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ABSTRACT

OBJECT DETECTION IN AERIAL AND SATELLITE IMAGES

Very high resolution satellite and aerial images provide valuable information to researchers.

With their availability, there has been much interest to extract man-made objects from such im-

ageries. Among these, detection of objects such as buildings, road segments, and urban area

boundaries play crucial roles especially for municipalities, government agencies, rescue teams,

military, and other civil agencies. For a human expert, manually extracting this valuable in-

formation is tedious and prone to errors. One possible solution to extract this information is

developing automated techniques. Unfortunately, the solution is not straightforward if standard

image processing and pattern recognition techniques are used.

In this thesis, we propose new approaches using several local and semi-local invariant

features (such as SIFT, Gabor features, gradient features, and color invariants) to automatically

detect man-made objects in remotely sensed images. These invariant features are very powerful

in detecting objects under various imaging conditions (like illumination, viewing angle, etc).

However, extraction of invariant features is not sufficient for detecting objects. Therefore, we

further formalize the problem by developing graph theoretical, probabilistic, and region based

methods, to extract structural information to verify object appearance. Using these mathematical

techniques, we first develop methods to detect urban area boundaries. We also formulate some

measures to estimate the degree of urbanization in detected urban areas. Having detected urban

area boundaries, we develop our algorithms to detect separate buildings and road segments in

these regions. Besides, we also developed novel methods to find approximate building shapes

and to estimate damaged structures in color images. To detect road segments, we proposed two

methods using local features and color information separately. We tested the robustness of our

algorithms using a diverse data set including very high resolution panchromatic Ikonos satellite

and aerial images. Experimental results indicate the high performance and usefulness of our

object detection approaches on such a diverse image dataset.



ÖZET

HAVA VE UYDU GÖRÜNTÜLERİNDE NESNE TANIMA

Çok yüksek çözünürlüklü uydu görüntüleri ve hava fotoğrafları araştırmacılara önemli

bilgiler sunmaktadır. Bunların ticari olarak bulunabilir olması ile birlikte, bu görüntülerden insan

yapımı nesnelerin çıkarımına ilgi oldukça artmıştır. Bu nesnelerin arasında binaların, yolların

ve yerleşim bölgelerinin sınırlarının bulunması özellikle belediyeler, bazı bakanlıklar, arama-

kurtarma ekipleri, askeri birlikler ve diğer sivil kuruluşlar için önemli rol oynamaktadır. Bu

önemli bilgilerin uzman bir kişi tarafından çıkarılması çok uğraştırıcı ve hatalara açıktır. Ne

yazık ki, alışılagelmiş görüntü işleme ve örüntü tanıma teknikleri ile bu probleme çözüm bulmak

mümkün değildir.

Bu çalışmada, uzaktan algılanan görüntülerde insan yapımı nesneleri tanıma amacı ile yerel

ve yarı-yerel özniteliklerden (SIFT, Gabor, gradyan ve renk değişmezleri gibi) yararlanarak yeni

yöntemler önerdik. Bu değişmez öznitelikler faklı görüntüleme şartları altında (aydınlanma,

bakış açısı gibi) nesne tanıma için oldukça güçlüdürler. Ancak, değişmez özniteliklerin çıkarımı

nesne tanımak ve yerini tespit etmek için yeterli değildir. Bu nedenle, yapısal özellikleri or-

taya çıkarmak ve nesneyi tespit edebilmek için probleme graf teorisi, olasılıksal yöntemler ve

alan temelli yöntemlerden faydalanarak çözüm önerdik. Bu matematiksel tekniklere dayanarak,

öncelikle yerleşim bölgelerinin sınırlarını tespit ettik. Bulunan yerleşim biriminin kentleşme

derecesini tespit edebilmek için bazı ölçütler önerdik. Yerleşim bölgelerinin sınırlarını bulduk-

tan sonra ayrık binaları ve yolları tespit edebilmek için yöntemler geliştirdik. Ayrık binaları tespit

ettikten sonra bina şekillerini ve hasarlı binaları otomatik tespit edebilmek için yeni yöntemler

önerdik. Yolları bulmak için de yerel öznitelikleri ve renk bilgisini kullanan yöntemler önerdik.

Algoritmalarımızın dayanıklılığını test edebilmek için birbirinden oldukça farklı çok yüksek

çözünürlüklü uydu görüntüleri ve hava fotoğraflarından oluşan veri seti kullandık. Deneysel

sonuçlar, önerdiğimiz nesne tanıma yöntemlerinin çeşitli görüntülerden oluşan veri seti üzerinde

yüksek başarım ile çalıştığını ve yöntemlerin pratik kullanılabilirliğini göstermektedir.
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1. INTRODUCTION

Remote sensing is the science of obtaining and interpreting information from a distance,

using special sensors that are not in physical contact with the object being observed. Remote

Sensing is formally defined by the American Society for Photogrammetry and Remote Sensing

(ASPRS) as follows; “Photogrammetry and remote sensing are the art, science, and technology

of obtaining reliable information about physical objects and the environment, through the process

of recording, measuring and interpreting imagery and digital representations of energy patterns

derived from non-contact sensor systems” [1]. In this thesis, saying ‘remote sensing’ or ‘remotely

sensed image’ we consider acquisition of information (image) via aerial or satellite sensors.

Satellite images provide information (in terms of radar, infrared, and multispectral im-

agery) obtained from sensors on geostationary or orbiting satellites. If the same information is

obtained from sensors aboard manned or unmanned aircraft, then it is called an aerial image. The

resolution of earlier satellite images (such as Landsat with almost 15 m spatial resolution) would

not allow detecting separate man-made or natural objects. Therefore, researchers mostly focused

on extracting the region properties and urban area boundaries from these images.

As the advent of very high resolution (VHR) satellite imagery (such as Ikonos and Quik-

bird), it became possible to observe separate man-made objects. Besides region properties,

extracting man-made objects in very high resolution satellite images may help researchers in

various ways, such as automated mapping. Although the resolution of images has reached an ac-

ceptable level, unfortunately it is still tedious for a human expert to manually extract man-made

objects in a given remotely sensed image. One main reason is the total number of objects in the

scene. The other reason is the area of the region that these images cover. To solve these problem,

researchers focus on developing automated techniques to detect separate man-made objects from

remotely sensed images.

Among man-made objects, buildings play an important role. Therefore, robust detection of

buildings in very high resolution satellite and aerial images requires a specific consideration. De-

tecting buildings in satellite images is still a difficult task for several reasons. Buildings may be

imaged from different view points. Illumination and contrast in the image may not be sufficient

for detecting them. There may be several other structures, such as nearby trees and street seg-
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ments making the building detection problem harder. In addition to these difficulties, buildings

do not have standard size and shape. All these issues make building detection a hard problem to

solve with one generic algorithm.

Road segments are also very important man-made objects in an urban scene. Therefore,

detecting road segments from remotely sensed images became a popular research topic in recent

years. Especially city planners need automated road detection systems to update previously

constructed road maps. Although road shapes do not vary as buildings, sometimes it can be more

difficult to detect them. Roads are generally occluded by other objects like buildings and trees.

To solve this object detection problem, more intelligent computer vision techniques are needed

and researchers studied on developing automated detection methods using very high resolution

satellite and aerial images. Ünsalan [2] provided a detailed literature review on both building and

road segment extraction methods.

In this thesis, we developed novel approaches to detect man-made objects in Ikonos satellite

and aerial images. The Ikonos satellite has a sensor to capture four multispectral bands with

4 m spatial resolution and the panchromatic band with 1 m spatial resolution. The color aerial

image set has a 0.3 m spatial resolution. We considered detecting urban area boundaries, separate

buildings, road segments in these images. To do so, we used local or semi-local invariant features.

