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ABSTRACT

LINEAR LINKAGE ENCODING IN GENETIC ALGORITHMS

Linear Linkage Encoding (LLE) is a recently proposed representation scheme for

evolutionary algorithms (EA). This representation has been previously used to solve data

clustering problem. It is also suitable for other grouping problems. In this thesis, this new

encoding scheme is investigated on two other grouping problems; graph coloring and bin

packing. The main focus of this work is to investigate genetic operators suitable for LLE.

Performance enhancing crossover operators for graph coloring problem based on LLE are

proposed and compared to the existing ones. Traditional crossover operators with additional

placement heuristics are tested on bin packing problem. Initial results show that Linear

Linkage Encoding is a viable candidate for grouping problems whenever appropriate genetic

operators are chosen.
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ÖZET

GENETİK ALGORİTMALARDA DOĞRUSAL BAĞLANTI

GÖSTERİMİ

Doğrusal Bağlantı Gösterimi (DBG) evrimsel algoritmalar (EA) için yakın zamanda

önerilen bir gösterim şeklidir. Bu gösterim daha önce veri kümeleme probleminin çözümünde

kullanılmıştır. Diğer gruplama problemleri için de uygundur. Bu tezde, bu yeni gösterim

şekli iki gruplama problemi üzerinde incelenmiştir. Bu çalışmanın ana odak noktası DBG ile

kullanılabilecek genetik uzmanların incelenmesidir. Çizge boyama problemi için DBG ile

uyumlu başarım arttırıcı çaprazlama uzmanları önerilmiş ve var olanlar ile karşılaştırılmıştır.

Geleneksel çaprazlama uzmanları, yerleştirme buluşsal yöntemleriyle beraber kutu paketleme

problemi üzerinde denenmiştir. İlk sonuçlar doğrusal bağlantı gösteriminin uygun genetik

uzmanlar kullanıldığında gruplama problemleri için başarılı bir aday olduğunu göstermiştir.
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1. INTRODUCTION

Grouping problems [1] are generally concerned with partitioning a set V of items into

a collection of mutually disjoint subsets Vi of V such that

V = V1 ∪ V2 ∪ V3..... ∪ VN and Vi ∩ Vj = Ø where i 6= j. (1.1)

Obviously, the aim of these problems is to partition the members of set V into N differ-

ent groups (1 ≤ N ≤ |V |) where each item is in exactly one group. In most of the grouping

problems, not all possible groupings are permitted; a valid solution usually has to comply

with a set of constraints. For example in graph coloring, the vertices in the same group must

not be adjacent in the graph. In bin packing problem, the sum of the sizes of items of any

group should not exceed the capacity of the bin, etc. Hence, the objective of grouping is to

optimize a cost function defined over a set of valid groupings. In both graph coloring and

bin packing, the objective is to minimize the number of groups (independent sets and bins

respectively) subject to the aforementioned constraints.

The essential issue about grouping problems is that the objective function to be opti-

mized is defined on a set of all valid groupings and depends on the composition of the groups

of the items [2]. Obviously, a composition of a group has a natural meaning in a grouping

problem which should be taken into account in an optimization method. An item without

considering its group has little or no meaning during the search process. Therefore, groups

or group segments should be preserved during search.

Some well known grouping problems are as follows:

• Graph Coloring: Partition an undirected graph G into a minimal number of disjoint

sets such that no two vertices in a set is adjacent to each other.

• Bin Packing: Place a set of items with different sizes into a minimal number of bins

such that the size of the items in each bin does not exceed the bin capacity.
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• Workshop Layouting: Minimize the total intercell traffic in a group while the number

of machines does not exceed the capacity of the group.

• Equal Piles: Partition a set of N numbers into K disjoint subsets such that the sum of

the numbers in each set is as nearly equal as the sums of the other sets.

Various metaheuristics such as simulated annealing [3], tabu search [4], and genetic

algorithms [5], have been applied to solve grouping problems such as above. A genetic

algorithm (GA) [5] is a search method for solving optimization problems. The operators of

GAs are inspired from the theory of Darwinian evolution [6]. In spite of the satisfactory

performance of the traditional genetic algorithms on many NP optimization problems, the

same achievement is not usually observed on grouping problems. This is because many

evolutionary algorithms do not address the dynamics of a grouping problem: how to handle

groups. The commonly used representations usually suffer from redundancies due to the

ordering of groups. Moreover, the genetic material representing groups might easily be

disrupted by the genetic operators and/or by the rectification process after the operators are

applied. Therefore a genetic algorithm requires special operators for solving a grouping

problems.

In this thesis, Linear Linkage Encoding (LLE) [7] for grouping problems is investi-

gated. LLE is used as a representation scheme within genetic algorithms. Two well known

grouping problems, graph coloring and bin packing are chosen as testbeds. LLE uses a link-

based structure for objects within the same group. Genetic operators work on the encodings

by altering the links. LLE previously has only been tested on small clustering problem in-

stances [7], and it is observed that LLE performance is superior to Number Encoding (NE),

the most common encoding scheme used in grouping problems. Unlike NE, LLE does not

require an explicit bound on the number of groups that can be represented in a fixed-length

encoding. The greatest strength of LLE is that the search space is reduced considerably.

There is a one to one correspondence between the encodings and the solutions when LLE is

used.

In this thesis, the potential of the LLE representation on grouping problems is pre-

sented. Previous studies denote that traditional crossover operators do not perform well. A
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set of new crossover operators suitable for LLE are tested on a set of problem instances in-

cluding Carter’s Benchmark [8] and DIMACS Challenge Suite [9] for graph coloring prob-

lems. These crossovers are inspired from a powerful hybrid graph coloring algorithm of

Galinier and Hao [10] and utilize redundancy lowering principles [11]. For the bin pack-

ing problem, traditional genetic operators with additional heuristics are tested on a set of

instances provided by [12]. The proposed graph coloring crossovers were not particularly

suitable due to the nature of the test instances in the bin packing. Although both graph col-

oring and bin packing are grouping problems, they pose different difficulties on handling

groups due to epistasis, importance of specific groups and/or group sizes which may require

different strategies. The main goal of this thesis is to obtain competitive results using genetic

algorithms with LLE on grouping problems by addressing these points where traditional

genetic algorithms are likely to fail.

This thesis is organized as follows: Chapter 1 gives a general overview of this work.

Chapter 2 presents a literature survey about the main research topics of this study. The

relevant literature of graph coloring and bin packing problems is provided. Main aspects of

genetic algorithms are described in Chapter 3. The main research topic of this thesis, Linear

Linkage Encoding is described in Chapter 4. Previous applications of LLE, implementational

issues, advantages of LLE are presented in this chapter as well. Chapter 5 presents a multi-

objective genetic algorithm for solving graph coloring problem using LLE. Details of new

crossover operators for LLE in graph coloring are described and experimental results are

provided in this chapter. Chapter 6 deals with a memetic genetic algorithm for solving bin

packing problem by using traditional operators on LLE. Finally, conclusions and further

research directions are provided in Chapter 7. Furthermore, Appendix A presents additional

experimental results for graph coloring algorithm, whereas additional experimental results

for bin packing are presented in Appendix B.
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2. LITERATURE SURVEY

2.1. Graph Coloring Problem

Graph coloring problem (GCP) is a well known combinatorial optimization problem

which is proved to be NP Complete [13]. Informally stated, graph coloring is assigning

colors to each vertex of an undirected graph such that no adjacent vertices should receive the

same color. The minimal number of colors that can be used for a valid coloring is called the

chromatic number. A more formal definition is as follows:

Given a graph G = (V, E) with vertex set V and edge set E, and given an integer k,

a k-coloring of G is a function c : V → 1, ..., k. The value c(x) of a vertex x is called the

color of x. The vertices with color r (1 ≤ r ≤ k) define a color class, denoted Vr. If two

adjacent vertices x and y have the same color r, x and y are conflicting vertices, and the edge

(x, y) is called a conflicting edge. If there is no conflicting edge, then the color classes are

all independent sets and the k-coloring is valid. The Graph Coloring Problem is to determine

the minimum integer k (the chromatic number of G - χ(G) ) such that there exists a legal

k-coloring of G [14].

2.1.1. Application Areas of Graph Coloring

Graph coloring problem has many application areas [15]. Some of the most important

of these are as follows:

Many scheduling problems impose for a number of pairwise restrictions on which jobs

can be done concurrently. For example, in attempting to schedule courses in a university, two

courses taken by a group of students should not be assigned to the same time slot. Similarly,

two courses taught by an instructor should not be scheduled in the same time slot. The

problem of finding the minimum number of time slots required subject to these restrictions

reduces to a graph coloring problem. A detailed survey of timetabling methods can be found

in [16].
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Gamst [17] examines a problem in assigning frequencies to mobile radios and other

users of the electromagnetic spectrum. Two customers who are in close vicinity to each other

must not be assigned to the same frequency whereas distant customers can share the same

frequency. The problem of minimizing the number of frequencies is again a graph coloring

problem.

Register allocation is a very active application area for graph coloring. The register

allocation problem is to assign variables to a limited number of hardware registers. Usually,

the number of variables is far greater than the number of registers thus it becomes necessary

to assign multiple variables to a single register. Variables are in conflict with each other if

one is used both before and after the other within a short period of time (such as, within a

subroutine). The goal is to assign variables that do not conflict while minimizing the use

of system memory. Representing variables with vertices and conflicts between variables

with edges register allocation reduces to graph coloring. Detailed information on register

allocation can be found in Chaitin [18], Briggs et. al [19], Chow and Hennessy [20].

Garey, Johnson, and So [21] used a graph coloring algorithm for testing printed circuit

boards for unintended short circuits (caused by stray lines of solder). The nets on the board

corresponds to vertices in a graph and potential for a short circuit between corresponding nets

can be represented with edges. Partitioning the nets into supernets where the nets in each

supernet can be tested for short circuits against all other nets can be reduced to coloring.

2.1.2. Approaches for Solving Graph Coloring Problem

In the literature there are many solution methods devised for finding chromatic number

and solving k-coloring problems. Naturally many graph instances were produced to compare

these algorithms. Most important of these benchmark instances is DIMACS Challenge Suit

[9].

Early applications of GCP solvers are simple greedy constructive methods which build

feasible solutions of the form s(x) = (x1, x2, ..., xn) by inserting a component xi repeatedly
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into the current partial solution

s(i− 1) = (x1, x2, ...., xi−1) (2.1)

which initially is an empty solution s(0). Two well known greedy heuristicsfor graph col-

oring [22] are DSATUR and RLF. Furthermore, metaheuristics such as genetic algorithms,

local search, simulated annealing, tabu search and their hybrids have also been used for

solving graph coloring problem.

2.1.2.1. DSATUR. The algorithm DSATUR (Degree of Saturation) of Brelaz [23] is a se-

quential algorithm with an ordering of the vertices which are established dynamically. Let F

be a partial coloring of the vertices of the G. The degree of saturation of a vertex v, degs(x)

then becomes the number of different colors at the vertices adjacent to vertex v . DSATUR

operates by sequentially assigning increasing color numbers to a vertex x of maximal degree

degs(x). The complexity of DSATUR is O(|V |3).

2.1.2.2. RLF. Another well known greedy heuristic Recursive Largest First (RLF) is by

Leighton [24] with a worse-case time complexity of O(|V |3). Let x be a fixed vertex with

maximal degree. Non neighbors y with a maximal number of common neighbors with vertex

v are then contracted into x until x is adjacent to every other vertex. For an effective imple-

mentation, x is removed and a new vertex with maximal degree in the remaining graph is

chosen. A new color class is built from vertex x and all vertices contracted into it. If x has

a non-neighbor vertex yet no no-nonadjacent vertex with a common neighbor, then graph

is unconnected so x is adjacent to all other vertices of its own component. To enforce RLF

principle, the color class of x must be constructed with a vertex of maximal degree in another

component.

2.1.2.3. Genetic Algorithms. Davis [25] proposed a coding as an ordering of vertices which

could be used in a genetic algorithm [5]. Davis’ algorithm was designed to maximize the

total weights of the vertices in the graph colored with a fixed amount of colors. Unfortunately

genetic algorithms give very poor results in an order based coding. No other work using pure
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genetic algorithms are reported since then. It is believed that pure genetic algorithms are not

competitive for this problem. There are mainly two reasons for the unsuccessful attempts of

for using pure genetic implementations on graph coloring: The redundancies inherent in the

representations used for the encoding of the chromosome, and lack of a suitable crossover

operator which transmits the building blocks preferably with some domain knowledge.

2.1.2.4. Local Search. Local search is an optimization method in which neighbor solutions

are visited in an iterative manner based on a neighborhood relation. Local search methods

such as tabu search [26] and simulated annealing [27] were also applied to the graph coloring

problem. Local search methods for GCP usually start with an infeasible color assignment

and iteratively move to neighboring solutions to reduce the number of conflicts. Local search

operators iteratively try to repair the current color assignment guided by an evaluation func-

tion. A feasible coloring is obtained when a candidate solution with zero conflicting edges

is encountered.

