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ABSTRACT 

OPTIMIZATION TECHNIQUES USED IN LOGIC CIRCUIT SYNTHESIS 

AND A STUDY OF THE OPTIMALITY OF SYNTHESIS RESULTS 

From the 1960s to present day, the rapid pace of development in integrated circuit 

(IC) manufacturing technology has doubled the number of transistors that can be fitted on a 

chip every 1.5 to 2 years. Circuit complexities have grown far beyond what is manageable 

with conventional pen-and-paper based design methods, and new electronic design 

automation (EDA) tools have emerged that can synthesize complete circuits from verbal 

behavioral descriptions written in a Hardware Description Language (HDL). 

This thesis focuses on logic circuit synthesis and investigates the optimization 

techniques used by these synthesis tools. A sample circuit written in Verilog HDL has also 

been implemented on a Spartan-3E field programmable gate array (FPGA) with Xilinx’s 

ISE 8.2i development software, using various different optimization settings in its XST 

synthesis tool. The resulting circuits have been compared in terms of device utilization and 

maximum operating speed, in order to find out how optimization settings affect the 

synthesis tool’s performance. 

By trying out all possible combinations of a small subset of the XST settings, several 

synthesis iterations were performed. The fastest implementation that could be achieved 

occupied 235 slices on the FPGA and had a maximum clock frequency of 186.78 MHz. In 

comparison, the smallest implementation occupied 214 slices, but the clock frequency was 

decreased to 160.88 MHz. 

Synthesis results have also shown that automatic settings do not always produce 

optimal results. Manual adjustments and several design iterations are necessary if the 

automatic settings fail to produce a circuit meeting the design objectives, and a better 

implementation is required. Even then, a universally optimal implementation cannot be 

guaranteed for large designs because computational power and time restrictions prohibit an 

exhaustive search for the best implementation within all possible implementations. 
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ÖZET 

LOJİK DEVRE SENTEZİNDE KULLANILAN OPTİMİZASYON YÖNTEMLERİ 

VE SENTEZ SONUÇLARININ OPTİMALLİĞİNİN İNCELENMESİ 

1960’lardan itibaren tümdevre üretim teknolojisinde yaşanan hızlı gelişme, bir çip 

üzerine sığdırılabilen transistör sayısını her 1.5 ila 2 yılda bir ikiye katlamış ve devre 

karmaşıklıkları kalem kağıda dayalı eski tasarım yöntemleriyle altından kalkılamayacak 

düzeye gelmiştir. Bu sıkıntılara paralel olarak, bir donanım tanımlama dilinde yazılmış 

davranışsal tanımlamadan yola çıkarak lojik devre sentezi yapabilen yeni elektronik 

tasarım programları ortaya çıkmıştır. 

Bu tez çalışması, lojik devrelerin sentezlenmesini ele almakta ve sentez programları 

tarafından kullanılan optimizasyon yöntemlerini incelemektedir. Ayrıca, Verilog dilinde 

yazılmış örnek bir devre, Spartan-3E FPGA üzerinde gerçeklenmek üzere Xilinx 

firmasının ISE 8.2i geliştirme ortamının parçası olan XST sentez programında, değişik 

optimizasyon ayarları denenmek suretiyle sentezlenmiştir. Denemeler sonucunda elde 

edilen devreler boyut ve maksimum çalışma hızı açılarından birbirleriyle karşılaştırılarak 

yazılımdaki optimizasyon ayarlarının sentez performansını nasıl etkilediği araştırılmıştır. 

XST’de mevcut ayarların küçük bir kısmıyla, oluşturulabilecek olası bütün 

kombinezonlar denenerek sentez işlemi defalarca tekrarlanmış, sonuçta elde edilebilen en 

hızlı devrenin saat frekansı üst sınırı 186.78 MHz olmuş ve devre FPGA’de 235 dilimlik 

yer kaplamıştır. Buna karşın en küçük boyutlu devre 214 dilime sığarken, maksimum saat 

frekansı ise 160.88 MHz’e gerilemiştir. 

Yapılan denemeler sonunda, sentez programı ayarlarını otomatik değerlerde 

bırakmanın her zaman optimal sonuç vermediği de görülmüştür. Tasarım hedeflerini 

karşılayan bir devreye otomatik ayarlarda ulaşılamazsa, tasarımcının yazılım ayarlarını 

bizzat kendisinin seçmesi gerekmektedir. O durumda dahi, büyük boyutlu tasarımlarda 

sentez sonucu elde edilecek devrenin gerçekten optimal bir devre olduğu garanti 

edilememekte, bilgi işlem kapasitesinin ve zamanın sınırlı oluşu yüzünden, olası bütün 

gerçeklemeler arasından evrensel en iyiyi arayıp bulmak imkansız hale gelmektedir.
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1. INTRODUCTION 

There has been a dramatic change in the way digital design is performed in the past 

20 years. The technological advances and new innovative electronic design automation 

(EDA) software tools, together with the need to reduce the time to market, have all helped 

to fuel this dramatic change. In terms of technology, current mass-produced integrated 

circuits (ICs) have reached transistor channel widths as small as 65nm, while 45nm and 

smaller width prototypes have been demonstrated. Smaller transistors result in improved 

switching speed and increase the number of transistors that can be fitted per unit area. This 

size reduction has enabled the production of silicon chips containing over one billion 

transistors on a single die (Intel’s “Montecito” Itanium 2 server processor, officially 

launched on July 18, 2006, is built using a 90nm process technology and has 1.72 billion 

transistors on a 596mm2 die [1]). 

The need to be able to design chips of such size, and in a timely manner, has led to 

innovative EDA tools being developed, with automatic synthesis tools being the major 

advance. Synthesis is the process of translating a high-level, implementation independent, 

abstract model of hardware into an optimized, technology specific, gate level 

implementation. These high-level models are written in a hardware description language 

(HDL) using algorithmic definitions comprising a sequence of operations on data being 

transferred between various registers. This is hence called register transfer level (RTL) 

modeling. 

The introduction of commercial synthesis tools has enabled top down design 

methodologies to be adopted, starting with an abstract description of a circuit’s behavior 

written in a hardware description language. The main benefits of adopting a top-down 

design methodology, and adhering to the use of these standards is that, 1) design source 

files are transportable between different EDA tools and, 2) the design is independent of 

any particular silicon vendor's manufacturing process technology. More recently, the rate 

of change has slowed and the introduction of standards has enabled EDA software vendors 

to develop integrated design tools with far less risk [2]. 
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1.1.  Thesis Outline 

This thesis focuses on the synthesis of logic circuits from circuit descriptions written 

in a hardware description language, with emphasis on the optimization techniques 

performed by synthesis tools during the process. 

Chapter Two gives an overview of the current technologies used for the realization of 

logic circuits. The target technology for a design heavily influences the way synthesis tools 

construct and optimize the physical circuit. 

Chapter Three relates the evolution of electronic design automation software, the 

emergence of hardware description languages and the reasons that led to their 

development. This chapter also covers some of the widely known hardware description 

languages in use today. 

Chapter Four introduces the fundamentals of the Verilog hardware description 

language with its code syntax, language constructs, operators and various circuit modeling 

techniques supported by synthesis tools. 

Chapter Five examines various optimization techniques employed by synthesis tools, 

the effects of coding style on synthesis results, elaborates on how to write synthesis 

friendly code and points out some common coding mistakes that lead to synthesis of 

unintentional redundant logic. 

Chapter Six presents a sample field programmable gate array (FPGA) 

implementation of a circuit developed for Xilinx’s Spartan-3E Starter Kit FPGA 

development board. The circuit description is written in Verilog and synthesized by 

Xilinx’s ISE 8.2i development software, with various optimization settings enabled or 

disabled in its XST synthesis tool. The resulting circuits are then compared in terms of 

device utilization and operating speed. 

Chapter Seven concludes this work with a review of the results achieved and also 

gives some pointers on the future of electronic design software and methodologies. 
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2. ALTERNATIVE TECHNOLOGIES FOR IMPLEMENTATION OF 

LOGIC CIRCUITS 

As designs grow more complex, synthesizing a high performance logic circuit that 

also satisfies the associated area, timing and power constraints becomes more and more 

difficult. Without an intimate knowledge of the target technology on which the circuits will 

be implemented, successful synthesis results cannot be achieved. This is why synthesis 

tools have become “physically aware” in recent years [3]. 

Below is an overview of the various technologies and devices that have been used 

over the years for realization of digital circuits, followed by the current state-of-the-art in 

logic implementation. 

2.1.  Standard Parts 

The 74xx, 54xx and similar logic family ICs are called standard parts. They contain a 

small number of basic logic gates and the number code of each IC states the type of logic 

gates contained within the chip. For example, a 7400 chip contains four two-input NAND 

gates, a 7404 chip contains six inverters. 

Implementing complex logic circuits with standard parts is very difficult and 

expensive, so they are only used in small scale, simple circuits. Standard parts have largely 

been replaced by programmable logic devices. 

2.2.  Simple Programmable Logic Devices (SPLDs) 

Programmable logic devices (PLDs) have progressed through a long evolution to 

reach the complexity today to support an entire system on a chip (SOC). In order to 

distinguish the older generation of these devices, they are now generally referred to as 

Simple PLDs.  
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2.2.1.  Programmable Read-Only Memories (PROMs) 

These first field programmable devices were created as alternatives to expensive 

mask-programmed ROMs. Storing code in a ROM was an expensive process that required 

the ROM vendor to create a unique semiconductor mask set for each customer. Changes to 

the code were impossible without creating a new mask set and fabricating a new chip. The 

lead time for making changes to the code and getting back a chip to test was far too long. 

PROMs solved this problem by allowing the user, rather than the chip vendor, to store 

code in the device using a simple and relatively inexpensive desktop programmer. This 

new device was called a programmable read only memory (PROM). PROMs, like ROMs, 

retain their contents even after power has been turned off. 

Eventually, erasable PROMs were developed which allowed users to program, erase, 

and reprogram the devices using an inexpensive, desktop programmer. Typically, PROMs 

now refer to devices that cannot be erased after being programmed. Erasable PROMS 

include erasable programmable read only memories (EPROMs) that are programmed by 

applying high-voltage electrical signals and erased by flooding the devices with ultra-violet 

(UV) light. Electrically erasable programmable read only memories (EEPROMs) are 

programmed and erased by applying high voltages to the device. Flash EPROMs are 

programmed and erased electrically and have sections that can be erased electrically in a 

short time and independently of other sections within the device. 

Although PROMs were initially intended for storing code and constant data, design 

engineers also used them for implementing Boolean functions (BFs). Figure 2.1 shows the 

structure of a simple PROM. 

PROMs consist of a fixed array of AND gates driving a programmable array of OR 

gates. They can be used for implementing m Boolean functions of n variables in 

sum-of-products canonical form, where n is the number of address lines the PROM has, 

and m the number of PROM outputs. Thus, the PROM has 2n x m bits of storage capacity 

[4]. The PROM is programmed as if it was a simple truth table, such that each data output 

bit has the corresponding value of the Boolean function. 
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Figure 2.1. The structure of a PROM  

For sequential logic, external clocked devices such as flip-flops or microprocessors 

were added to the design. State machine logic was programmed into a PROM, which 

combined inputs with bits representing the current state of the machine, to produce outputs 

and the next state of the machine. This allowed the creation of very complex state 

machines. Another benefit was that these state machines could be easily reprogrammed in 

order to fix bugs, test new functions, optimize existing designs, or make changes to 

systems that were already shipped and in the field. 

The problem with PROMs is that they tend to be extremely slow (even today, access 

times are on the order of 40 nanoseconds or more), so they are not useful for applications 

where speed is an issue. Also, PROMs require a different manufacturing technology than 

for logic circuits, and thus, integrating PROMs onto a chip with logic circuitry involves 

extra masks and extra processing steps, all leading to extra costs. 

2.2.2.  Programmable Logic Arrays (PLAs) 

Programmable logic arrays (PLAs) were a solution to the speed and input limitations 

of PROMs. Ron Cline from Signetics (which was later purchased by Philips and then 
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eventually Xilinx) came up with the idea of two programmable planes [5]. PLAs consist of 

a large number of inputs connected to an AND plane, where different combinations of 

signals can be logically ANDed together according to how the part is programmed. The 

outputs of the AND plane go into an OR plane, where the terms are ORed together in 

different combinations and finally outputs are produced (Figure 2.2). There are inverters at 

the inputs (and sometimes also at the outputs) so that logical NOTs can be obtained. These 

devices can implement a large number of Boolean functions in reduced sum-of-products 

(SOP) form, but, unlike a PROM, they can’t implement every possible combination of 

their inputs within the AND plane. However, they generally have many more inputs and 

are much faster PROMs. 
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Figure 2.2. Structure of a PLA  

As with PROMs, PLAs could be connected externally to flip-flops to create state 

machines, which are the essential building blocks for all sequential logic. 

Each connection in the AND and OR planes of a PLA could be programmed to 

connect or disconnect. In other words, terms of Boolean functions could be created by 

selectively connecting wires within the AND and OR planes. Simple high level languages 

were developed to convert Boolean functions such as f ( & ) | (! &! & )x y x y z=  into files 

that would program these connections within the PLA. This added a new dimension to 

programmable devices in that logic could now be described in readable programs at a level 

higher than groups of ones and zeroes. 
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The PLA architecture was very flexible, but at the time, wafer geometries of 10 µm 

made the input-to-output delays high, which made these devices relatively slow. 

2.2.3.  Programmable Array Logic (PAL) 

The programmable array logic (PAL) is a variation of the PLA. MMI (later 

purchased by AMD) was enlisted as a second source for the PLA array. After several 

fabrication issues, it was modified to become the PAL architecture by fixing one of the 

programmable planes [5]. 

Like the PLA, it has a wide, programmable AND plane for ANDing inputs together. 

Programming elements at each intersection in the AND plane allow perpendicular traces to 

be connected or left open, creating product terms, which are multiple logical signals 

ANDed together. The product terms are then ORed together (Figure 2.3). 

 

Figure 2.3. Structure of a PAL  

In a PAL, unlike a PLA, the OR plane is fixed, limiting the number of terms that can 

be ORed together. This still allows a large number of Boolean functions to be 

implemented. 
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The reason for this can be demonstrated by DeMorgan's Law, which states that 

( )a b a b+ = ⋅ . That means if inverters are used on the inputs and outputs, any logic 

function can be created with either a wide AND plane or a wide OR plane; there’s no need 

to have both. 

Including inverters reduced the need for the large OR plane, which in turn allowed 

the extra silicon area on the chip to be used for other basic logic devices such as 

multiplexers, exclusive ORs, and latches. Most importantly, clocked elements, typically 

flip-flops, could be included in PALs. These devices were now able to implement a large 

number of logic functions, including clocked sequential logic needed for state machines. 

This was an important development that allowed PALs to replace much of the standard 

logic in many designs. PALs are also extremely fast, allowing high-speed controllers be to 

be implemented in programmable logic. 

The inclusion of extra logic devices, particularly flip-flops, greatly increased the 

complexity and potential uses of PALs, creating a need for new methods of programming 

that were flexible and readable. Thus the first hardware description languages (HDLs) 

were born. These simple HDLs included ABEL, CUPL, and PALASM, the precursors of 

Verilog and VHDL. These programming languages also allowed the use of simulation test 

vectors in the code. This simulation capability brought better reliability and verification of 

programmable devices, something that was critical when CPLDs and FPGAs were 

developed. 

2.3.  Application Specific Integrated Circuits (ASICs) 

Application specific integrated circuits (ASICs) are chips that are custom designed 

and built to order for use in a specific application. ASICs can be implemented either as a 

full-custom design, or in a gate array device or a standard cell device [6]. 