There are a number of local invariant features that have been proposed for various visual

recognition tasks. Using these features, robust object detection can be performed if the object

appears under different conditions (such as illumination, viewing angle, different scales, etc.).

Local invariant features are generally preferred when the appearance of the objects are not con-

trolled. Since object appearance is also not controlled in our problem, we benefit from local and

semi-local invariant features to generate robust object detection systems. In addition to using

well-known local invariant features, we also propose new features that fit our problem.

Using local features, we formalize our object detection problem by developing graph theo-

retical, probabilistic, and region based methods. Therefore, we can extract structural information

in the image to verify object appearance. We also developed novel measures to grade the degree

of urbanization in a region. We also introduced a method to detect damaged buildings. In the

remainder of the thesis, we investigate each object detection problem (urban region, building,

and road segments) in a separate chapter. We summarized previous studies at the beginning of
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each chapter. At the end of each chapter, we present and discuss our experimental results.
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2. DETECTING AND GRADING THE URBAN REGION

Automatically detecting and monitoring urban regions is an important problem in remote

sensing. In this chapter, we propose automated techniques for the first step of urban monitoring;

detecting and grading urban regions. First, we use the well-know SIFT (Scale Invariant Feature

Transform) features and a graph theoretical approach to detect urban region boundaries. We test

our SIFT based urban region detection algorithm on very high resolution panchromatic Ikonos

images. Unfortunately, SIFT based algorithm requires high computation time and it can not be

used on our aerial images. Therefore, we next propose a Gabor feature based method to detect

urban region boundaries in both Ikonos and aerial images.

Land planning organizations, municipalities, disaster relief and environment protection

agencies need to keep track of development in a prespecified region in time. Commercially

available very high resolution satellite images are suitable for this purpose. These grayscale

images can be acquired in relatively short time intervals. They should be inspected periodically

to detect urban region changes. Therefore, we also define novel land development measures

based on our Gabor features.

In Section 2.5, we test all our methods on a fairly diverse and representative image set

formed of panchromatic Ikonos images of different urban sites in Adana, Ankara, and Istanbul

cities and grayscale aerial images of Istanbul city of Turkey. These images represent various

urban region characteristics. To test our land development measure algorithm, we used sequential

images captured from the same region in different times. Test results indicate the potential use of

our urban region detection and land development measurement approaches. Before explaining

our novel detection methods in detail, we start investigating previous studies on urban region

detection in the literature.

2.1. PREVIOUS STUDIES

In the literature, many researchers proposed solutions to the urban region detection prob-

lem using automated techniques. Karathanassi et al. [3] used building density information to

classify residential regions. They benefit from texture information and segmentation to extract

residential regions. Unfortunately, they had several parameters to be adjusted manually. Benedik-
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tsson et al. [4] used mathematical morphological operations to extract structural information to

detect the urban area in satellite images. They benefit from neural networks for classification

purposes. Therefore, they need training data to detect urban areas. Ünsalan and Boyer [5, 6, 7, 8]

used structural features to classify urban regions in panchromatic satellite images. Since they use

statistical classifiers, they also need training data to detect the urban region in the image. In a

following study, Ünsalan and Boyer [9] associated structural features with graph theoretical mea-

sures in order to grade satellite images and extract residential regions from them. Fonte et al. [10]

considered corner detectors to obtain the type of structure in a satellite image. They concluded

that, corner detectors may give distinctive information on the type of structure in an image. Bha-

gavathy and Manjunath [11] used texture motifs for modeling and detecting regions (such as golf

parks, harbors) in satellite images. They focused on repetitive patterns in the image. Bruzzone

and Carlin [12] proposed a context-based system to classify very high resolution satellite im-

ages. They used support vector machines fed with a novel feature extractor. Fauvel et al. [13]

fused different classifiers to extract and classify urban regions in panchromatic satellite images.

Zhong and Wang [14] extracted urban regions in grayscale satellite images using a multiple clas-

sifier approach. These last three studies also need a training data for urban region classification.

Zerubia et al. [15] used texture information to detect the urban region in both optical and radar

images. They extracted texture parameters using chain based Gaussian models. They clustered

these with a Markovian segmentation step. Their system is robust to sensor changes, but not very

robust to resolution changes in imagery. Doğrusöz and Aksoy [16] detected building clusters us-

ing multispectral information. After constructing a Voronoi graph by assuming building centers

as vertices of this graph, they classified residential regions as ordered or disordered. Gamba et

al. [17] used boundary information to extract the map of an urban region. They fed the boundary

and non-boundary data to two different classifiers. Then, they combined results of two classi-

fiers. They obtained satisfactory results to detect urban region buildings on VHR imagery. Yang

and Newsam [18], compared SIFT and Gabor filtering based features to classifying remotely

sensed images. They concluded that Gabor features perform better than SIFT based features for

classification purposes. The literature is vast on this topic. Some related papers can be counted

as [19, 20, 21, 22, 23, 24].

There are fairly mature change detection algorithms in the literature [25, 26]. Roysam et

al. [27] offer a detailed literature search on change detection methods. Although most change

detection methods are powerful, they have two main deficiencies. First, these methods can not

grade the change in time. Second, most of the change detection algorithms require perfect align-
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ment between the two images to detect changes. To overcome perfect alignment problem, Li et

al. [28] used Scale Invariant Feature Transform (SIFT) features to detect changes in urban ob-

jects. They first partitioned the image, then analyzed changes at a subgraph level. In a similar

manner, Tang et al. [29] proposed a framework for structural change detection analysis using

remotely sensed image pairs. They analyzed similarities and differences by calculating the dis-

tance of local features between the two images. The more advanced setting is not only detecting

changes but also measuring them. Ünsalan [30], used graph theory to grade changes in urban

regions.

2.2. URBAN REGION DETECTION USING SIFT DESCRIPTORS AND GRAPH THE-

ORY

In this section, we propose a novel method based on SIFT features and graph theoretical

tools to detect the urban region boundaries from very high resolution panchromatic Ikonos im-

ages. Before extracting SIFT features, we first upsample the image by six to help SIFT feature

extraction step. Then, we apply a nonlinear bilateral filtering (BF) operation to smooth out un-

wanted noise terms in the image. However median filter can also smooth out unwanted noise

terms without damaging edges, bilateral filtering operation is stronger to smooth out texture on

objects. By smoothing texture with bilateral filtering, we can obtain more generic SIFT fea-

tures which does not depend on a certain object. Then, we extract local SIFT features from the

processed satellite image. Lowe [31] proposed Scale Invariant Feature Transform (SIFT) for

object detection based on its template image. It has valuable properties such as invariance to illu-

mination and viewpoint. In the literature, it is extensively used to match objects, represented by

template images, in a given image [32, 33, 34, 35]. Mikolajczyk and Schmid [36] compared SIFT

descriptors with other invariant feature descriptors. They concluded that SIFT performs best un-

der changes in scale, rotation, and illumination. Interestingly, recent research in neuroscience

has shown that object recognition in primates makes use of features of intermediate complexity

that are largely invariant to changes in scale, location, and illumination as SIFT features [31].

Unfortunately, the standard SIFT implementation is not sufficient for urban region detec-

tion from satellite images. Standard SIFT algorithm is designed for detecting only one specific

object in given test image. To do so, each feature in the model image is matched with only

one feature in the test image which is most similar. In our problem, we try to detect building

clusters in the test image. These buildings have similar properties, and they are located nearby.
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Therefore, standard feature matching does not work properly. First, we develop standard SIFT

algorithm for multiple matching. Then, we cast the urban region detection problem as one of

multiple subgraph matching. In forming the graph, each SIFT feature is taken as a vertex. The

neighborhood between different vertices is summarized as edges of the graph. Using multiple

subgraph matching, we detect urban region boundaries. Next, we describe the preprocessing

step.

