects a reset state as the recovery state. If the FSM does not have an initialization signal,

XST selects the power-up state as the recovery state. The recovery state can also be

manually defined by the user.

5.4.2.Optimization of State Encodings

XST can re-encode the original state codes given in the HDL file to get better

performance or less area. XST supports the following state encoding techniques:

• Auto

In this mode, XST tries to select the best encoding algorithm suitable for each FSM.

• One-Hot Encoding

One-hot encoding is the default encoding scheme. Its principle is to associate one

code bit and also one flip-flop to each state. At a given clock cycle during operation,

one and only one bit of the state variable is asserted. Only two bits toggle during a

transition between two states.

Although this approach uses a greater number of flip-flops than other forms of

encoding, the decoding logic in a one-hot machine uses fewer gates because the

machine has to decode only a single bit of a register rather than a vector pattern.

Thus, the silicon area required by the extra flip-flops can be compensated by the area

saved using simplified decoding logic. One-hot encoding is very appropriate with

63

most FPGA targets where a large number of flip-flops are available, and saving them

does not necessarily provide a benefit. It is also a good alternative when trying to

optimize speed or to reduce power dissipation.

It is quite easy to modify a one-hot design, because adding or removing a state does

not affect the encoding of the other states. The design effort is reduced too, since

there is no need to encode a state transition table. The state transition graph is

sufficient.

• Gray Encoding

Gray encoding guarantees that only one bit switches between two consecutive states.

It is appropriate for controllers exhibiting long paths without branching. In addition,

this coding technique minimizes hazards and glitches. The one-bit change between

consecutive states will also reduce the simultaneous switching of adjacent physical

signal lines in a circuit, thereby minimizing the possibility of electrical crosstalk

[18]. Very good results can be obtained when implementing the state register with

T-type flip-flops.

• Compact Encoding

Compact encoding consists of minimizing the number of bits in the state variables

and flip-flops. Compact encoding is appropriate when trying to optimize area.

• Johnson Encoding

Similar to Gray, Johnson encoding shows benefits with state machines containing

long paths with no branching. It uses more bits than Gray encoding.

• Sequential Encoding

Sequential encoding consists of identifying long paths and applying successive radix

two codes to the states on these paths. Next state equations are minimized.

64

• Speed1 Encoding

Speed1 encoding is oriented for speed optimization. The number of bits for a state

register depends on the particular FSM, but generally it is greater than the number of

FSM states.

• User

In this mode, XST uses original encoding, specified in the HDL file

XST log file reports the full information about the recognized FSMs during the

synthesis process. If the encoding option was set to Auto for XST to determine the best

encoding algorithm for FSMs, it reports the encoding it chose for each FSM.

5.5. Synthesis of Other Common Logic Elements

Depending on their level of sophistication, synthesis tools may also support

recognition of other common logic elements such as registers, counters, shift registers,

address decoders, adders, multipliers, etc., and even automatically replace them with

pre-designed, pre-optimized, efficient macros from their device library.

5.6. Resets and Clock Enables

Synthesis tools can recognize reset and clock enable signals in a design, and utilize

appropriate routing resources to distribute these signals throughout the hardware

implementation. FPGAs might have dedicated clock and reset signal trees that span the

whole chip, and an FPGA synthesis tool will map such control signals to these dedicated

routing channels.

A global reset signal is required for ASICs to initialize the system state to a known

value at power-up. However, an FPGA, during its configuration, programs all of its

flip-flops individually to a fixed logic value, which can be determined within the HDL

code, if desired. Thus, a design implemented in an FPGA does not require a global reset

network. For the vast majority of any design, the initialization state of all flip-flops and

65

RAM following configuration is more comprehensive than any logical reset will ever be.

There is no requirement to insert a reset for simulation because nothing will be undefined.

Since FPGAs are already fully tested silicon, there is no need for inserting scan logic in a

design and running test vectors, so global reset is not required as part of this process either.

Inserting a global reset will impact development time and final product costs even if

these factors can not be easily quantified. With the trend towards higher speed clocks and

complete systems on a chip, the reliability issues must be taken seriously. The critical parts

of a system that must truly be reset should be identified and the release of those resets on

start up, or during operation, must be controlled as carefully as any other signal within a

synchronous circuit [22].

In an FPGA architecture, each flip-flop may have a set of dedicated control inputs to

support “set”, “reset”, and “clock enable”. Set and reset inputs may work synchronously or

asynchronously, and the synthesis tool uses these inputs when it can; reserving the LUT for

implementing other functions. The type of dedicated set and reset control inputs

(synchronous or asynchronous) is an important factor in coding a design, because using a

behavior that utilizes the available type of control input is readily implemented, yielding a

compact design, whereas using the opposite type requires extra LUT resources to convert

the control signals to the desired type [23].

5.7. Anticipating The Results of Synthesis

The synthesis tool should not be trusted blindly. It is advisable to anticipate what the

synthesis tool will produce and then examine the results against those expectations. The

designer should be familiar with the synthesis tool and write Verilog descriptions that will

infer the desired result. Each vendor’s software operates differently, so it is good practice

to experiment with a synthesis tool to learn how it handles particular styles of coding.

66

6. AN FPGA IMPLEMENTATION EXAMPLE

In order to investigate the effects of optimization settings on synthesis, a sample

circuit is implemented using Xilinx’s Spartan-3E FPGA Starter Kit [24]. Design entry,

simulation, and synthesis steps are all performed from within Xilinx’s freely available ISE

WebPACK 8.2i design software, which also includes the XST synthesis tool [25].