2.1.2.5. Tabu Search. Tabu search [4] is a local search method in which the decision to

move to a neighboring solution depends on short or long term memory structures. Hertz

and de Werra [26] presented the first tabu search implementation which outperforms another

local search method, simulated annealing on random dense graph instances. This methods

attempts to find a valid k-coloring by partitioning the set of vertices V into k subsets. A

solution s = {V1, V2, ...., Vk} is a partition of the set of vertices V into k subsets where

E(Vi) = {(v, w) ∈ E|v ∈ Vi, w ∈ Vi} (2.2)

The quality of the solution s is determined by the objective function

f(s) =
k∑

i=1

|E(Vi)| (2.3)

A neighbor s’ is generated by randomly choosing v′ = v or w, such that

(v, w) ∈ E(V1) ∪ .... ∪ E(Vk)
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and then randomly choosing a color j 6= i. The new solution is obtained by

V ′
j = Vj ∪ {v′} (2.4)

V ′
i = Vi − {v′} (2.5)

V ′
r = Vr for r = 1, ..., k and r 6= i, j (2.6)

The tabu search method selects the best neighbors s′ from a randomly generated neigh-

bor pool whose size is determined empirically. After a move of vertex v ∈ Vi to Vj a tabu

rule forbids the move which returns v to Vi for a number of iterations (tabu tenure). A more

advanced tabu search procedure employing greedy construction, configuration re-generation,

dynamic tabu tenure management and proper coloring search is presented by Dorne and Hao

[28].

2.1.2.6. Simulated Annealing. In simulated annealing (SA) [3] method, each point s in the

search space is compared to a state of some physical system, and the function E(s) to be

minimized is defined as the internal energy of the system in that state. Therefore the aim is

to bring the system, from an arbitrary initial state, to a state with the minimum possible en-

ergy. At each step SA determines some neighbors of the current state s, and probabilistically

decides between moving the system to a new state s’ or not. The probabilities are chosen so

that the system ultimately tends to move to states of lower energy [29].

Johnson et al. [27] present three simulated annealing implementations based on three

neighboring approaches: penalty-function approach (based on RLF), Kempe chain approach

(a specific move which causes a major change in neighboring structure while retaining the

cost function and fixed-k approach (which attempts to minimize the number of monochro-

matic edges in a not necessarily-legal coloring with a fixed number of color classes).
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2.1.2.7. Hybrid Algorithms. Currently, hybridizations of local search and evolutionary meth-

ods constitute state of the art graph coloring algorithms Fleurent and Ferland’s genetic tabu

algorithm [30] uses an efficient pre-processing technique of [26] which reduces the initial

graph by removing a large number of independent sets and which colors the residual graph

with coloring algorithms. However they reported that although crossovers can improve on

the performance of local search, this happens only for a few graphs with high computational

requirements.

In the graph coloring literature, Galinier’s and Hao’s [10] method of hybridization of

genetic algorithms and local search is usually considered the best solution for difficult graph

instances. In their method, a new offspring created by a crossover operator which transmits

large independent sets to next generations is improved by a long tabu search procedure sim-

ilar to Hertz and de Werra [26]. Their rationale was that coloring should be a partition of

vertices not an assignment of colors to vertices, and a crossover should transmit subsets of

color classes from parents to children. They used a rather small population with 5 to 10

individuals and reported that long tabu search procedure after the crossover preserves the di-

versity in the population. However in [31] it is reported that the tabu search procedure can be

replaced with a simple descent method without affecting the performance of the algorithm.

2.1.2.8. Variable Neighborhood Search. Recently, Avanthay et al. [14] proposed a variable

neighborhood search algorithm (VNS) for graph coloring problem. Let N (t)(t = 1, ..., tmax)

denote a finite set of neighborhoods where N (t)(s) is the set of solutions in the tth neighbor-

hood of s. VNS tries to avoid being trapped in local minima by using multiple neighborhoods

that will be used within a local search. The proposed method utilizes three operator types of

neighborhoods:

• vertex neighborhoods which change the color of some conflicting vertices.

• class neighborhoods which change the color of some or all vertices of a conflicting

color.

• non-increasing neighborhoods which change the color of some vertices without in-

creasing the total number of conflicting edges.
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The authors have commented that their algorithm although strong by itself is not competitive

with Galinier and Hao’s hybrid algorithm.

2.1.3. Exam Timetabling as a Grouping Problem

Exam timetabling requires satisfactory assignment of timetable slots (periods) to a set

of exams. Each exam is taken by a number of students, based on a set of constraints. In

most of the studies, NE like representations are used. In [32], a randomly selected light or

a heavy mutation followed by a hill climbing method was applied. Various combinations of

constraint satisfaction techniques with genetic algorithms can be found in [33]. Paquete et

al. [34] applied a multi-objective evolutionary algorithm based on pareto ranking with two

objectives: minimize the number of conflicts within the same group and between groups.

Wong et al. [35] applied a GA with a non-elitist replacement strategy. After genetic operators

are applied, violations are repaired with a hill climbing fixing process. In their experiments

a single problem instance was used. Ozcan et. al. [36] proposed a memetic algorithm (MA)

for solving exam timetabling. MA utilizes a violation directed adaptive hill climber.

Considering the task of minimizing the number of exam periods and removing the

clashes, exam timetabling reduces to the graph coloring problem [24].

2.2. Bin Packing Problem

Bin packing problem (BPP) is a combinatorial NP hard problem in which items of

different sizes has to be packed into a minimal number of bins of fixed capacity. Bin packing

has many variants with respect to the number of dimensions used, the arrival of bins, and the

distribution of the size of the items. In this study, only one-dimensioal bin packing problem

will be considered.

In classical one-dimensional bin packing problem [37], a sequence of L = (a1, a2, ..., an)

of items, each with a size s(ai) ∈ (0, 1] are packed into a minimun number of unit-capacity

bins (partition them into a minimum number m of subsets B1, B2, ...., Bm such that
∑

ai∈Bj
6

1, 1 6 j 6 m).
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2.2.1. Application Areas of Bin Packing

One common application of bin packing is memory allocation. In a typical memory

allocation system, memory is divided into fixed sized pages and assuming the size of a mem-

ory request is less than the size of a page, allocating minimal number of pages to a finite set

of memory requests reduces to a bin packing problem. Reviews of memory allocation can

be found in [38] and [39].

In machine scheduling [40], the task is to allocate a minumum number of identical

machines to a collection of independent jobs (that is each job can be done in any machine

in any order). Assuming a job ji takes a time of ti and the maximum time allowed is T ,

machine scheduling reduces to bin packing by substituting ti and T to item size si and bin

capacity C respectively.

A well known NP Complete problem in computer science is multiprocessor schedul-

ing. In multiprocessor scheduling, the task is to schedule each job ji with a length li to a

number of processors such that the required time is minimized. Coffman et al. [41] used a

bin packing algorithm to solve this problem.

Another problem which is frequently encountered in industrial applications is stock

cutting [42]. In stock cutting the task is to cut a number of items (wood, roll of paper, sheet

of textile) from a fixed size raw material block such that the total waste is minimized. Bin

packing and stock cutting are synonymous problems which are usually differentiated by the

distribution of items in their instances.

2.2.2. Approaches for solving Bin Packing Problem

2.2.2.1. First Fit. In first fit heuristic, an item ai is placed in the first (lowest indexed)

partially-filled bin Bj into which it will fit (capacity(Bj + s(ai) 6 1). If this is not pos-

sible a new bin with ai as the first item is created. A variant of first fit is first fit decreasing

(FFD) in which items are first sorted in decreasing weight and then items are picked up one

by one beginning with the largest item and placed into bins according to the first bin that can
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accomodate it.

2.2.2.2. Best Fit. In best fit heuristic, an item ai is placed in the partially filled bin Bj with

the highest level level(Bj) 6 1 − s(ai) and ties if any are broken in favor of lower index

bins. Similar to FF, Best fit has a decreasing variant, in which items are again sorted in

decreasing order and placed into the best-filled bin that can accomodate it. Although best

fit decreasing is slightly more complicated than FFD, surprisingly it cannot beat FFD with

both having the worst case performance of 11
9
Opt+4 where Opt is the number of bins in the

optimal solution. [37].

2.2.2.3. Worst Fit. In worst fit heuristic, an item ai is placed in the partially filled bin Bj

with the lowest level level(Bj) 6 1−s(ai) and ties if any are broken in favor of lower index

bins. Unfortunately, it is not possible to close down a bin. However a slight modification as

in almost worst fit makes it worst case performance as good as first fit or best fist. In almost

worst fit an item ai is placed in the partially filled bin with the second lowest level unless

there is only one bin into which it fits, in which case it goes into that bin. If there isn’t any

partially filled bin ai can fit, ai forms a new bin.

2.2.2.4. Reduction Algorithm of Martello and Toth. Martello and Toth’s branch-and-bound

reduction algorithm (MTP) [43] is the basic reference in most comparative studies of bin

packing. Although slow (for large instances), MTP generally gives excellent results. The

MTP is based on the following dominance criterion:

A feasible set of items is defined as any subset F ⊆ N such that
∑

i∈F wi ≤ C.

With two feasible sets F1 and F2, F1 dominates F2 if and only if the the number of bins in

some optimal solution by setting B1 = F1 is not greater than by setting B1 = F2. There

exists a partition P1, ..., Pl of F2 and a subset i1, ..., il ⊂ F1 such that wih ≥
∑

k∈ph
wk for

h = 1, ..., l.

This results in a important conclusion that a solution containing F1 will not have more

bins than a solution containing F2. The MTP procedure tries to find bins dominating all
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others. After such a bin is found, the problem is reduced by removing the dominating bin. In

order to prevent an exponential search, in MTP only dominating bins of at most three items

are taken into account.

2.2.2.5. Hybrid Grouping Genetic Algorithm for Bin Packing Problem. Falkenauer [12] uses

a Hybrid Grouping Genetic Algorithm (HGGA) which is heavily modified to suit the struc-

ture of the grouping problems. His genetic algorithm works with whole bins rather than with

individual items. In HGGA representation, a standard chromosome representing the ids of

the items are augmented with a group part, encoding the groups on a one gene for one group

basis. The important point with the genetic operators is that it works on the group part of the

chromosome, the standard item part is just used to identify which items form which group.

The crossover in HGGA is as follows:

• Select two random crossing sites in each of the two parents.

• Inject the items of the crossing section of first parent at the first crossing site of the

second parent.

• Eliminate any bins in the second parent which conflict with the injected bin.

• Use a local search mechanism to place eliminated bins back into the solution.

Falkenauer used a strategy similar to the domination criterion of Martello and Toth to

place the eliminated bins (free items). Free items are swapped with non-free items (items

currently placed within bins) such that the bins will consist of a few large items rather than

many small items. Items that cannot be placed with this replacement strategy are re-inserted

into the solution using a first-fit heuristic. Mutation works also similarly; it destroys a few

bins from the population and reinserts the missing items using the mentioned local search

procedure.
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3. GENETIC ALGORITHMS

A Genetic Algorithm (GA) [5] is a search method to find approximate solutions to op-

timization problems. GAs use techniques inspired by the Darwinian theory of evolution such

as crossover, mutation and natural selection. In a typical GA, a population of chromosomes

(abstract representation of candidate solutions) goes through an evolutionary process. The

most common representation scheme is binary encoding of strings of 0s and 1s. The evolu-

tion usually starts from a population randomly or heuristically initialized. In each generation,

the quality of the solutions is evaluated by a fitness function; individuals are stochastically

selected and are modified by crossover and mutation operators to form a new population.

This process continues until the optimal solution is found or a termination criteria set by the

user is met [44].

1: Initialization of Chromosomes (individuals)

2: Fitness Evaluation

3: repeat

4: Selection of Chromosomes for Crossover

5: Crossover

6: Mutation

7: Fitness Evaluation

8: Population Update

9: until Termination Criteria

Figure 3.1. Pseudocode of a genetic algorithm

3.1. Representation

There are many different ways to encode the chromosomes in the initial population.

The most common approach is to encode the chromosome with fixed size binary strings as

in Holland’s original encoding method [5]. However, variable size and non-binary encodings

are also present. The efficiency of the encoding method is problem dependent, thus should

be adjusted according to the needs of the problem at hand.
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Figure 3.2. a) Binary representation b) Floating point representation c) Order based

representation.

3.2. Selection

During at iteration, a number of chromosomes are selected to breed a new generation.

Many selection methods are stochastic which ensure a small number of less fit individuals

are selected as well. This helps to keep the diversity of the population. Some well known

selection methods are as follows:

3.2.1. Roulette Wheel Selection

In the standard roulette wheel selection method [5], each chromosome has a chance of

selection which is directly proportional to its fitness value. In a roulette wheel, each chro-

mosome represents a pocket on the wheel and the size of each pocket is directly proportional

to the probability of selection therefore selecting N chromosomes is like playing N games

on the roulette wheel. The efficiency of this selection depends greatly on the range of the

fitness values of the chromosomes. If the range is quite small then the likelihood of selection

for each individuals will be very similar which may lead to stagnation in the search. This

problem can be solved by using scaling techniques [45].

3.2.2. Rank Based Selection

In rank based selection [46], chromosomes in the population are sorted according to

their fitness values. The selection probability of each individual is determined by the rank

(its position on the sorted list) rather than the actual fitness value. The range of the ranks will

be limited which prevents certain individuals to generate an excessive number of offspring.

With a uniform scaling, ranking provides an effective control of selection pressure.
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Figure 3.3. Selection probabilities for different selection methods a) Roulette wheel

selection b) Ranking based selection c) Tournament selection with toursize = 2.
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3.2.3. Tournament Based Selection

In tournament based selection [47], K individuals chosen randomly from the popula-

tion are placed into a tournament and a winner is selected (usually the individual with the

best fitness). Tournament selection has many advantages; it is easy to code and efficient since

it does not require a sorting or scaling of individuals based on fitness as in ranking or roulette

wheel selection. It works on parallel architectures and the selection pressure can easily be

adjusted by decreasing or increasing the size of the tournament.