2.2.1. Bilateral Filtering for Preprocessing

To detect the urban region, we should first eliminate noise and very small (redundant)

details in the satellite image. Unfortunately, objects are so small in these images that, it is almost

impossible to discard noise terms without disturbing object boundaries using standard linear

filters. Therefore, we propose using bilateral filtering proposed by Tomasi and Manduchi [37].

This filter performs nonlinear smoothing on images by keeping the edge information. In bilateral

filtering, nonlinear smoothing is performed by combining the geometric and intensity similarity

of pixels. We next explain the bilateral filtering operation using Elad’s notation [38].

Let Ig(x, y) be a grayscale image having values in the range [0, 1]. Let Ib(x, y) be the

bilateral filtered version of Ig(x, y). The filtering operation can be represented as

Ib(x, y) =

∑N
n=−N

∑N
m=−N W (x, y, n, m)Ig(x− n, y −m)∑N
n=−N

∑N
m=−N W (x, y, n,m)

(2.1)

This equation is simply a normalized weighted average of a neighborhood of 2N + 1 by 2N + 1

pixels around the pixel location (x, y). The weight W (x, y, n, m) is computed by multiplying

the following two factors as

W (x, y, n,m) = Ws(x, y, n, m)×Wr(x, y, n,m) (2.2)

where Ws(x, y, n, m) stands for the geometric weight factor. It is based on the Euclidean distance

between the center pixel (x, y) and the (x− n, y −m) pixel as

Ws(x, y, n,m) = exp

(
−(x− n)2 + (y −m)2

2σ2
s

)
(2.3)
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This way, nearby samples influence the final result more than distant ones.

The second weight, Wr(x, y, n,m) is based on the grayscale intensity distance between the

values of the center pixel (x, y) and the (x−n, y−m) pixel. Again, it is based on the Euclidean

distance between intensity values as

Wr(x, y, n, m) = exp

(
−(Ig(x, y)− Ig(x− n, y −m))2

2σ2
r

)
(2.4)

Thus, pixels with close grayscale intensity values tend to influence the final result more than

those having distant values.

The bilateral filter is controlled by three parameters. N dictates the support of the filter.

Larger support gives stronger smoothing. The parameters σs and σr control the decay of the two

weight factors. We pick N = 5, σs = 3 and σr = 0.1 for implementation. These values are

picked keeping in mind the minimum geometric size and intensity variations of building in the

Ikonos image to be detected. For other satellite or aerial image types, these parameters should be

adjusted accordingly.

We use the Adana8 image (a typical test image) given in Fig. 2.1 to illustrate our system

step by step. In this test image, it is hard to detect the urban region and the buildings due to the

low contrast between building rooftops and the background. To provide a detailed explanation

Figure 2.1. The Adana8 test image

of our methods, we focus on a subpart of this image as in Fig. 2.2. Here, we only consider

two buildings. We first provide the bilateral filtering results of this subpart image in the same

figure. As can be seen, the bilateral filtered image is fairly smooth, with the edge information of
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buildings kept fairly well.

(a) Subpart image (b) Bilateral filtering

Figure 2.2. Subpart of the Adana8 test image, and its bilateral filtering result

2.2.2. Scale Invariant Feature Transform (SIFT)

SIFT leads to extracting local features and descriptor vectors, invariant to translation, scal-

ing, and rotation. They are also partially invariant to illumination changes and 3D projection.

In this method, first a template image is obtained for the object to be detected in the test image.

Its feature locations and descriptor vectors are extracted. Then, feature locations and descriptor

vectors for the test image are extracted. A one to one matching between template and test image

descriptors lead to detecting the object in the test image.

Buildings can be considered as objects in the satellite image to be detected. However, in

satellite images buildings can have different illumination conditions, structural differences and

size changes. Most importantly, they can be imaged from different viewpoints. The invariance

properties of SIFT can handle most of these variations. Therefore, SIFT is suitable for building

detection from satellite images. The following are the major steps to generate SIFT features and

their descriptor vectors from an image. To note here, more detail on SIFT operations can be

found in [31]. Here, we briefly summarize this method only for our purposes.

2.2.2.1. Scale Space Analysis

The first stage of feature detection is to identify locations and scales that can be repeatedly

assigned under differing scales of the same object. Detecting locations that are invariant to scale

change of the image can be accomplished by searching for stable features across all possible

scales, using a continuous function of scale known as scale space. The scale space of an image

is defined as a function L(x, y, σ) that is produced from the convolution of a variable scale
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Gaussian, G(x, y, σ) with the input image Ib(x, y) as

L(x, y, σ) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
∗ Ib(x, y) (2.5)

where ∗ is the convolution operation in x, y and σ is the Gaussian scale.

2.2.2.2. Feature Localization

To efficiently detect stable feature locations in scale space, Lowe proposed using the scale-

space extrema. The extrema is calculated from the difference of Gaussian images computed from

the difference of two nearby scales separated by a constant multiplicative factor k as

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ) (2.6)

In order to detect the local maxima and minima of D(x, y, σ), each sample point is compared to

its eight neighbors in the current image and nine neighbors in the scale above and below. It is

selected only if it is larger than all of these neighbors or smaller than all of them. Once a feature

candidate has been obtained by comparing a pixel to its neighbors, the next step is to perform

a detailed fit to the nearby data for location, scale, and ratio of the principal curvatures. This

information allows points to be rejected that have low contrast (and are therefore sensitive to

noise) or are poorly localized along the edge. For details of this operation, see [31]. We label the

feature by its spatial coordinates as (xi, yi).

2.2.2.3. Orientation Assignment

One or more orientations are assigned to each feature location based on local image gra-

dient directions. By assigning a consistent orientation to each feature based on local image

properties, the feature descriptor can be represented relative to this orientation. Therefore, it has

an invariance to image rotation. To obtain orientation information, an orientation histogram is

formed from the gradient orientations of sample points within a region around the feature (also

known as support region). The orientation histogram has 36 bins covering the 360 degree range

of orientations. Each sample added to the histogram is weighted by its gradient magnitude and

by a Gaussian weighted circular window with a σ that is 1.5 times that of the scale of the feature.

Peaks in the orientation histogram correspond to the dominant directions of local gradients. The
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highest peak in the histogram is detected, and then any other local peak that is within 80% of the

highest peak is used to also create a feature with that orientation.

2.2.2.4. Feature Descriptor

The feature descriptor generated by SIFT algorithm is created by sampling the magnitudes

and orientations of the image gradient in the patch around the feature, and building smoothed

orientation histograms to capture the important aspects of the patch. A 4×4 array of histograms,

each with 8 orientation bins, captures the rough spatial structure of the patch. This 128 element

vector is then normalized to unit length to have an invariance to illumination. It is thresholded to

remove elements with small values. We represent this 128 element feature descriptor as fi. We

extract features and vector representations from the Adana8 subpart image as given in Fig. 2.3.

As can be seen, features in this image are located around building corners and intensity changes.

(a) Feature locations (b) Vectors

Figure 2.3. SIFT feature locations and their vector representation on the Adana8 subpart image

2.2.3. Detecting the Urban Region

In the original SIFT proposed by Lowe, the object to be detected in the image is represented

by one or several template images. Then, descriptor vectors are obtained for each template.

Features for the test image are also obtained. A one to one matching between template features

and the test image features is performed using the Euclidean distance between descriptor vectors.