6.1. Xilinx Spartan-3E FPGA Family

The Spartan-3E family of FPGAs is specifically designed to meet the needs of high

volume, cost-sensitive consumer electronic applications. Because of their exceptionally

low cost, Spartan-3E FPGAs are ideally suited to a wide range of applications, including

broadband access, home networking, display/projection, and digital television equipment

[26]. The Spartan-3E FPGA family has five members that offer densities ranging from

100,000 to 1.6 million system gates, as shown in Table 6.1.

Table 6.1 Summary of Spartan-3E FPGA family attributes

CLB Array
(One CLB = Four Slices)

Device
System
Gates

Equiv.
Logic
Cells Rows Col.s

Total
CLBs

Total
Slices

Distr.
RAM
bits

Block
RAM
bits

Dedicated
Multipliers DCMs

Max.
User
I/Os

Max.
Diff.
I/O

Pairs
XC3S100E 100K 2,160 22 16 240 960 15K 72K 4 2 108 40
XC3S250E 250K 5,508 34 26 612 2,448 38K 216K 12 4 172 68
XC3S500E 500K 10,476 46 34 1,164 4,656 73K 360K 20 4 232 92

XC3S1200E 1200K 19,512 60 46 2,168 8,672 136K 504K 28 8 304 124
XC3S1600E 1600K 33,192 76 58 3,688 14,752 231K 648K 36 8 376 156

6.1.1. Spartan-3E FPGA Features

Features of the Spartan-3E FPGA family are:

• Proven advanced 90-nanometer process technology

• Multi-voltage, multi-standard SelectIO™ interface pins

 Up to 376 I/O pins or 156 differential signal pairs

67

 LVCMOS, LVTTL, HSTL, and SSTL single-ended signal standards

 3.3V, 2.5V, 1.8V, 1.5V, and 1.2V signaling

 622+ Mb/s data transfer rate per I/O

 True LVDS, RSDS, mini-LVDS, differential HSTL/SSTL differential I/O

 Enhanced Double Data Rate (DDR) support

 DDR SDRAM support up to 333 Mb/s

• Abundant, flexible logic resources

 Densities up to 33,192 logic cells, including optional shift register or

distributed RAM support

 Efficient wide multiplexers, wide logic

 Fast look-ahead carry logic

 Enhanced 18 x 18 multipliers with optional pipeline

 IEEE 1149.1/1532 JTAG programming/debug port

• Hierarchical SelectRAM™ memory architecture

 Up to 648 Kbits of fast block RAM

 Up to 231 Kbits of efficient distributed RAM

• Up to eight Digital Clock Managers (DCMs)

 Clock skew elimination (delay locked loop)

 Frequency synthesis, multiplication, division

 High-resolution phase shifting

 Wide frequency range (5 MHz to over 300 MHz)

68

• Eight global clocks plus eight additional clocks per each half of device, plus

abundant low-skew routing

• Configuration interface to industry-standard PROMs

• Complete Xilinx ISE™ and WebPACK™ development system support

• MicroBlaze™ and PicoBlaze™ embedded processor cores

• Fully compliant 32-/64-bit 33 MHz PCI support

• Low-cost QFP and BGA packaging options

 Common footprints support easy density migration

 Pb-free packaging options

6.1.2. Spartan-3E FPGA Architectural Overview

The Spartan-3E family architecture consists of five fundamental programmable

functional elements:

• Configurable Logic Blocks (CLBs) contain flexible Look-Up Tables (LUTs)

that implement logic plus storage elements used as flip-flops or latches. CLBs

perform a wide variety of logical functions as well as store data.

• Input/Output Blocks (IOBs) control the flow of data between the I/O pins and

the internal logic of the device. Each IOB supports bidirectional data flow plus

3-state operation. These blocks support a variety of signal standards, including

high-performance differential standards. Double Data-Rate (DDR) registers are

also included.

• Block RAM provides data storage in the form of 18 Kbit dual-port blocks.

• Multiplier Blocks accept two 18-bit binary numbers as inputs and calculate their

product.

69

• Digital Clock Manager (DCM) Blocks provide self-calibrating, fully digital

solutions for distributing, delaying, multiplying, dividing, and phase-shifting

clock signals.

These elements are organized as shown in Figure 6.1. A ring of IOBs surrounds a

regular array of CLBs. Each device has two columns of block RAM except for the

XC3S100E, which has one column. Each RAM column consists of several 18-Kbit RAM

blocks. Each block RAM is associated with a dedicated multiplier. The DCMs are

positioned in the center with two at the top and two at the bottom of the device. The

XC3S100E has only one DCM at the top and bottom, while the XC3S1200E and

XC3S1600E add two DCMs in the middle of the left and right sides.

The Spartan-3E family features a rich network of traces that interconnect all five

functional elements, transmitting signals among them. Each functional element has an

associated switch matrix that permits multiple connections to the routing.

Figure 6.1 Xilinx Spartan-3E FPGA Family Architecture

Further information about the Spartan-3E FPGAs can be found in Xilinx’s

Spartan-3E Family Datasheet [26].

70

6.2. Xilinx Spartan-3E Starter Kit

Xilinx’s Spartan-3E FPGA Starter Kit board features a 500,000 system gate

Spartan-3E FPGA, and a rich selection of peripheral devices and connectors (Figure 6.2).