2.3.1.  Full-Custom Devices 

In the case of full-custom devices, design engineers have complete control over 

every mask layer used to fabricate the silicon chip. The ASIC vendor does not prefabricate 
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any components on the silicon and does not provide any libraries of predefined logic gates 

and functions. By using design software, the engineers can manually specify the 

dimensions of individual transistors and then create higher-level functions based on these 

elements. For example, if the engineers require a slightly faster logic gate, they can alter 

the dimensions of the transistors used to build that gate. The design of full-custom devices 

is highly complex and time-consuming, but the resulting chips contain the maximum 

amount of logic with minimal waste of silicon area. 

2.3.2.  Gate Arrays 

Gate arrays are based on the idea of a basic cell, shown in Figure 2.4, consisting of a 

collection of unconnected transistors and resistors. Each ASIC vendor determines what it 

considers to be the optimum mix of components provided in its particular basic cell. 

(a) Pure CMOS basic cell (b) BiCMOS basic cell  

Figure 2.4. Examples of gate array basic cells 

The ASIC vendor manufactures many unrouted die that contain the arrays of gates as 

shown in Figure 2.5. These can be used for any gate array customer. In the case of 

channeled gate arrays, the basic cells are typically presented as either single-column or 

dual-column arrays. The free areas between the arrays are known as the channels and are 

used for routing the connections between cells. 
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Figure 2.5. Channeled gate array architectures 

By comparison, in the case of channel-less or channel-free devices, the basic cells are 

presented as a single large array (Figure 2.6). The surface of the device is covered in a 

“sea” of basic cells, and there are no dedicated channels for the interconnections. Thus, 

these devices are popularly referred to as sea-of-gates or sea-of-cells. 

 

Figure 2.6. Sea-of-gates architecture 

An integrated circuit consists of many layers of materials, including semiconductor 

material (e.g., silicon), insulators (e.g., oxides), and conductors (e.g., metal). An unrouted 

die is processed with all of the layers except for the final metal layers that connect the 

gates together. The ASIC vendor defines a set of logic functions such as primitive gates, 

multiplexers, and registers that can be used by the design engineers. Each of these building 

block functions is referred to as a cell, not to be confused with a basic cell, and the set of 

functions supported by the ASIC vendor is known as the cell library. 
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Once given a design, the layout software assigns the functions selected by the 

engineers to basic cells on the silicon (Figure 2.7), and figures out which transistors to 

connect by placing metal connections on top of the die. First, the low level functions are 

connected together. For example, six transistors could be connected to create a D-type 

flip-flop. These six transistors would be located physically very close to each other. After 

the low level functions have been routed, they would in turn be connected together. The 

software would continue this process until the entire design is complete. 

 

Figure 2.7. Assigning functions to basic cells 

The channels in channeled devices are used for the tracks that connect the logic gates 

together. By comparison, in channel-less devices, the connections between logic gates have 

to be deposited over the top of other basic cells. In the case of early processes based on two 

layers of metallization, any basic cell overlaid by a track was no longer available to the 

user. Due to limited space in the routing channels of channeled devices, the design 

engineers could only actually use between 70% and 90% of the total number of available 

gates. Sea-of-gates architectures provided significantly more available gates than those of 

channeled devices because they don’t contain any dedicated wiring channels. However, in 

practice, only about 40% of the gates were usable in devices with two layers of 

metallization, rising to 60% or 70% in devices with three or four metallization layers, and 

even higher as the number of metallization layers increases [7]. 
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When the design is complete, the vendor simply needs to add the last metal layers to 

the die to create the final chip, using photo masks for each metal layer. For this reason, it is 

sometimes referred to as a “masked gate array” to differentiate it from a field 

programmable gate array. 

The advantage of a gate array is that the internal circuitry is very fast; the circuit is 

dense, allowing lots of functionality on a die; and the cost is low for high volume 

production. The disadvantage is that most designs leave significant amounts of internal 

resources unutilized, the placement of gates is constrained, and the routing of internal 

tracks is less than optimal. All of these factors negatively impact the performance and 

power consumption of the design [8]. Also, it takes time for the ASIC vendor to 

manufacture and test the parts. The customer incurs a large charge up front, called a 

non-recurring engineering (NRE) expense, which the ASIC vendor charges to begin the 

entire ASIC manufacturing process. And if there's a mistake, it's a long, expensive process 

to fix it and manufacture new ASICs. 

2.3.3.  Standard Cell Devices 

Standard cell devices bear many similarities to gate arrays. The ASIC vendor defines 

the cell library that can be used by the design engineers. The vendor also supplies hard-

macro and soft-macro libraries, which include elements such as processors, communication 

functions, and a selection of RAM and ROM functions. Last but not least, the design 

engineers may decide to reuse previously designed functions or to purchase blocks of 

intellectual property (IP). 

The design software synthesizes the circuit into a gate-level netlist, which describes 

the logic gates and the connections between them. However, unlike gate arrays, standard 

cell devices do not use the concept of a basic cell, and no components are prefabricated on 

the chip. Special tools are used to place each logic gate individually in the netlist and to 

determine the optimum way in which the gates are to be routed. The results are then used 

to create custom photo-masks for every layer in the device’s fabrication. 
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The standard cell concept allows each logic function to be created using the 

minimum number of transistors with no redundant components, and the related functions 

can be positioned close together so as to easily route any connections between them. 

Standard cell devices, therefore, provide a closer-to-optimal utilization of the silicon than 

do gate arrays. 

2.4.  Complex Programmable Logic Devices (CPLDs) 

Complex Programmable Logic Devices (CPLDs) contain a large number of 

SPLD-like blocks (PAL or PLA) in a single chip, connected to each other through a 

programmable interconnect matrix so that, in addition to programming the individual 

SPLD blocks, the connections between the blocks can also be configured. This architecture 

made them familiar to their target market, the printed circuit (PC) board designers who 

were already designing SPLDs in their boards. CPLDs were used to simply combine 

multiple SPLDs in order to save real estate on a PC board. CPLDs use the same 

development tools and programmers as SPLDs, and are based on the same technologies as 

SPLDs, but they can realize much more complex logic and more of it. 

Figure 2.8 shows the internal architecture of a generic CPLD. Although each 

manufacturer has a different variation, in general they are all similar in that they consist of 

SPLD-like function blocks, input/output blocks, and an interconnection matrix. 

 

Figure 2.8. A Generic CPLD Architecture 
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2.5.  Field Programmable Gate Arrays (FPGAs) 

Around the beginning of the 1980s, it became apparent that there was a gap in the 

digital IC implementation technologies. At one end, there were programmable devices like 

SPLDs and CPLDs, which were highly configurable and had fast design and modification 

times, but which couldn’t support large or complex functions. At the other end of the 

spectrum were ASICs. These could support extremely large and complex functions, but 

they were quite expensive and time consuming to design. Furthermore, once a design had 

been implemented as an ASIC it was impossible to modify the design or correct errors. 

In order to address this gap, Xilinx developed a new class of ICs called a 

field-programmable gate array (FPGA), which was made available to the market in 1984. 

The early FPGA devices were based on the concept of a configurable logic block 

(CLB) that comprised a 3-input lookup table (LUT), a register that could act as a flip-flop 

or a latch, and a multiplexer, along with a few other elements, as shown in Figure 2.9. 

 

Figure 2.9. The structure of a basic FPGA configurable logic block 

Each FPGA contains a large number of these programmable logic blocks. By means 

of appropriate Static RAM (SRAM) programming cells, every logic block in the device 

can be configured to perform a different function. Each register can be configured to 

initialize containing a logic 0 or a logic 1 and to act either as a flip-flop or a latch. As a 

flip-flop, the register can be configured to be triggered by a rising or falling edge clock. 

The multiplexer feeding the flip-flop can be configured to accept the output from the LUT 

or a separate input to the logic block. 
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The LUT can be configured to represent any 3-variable Boolean function. For 

example, to implement the function y = ab + c’, the LUT is loaded with the appropriate 

output values (Figure 2.10). 
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Figure 2.10 Implementation of a Boolean function in a look-up table 

Although the structure varies from vendor to vendor, a typical FPGA comprises a 

large number of programmable logic blocks surrounded by a network of programmable 

interconnects, as shown in Figure 2.11. 

 

Figure 2.11. A generic FPGA architecture 

In addition to the local interconnect, there are also global (high speed) 

interconnection paths for transporting time-critical signals across the chip without having 

to go through multiple switching elements. There are also clock manager circuits that 
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condition the incoming clock signals and then drive the clock trees throughout the device, 

ensuring synchronous operation of flip-flops (Figure 2.12). 

 

Figure 2.12. The clock tree within an FPGA 

FPGAs also include input/output (I/O) blocks that drive the I/O pins on the chip. By 

programming the interconnect, the inputs to the device can be connected to the inputs of 

one or more programmable logic blocks, and the outputs from any logic block can be used 

to drive the inputs to any other logic block, the outputs from the device, or both. 

2.5.1.  Fine-Grained vs. Coarse-Grained CLBs 

In theory, there are two types of CLBs, depending on the amount and type of logic 

that is contained within them. These two types are called “large grain” and “fine grain”. 

In a large grain FPGA, the CLB contains larger functionality logic. For example, it 

can contain two or more flip-flops. A design that does not need many flip-flops will leave 

many of these flip-flops unused, poorly utilizing the logic resources in the CLBs and in the 

chip. A design that requires lots of combinational logic will be required to use up the LUTs 

in the CLBs while leaving the flip-flops untouched. 
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Fine grain FPGAs resemble ASIC gate arrays in that the CLBs contain only small, 

very basic elements such as NAND gates, NOR gates, etc. The philosophy is that small 

elements can be connected to make larger functions without wasting too much logic. If a 

flip-flop is needed, one can be constructed by connecting NAND gates. If it’s not needed, 

then the NAND gates can be used for other features. In theory, this apparent efficiency 

seems to be an advantage. Also, because they more closely resemble ASICs, conversion of 

a design from an FPGA to an ASIC is much more straightforward. 

However, in practice, one key fact renders the fine grain architecture less useful and 

less efficient. The routing resources are the bottleneck in any FPGA design in terms of 

utilization and speed [9]. It is often difficult to connect CLBs together using the limited 

routing resources on the chip. Also, in an FPGA, unlike an ASIC, the majority of the delay 

comes from routing, not logic. In an ASIC, signals are routed using metal layers, leading to 

RC delays that are insignificant with respect to the delay through logic gates. In an FPGA, 

the routing is done through programmed multiplexers in the case of SRAM-based devices 

and through conducting vias in the case of antifuse devices. Both of these structures add 

significant delay to a signal. The multiplexers have a gate delay associated with them. The 

conducting vias have a high resistance, causing greater RC delay. Fine grain architectures 

require many more routing resources, which take up space and insert a large amount of 

delay, which can hinder the performance of a design, in spite of the better CLB utilization. 

This is why all FPGA vendors currently use large grain architectures for their CLBs. 

2.5.2.  Embedded Devices 

Many newer FPGA architectures incorporate complex devices inside the FPGA 

fabric. These devices range from relatively simple functions, such as address decoders or 

multipliers, all the way through arithmetic & logic units (ALUs), digital signal processors 

(DSPs), microprocessors and microcontrollers. These embedded devices are optimized and 

already tested, just like a standalone chip, so there’s no need to design the circuit from 

scratch and verify its functionality. FPGAs with embedded devices offer the possibility of 

integrating an entire system onto a single chip, creating what is called a “system on a 

programmable chip” (SOPC), providing significant savings in printed circuit board area 

and power consumption. 
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One disadvantage of these devices is that designs implemented in them are tied into a 

single FPGA from a single FPGA vendor, losing some of the portability that engineers 

prefer. Each vendor has specific devices embedded into their FPGAs. In the case of 

embedded processors, each FPGA vendor usually licenses a specific processor core from a 

different processor manufacturer. This is good for the FPGA vendor because once they 

have a design win, that design is committed to their FPGA for some time. 

By providing an embedded device that is in demand or soon will be, smaller FPGA 

vendors try to differentiate themselves and create a niche market for their devices, allowing 

them to compete with the bigger vendors. 
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3. EVOLUTION OF ELECTRONIC DESIGN AUTOMATION 

In the early 1960s, electronic circuits were crafted by hand. Circuit diagrams, also 

known as schematic diagrams or just schematics, were hand-drawn using pen, paper, and 

stencils. These diagrams showed the symbols for the logic gates and functions that were to 

be used to implement the design, along with the connections between them. Similarly, the 

copper tracks on a circuit board were drawn using red and blue pencils to represent the top 

and bottom of the board [10]. 

Each design team usually had at least one member who was really good at performing 

logic minimization and optimization. Functional verification, i.e. checking that the design 

would work as planned insofar as its logical implementation, was typically performed by a 

group of engineers by manually working through the schematics. Similarly, timing 

verification, checking that the design met its required input-to-output and internal path delays 

and that no parameters associated with the timing of any of the internal registers (such as 

setup and hold times) were violated, was performed using pencil and paper and mechanical 

calculators. 

Finally, a set of drawings representing the structures used to form the logic gates (or, 

more accurately, the transistors forming the logic gates) and the interconnections between 

them were drawn by hand. These drawings, which were formed from groups of simple 

polygons such as squares and rectangles, were subsequently used to create the photo-masks, 

which were themselves used to create the actual silicon chip. 

3.1.  The Early Days of Electronic Design Automation 

Not surprisingly, the handcrafted way of designing circuits was time-consuming and 

prone to error. Something had to be done, and a number of companies and universities began 

research in a variety of different directions. In the case of functional verification, for 

example, special computer programs known as simulators were developed. These programs 

allowed students and engineers to emulate the operation of an electronic circuit without 

actually having to build it first. Perhaps the most famous of the early simulators was the 

Simulation Program with Integrated Circuit Emphasis (SPICE) [11]. SPICE was developed 
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by the University of California in Berkeley and was made available for widespread use 

around the beginning of the 1970s. SPICE was designed to simulate the behavior of analog 

circuits. Other programs called logic simulators were developed to simulate the behavior of 

digital circuits. 

In order to use the logic simulator, the engineers first needed to create a textual 

representation of the circuit called a gate-level netlist. In those times, the engineers would 

typically have been using a mainframe computer, and the netlist would have been captured 

as a set of punched cards called a deck. As computers (along with storage devices like hard 

disks) became more accessible, netlists began to be stored as text files. 

It was also possible to associate delays with each logic gate. These delays were 

typically referenced as integer multiples of some core simulation time unit. 

All of the early logic simulators had internal representations of primitive gates like 

AND, NAND, OR, NOR, etc. These were referred to as simulation primitives. Some 

simulators also had internal representations of more sophisticated functions like D-type 

flip-flops. Alternatively, one could create a subcircuit called DFF to represent a D-type 

flip-flop, whose functionality was captured as a netlist of primitive AND, NAND, etc. gates. 

In this case, DFF would actually be seen by the simulator as a call to instantiate a copy of 

this subcircuit. 

Next, the user would create a set of test vectors, also called stimulus, which were 

patterns of logic 0 and logic 1 values to be applied to the circuit’s inputs. Once again, these 

test vectors were textual in nature, and they were typically presented in a tabular form. In 

today’s terminology, the file of test vectors would be considered a rudimentary testbench. 

Once again, time values were typically specified as integer multiples of some core simulation 

time unit. 