3.3. Crossover

Crossover operator is usually regarded as the most important operator in a genetic

algorithm. Crossover is a recombination process in which exchange of segments of between

two pairs of chromosomes called parents. Although there are many variants of crossover that

are tailored to the needs of the problem at hand, here we present some of the most common

crossover methods which can be regarded as blind (not problem specific).

• One Point Crossover: In one point crossover (1PTX) a crossover point is randomly

selected on the parent chromosome. Then the values beyond that point in the chromo-

some are swapped between the two parent chromosomes.

• N Point Crossover: Unlike one point crossover, n crossover points are randomly se-

lected on the parent chromosome. Then the values between odd and even crossover

positions are swapped.

• Uniform Crossover: In uniform crossover each gene of the first parent has a fixed

probability (usually 0.5) of swapping with the respective gene of the second parent.
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Figure 3.4. a) One point crossover b) N=2 point crossover c) uniform Crossover.

3.4. Mutation

Mutation is another important genetic operator whose purpose is to maintain the ge-

netic diversity between successive generations of population. With just crossover and with-

out mutation, it is usually impossible to generate new information not present in the pop-

ulation before unless crossover operator also has some mutational characteristics also. A

local optima is avoided by using a mutation operator which prevents the over-similarity of

the chromosomes in the population

The most traditional mutation in many binary coded representations is to simply flip

the value of an arbitrarily chosen gene. In many implementations, mutation is given very

low rates usually proportional to the length of the chromosome as too much mutation is
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inherently destructive to the solution quality.

3.5. Replacement

After the offspring have been generated by genetic operators such as selection, crossover

and mutation, those offspring have to be inserted into the population. Some common global

replacement strategies are as follows [48]:

• Pure Reinsertion: Generate as many offspring as possible and replace all parents by

this offspring.

• Uniform Reinsertion: Generate less offspring than parents and replace parents with a

uniform distribution.

• Elitist Reinsertion: Generate less offspring than parents and replace the worst parents.

• Fitness Based Reinsertion: Generate more offspring than needed and reinsert the best

offspring only.

Being the simplest replacement strategy, pure insertion is the simplest replacement

mechanism, each individual lives only one generation. It is quite probable that good individ-

uals will go extinct without producing any offspring. Combining elitism and fitness based

reinsertion saves such individuals going extinct quickly. At each generation, a number of

least fit individuals will be replaced with a number of best fit individuals. However, too

much elitism may cause a diversity loss in the population, therefore a good number of new

offspring has to be inserted to the later generations.

3.6. Memetic Algorithms

Similar to genetic algorithms, a memetic algorithm (MA) [49] is a population based

meta-heuristic for solving optimization problems. Because MAs usually combine local

search with crossover operators, they are also referred to hybrid genetic algorithms. Memetic

algorithms can be categorized into two based on where the local search operators are applied.

In a Baldwinian memetic algorithm [50], the local search is applied before the fitness is eval-

uated. The improvements of the local search are not saved in the individual and therefore
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acquired traits of the parents are not inherited to the children. In a Lamarckian memetic al-

gorithm [51], the local search is applied after the fitness is evaluated therefore acquired traits

of the the parents influence the children. Lamarckian MA algorithms are usually faster in

finding quality solutions with the risk of premature convergence. A Baldwinian MA would

be more resistant to diversity loss in the population but it is usually much more slower than

its Lamarckian counterpart.

It is assumed that a genetic algorithm is able to cover a broad range in the search land-

scape due to its population based nature, and a local search is able to find optimal solutions

in promising parts of the landscapes. Due to a local search component, a memetic algorithm

can also incorporate domain specific knowledge better than a blind genetic algorithm. There-

fore memetic algorithms are usually much more efficient in terms of computing resources

and tend to give state of the art results in many problems.

3.7. Multi-Objective Genetic Algorithms

Many real world optimization and search problems usually have multiple objectives.

As a consequence, there is no unique best solution to such kind of a problem but a good-

tradeoff between the solutions (the pareto optimal set). Evolutionary algorithms are desirable

method for MOPs because of their population based structure which can represent multiple

solutions to the problem.

A general multi-objective optimization problem can be defined as [52]:

minimize objective function F (X) = [f1(x), f2(x), ..., fk(x)] (3.1)

with the m inequality constraints:

gi(x) ≥ 0 i = 1, 2, ..., m (3.2)
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and with the p equality constraints:

hi(x) = 0 i = 1, 2, ..., p (3.3)

where k is the number of objective functions fi : Rn → R. The vector x = [x1, x2, ..., xn]T

is called the decision variable vector.

Many multi-objective optimization algorithms use the concept of domination where

two solutions are compared according to domination of one solution to another. Assume

there are M objective functions in the problem [53]. Let the operation i / j denote that i

is better than a solution j on a particular objective function N in set M . Similarly let the

operation i.j denote that the solution i is worse than j in that particular objective function N

in set M . Also let operators 6 and 7 denote the negative operations of / and . respectively.

Definition 1 (Pareto Dominance) A solution x1 is said to dominate another solution x2, if

following conditions are true:

• The solution x1 is no worse than x2 in all objectives: that is,

fj(x1) 7 fj(x2) ∀j = {1, 2, ..., M} (3.4)

• The solution x2 is strictly better than x2 in at least one objective, or

fk(x1) / fkx2) ∃k = {1, 2, ...,M} (3.5)

If any one of the above conditions is violated, the solution x1 does not dominate the solution

x2.

The dominance relation is transitive but not reflexive, symmetric or antisymmetric [53].

Interestingly however, if a solution x1 does not dominate solution x2, this does not imply that

x2 dominates x1.

Definition 2 (Non Dominated Set) Among a set solutions P, the non-dominated set of solu-



22

tions P’ are those which are not dominated by any member of the set P.

If the set P is the entire search space or P = S, then the non-dominated set P ′ is

called the pareto− optimal set. Like local and global optimal solutions in single-objective

optimization problems, there are local and global pareto optimal sets in multi-objective op-

timization problems.

Definition 3 (Globally Pareto-Optimal Set) The non dominated set of the entire feasible

search space S is the globally pareto-optimal set.

Definition 4 (Locally Pareto-Optimal Set) If ∀x in a set P , @y dominating any member of

the set P such that |y − x|∞ ≤ ε where epsilon is a small positive number, then solutions in

set P form a locally pareto-optimal set.

3.7.1. Implementations of Multi-objective Genetic Algorithms

In this section, some of the well-known multi-objective genetic algorithms are pre-

sented. A more detailed discussion of MOGAs can be found in [52].

3.7.1.1. Non-Dominated Sorting Genetic Algorithm (NSGA). In NSGA [54], the popula-

tion is ranked according to non-domination. All non-dominated individuals (pareto front) are

moved into the first category with a dummy fitness value proportional to the population size.

To preserve the diversity of the population, the individuals are shared with their dummy

fitness values. These first category individuals are later discarded and another category is

formed from the non-dominated individuals remaining in the population. This process con-

tinues until all individuals are categorized. Since lower category individuals would have

higher fitness values in this method, the likelihood of selection for crossover for these indi-

viduals are higher.

3.7.1.2. Multi Objective Genetic Algorithm (MOGA). In MOGA [55], the rank of an in-

dividual is determined by the number of individuals by which it is dominated. All non-

dominated individuals are given rank 1. The fitnesses of the individuals are assigned by
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interpolating from the best (rank 1) to the worst (rank n ≤ M , where M is the population

size).

3.7.1.3. Niched Pareto Genetic Algorithm (NPGA). In NPGA [56], two individuals are ran-

domly selected from the population and compared against a small subset (comparison set)

of individuals drawn from the population. If one individual is dominated by the compari-

son set and the other is not, then the latter is selected for crossover. If neither or both of

the individuals are dominated by the comparison set, the winner is decided through fitness

sharing.
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1: candidate1← random Individual from Population

2: candidate2← random Individual from Population

3: cand1Dominated← FALSE

4: cand2Dominated← FALSE

5: for i← 1 to comparisonSetSize do

6: comparisonSet[i]← random Individual from Population

7: end for

8: for i← 1 to comparisonSetSize do

9: if comparisonSet[i] dominates candidate1 then

10: cand1Dominated← TRUE

11: end if

12: if comparisonSet[i] dominates candidate2 then

13: cand2Dominated← TRUE

14: end if

15: end for

16: if cand1Dominated = FALSE AND cand2Dominated = TRUE then

17: Return candidate1

18: else if cand1Dominated = TRUE AND cand2Dominated = FALSE then

19: Return candidate2

20: else

21: nicheOfCandidate1← NicheCount(candidate1)

22: nicheOfCandidate2← NicheCount(candidate2)

23: if nicheOfCandidate1 < nicheOfCandidate2 then

24: Return candidate1

25: else

26: Return candidate2

27: end if

28: end if

Figure 3.5. Selection algorithm for niched pareto genetic algorithm
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4. LINEAR LINKAGE ENCODING FOR GROUPING PROBLEMS

Many search and optimization problems exhibit symmetries in the search spaces. Such

symmetries cause seemingly different solutions found by a search procedure to be equal to

the same location in the search space. This is certainly undesirable since it would force a

search algorithm to survey solutions which are already considered and thus would result an

(exponential) increase in the time required for the algorithm. Therefore, many researchers

have proposed symmetry breaking methods to prune redundant search spaces [57] [58].

In this chapter, a new representation scheme which eliminates the symmetry problem

in grouping problems is explained. Linear Linkage Encoding (LLE) was first proposed for

solving clustering problem by using a multi-objective genetic algorithm (MOGA) [7]. The

researchers used LLE and MOGAs to minimize the number of the number of clusters and

total within cluster variation (the sum of average distance of cluster elements to the center

of the cluster). This new representation is able to represent solutions of various clusters

in a fixed size chromosomes. Most importantly, LLE is able to reduce the search space

considerably.

4.1. Previous Representations in Grouping Problems

Before moving onto the details of linear linkage encoding, previous work on the rep-

resentational issues in grouping problems is considered. Most common representational

schemes in grouping problems are as follows:

4.1.1. Number Encoding

The most predominant representation in grouping problems is Number Encoding (NE)

[59]. In NE, each object is encoded with a group id indicating which group it belongs to.

For example the individual 2342123 encodes the solution where first object is in group 2,

second in 3, third in 4, and so on. However, it is easy to see that the encoding 1231412

represents exactly the same solution, since the naming or the ordering of the partition sets is
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irrelevant. The drawbacks of this representation are presented in [1] and it is pointed out that

this encoding is against the minimal redundancy principles for the encoding scheme [60].

4.1.2. Group Encoding

Another representation for grouping problems is Group Encoding (GE) [10]. The ob-

jects which are in the same group are placed into the same partition set. For instance, the

sequence above can be represented as (1, 4, 6)(2, 7)(3)(5). The ordering within each partition

set is unimportant, since search operators work on groups rather than objects unlike in NE.

However the ordering redundancy among groups still holds. For instance, (2, 7)(3)(5)(1, 4, 6)

would again represent the same solution.

4.1.3. Hybrid Grouping Genetic Algorithm representation

In the hybrid grouping genetic algorithm, Falkenauer [61] used a special representation

for solving grouping problems. In HGGA standard number encoding is augmented with

a group part encoding each group on a one gene for one group basis. For example the

sequence above is represented as two parts: item part and group part 1234567 : 1231412

which means first item is in group 1, second item is in group 2. This has the same redundancy

problem of group encoding as 1234567 : 4124341. The difference from group encoding is

that traditional search operators work on the group part of the encoding.

4.2. LLE Implementation

LLE can be implemented using an array. Let the entries in the chromosome be indexed

with values from 1 to n. Each entry in the array then holds one integer value which is a link

from one object to another object of the same partition set. With n objects, any partition set

on them can be represented as an array of length n. Two objects are in the same partition set

if either one can be reached from another through the links. If an entry is equal to its own

index, then it is considered as an ending node. The links in LLE are unidirectional, thus;

backward links are not allowed. In short, in order to be considered as a valid LLE array, the

chromosome should follow the following two rules:
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• The integer value in each entry is greater than or equal to its index but less than or

equal to n.

• No two entries in the array can have the same value; the index of an ending node is the

only exception to this rule.

Formally, let the set of elements to be clustered be E = {e1, e2, ..., en} and let C =

[g1, g2, ..., gn] be a sample chromosome in the population. Assume V is a function that

denotes the value of a gene and I is the function which returns its index. Then, the following

two properties hold for the LL encoding.

∀gi ∈ C[I(gi) ≤ V (gi) ≤ n]. (4.1)

∀gi, gj ∈ C[V (gi) = V (gj) =⇒ (i = j)∨((i > j)∧(V (gi) = I(gi)∨((i < j)∧(V (gj) = I(gj))]

(4.2)

If ei and ej are two objects where i < j then,

ϕ(ei, ej) = [V (gi) = I(gj)] ∨ ∃gk[(i < k < j) ∧ ϕ(ei, ej) ∨ V (gk) = I(gj)] (4.3)

Figure 4.1. LLE array and LOP graphs

In LLE, the items in a group construct a linear path ending with a self referencing last

item. It can be represented by the labeled oriented pseudo (LOP) graph. A LOP Graph is a

labeled directed graph G(V,E), where V is the vertex set and E is the edge set. A composi-

tion of G is a grouping of V (G) into disjointed oriented pseudo path graphs G1, G2, ....Gm

with the following properties:
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• Disjoint paths:
⋃m

i=1 V (Gi) = V (G) and for i 6= j, V (Gi)
⋂

V (Gj) = Ø

• Non-backward oriented edges: If there is an edge e directed from vertex vi to vk then

i ≤ k.

