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ABSTRACT

TULCZYJEW’S CONSTRUCTION OF LEGENDRE
TRANSFORMATIONS

Being equivalent to Newton's equations, the dynamics of a system can either be
formulated by Lagrangian function on tangent bundle of configuration space or by
Hamiltonian function on cotangent bundle. Two formulations are equivalent via Legendre
transformation provided the Lagrangian function satisfies certain non degeneracy conditions
which become even more complicated if the system possesses various constraints.

By investigating of natural geometric structures underlying Lagrangian and
Hamiltonian formulations it is shown that, the dynamics can be represented as a Lagrangian
submanifold of certain symplectic structures on higher order bundles over configuration space.
The objects generating such manifolds turn out to be not unique. Hamiltonian and Lagrangian
formulations are, in fact, two realizations of the same Lagrangian submanifold by different
generating objects. In this sense, the Legendre transformation becomes a passage between two

different realizations of the same Lagrangian submanifold.



OZET

TULCZYJEW’IN LEGENDRE TRANSFORMASYONLARINI
YAPILANDIRMASI

Bir dinamik sistem, konfigiirasyon uzaymnin tanjant demeti {izerinde taniml
Lagrange fonksiyonlari veya kotanjant demeti ilizerinde tamimli Hamilton fonksiyonlari
araciligiyla iki farkli sekilde formiilize edilebilir. Legendre transformasyonlar1 bu iki temel
yaklagim arasindaki transformasyonlardir, ki bu transformasyonlarin varligit Lagrange
fonksiyonlarinin bazi dejenere olmama kosullarin1 saglamasiyla miimkiin olabilmektedir.

Hamilton ve Lagrange formiilasyonlar1 bir takim geometrik yapilar
barindirmaktadirlar. Tezde bu gercekten hareketle, dinamik, konfigiirasyon uzay1 iizerindeki
yiiksek mertebeden demetlerin barindirdigr simplektik yapilarin Lagrange altkatmanlar1 olarak
tanimlanmistir. Lagrange altkatmanlart dogurucu objeler tarafindan iiretilir. Bir Lagrange
altkatmaninin farkli objeler tarafindan iiretilmesi de miimkiindiir. Bu ise Hamilton ve
Lagrange formiilasyonlarinin ayni1 Lagrange altkatmanini, diger bir ifadeyle ayni dinamigi,
ireten farklt dogurucu objeler olarak tanimlanmasini saglamistir. Ayrica, verilen bir dogurucu
objeden aymi Lagrange altkatmanini iireten diger bir dogurucu objeye gecis Legendre

transformasyonu olarak adlandirilmistir.
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1. INTRODUCTION

Around 1790, in his investigations of Newton’s equations mi’ = X? written in
Euclidean coordinates z° = z% (¢', ¢?, ..., ¢™), Lagrange (1736-1813) introduced gener-
alized coordinates (¢, ¢?, ..., ¢™) and their velocities (¢!, ¢?, ..., ¢™) . Starting from the
fact that, the right hand side of the equation; that is, the forces acting on the sys-
tem is the rate of change of work done on the system, he was able to write Newton’s

equations in the form

d (oT\ or
4 <a_qj) - -h (L1)

where F; and T" are the generalized forces and kinetic energy given, in coordinates, as

;0TI 1 o
.Fj = 51]X a—qk, T = §m5”q qj, (12)
di; is the Kronecker delta and we employ the summation over repeated indices. For

conservative force fields F; = —0V/dq', the Lagrangian form of Newton’s equations

become

d (0L oL
— - - = = 1.
dt ((‘%j’) oq' 0 (1.3)

and the function L =T — V is called the Lagrangian function.

About 1830, Hamilton (1805-1865) realized that these equations can be obtained

by requiring the generalized coordinates ¢* minimize the functional

to

I = / L(t,q',¢’)dt (1.4)
t1

along with some appropriate boundary conditions. That is, Eqs (1.3) are the Euler-

Lagrange equations for the functional in Eq (1.4). This is called Hamilton’s prin-

ciple or principle of least action. Due to generalized coordinates introduced by



Lagrange, these equations do not depend on specific choice of coordinates, in other
words; Euler-Lagrange equations are invariant with respect to coordinate transfor-
mations. This important property of Lagrangian formulation of dynamics is called

covariance.

Introducing the generalized momenta

oL
pz—aw

L i=1,..m 15
7 (1.5)

the second order Euler-Lagrange equations, which are m in number, can be written as
a system of 2m first order equations
oL oL
=500 Pi= g (1.6)
provided L = L (¢',¢’) and the second set of m equations can be solved for generalized

velocities ¢* in terms of momenta p;. This imposes the non-degeneracy condition

0*L
det — 0 1.7
on the Lagrangian function L = L (¢, q). In this case, L is called (hyper)regular.

The regularity condition brings serious restrictions on the conversion of the sec-
ond order Euler-Lagrange equations to a system of first order equations and is in fact
the main problem to be addressed in this thesis. The problem of explicit dependence
of L on time can easily be handled by introducing energy as a canonically conjugate

variable to t.

Once the condition of the regularity is satisfied, one can introduce the Legendre

transformation of the function L,

H=226 1 (1.8)



which is called the Hamiltonian function. With this function, the system of the

first order equations takes the form

OH OH

/= ) = ——— 1.
q apZ’ pl an ( 9)

of canonical Hamilton’s equations. These first order equations, which can be
considered as a vector field in the canonical coordinates (¢*, p;) of the cotangent space
T;Q are the most basic for the geometrization of mechanics. However, there is a pay
off to obtain this geometric picture due to the distinguished role of time as an evolution

parameter; the loss of covariance of the Euler-Lagrange equations.

Although, Eqgs (1.9) are named to Hamilton, they first appeared in a work of
Lagrange on celestial mechanics published in 1808. Lagrange used Hamilton’s equa-
tions for computational purposes only, thereby not realizing the structural aspects of
them. The geometric and algebraic structures underlying the Hamilton’s equations
were developed by Hamilton, Jacobi (1804-1851), Lie(1842-1899), Poisson(1781-1840),
Dirac(1902-1984), Arnold(1937-...), Weinstein(1937-...), Lichnerowicz(1915-1998) and

many others.

We briefly summarize the present day status of Hamilton’s equations: On the
cotangent bundle 7*() of any manifold ) of dimension m, there is a natural, non-
degenerate, closed two-form which is called canonical symplectic structure. In
canonically conjugate coordinates this is wg = dq’ Adp;. In the framework of symplectic
geometry, the Hamiltonian dynamics is governed by a choice of function H on T

via the Hamilton’s equation

.0 0
xi (WQ) H qaql Papi ( )
The correspondence between H and Xy is one to one provided wg is non-degenerate.
Being coordinate independent, this structure can be generalized to any manifold P
with a non-degenerate two form w. The pair (P, w) is called a symplectic manifold.

The vector fields on P which can be written in the form ix, (w) = dH for some



H constitute the infinite dimensional Lie algebra of Hamiltonian vector fields in the
tangent bundle T'P. This is isomorphic to the algebra of functions on P with the

Poisson bracket

{H,G} = w(Xy, Xg). (1.11)

The Poisson bracket algebra of functions on P can, in turn, be associated with
a dual contravariant structure on P, one defined by a non-degenerate bi-vector A
on P. This is called a Poisson structure. One can now release the condition for
degeneracy because, in this picture, the dynamics Xy = A (dH) for a given function
H is unique. This time, the degeneracy, if any, brings ambiguity in the choice of
Hamiltonian function H. Namely, the kernel of the bi-vector A consists of Casimir

functions, which are conserved quantities of Xp;.

1.1. Content of The Work

In the next section, we shall briefly summarize the differential geometric con-
struction of tangent and cotangent bundles as well as mappings between them. We
shall introduce the higher order tangent and cotangent bundles and fix the local co-
ordinates which will be used throughout the work. Of particular importance is the

construction of canonical isomorphism g on T7T'Q) .

In section 3, we shall explain the natural exact symplectic structure that exists
on any cotangent bundle. The canonical one form arises from two different fibrations
of the tangent bundle TT*() of the cotangent bundle. For future reference, we shall
fix the ones on T*Q), T*T'Q) and T*T*(Q).

In section 4, we shall construct the derivations ir : Q(Q) — Q(7'Q) and dr :
Q(Q) — Q(TQ) of exterior algebras over ) and T'Q) of degree —1 and 0, respectively.

We shall use these derivations to construct an exact symplectic structure on 7T7*Q)



with two different canonical one-forms, namely, dr0g and irwg, where wg = —db is
the symplectic two-form on 7*(Q). The fact that these 1-forms are not related by any
symmetry of symplectic geometry will be crucial in constructing symplectic structure

on product spaces.

In section 5, we shall show that the symplectic structure on TT*(Q) is naturally
diffeomorphic to the canonical symplectic structure on 7*7T*(Q). To show that TT*(Q) is
also symplectomorphic to T*7T'(), we shall construct the isomorphism ag : T7T*Q) —
T*T() which turns out to be the required symplectic diffeomorphism. Construction
of ag relies on the fibrations of the spaces dual to the ones in the isomorphism &, :
TTQ — TTQ. These symplectomorphisms are indeed special cases of a more abstract

construction that we shall explain in the next section.