The engineer would then invoke the logic simulator, which would read in the 

gate-level netlist and construct a virtual representation of the circuit in the computer’s 

memory. The simulator would then read in the first test vector (the first line from the 

stimulus file), apply those values to the appropriate virtual inputs, and propagate their effects 

through the circuit. This would be repeated for each of the subsequent test vectors forming 
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the testbench. The simulator would also use one or more control files (or online commands) 

to tell it which internal nodes (wires) and output pins to monitor, how long to simulate for, 

and so forth. The results, along with the original stimulus, would be stored in tabular form in 

a textual output file. 

It wasn’t long before engineers were working with circuits that could contain 

thousands of gates and internal nodes along with simulation runs that could encompass 

thousands of time steps. It took hours to examine output files trying to see if a circuit was 

working as expected, and also attempting to track down the problem if it wasn’t. 

3.2.  Back-End Tools 

As opposed to tools like logic simulators that were intended to aid the engineers who 

were defining the function of ICs (and circuit boards), some companies focused on creating 

tools that would help in the process of laying the ICs out. In this context, “layout” refers to 

determining where to place the logic gates (actually, the transistors forming the logic gates) 

on the surface of the chip and how to route the wires between them. 

In the early 1970s, companies like Calma, ComputerVision, and Applicon created 

special computer programs that helped personnel in the drafting department capture digital 

representations of hand-drawn designs. In this case, a design was placed on a large-scale 

digitizing table, and then a mouse-like tool was used to digitize the boundaries of the shapes 

(polygons) used to define the transistors and the interconnect. These digital files were 

subsequently used to create the photo-masks, which were themselves used to create the 

actual silicon chip. 

Over time, these early computer-aided drafting tools evolved into interactive programs 

called polygon editors that allowed users to draw the polygons directly onto the computer 

screen. Other companies like Racal-Redac, SCI-Cards, and Telesis created equivalent layout 

programs for printed circuit boards. Descendants of these tools eventually gained the ability 

to accept the same netlist used to drive the logic simulator and to perform the layout 

(place-and-route) tasks automatically. 
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3.3.  Computer-Aided Design and Engineering 

Tools that were used in the front-end (logical design capture and functional 

verification) portion of the design flow were originally gathered together under the umbrella 

name of computer-aided engineering (CAE). By comparison, tools like layout 

(place-and-route) that were used in the back-end (physical) portion of the design flow were 

originally gathered together under the name of computer-aided design (CAD). 

For historical reasons that are largely based on the origins of the terms CAE and CAD, 

the term design engineer, or simply engineer, typically refers to someone who works in the 

front-end of the design flow; that is, someone who performs tasks like conceiving and 

describing (capturing) the functionality of an IC (what it does and how it does it). By 

comparison, the term layout designer, or simply designer, commonly refers to someone who 

works at the back-end of the design flow; that is, someone who performs tasks such as laying 

out an IC (determining the locations of the gates and the routes of the tracks connecting them 

together). During the 1980s, all of the CAE and CAD tools used to design electronic 

components and systems were gathered under the name of electronic design automation 

(EDA). 

Toward the end of the 1970s and the beginning of the 1980s, companies like Daisy, 

Mentor, and Valid started providing graphical schematic capture programs that allowed 

engineers to create circuit (schematic) diagrams interactively. Using the mouse, an engineer 

could select symbols representing such entities as I/O pins and logic gates and functions 

from a special symbol library and place them on the screen. The engineer could then use the 

mouse to draw lines (wires) on the screen connecting the symbols together. 

Once the circuit had been entered, the schematic capture package could be instructed 

to generate a corresponding gate-level netlist. This netlist could first be used to drive a logic 

simulator in order to verify the functionality of the design. The same netlist could then be 

used to drive the place-and-route software. 
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3.4.  Hardware Description Languages 

Toward the end of the 1980s, as designs grew in size and complexity, schematic 

based ASIC flows became a limiting factor. Visualizing, capturing, debugging, 

understanding, and maintaining a design at the gate level of abstraction became 

increasingly difficult and inefficient when dealing with 5,000 or more gates and a vast 

number of schematic pages. 

In addition to the fact that capturing a large design at the gate level of abstraction is 

prone to error, it is also extremely time-consuming. Thus, some EDA vendors started to 

develop design tools and flows based on the use of hardware description languages 

(HDLs). 

In a wider context, the term hardware is used to refer to any of the physical portions 

of an electronics system, including the ICs, printed circuit boards, cabinets, cables, and 

even the nuts and bolts holding the system together. In the context of an HDL, however, 

“hardware” refers only to the electronic portions (components and wires) of ICs and 

printed circuit boards. (The HDL may also be used to provide limited representations of 

the cables and connectors linking circuit boards together.) 

In the beginning, almost all EDA tool vendors created their own HDLs to go with 

the tools. Some of these were analog HDLs in that they were intended to represent circuits 

in the analog domain, while others were focused on representing digital functionality. This 

text covers HDLs only in the context of designing digital ICs in the form of ASICs and 

FPGAs. 

3.4.1.  Different Levels of Abstraction 

The functionality of a digital circuit can be represented at different levels of 

abstraction, and different HDLs support these levels of abstraction to a greater or lesser 

extent (Figure 3.1). 
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Figure 3.1. Different levels of abstraction 

The lowest level of abstraction for a digital HDL would be the switch level, which 

refers to the ability to describe the circuit as a netlist of transistor switches. A slightly 

higher level of abstraction would be the gate-level, which refers to the ability to describe 

the circuit as a netlist of primitive logic gates and functions. Thus, the early gate-level 

netlist formats generated by schematic capture packages were in fact rudimentary HDLs. 

Both switch-level and gate-level netlists may be classified as structural 

representations. It should be noted, however, that the term “structural” may also be used to 

refer to a hierarchical block-level netlist in which each block may have its contents 

specified using any of the levels of abstraction shown in Figure 3.1. 

The next level of HDL sophistication is the ability to support functional 

representations, which covers a range of constructs. At the lower end is the capability to 

describe a circuit using Boolean functions. For example, after declaring a set of signals 

called Y, SELECT, DATA_A, and DATA_B, the functionality of a simple 2:1 multiplexer 

can be written using the following Boolean equation: 

Y = (SELECT & DATA_A) | (!SELECT & DATA_B); 
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This is a generic syntax that does not favor any particular HDL and is used only for 

the purposes of this example. Here, the “&” character represents a logical AND, the “|” 

character represents an OR, and the “!” character represents a NOT. 

The functional level of abstraction also encompasses register transfer level (RTL) 

representations. The term RTL generally refers to a design formed from a collection of 

registers linked by combinational logic. These registers are often controlled by a common 

clock signal. With two signals called CLOCK and CONTROL, along with a set of registers 

called REGA, REGB, REGC, and REGD, an RTL-type statement might be written similar 

to the following: 

when CLOCK rises 

  if CONTROL == “1" then REGA = REGB & REGC; 

    else REGA = REGB | REGD; 

  end if; 

end when; 

In this case, symbols like when, rises, if, then, else, and the like are 

keywords whose semantics are defined by the owners of the HDL. Once again, this is a 

generic syntax that does not favor any particular HDL and is used only for the purposes of 

this example. 

The highest level of abstraction supported by traditional HDLs is known as 

behavioral, which refers to the ability to describe the behavior of a circuit using abstract 

constructs like loops and processes. This also encompasses using algorithmic elements like 

adders and multipliers in equations; for example: 

Y = (DATA_A + DATA_B) * DATA_C; 

There is also a system level of abstraction (not shown in Figure 3.1) that features 

constructs intended for system-level design applications. 

Many of the early digital HDLs supported only structural representations in the 

form of switch or gate-level netlists. Others such as ABEL, CUPL, and PALASM were 

used to capture the required functionality for programmable logic devices. These languages 
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supported different levels of functional abstraction, such as Boolean functions, text-based 

truth tables, and text-based finite state machine (FSM) descriptions. 

The next generation of HDLs, which were predominantly targeted toward logic 

simulation, supported more sophisticated levels of abstraction such as RTL and some 

behavioral constructs. It was these HDLs that formed the core of the first true HDL-based 

design flows. 

3.4.2.  An early HDL-based ASIC flow 

The key feature of HDL-based ASIC design flows is their use of logic synthesis 

technology, which began to appear on the market around the mid-1980s. These tools could 

accept an RTL representation of a design along with a set of timing constraints. In this 

case, the timing constraints were presented in a side file containing statements along the 

lines of “the maximum delay from input X to output Y should be no greater than N 

nanoseconds”. 

The logic synthesis application automatically converted the RTL representation 

into a mixture of registers and Boolean equations, performed a variety of minimizations 

and optimizations (including optimizing for area and timing), and then generated a 

gate-level netlist that would (or at least, should) meet the original timing constraints 

(Figure 3.2). 

There were a number of advantages to this new type of flow. First of all, the 

productivity of the design engineers rose dramatically because it was much easier to 

specify, understand, discuss, and debug the required functionality of the design at the RTL 

level of abstraction as opposed to working with heaps of gate-level schematics. Also, logic 

simulators could run designs described in RTL much more quickly than their gate-level 

counterparts. 
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Figure 3.2. Simple HDL-based ASIC design flow 

One slight glitch was that logic simulators could work with designs specified at 

high levels of abstraction that included behavioral constructs, but early synthesis tools 

could only accept functional representations up to the level of RTL. Thus, design engineers 

were obliged to work with a synthesizable subset of their HDL of choice. 

Once the synthesis tool had generated a gate-level netlist, the flow became very 

similar to schematic-based ASIC flows. The gate-level netlist could be simulated to ensure 

its functional validity, and it could also be used to perform timing analysis based on 

estimated values for tracks and other circuit elements. The netlist could then be used to 

drive the place-and-route software, following which a more accurate timing analysis could 

be performed using extracted resistance and linefeed capacitance values. 

3.4.3.  An early HDL-based FPGA flow 

It took some time for HDL-based flows to flourish within the ASIC community. 

Meanwhile, design engineers were still unfamiliar with the concept of FPGAs. Thus, it 

wasn’t until the very early 1990s that HDL-based flows featuring logic synthesis 

technology became fully available for FPGA designs (Figure 3.3). 
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Figure 3.3. Simple HDL-based FPGA design flow 

As before, once the synthesis tool had generated a gate-level netlist, it could be 

simulated to ensure functional validity, and it could also be used to perform timing analysis 

based on estimated values for tracks and other circuit elements. The netlist could then be 

used to drive the mapping, packing, and place-and-route software for the FPGA. Following 

place-and-route, a more accurate timing report could be generated using real world 

(physical) values. 

3.4.4.  Graphical Design Entry vs. HDLs 

When the first HDL-based flows appeared on the scene, many assumed that 

graphical design entry and visualization tools, such as schematic capture systems, were 

going to become obsolete. Indeed, for some time, many design engineers used text editors 

like VI (from Visual Interface) or EMACS as their only design entry mechanism [8]. 

However, graphical entry techniques remain popular at a variety of levels. For 

example, it is extremely common to use a block-level schematic editor to capture the 

design as a collection of high-level blocks that are connected together. The system might 

then be used to automatically create a skeleton HDL framework with all of the block 

names and inputs and outputs declared. Alternatively, the user might create a skeleton 

framework in HDL, and the system might use this to create a block-level schematic 

automatically. 
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From the user’s viewpoint, “pushing” down into one of these schematic blocks 

might automatically open an HDL editor. This could be a pure text and command based 

editor like VI, or it might be a more sophisticated HDL-specific editor featuring the ability 

to show language keywords in different colors, automatically complete statements, and so 

forth. Furthermore, when pushing down into a schematic block, modern design systems 

often give the engineer a choice between entering and viewing the contents of that block as 

another, lower level block-level schematic, raw HDL code, a graphical state diagram (used 

to represent an FSM), or a graphical flowchart. In the case of the graphical representations 

like state diagrams and flowcharts, these can subsequently be used to generate their RTL 

equivalents automatically (Figure 3.4). 

Graphical State Diagram

Graphical Flowchart

When clock rises
  If (s == 0)
    then y = (a & b) | c;
    else y = c & !(d ^ e);  
      

Textual HDL

Top-level 
block-level
schematic

Block-level schematic  

Figure 3.4. Using a mixture of different design entry methods 

It is common to have a tabular file containing information relating to the device’s 

external inputs and outputs. In this case, both the top-level block diagram and the tabular 

file will be directly linked to the same data and will simply provide different views of that 

data. Making a change in any view will update the central data and be reflected 

immediately in all of the other views. 

3.5.  Modern Hardware Description Languages 

As previously noted, in the early days of digital electronics design (around the 

1970s), HDL-based design tool vendors typically created their own languages to 
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accompany their design tools. The result was confusion. What was needed was an industry 

standard HDL that could be used by multiple EDA tools and vendors. 

3.5.1.  Verilog HDL 

Sometime around the mid-1980s, Phil Moorby (one of the original members of the 

team that created the famous HILO logic simulator) designed a new HDL called Verilog 

for his company, Gateway Design Automation. In 1985 the company introduced this 

language to the market along with an accompanying logic simulator called Verilog-XL. 

One very useful concept that accompanied Verilog and Verilog-XL was the Verilog 

programming language interface (PLI), which was basically an application programming 

interface (API). An API is a library of software functions that allow external software 

programs to pass data into an application and access data from that application. Thus, the 

Verilog PLI is an API that allows users to extend the functionality of the Verilog language 

and simulator. 

As one simple example, assume that an engineer is designing a circuit that makes 

use of an existing module to perform a mathematical function such as a Fast Fourier 

Transform (FFT). A Verilog representation of this function might take a long time to 

simulate, which would be impractical if the engineer only wanted to verify the new portion 

of the circuit. In this case, the engineer might create a model of this function in the C 

programming language, which would simulate many times faster than its Verilog 

equivalent. This model would incorporate PLI constructs, allowing it to be linked into the 

simulation environment. The model could subsequently be accessed from the Verilog 

description of the rest of the circuit by means of a PLI call providing a bidirectional link to 

pass data back and forth between the main circuit (represented in Verilog) and the FFT 

(captured in C). 

Yet one more really useful feature associated with Verilog and Verilog-XL was the 

ability to have timing information specified in an external text file known as a standard 

delay format (SDF) file. This allowed tools like post-place-and-route timing analysis 
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packages to generate SDF files that could be used by the simulator to provide more 

accurate results. 

As a language, the original Verilog was reasonably strong at the structural (switch 

and gate) level of abstraction (especially with regard to delay modeling capability); it was 

very strong at the functional (Boolean equation and RTL) level of abstraction; and it 

supported some behavioral (algorithmic) constructs (Figure 3.5). 
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Figure 3.5. Levels of abstraction supported by Verilog 

In 1989, Gateway Design Automation, along with Verilog (the HDL) and 

Verilog-XL (the simulator), were acquired by Cadence Design Systems. The most likely 

scenario at that time was for Verilog to remain as just another proprietary HDL. However, 

with a move that took the industry by surprise, Cadence put the Verilog HDL, Verilog PLI, 

and Verilog SDF specifications into the public domain in 1990. 

This was a very brave move because it meant that anybody could develop a Verilog 

simulator, thereby becoming a potential competitor to Cadence. The reason for Cadence’s 

decision was that the VHDL language (introduced later in this section) was starting to gain 

a significant user base. The benefit of placing Verilog in the public domain was that a wide 

variety of companies developing HDL-based tools, such as logic synthesis applications, 

now felt comfortable using Verilog as their language of choice. 
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Having a single design representation that could be used by simulation, synthesis, 

and other tools made engineers’ job a lot easier. However, Verilog was originally 

conceived with simulation in mind, and applications like synthesis were something of an 

afterthought. This means that when creating a Verilog representation to be used for both 

simulation and synthesis, one is restricted to using a synthesizable subset of the language, 

which can be loosely defined as whatever collection of language constructs that the 

particular logic synthesis package understands and supports. 