SIFT descriptors are highly discriminative. Therefore, each template feature matches with the

test image feature if they really resemble. This is the strength of the original SIFT based object

detection. However, this property of the SIFT is not suitable for our problem. First, we have

many buildings in the satellite image to be detected. Second, it is not feasible to have templates

for all types of buildings to be detected. Therefore, we propose a novel graph theoretical method

to detect the urban region boundaries.
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To detect the urban region, we use two template building images as given in Fig. 2.4. The

first template represents a bright building, having a high contrast between background and its

rooftop. The second template represents a dark building, having relatively low contrast between

the background and its rooftop. These two templates cover a wide range of building character-

istics considering our test image dataset. Our template buildings are capable to detect building

characteristics in our test images taken from three different cities in Turkey, but they may not

perform well in images which contains very different kind of building structures. In this case,

template buildings should be chosen manually from the test region. As mentioned before, each

(a) Bright building (b) Dark building

Figure 2.4. Two building templates used in this study

SIFT feature is described by a vector vi = (xi, yi, fi). Here, (xi, yi) represent the spatial coordi-

nate of the feature. fi is the 128 element feature vector for that feature. We first extract features

for the two templates and the test image. Then, we represent them as va
i i = 1...I for the dark

building template; vr
j j = 1...J for the bright building template, and vt

m m = 1...M for the test

image respectively.

2.2.3.1. Graph Representation

To detect the urban region and buildings, we cast the problem in terms of graph theory. A

graph G is represented as G = (V,E), where V is the vertex set and E is the edge matrix showing

the relations between these vertices. For the urban region and building detection, we represent

features extracted from the dark building template (va), bright building template (vr), and test

image (vt) in a graph formation as Ga(V a, Ea), Gr(V r, Er), and Gt(V t, Et) respectively. Let’s

consider Ga. V a = {va
i } i = 1...I . Ea is an I × I matrix defined as

Ea(i, j) =





dij if dij < ε1

0 otherwise
(2.7)
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where dij =
√

(xi − xj)2 + (yi − yj)2. We take ε1 = 30 due to the size of buildings we are

detecting. Also, Ea(i, j) = 0 means that there is no edge between vertices vi and vj . We form

Gr and Gt in a similar way.

2.2.3.2. Multiple Subgraph Matching to Detect the Urban Region

Buildings in a region indicate the existence of an urban region there. Therefore, in order

to detect the urban region, it is sufficient to detect buildings. To detect all buildings in an image

(without selecting a special one), we apply multiple subgraph matching between Ga, Gt and

Gr, Gt separately. Applying multiple subgraph matching between the template and test images is

different from the original SIFT. As mentioned above, we have many buildings in the same region

and we want to detect all at once without selecting a specific one. This formalism simplifies our

urban region detection problem. The main reason is that, nearby buildings effect each other’s

detection probability in multiple subgraph matching. Also, using this formalism, we relax the

graph matching condition. This is also the case in actual life. A building in a region gives hint

about a nearby building, since humans favor cluster of buildings to settle. In other saying, we

first detect building clusters. Then we detect each building from this cluster. The important point

here is that, detecting one building positively affects detecting nearby buildings.

From now on, we will explain our multiple subgraph matching method on the Ga, Gt pair.

The method is the same for the Gr, Gt pair. Our multiple subgraph matching method can be

rephrased as a one to many matching between two graph vertices both in unary and binary terms.

For the unary matching between Ga and Gt, we define multiple vertex matching between two

graphs Ga = (V a, Ea) and Gt = (V t, Et) as

M1(v
a
i ,v

t
j) =





1 ||fa
i − f t

j || < ε2

0 otherwise
(2.8)

M1(·, ·) will be an I ×M matrix. We check matching ∀va
i ∈ V a and ∀vt

j ∈ V t. We limit the

multiple matching number to 50, taking into account the average number of buildings in a test

image. In Eqn. 2.8, ε2 stands for the tolerance value for unary matching. After extensive tests on

our test image database, we set ε2 = 4.

For urban region and building detection, matched features should also keep their structure.
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Therefore, we define binary vertex matching between two weighted graphs Ga = (V a, Ea) and

Gt = (V t, Et) as

M2(E
a(i, j), Et(k, l)) =





1, if(M1(v
a
i , v

t
k) = 1)

∧(M1(v
a
j , v

t
l ) = 1) ∧ (γ < ε3)

0, otherwise

(2.9)

where γ = |Ea(i, j) − Et(k, l)|. Here, ε3 is the tolerance value for binary matching. Based the

dimension of buildings in or building template images, we set ε3 = 4.

We form a new graph, based on unary and binary matching (matched vertices and edges

of Gt). We call it as Gd = (V d, Ed) to indicate that it contains vertices and edges of the test

image graph matched with the dark building template graph. vt
m ∈ V d iff ∃va

i ∈ V a such that

M1(v
a
i ,v

t
m) = 1. We form the edge matrix Ed as

Ed(k, l) =





Et(k, l) if ∃ i, j st. M2(E
a(i, j), Et(k, l)) = 1

0 otherwise
(2.10)

Ed(k, l) =





Et(k, l) if ∃ i, j st.

M2(E
a(i, j), Et(k, l)) = 1

0 otherwise

(2.11)

We provide the constructed graph Gd on the Adana8 subpart image in Fig. 2.5 (a). As can be

seen, all the matched vertices of Gt (now the vertices of Gd) lie on the buildings in the image. Due

to multiple subgraph matching, most vertices on different buildings also have edges connecting

them. We apply the same procedure to form Gb = (V b, Eb) in the same way using the Gr, Gt

pair. This graph indicates the unary and binary matching between the bright building template

and the test image.

To locate urban region containing buildings, we define region of a graph. For a graph
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(a) Graph, Gd (b) Region, A(Gd)

Figure 2.5. The graph and its region obtained from the Adana8 subpart image

G(V,E) with vertices V = {vi} having spatial coordinates vi = (xi, yi), we define its region

A(G) as

i- vi ∈ V ⇒ (xi, yi) ∈ A(G)

ii- Let lij be the line segment joining vi, vj where E(i, j) 6= 0; (xa, ya) ∈ lij ⇒ (xa, ya) ∈
A(G)

iii- Let tijk be the triangle with corners vi, vj, vk ∈ V where E(i, j) 6= 0, E(i, k) 6= 0,

E(j, k) 6= 0; (xa, ya) ∈ tijk ⇒ (xa, ya) ∈ A(G)

This region is as small as possible. It includes all vertices and line segments joining them.

To clarify this operation, we formed the region of graph Gd on the Adana8 subpart image. We

provide A(Gd) for this image in Fig. 2.5 (b).

There may be both bright and dark buildings in a given test site. Therefore, we detect the

final urban region, R using both A(Gd) and A(Gb) as

R = A(Gd)
⋃

A(Gb) (2.12)

We provide the detected urban region for the Adana8 test image in Figure 2.6. As can be seen,

the urban region in this image is correctly detected. We provide more urban region detection

examples, as well as qualitative results in Section 2.5. Next, we describe a different approach

that we developed to solve the same urban region detection problem.
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Figure 2.6. Detected urban region for the Adana8 test image

2.3. URBAN REGION DETECTION USING GABOR FEATURES

In the previous section, we introduced a novel method to detect urban regions in very high

resolution panchromatic satellite images. This method performs very well on our diverse image

test set. Unfortunately, the method has three main deficiencies. First, the detection performance

depends on the chosen building templates. If the region includes unusual structure types, the user

should prepare a new building model database. Second, extraction of SIFT features and multiple

subgraph matching is computationally costly. Third, SIFT descriptor vectors are generated using

small support regions around extracted feature locations. Therefore, it is not perfectly suitable

for images in JPEG format (such as our aerial images).

To overcome these shortcomings, we propose a novel method to detect urban regions in

this section. Different from our SIFT based approach and most of the studies in the literature,

this novel approach does not need any training data for urban region detection. Instead, we

developed novel local features based on Gabor filtering and spatial voting. Our method is able to

detect urban regions as long as buildings are dense. Besides, we do not have any other constraints.

To provide an experimental justification to our method, we tested it on diverse aerial and Ikonos

satellite images. We obtained encouraging results.