In section 6, we shall define a special symplectic structure for a symplectic man-
ifold (P,w = —d#f) to be a fibration 7 : P — () which is symplectomorphic with
a: P — T*Q to the fibration T*() — () with canonical symplectic structure. Such a
structure implies that the collection (T'P,TQ, T, drf, ag o Ta) is also a special sym-
plectic manifold. Choosing P = T*(Q), it turns out that the symplectomorphisms of
TT*Q to T*T*(Q) and to T*T'Q) can equivalently be realized as two different special
symplectic structure of the same underlying symplectic manifold (T7*Q, drwg) . The

totality of structures on the above three spaces is called a Tulczyjew’s triplet.

For dynamical interpretations of these structures, we shall introduce, in section
7, Lagrangian submanifolds and their generating objects. We shall first explain how to
construct generating objects of Lagrangian submanifolds of cotangent bundles. Com-
bined with special symplectic structures, we shall be able to obtain generating objects
of Lagrangian submanifolds of general symplectic manifolds. In particular, we shall
obtain Hamiltonian and Lagrangian dynamics as Lagrangian submanifolds of T7™*()

with generating functions —H and L.

In section 8, we shall consider Lagrangian submanifolds of products of symplectic

manifolds which can alternatively be characterized as graphs of symplectomorphisms of



the manifolds involving the product. We shall investigate relations between generating

functions of various Lagrangian submanifolds.

In section 9, we shall define Legendre transformation in the framework of geo-
metric structures developed so far. The main result of this section is the geometric
interpretation of Legendre transformation as a relation between generating objects of
Lagrangian submanifolds of special symplectic manifolds and of their products. We

shall conclude this section with discussions of special cases and various examples.



2. PRELIMINARIES

2.1. Tangent and Cotangent Bundles

Let ) be an m-dimensional differentiable manifold and
(¥):Q=R" 2 — ()= ("¢ . q") (2.1)

a coordinate system around z € ). A function f on @ is differentiable, if the

coordinate function
f=fop™ :R" >R,

is differentiable. In this case, the partial derivatives of f are defined by

0 of O(fop™)

0f (@) = 5ot (2) = g o0 () = =52 E 2 0 (e). (22)

We shall use the letter D to denote derivatives of vector valued functions. For example,

for f:QQ - Randy:R — @ we have

%

D(J o) (1) =0 (3 (1) 1), (2.3

A curve on @ through the point z is a function v : R — @ with v (0) = .
Two curves v and 7 are called equivalent if they agree at z and if the directional

derivatives of functions along them at x are the same, namely,

7(0) =7(0), D(fov)(0) =D (fo7)(0) (2.4)

for all functions f: @ — R.



A tangent vector v (x) at = is an equivalence class of curves at z. This class
will be denoted by ¢ (0) if v (0) = z € Q. The set of all equivalence classes of curves,

that is the set of all tangent vectors at x is the tangent space 7, at = € Q.

A basis for the tangent space T,Q is induced by the coordinate system (o)

around x by their action on functions

0 0
ol (@)=

(fow™) (p(a), (2.5)

where the right hand side is evaluated in R™ and defines the left hand side. Thus, a

tangent vector can be written in the form v (z) = a’9/dq" for some real numbers a'.

Let 7 be a representative of v (z) € T,Q, then ¢ = ¢' (ty(0)) and ¢' = D (¢’ 0 7) (0).

So the induced coordinates of T.() are

(0, 9) : TQ = R*™ 10 — (q,4) (2.6)

By definition, the coordinate functions ¢ : @ — R and ¢ : T,,QQ — R are different due

to their domains, but we shall use the same letter for simplicity.

The sum TQ = U T,Q of all tangent spaces T,.() as x varies on () is the total

T€EQ
space of the tangent bundle of () with fibers being 77,.Q).

The tangent fibration 7 : T'Q) — @ is defined on each fiber T,() by 7¢ (t7(0)) =

7 (0) or 7 (v (z)) = x.

A section of the tangent fibration is a map v : ) — T'Q) such that Tgowv :
idg where idg is the identity map on (). A vector field on () is a section of the

tangent fibration.

For any two manifolds ) and P, the tangent map 7% : T'(Q) — TP of a dif-

ferentiable mapping ¢ :  — P is defined by requiring the following diagram to be



commutative

Ty R

P
P

>

W

Figure 2.1. Tangent map

namely, if v : R — @ is a representative of a vector v (z) € T,Q, then poy: R — P
is a representative of the vector T o v () € Ty, P and the commutativity condition

becomes

Typ(ty (0)) =t (on). (2.7)

Written in terms of sections v : ) — T'Q), above diagram defines a vector field

TQ v 1p
v y¢
Q » P

y

Figure 2.2. Vector field

vp : P — TP called the push-forward of v,

Ypv=vp=Tpovory™ "t (2.8)

In local coordinates (¢') : @ — R™ and (¢l) : P — R", with ¢’ (y) = p’ for
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y € P. The tangent mapping 7' is given by
i g i (¢ o) i
(@;@J)OTQﬁ:(éb OlW”QK%‘”Q)@) (2.9)

from which we read the components of the push-forward vp at y = ¢ (z) € P as

(vp (y)) = ad;q(f) v (z). (2.10)

In particular, let P = R and consider the function f : ) — R, then from previous

paragraph the tangent map of f at x is given by

T.f (ty(0)) = D(foy)(0)=D(foyp 'owony)(0)
= D(fop ') (¢(x)D(poy)(0)

- A ) (g4 (211)

hence the map T, f can be identified with numbers (0 (f o ¢ 1) /9¢%) (¢). This defines
a linear map df (x) : T,QQ — R™ which can be interpreted as a linear functional on
tangent vectors. Thus, the differential df of a function on () is an element of the
dual space (T,,Q)" which can also be written as T7*Q. This is the cotangent space at
z. Tt follows that the basis of TQ dual to the basis {9/9¢'} of T,Q is {dq'} . In this
basis, we have the differentials df = (9 f/0q") dq".

2.2. Differential Forms

Elements of TFQ of the form 6 (z) = 0; (x) dq" are called differential 1-forms

at x.The collection of all cotangent spaces T*(Q) = U Tx() is the total space of the

z€EQ
cotangent bundle of () with the projection w¢ : 7%Q) — @ defined by 7 (0 (z)) = =.

Sections 6 : () — T*() of cotangent bundle are 1-forms on () satisfying 7g o 0 = idg.
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In general, a differential p-form on () is a skew-symmetric multilinear func-

tional on T'(Q) and can be uniquely represented in local coordinates by

1 . . )
w(z) = HWiliQ"'ip (x)dg"™ Ndqg™ A ... \Ndg™ (2.12)

where A denotes the wedge product defined as an alternating tensor product

(d¢' @ d¢’ — dg’ @ dq') (2.13)

DN | —

dg* Adg’ =
and extended by linearity. In particular, a 2-form on @) at x has the representative

1 ) )
w(x) = QWi (x)dg" Ndg’. (2.14)
On the space A (T*Q) = Q(Q) of all differential forms of degree p, 0 < p < m on Q
the exterior derivative is defined on functions as their differentials, on a p-form w
by the property d (w A @) = dw A a + (—1)”w A da for any form «, and extended by
linearity. A p-form w is closed if dw = 0 and is exact if there exist a (p — 1)-form «

such that w = da.

Since d and exterior product carry the coordinate transformations and their
Jacobians intrinsically, differential forms transform covariantly and formulation with

these covariant objects are coordinate free.

2.3. Higher Order Tangent and Cotangent Bundles

It is possible to give a description of manifold structures on the total spaces T'Q)
and T™(@) induced from that of (). Then, regarding 7'Q) and T*(@ as manifolds, one can
proceed to construct higher order tangent and cotangent bundles TTQ, TT*Q, T*T(Q)
and T*T*(Q), as well as to assign induced local coordinates on fibers of these bundles

[15], [16]. For future reference we shall give a list of local coordinates on these bundles.
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We shall use the coordinates {¢*} on @) around z and canonical basis {¢; (z) = 9/9q¢'},

{e' () = dq'} for T,Q and T;(Q respectively, together with the canonical pairing
(e’ e;) (x) = (53 In the adapted basis the elements of 7,,Q) and TQ) can be written in

the form

0
oq"’

v(z) =" (2) a(z) = p; (v)dq’ (2.15)
respectively. Equivalently, we may represent v (x) and « (x) by their base and fiber
coordinates (¢*,v’) and (¢*, p;) . In such a representation we shall employ the following

coordinates for higher order bundles:

(¢, pj; 0", Vi) € TuwTiQ, (2.16)
(¢ 0k, 8) € Tj,TaQ, (2.17)
(¢ pjar, V') € TrTrQ, (2.18)
(¢',v;¢5 ") € T,uT.Q. (2.19)

Note that each of these spaces are 4m dimensional if () is m dimensional.