Verilog quickly became very popular. The problem was that different companies 

started to extend the language in different directions. In order to restrict this, a nonprofit 

body called Open Verilog International (OVI) was established in 1991. With 

representatives from all of the major EDA vendors of the time, OVI’s mandate was to 

manage and standardize Verilog HDL and the Verilog PLI. The popularity of Verilog 

continued to rise exponentially, with the result that OVI eventually asked the IEEE to form 

a working committee to establish Verilog as an IEEE standard. Known as IEEE 1364, this 

committee was formed in 1993. 

May 1995 saw the first official IEEE Verilog release, which is formally known as 

IEEE 1364-1995, and whose unofficial designation has come to be Verilog 95 [12]. Minor 

modifications were made to this standard in 2001; hence, it is often referred to as the 

Verilog 2001 (or Verilog 2K1) release [13]. Recently, in April 2006, Verilog has been 

updated once more, under the standard designation IEEE 1364-2005 [14]. 

3.5.2.  VHDL and VITAL 

In 1980, the U.S. Department of Defense (DoD) launched the very high speed 

integrated circuit (VHSIC) program, whose primary objective was to advance the state of 

the art in digital IC technology. 

This program sought to address, among other things, the fact that it was difficult to 

reproduce ICs (and circuit boards) over the long life cycles of military equipment because 

the function of the parts wasn’t documented in a rigorous fashion. Furthermore, different 
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components forming a system were often designed and verified using diverse and 

incompatible simulation languages and design tools. 

In order to address these issues, a project to develop a new hardware description 

language called VHSIC HDL (or VHDL for short) was launched in 1981. One unique 

feature of this process was that industry was involved from a very early stage. In 1983, a 

team comprising Intermetrics, IBM, and Texas Instruments was awarded a contract to 

develop VHDL, the first official release of which occurred in 1985. 

In order to encourage acceptance by the industry, the DoD subsequently donated all 

rights to the VHDL language definition to the IEEE in 1986. After making some 

modifications to address a few known problems, VHDL was released as official standard 

IEEE 1076 in 1987, which was also the first IEEE standard for EDA. 

As a language, VHDL is very strong at the functional (Boolean equation and RTL) 

and behavioral (algorithmic) levels of abstraction, and it also supports some system-level 

design constructs. However, VHDL is a little weak when it comes to the structural (switch 

and gate) level of abstraction, especially with regard to its delay modeling capability 

(Figure 3.6). 
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Figure 3.6. Comparison of abstraction levels (Verilog vs. VHDL) 
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It quickly became apparent that VHDL had insufficient timing accuracy to be used 

as a sign-off simulator. For this reason, the VHDL Initiative Toward ASIC Libraries 

(VITAL) was launched at the Design Automation Conference (DAC) in 1992. VITAL was 

an effort to enhance VHDL’s abilities for modeling timing in ASIC and FPGA design 

environments. The end result encompassed both a library of ASIC/FPGA primitive 

functions and an associated method for back-annotating delay information into these 

library models, where this delay mechanism was based on the same underlying tabular 

format used by Verilog. 

The language was further extended in a 1993 release and again in 1999 and 2002 

with several child standards (1164, 1076.2, 1076.3) introduced to extend the functionality 

of the language. In June 2006, VHDL Technical Committee of Accellera (delegated by 

IEEE to work on next update of the standard) approved so called Draft 3.0 of the new 

VHDL specification. While maintaining full compatibility with older versions, this 

proposed standard provides numerous extensions that make writing and managing VHDL 

code easier. Key changes include incorporation of child standards into the main 1076 

standard, extended set of operators, and more flexible syntax for ‘case’ and ‘generate' 

statements. These changes should improve quality of synthesizable VHDL code, make 

testbenches more flexible, and allow wider use of VHDL for system-level descriptions. 

This new VHDL specification is targeted to become the IEEE Standard 1076-2006 [15]. 

3.5.3.  UDL/I 

As previously noted, Verilog was originally designed with simulation in mind. 

Similarly, VHDL was created as a design documentation and specification language that 

took simulation into account. As a result one can use both of these languages to describe 

constructs that can be simulated, but not synthesized. 

In order to address these problems, the Japan Electronic Industry Development 

Association (JEIDA) introduced its own HDL, the Unified Design Language for Integrated 

Circuits (UDL/I) in 1990. 
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The key advantage of UDL/I was that it was designed from the ground up with both 

simulation and synthesis in mind. The UDL/I environment includes a simulator and a 

synthesis tool and is available for free (including the source code). However, by the time 

UDL/I arrived on the scene, Verilog and VHDL already held the high ground, and UDL/I 

never really managed to attract much interest outside of Japan. 

3.5.4.  SystemC 

SystemC can be used to describe designs at the RTL level of abstraction. These 

descriptions can subsequently be simulated 5 to 10 times faster than their Verilog or 

VHDL counterparts, and synthesis tools are available to convert the SystemC RTL into 

gate-level netlists. In reality, SystemC is more applicable to a system-level versus an RTL 

design environment. 

One big argument for SystemC is that it provides a more natural environment for 

hardware/software codesign and coverification. One big argument against it is that the 

majority of design engineers are very familiar with Verilog or VHDL, but they are not 

familiar with the object-orientated aspects of SystemC. Another consideration is that the 

majority of today’s synthesis offerings represent hundreds of engineer years of 

development in translating Verilog or VHDL into gate-level netlists. By comparison, there 

are far fewer SystemC-based synthesis tools, and those that are available tend to be 

somewhat less sophisticated than their more traditional counterparts. 

3.5.5.  Superlog and SystemVerilog 

Formed in 1997, Co-Design Automation was the developer of the Superlog 

language. Superlog was an amazing tool that combined the simplicity of Verilog with the 

power of the C programming language. It also included things like temporal logic, 

sophisticated design verification capabilities, a dynamic API, and the concept of assertions 

that are key to the formal verification strategy known as model checking (VHDL already 

had a simple assert construct, but the original Verilog had no such feature). 
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The two main problems with Superlog were (a) it was essentially another 

proprietary language, and (b) it was so much more sophisticated than Verilog 95 (and later 

Verilog 2001) that getting other EDA vendors to enhance their tools to support it would 

have been a major feat. 

Meanwhile, as everyone in the electronics industry was wondering what the future 

held, the OVI group linked up with their equivalent VHDL organization called VHDL 

International to form a new body called Accellera. The mission of this new organization 

was to focus on developing new standards and formats, and to foster the adoption of new 

methodologies based on these standards and formats. 

In the summer of 2002, Accellera released the specification for a hybrid language 

called SystemVerilog 3.0. The great advantage to this language was that it was an 

incremental enhancement to the existing Verilog, rather than the big leap represented by a 

full-up Superlog implementation. Actually, SystemVerilog 3.0 featured many of 

Superlog’s language constructs donated by Co-Design. It included things like the assertion 

and extended synthesis capabilities that everyone wanted and, being an Accellera standard, 

it was well placed to quickly gain widespread adoption. 

Co-Design was acquired by Synopsys in the fall of 2002. Synopsys maintained the 

policy of donating language constructs from Superlog to SystemVerilog, but Superlog is 

no longer seen as an independent language anymore. After some time, all of the 

mainstream EDA vendors officially endorsed SystemVerilog and augmented their tools to 

accept various subsets of the language, depending on their particular application areas and 

requirements. SystemVerilog 3.1 was released in the summer of 2003, followed by a 3.1a 

release (to add a few enhancements and fix some problems) around the beginning of 2004. 

Accellera then donated their SystemVerilog 3.1a copyright to the IEEE, and 

SystemVerilog has recently been established as the IEEE Standard 1800-2005 [14]. 

3.5.6.  Mixed-Language Designs 

At the beginning, it was fairly common for an entire design to be captured using a 

single HDL (Verilog or VHDL). As designs increased in size and complexity, however, it 
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became more common for different portions of the design to be created by different teams. 

These teams could be based in different companies or even reside in different countries, 

and it was not uncommon for the different groups to be using different design languages. 

Another consideration was the increasing use of legacy design blocks or third-party 

intellectual property (IP), where the latter refers to a design team purchasing a predefined 

function from an external supplier. 

The early 1990s saw a period known as the HDL Wars, in which the supporters of 

one language (Verilog or VHDL) predicted that the other language would soon become 

obsolete, but the years passed and both languages more or less retained their user base. The 

end result was that EDA vendors began to support mixed-language design environments 

featuring logic simulators, logic synthesis applications, and other tools that could work 

with designs composed from a mixture of Verilog and VHDL blocks or modules (for 

reference, a comparison of VHDL, Verilog, and SystemVerilog can be found in [16] ) 

3.6.  Top-Down Design Methodology 

In recent years, designers have increasingly adopted top-down design methodologies 

even though it takes them away from logic and transistor level design to abstract 

programming. The introduction of industry standard hardware description languages and 

commercially available synthesis tools have helped establish this revolutionary design 

methodology. Some of the advantages of a top-down design methodology are [17]: 

• increased productivity yields and shorter development cycles with more 

product features and reduced time to market, 

• reduced Non-Recurring Engineering (NRE) costs, 

• design reuse, 

• increased flexibility for design changes, 

• faster exploration of alternative architectures, 

• faster exploration of alternative technology libraries, 
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• the ability to use of synthesis to rapidly sweep the design space of area and 

timing, and to automatically generate testable circuits, 

• better and easier design auditing and verification. 

In an ideal world, a true top-down system level design methodology would mean 

describing a complete system at an abstract level using a hardware description language 

and the use of automated tools, for example, design partitioners and synthesizers. This 

would drive the abstract level description to implementation on printed circuit boards 

which contain standard ICs, ASICs, FPGAs, PLDs, and full-custom ICs. This ideal has not 

yet been fulfilled; however, EDA tools are constantly being improved towards this vision. 

This means designers must constantly take on new roles and learn new skills. More time is 

now spent designing HDL models, considering different architectures and considering 

system testability and debug issues. Practically no time is spent designing at the gate level. 

Technological advancements over the last years has increased the complexity of 

standard ICs and ASICs and resulted in the concept of “system on a chip (SOC)”. A 

top-down design methodology is the only practical option to design such chips. 

Any ASIC or FPGA design in a hardware development project is usually on the 

critical path of the development schedule. Although, in rare cases for reasons of cost, a 

schematic entry tool may still be a viable design method for small devices such as PLDs, a 

top-down design approach using a hardware description language, is by far the best design 

philosophy to adopt, provided the budget is available for simulation and synthesis tools. 
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4. THE VERILOG HARDWARE DESCRIPTION LANGUAGE 

In accordance with the commonly used, hierarchical, top-down design methodology, 

a circuit description in Verilog is specified by defining modules that correspond to the 

various functional blocks at different levels within the circuit. 

4.1.  The Verilog module 

A module is the basic building block in Verilog. Circuits are described using one or 

more modules. Modules can represent: 

• a physical block, such as an IC or ASIC cell, 

• a logical block, such as the ALU portion of a processor design, 

• a Device Under Test (DUT), 

• a testbench, 

• or a complete system. 

Every module description starts with the keyword module, followed by the name of 

the module (MUX, DFF, ALU, etc.), and a list of the module’s ports. The description ends 

with the keyword endmodule. 

 

Figure 4.1. Representation of a D-type flip-flop as a module 
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The module description for the D-type flip-flop in Figure 4.1 is given below: 

module DFF (q, qn, d, clk, rstn); 

  output q, qn; 

  input d, clk, rstn; 

 

    D-type flip-flop definition 

 

endmodule 

4.2.  Module Ports 

Modules communicate with their environment through ports. Module ports represent 

device pins and board connectors. All ports are listed in parentheses after the module 

name. Then, within the module definition, each port is declared to be of type input, 

output, or inout (bidirectional). 

Inputs and outputs having multiple-bit widths are called vectors: 

input [0:5] x; 

output [2:0] y; 

The examples above declare an input vector x with six bits (0 to 5) and an output 

vector y with three bits (2 to 0). First number listed is the most significant bit of the vector. 

The individual bits can be accessed by specifying them within square brackets, like x[3] 

or y[1]. 

4.3.  Module Instances 

Each Verilog module defines a new scope, i.e. a new level of hierarchy within the 

circuit description. A module may include any number of other modules and connect them 

together to form more complex circuits. For example, a multiplier circuit that includes a 

number of shift registers and adders can be modeled in Verilog by first writing the 

descriptions for a shift register and an adder as individual modules, and then calling these 

modules as many times as required from within the multiplier description. Each call to a 

module creates an instance of that module in the circuit. 



 
41

 

Figure 4.2. Modeling a 4-bit register comprising four D-type flip-flops 

module REG4 (q, qn, data, clk, clrn); 

  output [3:0] q, qn; 

  input [3:0] data; 

  input clk, clrn; 

 

  DFF d0 (q[0], qn[0], data[0], clk, clrn); 

  DFF d1 (q[1], qn[1], data[1], clk, clrn); 

  DFF d2 (q[2], qn[2], data[2], clk, clrn); 

  DFF d3 (q[3], qn[3], data[3], clk, clrn); 

endmodule 

The Verilog description of the REG4 module in Figure 4.2 instantiates the DFF 

module four times. Each DFF module has a unique instance name (d0, d1, d2, and d3). The 

instance name uniquely identifies the instance. Each instance is a complete, independent, 

and concurrently active copy of the module. 

4.4.  Gate Level Modeling of Circuits 

Gate level modeling represents a textual description of a schematic diagram. Verilog 

recognizes twelve basic gates as predefined primitives. They are declared with the 

keywords buf, not, and, nand, or, nor, xor, xnor, bufif1, bufif0, notif1, notif0. Some of 

these are two-state gates and some of them are tri-state gates.  

There are eight two-state gates predefined in Verilog. These are buf, not, and, nand, 

or, nor, xor, xnor. The declaration for a two-state gate consists of the gate type keyword, 
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followed by a name for the gate, and then a comma separated list of ports in parenthesis 

specifying in order the output and the data inputs of the gate: 

 

Figure 4.3. Examples of Verilog primitives 

 

Figure 4.4. A simple combinational circuit 

// Gate level description of the circuit in Figure 4.4

module circuit( X, Y, A, B, C ); 

  input A, B, C; 

  output X, Y; 

  wire D; 

 

  or g1( X, A, B ); 

  not g2( D, X ); 

  and g3( Y, C, D ); 

endmodule 

The module is declared as module circuit ( X, Y, A, B, C ). Here, ( X, Y, A, B, C ) 

are the ports of the circuit. A, B, C are declared as input, and X, Y are declared as output. 

The internal connection between the output of the inverter and the input of the AND gate is 

declared as a wire with name D. Each gate is given a unique name (such as g1, g2, etc…). 

For example, the or gate has gate name g1, its output is X, and its inputs are A and B. 

The four tri-state gates predefined in Verilog are bufif1, bufif0, notif1, notif0. The 

declaration for a tri-state gate consists of the gate type keyword, followed by a name for 
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the gate, and then a comma separated list of ports in parenthesis, specifying the output, the 

data input and the control input of the gate. Here are two examples of tri-state gates: 

 

Figure 4.5. Tri-state gates in Verilog 

For the first example (bufif1), if CONTROL is 1, IN is transferred to OUT; 

otherwise, OUT behaves as an open circuit (high impedance, denoted by Z). For the 

second example (bufif0), if CONTROL is 0, IN is transferred to OUT; otherwise, OUT 

becomes Z. 