• Balanced Connectivity

a. |E(G)| = |V (G)|
b. each Gi has only one ending node with an in-degree of 2 and out-degree of 1.

c. each Gi has only one starting node whose in-degree = 0 and out degree = 1

• All other |V (Gi)| − 2 vertices in Gi have in-degree = out-degree = 1.

Du [62] and Korkmaz [63] have used the following to prove that there is a unique

mapping between possible partitions and the chromosomes of LLE.

Theorem 1 Given as set of items S, there is a one to one mapping between the chromosomes

of LLE and the possible partitions.

Lemma 1 Linear linkage encoding is an implementation of the LOP graph.

Proof 1 Each gene in the LLE has one out-link therefore an item represented by a gene can

belong to only one group. LLE represents disjoint partition sets. Hence, the first property of

LOP is satisfied. The second property of the LOP graph is equivalent to the first constraint

of LLE. The balanced connectivity property of the LOP graph is due to the second constraint

of LLE.

Lemma 2 Given a set of items S, there is one and only one composition of LOP Graphs

G(V,E) for each grouping of S, where |V | = |S|.

Proof 2 Let the items in S be indexed from 1 to n and consider a partition P (S) of S.

Assuming the items in each group are ordered in ascending order and each item is directed

to the next higher indexed item in that group. Adding a self-referencing link to the last item

in that cluster, we will have a LOP graph. Therefore, there exists at least one composition

of G for each partition. Since all index values are distinct, there can be only one possible

ascending order within a group for a possible partition. Hence, there exists only one and

one only composition of G for each partition. By definition, a LOP graph represents only a

single partition.
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Based on Lemma 1 and Lemma 2, in LLE there is a one-to-one mapping between the chro-

mosomes and partitioning solutions.

Corollary 1 The number of chromosomes corresponding to all possible partitions is given

by the nth Bell number.

The number of ways that a set of n elements can be partitioned into disjoint nonempty

subsets is called the Bell number which is denoted by B(n). We have therefore

B(n) =
n∑

k=0

S(n, k) n ≥ 1 (4.4)

where S(n, k) are the Stirling numbers of the second kind. Stirling numbers is S(n, k) is

the number of ways that a set of cardinality n can be partitioned into exactly k nonempty

subsets. Stirling numbers of the second kind can be calculated as follows:

S(n, k) =
1

k!

k∑
i=0

(−1)i

(
k

i

)
(k − i)n (4.5)

According to the first observation, there is a one to one correspondence between the chro-

mosomes in LLE and the possible partition sets. The number of different chromosomes in

LLE then can be denoted by the nth Bell number B(n). Compared to number encoding, LLE

allows a nn

B(n)
times smaller solution space.

4.3. Repair Procedure for Linear Linkage Encoding

Traditional operators in many search methods may violate the two key properties of

Linear Linkage Encoding mentioned before. To repair backward links, the procedure moves

from the first element to the last. If it sees a backward link, then that link is reversed. To

repair the entries pointing to the same value, the repair procedure moves from the last item

of the array to the beginning. At each step, algorithm checks whether there is any element

same with the current value from that position to the end of the array. If so, it reassigns the

value of the element to the point where previous value is same.
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Require: One chromosome nonLLEchromosome violating LLE rules.

Ensure: One chromosome LLEchromosome conforming to LLE rules.

for i← 1 to arraysize do

if value[i] < i then

value[value[i]← i

end if

end for

for i← arraysize to 1 do

repairMode← TRUE

k ← value[i]

if k 6= i then

repeat

for j ← i + 1 to j < k do

if value[i] 6= value[j] then

value[i]← k ← j

repairMode← TRUE

Exit for

end if

end for

until repairMode = false

end if

end for

Figure 4.2. Repair procedure for linear linkage encoding

4.4. Initialization

In the original LLE [7], authors used a random initialization method where each gene

in a chromosome is assigned a value between 1 and the number of objects n. However such a

method produces chromosomes which violate the rules of LLE. Therefore a repair procedure

described above has been used to correct such violations. However such an initialization
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tend to result in chromosomes with few number of groups. In order to rectify it, authors

have manually injected a number of chromosomes with higher number of groups into the

population.

4.5. Crossover and Mutation

In the first implementation of LLE [7], researchers used traditional one point crossover

which allows different clusters to exchange partial contents. One point crossover can also

split a cluster into two.

As a mutation operator, researchers used a new mutation method which they called as

grafting mutation. In grafting mutation, the membership of set of objects rather than just a

single object is changed. The details of this mutation is described in Figure 4.3.

1: g ← Random(1, N)

2: Ci ← GroupOf(g)

3: e← EndingNodeOf(Ci)

4: m← Random(1, numberOfClusters)

5: if m = numberOfClusters AND g 6= e then

6: Split Ci into Ci1 and Ci2

7: EndingNodeOf(Ci1)← g

8: else

9: Split Ci into Ci1 and Ci2

10: EndingNodeOf(Ci1)← g

11: EndingNodeOf(Ci2)← e

12: f ← Random(e, g)

13: value[f ]← EndingNodeOf(m)

14: end if

Figure 4.3. Grafting mutation in linear linkage encoding
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5. A MULTI-OBJECTIVE GENETIC ALGORITHM FOR GRAPH

COLORING AND TIMETABLING

The main intention in this chapter is to propose a multi objective solution foundation

to multi-constraint timetabling problems. None of the efficient graph coloring algorithms in

the literature empowers genetic operators as their main search mechanism. These methods

usually rely on local search operators. Therefore this chapter deals with the applicability

of linear linkage encoding on grouping problems by using suitable crossover and mutation

operators. A multi-objective genetic algorithm employing a weak elitism is used and the

main search operator of this approach is a mutation aided by a crossover operator [64].

5.1. Initialization

Since the proposed method is tested on a minimal coloring problem, it is desirable

to initialize the population with individuals having different number of colors. Setting the

range of number of colors too wide will unnecessarily increase the search space and thus

the execution time. For example, in a graph instance with 128 vertices and with a predicted

chromatic number of 20, setting the range between the minimum and maximum values (1

and the |V | which is 128 in this case) will force the algorithm to survey individuals far away

from the optimal coloring. It is also undesirable to set the range too narrow either. Such a

scheme will prevent promising individuals with different number of colors from cooperating

through crossover and mutation.

There are various methods for finding tight lower and upper bounds by using cliques,

maximal degree of the graph, and so on [65]. Since exact or approximate chromatic numbers

in the test instances are already known, these bounds are set manually in this study.

In the experiments, a population with individuals having different number of colors

and an external population which holds the best individuals with the minimal conflicts for

a specific number of colors within a search range (lowerBound ≤ k ≤ upperBound) are
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used. In order to create an individual, first k is determined, then a k-colored individual is

randomly created. An external smart initialization method is not used to reduce the edge

conflicts in order not to give any bias to our crossover operators and to let the multi-objective

evolutionary method do the search.

5.2. Selection

A k − coloring problem is solved when the number of conflicting edges is zero. If a k

coloring solution is obtained, k + 1 colorings can also be generated by dividing independent

sets into two. It might be possible to unite two sets in a k+1 coloring to obtain a k−coloring.

Therefore, if the chromatic number lies within the upper and lower bounds, the pareto front

will almost be a straight line along the color axis with zero conflict if the lower bound is set

close to the chromatic number. A restricted multi-objective method might work efficiently

on a search range within specified bounds around the chromatic number.

As a multi-objective genetic algorithm, a modified version of Niched Pareto Genetic

Algorithm (NPGA) described in [56] is used. In NPGA, two candidate individuals are se-

lected at random from the population to be one of the mates. A comparison set is formed

from randomly selected individuals within the population. Each candidate is then compared

against each individual in the comparison set. If one candidate is dominated by the compar-

ison set (which means it is worse for every part of the objective function than any individual

in the comparison set) and the other is not, then the latter is selected for reproduction. If

neither or both are dominated by the comparison set, then niching is used to select a winner

mate. The size of comparison set (tdom) allows a control over the selection pressure. The

comparison set size is preset to around ten percent of the population size as suggested in

[56].

When neither or both candidates are dominated by the comparison set, the candidate

with a smaller niche count is selected for reproduction. The niche value mi of the ith indi-



34

vidual is calculated by:

mi =
∑
j∈pop

sh(d[i, j]) (5.1)

where d[i, j] is the distance between two individuals according to objective function values

and sh(d) is the sharing function which is:

sh(d) =





1 if d = 0

1− d/µshare if d < µshare

0 if d ≥ µshare.

(5.2)

and distance measure is Manhattan distance in terms of color and conflict values in the indi-

viduals.

d[i, j] = |ci1 − cj1|+ |ci2 − cj2| (5.3)

5.3. Objective Functions

The objective functions used in this study are quite straightforward. One of them

measures the number of color sets and the other measures the number of conflicting vertices.

The goal is to minimize both of this contradictory objective functions.

5.4. Redundancy and Genetic Operators

Although LLE is a non-redundant representation for grouping problems in theory,

this advantage practically disappears if the search operators do not adhere to this princi-

ple. Therefore, a more desirable option is to make the search non-redundant additional to the

representation. For example, consider a basic hill climbing mutation which sends one vertex

from one set to another. This is analogous of changing a gene value in the number encoding.

If majority of the group ids of the items can be maintained for a long period of time, then
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it is quite possible to make a low-redundant search even on a highly redundant encoding

such as NE. This is one of the reasons local search based methods are quite successful on

grouping problems. Because of the small perturbations on the search space, these methods

not only preserve the building blocks on the candidate solution but also are able to operate

on a low-redundant small region of the large search landscape.

The same advantage diminishes for a crossover operator which causes huge jumps on

the search space. It is possible to keep the majority of the group ids of the items fixed by using

traditional crossovers like one-point or uniform crossover. Such methods, however do not

preserve the groups which are the building blocks themselves. A crossover operator should

preserve the order of the colors as long as possible. Two ordering mechanism which assigns

group ids to the groups after crossover and mutation are investigated within the context of

LLE. These two redundancy elimination mechanisms are based on the cardinality of the

groups and the lowest index number at each group. In [11], the authors investigated the

effect of these two methods on Graph Coloring by using 0/1 integer linear programming

SAT solvers.

5.4.1. Cardinality Based Ordering

In Cardinality Based Ordering, each group receives a group id according to its car-

dinality (set size). Groups are sorted according to their cardinality and the group with the

highest cardinality will be assigned group id 1, the second highest will be identified as group

2, and so on. For example groups (1, 3)(5)(2, 4, 6) are indexed as V1 = (2, 4, 6), V2 = (1, 3),

and V3 = (5). Since more than one group can have the same cardinality, the ordering might

not be unique.

5.4.2. Lowest Index Ordering

In Lowest Index Ordering, the smallest index in each group is found first, then the

group with the smallest index number is assigned group id 1, the group with the second small-

est index number is assigned group id 2, and so on. For example, groups (1, 3)(5)(2, 4, 6)

are indexed as V1 = (1, 3), V2 = (2, 4, 6), and V3 = (5). Since each group has one unique
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lowest index, the ordering is always unique.

5.5. Crossover

Linear linkage encoding can be implemented using one dimensional arrays, allowing

applicability of the traditional crossover methods such as, one point or uniform crossover.

However, it is observed during experimentations that these crossovers can be too destructive

especially for graph coloring due to the danger of introducing new links in the LOP graph

absent in both parents. Also since the building blocks [45] in graph coloring are strictly

large independent sets (not even independent set segments), there is a risk of destructing

these building blocks. However, for small problem instances, one-point crossover in LLE is

reported to generate satisfactory results for clustering problem [7]. (This might be due to the

fact that building blocks may be a segment of clusters rather than the whole cluster.) Three

types of crossover operators are compared using LLE representation.

5.5.1. Greedy Partition Crossover

Graph Coloring Problem can be considered as partitioning the graph into independent

sets. Therefore, by preserving the large independent sets, the vertices in non-independent

sets can be forced to form independent sets as well.

Greedy Partition Crossover (GPX) was proposed by Galinier and Hao [10] in their

Hybrid Graph Coloring Algorithm. The idea is to transmit the largest set (group) from one

parent, then to delete the vertices in this largest set from the other parent. This transmission

and deletion process is repeated on both parents successively until all of the vertices are

assigned to the child.

Two forms of Greedy Partition Crossover by following the rules of Cardinality and

Lowest Index Ordering are implemented. The difference is just assigning the color ids to

the groups after the crossover. In GPX Lowest Index Crossover (GPX-LI), the groups with

lower index numbers are given lower color ids, whereas in GPX Cardinality Based Crossover

(GPX-CB), the lower color ids are assigned to the groups with higher cardinality. A general
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pseudocode of GPX is presented in Figure 5.1.