2.4. Dual Tangent Rhombic

Elements of the iterated tangent space 75,1, Q) are equivalence classes of curves
in T,,Q). The total space TT'() has two fibrations over T'Q). One is the natural tangent
bundle fibration 7p¢ : TT'Q) — T'() and the other is induced from 7¢ : TQ) — @ as a
tangent mapping T'7q : TTQ — T'Q. To find local representatives of these fibrations
we first note that the coordinates (¢, v) on T,() are representatives of the tangent map

Ty : TQ — R*™ of the coordinate function () : @ — R™. From the diagram
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To

TQ »| R2m

7Q

Q > |[RM
@

Figure 2.3. Local representative of projection tau

we have the local representative of 7¢

(porgoTe™) (¢,0) = q. (2.20)

By construction of TT(Q), if ¢ is a coordinate function around x € @, then Ty is a
coordinate function around v (x) € T,Q. Replacing ¢ with T'¢ in above formula we

get the local representative of 7r¢,

(TpoTtrqoTTy™) (q,v;:&m) = (¢,v). (2.21)

For the local representative of T'7g we replace 7 with T'7¢ and ¢ with Ty to get

(Tcp oT'Tgo TT(,o_l) (q,v;€,m) =T (4,0 0TQo TSD_l) (q,v;€,1m) (2.22)

which is actually the tangent map of the representative of 7¢ in Eq (2.20). Hence, it

gives the vector over x with components from T}, T, () that is

(TooTTgoTTe ") (q,v:€,m) = (¢,€). (2.23)

From now on we shall not distinguish the projections and their coordinate represen-

tations. In other words, we shall use, for example, instead of Eqs (2.21) and (2.23)

Trq (¢, v;6,m) = (¢,v), T7q(q,v;&,n) = (¢,§) (2.24)
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to avoid proliferation of notations. The iterated tangent bundle with two projections
TTQ
Tr’% &Q
TQ TQ
T
Q
Figure 2.4. Dual tangent rhombic

is known as dual tangent rhombic. This structure implies the existence of an

isomorphism kg on T7T'Q) such that the following diagram commutes

Kq

v

TTQ TTQ

TTQ 1o

TQ

Figure 2.5. Kappa mapping

that is kg may be defined as to satisfy 1T'7g = T7r¢g o kg which implies together with

Egs (2.24), the coordinate representations

kQ (¢, vi&n) = (¢.&v,m) - (2.25)
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3. CANONICAL SYMPLECTIC STRUCTURES

In this section we shall describe the natural symplectic structures on T*Q), T*TQ)
and T*T*(@). These are exact symplectic manifolds on which canonical 1-forms arises
naturally from two different fibrations of their tangent bundles. We shall show the
construction for T*(@) explicitly and present the results for the other two. In case of
T*@, the fibration of TT™(Q) over T*() and T'() together with the canonical pairing lead

us to a natural definition of canonical or Liouville 1-form on 7%(Q).

If a(z) = (¢,p) € T;Q and v (x) = (q,v) € T,() we can write a general 1—form

as

O (o (2)) = ai (¢,p)dq’ + V' (q,p) dp; € ToyT7Q
for arbitrary functions a; and b'.

Based on the commutativity of the following diagram

TT*Q 'rQ » T*Q

T,
T7rQ Q

TQ 7 > Q

Figure 3.1. Fibrations of TT*(Q)

the canonical or Liouville 1—form on 7*() is defined by requiring ¢ to satisfy

(0, vr-q) = (Tr=q © V1=, TTq © V1) (3.1)
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for all vp«g : T*Q — TT™*(Q. Locally, if

vreq (@ (x)) = (¢ p;v, V) (3-2)
then we have the projections
(Tr-g 0 vr=q) (2 (2)) = (q.p),  (Tmqovrq) (a(x)) = (g, v) (3-3)
and Eq (3.1) gives
a;vt 4+ b'V; = pv'. (3.4)

Therefore, b’ = 0, a; = p; and the local representative of the canonical 1-form on 7T*Q

becomes

00 (¢.p) = pidg'

The exterior derivative of 0

wq (q,p) = —dfq (¢,p) = dq’ A dp; (3.5)

is the canonical symplectic 2-form on 7%(@). Being a bilinear, skew-symmetric func-
tional on T'Q), wq satisfies the condition of non-degeneracy, that is,

wq (vr=g, ur+g) = 0 for all up«q : T*Q — TT*Q implies v+ = 0.

A similar construction can be applied to the higher cotangent bundles T*7TQ)
and T*T*Q. In the adapted coordinates (¢*,v’; oy, 3;) € T y1:Q and (q',pi; a;,b%) €

v(z

TomT *() the canonical 1-forms are

QTQ (Q7 v; @, ﬁ) = aldqz + ﬁidvi7

Or-q(q.p;a,0) = aidg’ + b'dp; (3.6)
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and the symplectic forms can be obtained by derivatives of them.

We note that the 1-form defining the exact symplectic structure is not unique.

In fact, every canonical symplectic structure can be obtained from

0 (2) = b (x) +do (2) (3.7)

for arbitrary function ¢ on (). This is the gauge invariance of symplectic geometry.
In the next section, we shall construct two 1-forms on T7*Q not related as in Eq (3.7)

which, however, give rise to the same symplectic structures.
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4. EXACT SYMPLECTIC STRUCTURES ON T7%(@)

We shall first introduce two derivations ir, dr : Q(Q) — Q(TQ) of exterior
algebras over () and 7'(). We then apply these derivations to canonical 1-form 6
and symplectic 2-form wg on 7@ to obtain 1-forms drfg and irwg on TT*Q). The
derivative of these 1-forms will give the same symplectic 2-form on T7*(). Hence,

TT*@Q) will be shown to be an exact symplectic manifold with two different 1-forms.

4.1. Derivatives of Exterior Algebras

Let a be a 1-form on (). Define the function ira on T'Q) by
(ira) (q,v) = (a,v) forall v € TQ. (4.1)
In coordinates, if a (z) = a; () dg* and v (z) = v* (z) 8/9q° then ira (g,v) = a; (q) v'.

In particular, on basis 1-forms iy (dg') = v*. To define the operator iy on 2-forms recall

from the construction of dual tangent rhombic that if vpg : T'Q) — TT'Q) then we have

(TTQ o UrQ, TTQ o UTQ) eTqQ XQ TQ (42)

since 7g o Tpg = Tg © T'7g. The action of iy on a 2-form w on @ is a 1-form on 7'Q)

defined by

(ir (W), vrq) = w (T1q ° v1q, TTq ° vrQ) (4.3)
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. . A 0 ‘ 0
In coordinates, let w (x) = %wij (q)dq" N dg?, vrg (q,v) = €' (q,v) By + 1" (q,v) D0
ql (A

from computation related to dual tangent rhombic we recall that

0
g’

(Trq o vrg) (¢, v,&m) = (g,v) =7’

- 0
(Trqovrg)(q,v,&m) = (q,ﬁ)zﬁl(q,v)a—qi-

Hence, if (irw) (z) = v; (q,v) dq" + 1, (g, v) dv® for some functions v; (q,v), u; (q,v) we

have
ireo (org (1.0)) = (o @) e Ao’ ) (v0/04',€ (a.)0/00)
Vi (g,v) & + p; (q0)n’ = wij (q) Ve (q,v) (4.4)

for all £ (¢,v) and 0’ (¢, v) . This implies

(irw) (¢,v) = wi; (q) v'dq". (4.5)
By multilinearity, the action of iz can be extended to all of ©(Q). The operator
ir:Q(Q) — Q(TQ) can be shown, by appendix, to be a derivation of degree —1 with
its action on functions being 0.
Using i7 and exterior derivative d define the operator dr : Q(Q) — Q(T'Q) by
dT = ZTd + dZT

Since

ddr = dird + d®ir = dird + ird® = (ipd + dir) d = drd (4.6)
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we see that d and dr commutes. The action of dr on a function on (@) is

drf(q) = irdf (q)+dirf (q) =irdf (q)
_ i (01‘ (Q)dqz’> _ /(@) ; (47)

oqt aq’

which is the directional derivative of f in the direction of v (x). On a one-form a () =

;i (q)dq" on Q,

dra(x) = dira(x) + ipda(x)
doy;

= ai(q)dv + %vjdqi. (4.8)

As usual, the action of dr on p—forms on () can be obtained by linearity. dr :
Q(Q) — Q(TQ) is a derivation of degree 0. The derivations ir and dr are introduced

and studied in detail in references [8] and [16].

4.2. Construction of 1-forms

We shall apply these derivations to canonical 1-form 6 and symplectic 2-form
wg on T*() to obtain 1-forms dpfg and irwg on TT*(Q). The derivatives of these 1-
forms give the same symplectic 2-form on T7*(). Hence T'T*() will be shown to be an

exact symplectic manifold with two different 1-forms.

If we replace ) with 7*(Q) then dr on canonical 1-form 6y and ip on symplec-

tic 2-form wq give 1-form on T7*(). More explicitly, using coordinates (¢, p,v, V) of
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To@)T;Q, we have

drfy = ipdfo + dirfg
= ipd (p;dq’) + dir (p;dq’)
= iy (dp; Adg’) +d (pjv?)
= [irdp; N d¢’] — [irdg’ A dp;] + v/ dp; + pjdv’
= Vid¢’ —v'dp; +v'dp; + p;dv’

= Vidq’ + p;dv’. (4.9)

and for the symplectic 2-form wg on T%Q)

ir(wo) = ir (dg' Adp)
= oldp;, — Vidq'.