 

Figure 4.6. Implementing a 2-to-1 multiplexer with tri-state gates 

// Gate level description of the 

// 2-to-1 multiplexer in Figure 4.6

module mux_2to1( A, B, Select, OUT ); 

  input A, B, Select; 

  output OUT; 

  tri OUT; 

 

  bufif1 g1(OUT, A, Select); 

  bufif0 g2(OUT, B, Select); 

endmodule 
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As seen in Figure 4.6, the outputs of the buffers are connected to a common node to 

form a single output. For such connections, the tri keyword must be used to indicate that 

the output has multiple tri-stated drivers. 

4.5.  Dataflow Modeling 

Dataflow modeling uses some operators that act on operands to produce the desired 

results. Data flow modeling is used for describing the combinational circuits by their 

function rather than by their gate structure. It is not used for describing sequential circuits. 

Some of the operators used for dataflow modeling are given in Table 4.1. 

Table 4.1 Logical and arithmetic operators in Verilog 

& bit-wise AND + addition 

| bit-wise OR - subtraction 

~ bit-wise NOT {} concatenation 

^ bit-wise XOR ?: conditional assignment 

It is important to distinguish between arithmetic and logic operations. For example, 

“+” represents arithmetic addition; for logical OR operation, the symbol “|” is used. 

Dataflow modeling uses continuous assignment, declared using the keyword assign. 

A continuous assignment is a statement that assigns a value to a net which defines a gate 

output declared by an output or a wire statement. The keyword assign is followed by the 

target output name, an equal sign (=), and then an expression comprised of operands and 

operators, the result of which will be assigned to the target output. 

Here is the dataflow description of a 2-to-1 line multiplexer: 

// Dataflow description of the 2-to-1 line multiplexer 

module mux_2to1( A, B, Select, OUT ); 

  input A, B, Select; 

  output OUT; 

  assign OUT = ( A & Select ) | ( B & ~Select ); 

endmodule 
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Next is the dataflow description of a 4-bit full adder: 

// Dataflow description of a 4-bit full adder  

module fadder4bit ( A, B, Cin, SUM, Cout ); 

   input [3:0] A, B; 

   input Cin; 

   output [3:0] SUM; 

   output Cout; 

 

   assign {Cout , SUM} = A + B + Cin; 

endmodule 

The inputs A and B are declared as 4 bit vectors. Binary addition of A, B and the 

carry input Cin is specified by the plus symbol (+). The 5 bit result of the addition 

operation is assigned to {Cout, SUM}, the concatenation of Cout and SUM. Cout receives 

the most significant bit of the result, and SUM receives the remaining 4 bits (the least 

significant bit of SUM, SUM[0], is assigned the least significant bit of the result). 

4.6.  Behavioral Modeling 

Behavioral modeling represents digital circuits at the functional and algorithmic 

level. Behavioral modeling can be used for describing both sequential and combinational 

circuits. 

Initial conditions for a circuit (or a simulation) are declared with the keyword initial. 

initial blocks execute only once at the beginning of a simulation, and end after all the 

statements have completed. The initial keyword is followed by either a single statement, or 

a block of statements enclosed within the keywords begin and end: 

initial 

  begin 

    clock = 1’b0; 

    repeat(30); 

      #10 clock = ~clock; 

  end 
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In the example above, clock is initially assigned a value of 0 (1’b0 represents a 1 bit 

constant with a value of 0) and the simulation engine is set to complement the clock 30 

times every 10 time units (#10 specifies a delay of 10 time units between each repetition).  

The behavior of the circuit itself is described using always blocks in the form 

always @(event control expression); 

  Procedural description of circuit 

Here the procedural description can be either a single statement, or a block of 

multiple statements enclosed within begin and end keywords. Procedural statements 

define flow control and value assignment to variables within the module. The left hand 

side variable in an assignment statement must be a register, declared as type reg. Registers 

declared with the reg keyword retain their values until a new value is assigned, and thus 

are used for modeling flip-flops and memory devices. 

The event control expression specifies the condition (or conditions) that will trigger 

the execution of the procedural assignment statements in the always block. These 

statements are executed on every occurrence of the condition(s) given in the event control 

expression. Multiple trigger conditions in an expression must be separated by the or 

keyword. 

The event control expression can contain both level sensitive and edge sensitive 

trigger conditions. Level sensitive event controls cause execution of the always block each 

time the value of a variable in the expression changes (Figure 4.7), whereas edge sensitive 

event controls only respond to rising edge or falling edge transitions of the variables 

(Figure 4.8), specified by the keywords posedge or negedge, respectively. 

 

Figure 4.7. Signal levels are monitored for a level sensitive event 
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Figure 4.8. Rising and falling transitions of a signal trigger edge sensitive events 

Level sensitive events are included in always blocks with only the signal names in 

the sensitivity list: 

always @(A) 

always @(B or C) 

Edge sensitive events require the specific signal transition to be declared within the 

sensitivity list: 

always @(negedge D) 

always @(posedge E or negedge F) 

The behavioral description of a 2:1 multiplexer would be as follows: 

// Behavioral description of a 2-to-1 line multiplexer 

module mux_2to1( A, B, Select, OUT ); 

  input A, B, Select; 

  output OUT; 

  reg OUT;     

 

  always @ ( Select or A or B )  

    if ( Select == 1 ) OUT = A; 

    else OUT = B; 

endmodule 

If the event control expression involves a vector, the case statement can be used to 

decide what action to take. The definition of a case statement begins with the keyword 
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case and a control expression in parentheses, followed by a list of conditional branches, 

and terminated with the keyword endcase. The branch whose label matches the current 

value of the control expression gets selected and its contents are executed. 

In the example below, a 4:1 multiplexer is described using the case statement. A 

change in the values of i0, i1, i2, i3 or Select triggers the always block. Select is evaluated 

and compared with the labels of the conditional branches listed in the case statement. Here, 

the branch labels are all 2-bit binary numbers representing the possible values the Select 

vector can have. The matching branch is then executed. 

// Behavioral description of a 4-to-1 line multiplexer 

module mux_4to1( i0, i1, i2, i3, Select, y ); 

 

  input i0, i1, i2, i3; 

  input [1:0] Select; 

 

  output y; 

 

  reg y; 

 

  always @( i0 or i1 or i2 or i3 or Select ) 

    case ( Select ) 

      2'b00: y = i0; 

      2'b01: y = i1; 

      2'b10: y = i2; 

      2'b11: y = i3; 

    endcase 

 

endmodule 

4.6.1.  Behavioral Description of Flip-Flops 

Behavioral descriptions of various types of flip-flops are given below. The operation 

of the flip-flops are defined in edge sensitive always blocks by writing their state equations 

as Boolean functions assigned to a register variable declared as type reg. 
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D-type flip-flop: 

module D_FF( D, Q, CLK, RST ); 

  input D, CLK, RST; 

  output Q; 

  reg Q; 

 

  always @( negedge RST or posedge CLK ) 

    if (RST == 0) Q = 1'b0; 

    else Q = D; 

endmodule 

T-type flip-flop: 

module T_FF( T, Q, CLK, RST ); 

  input T, CLK, RST; 

  output Q; 

  reg Q; 

 

  always @( negedge RST or posedge CLK ) 

    if (RST == 0) Q = 1'b0; 

    else Q = Q ^ T; 

endmodule 

JK-type flip-flop: 

module JK_FF( J, K, Q, CLK, RST ); 

  input J, K, CLK, RST; 

  output Q; 

  reg Q; 

 

  always @( negedge RST or posedge CLK ) 

    if (RST == 0) Q = 1'b0; 

    else Q = (J & ~Q) | (~K & Q); 

endmodule 
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4.6.2.  Modeling of Finite State Machines 

Two or three always blocks are usually used for modeling state diagrams in Verilog, 

one for describing the sequential behavior of the circuit, one for describing the 

combinational next state logic, and one, if necessary, for describing the output logic. This 

approach presents a standard way of modeling any state diagram in Verilog and it is 

readily recognized by synthesis tools, enabling further optimizations to be performed on 

the circuit such as the reduction and re-encoding of states to obtain a smaller or faster 

circuit. 

The behavioral description of the state diagram in Figure 4.9 is given below: 

 

Figure 4.9. A sample state diagram 

// Behavioral description for the state diagram in Figure 4.9 

 

module StateMachine( X, CLK, RST, Z ); 

 

  input X, CLK, RST; 

 

  output Z; 

 

  reg Z; 

  reg [1:0] PState, NState; 

 

  parameter T0 = 2'b00, T1 = 2'b01, T2 = 2'b10, T3 = 2'b11; 
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  always @(posedge CLK or negedge RST) 

    if (RST == 0) PState = T0; 

    else PState = NState; 

 

  always @(X or PState) 

    case(PState) 

      T0: if (X == 0) NState = T0; 

          else NState = T1; 

      T1: if (X == 0) NState = T3; 

          else NState = T1; 

      T2: if (X == 0) NState = T0; 

          else NState = T1; 

      T3: if (X == 0) NState = T0; 

          else NState = T2; 

    endcase 

 

  always @(X or PState) 

    case(PState) 

      T0: Z = 1'b0; 

      T1: if(X == 0) Z = 1'b1; 

          else Z = 1'b0; 

      T2: Z = 1'b1; 

      T3: Z = 1'b0; 

    endcase 

 

endmodule 

Here, the previous and next states of the circuit are assigned to register variables with 

identifiers NState and PState. The parameter keyword is used to assign a label to each 

state code. There are three always blocks. The first always block controls the synchronous 

state transitions in the machine and the asynchronous reset operation. The second always 

block determines the next state of the machine according to the present state and the input, 

and the third always block generates the output of the circuit. 
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4.7.  Structural Description 

In Verilog, combinational circuits are described using gate level or dataflow 

modeling, and sequential circuits are described using behavioral statements for the 

flip-flops’ operation. Since all sequential circuits are made up of flip-flops and 

combinational logic, its structure can be described by a mix of data flow and behavioral 

modeling statements in separate modules, which are then combined by instantiation. 

A sequential circuit is given below in Figure 4.10. This circuit will be modeled using 

the structural description style: 

 

Figure 4.10. A sample sequential circuit 

// Structural description of the 

// sequential circuit in Fig. 4.10 

 

module SeqCircuit( X, RST, CLK, Y, A, B ); 

 

  input X, RST, CLK; 

 

  output A, B, Y; 

 

  wire TA, TB; 

 

  T_FF TFF_A(TA, A, CLK, RST);  // Instantiation of flip-flop A 

  T_FF TFF_B(TB, B, CLK, RST);  // Instantiation of flip-flop B 
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  assign TA = B & X; 

  assign TB = X; 

  assign Y = A & B; 

 

endmodule 

 

// Behavioral description of T-type flip-flop 

 

module T_FF(T, Q, CLK, RST); 

 

  input T, Q, CLK; 

 

  output Q; 

 

  reg Q; 

 

  always @(posedge CLK or negedge RST) 

    if (RST == 0) Q = 1'b0; 

    else Q = Q ^ T; 

 

endmodule 

4.8.  Writing A Test Bench 

A test bench is used for verifying the operation of a design by applying some 

stimulus and observing the response. Test benches use the initial and always statements to 

describe the stimulus to be applied to the circuit under test. The initial statement executes 

only once at the beginning of the simulation. The always statement executes repeatedly in 

a loop. Each operation can be delayed for a desired number of time units by using the # 

symbol: 

initial 

   begin 

        A = 0; 

        B = 0; 

    #10 A = 1; 

    #20 A = 0; 

        B = 1; 

   end 
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• At Time = 0, both variables A and B are set to 0 

• 10 time units later at Time = 10, A is changed to 1 

• 20 time units later at Time = 30, A is changed to 0 and B to 1 

A test module typically has no inputs and outputs. The signals that are applied as 

inputs to the design module for simulation are declared in the stimulus module as local 

registers. The outputs of the design module that are to be displayed for testing are declared 

in the stimulus module as local wires. 

A stimulus module has the following form: 

module test 

  - Declare local reg and wire identifiers 

  - Instantiate the design module under test 

  - Generate the stimulus using initial and always statements 

  - Display output response 

endmodule 

Output of the simulator can be plotted as timing diagrams. It is also possible to 

display text messages and values of circuit variables using Verilog system tasks. System 

tasks are recognized by keywords that begin with the dollar sign ($): 

• $display: Display variables or strings and move to a new line 

• $write: Same as $display but does not move to a new line 

• $monitor: Display variables whenever a specified value changes during 

simulation 

• $time: Print the current simulation time 

• $finish: Terminate the simulation 

The $display, $write, and $monitor system task calls have the form 

task_name (format specifier, argument list); 
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The format specifier is a string enclosed in quotes (“ ”); it contains format 

placeholders that start with the percent sign (%), and may also contain regular text. Each 

format placeholder specifies how the value of its corresponding variable in the argument 

list will be printed. Values can be printed in binary, octal, decimal or hexadecimal notation, 

identified with the placeholders %b, %o, %d, and %h respectively: 

$monitor(“time = %d  A = %b  B = %b”, $time, A, B); 

The Verilog description of a sample testbench is given below: 

// A sample testbench 

 

module test_circuit; 

 

  reg [3:1] TA; 

 

  wire TX, TY; 

 

  circuit cr( TA, TX, TY ); 

 

  initial 

    begin 

      TA = 3'b000; 

      repeat(7) 

        #10 TA = TA + 1'b1; 

    end 

 

  initial 

    $monitor("A = %b X = %b Y = %b Time = %0d", TA, TX, TY, 

$time); 

 

endmodule 

 

 

// A simple circuit 

 

module circuit( A, X, Y); 

 

  input [3:1] A; 
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  output X, Y; 

 

  assign X = ( A[3] & A[2] ) | A[1]; 

  assign Y = A[2] ^ A[1]; 

 

endmodule 

When this testbench is run, the Verilog simulator generates the following output: 

A=000 X=0 Y=0 Time=0 

A=001 X=1 Y=1 Time=10 

A=010 X=0 Y=1 Time=20 

A=011 X=1 Y=0 Time=30 

A=100 X=0 Y=0 Time=40 

A=101 X=1 Y=1 Time=50 

A=110 X=1 Y=1 Time=60 

A=111 X=1 Y=0 Time=70 

Besides textual output, nodes within the circuit can also be selected for display in a 

timing diagram. For the example testbench above, if signals TA, TX, TY are selected for 

graphical display, the Verilog simulator produces the following timing diagram: 

 

Figure 4.11. Timing diagram showing signal values in the example testbench 
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5. WRITING SYNTHESIZABLE VERILOG CODE 

“Just as understanding Karnaugh maps is the key to manual design methods, 

understanding how to write synthesis-friendly HDL models is the key to automated design 

methods.” - Michael D. Ciletti, Advanced Digital Design with the Verilog HDL [18] 

Design entry is one of the crucial stages in the design flow, and the design engineer 

is responsible for coding the hardware description according to the guidelines set forth by 

the synthesis tool vendor in order to fully use the capabilities of the tool. 

In a design, the same functionality can be expressed using different coding styles and 

different HDL constructs. Although any experienced engineer can easily tell that all these 

different pieces of code represent the same implementation, it is a challenge for the 

synthesis tool to recognize so many alternative coding styles and figure out the designer’s 

intention from them. Thus, synthesis tools are programmed to work with only a limited 

number of commands and constructs of the HDL, which are listed together with coding 

guidelines in the user manuals of every synthesis tool. To take full advantage of the tools’ 

optimization capabilities, these guidelines must be strictly followed when writing HDL 

code for synthesis. 