2.3.1. Local Feature Point Extraction

We benefit from Gabor filters to extract spatial building characteristics (such as edges and

corners) in different orientations. Before extracting Gabor features we smooth our test image by

median filtering [39]. This step eliminates small noise terms in the image. Then, we apply Gabor

filtering in different directions. The maxima in these filter responses lead to local feature points.
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Then, we form a voting matrix using them. Finally, we label the urban region in given image by

an optimal adaptive decision making approach. Next, we explore these steps in detail.

2.3.1.1. Gabor Filtering

Gabor features are widely used in various important computer vision tasks such as texture

segmentation and face recognition [40, 41, 42, 43]. Gabor filter responses can exhibit such

desirable characteristics of spatial locality and orientation selectivity since they are localized in

the space and frequency domains optimally [44].

Mathematically, the two dimensional Gabor filter can be defined as the product of a Gaus-

sian and a complex exponential function as

Fϕ(x, y) =
1

2πσ2
g

exp

(
−u2 + v2

2σ2
g

)
exp (j2πfu) (2.13)

where u = x cos ϕ + y sin ϕ and v = −xsinϕ + y cos ϕ. f is the frequency of the complex

exponential signal, ϕ is the direction of the Gabor filter, and σg is the scale parameter. These

parameters should be adjusted with respect to the image resolution at hand. In this study, we

explore the effect of these parameters in Section 2.5.2.1. In Fig. 2.7, we represent real part

of Gabor filter response in spatial domain for ϕ = 0 filtering direction. We can detect edge-
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Figure 2.7. Real part of Gabor filter in spatial domain for ϕ = 0 filtering direction

oriented urban characteristics in a test image, Ig(x, y) having size N ×M , using Gabor filtering.

Therefore, we benefit from the real part of the Gabor filter response as

Gϕ(x, y) = Re{Ig(x, y) ∗ Fϕ(x, y)} (2.14)

Gϕ(x, y) is maximum for image regions having similar characteristics with the filter. In the next
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section, we use this information to extract local feature points.

2.3.1.2. Local Feature Points

To extract local feature points, we first search for the local maxima in Gϕ(x, y) for x =

1, ..., N and y = 1, ...,M . If any pixel (xo, yo) in Gϕ(x, y) has the largest value among its

neighbors, Gϕ(xo, yo) > Gϕ(xn, yn) ∀ (xn, yn) ∈ {(xo− 1, yo− 1), (xo, yo− 1), ..., (xo +1, yo +

1)}; we call it as a local maximum. It is a candidate for being a local feature point. Next, we

check the amplitude of the filter response Gϕ(xo, yo). We call our local maximum (xo, yo) as

a candidate local feature point if and only if Gϕ(xo, yo) > α. To handle different images, we

obtain α using Otsu’s method on Gϕ(x, y) in an adaptive manner for each image separately [45].

Therefore, we eliminate weak candidate local feature points in future calculations.

To represent each candidate local feature point further, we assign a weight, wo, to it as

follows. We first threshold Gϕ(x, y) with α and obtain a binary image Bϕ(x, y). In this image,

pixels having value one correspond to strong responses. We obtain connected pixels to (xo, yo)

in Bϕ(xo, yo). By definition, two pixels are connected (in a binary image) to each other if there

is a path (of pixels with value one) connecting them [39]. As we obtain all the connected pixels

to (xo, yo), we assign their sum as the weight wo. Therefore, if a candidate local feature point

has more connected pixels, it has more weight. We expect the candidate local feature points

to represent urban characteristics such as building clusters. Unfortunately, all candidate local

feature points may not represent reliable information on the urban region. Therefore, we discard

candidate local feature points having weight, wo, less than 20 pixels. Finally, we obtain the local

feature points for the given ϕ direction.

We apply this procedure in all ϕ directions and obtain a total of K local feature points as

(xk, yk) with their weights wk for k = 1, ..., K. We expect these local feature points to be located

on building edges in the image. We provide such an example on the sample Adana6 satellite test

image in Fig. 2.8. As can be seen, most local feature points are located on the building edges

in this image. In the literature, there are also more complex feature point extraction methods

[36]. However, for urban region detection we do not need perfect local point extraction from

the image. Since we use their ensemble, missing a few local feature points does not affect the

performance of our urban region detection method. We explore urban region detection using

Gabor filtering based local feature points next.
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Figure 2.8. The Adana6 test image, local feature points extracted by Gabor filtering

2.3.2. Detecting the Urban Region

As we obtain Gabor filtering based local feature points, the next step is detecting urban

regions using them. Therefore, we form a voting matrix based on spatial voting first. Then, we

apply an optimum decision making method to detect the urban region from the voting matrix.

We explain these steps in detail next.

2.3.2.1. Voting Matrix Formation

To detect an urban region, we should have many local feature points in it. These should

also be closely located in spatial domain. Therefore, we define a voting matrix based on extracted

local feature points as follows. We assume that, around each local feature there is a high possi-

bility of an urban characteristic (such as a building). Therefore, each local feature has the highest

vote at its spatial coordinate (xk, yk) and its votes decrease with respect to spatial distance. Based

on this definition, we form the voting matrix for x = 1, ..., N and y = 1, ..., M as

V (x, y) =
K∑

k=1

1

2πσ2
k

exp

(
−(x− xk)

2 + (y − yk)
2

2σ2
k

)
(2.15)

where σk is the parameter for voting proximity for each local feature. For our test images, we

pick σk = 5 × wk to add some tolerance for voting. If σk has higher values, each local feature

will have a wider spatial effect in the voting matrix. Therefore, the false alarms in urban region

detection will increase. On the other hand, if σk has lower values, each local feature will have a

narrower spatial effect. Hence, the correct urban region detection results will decrease.



20

For the Adana6 test image, we provide the voting matrix in Fig. 2.9. In this figure, vote

values are color coded (red corresponds to the highest and blue to the lowest vote value). As can

be seen, votes are cumulated around buildings.

Figure 2.9. The Adana6 test image, the voting matrix obtained and the urban region detected

(with ground truth data)

2.3.2.2. Optimum Decision Making

Locations with high votes in V (x, y) are possible urban region pixels and locations with

low votes are possible non-urban region pixels in the image. Therefore, we expect to have a

bimodal pixel distribution on V (x, y) (one peak corresponds to the urban region and the other to

non-urban region pixel votes). We use this information and Otsu’s method to detect the urban

region [45]. Based on Bayes decision criteria, Otsu’s method finds the optimal threshold level

(assuming Gaussian probability density functions) between urban and non-urban pixel votes. In

this study, the threshold value is adaptively obtained for each test image separately. Since this

operation is adaptive, we do not need any manual (or predefined) parameter adjustments.

For the Adana6 satellite test image, we provide the voting matrix pixel distribution in

Fig. 2.10. As can be seen in this distribution, there are two peaks (one corresponding to urban

and the other to the non-urban region votes). In the same figure, we also provide the optimum

decision boundary obtained by Otsu’s method by a red dashed vertical line. As can be seen, the

decision boundary is correctly located. Based on this threshold value, we provide the detected

urban region (as a yellow curve) from the Adana6 image in Fig. 2.9. In the same figure, we also

provide our ground truth data for the Adana6 test image as a thick red curve. As can be seen, our

detection result closely fits to the ground truth data. Besides thresholding with Otsu’s method, we

also consider the overall votes in the test image. If their accumulation is not sufficient, we assume
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Figure 2.10. The voting matrix pixel distribution and the optimum threshold value for the

Adana6 test image

they can not represent an urban region. To perform this test on an image basis, we assume that

if the detected urban region size does not exceed 5% of the image size, there is no urban region

there. After extensive testing, we obtained this value for our test images. However, it is not strict

and can be changed in a relaxed manner.