Figure 6.2 Xilinx Spartan-3E Starter Kit board

The key features and components of the Spartan-3E Starter Kit board are:

• Xilinx XC3S500E Spartan-3E FPGA

 Up to 232 user-I/O pins

 320-pin Fine Ball-Grid Array (FBGA) package

 Over 10,000 logic cells

• Xilinx 4 Mbit Platform Flash configuration PROM

71

• Xilinx 64-macrocell XC2C64A CoolRunner CPLD

• 64 MByte (512 Mbit) of DDR SDRAM, x16 data interface, 100+ MHz

• 16 MByte (128 Mbit) of parallel NOR Flash (Intel StrataFlash)

 FPGA configuration storage

 MicroBlaze code storage/shadowing

• 16 Mbits of SPI serial Flash (STMicro)

 FPGA configuration storage

 MicroBlaze code shadowing

• 2-line, 16-character LCD screen

• PS/2 mouse or keyboard port

• VGA display port

• 10/100 Ethernet PHY (requires Ethernet MAC in FPGA)

• Two 9-pin RS-232 ports (DTE- and DCE-style)

• On-board USB-based FPGA/CPLD download/debug interface

• 50 MHz clock oscillator

• SHA-1 1-wire serial EEPROM for bitstream copy protection

• Hirose FX2 expansion connector

• Three Digilent 6-pin expansion connectors

• Four-output, SPI-based Digital-to-Analog Converter (DAC)

• Two-input, SPI-based Analog-to-Digital Converter (ADC) with

programmable-gain pre-amplifier

72

• ChipScope™ SoftTouch debugging port

• Rotary-encoder with push-button shaft

• Eight discrete LEDs

• Four slide switches

• Four push-button switches

• SMA clock input

• 8-pin DIP socket for auxiliary clock oscillator

The board is suitable for development of prototype systems for numerous different

application areas, and several reference designs are provided on Xilinx’s Spartan-3E

Starter Kit web page [24].

6.3. Implementation Details

For test purposes, a small design was implemented using Xilinx’s Spartan-3E Starter

Kit FPGA development board. The realized circuit utilizes the analog-to-digital (A/D) and

digital-to-analog (D/A) converters on the development board for input and output of

various signals, with some minimal signal processing done within the FPGA.

Schematics of the A/D and D/A conversion circuitry are given in Figure 6.3 and

Figure 6.4, respectively. The A/D conversion circuit comprises an LTC6912-1

programmable gain amplifier and an LTC1407A-1 14-bit analog-to-digital converter

(ADC); the D/A conversion circuit uses a single LTC2624 4-channel, 12-bit

digital-to-analog converter (DAC).

73

Figure 6.3 Spartan-3E Starter Kit A/D conversion circuitry

Figure 6.4 Spartan-3E Starter Kit D/A conversion circuitry

The amplifier, ADC and DAC are connected to the FPGA over a shared serial bus

architecture called the Serial Peripheral Interface (SPI). Because the bus is shared between

components, a bus arbiter is required that will supervise accesses to the SPI bus and allow

only one component to communicate at a time. The required signal timings and

74

communication schemes for the amplifier, ADC, and DAC can be found in their respective

datasheets [27, 28, 29].

The HDL code comprising the circuit description is divided among several Verilog

files, each containing one module that controls a single component on the board. The

Verilog design files are reproduced in Appendix A. This design style is in compliance with

the divide-and-conquer and top-down design methodologies, which have been widely

adopted by the electronics industry today as the most efficient design flow.

One of the modules is responsible for configuring the programmable gain amplifier

at startup. One module drives the ADC, periodically reading the samples generated from

its two analog inputs. Another module drives the DAC and sends samples to it in sync with

the ADC’s sampling clock. The control modules have to handle their own SPI clock

generation and data transfer operations.

In between the ADC and DAC driver blocks lie two copies of a simple module that

just passes the samples coming from the ADC on to the DAC without modification. This

simple module practically acts as a placeholder in the design, and can be easily replaced

with more complex modules that implement advanced digital signal processing (DSP)

algorithms.

The remaining two channels of the DAC are connected to two copies of a simple

wave generator function. The frequencies of the generated waves can be adjusted using the

rotary encoder.

6.4. Synthesis Results For The Sample Circuit

Despite its small scale, the sample circuit comprises a wide variety of fundamental

logic elements, such as multiplexers, adders, counters, shift registers and finite state

machines. These elements are readily recognized by synthesis tools and can be subjected to

additional optimizations specific to each element type. The sample circuit presents many

such optimization opportunities thanks to the aforementioned variety of logic elements it

contains, and thus makes a good test case for the synthesis tool.

75

Xilinx’s XST software provides many settings that allow the user to tweak the

synthesis process. Out of those, only three were chosen (namely the optimization goal,

optimization effort level, and FSM encoding settings) and the sample circuit was

synthesized several times with different combinations of these three settings; all the other

settings were always kept at their default values. Synthesis results are given in Table 6.2 in

terms of the number of slices the design occupies, and the maximum clock frequency that

the synthesized circuit can run at.