5.1.  Overview of The Synthesis Process 

Synthesizing and optimizing a network of logic gates involves evaluating many 

different factors (such as simplification by exploiting don’t-cares and common factors 

without violating fan-in and fan-out restrictions or delay constraints), and finding a balance 

between these to achieve the specified size or performance criteria. As designs get larger in 

size, the number of alternative implementations reach such enormous levels that it 

becomes impractical, and at some point impossible, to exhaustively search through all of 

them to find the optimal solution. Instead, heuristic approaches are used that yield 

acceptable solutions [18, 19]. To help manage this complex task, logic synthesis is divided 

into two phases: first, technology-independent optimizations operate on a model of the 

described logic that does not directly represent logic gates; then, technology-dependent 

optimizations improve the network’s gate-level implementation [20]. 
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Technology-independent optimizations can be grouped into three categories based on 

how they change the Boolean function: 

• Simplification: Minimizing the sum-of-products expressions of the Boolean 

functions that make up the network by combining minterms and exploiting 

don’t-cares. 

• Network restructuring: Creating new nodes in the network that can be used as 

common factors and collapsing sections of the network into a single node in 

preparation for finding new common factors. 

• Delay restructuring: Changing the factorization of a subnetwork to reduce the 

number of nodes through which a delay-critical signal must pass. 

Technology-dependent optimizations cover the mapping, placement, and routing of 

the design according to the specified constraints. After the completion of the first phase, 

resulting Boolean functions are then mapped to the logic elements available in the target 

technology. These logic elements can range from simple logic gates (or LUTs in FPGAs) 

to pre-designed library macros for commonly used functions such as adders, multipliers, 

shift registers and multiplexers. Macros are either called explicitly by the designer, or 

inferred from the HDL code and substituted automatically by the synthesis tools. Inferred 

macros are listed in the synthesis reports produced by the tools, and these reports must be 

reviewed by the designer to ensure that macro substitutions are consistent with the design 

intent. 

5.2.  Synthesis of Combinational Logic 

Synthesizable combinational logic can be described by 

• a netlist of structural primitives (see Section 4.4) 

• a set of continuous assignment statements (see Section 4.5) 

• a level sensitive cyclic behavior (see Section 4.6) 
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A level-sensitive cyclic behavior will synthesize to combinational logic if it assigns a 

value to each output for every possible value of its inputs. This implies that the event 

control expression of the behavior must be sensitive to every input, and that every path of 

the activity flow must assign value to every output. 

5.2.1.  Synthesis of Priority Structures 

A case statement gives higher priority to the first item that it decodes than to the last 

one, and an if statement gives higher priority to the first branch than to the remaining 

branches. A synthesis tool will determine whether the case items of a case statement are 

mutually exclusive. If they are mutually exclusive, the synthesis tool will treat them as 

though they had equal priority and will synthesize a multiplexer rather than a priority 

structure. Similarly, an if statement will synthesize to a multiplexer when the branching is 

specified by mutually exclusive conditions. When branching is not mutually exclusive, a 

priority structure will be created. 

5.2.2.  Exploiting Don’t-Care Conditions 

An assignment to x in a case or an if statement will be treated as a don’t-care 

condition in synthesis. For example, a default item that assigns x values to all outputs can 

be included in a case statement to represent unused input combinations. The synthesized 

hardware will produce either a 0 or a 1, but the HDL model will produce an x in 

simulation. This may lead to a mismatch between simulation results and real-world 

operation. 

5.2.3.  Accidental Synthesis of Latches 

Level-sensitive cyclic behaviors will synthesize to combinational logic if the 

description does not imply the need for storage. If storage is implied by the model, a latch 

will be introduced into the implementation. To avoid latches, all of the variables that are 

assigned value by the behavior must be assigned a value under every possible input. 

Failure to do so will yield a design with unwanted latches. 
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Verilog case and if statements that do not include all possible cases or conditions are 

incompletely specified and may lead to synthesis of unwanted latches. When a case or an if 

statement in a level-sensitive cyclic behavior does not specify an output for all of the 

possible inputs, the synthesis tool infers a latch, because the description implies that the 

output should retain its present value under the conditions that were left unspecified. 

Caution must be taken to ensure that case and if statements are complete. 

5.2.4.  Resource Sharing 

When optimizing the design for size, synthesis tools must share logic resources as 

much as possible to minimize needless duplication of circuitry. The tool must recognize 

whether the physical resources required to implement complex functions can be shared. If 

the data flows within the function do not conflict, the resource can be shared between one 

or more paths. For example, the addition operators in the continuous assignment below are 

in mutually exclusive datapaths and can be shared in hardware. 

assign output = select ? data_1 + data_2 : data_1 + constant; 

This operation can be implemented by a shared adder with multiplexed input 

datapaths. If the synthesis tool does not automatically implement resource sharing, the 

Verilog description must be written so as to force sharing of the resource: 

assign output = data_1 + (select ? data_2 : constant); 

Failure to include the parentheses in the expression for output above will lead to 

synthesis of a circuit that uses two adders. The most efficient implementation multiplexes 

the datapaths and shares the adder between them, rather than multiplexing the outputs of 

separate adders. The important design tradeoff here is that the multiplexer will occupy 

significantly less area than the adder it replaces. 

As a general guideline, if arithmetic functions are to be inferred from HDL operators, 

the operators should be grouped as much as possible within a single cyclic behavior to 

allow the synthesis engine to share the hardware resources that will be used to implement 

the function. 
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5.3.  Synthesis of Sequential Logic with Flip-Flops 

A register variable in an edge-sensitive behavior will be synthesized to a flip-flop 

• if it is referenced outside the scope of the behavior, 

• if it is referenced within the behavior before it is assigned value, or 

• if it is assigned value in only some of the branches of the activity within the 

behavior. 

All of these situations imply the need for memory, as the register has to retain its 

value under the conditions that do not assign a new value to the register. The fact that these 

conditions are contained in an edge-sensitive behavior dictates that the memory be realized 

as a flip-flop, rather than a latch. 

In a level-sensitive cyclic behavior, incomplete case or if statements lead to the 

synthesis of latches. However, if the behavior is edge-sensitive, these types of statements 

will not create latches, but will synthesize logic that implements a “clock enable” 

mechanism, because the incomplete statements imply that the contents of the affected 

registers should not change under the conditions that were left unspecified, even if the 

clock signal makes a transition. 

5.4.  Synthesis of Finite State Machines 

There are many ways to describe FSMs. A traditional FSM representation 

incorporates two or three always blocks, one for describing the sequential behavior of the 

circuit, one for describing the combinational next state logic, and one, if necessary, for 

describing the output logic. Sample code for a state machine was given in Section 4.6.2

5.4.1.  Finite State Machine Extraction in Xilinx XST Synthesis Software 

Xilinx’s synthesis software XST tries to distinguish finite state machines from 

VHDL/Verilog code (called FSM extraction), and apply several state encoding techniques, 
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such as re-encoding the original state codes given in the HDL file, to get better 

performance or less area. FSM extraction can be enabled or disabled by the user. Note that 

XST can handle only synchronous state machines [21]. 

XST can also detect unreachable states in an FSM and lists them in the HDL 

synthesis report. If Safe Implementation mode is enabled, XST automatically adds logic to 

the FSM implementation that will let the state machine recover from an invalid state. If 

during its execution, a state machine gets into an invalid state, the logic added by XST will 

bring it back to a known state, called a recovery state. By default, XST automatically 

selects a reset state as the recovery state. If the FSM does not have an initialization signal, 

XST selects the power-up state as the recovery state. The recovery state can also be 

manually defined by the user. 

5.4.2.Optimization of State Encodings 

XST can re-encode the original state codes given in the HDL file to get better 

performance or less area. XST supports the following state encoding techniques: 

• Auto 

In this mode, XST tries to select the best encoding algorithm suitable for each FSM. 

• One-Hot Encoding 

One-hot encoding is the default encoding scheme. Its principle is to associate one 

code bit and also one flip-flop to each state. At a given clock cycle during operation, 

one and only one bit of the state variable is asserted. Only two bits toggle during a 

transition between two states. 

Although this approach uses a greater number of flip-flops than other forms of 

encoding, the decoding logic in a one-hot machine uses fewer gates because the 

machine has to decode only a single bit of a register rather than a vector pattern. 

Thus, the silicon area required by the extra flip-flops can be compensated by the area 

saved using simplified decoding logic. One-hot encoding is very appropriate with 



 
63

most FPGA targets where a large number of flip-flops are available, and saving them 

does not necessarily provide a benefit. It is also a good alternative when trying to 

optimize speed or to reduce power dissipation. 

It is quite easy to modify a one-hot design, because adding or removing a state does 

not affect the encoding of the other states. The design effort is reduced too, since 

there is no need to encode a state transition table. The state transition graph is 

sufficient. 

• Gray Encoding 

Gray encoding guarantees that only one bit switches between two consecutive states. 

It is appropriate for controllers exhibiting long paths without branching. In addition, 

this coding technique minimizes hazards and glitches. The one-bit change between 

consecutive states will also reduce the simultaneous switching of adjacent physical 

signal lines in a circuit, thereby minimizing the possibility of electrical crosstalk 

[18]. Very good results can be obtained when implementing the state register with 

T-type flip-flops. 

• Compact Encoding 

Compact encoding consists of minimizing the number of bits in the state variables 

and flip-flops. Compact encoding is appropriate when trying to optimize area. 

• Johnson Encoding 

Similar to Gray, Johnson encoding shows benefits with state machines containing 

long paths with no branching. It uses more bits than Gray encoding. 

• Sequential Encoding 

Sequential encoding consists of identifying long paths and applying successive radix 

two codes to the states on these paths. Next state equations are minimized. 
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• Speed1 Encoding 

Speed1 encoding is oriented for speed optimization. The number of bits for a state 

register depends on the particular FSM, but generally it is greater than the number of 

FSM states. 

• User 

In this mode, XST uses original encoding, specified in the HDL file 

XST log file reports the full information about the recognized FSMs during the 

synthesis process. If the encoding option was set to Auto for XST to determine the best 

encoding algorithm for FSMs, it reports the encoding it chose for each FSM. 

5.5.  Synthesis of Other Common Logic Elements 

Depending on their level of sophistication, synthesis tools may also support 

recognition of other common logic elements such as registers, counters, shift registers, 

address decoders, adders, multipliers, etc., and even automatically replace them with 

pre-designed, pre-optimized, efficient macros from their device library. 

5.6.  Resets and Clock Enables 

Synthesis tools can recognize reset and clock enable signals in a design, and utilize 

appropriate routing resources to distribute these signals throughout the hardware 

implementation. FPGAs might have dedicated clock and reset signal trees that span the 

whole chip, and an FPGA synthesis tool will map such control signals to these dedicated 

routing channels. 

A global reset signal is required for ASICs to initialize the system state to a known 

value at power-up. However, an FPGA, during its configuration, programs all of its 

flip-flops individually to a fixed logic value, which can be determined within the HDL 

code, if desired. Thus, a design implemented in an FPGA does not require a global reset 

network. For the vast majority of any design, the initialization state of all flip-flops and 
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RAM following configuration is more comprehensive than any logical reset will ever be. 

There is no requirement to insert a reset for simulation because nothing will be undefined. 

Since FPGAs are already fully tested silicon, there is no need for inserting scan logic in a 

design and running test vectors, so global reset is not required as part of this process either. 

Inserting a global reset will impact development time and final product costs even if 

these factors can not be easily quantified. With the trend towards higher speed clocks and 

complete systems on a chip, the reliability issues must be taken seriously. The critical parts 

of a system that must truly be reset should be identified and the release of those resets on 

start up, or during operation, must be controlled as carefully as any other signal within a 

synchronous circuit [22]. 

In an FPGA architecture, each flip-flop may have a set of dedicated control inputs to 

support “set”, “reset”, and “clock enable”. Set and reset inputs may work synchronously or 

asynchronously, and the synthesis tool uses these inputs when it can; reserving the LUT for 

implementing other functions. The type of dedicated set and reset control inputs 

(synchronous or asynchronous) is an important factor in coding a design, because using a 

behavior that utilizes the available type of control input is readily implemented, yielding a 

compact design, whereas using the opposite type requires extra LUT resources to convert 

the control signals to the desired type [23]. 

5.7.  Anticipating The Results of Synthesis 

The synthesis tool should not be trusted blindly. It is advisable to anticipate what the 

synthesis tool will produce and then examine the results against those expectations. The 

designer should be familiar with the synthesis tool and write Verilog descriptions that will 

infer the desired result. Each vendor’s software operates differently, so it is good practice 

to experiment with a synthesis tool to learn how it handles particular styles of coding. 
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6. AN FPGA IMPLEMENTATION EXAMPLE 

In order to investigate the effects of optimization settings on synthesis, a sample 

circuit is implemented using Xilinx’s Spartan-3E FPGA Starter Kit [24]. Design entry, 

simulation, and synthesis steps are all performed from within Xilinx’s freely available ISE 

WebPACK 8.2i design software, which also includes the XST synthesis tool [25]. 

6.1.  Xilinx Spartan-3E FPGA Family 

The Spartan-3E family of FPGAs is specifically designed to meet the needs of high 

volume, cost-sensitive consumer electronic applications. Because of their exceptionally 

low cost, Spartan-3E FPGAs are ideally suited to a wide range of applications, including 

broadband access, home networking, display/projection, and digital television equipment 

[26]. The Spartan-3E FPGA family has five members that offer densities ranging from 

100,000 to 1.6 million system gates, as shown in Table 6.1. 

Table 6.1 Summary of Spartan-3E FPGA family attributes 

CLB Array 
(One CLB = Four Slices) 

Device 
System 
Gates 

Equiv. 
Logic 
Cells Rows Col.s

Total
CLBs

Total
Slices

Distr.
RAM
bits 

Block
RAM
bits 

Dedicated 
Multipliers DCMs 

Max.
User
I/Os

Max.
Diff.
I/O

Pairs
XC3S100E 100K 2,160 22 16 240 960 15K 72K 4 2 108 40 
XC3S250E 250K 5,508 34 26 612 2,448 38K 216K 12 4 172 68 
XC3S500E 500K 10,476 46 34 1,164 4,656 73K 360K 20 4 232 92 

XC3S1200E 1200K 19,512 60 46 2,168 8,672 136K 504K 28 8 304 124
XC3S1600E 1600K 33,192 76 58 3,688 14,752 231K 648K 36 8 376 156

6.1.1.  Spartan-3E FPGA Features 

Features of the Spartan-3E FPGA family are: 

• Proven advanced 90-nanometer process technology 

• Multi-voltage, multi-standard SelectIO™ interface pins 

 Up to 376 I/O pins or 156 differential signal pairs 



 
67

 LVCMOS, LVTTL, HSTL, and SSTL single-ended signal standards 

 3.3V, 2.5V, 1.8V, 1.5V, and 1.2V signaling 

 622+ Mb/s data transfer rate per I/O 

 True LVDS, RSDS, mini-LVDS, differential HSTL/SSTL differential I/O 

 Enhanced Double Data Rate (DDR) support 

 DDR SDRAM support up to 333 Mb/s 

• Abundant, flexible logic resources 

 Densities up to 33,192 logic cells, including optional shift register or 

distributed RAM support 

 Efficient wide multiplexers, wide logic 

 Fast look-ahead carry logic 

 Enhanced 18 x 18 multipliers with optional pipeline 

 IEEE 1149.1/1532 JTAG programming/debug port 

• Hierarchical SelectRAM™ memory architecture 

 Up to 648 Kbits of fast block RAM 

 Up to 231 Kbits of efficient distributed RAM 

• Up to eight Digital Clock Managers (DCMs) 

 Clock skew elimination (delay locked loop) 

 Frequency synthesis, multiplication, division 

 High-resolution phase shifting 

 Wide frequency range (5 MHz to over 300 MHz) 
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• Eight global clocks plus eight additional clocks per each half of device, plus 

abundant low-skew routing 

• Configuration interface to industry-standard PROMs 

• Complete Xilinx ISE™ and WebPACK™ development system support 

• MicroBlaze™ and PicoBlaze™ embedded processor cores 

• Fully compliant 32-/64-bit 33 MHz PCI support 

• Low-cost QFP and BGA packaging options 

 Common footprints support easy density migration 

 Pb-free packaging options 

6.1.2.  Spartan-3E FPGA Architectural Overview 

The Spartan-3E family architecture consists of five fundamental programmable 

functional elements: 

• Configurable Logic Blocks (CLBs) contain flexible Look-Up Tables (LUTs) 

that implement logic plus storage elements used as flip-flops or latches. CLBs 

perform a wide variety of logical functions as well as store data. 