To summarize, our method depends on local feature point extraction using Gabor filtering.

We use these local feature points in forming a spatial voting matrix. Then by using an optimum

decision making approach, we are able to detect the urban region in a given aerial or satellite

image. After extensive testings, we obtained very encouraging results with our method. We

present the performance of our algorithm on test images in Section 2.5.

2.4. GRADING THE URBAN REGION USING LOCAL FEATURES

To grade the degree of development on a given region, we benefit from Gabor filtering

based features that we described in Section 2.3. We represent them in a spatial voting matrix.

Based on this representation, we define five novel land development measures on a sequential

image set acquired from the same location. In all our land development measures, we do not need

perfect alignment (or preregistration). We assume that user extracted interested urban regions

manually in sequential satellite images without trying to correspond spatial coordinates, and

rotations of images. In fact, this is the main strength of our method. Our method also does not

depend on the image size in the sequence. Therefore, scales of the images can slightly change due

to the satellite’s looking angle. We test our method on 19 sets of sequential panchromatic Ikonos
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images. Our test results indicate the possible use of our method in measuring land development

automatically. We will present these results in Section 2.5.

2.4.1. Local Feature Extraction and Representation

In Section 2.3.1, we explained Gabor feature extraction in detail. Here, we benefit from

same local Gabor features to measure land development in sequential satellite images. As in Sec-

tion 2.3.2.1, we represent these local Gabor features in a voting matrix to be used in measuring

land development.

2.4.2. Measuring Land Development

As we obtain the voting matrix (possibly representing the human activity in a given satellite

image), we introduce five novel land development measures on it. These measures are designed

to summarize the voting matrix in various ways. We measure the development in a given urban

region (with its sequential images in time) as follows. We calculate the specified land develop-

ment measure for each image in the sequence. We expect these measures to indicate development

either by increasing or decreasing with respect to time. Next, we introduce each novel land de-

velopment measure in detail.

2.4.2.1. Number of Voting Local Features

Our first land development measure is based on the total number of voting local features

in a given image. As mentioned above, we designed Gabor filters to detect possible man-made

structures such as buildings. Local features are based on these filter responses. Therefore, in

a given image if the number of man-made structures increase, we expect to have more local

features. Hence, we define our first land development measure as the total number of local

features as m1 = K.

2.4.2.2. Normalized Sum of Votes

As we mentioned above, the voting matrix is formed by the votes of local features in the

given image. For more developed regions, we expect to have more votes in the voting matrix.

The reason for this is twofold. First, we will have more local features in more developed regions.

Second, we expect each local feature in a developed region to have more votes. Therefore, the
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sum of votes in the voting matrix may represent the development. We obtain our second land

development measure (m2) on an N ×M image as

m2 =
1

NM

N∑
x=1

M∑
y=1

V (x, y) (2.16)

We apply normalization by the image size, since all images in the sequence may not have the

same size.

2.4.2.3. Maximum Vote

Related to the normalized sum of votes measure, we can also benefit from the maximum

vote from the voting matrix to measure land development. In the normalized sum of votes mea-

sure, we take all the votes in the voting matrix into account. However, this may be misleading for

some development regions (such as the ones having occluded buildings). Therefore, we define

the maximum vote value as our third land development measure (m3) as

m3 = max
(x,y)

V (x, y) (2.17)

2.4.2.4. Normalized Urban Area

We also measure the land development by extracting the possible urban region in a given

image. Our hypothesis is that, as the development increases in a region, the urban region also

grows there. At this point, the voting matrix helps us to detect the possible urban region in a given

satellite image. We first explain how to obtain the threshold value to detect the urban region in

the sequence. Assume that, we have T sequential images from a region. Therefore, we have

T voting matrices (each separately corresponding to an image). As we mentioned in Section

2.4.2.2, more votes possibly correspond to more developed regions. We have this information as

our second measure, the normalized sum of votes, m2. Since we have T images in the sequence,

we have mt
2, for t = 1, ..., T . We take the maximum mt

2 as our benchmark and obtain the

optimum threshold value for the corresponding voting matrix using Otsu’s method [45]. Let’s

call this threshold value α. For each image (having size N ×M ) in the sequence, we calculate
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our fourth land development measure (m4) as

m4 =
1

NM

N∑
x=1

M∑
y=1

(V (x, y) > α) (2.18)

2.4.2.5. Normalized Sum of Votes in the Urban Region

We finally measure the development using the normalized sum of votes in the urban region.

In the previous section, we explored how to extract the possible urban region in the given image.

We also based our fourth land development measure by the normalized urban area as in Eqn. 2.18.

Here, we extend this measure by also adding normalized sum of votes in the extracted urban

region. Then, our fifth land development measure (m5) for an N ×M image becomes

m5 =
1

NM

N∑
x=1

M∑
y=1

(V (x, y) > α)× V (x, y)) (2.19)

where the multiplication operation is on a pixel basis in Eqn. 2.19. Using this formulation, we

want to benefit from both the area and sum of votes in the urban region.

2.4.2.6. Fusion of Features

In a previous study, Ünsalan [30] presented a new method to fuse extracted measures in

order to increase the performance. Besides using our five novel land development measures, we

also fuse them using Ünsalan’s fusion method to improve the performance. In this way, we obtain

a single quantity to measure development. In fusion, we normalize each feature to [0, 1] by a

hard limiting function. We also normalize our features in terms of their decrease or increase in

time. That is, some of our features may decrease to indicate development, and some others may

increase. If we fuse them without without any preprocessing, then they may inhibit each other.

To overcome this problem, we multiply the feature by minus one if it is decreasing to indicate

development. We fuse our features by taking their mean values. However there are more detailed

fusion techniques in literature, simply taking their mean values is adequate in our application.
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2.4.3. Sample Results

To explain our land development measures, we pick two representative urban regions

(Adana1 and Adana4) as given in Fig. 2.11. The first urban region, Adana1, corresponds to

a building construction zone. This region is a bare land in the first image. In the second and

third images in the sequence, the buildings become visible. We expect our land development

measures to automatically indicate this activity. The second urban region, Adana4, corresponds

to a parkland formation. In the first image, this region is also a bare land. In the second and the

third images in the sequence, the development is visible. In Fig. 2.11, we also provide the fusion

of land development measures for each test image sequence (in the first and second rows) sepa-

rately. As can be seen in Fig. 2.11, the fusion of land development measures correctly indicates
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Figure 2.11. Test sequences of Adana1 (first row) and Adana4 (second row) and fusion of land

development measures calculated on them

the development in both image sequences by increasing its value. Therefore, we have a perfect

performance on these two image sequences. On the Adana1 test image sequence, all other mea-

sures also performed perfect. However, for the Adana4 image sequence, measures m1 and m3

could not perform perfect. Both measures missed one development step and assigned it as less

developed compared to the previous image in the sequence. The reason for this shortcoming is

possibly the type of development activity there.
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2.5. EXPERIMENTAL RESULTS

In this section, we present experimental results of our urban region detection systems. After

representing results on real test images and tabulating their performances with tables, we com-

pare important features and deficiencies of the proposed systems. Next, we start with presenting

experimental results of SIFT and graph theory based urban region detection system.

2.5.1. Urban Region Detection Using SIFT Descriptors and Graph Theory

We test our urban region detection method on 30 very high resolution panchromatic Ikonos

images. These images are acquired from different sites in Adana, Ankara, and Istanbul cities in

Turkey. In these test images, the size and shape of buildings in the region, their proximity,

environment, and contrast with respect to background all differ. These test images are specifically

selected to represent a wide and diverse urban region characteristics. We provide our test images

in Figs. 2.12, 2.13, 2.14, and 2.15 in the first columns. We provide the detected urban region for

each test image in the second columns. Next, we analyze these detection results quantitatively.