The exterior derivatives of these 1-forms give the same symplectic 2-form

—d (dplg) = d (it (wg ) = dg’ A dV; + dv’ A dp; (4.10)

on TT*(). We observe that although the sum of above 1-forms is exact

drfq + irwg = d (piv') (4.11)

their difference is not

drOg — irwg = 2Vidq' + pidv' — v'dp;. (4.12)

This observation will be used to define a non-trivial exact symplectic structure on the

product space TT*Q x TT*(Q).
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5. SYMPLECTIC DIFFEOMORPHISMS

Let (Py,w1) and (P3,wy) be two symplectic manifolds. A diffeomorphism ¢ :
P, — P, is called symplectic diffeomorphism or symplectomorphism of (P, w;)
into (P, ws) if p*wy = w;. Using definition of pull-back (see appendix), this can be

written as
w1 (UP,UP) = Wa (TQOOUP,T(,DO’UP), (51)

for all up (p),vp (p) € 75, (p) and for all p € Pp.

5.1. Symplectic Diffeomorphism Induced by Symplectic 2-form

Let (P,w) be a symplectic manifold. The 2-form w defines a mapping p,, :
TP — T*P characterized by the equality

<5(P,w) oup,vp) = (w;up,vp) (5.2)

for the vector fields up,vp : P — TP with 7p o up = 7p o vp. In particular, for

P=TQ

™Q

Figure 5.1. The mapping beta
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we recall coordinates (¢, p; v, V) € Ty)T5@ andlet ur-q (¢,p) = (¢, p;v, V), vrq (q,p) =
(q,p; v, I_/) . Then, from Eq (5.2) we have, for the right hand side

; 0 o _0 _ 0
<5(T*Q,MQ) (ur-q (q,p)) , (vr=@ (q,p))> = <dq’ A dp;; va—q + Va_p,@_ 4 V—>

0

o -0

= dp — Vdq,v— —
<v D q,vaq+Vap>

= oV -Vb (5.3)

To evaluate the left hand side, take B(T*Q,WQ) (¢,p;v, V) = Adq + Bdp € Tz @

0 0 ~ _
<6(T*Q7MQ) (q,p;v, V), 0 8 + V@p> = Av + BV (5.4)

which implies by Eq (5.3) A = —V and B = v. Thus the action of ﬂ< on a

vector field in TT*(Q is a 1-form in T*T*(Q given locally by

T*Q,LUQ>

5(T*Q,wQ) (Q7p;,07 V) = _qu + Udp = (Q>p7 _V7 U) :

Proposition 5.1. B(T*Q wa) is a symplectic diffeomorphism from (T'T*Q,drwg) to
(T*T*Q, wr+q) -

Proof. = We shall show that the pull-back of canonical 1-form 67+ on T*1T™(Q) is
the 1-form i7wg on T7T*() whose derivative is the symplectic 2-form drwg. For each

vpereg 2 THT*Q) — TT*T*() we have

<ﬁ (T*Qua QT*Q,UT*T*Q>

_ <9 s TB(1-quuq) ® UT*T*Q> (5.5)
<7’ TT*Q © Tﬁ TQug) © VT TQs TTpeg 0 Tﬁ(T*QMQ> o vT*T*Q>

<ﬁ (T*Quwq) O T+ O U=+, L' T+ © UT*T*Q>

WQ; TTT*Q O Ur*r+Q, L T+ © 'UT*T*Q>

(
= <iTWQ; UT*T*Q> (5.6)
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where we used the definition of canonical 1-form and the relations

1@ 0 Th(1equg) = P(requq) °TTTG (5:7)
Trpsg o Tﬁ(T*vaQ) = TTrq (5.8)
TT=Q © B(T*QMQ) = T1*Q (59)

which can easily be obtained with the help of the diagram.

Thrqo
THQ —— 22— T*T*Q

Trrg
TmQ TrT+Q

v

TrQ—LTeed . peyeq

TTkQ

v Ir=Q

™Q

Figure 5.2. Beta mapping and its tangent

We thus showed that B?T* 0 wQ)HT*Q = irwq and this completes the proof. W

5.2. The Symplectic Diffeomorphism «ag : T7T*Q) — T*TQ

For a(x) = (¢,p) € T;Q and v (x) = (¢,v) € T,Q, let vr«g (¢,p) = t¢(0) and
urg = tx (0) be equivalence classes of curves in T, ,)T>Q and T, ,)T,Q, respectively.
Assume that they project onto the same curve on ), that is, mgo ¢ = 79 o x. In

coordinates (¢, p;v, V) € To)To@Q and (q,v;&,n) € Ty)T,Q we can take the maps

¢(s) : (q,p) = (g+sv,p+sV) (5.10)

x(s) : (q0) = (g+s&v+sm) (5.11)
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as representative of these curves to first order in a parameter s. Note that ¢ (s) (g, p)
and x (s) (q,v) are curves in T*Q and T'Q), respectively. Using natural pairings of
these spaces we define the pairing of the spaces TT*(Q) and TT'Q) as bundles over T'()
with projections T'mg and T'7q, respectively. For vectors vp«g (q,p) € Tu@TyQ and
urq (¢,v) € Tya)ToQ we let

(vrq (¢,p) ,urq (¢,v)) = ((¢,p;v,V),(q,v;€,1))

(C(s) (@) x (5) (¢ 0))]s=0

a
ds
d
E <(q _'_ 8U7p + SV) ’ (q + 557 v + 877)>J3:0

- % (p+sV) (v 4+ s1)]s=0

= Vou+pn.

On the other hand, TT'Q) has natural pairing with T*T'() over the space T'Q), that is,
as bundles with projections 7pg and mpg, respectively. From the construction of dual
tangent rhombic we recall the isomorphism x¢g of bundles T'7g : TTQ — T'Q) and
Trq : TTQ — T(. We define the dual isomorphism « of the bundles T'm¢q : TT*(Q) —
TQ and g : T*T'Q) — T'Q) by requiring the above pairing to be equal to the natural
pairing of T*T'() and TT(Q). From the dual diagrams

TTQ >TTQ  TT*Q > T*TQ

7TTQ

TQ TQ

Figure 5.3. kg and o mappings

we have

(ag o v+, urg) = (Vr+qQ, kg o urg) - (5.12)
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To find the coordinate expression for ag we compute

(0q (0,70, V), (g v:&m)) = (¢ 00, V), kg (g, v:€,m))

= ((¢: v, V), (q,&0,m))
= V&+pn (5.13)

for the right hand side. If ag (¢,p;v, V) = (¢,v; A, B) is a 1-form on 7'Q), we get
A+ Bn=VE&+pn (5.14)
which implies A =V and B = p. That is
ag (¢, p;v,V) = (q,v;V,p) (5.15)

is the local expression for the isomorphism ag.

Proposition 5.2. ag is a symplectomorphism from (T'T*Q,drwg) to (T*TQ,wrq) -

Proof. Recall that

0o (¢,v;0, B) = cudg’ + Bydv' = (q,v; v, B) (5.16)

is the canonical 1-form on T*7'Q). If this is the image of (¢,p,v, V) under ag we get
a; = V; and f3; = p;. Thus, the pull-back of canonical 1-form ¢ to TT*(Q) is

(a0rq) (g.p;0,V) = Vidg' + pidv' = drg. (5.17)
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6. SPECIAL SYMPLECTIC STRUCTURES

Let (P,w) be a symplectic manifold. A special symplectic structure for (P, w)
is a collection (P, @, , 6, «), where m : P — () is a vector fibration and, § = a* (fg) is
a one-form on P with —dfl = w, 0 is the canonical 1-form on 7@, and o : P — T*Q)
is a diffeomorphism uniquely characterized by (a (p),vg) = (0,vp) for vector fields
vg 1 Q — T'Q and vp : P — TP satisfying T'm o vp = vg. To see this characterization,

we have, based on the following diagram

Figure 6.1. Fibrations on special symplectic structure

the following computation. For each vp : P — TP we have, using definition of

canonical 1-form 6 on the second line

(0,vp) = (a0g,vp) = (0o, Taovp)
Tr+g o Tawovp, TmgoTaovp)
aoTpouvp, T (mgoa)ouvp)

{
{
{
{

aoTpouvp, Tmouvp). (6.1)
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With this observation we state the following definition. Let (P, Q, 7) be a fibra-
tion and € be a 1-form on P. The quadruple (P, @, 7, 6) is called a special symplectic

manifold if there is a diffeomorphism o : P — T such that 7 = mgoa and 0 = a*f.

If (P,Q,m,0) is a special symplectic structure, so is (T'P,TQ,T'w,drf) with ag o
Ta:TP —T*TQ, Tm = mrgoagoTa and drf = (ag o Ta)" (6r¢g). In other words,
the special symplectic structure for (P, —df) represented by the diagram

(Pﬁ) (T* Q’QQ)

T 7l'Q

Q

Figure 6.2. Special symplectic structure

induces a special symplectic structure

(P, de) —21% (1 r)

Tx A
TQ

Figure 6.3. Tangent of a special symplectic structure

for the exact symplectic manifold (TP, drw) .

6.1. Tulczyjew’s Triplet

In particular, if P = 7@ and o = idp-, we have the special symplectic structure
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(TT*Q, difly) —2— (T*TQ6rc)

Tn'Q 19

TQ

Figure 6.4. Special symplectic structure for TP = TT*(Q)

for the symplectic manifold (777*Q, drwg) .