• Input/Output Blocks (IOBs) control the flow of data between the I/O pins and 

the internal logic of the device. Each IOB supports bidirectional data flow plus 

3-state operation. These blocks support a variety of signal standards, including 

high-performance differential standards. Double Data-Rate (DDR) registers are 

also included. 

• Block RAM provides data storage in the form of 18 Kbit dual-port blocks. 

• Multiplier Blocks accept two 18-bit binary numbers as inputs and calculate their 

product. 
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• Digital Clock Manager (DCM) Blocks provide self-calibrating, fully digital 

solutions for distributing, delaying, multiplying, dividing, and phase-shifting 

clock signals. 

These elements are organized as shown in Figure 6.1. A ring of IOBs surrounds a 

regular array of CLBs. Each device has two columns of block RAM except for the 

XC3S100E, which has one column. Each RAM column consists of several 18-Kbit RAM 

blocks. Each block RAM is associated with a dedicated multiplier. The DCMs are 

positioned in the center with two at the top and two at the bottom of the device. The 

XC3S100E has only one DCM at the top and bottom, while the XC3S1200E and 

XC3S1600E add two DCMs in the middle of the left and right sides. 

The Spartan-3E family features a rich network of traces that interconnect all five 

functional elements, transmitting signals among them. Each functional element has an 

associated switch matrix that permits multiple connections to the routing. 

 

Figure 6.1  Xilinx Spartan-3E FPGA Family Architecture 

Further information about the Spartan-3E FPGAs can be found in Xilinx’s 

Spartan-3E Family Datasheet [26]. 



 
70

6.2.  Xilinx Spartan-3E Starter Kit 

Xilinx’s Spartan-3E FPGA Starter Kit board features a 500,000 system gate 

Spartan-3E FPGA, and a rich selection of peripheral devices and connectors (Figure 6.2). 

 

Figure 6.2 Xilinx Spartan-3E Starter Kit board 

The key features and components of the Spartan-3E Starter Kit board are: 

• Xilinx XC3S500E Spartan-3E FPGA 

 Up to 232 user-I/O pins 

 320-pin Fine Ball-Grid Array (FBGA) package 

 Over 10,000 logic cells 

• Xilinx 4 Mbit Platform Flash configuration PROM 
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• Xilinx 64-macrocell XC2C64A CoolRunner CPLD 

• 64 MByte (512 Mbit) of DDR SDRAM, x16 data interface, 100+ MHz 

• 16 MByte (128 Mbit) of parallel NOR Flash (Intel StrataFlash) 

 FPGA configuration storage 

 MicroBlaze code storage/shadowing 

• 16 Mbits of SPI serial Flash (STMicro) 

 FPGA configuration storage 

 MicroBlaze code shadowing 

• 2-line, 16-character LCD screen 

• PS/2 mouse or keyboard port 

• VGA display port 

• 10/100 Ethernet PHY (requires Ethernet MAC in FPGA) 

• Two 9-pin RS-232 ports (DTE- and DCE-style) 

• On-board USB-based FPGA/CPLD download/debug interface 

• 50 MHz clock oscillator 

• SHA-1 1-wire serial EEPROM for bitstream copy protection 

• Hirose FX2 expansion connector 

• Three Digilent 6-pin expansion connectors 

• Four-output, SPI-based Digital-to-Analog Converter (DAC) 

• Two-input, SPI-based Analog-to-Digital Converter (ADC) with 

programmable-gain pre-amplifier 
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• ChipScope™ SoftTouch debugging port 

• Rotary-encoder with push-button shaft 

• Eight discrete LEDs 

• Four slide switches 

• Four push-button switches 

• SMA clock input 

• 8-pin DIP socket for auxiliary clock oscillator 

The board is suitable for development of prototype systems for numerous different 

application areas, and several reference designs are provided on Xilinx’s Spartan-3E 

Starter Kit web page [24]. 

6.3.  Implementation Details 

For test purposes, a small design was implemented using Xilinx’s Spartan-3E Starter 

Kit FPGA development board. The realized circuit utilizes the analog-to-digital (A/D) and 

digital-to-analog (D/A) converters on the development board for input and output of 

various signals, with some minimal signal processing done within the FPGA. 

Schematics of the A/D and D/A conversion circuitry are given in Figure 6.3 and 

Figure 6.4, respectively. The A/D conversion circuit comprises an LTC6912-1 

programmable gain amplifier and an LTC1407A-1 14-bit analog-to-digital converter 

(ADC); the D/A conversion circuit uses a single LTC2624 4-channel, 12-bit 

digital-to-analog converter (DAC). 
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Figure 6.3 Spartan-3E Starter Kit A/D conversion circuitry 

 

Figure 6.4 Spartan-3E Starter Kit D/A conversion circuitry 

The amplifier, ADC and DAC are connected to the FPGA over a shared serial bus 

architecture called the Serial Peripheral Interface (SPI). Because the bus is shared between 

components, a bus arbiter is required that will supervise accesses to the SPI bus and allow 

only one component to communicate at a time. The required signal timings and 
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communication schemes for the amplifier, ADC, and DAC can be found in their respective 

datasheets [27, 28, 29]. 

The HDL code comprising the circuit description is divided among several Verilog 

files, each containing one module that controls a single component on the board. The 

Verilog design files are reproduced in Appendix A. This design style is in compliance with 

the divide-and-conquer and top-down design methodologies, which have been widely 

adopted by the electronics industry today as the most efficient design flow. 

One of the modules is responsible for configuring the programmable gain amplifier 

at startup. One module drives the ADC, periodically reading the samples generated from 

its two analog inputs. Another module drives the DAC and sends samples to it in sync with 

the ADC’s sampling clock. The control modules have to handle their own SPI clock 

generation and data transfer operations. 

In between the ADC and DAC driver blocks lie two copies of a simple module that 

just passes the samples coming from the ADC on to the DAC without modification. This 

simple module practically acts as a placeholder in the design, and can be easily replaced 

with more complex modules that implement advanced digital signal processing (DSP) 

algorithms. 

The remaining two channels of the DAC are connected to two copies of a simple 

wave generator function. The frequencies of the generated waves can be adjusted using the 

rotary encoder. 

6.4.  Synthesis Results For The Sample Circuit 

Despite its small scale, the sample circuit comprises a wide variety of fundamental 

logic elements, such as multiplexers, adders, counters, shift registers and finite state 

machines. These elements are readily recognized by synthesis tools and can be subjected to 

additional optimizations specific to each element type. The sample circuit presents many 

such optimization opportunities thanks to the aforementioned variety of logic elements it 

contains, and thus makes a good test case for the synthesis tool. 
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Xilinx’s XST software provides many settings that allow the user to tweak the 

synthesis process. Out of those, only three were chosen (namely the optimization goal, 

optimization effort level, and FSM encoding settings) and the sample circuit was 

synthesized several times with different combinations of these three settings; all the other 

settings were always kept at their default values. Synthesis results are given in Table 6.2 in 

terms of the number of slices the design occupies, and the maximum clock frequency that 

the synthesized circuit can run at. 

Table 6.2 Synthesis results for the sample circuit 

Optimized for Speed Optimized for Area FSM 
Encoding Normal Effort High Effort Normal Effort High Effort 

Auto 233 slices 
178.54MHz 

236 slices 
179.66MHz 

235 slices 
139.55MHz 

235 slices 
139.55MHz 

One-Hot 225 slices 
174.40MHz 

226 slices 
162.39MHz 

214 slices 
160.88MHz 

214 slices 
160.88MHz 

Compact 232 slices 
185.29MHz 

235 slices 
186.78MHz 

217 slices 
147.19MHz 

217 slices 
147.19MHz 

Sequential 234 slices 
177.84MHz 

237 slices 
176.34MHz 

234 slices 
139.90MHz 

234 slices 
139.90MHz 

Gray 242 slices 
167.73MHz 

243 slices 
176.99MHz 

221 slices 
135.10MHz 

221 slices 
135.10MHz 

Johnson 251 slices 
176.37MHz 

252slices 
174.03MHz 

218 slices 
151.15MHz 

218 slices 
151.15MHz 

Speed1 230 slices 
169.49MHz 

231 slices 
180.80MHz 

218 slices 
160.62MHz 

218 slices 
160.62MHz 

The fastest circuit is obtained by using the Compact encoding for the FSMs in the 

design, which yielded a circuit with a maximum clock frequency of 186.78 MHz, 

occupying 235 slices out of the 4656 slices available in the XC3S500E FPGA. Using 

One-Hot encoding and setting the optimization goal to “Area” produced the smallest 

circuit with 214 occupied slices, but the maximum attainable clock frequency dropped to 

160.88 MHz. 

When optimizing for speed, setting the FSM encoding type to “Automatic” gives 

acceptable results, whereas in area optimization the obtained slice count is quite higher 

than the One-Hot encoded case, proving once more that the synthesis tool should not be 
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trusted blindly and several synthesis iterations should be performed, exploring different 

combinations of settings and comparing the results. 

The FSM encoding type setting is a global setting that forces the encoding of all 

FSMs in the design to the same type. The desired encoding for an FSM can also be 

explicitly specified by including the encoding declaration in the Verilog source code. 

Using this inline encoding specification, different encodings can be assigned to different 

FSMs in the design, but exploring all possible combinations would take days even for this 

small design. 

In its current state, the sample design provides easy access to the two analog inputs 

and four analog outputs on the Spartan-3E Starter Kit development board. These inputs and 

outputs can be connected to any module within the top-level block of the design. As 

mentioned previously, the included placeholder DSP modules and waveform generators 

can be replaced with any arbitrary module to perform digital signal processing or digital 

control tasks. The Verilog source code listings for the design are given in Appendix A, and 

they can be used as a reference in future Spartan-3E Starter Kit projects requiring A/D or 

D/A conversion functionality. 
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7. CONCLUSION 

Due to the increasing complexity of digital systems, computer-based circuit synthesis 

has become indispensable for digital design today. The term “synthesis” covers a wide 

range of EDA activities. High-level synthesis uses an abstract behavioral or 

register-transfer level description and refines this into simple gates. Low-level synthesis is 

the term used to address the issues associated with technology mapping and in some cases 

the physical placement and routing of a design. Ideally, these tools would allow design 

entry at an abstract, functional level, regardless of what the target hardware architecture 

will be, and then synthesize the optimal logic circuit that implements the described system 

within specific area, speed and power consumption constraints. However, in practice, 

synthesis tools are not capable of autonomously performing all design and optimization 

steps necessary for realizing a digital system; they require human intervention and 

guidance at various stages of the process. 

Although HDLs, together with synthesis technology, promise hardware independent 

behavioral design, writing the HDL code with the target technology in mind always 

provides better results. Synthesis tools cannot magically turn HDL code into hardware if 

the design target does not provide some key functional elements that the behavioral 

description calls for. The design engineer has to be aware of what logic resources are 

available in the target technology, and then decide on a system architecture that is suitable 

for implementation in that technology. 

Choosing the right architecture alone does not guarantee optimal realization. In order 

to obtain the best results from synthesis, the HDL coding guidelines set forth by the tool 

vendor has to be followed to the letter. Otherwise, the synthesis tool cannot correctly 

recognize some design elements and properly optimize them. The resulting circuit might 

still be functionally identical, but it will not be the optimal implementation. 

Synthesis tools present many configuration options for fine tuning their optimization 

algorithms. These are normally set to default values that produce acceptable results most of 

the time. However, an experienced engineer who is familiar with the synthesis tool and 
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who has knowledge of the algorithms that the tool employs, will be able to configure these 

settings much more appropriately according to the design at hand. 

When all these conditions are met, the synthesis tool is supposed to perform at its 

best. Nevertheless, the tool should not be trusted blindly. It is the responsibility of the 

engineer to check the software’s synthesis reports for issued warnings and errors, 

misinterpretations of the HDL code, or ineffective optimization settings. Such problems 

require corrections to the HDL code and/or re-adjustment of the software settings, 

followed by another synthesis run. Every design flow involves some trial-and-error as 

several architectural changes and different software settings are explored. 

The only way to ensure that a synthesized circuit is the optimal one is by performing 

an exhaustive search within the set of all possible optimizations. This is a very 

compute-intensive task and the necessary processing time grows exponentially with 

increasing design size, making it impossible to apply this technique to current day designs; 

a single run of synthesis and subsequent verification with gate-level simulation can take 

hours, even days, for multi-million gate circuits. Heuristics and artificial intelligence is 

used to reduce the size of the solution set that will be searched through, but the optimal 

solution found within this reduced set may not be the one that is universally optimal. 

With companies rushing to meet narrow, two-to-three month market windows to stay 

competitive, most of them cannot afford the time to experiment with synthesis tools and 

run hundreds of design iterations. If the synthesized circuit still does not meet the area 

constraint after several attempts, the designers may have to increase the die size or move to 

a higher capacity FPGA, as a slightly more expensive product is better than no product at 

all. The search for the universally optimal solution is left to the researchers at universities 

and synthesis software vendors. 

Advances in synthesis technology might one day allow anyone with some basic 

programming skills to design digital systems. Today, however, the industry still needs 

skilled engineers with a keen intuition and a solid background in the principles of logic 

circuit design. 