Table 6.2 Synthesis results for the sample circuit

Optimized for Speed Optimized for Area FSM
Encoding Normal Effort High Effort Normal Effort High Effort

Auto 233 slices
178.54MHz

236 slices
179.66MHz

235 slices
139.55MHz

235 slices
139.55MHz

One-Hot 225 slices
174.40MHz

226 slices
162.39MHz

214 slices
160.88MHz

214 slices
160.88MHz

Compact 232 slices
185.29MHz

235 slices
186.78MHz

217 slices
147.19MHz

217 slices
147.19MHz

Sequential 234 slices
177.84MHz

237 slices
176.34MHz

234 slices
139.90MHz

234 slices
139.90MHz

Gray 242 slices
167.73MHz

243 slices
176.99MHz

221 slices
135.10MHz

221 slices
135.10MHz

Johnson 251 slices
176.37MHz

252slices
174.03MHz

218 slices
151.15MHz

218 slices
151.15MHz

Speed1 230 slices
169.49MHz

231 slices
180.80MHz

218 slices
160.62MHz

218 slices
160.62MHz

The fastest circuit is obtained by using the Compact encoding for the FSMs in the

design, which yielded a circuit with a maximum clock frequency of 186.78 MHz,

occupying 235 slices out of the 4656 slices available in the XC3S500E FPGA. Using

One-Hot encoding and setting the optimization goal to “Area” produced the smallest

circuit with 214 occupied slices, but the maximum attainable clock frequency dropped to

160.88 MHz.

When optimizing for speed, setting the FSM encoding type to “Automatic” gives

acceptable results, whereas in area optimization the obtained slice count is quite higher

than the One-Hot encoded case, proving once more that the synthesis tool should not be

76

trusted blindly and several synthesis iterations should be performed, exploring different

combinations of settings and comparing the results.

The FSM encoding type setting is a global setting that forces the encoding of all

FSMs in the design to the same type. The desired encoding for an FSM can also be

explicitly specified by including the encoding declaration in the Verilog source code.

Using this inline encoding specification, different encodings can be assigned to different

FSMs in the design, but exploring all possible combinations would take days even for this

small design.

In its current state, the sample design provides easy access to the two analog inputs

and four analog outputs on the Spartan-3E Starter Kit development board. These inputs and

outputs can be connected to any module within the top-level block of the design. As

mentioned previously, the included placeholder DSP modules and waveform generators

can be replaced with any arbitrary module to perform digital signal processing or digital

control tasks. The Verilog source code listings for the design are given in Appendix A, and

they can be used as a reference in future Spartan-3E Starter Kit projects requiring A/D or

D/A conversion functionality.

77

7. CONCLUSION

Due to the increasing complexity of digital systems, computer-based circuit synthesis

has become indispensable for digital design today. The term “synthesis” covers a wide

range of EDA activities. High-level synthesis uses an abstract behavioral or

register-transfer level description and refines this into simple gates. Low-level synthesis is

the term used to address the issues associated with technology mapping and in some cases

the physical placement and routing of a design. Ideally, these tools would allow design

entry at an abstract, functional level, regardless of what the target hardware architecture

will be, and then synthesize the optimal logic circuit that implements the described system

within specific area, speed and power consumption constraints. However, in practice,

synthesis tools are not capable of autonomously performing all design and optimization

steps necessary for realizing a digital system; they require human intervention and

guidance at various stages of the process.

Although HDLs, together with synthesis technology, promise hardware independent

behavioral design, writing the HDL code with the target technology in mind always

provides better results. Synthesis tools cannot magically turn HDL code into hardware if

the design target does not provide some key functional elements that the behavioral

description calls for. The design engineer has to be aware of what logic resources are

available in the target technology, and then decide on a system architecture that is suitable

for implementation in that technology.

Choosing the right architecture alone does not guarantee optimal realization. In order

to obtain the best results from synthesis, the HDL coding guidelines set forth by the tool

vendor has to be followed to the letter. Otherwise, the synthesis tool cannot correctly

recognize some design elements and properly optimize them. The resulting circuit might

still be functionally identical, but it will not be the optimal implementation.

Synthesis tools present many configuration options for fine tuning their optimization

algorithms. These are normally set to default values that produce acceptable results most of

the time. However, an experienced engineer who is familiar with the synthesis tool and

78

who has knowledge of the algorithms that the tool employs, will be able to configure these

settings much more appropriately according to the design at hand.

When all these conditions are met, the synthesis tool is supposed to perform at its

best. Nevertheless, the tool should not be trusted blindly. It is the responsibility of the

engineer to check the software’s synthesis reports for issued warnings and errors,

misinterpretations of the HDL code, or ineffective optimization settings. Such problems

require corrections to the HDL code and/or re-adjustment of the software settings,

followed by another synthesis run. Every design flow involves some trial-and-error as

several architectural changes and different software settings are explored.

The only way to ensure that a synthesized circuit is the optimal one is by performing

an exhaustive search within the set of all possible optimizations. This is a very

compute-intensive task and the necessary processing time grows exponentially with

increasing design size, making it impossible to apply this technique to current day designs;

a single run of synthesis and subsequent verification with gate-level simulation can take

hours, even days, for multi-million gate circuits. Heuristics and artificial intelligence is

used to reduce the size of the solution set that will be searched through, but the optimal

solution found within this reduced set may not be the one that is universally optimal.

With companies rushing to meet narrow, two-to-three month market windows to stay

competitive, most of them cannot afford the time to experiment with synthesis tools and

run hundreds of design iterations. If the synthesized circuit still does not meet the area

constraint after several attempts, the designers may have to increase the die size or move to

a higher capacity FPGA, as a slightly more expensive product is better than no product at

all. The search for the universally optimal solution is left to the researchers at universities

and synthesis software vendors.