Consider two parents in Figure 5.2. One can obtain the child as follows: Largest Set in

parent 1 is (3, 4, 5, 6). This set is transmitted to the child and 3, 4, 5 and 6 are deleted from

parent 2. After this deletion largest set in parent 2 (1) is transmitted to the child. Finally

(2) is assigned as the last group. After sorting according to lowest index ordering (GPX-

LI), the coloring then becomes C1 = (1), C2 = (2), C3 = (3, 4, 5, 6). If the groups are

sorted according to their cardinality (GPX-CB), the coloring is C1 = (3, 4, 5, 6), C2 = (1),

C3 = (2). The time complexity of GPX is O(k2 + n) where k is the number of groups and n

is the number of vertices.

Require: Two Parents - parent1 and parent2 in LLE form.

Ensure: One offspring in LLE form.

1: currentParent← Random(parent1, parent2).

2: repeat

3: largestSet← Find largest set in currentParent.

4: transmit unassigned the vertices (links) in the largestSet to offspring.

5: mark transmitted vertices as assigned.

6: if currentParent = parent1 then

7: currentParent← parent2.

8: else

9: currentParent← parent1.

10: end if

11: until all vertices are assigned

12: if Lowest Index Ordering is Used then

13: sort group ids according to lowest index number (GPX-LI).

14: else

15: sort group ids according to cardinality (GPX-CB).

16: end if

Figure 5.1. Pseudocode of the greedy partition crossover
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Both GPX-LI and GPX-CB are applicable to other representations such as number or

group encodings. Our intention of using these crossovers is to create crossover operators

applicable only to LLE. The following two crossovers are inspired from GPX.

Figure 5.2. a) Two Parents in LLE array and LOP graph form. b) Resulting offspring from

greedy partition crossover - lowest index ordering c) Resulting offspring from greedy

partition crossover - cardinality based ordering. d) Resulting offspring from lowest index

first crossover. e) Resulting offspring from lowest index max crossover.

5.5.2. Lowest Index First Crossover

In Lowest Index First Crossover (LIFX), the goal is to transmit the groups beginning

with lowest index numbers. LIFX works as follows:
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A parent is randomly selected. Beginning with the lowest index (vertex) which has

not been assigned yet, the vertices are transmitted to the child by following the links. If the

vertices along the path are assigned before, they are skipped. The process is repeated by

successively changing the parents for transmission until all of the vertices are assigned to the

child. A general pseudocode of LIFX is presented in Figure 5.3.

Require: Two Parents - parent1 and parent2 in LLE form.

Ensure: One offspring in LLE form.

1: i← 1

2: repeat

3: currentParent← Random(parent1, parent2).

4: lengthOfParent←Calculate the path length of currentParent starting from i.

5: transmit unassigned vertices (links) in the parentToSelect to offspring.

6: mark transmitted vertices as assigned.

7: i← next unassigned vertex.

8: if currentParent = parent1 then

9: currentParent← parent2.

10: else

11: currentParent← parent1.

12: end if

13: until all vertices are assigned

Figure 5.3. Pseudocode of the lowest index first crossover

The application of LIFX on the parents in Figure 5.2 would be as follows: Assuming

we begin with first parent, current lowest index number is 1. Therefore, (1, 2) is transmitted

to the child. The current lowest index number is now 3. Switching to parent 2, we copy (3, 6)

as the next group. Switching back to parent 1, current lowest index is 4, therefore (4, 5) is

copied to the child. Final coloring then becomes: C1 = (1, 2), C2 = (3, 6), C3 = (4, 5). The

time complexity of LIFX is O(n) where n is the number of vertices.

Note that this crossover prioritizes groups beginning with the lowest index number,
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therefore it reduces the sizes of the groups beginning with higher index numbers. This is in

concordance with the nature of LLE, because the number of possible values for the higher

index locations is lower.

5.5.3. Lowest Index Max Crossover

In Lowest Index Max Crossover (LIMX), the child is generated with two objectives:

Transmit large groups to preserve Cardinality Based Ordering, and to transmit groups begin-

ning with lowest index number (to preserve Lowest Index Ordering). Therefore this method

can be considered as an amalgamate of LIFX and GPX. LIMX works as follows:

Require: Two Parents - parent1 and parent2 in LLE form.

Ensure: One offspring in LLE form.

1: i← 1

2: repeat

3: lengthOfParent1← Calculate the path length of parent1 starting from i.

4: lengthOfParent2← Calculate the path length of Parent1 starting from i.

5: if LengthOfParent1 < LengthOfParent2 then

6: parentToSelect← parent1.

7: else

8: parentToSelect← parent2.

9: end if

10: transmit unassigned vertices (links) in the parentToSelect to offspring.

11: mark transmitted vertices as assigned.

12: i← next unassigned vertex.

13: until all vertices are assigned

Figure 5.4. Pseudocode of the lowest index max crossover

Beginning with the lowest index number (vertex) which has not been assigned first

we calculate the length of the links (path length) in both parents. Already assigned vertices
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are not counted in this link length calculation. This allows finding the largest set in parents

beginning with the lowest index number. Then the links (and thus vertices) are transmitted

to the child from the parent with the greater link-length. After that next unassigned lowest

index number is found and the process is repeated until all vertices are assigned. A general

pseudocode of LIMX is presented in Figure 5.4.

Application of LIMX to parents in Figure 5.2 is as follows: Current lowest index is 1.

(1, 3, 6) is longer than (1, 2) so (1, 3, 6) is copied to the child. Current lowest index is now

2. (2, 4) is larger than (2) so it is transmitted to the child. Finally (5) is copied to the child as

the last group. At the end of LIMX the coloring then becomes: C1 = (1, 3, 6), C2 = (2, 4),

C3 = (5). The time complexity of LIMX is O(n) where n is the number of vertices.

5.6. Mutation

In this study, a mutation scheme that sends a selected conflicting vertex x from its color

set to the best possible other one is used. A tournament method is used to select a vertex for

transfer. A percentage of conflicting vertices are taken into a tournament and the vertex with

the highest conflict in this set is transferred to a best color available.

This mutation can increase or decrease the number of colors by one. The number of

colors will increase if a one vertex group is introduced by the operator and it will decrease if

a one vertex group is merged with another one.

As aforementioned, assigning group ids after crossover is essential for low redundancy

and the success of the mutation. In GPX-LI, LIMX and LIFX, the ids are assigned according

to Lowest Index Ordering whereas in GPX-CB the ids are assigned according to Cardinality

Based Ordering.

5.7. Replacement

In the simulations, a trans-generational replacement with weak elitism is employed.

At each generation, λ offspring are produced by λ (non elitist)+ µ (elitist individuals, one
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for each number of colors within the searching range) parents to replace the λ non elitist

parents. By using elitism to hold the best conflict per number of colors a bias to number of

colors constraint is given.

5.8. Experimental Results

Several graphs from the DIMACS Challenge Suite [9] are used in these tests. The

general test setup is summarized in Table 5.1.

Table 5.1. Test setup for graph coloring instances

Test Machine: Pentium 4 2Ghz with 256MB Ram

Compiler: GCC C++ 3.2 with -O2 flags

No of Generations: 10000

Population Size: 25 percent of the number of vertices in graph

Comparison Set Size: 10 percent of the population size

Niche Size: 5.0

Crossover Rate: 0.25

Mutation Rate: a single mutation is enforced

Number of Runs: 50 for each instance

In Table 5.2, the characteristics of the test instances sampled from the DIMACS test

suite are presented. Table shows the name, number of vertices( |V |), number of edges (|E|),
edge density (%) and chromatic number (χ(G)) of the instances.

In all the tests, the mutation count is set to 1, and crossover rate is fixed at 0.25. Higher

crossover rates have negative impact in the performance. In this setup, the algorithm is more

like a genetic hill climbing method. Since the chromatic number of these graphs are already

known, the range is set manually according to the chromatic number χ(G) .

Note that the primary intention is to compare the crossover operators in the context of
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Table 5.2. Data characteristics of the problem instances from the DIMACS suite

Instance
|V | |E| % χ(G)

DSJC125.5 125 3891 0,50 ?

DSJC125.9 125 6961 0,90 ?

zeroin.1.col 211 4100 0,19 49

zeroin.2.col 211 3541 0,16 30

zeroin.3.col 206 3540 0,17 30

DSJC250.1 250 3218 0,10 ?

DSJC250.5 250 15668 0,50 ?

DSJC250.9 250 27897 0,90 ?

flat300 20 300 21375 0,48 20

flat300 26 300 21633 0,48 26

flat300 28 300 21695 0,48 28

school1 nsh 352 14612 0,24 14

le450 15a 450 8168 0,08 15

le450 15b 450 8169 0,08 15

le450 15c 450 16680 0,17 15

le450 15d 450 16750 0,17 15

le450 25a 450 8260 0,08 25

le450 25b 450 8263 0,08 25

le450 25c 450 16680 0,17 25

le450 25d 450 16750 0,17 25

DSJC500.1 500 12458 0,10 ?

DSJC500.5 500 62624 0,50 ?
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LLE. As a result, the experiments are run for a limited period of time. (The longest time

required for one run is around 5 minutes for cars91 problem instance). This might have

resulted in performance hit for large problem instances which may need an increase in the

maximum number of generation.

Unfortunately, a very poor performance from one point crossover has been observed

in the experiments. It was not even able to generate solutions in the color search range

specified. Therefore the experimental results of one point crossover are not included.

In Table 5.3, the best solutions obtained after 50 runs in DIMACS instances by using

the four crossover operators are presented. Figure 5.5 represents the average color number

of 50 runs for each instance in the DIMACS test suite. The results show no significant

statistical differences between crossover operators except for a few instances. For example

for flat300 20 graph, LIMX was able to find a best 20 coloring while the other crossovers

were very far from the optimal. However, for this graph, average colorings found with all

crossovers and standard deviation are quite high. This is possibly due to the natural difficulty

of flat graphs. Another slight difference appeared in register allocation graphs (zeroin.X.col

graphs) where LIFX performed worst while GPX crossovers performed best.

The performance of different crossover operators that can be used with LLE is ana-

lyzed. It is also important to compare these with the current results in the literature. Graph

coloring algorithm results of Kirovski et al. [66] for two set of parameters (Kirovski B

and Kirovski C) are given in Table 5.3 for this comparison. Kirovski’s algorithm is based

on divide and conquer paradigms, global search for constrained independent sets, assign-

ment of most-constrained vertices to least constraining colors,reuse and locality exploration

of intermediate solutions, post processing lottery-scheduling iterative improvement. An-

other important aspect is that Kirovski’s algorithm is not dependent on a fixed k for the

number of colors. With respect to Kirovski’s solutions, the crossovers gave similar and for

some instances better results however when the instance becomes larger and more difficult,

Kirovski’s algorithm performs better.

Table 5.4 presents some instances taken from the Carter’s Benchmark [8]. We again
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Figure 5.5. Average number of groups for instances in DIMACS benchmark.
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Table 5.3. Best colorings obtained for the instances in the DIMACS benchmark suite

Instance χ(G) LIMX LIFX GPX-LI GPX-CB Kirovski-B Kirovski-C

DSJC125.5 ? 18 18 18 18 19 18

DSJC125.9 ? 44 44 44 44 45 45

zeroin.1.col 49 49 50 49 49 49 49

zeroin.2.col 30 31 35 31 31 30 30

zeroin.3.col 30 31 35 30 31 30 30

DSJC250.1 ? 9 9 9 9 9 9

DSJC250.5 ? 31 31 31 31 30 30

DSJC250.9 ? 75 75 75 74 77 77

flat300 20 20 20 31 27 32 20 20

flat300 26 26 34 34 34 34 32 28

flat300 28 28 34 34 34 34 33 32

school1 nsh 14 14 14 14 14 16 14

le450 15a 15 16 16 16 16 17 17

le450 15b 15 16 16 16 16 17 17

le450 15c 15 23 23 23 23 22 21

le450 15d 15 23 23 23 23 22 21

le450 25a 25 25 25 25 25 25 25

le450 25b 25 25 25 25 25 25 25

le450 25c 25 28 29 28 28 28 28

le450 25d 25 28 28 28 28 ? ?

DSJC500.1 ? 14 14 14 14 14 14

DSJC500.5 ? 55 55 55 55 51 50
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Table 5.4. Data characteristics of the problem instances from the Carter benchmark suite

Instance
|V | |E| %

Hecs92 81 1363 0.42

Staf83 139 1381 0.14

Yorf83 181 4691 0.29

Utes92 184 1430 0.08

Earf83 190 4793 0.27

Tres92 261 6131 0.18

Lsef91 381 4531 0.06

Kfus93 461 5893 0.06

Ryes93 486 8872 0.08

Carf92 543 20305 0.14

Utas92 622 24249 0.13

Cars91 682 29814 0.13

present the number of vertices, edges and edge density of these graphs in this table. Table

5.5 represents the best colorings obtained after 50 runs. In Figure 5.6, the average colorings

of 50 runs are presented.

For the problem instances in the Carter’s timetabling benchmark, again, a significant

difference among crossover operators is not observed. However, LIMX has a slightly better

performance in terms of best and average color (group) number. LIMX gave the best color-

ings in staf83 and lsef91 instances while others were one color behind it. Yet, the difference

between average colorings and standard deviation is not statistically significant for almost

all instances.

The best colorings after 10000 generations are compared with some of the results from

the literature (Carter et al. [8], Caramia et al. [67] and Merlot et al. [68]) in Table 5.5. Like

DIMACS instances, the performance of the graphs with vertices above 500 suffered due to

the limit on the maximum number of generations. For problem instances, the crossovers
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Figure 5.6. Average number of groups obtained for instances in Carter’s Benchmark.