On the other hand, using the map §p,) : TP — 1" P, we construct, from the
symplectic manifold (P, w), the diagram

(TP, iyw) oo, (T*P,65)

N A

Figure 6.5. Special symplectic structure due to beta mapping

which represents a special symplectic structure for the symplectic manifold (TP, i7w) .

As a special case, if we take P = T*(), then

* i ﬁ(T*Q'wQ) * T
(-I_r Q, IWQ) - (T T Q’QT*Q)

T™Q

Figure 6.6. Special symplectic structure of (T7%Q), irwg)
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represents a special symplectic structure for the symplectic manifold (T7*Q, dirw) -
Thus we have a triplet of structures that indicates two special symplectic structure for

the symplectic manifold (777*Q, dirwg = ddrfg)

T*TQ «—2 — TT*Q Sfrew | o, TQ

N

Figure 6.7. Tulczyjew’s triplet

which is called Tulczyjew’s triplet.
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7. LAGRANGIAN SUBMANIFOLDS

7.1. Lagrangian Submanifolds and Generating Functions

A Lagrangian submanifold of a symplectic manifold (P,w) is a submanifold
S C P of dim (S) = § dim (P) such that w]g = 0. Where | g represents the restriction
of the two-form to the submanifold S.

If S is the image of an immersion 0 : M — P, then w|gs = 0 is equivalent
to 0*w = 0.There is a nice characterization of immersed Lagrangian submanifolds of
(T*Q,wq) in terms of Lagrange brackets. We assume S C T*() is the image of an
immersion o : M — T%() and let (mk) be coordinates on M. Representing the map o

by o’ (m) = qi and o (m) = p; we compute

U*WQ = —O'*deQ = —d (U*QQ) = —d (O'Z‘dO'i) = dO'i A dO'Z'
= o dm” N\ S dm

1 do* Oo; B do; O’
2 \Omk oml  Omk Om!

) dm® A dm! (7.1)

which implies that the condition for S to be a Lagrangian submanifold of 7*@Q is

vanishing of the Lagrange brackets

oo* do;  Oo; Oo > (72)

[ _
(", m'] = (8mk om!  Omk om!

We observe that if 0%y = dU (m) for some function U on M, then do*fg = 0
identically. In this case, U (m) is called a generator of Lagrangian submanifold S.

From dU (m) = o; (m) do’ (m) one obtains the representation of S by equations

ou (m) do*
“omr = g

(7.3)
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or, using o; (m) = p;, o (m) = ¢* this can be converted into

- =P, (7.4)

for proper invertibility conditions on o. Alternatively, one can consider more gen-
eral class of functions depending on some parameters, called Lagrange multipliers,
to obtain a characterization of Lagrangian submanifolds by Eqs (7.4) together with
additional equations characterizing the domain of validity, thereby replacing the in-

vertibility conditions.

Yet another way, which we shall employ in the following, is to consider families
of functions parametrized by an appropriate set X C () on which the dynamics takes
place. The critical points of such a family turns out to be the Lagrangian submanifolds
of T*X. This can be used to generate Lagrangian submanifolds of T#() and special
symplectic structures enable us to generalize this construction to arbitrary symplectic

manifolds.

7.2. Morse Families

Let p : R — X be a differentiable fibration with dim (X) = m and dimension
of fibers being k. A vector field v : R — TR on the total space is called a vertical
vector field if Tpowv = 0.

In local coordinates, (z,7) € R,z € X, p: (x,r) — =, (x,1;%,7) € Tz R
and the vertical space V, )R consists of vectors of the form (z,7;0,7) or equivalently

7 (9)0r) .

A function U : R — R can be considered to be a family of functions on the
fibres of the fibration p : R — X and parametrized by the coordinates of the base

space X. We shall use the following diagram to represent a family of functions.
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Figure 7.1. Family of functions

The critical set for a family of functions U : R — R is defined by
Cr(U,p)={(z,r) € R:{dU (z,7),v (z,7)) = 0,Yv (z,r) € ViunR} (7.5)
and is a submanifold of R of dimension m = dim (X).
At each point (z,7) € Cr (U, p) we define a bilinear mapping

W (U, (.I’, 7”)) . Vv(LT)R X T(LT)R — R

(v(x,r),w(z,r)) — DY (U ox)(0,0), (7.6)

where x : R? — R is such that v (z,7) = tx(.,0)(0) and w(z,r) = tx(0,.)(0).

W (U, (z,r)) is in general a k x (m + k) matrix of derivatives.

A family of functions U : R — R is said to be regular if the rank of W (U, (z, 7))
is the same at each (z,7) € Cr (U, p). A family of functions U : R — R is said to be
a Morse family if the rank of W (U, (z,7)) is maximal at each (z,r) € Cr (U, p).

As an example, let X be two dimensional with coordinates (z!, z?) and let r be

the coordinate on the one-dimensional fibers of R — X. The internal energy function

U(z',2%r) = ((xl - acosr)2 + (2% — asinr)2> (7.7)

DN | —
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associated with the motion of a material point on the circle of radius a is a Morse

family on R since the rank of the 1 x 3 matrix

0?’U  0*U 0°U
oror’ Ordx!l’ Ordx?

) = (a (' cosr + 2*sinr) ,asinr, acosr) (7.8)

0
is 1, everywhere. For arbitrary vertical vectors of the form v (z,7) = fa— the condition

r
(dU,v) = 0 implies OU/0r = 0 which reduces to

2

T tanr =0 (7.9)

!

and this defines a two dimensional submanifold of R as a critical set Cr (U, p) of the

Morse family U.

7.3. Critical Set as Lagrangian Submanifold

Next result shows that critical set of a Morse family on R — X is a Lagrangian

submanifold of the cotangent bundle of the base space X.

Proposition 7.1. For points (x,r) € R with p (z,7) =x = 7x (y), the set
S = {y eT*X : (y,Tpoug) = (dU,ug), for all ugr : R — T(W)R} (7.10)

is an immersed Lagrangian submanifold of the symplectic space (T*X,wx) .(See the

figure below.)
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Pairing |
du \)/'\Q
m @
TR in R @ = TR
\‘ .

Pairing Il

Figure 7.2. Generation of the set S.

Proof. Let us define a mapping x : Cr(U,p) — T*X, such that 7x (k (z,r)) =
p(x,r) and

(K (z,7),vx) = (dU, ug), (7.11)

where vy : X — T'X and up : R — TR such that T'p o up = vx. This mapping is an
immersion and S = im (k). Let uc, : Cr (U, p) — T,Cr (U, p)

(k" (0x),ucry = (Ox,Tkoucy)
(Trex o Tk ouc,, Tmx o Tk o ucy,)
= (K, Tpoucy)
(dU, ucy) (7.12)

where we used the definition of the canonical 1-form and the definition of k. It follows

that

K'wx =0 (7.13)
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and dim (S) = dim (Cr (U, p)) =m. W
For the example of this section we have
Ox = prda’ + pada®

2

and the critical set is defined by the equation z? = z! tanr. k is a 1-form on Cr (U, p)

given by
k(2! 2% r) = ——da' + ——da® = (2" —acosr) da' + (2* — asinr) di®.  (7.14)
It follows from the property of the canonical 1-form that
K0x = (¢' — acosr) da' + (2° — asinr) dz? (7.15)
and we have dx*0x = 0 since fiber coordinate r is constant on X.
The Lagrangian submanifold S in 7 X is then defined by the equations
p1 =o' —acosr, py=2°—acosr (7.16)

where the fiber coordinate r assumed to be eliminated from the equation for critical

set, so that above equations define a 2 dimensional submanifold of 7*.X.

7.4. Lagrangian submanifolds of 7@

By embedding X into () we shall obtain Lagrangian submanifolds of 7% from
those of T*X. Let X C () be a submanifold, take a regular family of functions U
on the total space of p : R — X. By above result, we have an immersed Lagrangian

submanifold S of 7% X generated by U. Let T5(Q) = Wél (X) denote the inverse image
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of X in the total space of the cotangent bundle 7 : T*Q — . Define the mapping
§:T3Q —-T"X (7.17)

by (¢ (p),v) = (p,v) for each v : X — T'X so that ¢ is identity if base point of p € T%Q
is in X, that is, if p € T*X. Hence, ¢ is invertible on 7% X. Then, if i : T5Q — T7(Q) is

the canonical injection, we can define

iol ' =T"X — T*Q. (7.18)
Proposition 7.2. ' =io¢ ' (S) is a Lagrangian submanifold of (T*Q,wg) .

Proof. If (z,p) € T*Q with 7x (z,p) = z € X we can find (z,7) € R with
p(z,7) = . Then for every wg : R — T,R we have Tpowgr =v: X — T, X C T,Q
and ((z,p),v) = (dU,wg) . Alternatively, we can show that canonical two form wq

vanishes on S’. To this end, we define the functions
U:QHR, V:UOTFQ, U:VJS/ (719)

with U|x = U. Obviously V is on T*Q and U is on S'. U does not depend on the

choice of U since it can also be defined directly as

U= (UOWQ)JS/, (720)

forallpe 8" If w: S — TS, then Tmrgow : S — TS since mg (S') = S from the

definition of S’. Now we compute

(Og,w) = (rp+gow,Tmgow)
= (dU,Trgow) = (dU,Tmg o w)
= (Viw) = <d(7,w>, (7.21)
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which implies 0 | s = dU and
wols = —dlgls = —d(0g|s) = —ddU = 0. (7.22)

So S’ is a Lagrangian submanifold of (7%Q,wg). W

7.5. Lagrangian Submanifolds of Special Symplectic manifolds

Above result combined with the structure of special symplectic manifolds en-
able us to generate Lagrangian submanifolds of arbitrary symplectic manifolds. Let
(P,Q,,0) be a special symplectic structure for a symplectic manifold (P,w) with its
special symplectic isomorphism « : P — T%*(). Combined with the diffeomorphism «

of the special symplectic structure (P, Q,m, 0, «) we obtain the following result.