Advances in synthesis technology might one day allow anyone with some basic

programming skills to design digital systems. Today, however, the industry still needs

skilled engineers with a keen intuition and a solid background in the principles of logic

circuit design.

79

APPENDIX A. VERILOG SOURCE CODE LISTINGS FOR THE

SAMPLE FPGA IMPLEMENTATION

A.1. main.v

module main(clk50mhz, // Clock

 rot_a, rot_b, rot_press, // Rotary encoder

 btn_south, btn_west, btn_east,

 led, // Outputs

 spi_sdi, spi_amp_sdo, spi_amp_cs, // Programmable amplifier ports

 spi_amp_shdn,

 spi_sdo, spi_sck, spi_adc_conv, // ADC ports

 spi_dac_cs, spi_dac_clr, // DAC ports

 spi_rom_cs, // SPI Flash chip select

 strataflash_oe, strataflash_ce, // StrataFlash ports

 strataflash_we,

 platformflash_oe // Platform Flash ports

);

 input clk50mhz;

 input rot_a, rot_b, rot_press;

 input btn_south, btn_west, btn_east;

 input spi_sdo, spi_amp_sdo;

 output [7:0] led;

 output spi_sdi, spi_amp_cs, spi_amp_shdn;

 output spi_sck, spi_adc_conv;

 output spi_dac_cs, spi_dac_clr;

 output spi_rom_cs;

 output strataflash_oe, strataflash_ce, strataflash_we;

 output platformflash_oe;

 reg amp_set = 0, adc_en = 0, dac_en = 0, dsp_en = 0;

 reg [4:0] sys_state = 0;

 reg [8:0] count50k = 0;

 reg clk50khz = 0;

 reg spi_sck = 0, spi_sdi = 0;

 reg [2:0] gain = 1;

 wire rot_event, rot_left;

 wire spi_busy, amp_busy, adc_busy, dac_busy;

 wire dsp_busy, dsp_busy1, dsp_busy2, dsp_busy3, dsp_busy4;

80

 wire adc_sck, dac_sck, dac_sdi, amp_sck, amp_sdi;

 wire [15:0] adc_sample_a, adc_sample_b;

 wire [15:0] dac_sample_a, dac_sample_b, dac_sample_c, dac_sample_d;

 wire [3:0] gain_in, pgain_a, pgain_b;

 // Disable unused components

 assign spi_rom_cs = 1;

 assign strataflash_oe = 1;

 assign strataflash_ce = 1;

 assign strataflash_we = 1;

 assign platformflash_oe = 0;

 // Connect board outputs and LEDs

 assign led = btn_west ? adc_sample_a[15:8] : (btn_east ? adc_sample_a[7:0] \

 : {(pgain_a & pgain_b), gain_in});

 assign gain_in = {1'b0, gain};

 assign spi_busy = amp_busy | adc_busy | dac_busy;

 assign dsp_busy = dsp_busy1 | dsp_busy2 | dsp_busy3 | dsp_busy4;

 // Instantiate modules

 rotenc read_rotary(clk50mhz, rot_a, rot_b, rot_event, rot_left);

 amp_conf amplifier(clk50mhz, amp_set, amp_busy, gain_in, gain_in,

 pgain_a, pgain_b, amp_sdi, amp_sck, spi_amp_cs,

 spi_amp_sdo, spi_amp_shdn);

 adc_driver read_adc(clk50mhz, adc_en, adc_busy, spi_sdo,

 spi_adc_conv, adc_sck, adc_sample_a, adc_sample_b);

 dac_driver write_dac(clk50mhz, dac_en, dac_busy, dac_sdi, spi_dac_cs,

 spi_dac_clr, dac_sck, dac_sample_a, dac_sample_b,

 dac_sample_c, dac_sample_d);

 dsp_placeholder dsp_core1(clk50mhz, dsp_en, dsp_busy1,

 adc_sample_a, dac_sample_a);

 dsp_placeholder dsp_core2(clk50mhz, dsp_en, dsp_busy2,

 adc_sample_b, dac_sample_b);

 wavegen wg3(clk50mhz, dsp_en, dsp_busy3, 4'b0100, dac_sample_c);

 wavegen wg4(clk50mhz, dsp_en, dsp_busy4, 4'b1010, dac_sample_d);

 // SPI bus arbiter

 always @(amp_busy or adc_busy or dac_busy or amp_sck or adc_sck or dac_sck)

 casex ({amp_busy, adc_busy, dac_busy})

81

 3'b100: spi_sck <= amp_sck;

 3'b010: spi_sck <= adc_sck;

 3'b001: spi_sck <= dac_sck;

 3'bxxx: spi_sck <= 0;

 endcase

 always @(amp_busy or dac_busy or amp_sdi or dac_sdi)

 casex ({amp_busy, dac_busy})

 2'b10: spi_sdi <= amp_sdi;

 2'b01: spi_sdi <= dac_sdi;

 2'bxx: spi_sdi <= 0;

 endcase

 // Process rotary encoder

 always @(posedge clk50mhz)

 if (rot_event == 1)

 if (rot_left == 1)

 gain <= gain + 1;

 else

 gain <= gain - 1;

 // Generate 50kHz sampling clock

 always@(posedge clk50mhz)

 if (count50k == 499)

 begin

 count50k <= 0;

 clk50khz <= ~clk50khz;

 end

 else

 count50k <= count50k + 1;