Table 5.5. Best colorings obtained for the instances in the Carter’s benchmark suite

Instance LIMX LIFX GPX-LI GPX-CB Carter Caramia Merlot

Hecs92 17 17 17 17 17 17 18

Staf83 13 14 14 14 13 13 13

Yorf83 20 20 20 20 19 19 23

Utes92 10 10 10 10 10 10 11

Earf83 23 24 24 23 22 22 24

Tres92 21 21 21 21 20 20 21

Lsef91 17 18 18 18 17 17 18

Kfus93 20 20 20 20 19 19 21

Ryes93 23 23 23 23 21 21 22

Carf92 36 36 36 36 28 28 31

Utas92 38 39 38 38 32 30 32

Cars91 36 36 37 35 28 28 30
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gave similar results in terms of best grouping obtained. Generally they obtained colorings

equal or one color behind colorings of Carter et. al and Caramia et. al, and better than of

Merlot et. al.

Full test results are presented with average best coloring found, standard deviation, and

best coloring of 50 runs for each crossover operator in Appendix A.
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6. A HYBRID GENETIC ALGORITHM FOR BIN PACKING

In this chapter we present a single-objective genetic algorithm for bin packing problem.

The algorithm incorporate LLE as a representation, one point crossover for a recombination

operator and utilizes first-first decreasing heuristic with an additional replacement mecha-

nism for well-filled bins.

6.1. Initialization

The individuals are initialized using a first fit heuristic described in Chapter 2 and

resulting chromosome is converted to LLE form. In order not to have the same individual

for the whole population, a random permutation of the items are fed to the first-fit heuristic.

At the end of the initialization it is ensured that the capacity of each bin is not exceeded.

6.2. Fitness Function

A straightforward fitness function would be just taking the inverse of the number of

bins. However, as pointed by Falkenauer [61] as well, such a fitness function will result an

unfriendly fitness landscape in which many combinations with one more bin than optimal

solution will have the same fitness value. Instead, the function proposed by [61] is used in

this study:

f(s) =

∑N
i=1(Fi/C)k

N
(6.1)

In this formula, N is the number of bins, Fi is the fill of bin i and C is the maximum bin

capacity, while k is the parameter of importance of well-filled bins. Setting k to 1 is the

same as using the inverse of the number of bins while increasing k above 1 gives a higher

fitness value to solutions comprised of more well-filled bins. Falkenauer reports that 2 is the

optimal number for k.



51

6.3. Selection

A standart tournament selection with tournament size t is used in this study. It is

observed that using higher selection pressure yields better result.

6.4. Crossover

As a crossover operator, mainly traditional one point crossover is adopted. After one

point crossover, the resulting chromosome may violate the rules of LLE therefore a repair

mechanism described in chapter 4 is applied.

Require: Two Parents - parent1 and parent2 in LLE form.

Ensure: Two offspring in LLE form.

1: for i← 1 to listSize do

2: endingParent1← FindEndingNode of value[i] in parent1

3: endingParent2← FindEndingNode of value[i] in parent2

4: whichParent← random(TRUE, FALSE)

5: if whichParent = parent1 then

6: value[i] in child1← endingParent1

7: value[i] in child2← endingParent2

8: else

9: value[i] in child1← endingParent2

10: value[i] in child2← endingParent1

11: end if

12: end for

13: Repair(child1)

14: Repair(child2)

Figure 6.1. Pseudocode of the modified uniform crossover

Apart from one point crossover, LIMX described in graph coloring algorithm and tra-

ditional uniform crossover were also used in the tests. A modified uniform crossover method
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described in [63] to be used in clustering problem with LLE has also been tested. In the

modified uniform crossover (MUX), instead of the actual values like in uniform crossover,

the value of the ending node of the group in which the item belongs to is passed to the off-

spring. This ensures groups were not separated. It is observed that this crossover tends to

combine the groups whose elements have the same ending node. The pseudocode of the

MUX is presented in Figure 6.1.

After crossovers are applied a repair mechanism to eliminate double links to a node is

necessary. The repair mechanism described in Section 4.3 is used.

6.5. First Fit Decreasing Rearrangement

Due to the nature of the crossover operators, the resulting individual may have bins

whose capacities are exceeded and thus may need an additional repair procedure apart from

the usual LLE repair mechanism. This repair procedure checks all of the bins and remove

randomly selected items from the over-filled bins until the capacity is not exceeded anymore.

The removed items are reinserted into the rest of the bins using a first fit heuristic. First fit

decreasing, a variant of first fit in which items are sorted in decreasing order of size before

insertion, has also been used. Both first fit and first fit decreasing can be implemented to use

O(nlgn) time where n is the number of items.

Like previous algorithms of Falkenauer [12] and reduction algorithm of Martello and

Toth [43], a procedure based on the domination criterion has been adopted. When an excess

item is to be inserted back to the solution, it is compared with the items already present in the

bins first. An excess item replaces an item in the bin while not causing an overfill in the bin

and the replaced item is put into the excess items list. This procedure helps to create more

well-filled bins.

In all first fit rearrangement heuristics, lowest-index based ordering which is described

in Chapter 5 is used. Due to the nature of the bin packing instances, cardinality based order-

ing will be no different random ordering therefore it is not used.



53

6.6. Mutation

In mutation, randomly chosen k bins are destroyed and contents of these bins are re-

distributed to rest of the bins using first fit heuristic. In our experiments we have observed

that the performance of the algorithm is closely related with the parameter k, the number of

bins that should be removed. Different values of k have been tested.

6.7. Replacement

For a replacement method, a simple trans generational genetic algorithm with weak

elitism is used. Best n individuals with the best fitness value are preserved and other indi-

viduals are replaced with the offspring.

6.8. Experimental Results

In bin packing tests, two sets of test instances provided by Falkenauer [12] are used.

In the first set, the maximum bin capacity is set to 150 and each integer item is randomly

generated from a uniform distribution between 20 and 100. Falkenauer reports that the results

of the Martello and Toth [43] reveal this distribution gives most difficult problems for their

method. Falkenauer generated instances of this kind with the number of items 120, 250, 500

and 1000 with 20 instances each.

In the second set, the item sizes are drawn from the range (0.25, 0.50) to be packed

into bins of maximum capacity 1. In these instances, a well-filled bin must contain one large

item and two small items that is why Falkenauer referred them as ’triplets’. Even though it

is possible to pack two large items or three small items into one bin, this results an inevitable

loss of space. [12] points out a similarity between triplets and 3SAT which is considered as

the most difficult kSAT problem. Falkenauer finally points out that bin packing instances

are easier to approximate when the number of items to packed into a bin exceeds three, so

’triplets’ are the most difficult bin packing instances.

In order to preserve the difficulty of the problem, generated instances have known
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local optima with maximum bin capacities of 1000 and a large item size sl is randomly

drawn uniformly from the range (380, 490). A small item size ss1 is drawn uniformly from

the range. Finally a second small item size ss2 is set as 1000− sl − ss1. Triplets of 60, 120,

249 and 501 items with 20 instances each are then generated.

The general test setup is given on Table 6.1:

Table 6.1. Test setup for bin packing instances

Test Machine: Pentium 4 2Ghz with 256MB Ram

Compiler: GCC C++ 3.2 with -O2 flags

Max Number of Generations: 500

Population Size: 100

Tournament Size: 10

Crossover Rate: 1.00

Mutation Rate: 1, 2 or 4 bins are destroyed at random

Repair Mechanism: First Fit (FF) and First Fit Decreasing (FFD)

Number of Runs: 1 for each instance in the set (total 20 runs)

For consistency with the previous experiments of Falkenauer [12] and Martello [43],

each instance in one set is tested only once. This is because all instances in one set has the

same characteristics of distribution and number of items.

6 sets of tests are carried out. The performance of four crossover operators (one point

crossover - 1PTX, lowest index max crossover - LIMX, uniform crossover - UX and mod-

ified uniform crossover - MUX) are tested using first fit (FF) and first fit decreasing (FFD)

heuristic. The mutation rate (the number of bins destroyed) is varied as 1, 2 and 4. In order to

compare in a fixed heuristic and mutation rate setting, a ranking mechanism is implemented.

Ranking method takes the success ratio (number of times the optimal solution is found), the

mean number of bins found, and the mean number of generations into consideration in that

order. T-tests are also carried out to ascertain if there are statistically significant differences
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between different settings. If one crossover is better than all the others then it is given a rank-

ing of 1, and if it is worse than all others, it is given a ranking of 4. In case of a tie rankings

are shared. For example, if there is a tie in second and third positions, both crossovers get a

score of 2.5. Obviously, a crossover is better if it receives a lower ranking. The rankings are

presented in Tables 6.2, 6.3 and 6.4.

Rankings tests show that one point crossover is clearly the winner in all test setups.

Modified uniform crossover is placed into the second position and is really an improvement

over the regular uniform crossover which is placed third. Finally, lowest index max crossover

which is designed specially for graph coloring comes the last.

Table 6.2. Rankings for first fit (decreasing) - 1 bin deleted

(a) First Fit Decreasing 1 Bin Deleted

Inst. 1PTX LIMX UX MUX

U120 2.0 4.0 2.0 2.0

U250 3.0 4.0 2.0 1.0

U500 1.5 3.0 4.0 1.5

U1000 1.0 4.0 3.0 2.0

T60 2.5 2.5 2.5 2.5

T120 2.5 2.5 2.5 2.5

T250 2.5 2.5 2.5 2.5

T500 1.5 1.5 3.5 3.5

Avg. 2.06 3.00 2.75 2.19

(b) First Fit 1 Bin Deleted

Inst. 1PTX LIMX UX MUX

U120 1.0 4.0 2.5 2.5

U250 2.5 2.5 4.0 1.0

U500 1.0 3.5 3.5 2.0

U1000 1.0 4.0 3.0 2.0

T60 2.5 2.5 2.5 2.5

T120 2.5 2.5 2.5 2.5

T250 2.5 2.5 2.5 2.5

T500 1.0 4.0 2.5 2.5

Avg 1.75 3.19 2.88 2.19
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Table 6.3. Rankings for first fit (decreasing) - 2 bins deleted

(a) First Fit Decreasing 2 Bins Deleted

Inst. 1PTX LIMX UX MUX

U120 2.5 2.5 2.5 2.5

U250 4.0 2.5 2.5 1.0

U500 2.0 4.0 3.0 1.0

U1000 1.0 4.0 3.0 2.0

T60 1.0 3.0 3.0 3.0

T120 2.5 2.5 2.5 2.5

T250 2.5 2.5 2.5 2.5

T500 1.5 3.0 4.0 1.5

Avg. 2.00 3.00 2.88 2.00

(b) First Fit 2 Bins Deleted

Inst. 1PTX LIMX UX MUX

U120 1.0 4.0 2.0 3.0

U250 1.0 2.5 4.0 2.5

U500 1.0 4.0 3.0 2.0

U1000 1.0 4.0 3.0 2.0

T60 1.0 3.0 3.0 3.0

T120 2.5 2.5 2.5 2.5

T250 1.5 1.5 3.5 3.5

T500 1.0 3.0 3.0 3.0

Avg. 2.00 3.06 3.00 2.69

Table 6.4. Rankings for first fit (decreasing) - 4 bins deleted

(a) First Fit Decreasing 4 Bins Deleted

Inst. 1PTX LIMX UX MUX

U120 2.0 4.0 2.0 2.0

U250 3.5 2.0 3.5 1.0

U500 1.0 4.0 3.0 2.0

U1000 1.0 4.0 3.0 2.0

T60 3.0 1.0 3.0 3.0

T120 2.5 2.5 2.5 2.5

T250 1.5 1.5 3.5 3.5

T500 1.0 4.0 2.5 2.5

Avg. 1.94 2.88 2.88 2.31

(b) First Fit 4 Bins Deleted

Inst. 1PTX LIMX UX MUX

U120 1.0 2.5 4.0 2.5

U250 1.0 2.5 4.0 2.5

U500 1.5 4.0 3.0 1.5

U1000 1.0 4.0 3.0 2.0

T60 2.5 2.5 2.5 2.5

T120 2.5 2.5 2.5 2.5

T250 2.5 2.5 2.5 2.5

T500 1,0 4.0 3.0 2.0

Avg. 1.71 3.06 3.06 2.25

In terms of mean number of bins and number of generations, one point crossover usu-

ally gives best results especially for the more difficult large triplet instances. Lowest index
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max crossover performs somewhat inconsistently, it sometimes gives results close to one

point crossover on some large triplet instances however lags far behind especially in the

larger uniform distribution instances. Uniform crossover and modified uniform crossover

operators yet behave consistently and yield an acceptable performance in all test setups.

Poor performance of LIMX can be attributed to the characteristics of the instances.

LIMX and the other crossover operators in graph coloring are not particularly suitable for

the bin packing instances tested because for all of the instances average number of items per

group is quite small (2 to 3 for uniform distribution instances and 3 for triplet instances).

Preservation of large groups is not important due to the small average size of the bins and the

low epistasis between items. Because of small and low epistasis bins, 1PTX has very good

performance as likelihood of destruction of well-filled bins would be lower.