Proposition 7.3. N = a1 (S') = a ' oio &1 (S) is a Lagrangian submanifold of
(P,6).

Note that for every wg : R — TR as above, there exists wp : P — TP with
Tpowgr ="Trowp and the generating function of N is defined by

<9,U)P> = <dU, UJR> .

We shall denote this construction diagrammatically as
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U
(P,0) R—— IR

Q7

Figure 7.3. Generating object

and call it to be the generating object for the immersed Lagrangian submanifold N

of P.

We shall obtain various examples of Lagrangian submanifolds and their generat-

ing objects as special cases of the above construction.

1. Take av: idp+g, X = Q and p = idx. Then S = N and U : Q — R. The image S
of the differential dU : @Q — T*(Q is a Lagrangian submanifold of (7%#Q,w¢)
T™Q

TqQ

\4

U
Q— IR
Figure 7.4. Case I for generating object
since dim (S) = m and

dU) wg = (dU)* dfg = d (dU)" g = ddU = 0. 7.23
Q Q Q

The submanifold S is said to be generated by the function U. In terms of coor-

dinates (¢',p;) the set S is described by the equations

_9U(d")
pj - ('9qj .

(7.24)
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2. Let o : idp-q, p = idx and X C ) be a submanifold of dimension k. Then
U: X — R and the set

N=S={peT*"Q:q=mg(p) € X, (p,v) =(dU,v),Vv: X - TX CTQ}
(7.25)

is a Lagrangian submanifold.

™Q

qQ

v

U
Qe >X——1IR

Figure 7.5. Case II for generating object
3. Let a be arbitrary, p = idx and X = ). The Lagrangian submanifold generated
by this object is

N=im (o odU)=a"(dU)={pe P:(0,z) = (dU,Troz) Vz: P— TP}

(7.26)

where U : X = @) — R. The diagrammatic representation of this construction is
(P.0)
T

Q ——1IR

Figure 7.6. Case III for generating object
4. Let « be arbitrary, p : idx and X C (). Then the set

N={peP:q=7(p)eX, (f,u)=(dU,Troz),Vz.P - TP} (7.27)
is a Lagrangian submanifold of (P,df) said to be generated with respect to

(P,Q,m,0) by the function U : X — R. Figure illustrates the construction of

Lagrangian submanifold N.
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(P.6)

Figure 7.7. Case IV for generating object
5. Let a = idyx, p arbitrary and X C . Then we obtain the definition of the
immersed Lagrangian submanifold of (7*Q),w¢q) described in proposition 3. The
corresponding diagram is

R———IR

QQX

Figure 7.8. Case V for generating object

7.6. Lagrangian and Hamiltonian Dynamics

We shall show that the Lagrangian and Hamiltonian formulations of dynamics
described at the beginning are indeed Lagrangian submanifolds of T7*() generated by

the functions L and —H, respectively.

Let (P, @, m,0) be a special symplectic manifold. If the Lagrangian submanifold
D of (TP, drw) is generated by following generating object
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(TP,d-6) R—— IR

T p

v v
TQe— = X

Figure 7.9. Lagrangian generating object

with respect to special symplectic structure (T'P, TQ, T, dr0), then generating func-
tion L is called Lagrangian function and X is called Lagrangian constraint. Fur-

thermore, the functions represented diagrammatically as

X

Figure 7.10. Lagrangian family

are called a Lagrangian family. In particular, if we take P = T7Q), then (TT*Q,TQ,Tn¢g, drfg)
with the generating object

(TT*Q, chb) R—— IR

Trq p

v v

TQe— = X

Figure 7.11. Lagrangian system for P = T*(Q)
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is called a Lagrangian system for P = T%(). For this case, immersed Lagrangian

submanifold is given as
wreqg : T*Q — TT*Q : I (x,1) € Ry p(x,1) = Tmg o wr=q,

D = T,O OCUR = TT?TQ O UTT*Q — <dT0Q7'UTT*Q> = <dL7UR> , . (728)
VYorpsq : TT*Q — TTT*Q,Vug : R — TR.

If on the other hand, the Lagrangian submanifold D of (TP, drw) is generated
by the following generating object

(TP, i;) R—— IR

Figure 7.12. Hamiltonian generating object

with respect to special symplectic structure (T'P, P, ,irw), then H is called Hamil-

tonian of the system and X is called Hamiltonian constraint. In addition,

Figure 7.13. Hamiltonian family

is called the Hamiltonian family of functions. In particular, if P = T*() then the
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special symplectic structure (TP, P, 7,irw) becomes (TT*Q),T*Q, Tr+q,irwg), and

the following generating object

(W*Q’iTCUQ) R R

TT* Q

v v

T"Qe——> X

Figure 7.14. Hamiltonian system for P = T*Q

is called Hamiltonian generating object for P = T*(). The dynamics is given by

the Lagrangian submanifold

wrq : T*°Q = TT*Q : 3(z,7r) € Ry p((x,7)) = Tr=q © Wr=q,
D = Tpour=T7povrrq = (irwq, vrr+qQ) = (—dH, ug), - (729
Yorpsq : TT*Q — TTT*Q,Yug : R - TR
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8. LAGRANGIAN SUBMANIFOLDS OF CARTESIAN PRODUCTS

8.1. Products of Symplectic Manifolds

Let (P;,wq) and (P, ws) be symplectic manifolds and and let pr; and pry denote

the canonical projections

pT12P2><P1—>P1, pT11P2><P1—>P2. (81)

Proposition 8.1. (P, X Pj,wy © wyq) is a symplectic manifold

To see this, we need to show that wy © wy = prjw, — priw; is closed:

d(wg@wl) = d(pT;w2—prfwl)

= prydws — pridw; =0 (8.2)

and it is non-degenerate by construction.

Let ¢ : P — P, be a diffeomorphism. The graph of ¢ is the subset of P, x P;
defined by

graph (¢) = {(¢ (p1),p1) : ;1 € P1}. (8.3)

Equivalently, graph(y) can be described as the image of the map

((p,idpl):P1—>P2><P1. (84)

Following result gives a connection between symplectic diffeomorphisms and Lagrangian

submanifolds of P, x Pj.
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Proposition 8.2. ¢ is a symplectic diffeomorphism if and only if graph(yp) is a La-

grangian submanifold of (Py X P we © wy).

Proof. Since (¢, idp,)" (w2 ©w1) = ¢*ws — w1, ¢ is a symplectic diffeomorphism if

and only if p*ws — w; = 0 which implies wy & wljgmph(@ =0. m
In local coordinates, if (¢,p) € P, and (g, p) € P then
we O wy = dq' A dp; — dg' A dp; (8.5)
and a diffeomorphism ¢ : P, — P, can be represented as
i=v(a.p), P=x(ap). (8.6)
Restricting ws & wy to graph of ¢ we have

w2 © Wi lgrapnp = dq' N dp; — dg' A dpi] grapne
= &' (¢",p) Ndx; (¢° p) — dg’ A dp;
= (aw qu + % dpl) A <8Xiqu + Oxi dpl) —dg' A dp;

OqgF op; dq* Ipy
= [¢".d'] dd" ndd' + [pi,¢"] dg* A dp — [d". pi] dg" A dpy
+ [pr, i) dpi A dpy — dg' A dp' =0 (8.7)

where [qk, ql] , [qk , pl] and [pg, pi] are Lagrange brackets. So condition is equivalent to

[qka ql} =0, [qkapl} - 6?7 [pkapl] =0. (88)
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8.2. Products of Special Symplectic Manifolds

Assume further that (P, Q;, 7,60, «;) , i = 1,2 are special symplectic manifolds.

Define the mapping

ot Py x Py — T (Qa x Q1) = T"Qs x T*Q, (8.9)

by a1 (pa, p1) = a2 (p2) — a1 (p1) - Introducing

Il =moay, Ily=m0aqs (8.10)

we have IIy x Iy = (m1 X 72) 0 gy Since b, B b, = pribfo, +prifo, is the canonical

I-form on 7% (Qg x Q1) = T*Q2 X T*Q1, the 1-form

02601 = 0531 (9Q2 S” 9@1) (8'11)

is associated with the special symplectic manifold

(P2 XP17Q2 XQhHQ XH1792901) (812)

represented by the diagram

a
(szplle 2" 0 1) - (T* QZXT* Ql’HQZ-HQl)

QxQ,

Figure 8.1. Cartesian of special symplectic structures

As a result we conclude that if (P;,w;), ¢ = 1,2 are underlying symplectic man-

ifolds of (P;, Q;, m;,0;) then (Py X Pj,ws © wy) is the underlying symplectic manifold
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of the special symplectic structure in Eq (8.12).