// System control loop

 always @(posedge clk50mhz)

 case (sys_state)

 0:

 begin

 amp_set <= 1;

 sys_state <= 1;

 end

 1:

 if (spi_busy == 1)

 begin

 amp_set <= 0;

 sys_state <= 2;

 end

82

 2:

 if (spi_busy == 0)

 begin

 if (rot_press == 1 || btn_south == 1)

 sys_state <= 0;

 else if (clk50khz == 1)

 begin

 adc_en <= 1;

 sys_state <= 3;

 end

 end

 3:

 if (spi_busy == 1)

 begin

 adc_en <= 0;

 sys_state <= 4;

 end

 4:

 if (spi_busy == 0)

 begin

 dac_en <= 1;

 sys_state <= 5;

 end

 5:

 if (spi_busy == 1)

 begin

 dac_en <= 0;

 sys_state <= 6;

 end

 6:

 if (spi_busy == 0)

 begin

 dsp_en <= 1;

 sys_state <= 7;

 end

 7:

 if (dsp_busy == 1)

 begin

 dsp_en <= 0;

 sys_state <= 8;

 end

 8:

 if (dsp_busy == 0)

 sys_state <= 9;

83

 9:

 if (clk50khz == 0)

 sys_state <= 2;

 endcase

endmodule

A.2. rotary.v

module rotenc(clk, rot_a, rot_b, rot_event, rot_left);

 input clk;

 input rot_a, rot_b;

 output rot_event;

 output rot_left;

 reg rot_q1, previous_rot_q1, rot_q2, rot_event, rot_left;

 always@(posedge clk)

 case ({rot_b, rot_a})

 2'b00 : begin

 rot_q1 <= 0;

 rot_q2 <= rot_q2;

 end

 2'b01 : begin

 rot_q1 <= rot_q1;

 rot_q2 <= 0;

 end

 2'b10 : begin

 rot_q1 <= rot_q1;

 rot_q2 <= 1;

 end

 2'b11 : begin

 rot_q1 <= 1;

 rot_q2 <= rot_q2;

 end

 default : begin

 rot_q1 <= rot_q1;

 rot_q2 <= rot_q2;

 end

 endcase

 always@(posedge clk)

 begin

 previous_rot_q1 <= rot_q1;

84

 if (rot_q1 == 1 && previous_rot_q1 == 0)

 begin

 rot_event <= 1;

 rot_left <= rot_q2;

 end

 else

 begin

 rot_event <= 0;

 rot_left <= rot_left;

 end

 end

endmodule

A.3. amp_conf.v

module amp_conf(clk50mhz, set_gain, busy, gain_a_in, gain_b_in,

 prev_gain_a, prev_gain_b, spi_sdi, spi_sck, spi_amp_cs,

 spi_amp_sdo, spi_amp_shdn);

 input clk50mhz, set_gain, spi_amp_sdo;

 input [3:0] gain_a_in, gain_b_in;

 output busy, spi_sdi, spi_sck, spi_amp_cs, spi_amp_shdn;

 output [3:0] prev_gain_a, prev_gain_b;

 reg [4:0] state = 0;

 reg [7:0] gain = 0;

 reg [7:0] prev_gain = 0;

 reg [2:0] count5m = 0;

 reg clk5mhz = 0;

 reg spi_amp_cs = 1;

 reg spi_sck = 0;

 reg busy = 0;

 assign spi_sdi = gain[7];

 assign spi_amp_shdn = 0;

 assign {prev_gain_b, prev_gain_a} = prev_gain;

 // Generate 5MHz clock for amplifier SPI communication

 always@(posedge clk50mhz)

 if (count5m == 4)

 begin

 count5m <= 0;

 clk5mhz <= ~clk5mhz;

85

 end

 else

 count5m <= count5m + 1;

 always @(posedge clk5mhz)

 casex (state)

 0:

 if (set_gain == 1)

 begin

 busy <= 1;

 gain <= {gain_b_in, gain_a_in};

 spi_amp_cs <= 0;

 spi_sck <= 0;

 state <= 1;

 end

 // Read previous gain and send new gain are done, don't shift once more

 // Just return SCK to zero

 16:

 begin

 spi_sck <= ~spi_sck;

 state <= 17;

 end

 17:

 begin

 busy <= 0;

 spi_amp_cs <= 1;

 state <= 0;

 end

 5'bxxxx0:

 begin

 gain <= gain << 1;

 prev_gain <= prev_gain << 1;

 spi_sck <= ~spi_sck;

 state <= state + 1;

 end

 5'bxxxx1:

 begin

 spi_sck <= ~spi_sck;

 prev_gain[0] <= spi_amp_sdo;

 state <= state + 1;

 end

86

 endcase

endmodule

A.4. adc_driver.v

module adc_driver(clk, trigger, busy, spi_sdo, spi_adc_conv, spi_sck,

 sample_a, sample_b);

 input clk, trigger;

 input spi_sdo;

 output busy, spi_adc_conv, spi_sck;

 output [15:0] sample_a, sample_b;

 reg busy = 0;

 reg spi_adc_conv = 0;

 reg spi_sck = 0;

 reg [6:0] state = 0;

 reg [15:0] sample_a, sample_b;

 reg [27:0] sample_word = 0;

 always @(posedge clk)

 casex (state)