The hill climber heuristics which ensure no bins are overcapacitated are also com-

pared. In Tables 6.5, 6.6, 6.7, 6.8, the rankings for each heuristics when used with a specific

crossover operator are presented. First Fit (FF) and First Fit Decreasing (FFD) heuristics in

which 1, 2 and 4 bins are destroyed give a total of 6 combinations. The ranking mechanism

is the same as the crossover ranking taking success ratio, mean number of bins, and mean

number of generations into account. The rankings range from 1 to 6.

After the ranking process, it is observed that different crossovers give their best per-

formance in different heuristics. One point crossover performed best in a first fit heuristic

and mutation in which 2 bins are deleted for mutation (FF2). Lowest Index Max Crossover

operated best when used with FF1 which is closely followed by FF4. For uniform crossover,

FFD2 performed best while for modified uniform crossover FFD1 is best and closely fol-

lowed by FFD2.
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Table 6.5. Rankings for hill climbers in one point crossover

Instance Set FFD1 FFD2 FFD4 FF1 FF2 FF4

U120 2.5 2.5 2.5 2.5 2.5 2.5

U250 5.0 5.0 2.5 5.0 1.0 2.5

U500 4.5 4.5 1.5 1.5 4.5 4.5

U1000 3.5 3.5 6.0 1.0 3.5 3.5

T60 4.5 1.5 4.5 4.5 1.5 4.5

T120 3.5 3.5 3.5 3.5 3.5 3.5

T249 3.5 3.5 3.5 3.5 3.5 3.5

T501 3.5 3.5 3.5 3.5 3.5 3.5

AVG 3.81 3.44 3.44 3.13 2.94 3.50

Table 6.6. Rankings for hill climbers in lowest index max crossover

Instance Set FFD1 FFD2 FFD4 FF1 FF2 FF4

U120 5.5 5.5 1.5 3.5 3.5 1.5

U250 5.5 2.0 1.0 3.5 3.5 5.5

U500 1.0 3.0 6.0 2.0 4.5 4.5

U1000 3.5 3.5 3.5 3.5 3.5 3.5

T60 4.0 4.0 1.0 4.0 4.0 4.0

T120 3.5 3.5 3.5 3.5 3.5 3.5

T249 3.5 3.5 3.5 3.5 3.5 3.5

T501 1.5 3.5 5.5 1.5 3.5 5.5

AVG 3.50 3.56 3.19 3.13 3.69 3.94
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Table 6.7. Rankings for hill climbers in uniform crossover

Instance Set FFD1 FFD2 FFD4 FF1 FF2 FF4

U120 2.5 2.5 2.5 2.5 5.0 6.0

U250 2.0 2.0 2.0 4.5 4.5 6.0

U500 5.0 2.5 1.0 4.0 6.0 2.5

U1000 5.5 2.0 1.0 5.5 4.0 3.0

T60 3.5 3.5 3.5 3.5 3.5 3.5

T120 3.5 3.5 3.5 3.5 3.5 3.5

T249 2.5 2.5 6.0 2.5 5.0 2.5

T501 2.5 2.5 4.0 1.0 5.5 5.5

AVG 3.38 2.63 2.94 3.38 4.63 4.06

Table 6.8. Rankings for hill climbers in modified uniform crossover

Instance Set FFD1 FFD2 FFD4 FF1 FF2 FF4

U120 2.5 6.0 2.5 2.5 2.5 5.0

U250 1.5 3.0 1.5 4.0 5.0 6.0

U500 2.5 1.0 5.0 6.0 4.0 2.5

U1000 5.0 2.0 1.0 6.0 4.0 3.0

T60 3.5 3.5 3.5 3.5 3.5 3.5

T120 3.5 3.5 3.5 3.5 3.5 3.5

T249 2.5 2.5 6.0 2.5 5.0 2.5

T501 1.5 1.5 4.5 4.5 4.5 4.5

AVG 2.81 2.88 3.44 4.06 4.00 3.81

Table 6.9 represents average number of bins obtained from the test instances for the

best setups for each crossover (1PTX - FF2, LIMX - FF1, UX - FFD2, MUX - FFD1). The

theoretical minimum lower bound on the number of bins is given on the theo column. The

average number of bins obtained in each set of instances are provided in 1PTX - FF2, LIMX
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- FF1, UX - FFD2, and MUX - FFD1 columns. For a comparison, Falkenauer’s Hybrid

Grouping Genetic Algorithm [12] and Martello and Toth’s [43] results are represented on

HGGA and M&T columns, respectively.

Table 6.9. Mean number of bins obtained in best setups for each crossover

Inst. Theo 1PTX-FF2 LIMX-FF1 UX-FFD2 MUX-FFD1 HGGA M&T

U120 49.05 49.05 49.10 49.05 49.05 49.15 49.15

U250 101.55 101.70 101.80 101.75 101.65 101.70 102.15

U500 201.20 201.30 202.35 201.50 201.30 201.20 203.40

U1000 400.55 400.65 417.50 401.45 401.05 400.55 404.45

T60 20.00 20.95 21.00 21.00 21.00 20.10 201.55

T120 40.00 41.00 41.00 41.00 41.00 40.00 44.10

T249 83.00 84.00 84.00 84.15 84.05 83.00 90.45

T501 167.00 168.00 168.85 169.80 169.20 167.00 181.85

AVG 132.79 133.33 135.70 133.71 133.54 132.84 159.64

The results clearly show that the proposed algorithm is superior to Martello and Toth’s

reduction algorithm in all set of instances. Falkenauer’s HGGA remains however the best al-

gorithm in terms of overall solution quality especially for the more difficult triplet instances.

However, for uniform distribution instances, LLE with one point crossover is very competi-

tive, in fact for smaller instances it provides some packings that cannot be found with HGGA.

However for triplet instances, LLE with 1PTX is consistently one bin short of the optimal

packing. Interestingly, this deficiency is not dependent on the number of bins since even for

a small triplet instance of 60 items, the optimal packing was not found which suggests that

LLE with one point crossover was likely to get stuck at a local optimum.

Additional experimental results of bin packing can be found in Appendix B.
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7. CONCLUSIONS

In this thesis, the performance of LLE has been tested on two well known grouping

problems: graph coloring and bin packing. Several crossover operators that can be used with

LLE have been introduced. These crossovers are based on principles to break symmetries

by using lowest index and cardinality based ordering. However, results show that as long

as groups are ordered in a consistent way, the performance does not vary between different

orderings. It is also observed that preservation of large independent sets in a graph coloring

problem is quite important as can be observed from the low performance of lowest index first

crossover which ignores this principle. At the end of the graph coloring experiments, lowest

index max crossover (LIMX) and greedy partition crossovers (GPX) performed similarly.

Considering that GPX is an integral part of the most successful genetic algorithm, LIMX

can be viewed as a promising operator.

One deficiency of these graph coloring crossovers appears when used in a multi-

objective framework: they tend to produce a lot of small sized independent color sets due to

the removal of vertices from parents during crossover. Although some attempts have been

made to redistribute the vertices in these small sized sets to other large sets, these attempts

were not successful. One obvious future research direction would be implementing a better

reallocation method. This might increase the performance of the crossovers.

The traditional crossovers were never successful in graph coloring when used in LLE.

This can easily be attributed to the fact that traditional crossovers destroy the independent

sets which are the building blocks in graph coloring.

Unlike graph coloring, the performance of the traditional crossovers shine when used

in bin packing. They were able to generate very competitive results close to hybrid grouping

genetic algorithm (HGGA) of Falkenauer [12]. They match HGGA in uniform distribution

instances and for smaller instances outperform them. However, for most difficult triplet

instances, one point crossover, the best performing crossover in the test setup, was constantly

one bin short of the optimal solution. This problem probably requires enhancements in the
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mutation operator and this is one of the future research directions.

It is not expected that graph coloring crossovers to perform competitively, since in bin

packing it is not crucial to preserve very large sets during generations. The most difficult test

instances usually require packing few items to a bin (2 to 3 in this case). This is why ordering

of groups based on cardinality does not make sense as it will essentially be no different than

random ordering. These facts also explain why traditional crossover operators perform quite

well in bin packing.

Linear linkage encoding is a viable candidate for solving grouping problems especially

if the number of groups is not known beforehand. In such problems, the search is performed

on a smaller search space than other encodings such as number encoding. In the future,

operators that will make better use of this representation awaits research. Other grouping

problem algorithms may utilize LLE as their representation method as well.
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APPENDIX A: EXPERIMENTAL RESULTS - GRAPH COLORING

Through Tables A.1, A.2, A.4 and A.4, µ represents the mean of the best colorings

obtained after 50 runs, σ stands for the standart deviation for this mean and B represents the

best coloring of the 50 runs.

Table A.1. Average best, standard deviation and best results for the Carter’s benchmark

instances - Results for lowest index maximum and lowest index first crossovers

LIMX LIFX

Instance χ(G) µ σ B µ σ B

Hecs92 ? 17,66 0,47 17 17,86 0,4 17

Staf83 ? 13,10 0,30 13 15,06 0,37 14

Yorf83 ? 20,60 0,53 20 20,86 0,45 20

Utes92 ? 10,00 0,00 10 10,02 0,14 10

Earf83 ? 24,22 0,76 23 25,26 0,72 24

Tres92 ? 22,26 0,52 21 22,32 0,51 21

Lsef91 ? 19,20 0,66 17 19,10 0,67 18

Kfus93 ? 20,86 0,57 20 21,30 0,61 20

Ryes93 ? 23,86 0,49 23 23,96 0,66 23

Carf92 ? 38,74 1,29 36 38,24 1,01 36

Utas92 ? 40,52 1,03 38 40,84 1,01 39

Cars91 ? 38,34 1,16 36 38,08 1,00 36
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Table A.2. Average best, standard deviation and best results for the Carter’s benchmark

instances - Results for greedy partition lowest index and cardinality based crossovers

GPX-LI GPX-CB

Instance χ(G) µ σ B µ σ B

Hecs92 ? 17,80 0,40 17 17,76 0,43 17

Staf83 ? 14,44 0,57 14 14,40 0,49 14

Yorf83 ? 20,68 0,51 20 20,60 0,60 20

Utes92 ? 10,00 0,00 10 10,00 0,00 10

Earf83 ? 24,68 0,55 24 24,64 0,82 23

Tres92 ? 22,26 0,56 21 22,30 0,57 21

Lsef91 ? 19,16 0,67 18 19,32 0,58 18

Kfus93 ? 21,12 0,65 20 21,20 0,57 20

Ryes93 ? 23,90 0,64 23 23,68 0,55 23

Carf92 ? 38,12 1,05 36 38,46 1,05 36

Utas92 ? 40,60 1,08 38 40,88 1,01 38

Cars91 ? 38,16 1,03 37 38,18 1,23 35
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Table A.3. Average best, standard deviation and best results for the DIMACS Benchmark

instances - Results for lowest index maximum and lowest index first crossovers

LIMX LIFX

Instance χ(G) µ σ B µ σ B

DSJC125.5 ? 18,70 0,46 18 18,76 0,43 18

DSJC125.9 ? 44,66 0,47 44 44,74 0,48 44

zeroin.3.col 30 33,60 1,33 31 36,64 1,02 35

zeroin.1.col 49 49,04 0,20 49 50,66 0,55 50

zeroin.2.col 30 33,48 1,41 31 36,58 1,02 35

DSJC250.1 ? 9,00 0,00 9 9,00 0,00 9

DSJC250.5 ? 31,68 0,58 31 31,56 0,54 31

DSJC250.9 ? 75,38 0,56 75 75,90 0,70 75

flat300 20 20 30,84 3,85 20 33,22 1,30 31

flat300 26 26 35,54 0,57 34 35,40 0,53 34

flat300 28 28 35,32 0,51 34 35,34 0,51 34

school1 nsh 14 14,82 0,82 14 14,82 0,89 14

le450 15a 15 16,98 0,32 16 17,00 0,20 16

le450 15b 15 16,82 0,43 16 16,98 0,14 16

le450 15c 15 23,82 0,52 23 23,70 0,46 23

le450 15d 15 23,94 0,47 23 23,66 0,51 23

le450 25a 25 25,00 0,00 25 25,10 0,30 25

le450 25b 25 25,00 0,00 25 25,08 0,27 25

le450 25c 25 29,08 0,34 28 29,24 0,43 29

le450 25d 25 29,12 0,43 28 29,20 0,45 28

DSJC500.1 ? 14,00 0,00 14 14,16 0,37 14

DSJC500.5 ? 55,98 0,55 55 55,96 0,49 55
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Table A.4. Average best, standard deviation and best results for the DIMACS benchmark

instances - Results for greedy partition lowest index and cardinality based crossovers

GPX-LI GPX-CB

Instance χ(G) µ σ B µ σ B

DSJC125.5 ? 18,66 0,47 18 18,68 0,47 18

DSJC125.9 ? 44,24 0,43 44 44,36 0,48 44

zeroin.3.col 30 31,60 0,94 30 31,86 0,90 31

zeroin.1.col 49 49,00 0,00 49 49,00 0,00 49

zeroin.2.col 30 31,48 0,92 31 32,04 1,22 31

DSJC250.1 ? 9,00 0,00 9 9,00 0,00 9

DSJC250.5 ? 31,60 0,57 31 31,66 0,47 31

DSJC250.9 ? 75,38 0,77 75 75,42 0,70 74

flat300 20 20 34,26 1,55 27 34,42 1,33 32

flat300 26 26 35,78 0,64 34 35,76 0,64 34

flat300 28 28 35,56 0,64 34 35,34 0,65 34

school1 nsh 14 14,60 0,80 14 14,94 0,95 14

le450 15a 15 16,92 0,27 16 16,96 0,20 16

le450 15b 15 16,92 0,27 16 16,90 0,30 16

le450 15c 15 23,76 0,43 23 23,58 0,49 23

le450 15d 15 23,78 0,50 23 23,58 0,53 23

le450 25a 25 25,00 0,00 25 25,02 0,00 25

le450 25b 25 25,00 0,00 25 25,00 0,00 25

le450 25c 25 29,08 0,34 28 29,02 0,32 28

le450 25d 25 29,12 0,47 28 29,08 0,34 28

DSJC500.1 ? 14,00 0,00 14 14,00 0,00 14

DSJC500.5 ? 56,00 0,57 55 56,18 0,71 55
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APPENDIX B: EXPERIMENTAL RESULTS - BIN PACKING

Through Tables B.1, B.2, B.3, B.4, B.5 and B.6, Best gives the optimal number of bins,

mean represents the mean number of bins after 20 runs, fitness represents the mean fitness

value of the best solutions and Gen. represents the mean number of generations.