 
79

APPENDIX A.  VERILOG SOURCE CODE LISTINGS FOR THE 

SAMPLE FPGA IMPLEMENTATION 

A.1.  main.v 

module main(clk50mhz,                          // Clock 

            rot_a, rot_b, rot_press,           // Rotary encoder 

            btn_south, btn_west, btn_east,   

            led,                               // Outputs 

            spi_sdi, spi_amp_sdo, spi_amp_cs,  // Programmable amplifier ports 

            spi_amp_shdn, 

            spi_sdo, spi_sck, spi_adc_conv,    // ADC ports 

            spi_dac_cs, spi_dac_clr,           // DAC ports 

            spi_rom_cs,                        // SPI Flash chip select 

            strataflash_oe, strataflash_ce,    // StrataFlash ports 

            strataflash_we, 

            platformflash_oe                   // Platform Flash ports 

); 

 

  input clk50mhz; 

  input rot_a, rot_b, rot_press;  

  input btn_south, btn_west, btn_east; 

  input spi_sdo, spi_amp_sdo; 

 

  output [7:0] led; 

  output spi_sdi, spi_amp_cs, spi_amp_shdn; 

  output spi_sck, spi_adc_conv; 

  output spi_dac_cs, spi_dac_clr; 

  output spi_rom_cs; 

  output strataflash_oe, strataflash_ce, strataflash_we; 

  output platformflash_oe; 

 

  reg amp_set = 0, adc_en = 0, dac_en = 0, dsp_en = 0; 

  reg [4:0] sys_state = 0; 

  reg [8:0] count50k = 0; 

  reg clk50khz = 0; 

  reg spi_sck = 0, spi_sdi = 0; 

  reg [2:0] gain = 1; 

 

  wire rot_event, rot_left; 

  wire spi_busy, amp_busy, adc_busy, dac_busy; 

  wire dsp_busy, dsp_busy1, dsp_busy2, dsp_busy3, dsp_busy4; 
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  wire adc_sck, dac_sck, dac_sdi, amp_sck, amp_sdi; 

  wire [15:0] adc_sample_a, adc_sample_b; 

  wire [15:0] dac_sample_a, dac_sample_b, dac_sample_c, dac_sample_d; 

  wire [3:0] gain_in, pgain_a, pgain_b; 

   

  // Disable unused components 

  assign spi_rom_cs = 1; 

  assign strataflash_oe = 1; 

  assign strataflash_ce = 1; 

  assign strataflash_we = 1; 

  assign platformflash_oe = 0; 

 

  // Connect board outputs and LEDs 

  assign led = btn_west ? adc_sample_a[15:8] : (btn_east ? adc_sample_a[7:0] \ 

                  : {(pgain_a & pgain_b), gain_in}); 

 

  assign gain_in = {1'b0, gain}; 

  assign spi_busy = amp_busy | adc_busy | dac_busy; 

  assign dsp_busy = dsp_busy1 | dsp_busy2 | dsp_busy3 | dsp_busy4; 

 

  // Instantiate modules 

  rotenc read_rotary(clk50mhz, rot_a, rot_b, rot_event, rot_left); 

 

  amp_conf amplifier(clk50mhz, amp_set, amp_busy, gain_in, gain_in, 

                     pgain_a, pgain_b, amp_sdi, amp_sck, spi_amp_cs, 

                     spi_amp_sdo, spi_amp_shdn); 

 

  adc_driver read_adc(clk50mhz, adc_en, adc_busy, spi_sdo, 

                      spi_adc_conv, adc_sck, adc_sample_a, adc_sample_b); 

 

  dac_driver write_dac(clk50mhz, dac_en, dac_busy, dac_sdi, spi_dac_cs, 

                       spi_dac_clr, dac_sck, dac_sample_a, dac_sample_b, 

                       dac_sample_c, dac_sample_d); 

 

  dsp_placeholder dsp_core1(clk50mhz, dsp_en, dsp_busy1, 

                            adc_sample_a, dac_sample_a); 

  dsp_placeholder dsp_core2(clk50mhz, dsp_en, dsp_busy2, 

                            adc_sample_b, dac_sample_b); 

 

  wavegen wg3(clk50mhz, dsp_en, dsp_busy3, 4'b0100, dac_sample_c); 

  wavegen wg4(clk50mhz, dsp_en, dsp_busy4, 4'b1010, dac_sample_d); 

   

  // SPI bus arbiter 

  always @(amp_busy or adc_busy or dac_busy or amp_sck or adc_sck or dac_sck) 

    casex ({amp_busy, adc_busy, dac_busy}) 
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      3'b100: spi_sck <= amp_sck; 

      3'b010: spi_sck <= adc_sck; 

      3'b001: spi_sck <= dac_sck; 

      3'bxxx: spi_sck <= 0; 

    endcase 

 

  always @(amp_busy or dac_busy or amp_sdi or dac_sdi) 

    casex ({amp_busy, dac_busy}) 

      2'b10: spi_sdi <= amp_sdi; 

      2'b01: spi_sdi <= dac_sdi; 

      2'bxx: spi_sdi <= 0; 

    endcase 

 

  // Process rotary encoder 

  always @(posedge clk50mhz) 

    if (rot_event == 1) 

      if (rot_left == 1) 

        gain <= gain + 1; 

      else 

        gain <= gain - 1; 

 

  // Generate 50kHz sampling clock 

  always@(posedge clk50mhz) 

    if (count50k == 499) 

      begin 

        count50k <= 0; 

        clk50khz <= ~clk50khz; 

      end 

    else 

      count50k <= count50k + 1; 

 

// System control loop 

  always @(posedge clk50mhz) 

    case (sys_state) 

      0: 

        begin 

          amp_set <= 1; 

          sys_state <= 1; 

        end 

      1: 

        if (spi_busy == 1) 

          begin 

            amp_set <= 0; 

            sys_state <= 2; 

          end 
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      2: 

        if (spi_busy == 0) 

          begin 

            if (rot_press == 1 || btn_south == 1) 

              sys_state <= 0; 

            else if (clk50khz == 1) 

              begin 

                adc_en <= 1; 

                sys_state <= 3; 

              end 

          end 

      3: 

        if (spi_busy == 1) 

          begin 

            adc_en <= 0; 

            sys_state <= 4; 

          end 

      4: 

        if (spi_busy == 0) 

          begin 

            dac_en <= 1; 

            sys_state <= 5; 

          end 

      5: 

        if (spi_busy == 1) 

          begin 

            dac_en <= 0; 

            sys_state <= 6; 

          end 

      6: 

        if (spi_busy == 0) 

          begin 

            dsp_en <= 1; 

            sys_state <= 7; 

          end 

      7: 

        if (dsp_busy == 1) 

          begin 

            dsp_en <= 0; 

            sys_state <= 8; 

          end 

      8: 

        if (dsp_busy == 0) 

            sys_state <= 9; 
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      9: 

        if (clk50khz == 0) 

            sys_state <= 2; 

    endcase 

endmodule 

A.2.  rotary.v 

module rotenc(clk, rot_a, rot_b, rot_event, rot_left); 

  input clk; 

  input rot_a, rot_b; 

 

  output rot_event; 

  output rot_left; 

 

  reg rot_q1, previous_rot_q1, rot_q2, rot_event, rot_left; 

 

  always@(posedge clk) 

    case ({rot_b, rot_a}) 

      2'b00 : begin 

                rot_q1 <= 0; 

                rot_q2 <= rot_q2; 

              end 

      2'b01 : begin 

                rot_q1 <= rot_q1; 

                rot_q2 <= 0; 

              end 

      2'b10 : begin 

                rot_q1 <= rot_q1; 

                rot_q2 <= 1; 

              end 

      2'b11 : begin 

                rot_q1 <= 1; 

                rot_q2 <= rot_q2; 

              end 

      default : begin 

                  rot_q1 <= rot_q1; 

                  rot_q2 <= rot_q2; 

                end 

    endcase 

 

  always@(posedge clk) 

    begin 

      previous_rot_q1 <= rot_q1; 
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      if (rot_q1 == 1 && previous_rot_q1 == 0) 

        begin 

          rot_event <= 1; 

          rot_left <= rot_q2; 

        end 

      else 

        begin 

          rot_event <= 0; 

          rot_left <= rot_left; 

        end 

    end 

endmodule 

A.3.  amp_conf.v 

module amp_conf(clk50mhz, set_gain, busy, gain_a_in, gain_b_in, 

                prev_gain_a, prev_gain_b, spi_sdi, spi_sck, spi_amp_cs, 

                spi_amp_sdo, spi_amp_shdn); 

 

  input clk50mhz, set_gain, spi_amp_sdo; 

  input [3:0] gain_a_in, gain_b_in; 

 

  output busy, spi_sdi, spi_sck, spi_amp_cs, spi_amp_shdn; 

  output [3:0] prev_gain_a, prev_gain_b; 

   

  reg [4:0] state = 0; 

  reg [7:0] gain = 0; 

  reg [7:0] prev_gain = 0; 

  reg [2:0] count5m = 0; 

  reg clk5mhz = 0; 

  reg spi_amp_cs = 1; 

  reg spi_sck = 0; 

  reg busy = 0; 

   

  assign spi_sdi = gain[7]; 

  assign spi_amp_shdn = 0; 

  assign {prev_gain_b, prev_gain_a} = prev_gain; 

 

  // Generate 5MHz clock for amplifier SPI communication 

  always@(posedge clk50mhz) 

    if (count5m == 4) 

      begin 

        count5m <= 0; 

        clk5mhz <= ~clk5mhz; 
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      end 

    else 

      count5m <= count5m + 1; 

 

  always @(posedge clk5mhz) 

    casex (state) 

      0: 

        if (set_gain == 1) 

          begin 

            busy <= 1; 

            gain <= {gain_b_in, gain_a_in}; 

            spi_amp_cs <= 0; 

            spi_sck <= 0; 

            state <= 1; 

          end 

 

      // Read previous gain and send new gain are done, don't shift once more 

      // Just return SCK to zero 

      16: 

        begin 

          spi_sck <= ~spi_sck; 

          state <= 17; 

        end 

 

      17: 

        begin 

          busy <= 0; 

          spi_amp_cs <= 1; 

          state <= 0; 

        end 

 

      5'bxxxx0: 

        begin 

          gain <= gain << 1; 

          prev_gain <= prev_gain << 1; 

          spi_sck <= ~spi_sck; 

          state <= state + 1; 

        end 

 

      5'bxxxx1: 

        begin 

          spi_sck <= ~spi_sck; 

          prev_gain[0] <= spi_amp_sdo; 

          state <= state + 1; 

        end 
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    endcase 

endmodule 

A.4.  adc_driver.v 

module adc_driver(clk, trigger, busy, spi_sdo, spi_adc_conv, spi_sck, 

                  sample_a, sample_b); 

  input clk, trigger; 

  input spi_sdo; 

 

  output busy, spi_adc_conv, spi_sck; 

  output [15:0] sample_a, sample_b; 

 

  reg busy = 0; 

  reg spi_adc_conv = 0; 

  reg spi_sck = 0; 

  reg [6:0] state = 0; 

  reg [15:0] sample_a, sample_b; 

  reg [27:0] sample_word = 0; 

 

  always @(posedge clk) 

    casex (state) 

      0: 

        if (trigger == 1) 

          begin 

            busy <= 1; 

            spi_adc_conv <= 1; 

            spi_sck <= 0; 

            state <= 1; 

          end 

      1: 

        begin 

          spi_adc_conv <= 0; 

          state <= 2; 

        end 

      70: 

        begin 

          busy <= 0; 

          state <= 0; 

          sample_a <= {sample_word[27], sample_word[27], sample_word[27:14]}; 

          sample_b <= {sample_word[13], sample_word[13], sample_word[13:0]}; 

        end 

      2, 3, 4, 5, 34, 35, 36, 37, 66, 67, 68, 69, 7'bxxxxxx0: 

        begin 
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          spi_sck <= ~spi_sck; 

          state <= state + 1; 

        end 

      7'bxxxxxx1: 

        begin 

          spi_sck <= ~spi_sck; 

          state <= state + 1; 

          sample_word <= {sample_word[26:0], spi_sdo}; 

        end 

    endcase 

endmodule 

A.5.  dac_driver.v 

module dac_driver(clk, trigger, busy, spi_sdi, spi_dac_cs, spi_dac_clr, spi_sck, 

                  sample_a_in, sample_b_in, sample_c_in, sample_d_in); 

  input clk; 

  input trigger; 

  input [15:0] sample_a_in, sample_b_in, sample_c_in, sample_d_in; 

 

  output busy; 

  output spi_sdi; 

  output spi_dac_cs; 

  output spi_dac_clr; 

  output spi_sck; 

 

  reg busy = 0, ch_start = 0, ch_busy = 0; 

  reg spi_dac_cs = 1; 

  reg spi_sck = 0; 

  reg [3:0] state_dac = 0; 

  reg [6:0] state_ch = 0; 

  reg [1:0] num_ch = 0; 

  reg [15:0] sample_ch; 

  reg [23:0] dac_dataword; 

 

  wire spi_sdi; 

 

  assign spi_dac_clr = 1; 

  assign spi_sdi = dac_dataword[23]; 

 

  always @(posedge clk) 

    casex (state_dac) 

      0: 

        if (trigger == 1) 
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          begin 

            busy <= 1; 

            sample_ch <= sample_a_in; 

            ch_start <= 1; 

            state_dac <= 1; 

          end 

      1: 

        begin 

          ch_start <= 0; 

          state_dac <= 2; 

        end 

      2: 

        if (ch_busy == 0) 

          begin 

            num_ch <= 1; 

            sample_ch <= sample_b_in; 

            ch_start <= 1; 

            state_dac <= 3; 

          end 

      3: 

        begin 

          ch_start <= 0; 

          state_dac <= 4; 

        end 

      4: 

        if (ch_busy == 0) 

          begin 

            num_ch <= 2; 

            sample_ch <= sample_c_in; 

            ch_start <= 1; 

            state_dac <= 5; 

          end 

      5: 

        begin 

          ch_start <= 0; 

          state_dac <= 6; 

        end 

      6: 

        if (ch_busy == 0) 

          begin 

            num_ch <= 3; 

            sample_ch <= sample_d_in; 

            ch_start <= 1; 

            state_dac <= 7; 

          end 
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      7: 

        begin 

          ch_start <= 0; 

          state_dac <= 8; 

        end 

      8: 

        if (ch_busy == 0) 

          begin 

            num_ch <= 0; 

            busy <= 0; 

            state_dac <= 0; 

          end 

    endcase 

 

  always @(posedge clk) 

    casex (state_ch) 

      0: 

        if (ch_start == 1) 

          begin 

            ch_busy <= 1; 

            // Command is 0000 for channels 1,2,3 and 0010 for channel 4 

            // Address is the same as the channel number 

            dac_dataword <= {6'b001100, num_ch, sample_ch}; 

            spi_dac_cs <= 0; 

            spi_sck <= 0; 

            state_ch <= state_ch + 1; 

          end 

      48: 

        begin 

          ch_busy <= 0; 

          spi_dac_cs <= 1; 

          state_ch <= 0; 

        end 

      7'bxxxxxx0: 

        begin 

          spi_sck <= ~spi_sck; 

          dac_dataword <= dac_dataword << 1; 

          state_ch <= state_ch + 1; 

        end 

 

      7'bxxxxxx1: 

        begin 

          spi_sck <= ~spi_sck; 

          state_ch <= state_ch + 1; 

        end 
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    endcase 

endmodule 

A.6.  dsp_module.v 

module dsp_placeholder(clk, enable, busy, sample_in, sample_out); 

  input clk; 

  input [15:0] sample_in; 

  input enable; 

     

  output busy; 

  output [15:0] sample_out; 

 

  reg busy; 

  reg [2:0] state = 0; 

  reg [15:0] sample; 

  reg [15:0] sample_out = 0; 

   

  always @(posedge clk) 

    case (state) 

      0: 

        if (enable == 1) 

          begin 

            busy <= 1; 

            sample <= sample_in; 

            state <= 1; 

          end 

      1: 

        begin 

          sample_out <= (sample + 16'b0010_0000_0000_0000) << 2; 

          state <= 2; 

        end 

      2: 

        begin 

          busy <= 0; 

          state <= 0; 

        end 

    endcase 

endmodule 
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A.7.  wavegen.v 

module wavegen(clk, enable, busy, increment, sample_out); 

  input clk; 

  input enable; 

  input [3:0] increment; 

   

  output busy; 

  output [15:0] sample_out; 

 

  reg busy = 0; 

  reg [15:0] count = 0; 

  reg [1:0] state = 0; 

     

  assign sample_out = count; 

     

  always @(posedge clk) 

    case (state) 

      0: 

        if (enable == 1 && busy == 0) 

          begin 

            busy <= 1; 

            state <= 1; 

          end 

      1: 

        begin 

          count <= count + increment; 

          state <= 2; 

        end 

      2: 

        begin 

          count <= count + increment; 

          state <= 3; 

        end 

      3: 

        begin 

          busy <= 0; 

          state <= 0; 

        end 

    endcase 

endmodule 
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