Let M C @ x @1 and consider the fibration p,; : Ro; — M. The Lagrangian
submanifold of (P, X Pj,ws © w;) represented by the graph of symplectomorphism

¢ : P — P, can be generated according to the diagram

U
(PxP1,0,- 6,) Ri—— IR

ILX 1T, P21
QXQ, «—— M

Figure 8.2. Generating object for ¢ : P, — P,

by a function Uy : Rs; — R. Locally, the submanifold M can be described by [

equation
W (¢,q)=0, a=1,..,L (8.13)
Then, if Uy : Q2 x Q1 — R is an arbitrary continuation of Uy, : M — R, an

implicit description of Lagrangian submanifold generated by Us; or equivalently of the

corresponding diffeomorphism ¢ can be given by

02 © 0, = pidg' — pidq' = d ([721 (¢,q) — vaW* (q, 67)) (8.14)

which implies the equations

CoUy  owe
p'L - 8@1’ a aql
Uy owe

We(¢') = 0, a=1,.,L (8.15)
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For M = Q)5 x (), these equations reduce to

. 0Uy OUs;
Pi=n P B (8.16)

To describe the relation between generating functions of the Lagrangian subman-

ifolds of Py, Py and (P, X Pp,ws © wq) we have from Eq (8.14)
pidg' = d (Uxn (¢, 7") + vaW* (¢, 7)) + pidd’ (8.17)
and if the Lagrangian submanifold of P; is described by
pidg' =d (Ul (ql) + N FP (ql)) , (8.18)
we obtain
pidq = d (U1 (¢',7") + vaW* (¢, @) + U1 (&) + M FY (¢)) - (8.19)
Hence the local expression of a generating function U, of N is given by
Us (7') = Un (¢,@) + U1 (&) + vaW* (¢'.¢") + NFY (¢') (8.20)
In particular if X; = @1 and M = @2 x ()1 then

Us (CYZ) = Uy (qiv Cf) + U, (QZ) . (8.21)
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8.3. Products in Tulczyjew’s Triplet

We let, further, P, = P, = P = TT*() with its two different special symplectic

structures

(TT"Q, Q1 =T"Q,m1 = T1+q, 01 = drflg, 1 = aq) (8.22)

(TT*Q, Q2 = TQ, s = Trg, 0 = irdfo, a = B(T*Qwﬁ . (8.23)
Following previous section, we define the mapping
ag TT*Q X TT*Q - T*(TQ X T*Q) =T"TQ x T*T*Q (8.24)
which reads, in local coordinates,

Qa1 ((qapu v, V) ) (Q7p7 v, V)) = /6<T*Q7WQ) (qapu v, V) —QQ (Q7p7 v, V)
= (q7p7 _‘/7 U) S (Q7 v, Vap) : (825)

The symplectic form in the product 7™ (T'Q x T*Q) is
Orq ® Or-q = pr; (01q) + pri (01+q) , (8.26)
hence on TT*Q) x TT*() we have

Orq ©0rq = ag (0rq @ 0r+q)
= (Vidg' + pydv’) — (v'dp; — V;dg') (8.27)

and the derivative is

wrg S wr-g = 2 (dV; Adg’ + dv’ A dp;) . (8.28)
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The projection onto the base T'Q) x T*() is given by

Iz x ITy) (g, p,v, V) = ((m1 X ma) 0 az) (¢, p,0, V)
= (Wl X 7T2) ((Q>pa _‘/a U) S (Q>Ua Va p))
= ((q,v),(q,p) € T.Q x T;Q. (8.29)

We, thus, have the special symplectic manifold
(TT*Q X TT*Q, TQ X T*Q, (H2 X Hl) 79TQ S, QT*Q) (830)

associated with the diagram
Xa
TQxTTQ A% purgymereq

TLX 11 TrQX e

TQ,XT*Q

Figure 8.3. Special symplectic structure for cartesian of T7™*(Q)
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9. LEGENDRE TRANSFORMATIONS

Let (P,w) be the underlying symplectic manifold of two special symplectic mani-
folds (P, Q1, 71, 61) and (P, Q2, w2, 02) . Lagrangian submanifolds of (P, w) may be gen-
erated by generating functions with respect to both special structures. The transition
from the representation of Lagrangian submanifolds of (P,w) by generating functions
with respect to (P, Q1,m1,01) to the representation by generating functions with re-
spect to (P, Q2, 72, 05) is called the Legendre transformation from (P, Qq,71,0;)
to (P, Qq,m2,02). In this case, the symplectomorphism P — P whose graph is the
Lagrangian submanifold of P x P is chosen to be the identity mapping idp so that one
ensures the change in representation of Lagrangian submanifold only. The generator
of idp will be a function Fs; on a submanifold I5; of Q2 x @)1 which is in fact the

required generator of the Legendre transformation.

The graph of idp can, alternatively, be represented as the diagonal map A : P —
P x P defined as

A(p) = (p,p) € P x P. (9.1)

An important property of this map which will lead us to find the generating function
Es; is that, the pull-back of bundles over P is their Whitney sum. This means that,
each fiber of the pull-back bundle is the direct sum of the corresponding fibers. For

example, the pull-back of canonical forms on P is now a direct sum.

Given a Lagrangian submanifold N of P its image, which is called a Legendre
relation, under the mapping (mg, X mg,) 0 A : P — Q3 X 1 can be realized as the
graph of a map As; : ()1 — (2. This map is called the Legendre transformation of

(21 to Q5 corresponding to the Lagrangian submanifold N of P.
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Let @ be the configuration manifold of a mechanical system. The phase space of

the system is the symplectic manifold (7@, dfg) . There are two canonical special sym-

plectic structures for the symplectic manifold (7'7*Q, ddrf¢g = dirwg) , Hamiltonian

and Lagrangian special symplectic structures.

Proposition 9.1. The Legendre transformation of a Lagrangian system is generated

by the function Es defined on Iy = TQ) xo T'Q and is given by

Ey 0 (a,v) = — (o, v)

Proof. Let ® be the mapping defined by the commutative diagram

TT*Q > TT*Q X TT*Q

b g X T7g

QX TQ <——— T*QxTQ

Figure 9.1. Definition of the mapping phi

where A is the diagonal map
A (Q7pa v, V) - ((q7p7 v, V) ) (q7p7 v, V)) - graph (ZdTT*Q) .
Then for w: T*Q — TT*Q

(E1 0@) (w) = Eyy o (Tregow, Tmgow) =— (Tr«g ow,Tmg ow)
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hence by definition of the canonical 1-form 6, we have
E21 od = —iTQQ (95)

and ® (w (¢, p,v,V)) = (¢,p,v) , in coordinates, we recall from section (4) that Fa (¢, p,v) =

—pv. To see that this generates the Lagrangian submanifold we compute

A* (deeQ S, dT(QQ) = deth — dTQQ = —diTGQ =d (Egl o p) . (96)

The generating objects for the Legendre transformation and its inverse can be

represented by the following diagrams

(TT*Qx TT* Q000 6)

T X T7rQ

<, ,>

T*QXTQ «——— T*QX,TQ IR

Figure 9.2. Legendre transformation from 7'Q) to 7@

and for the inverse case we have
(TP QX TT*Q, dyfrid0)

TrX Treq

<,>

TOXT*Q «~—— TQX,T*Q IR

Figure 9.3. Inverse Legendre transformation from 7*@Q to T'Q

To pass to the Hamiltonian formalism from Lagrangian formalism, let us start

with a Lagrangian system (77*Q,TQ, dr0q, Tmg) with generating object



%)

(TT*Q, d;6,) R—— IR

Trg P1

Figure 9.4. Lagrangian system

We define the Hamiltonian family with

Xy = w5 (1 (X)) = {(¢,p) € T*Q : 3(q,v) € X1;7q (¢,p) = 7 (¢;v)} (9.7)

R2 - {(q7p,1},7”) S T*Q X TQ X Rl : (Q7U> S X17p1 (QJp7 T) = (CI?v)} (98)

and the corresponding Hamiltonian system is represented by the generating object

_ H
(TT*Qiizw) R IR

TrQ P2

4 v

Figure 9.5. Hamiltonian system

where p, : Ry — X5 : (¢,p,v,7) — (¢,p) and
H:Ry—R:(q,p,v,7) = (p,v) — L(q,v,7). (9.9)

These two systems generate the same dynamics since the generating object generates

the identity relation. Conversely, given a Hamiltonian system, we can also construct
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a Lagrangian system with

X1 =74 (mq (X2)) ={(q,v) € TQ : 3(q,p) € T*Q;mq (¢,p) = T (q,v)}  (9.10)

Ry = {(¢,p,v,7) € T*Q xo TQ x Ry : (¢,p) € Xa,py (q,p,7) = (q,p)} (9.11)
and the Lagrangian function
L:Ry—R:(q,p,v,7) = (p,v) — H(q,p,7). (9.12)

which is called the inverse Legendre transformation.