Table B.1. Best packings obtained for the instances in the Falkenauer’s benchmark suite -

First fit decreasing with 1 bin deleted

1PTX LIMX

Instance Best Mean Fitness Gen. % Mean Fitness Gen. %

U120 49.05 49.05 0.977 3.70 1.00 49.15 0.974 80.40 0.90

U250 101.55 101.80 0.988 131.50 0.75 101.85 0.987 228.05 0.70

U500 201.20 201.30 0.994 84.25 0.90 203.10 0.979 377.00 0.70

U1000 400.55 400.65 0.997 93.95 0.90 417.60 0.923 500.00 0.00

T60 20.00 21.00 0.934 500.00 0.00 21.00 0.934 500.00 0.00

T120 40.00 41.00 0.966 500.00 0.00 41.00 0.966 500.00 0.00

T249 83.00 84.00 0.983 500.00 0.00 84.00 0.983 500.00 0.00

T501 167.00 168.00 0.992 500.00 0.00 168.55 0.985 500.00 0.00

AVG 132.79 133.35 0.979 289.18 0.44 135.78 0.966 398.18 0.29

UX MUX

Instance Best Mean Fitness Gen. % Mean Fitness Gen. %

U120 49.05 49.05 0.977 10.90 1.00 49.05 0.977 13.80 1.00

U250 101.55 101.75 0.988 176.50 0.80 101.65 0.990 131.60 0.90

U500 201.20 201.60 0.992 326.40 0.60 201.30 0.994 233.35 0.90

U1000 400.55 401.85 0.992 490.55 0.05 401.05 0.995 407.60 0.55

T60 20.00 21.00 0.934 500.00 0.00 21.00 0.934 500.00 0.00

T120 40.00 41.00 0.966 500.00 0.00 41.00 0.966 500.00 0.00

T249 83.00 84.00 0.982 500.00 0.00 84.05 0.982 500.00 0.00

T501 167.00 169.90 0.970 500.00 0.00 169.20 0.977 500.00 0.00

AVG 132.79 133.77 0.975 375.54 0.31 133.54 0.977 348.29 0.42
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Table B.2. Best packings obtained for the instances in the Falkenauer’s benchmark suite -

First fit decreasing with 2 bins deleted

1PTX LIMX

Instance Best Mean Fitness Gen. % Mean Fitness Gen. %

U120 49.05 49.05 0.977 2.95 1.00 49.15 0.974 76.65 0.90

U250 101.55 101.80 0.988 129.05 0.75 101.75 0.988 220.60 0.80

U500 201.20 201.30 0.994 72.20 0.90 208.40 0.931 492.50 0.10

U1000 400.55 400.65 0.997 74.55 0.90 418.55 0.916 500.00 0.00

T60 20.00 20.95 0.938 477.10 0.05 21.00 0.934 500.00 0.00

T120 40.00 41.00 0.966 500.00 0.00 41.00 0.966 500.00 0.00

T249 83.00 84.00 0.984 500.00 0.00 84.00 0.983 500.00 0.00

T501 167.00 168.00 0.992 500.00 0.00 172.90 0.942 500.00 0.00

AVG 132.79 133.34 0.979 281.98 0.45 137.09 0.954 411.22 0.23

UX MUX

Instance Best Mean Fitness Gen. % Mean Fitness Gen. %

U120 49.05 49.05 0.977 15.05 1.00 49.10 0.976 30.95 0.95

U250 101.55 101.75 0.988 156.40 0.80 101.70 0.989 132.30 0.85

U500 201.20 201.50 0.992 288.90 0.70 201.25 0.994 163.35 0.95

U1000 400.55 401.45 0.993 447.00 0.40 400.80 0.996 308.65 0.75

T60 20.00 21.00 0.934 500.00 0.00 21.00 0.934 500.00 0.00

T120 40.00 41.00 0.966 500.00 0.00 41.00 0.966 500.00 0.00

T249 83.00 84.15 0.978 500.00 0.00 84.05 0.979 500.00 0.00

T501 167.00 169.80 0.971 500.00 0.00 169.35 0.975 500.00 0.00

AVG 132.79 133.71 0.975 363.42 0.36 133.53 0.976 329.41 0.44
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Table B.3. Best packings obtained for the instances in the Falkenauer’s benchmark suite -

First fit decreasing with 4 bins deleted

1PTX LIMX

Instance Best Mean Fitness Gen. % Mean Fitness Gen. %

U120 49.05 49.05 0.978 2.45 1.00 49.05 0.977 27.95 1.00

U250 101.55 101.75 0.988 109.40 0.80 101.70 0.989 225.80 0.85

U500 201.20 201.25 0.994 40.15 0.95 209.85 0.917 500.00 0.00

U1000 400.55 400.70 0.997 94.45 0.85 418.15 0.917 500.00 0.00

T60 20.00 21.00 0.000 500.00 0.00 20.95 0.218 479.35 0.05

T120 40.00 41.00 0.966 500.00 0.00 41.00 0.966 500.00 0.00

T249 83.00 84.00 0.983 500.00 0.00 84.00 0.983 500.00 0.00

T501 167.00 168.00 0.991 500.00 0.00 177.50 0.896 500.00 0.00

AVG 132.79 133.34 0.862 280.81 0.45 137.78 0.858 404.14 0.24

UX MUX

Instance Best Mean Fitness Gen. % Mean Fitness Gen. %

U120 49.05 49.05 0.977 10.65 1.00 49.05 0.977 8.80 1.00

U250 101.55 101.75 0.988 159.50 0.80 101.65 0.989 119.30 0.90

U500 201.20 201.45 0.993 223.25 0.75 201.40 0.993 182.15 0.80

U1000 400.55 401.05 0.995 379.20 0.60 400.75 0.997 246.60 0.80

T60 20.00 21.00 0.000 500.00 0.00 21.00 0.000 500.00 0.00

T120 40.00 41.00 0.960 500.00 0.00 41.00 0.962 500.00 0.00

T249 83.00 84.65 0.966 500.00 0.00 84.70 0.966 500.00 0.00

T501 167.00 170.75 0.961 500.00 0.00 170.50 0.963 500.00 0.00

AVG 132.79 133.84 0.855 346.58 0.39 133.76 0.856 319.61 0.44
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Table B.4. Best packings obtained for the instances in the Falkenauer’s benchmark suite -

First fit with 1 bin deleted

1PTX LIMX

Instance Best Mean Fitness Gen. % Mean Fitness Gen. %

U120 49.05 49.05 0.977 3.55 1.00 49.10 0.976 80.10 0.95

U250 101.55 101.80 0.988 138.70 0.75 101.80 0.988 226.20 0.75

U500 201.20 201.25 0.994 51.60 0.95 202.35 0.985 411.65 0.65

U1000 400.55 400.60 0.997 75.15 0.95 417.50 0.922 500.00 0.00

T60 20.00 21.00 0.934 500.00 0.00 21.00 0.934 500.00 0.00

T120 40.00 41.00 0.966 500.00 0.00 41.00 0.966 500.00 0.00

T249 83.00 84.00 0.983 500.00 0.00 84.00 0.983 500.00 0.00

T501 167.00 168.00 0.992 500.00 0.00 168.85 0.982 500.00 0.00

AVG 132.79 133.34 0.979 283.63 0.46 135.70 0.967 402.24 0.29

UX MUX

Instance Best Mean Fitness Gen. % Mean Fitness Gen. %

U120 49.05 49.05 0.977 28.10 1.00 49.05 0.977 27.35 1.00

U250 101.55 101.85 0.987 238.95 0.70 101.75 0.988 173.75 0.80

U500 201.20 201.60 0.991 359.45 0.65 201.40 0.993 230.90 0.80

U1000 400.55 402.45 0.989 485.00 0.05 401.25 0.995 427.00 0.35

T60 20.00 21.00 0.934 500.00 0.00 21.00 0.934 500.00 0.00

T120 40.00 41.00 0.966 500.00 0.00 41.00 0.966 500.00 0.00

T249 83.00 84.00 0.981 500.00 0.00 84.00 0.982 500.00 0.00

T501 167.00 172.75 0.940 500.00 0.00 170.55 0.963 500.00 0.00

AVG 132.79 134.21 0.971 388.94 0.30 133.75 0.975 357.38 0.37
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Table B.5. Best packings obtained for the instances in the Falkenauer’s benchmark suite -

First fit with 2 bins deleted

1PTX LIMX

Instance Best Mean Fitness Gen. % Mean Fitness Gen. %

U120 49.05 49.05 0.977 4.50 1.00 49.10 0.976 79.25 0.95

U250 101.55 101.70 0.989 87.35 0.85 102.00 0.984 287.25 0.75

U500 201.20 201.30 0.994 62.95 0.90 209.55 0.921 493.35 0.05

U1000 400.55 400.65 0.997 68.70 0.90 418.55 0.916 500.00 0.00

T60 20.00 20.95 0.938 484.00 0.05 21.00 0.934 500.00 0.00

T120 40.00 41.00 0.966 500.00 0.00 41.00 0.966 500.00 0.00

T249 83.00 84.00 0.983 500.00 0.00 84.00 0.983 500.00 0.00

T501 167.00 168.00 0.992 500.00 0.00 173.20 0.939 500.00 0.00

AVG 132.79 133.33 0.979 275.94 0.46 137.30 0.952 419.98 0.22

UX MUX

Instance Best Mean Fitness Gen. % Mean Fitness Gen. %

U120 49.05 49.10 0.976 51.95 0.95 49.05 0.977 26.25 1.00

U250 101.55 101.85 0.987 228.30 0.70 101.80 0.988 178.75 0.75

U500 201.20 201.90 0.989 391.70 0.45 201.35 0.994 191.05 0.85

U1000 400.55 402.50 0.989 487.95 0.10 400.90 0.996 341.00 0.65

T60 20.00 21.00 0.934 500.00 0.00 21.00 0.934 500.00 0.00

T120 40.00 41.00 0.966 500.00 0.00 41.00 0.966 500.00 0.00

T249 83.00 84.25 0.975 500.00 0.00 84.30 0.975 500.00 0.00

T501 167.00 171.30 0.955 500.00 0.00 170.45 0.964 500.00 0.00

AVG 132.79 134.11 0.971 394.99 0.28 133.73 0.974 342.13 0.41
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Table B.6. Best packings obtained for the instances in the Falkenauer’s benchmark suite -

First fit with 4 bins deleted

1PTX LIMX

Instance Best Mean Fitness Gen. % Mean Fitness Gen. %

U120 49.05 49.05 0.977 3.40 1.00 49.05 0.977 36.60 1.00

U250 101.55 101.75 0.988 107.00 0.80 102.00 0.984 264.75 0.70

U500 201.20 201.30 0.994 62.60 0.90 209.75 0.917 491.15 0.05

U1000 400.55 400.65 0.997 65.80 0.90 418.15 0.917 500.00 0.00

T60 20.00 21.00 0.934 500.00 0.00 21.00 0.934 500.00 0.00

T120 40.00 41.00 0.966 500.00 0.00 41.00 0.966 500.00 0.00

T249 83.00 84.00 0.983 500.00 0.00 84.00 0.983 500.00 0.00

T501 167.00 168.00 0.991 500.00 0.00 178.00 0.890 500.00 0.00

AVG 132.79 133.34 0.979 279.85 0.45 137.87 0.946 411.56 0.22

UX MUX

Instance Best Mean Fitness Gen. % Mean Fitness Gen. %

U120 49.05 49.15 0.974 82.95 0.90 49.05 0.977 47.75 1.00

U250 101.55 101.90 0.986 228.40 0.65 101.85 0.987 211.30 0.70

U500 201.20 201.50 0.992 265.60 0.70 201.30 0.994 145.50 0.90

U1000 400.55 402.05 0.991 462.80 0.25 400.85 0.996 304.35 0.70

T60 20.00 21.00 0.934 500.00 0.00 21.00 0.934 500.00 0.00

T120 40.00 41.00 0.966 500.00 0.00 41.00 0.966 500.00 0.00

T249 83.00 84.00 0.981 500.00 0.00 84.00 0.982 500.00 0.00

T501 167.00 172.75 0.940 500.00 0.00 170.55 0.963 500.00 0.00

AVG 132.79 134.17 0.971 379.97 0.31 133.70 0.975 338.61 0.41
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