 0:

 if (trigger == 1)

 begin

 busy <= 1;

 spi_adc_conv <= 1;

 spi_sck <= 0;

 state <= 1;

 end

 1:

 begin

 spi_adc_conv <= 0;

 state <= 2;

 end

 70:

 begin

 busy <= 0;

 state <= 0;

 sample_a <= {sample_word[27], sample_word[27], sample_word[27:14]};

 sample_b <= {sample_word[13], sample_word[13], sample_word[13:0]};

 end

 2, 3, 4, 5, 34, 35, 36, 37, 66, 67, 68, 69, 7'bxxxxxx0:

 begin

87

 spi_sck <= ~spi_sck;

 state <= state + 1;

 end

 7'bxxxxxx1:

 begin

 spi_sck <= ~spi_sck;

 state <= state + 1;

 sample_word <= {sample_word[26:0], spi_sdo};

 end

 endcase

endmodule

A.5. dac_driver.v

module dac_driver(clk, trigger, busy, spi_sdi, spi_dac_cs, spi_dac_clr, spi_sck,

 sample_a_in, sample_b_in, sample_c_in, sample_d_in);

 input clk;

 input trigger;

 input [15:0] sample_a_in, sample_b_in, sample_c_in, sample_d_in;

 output busy;

 output spi_sdi;

 output spi_dac_cs;

 output spi_dac_clr;

 output spi_sck;

 reg busy = 0, ch_start = 0, ch_busy = 0;

 reg spi_dac_cs = 1;

 reg spi_sck = 0;

 reg [3:0] state_dac = 0;

 reg [6:0] state_ch = 0;

 reg [1:0] num_ch = 0;

 reg [15:0] sample_ch;

 reg [23:0] dac_dataword;

 wire spi_sdi;

 assign spi_dac_clr = 1;

 assign spi_sdi = dac_dataword[23];

 always @(posedge clk)

 casex (state_dac)

 0:

 if (trigger == 1)

88

 begin

 busy <= 1;

 sample_ch <= sample_a_in;

 ch_start <= 1;

 state_dac <= 1;

 end

 1:

 begin

 ch_start <= 0;

 state_dac <= 2;

 end

 2:

 if (ch_busy == 0)

 begin

 num_ch <= 1;

 sample_ch <= sample_b_in;

 ch_start <= 1;

 state_dac <= 3;

 end

 3:

 begin

 ch_start <= 0;

 state_dac <= 4;

 end

 4:

 if (ch_busy == 0)

 begin

 num_ch <= 2;

 sample_ch <= sample_c_in;

 ch_start <= 1;

 state_dac <= 5;

 end

 5:

 begin

 ch_start <= 0;

 state_dac <= 6;

 end

 6:

 if (ch_busy == 0)

 begin

 num_ch <= 3;

 sample_ch <= sample_d_in;

 ch_start <= 1;

 state_dac <= 7;

 end

89

 7:

 begin

 ch_start <= 0;

 state_dac <= 8;

 end

 8:

 if (ch_busy == 0)

 begin

 num_ch <= 0;

 busy <= 0;

 state_dac <= 0;

 end

 endcase

 always @(posedge clk)

 casex (state_ch)

 0:

 if (ch_start == 1)

 begin

 ch_busy <= 1;

 // Command is 0000 for channels 1,2,3 and 0010 for channel 4

 // Address is the same as the channel number

 dac_dataword <= {6'b001100, num_ch, sample_ch};

 spi_dac_cs <= 0;

 spi_sck <= 0;

 state_ch <= state_ch + 1;

 end

 48:

 begin

 ch_busy <= 0;

 spi_dac_cs <= 1;

 state_ch <= 0;

 end

 7'bxxxxxx0:

 begin

 spi_sck <= ~spi_sck;

 dac_dataword <= dac_dataword << 1;

 state_ch <= state_ch + 1;

 end

 7'bxxxxxx1:

 begin

 spi_sck <= ~spi_sck;

 state_ch <= state_ch + 1;

 end

90

 endcase

endmodule

A.6. dsp_module.v

module dsp_placeholder(clk, enable, busy, sample_in, sample_out);

 input clk;

 input [15:0] sample_in;

 input enable;

 output busy;

 output [15:0] sample_out;

 reg busy;

 reg [2:0] state = 0;

 reg [15:0] sample;

 reg [15:0] sample_out = 0;

 always @(posedge clk)

 case (state)

 0:

 if (enable == 1)

 begin

 busy <= 1;

 sample <= sample_in;

 state <= 1;

 end

 1:

 begin

 sample_out <= (sample + 16'b0010_0000_0000_0000) << 2;

 state <= 2;

 end

 2:

 begin

 busy <= 0;

 state <= 0;

 end

 endcase

endmodule

91

A.7. wavegen.v

module wavegen(clk, enable, busy, increment, sample_out);

 input clk;

 input enable;

 input [3:0] increment;

 output busy;

 output [15:0] sample_out;

 reg busy = 0;

 reg [15:0] count = 0;

 reg [1:0] state = 0;

 assign sample_out = count;

 always @(posedge clk)

 case (state)

 0:

 if (enable == 1 && busy == 0)

 begin

 busy <= 1;

 state <= 1;

 end

 1:

 begin

 count <= count + increment;

 state <= 2;

 end

 2:

 begin

 count <= count + increment;

 state <= 3;

 end

 3:

 begin

 busy <= 0;

 state <= 0;

 end

 endcase

endmodule

92

REFERENCES

1. Intel Corp.; New Dual-Core Intel® Itanium® 2 Processor Doubles Performance;

2006, http://www.intel.com/pressroom/archive/releases/20060718comp.htm

2. Marschner, E.; Berman, V.; The continuing evolution of EDA standards, IEEE

Design & Test of Computers, Vol. 21, Issue 5, pp.450 – 451, Sep-Oct 2004.