Our method detects the urban region for each test image fairly well. To quantify these

detection results, we formed the ground truth for each test image to the best of our knowledge. In

forming the ground truth, we label a region as urban, if it contains building clusters. We provide

the urban region detection performances (in percentages) for all test images in Table 2.1. In

this table, TP stands for correct urban region detection ratio) FA stands for false urban region

detection ratio. The size of each image and the number of urban region pixels (in the ground

truth image), labeled as ‘UA’ is also given in this table.

On a total of 30 test images (with 775714 pixels of total urban region), we obtain a 89.52%

correct urban region detection and a 8.02% false alarm rate. For our diverse test set, this re-

sult is very promising. Table 2.1 can give us further information on our urban region detection

method. The lowest urban region detection rate is obtained on the Adana12 image. Here, build-

ings are sparse. Therefore, the region does not show strong urban characteristics. In other saying,

there are many non-urban pixels surrounding building clusters. Since our urban region detection

method depends on building cluster detection, this poor performance is reasonable. However,

the false alarm rate for this image is fairly low. The highest false alarm rate is obtained on the

Adana2 image. The reason for this high false alarm rate is that some nearby regions are also
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Figure 2.12. Urban region detection results for Adana images (1 to 8) for each row separately.

First column: test images; second column: detected urban regions with SIFT based algorithm;

third column: detected urban regions with Gabor based algorithm
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Figure 2.13. Urban region detection results for Adana images (9 to 15) for each row separately.

First column: test images; second column: detected urban regions with SIFT based algorithm;

third column: detected urban regions with Gabor based algorithm
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Figure 2.14. Urban region detection results for Adana images (16 to 23) for each row

separately. First column: test images; second column: detected urban regions with SIFT based

algorithm; third column: detected urban regions with Gabor based algorithm
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Figure 2.15. Urban region detection results for Ankara images (1,5) and Istanbul images (1 to

4) for each row separately. First column: test images; second column: detected urban regions

with SIFT based algorithm; third column: detected urban regions with Gabor based algorithm



31

Table 2.1. Urban region detection performances (in percentages) for test images with SIFT

based approach.

Image Name Size (pixels) UA (pixels) TP(%) FA(%)

Adana1 166× 318 17848 98.06 22.42

Adana2 302× 401 9735 90.96 39.48

Adana3 192× 213 23283 94.87 5.62

Adana4 143× 210 15035 99.26 9.86

Adana5 242× 450 36058 91.84 1.55

Adana6 293× 354 35805 94.83 8.77

Adana7 289× 324 31276 95.40 7.64

Adana8 235× 265 28747 84.26 1.62

Adana9 166× 208 25094 89.40 1.05

Adana10 192× 200 22016 94.78 13.77

Adana11 228× 186 25332 95.39 6.06

Adana12 257× 267 37810 76.88 1.53

Adana13 325× 289 53482 85.30 0.54

Adana14 336× 275 26033 84.37 3.30

Adana15 334× 264 26288 86.81 15.30

Adana16 119× 173 14517 97.04 2.41

Adana17 216× 306 29242 87.62 12.69

Adana18 258× 247 47031 92.42 5.22

Adana19 171× 185 22382 98.05 8.13

Adana20 222× 210 19108 87.88 12.90

Adana21 265× 447 17343 87.34 2.43

Ankara1 208× 240 25226 90.36 3.92

Ankara2 130× 239 20037 94.08 1.07

Ankara3 145× 285 16986 95.13 15.61

Ankara4 271× 315 40513 84.60 13.16

Ankara5 340× 278 48769 81.69 1.36

Istanbul1 128× 162 13266 97.49 17.84

Istanbul2 98× 111 6141 99.69 31.95

Istanbul3 248× 169 21241 73.70 4.42

Istanbul4 127× 193 12725 99.49 57.82

Total 775714 89.52 8.02
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taken as urban. This is not totally wrong, since they also show some degree of urban character-

istics. The best urban region detection rate is obtained on the Adana4 image. In this test site,

buildings are regularly spaced and highly distinctive. Therefore, the urban region in this image

is detected with a very high TP .

2.5.1.1. Tests on Different Modules

Our urban area and building detection methods are composed of many submodules (such

as bilateral filtering, SIFT keypoint extraction, and building template matching). Therefore, in

this section we test the effect of these different submodules on the final detection results. We pick

the Adana8 test image for this purpose. First, we test the effect of the bilateral filter. There is

also a faster version of bilateral filtering proposed by Paris and Durand [46]. We call this filtering

as ‘Fast BF’. Instead of the normal bilateral filter (we call it as ‘Normal BF’), we use this fast

implementation. Second, we test the effect of the building templates for detection. Instead of

using two building templates (as dark and bright), we test using each template alone. Based on

these variations, we provide the urban area detection results in Table 2.2.

Table 2.2. Urban area detection results on the Adana8 image; SIFT based approach, parameter

variations.

Normal BF Fast BF

Template TP (%) FA(%) TP (%) FA(%)

Bright 77.82 1.63 74.05 0.61

Dark 70.25 0.01 64.93 0.34

Both 84.26 1.62 80.85 0.82

As can be seen in Table 2.2, in detecting the urban area, the dark building template has the

lowest performance. Using both building templates drastically improves the performance. Using

normal or fast bilateral filtering has a significant effect in urban area detection performance.

2.5.1.2. Computation Times

In this part, we tabulate the time needed to detect urban region boundaries. To note here,

timing directly depends on the test image. As the number of buildings in a test image increases,

the number of local features will also increase. Therefore, the descriptor vector and multiple

subgraph matching algorithms will need more computation times. To give an idea, here we
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consider the Adana8 test image as a benchmark. We tabulate all CPU timings for each module

in Table 2.3. In this table, we also provide timings for both normal and fast bilateral filtering

operations. In reporting these results, we used a PC with an Intel Core2Due processor with a

2.13 GHz clock speed and having 4 GB of RAM. We used Matlab as our coding platform except

the SIFT implementation. The SIFT package is taken from Lowe’s web site, and it is written in

C language. If C platform is used to code all modules, a much faster system can be obtained.

Table 2.3. CPU Times (in seconds) for urban region detection operation on the Adana8 test

image with SIFT based approach.

Module Template Dark Both

Upsampling 0.19 0.19

Normal BF 62.67 62.67

Fast BF 6.51 6.51

SIFT keypoints 0.19 0.38

Graph matching 12.42 18.73

In Table 2.3, we provide both normal and fast BF implementations. Similarly, we provide

the computation times for using only the dark building template and both templates. We can

summarize the different scenarios as follows. Using normal BF and both templates, urban region

detection operation requires 81.97sec. This scenario is for obtaining the best performance for

urban region detection. If we can tolerate slightly lower detection performances, then we can use

fast BF and only the dark template. In this scenario, urban region detection requires only 19.31

sec. The user should select the suitable scenario (both in terms of detection performance and

CPU time needed) for his needs.

2.5.2. Urban Region Detection Using Gabor Features

Here, we present experimental results of our Gabor feature based urban region detection

method. To test the performance of this method, we use the same panchromatic satellite image

data set that we have used to test SIFT and graph theory based algorithm. As a result, we use

30 panchromatic Ikonos satellite images which are specifically selected to represent wide and

diverse urban region characteristics. In this part, we also test our urban region detection system

on a real aerial image database with 21 aerial test images which have 0.3 m spatial resolution.
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On our Ikonos test images, we first provide the experimental justification for selected pa-

rameter values. In the following two sections, we provide the overall urban region detection

performance of our method on satellite and aerial images separately. We quantify these tests by

reporting TP and FA. We also provide the computation times for each operation in our urban

region detection method on a sample test image.