9.2. Examples

A Non-relativistic Particle:

Let @ be the configuration manifold of a non-relativistic particle of mass m,
and let U (q) be the local expression of the potential energy of the particle. Let us
recall our notation higher order bundles (¢, p,v, V) € TT*(@). Dynamics of the particle
represented by a Lagrangian submanifold D of (TT*Q, drw) defined locally by

: ouU
pi=mv', Vi=———. (9.13)

The submanifold D can be described by the equations

Vidq' + pidv' = —g—gdqi +mu'dv' =d (—U (¢') + %m (vi)2) (9.14)
ou .. 1

. . , 1
Vidq" —v'dp; = o dq' — Epidpi =—d (V (¢') + Py (pi)Q) , (9.15)




57

hence the Lagrangian and Hamiltonian functions are

1

L(g'W) = o™ (vj)2 - U (¢") (9.16)
A ) 1
H(q¢,p;) = U(d)+ o (pj) (9.17)
and the relations
H (qi,pj) = pjvj — L (qi,vj) (9.18)
L(¢,¢) = pv' —H(d',p;) (9.19)

between them are local expressions of Legendre and inverse Legendre transformations.
Thermostatic:

Let P be a manifold with elements (V,S,p,T) € P interpreted as volume, met-
rical entropy, the pressure and the absolute temperature, respectively, of one mole of

ideal gas. Symplectic 2-form on P is given as
w=dV ANdp+dT NdS. (9.20)
The equations determining the behavior of the ideal gas are

S
pV =RT, pV7'=Kexp— (9.21)
Cy

R
where R, K and ~ are constants and Cy = —1.Let (V,S) € @1, (V,T) € Qq,
’Y —
(p,T) € Q3 and (5, p) € Q4 be 2-dimensional manifolds. With the projections

i P— Q; (9.22)
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and the 1-forms

0, = —pdV +TdS (9.23)
0, = —pdV — SdT (9.24)
0; = Vdp— SdT (9.25)
0, = Vdp+TdS (9.26)

we have the special symplectic manifolds (P, Q1,71,61) , (P, Qa, 72, 0s), (P, Qs,m3,03) ,
and (P, Q4,m4,04) , respectively. The underlying symplectic manifold is

(P,w =dV Adp+dT AdS).

The relations in Eq (9.21) defines a Lagrangian submanifold of this structure. To
find the generating functions with respect to above special symplectic structures we

compute for the first one

0, = —pdV +TdS
S 1 K S
= —K — | —d —ya- — | dSs.
exp (Cv> 7 vV + RV exp (CV) S

K S
— (1—v)
d <’V — % exp <Cv>) (9.27)

which gives

K
Uy (V,S) = —1v<1—7> exp (i) : (9.28)



Similarly, we find

92:

0y =

—pdV — SdT
RT RTV!
d(CyT(1—-InT+InK—-InR)— RTInV)

Vdp — SdT

RT RYTY

po - CV In <p7_1K)
d(CyvT(1—-InT—-InR)+CyTIn K + RT Inp)

Vdp + TdS

K exp =~ K exp ==
PEPe ) gpy 2 (2P 4
P R P

¥ 191 S
d{ ——Kp —
(7—1 P eXpCv>

so that generating functions are

Uy (V,T)
Us (p,T)
U4 (57 p)

= OyT(1l—-InT+InK—-InR)—RTInV

= CvTI'(1l-InT-InR)+CyTInK+ RT'lnp

1 o3y S
= —Vleip vlexpc—v.

99

(9.29)

(9.30)

(9.31)

(9.32)
(9.33)
(9.34)

The generating functions Uy, Us, Us, Uy are known as thermodynamic potentials and

are called the internal energy, the Helmholtz function, the Gibbs function and the

enthalpy, respectively.

There are twelve Legendre transformations relating the four special symplectic

structures or four thermodynamic potentials. The mapping w9 X m; maps the diagonal

of P x P onto a submanifold I5; of Q3 X @ its coordinates (V, S, T') related to the coor-

dinates (V, S, p, T). The Legendre transformation from (P, Q1,m1,61) to (P, Q2, 72, 0>)

is generated by the function Fs; defined on I5; by

Boy (V,S,T) = —TS.

(9.35)
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Similarly, the Legendre transformation from (P, Qq,m1,601) to (P, Qs, 73, 03) is gener-
ated by the function Fs5; defined on I3; C Q3 X (1 by

and the others can be found to be

En=pV, Ezp=pV, Ep=pV+TS E;3=TS (9.37)

from which one can also verifies various relations between generating functions such

as

Us (V,T) = U, (V,S) — TS. (9.38)
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APPENDIX A

Submanifolds and Product Manifolds

A differentiable mapping « : S — @ is called an immersion if at each point

m € S the linear mapping
Tma : TmS - Ta(m)Q (Al)

obtained by restricting the mapping T to the fibre T,,,S = 7}/ (m) is injective. If
(m%) : S — R¥ are coordinates in M and o* = ¢* o a, then « is an immersion if the
matrix d;a” is of maximal rank k. The image S = im(a) C Q is called an immersed

submanifold of ) of dimension k.

If the immersion « : M — (@) is injective, then it is called an embedded sub-

manifold. The level sets of functions

S={qeQ:Falq) =0,VF4:Q — R} (A.2)

is an example of an embedded submanifold. Here F4 are m — k functions on () such

that the matrix 0, F4 is of maximal rank m — k at points of S. (See [8])

As an example of an immersed but not embedded submanifold in R? consider
the graph of the function o () = (2cos (t — 47),sin2 (¢ — 37)), which is in form of
figure eight. The graph is periodic but not injective. On the other hand, although
the image of the function « (t) = (2 cos (2 arctan (t + %)) ,sin 2 (2 arctan (t + g))) is

similar to the above one it is an embedded submanifold for it does not intersect itself.

(See [4])

The product manifold Q x P has coordinates (¢*,p’) : Q@ x P — R™™™. The
tangent bundle (7'(Q x P),Toxp, @ X P) is isomorphic to the product of tangent
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bundles (T'Q) x TP, 7g x Tp,Q x P) with the isomorphism ¢ : T'(Q x P) — TQxTP

given by

¥ (&) = (Tpry(€), Tpr2 (§)) € T,Q x T, P, (A.3)

where £ € T4, (@ x P), pri : @ x P — @ and pry : Q x P — P are projections
with tangent mappings Tpry : T (Q X P) — TQ and Tprs : T (Q x P) — TP. In local

coordinates,

R .
gzéqaqz_}_ g;a_pj7 ¢(f)— (gqaq“ i)@?) (A4)

Pull-back

Let P and @ be differentiable manifolds and v : () — P be a diffeomorphism. If
f P — R is a function, its pull-back by ) is a function on () defined by

Vif=fo=fov=Q—R (A.5)

The action of 1) on vectors on () is by push-forward and is defined before. To inter-

change push-forward with pull-back one replaces ¢ with ¢'.

If a is a p-form on P, its pull-back by v is a p-form on () defined by

(W ) () ;01 (2) 02 (2) 50y (1)) = (@) (¥ () ; Tetp 0 01 (2) 5 .0, Tt 0 0y (1))
(A.6)
for vectors v; (x) € T,Q. Pull-back of forms satisfies ©* (a A §) = ¢ a A ™ p.

For a one-form a (y) = a; (y) dy’ and a 2-form w = w;; (y) dy’ A dy’ on P at
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y =1 (x), z € Q, the coordinate expressions for pull-backs are

W) = a ) 2 (A7)
W) @) = gy o) 2P g gy (A

In particular, for one forms « (z) = a; (¢) dq* on @ pull-back by the tangent projection
0 : TQ — @ defined by

(T40) (v(2)) = ai (¢ 0 70) (v () d (g 0 )’ (A.9)

is a one-form on 7, @) although both o on @) and (’7'22@) on T'Q) have the same coordinate

expressions. The properties of pull-back of forms are

Yt (ol +a?) = Jral +yTa’ (A.10)
v (ar Aa?) = Yral Ayta? (A.11)

and that it commutes with d.An important characterization of the canonical 1-form is

the following

Proposition A.1. Let a(x) be a I-form on Q, and ¢ is canonical 1-form then

a(z) g =al(z). (A.12)

To see this, we can take « () as a section « (z) : @ — T*Q, then

(a(2) g, v(x)) =

a,v) (), (A.13)
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where v (x) : Q — T'Q arbitrary vector field. The first step is coming from definition of
pullback, the second is obtained from definition of Liouville form, the third is obtained

from the following figure and the last step is obtained since mg o a (z) = .

Derivations

Let © (Q) be the exterior algebra of differential forms on (). A linear operator

a:Q(Q) = Q(Q) : p— ap (A.14)

is called a derivation for a g-form p of Q(Q) of degree p if ap is a form of degree

q+p and

a(pAv)y=auAv+ (=1 pAav (A.15)

for all v € Q(Q). By definition, the exterior derivative d : Q(Q) — Q(Q) is a

derivation of degree 1.

Definition A.1. Let Q(Q) be the exterior algebra of differential forms on a differen-
tial manifold Q@ and let Q (T'Q) be the exterior algebra of forms on tangent bundle T'Q
of Q. A linear mapping

a : Q(Q)—Q(TQ)
[— ajl (A.16)

is called a derivation of degree p of Q(Q) into Q(T'Q) relative to ¢ if deg(ap) =
deg (1) + p and

a(pAv)=apNTor+ (=DM 1Hu A av (A.17)

where degree of i is q and v is any form on Q).
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