3. Mauskar, A.; Improving timing closure with physical synthesis; 2004,

www.eetimes.com/news/design/features/showArticle.jhtml?articleID=21400427

4. Dervişoğlu, A.; Lojik Devreler Ders Notları; 2002.

5. Parnell, K.; Mehta, N.; Programmable Logic Design: Quick Start Handbook; Xilinx,

2004.

6. Kang, S.; Leblebici, Y.; CMOS Digital Integrated Circuits: Analysis and Design,

3rd Ed.; ISBN: 0071196447, McGraw-Hill, 2003.

7. Maxfield, C.; Bebop To The Boolean Boogie: An Unconventional Guide To

Electronics Fundamentals, Components, And Processes, 2nd Edition;

ISBN: 0750675438, Elsevier, 2003.

8. Maxfield, C.; The Design Warrior's Guide to FPGAs: Devices, Tools, and Flows;

ISBN: 0750676043, Elsevier, 2004.

9. Zeidman, B.; Designing with FPGAs & CPLDs; ISBN: 1588201128, CMP Books,

2002.

10. Maxfield, C.; Designus Maximus Unleashed; ISBN: 0750690895, Newnes, 1998.

11. Pescovitz, D.; 1972: The release of SPICE, still the industry standard tool for

integrated circuit design; http://www.coe.berkeley.edu/labnotes/0502/history.html

93

12. IEEE Standards Association; IEEE Std 1364-1995 IEEE Standard Hardware

Description Language Based on the Verilog Hardware Description Language;

http://standards.ieee.org/reading/ieee/std_public/description/dasc/1364-

1995_desc.html

13. IEEE Standards Association; IEEE and Accellera Announce the Approval of

Verilog-2001 as a Revised IEEE Standard; 2001,

http://standards.ieee.org/announcements/verilog2001.html

14. IEEE Standards Association; IEEE Approves SystemVerilog And Verilog Standards

For Electronic Design; 2006, http://standards.ieee.org/announcements/pr_p1364-

1800.html

15. VASG: VHDL Analysis and Standardization Group; http://www.eda.org/vhdl-200x/

16. Bailey, S.; Comparison of VHDL, Verilog and SystemVerilog; Model Technology

Digital Simulation White Paper, 2003.

17. Smith, Douglas J.; HDL Chip Design; ISBN: 0965193438, Doone Publications,

1996.

18. Ciletti, M. D.; Advanced Digital Design with the Verilog HDL; ISBN: 0130891614;

Pearson Education, Inc., 2003.

19. Brown, S.; Vranesic, Z.; Fundamentals of Digital Logic with Verilog Design;

ISBN: 0072823151, McGraw-Hill, 2003.

20. Wolf, W.; FPGA-Based System Design; ISBN: 0131424610, Prentice Hall, 2004.

21. Xilinx, Inc.; XST v8.2i User Guide; 2006.

22. Chapman, K.; Get Smart About Reset (Think Local, Not Global); Xilinx

TechXclusives, 2001; http://www.xilinx.com/xlnx/xweb/xil_tx_home.jsp

94

23. Chapman, K.; Get Your Priorities Right - Make Your Design Up To 50% Smaller;

Xilinx TechXclusives, 2004; http://www.xilinx.com/xlnx/xweb/xil_tx_home.jsp

24. Xilinx Spartan-3E Starter Kit Web Page, http://www.xilinx.com/s3estarter

25. Xilinx ISE WebPACK, http://www.xilinx.com/ise/logic_design_prod/webpack.htm

26. Xilinx Spartan-3E FPGA Family Data Sheet, 2006, Xilinx Inc.,

http://www.xilinx.com/bvdocs/publications/ds312.pdf

27. LTC6912 Dual Programmable Gain Amplifiers with Serial Digital Interface;

www.linear.com/pc/productDetail.do?navId=H0,C1,C1154,C1009,C1121,P7596

28. LTC1407A-1 Serial 14-Bit 3Msps Simultaneous Sampling ADC with Shutdown;

www.linear.com/pc/productDetail.do?navId=H0,C1,C1155,C1001,C1158,P2485

29. LTC2624 Quad 12-Bit Rail-to-Rail DAC in 16-Lead SSOP;

www.linear.com/pc/productDetail.do?navId=H0,C1,C1155,C1005,C1156,P2048

95

REFERENCES NOT CITED

1. FPGA and Structured ASIC Journal; http://www.fpgajournal.com/

2. SOCCentral; http://www.soccentral.com/

3. EETimes Online; http://www.eetimes.com/

4. BOOM-II The Boolean Minimizer; http://service.felk.cvut.cz/vlsi/prj/BOOM/

5. The International Technology Roadmap for Semiconductors; http://www.itrs.net/

6. Synplicity, Inc.; http://www.synplicity.com/

7. Synopsys, Inc.; http://www.synopsys.com/

8. Mentor Graphics Corp.; http://www.mentor.com/

9. Taiwan Semiconductor Manufacturing Company Limited; http://www.tsmc.com/

10. United Microelectronics Corp.; http://www.umc.com/