2.5.2.1. Tests on Parameter Values

Although we do not have many parameters in our urban region detection method, we pro-

vide their effect on the final detection results for satellite images in this section. We first comment

on Gabor filter parameters. We observed that, in panchromatic Ikonos images building edges can

be represented as a ramp edge with three to four pixels width. Therefore, in this study we picked

σg = 1.5, and f = 0.65 after extensive testing. To cover differently oriented building edges, we

tested different ϕ values. We provide different settings in Table. 2.4. In these tests, we use 30

Ikonos images to eliminate image dependency.

Table 2.4. The effect of Gabor filtering directions on urban region detection.

Number of ϕ TP(%) FA(%)

4 88.39 11.55

6 88.63 8.21

8 88.47 6.30

10 89.33 5.91

12 88.79 5.91

14 90.79 5.99

As can be seen in Table. 2.4, the number of Gabor filtering directions have effect on de-

creasing FA. Based on this test, we can conclude that choosing ten different directions for Gabor

filtering (ϕ = {0, π/10, 2π/10, ..., 9π/10} radians) is suitable for urban region detection. To note

here, choosing six, eight or twelve directions also provide similar TP and FA values. There-

fore, we can conclude that our method does not specifically depend on the total Gabor filtering

direction.

We then test the effect of median filtering on the final detection result. We provide tests

with different median filter sizes in Table. 2.5. Again, in these tests we use 30 Ikonos images to
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eliminate image dependency.

Table 2.5. The effect of median filtering on urban region detection.

Median filter size TP(%) FA(%)

No filtering 95.04 31.76

3× 3 94.13 16.75

5× 5 89.33 5.91

7× 7 84.29 5.15

As can be seen in Table. 2.5, without median filtering FA is fairly high. Therefore, we

need a median filtering operation. As can be seen, a 5× 5 median filtering gives reasonable TP

and FA values.

For aerial images, we also use the same settings. However, to make the resolution of the

satellite and aerial images similar, we downsampled aerial images by 0.5. Next, we discuss the

overall urban region detection performance of our method on satellite images.

2.5.2.2. The Overall Performance on Satellite Images

The overall performance of our method on 30 satellite images having 775714 urban region

pixels is TP = 89.33% and FA = 5.91%. Therefore, our method was able to detect 692926

urban region pixels correctly with 45854 false alarm pixels. This is a fairly good urban region

detection result on such a diverse satellite image set. We provide performance for each satellite

test image in Table 2.6 and detection results in the last columns of Figs. 2.12, 2.13, 2.14, and

2.15. We also provide a sample test image for urban region detection results for satellite images

in Fig. 2.16. As can be seen in this figure, all urban regions with different building characteristics

are correctly detected.

2.5.2.3. The Overall Performance on Aerial Images

Next, we discuss the overall performance of our method on 21 aerial images. In this test,

we have 1688936 urban region pixels. We obtained TP = 85.93% with a FA = 10.94% for

urban region detection. Therefore, 1451225 urban region pixels are correctly detected, with a

184851 pixels of false alarm. Similar to satellite images test, this result on such a data set is

fairly good. We provide performance for each satellite test image in Table 2.7 and detection
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Table 2.6. Urban region detection performances on satellite images (in percentages) with the

Gabor feature based algorithm.

Image Name Size (pixels) UA (pixels) TP(%) FA(%)

Adana1 166× 318 17848 65.77 6.84

Adana2 302× 401 9735 94.22 27.53

Adana3 192× 213 24541 89.44 0.29

Adana4 143× 210 15035 98.78 8.41

Adana5 242× 450 36058 94.03 3.96

Adana6 293× 354 37350 98.92 17.36

Adana7 289× 324 31276 95.71 9.47

Adana8 235× 265 28747 86.56 0.70

Adana9 166× 208 25094 77.86 0.00

Adana10 192× 200 22016 82.40 10.02

Adana11 228× 186 25332 83.63 2.65

Adana12 257× 267 37810 76.36 2.68

Adana13 325× 289 53482 95.71 1.33

Adana14 336× 275 26033 85.43 8.85

Adana15 334× 264 26288 91.71 6.79

Adana16 119× 173 14517 81.99 1.25

Adana17 216× 306 33375 94.33 6.85

Adana18 258× 247 47031 88.10 4.88

Adana19 171× 185 22382 92.82 2.85

Adana20 222× 210 19108 89.49 4.81

Adana21 265× 447 17343 99.12 8.50

Ankara1 208× 240 25226 94.81 4.17

Ankara2 130× 239 20037 91.19 4.38

Ankara3 145× 285 16986 90.34 6.98

Ankara4 271× 315 40513 86.20 11.55

Ankara5 340× 278 48769 93.81 5.54

Istanbul1 128× 162 13266 79.45 1.27

Istanbul2 98× 111 6141 86.63 2.13

Istanbul3 248× 169 21241 82.96 4.54

Istanbul4 127× 193 12725 96.59 9.71

Total 775714 89.33 5.91
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Figure 2.16. Urban region detection result on a sample satellite image

results in Figs. 2.17, 2.18, and 2.19. We also provide a sample test image for urban region

detection results for aerial images in Fig. 2.20. As can be seen in this figure, all urban regions

with different building characteristics are correctly detected.

2.5.2.4. Computation Time

To provide an idea about the computation time needed for our Gabor feature based method,

we next consider the CPU timings for each step on the Adana8 satellite test image. We picked

this image as a benchmark in our SIFT and graph theory based algorithm in Section 2.2. There-

fore, we pick the same image here to compare both methods. In reporting computation times, we

used the same PC with Intel Core2Due processor with 2.13 GHz. clock speed and has 4 GB of

RAM. We used Matlab as our coding platform. After testing, we obtained that for the Adana8

image Gabor filtering needs 0.61 sec.; local feature point extraction needs 0.94 sec. and spatial

voting needs 2.30 sec. The total time needed for urban region detection is 3.85 sec. This is a

fairly good timing to obtain the urban region.

2.5.3. Comparison of the Proposed Urban Region Detection Systems

Finally, we compare our urban region detection methods we presented in Sections 2.2, 2.3.

In Section 2.2, we introduced a SIFT and graph theory based system to detect urban regions

in very high resolution panchromatic satellite images. In 30 satellite images, we obtained an
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Figure 2.17. Test results with Gabor feature based algorithm for Aerial images (1 to 7) for each

row separately. First column: original test images; second column: detected urban regions
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Figure 2.18. Test results with Gabor feature based algorithm for Aerial images (8 to 14) for

each row separately. First column: original test images; second column: detected urban regions
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Figure 2.19. Test results with Gabor feature based algorithm for Aerial images (15 to 21) for

each row separately. First column: original test images; second column: detected urban regions
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Figure 2.20. Test result with Gabor feature based algorithm for a large aerial image. First row:

original test image; second row: detected urban areas

Table 2.7. Urban region detection performance on aerial images (in percentages) with Gabor

feature based algorithm.

Image Name Size (pixels) UA (pixels) TP FA TP(%) FA(%)

Aerial1 562× 553 43610 41084 22330 94.21 51.20

Aerial2 287× 199 11605 11271 3410 97.12 29.38

Aerial3 254× 283 17975 14912 4496 82.96 25.01

Aerial4 139× 274 17622 9459 2605 53.68 14.78

Aerial5 317× 229 32309 29233 7 90.48 0.02

Aerial6 167× 219 13745 12175 1629 88.58 11.85

Aerial7 397× 117 20282 16423 2331 80.97 11.46

Aerial8 287× 357 52831 43526 5284 82.39 10.00

Aerial9 309× 497 101772 78852 3693 77.48 3.63

Aerial10 373× 422 69746 58461 1607 83.82 2.30

Aerial11 401× 491 71704 63759 17960 88.92 25.05

Aerial12 389× 271 69719 65407 4080 93.82 5.85

Aerial13 434× 378 111635 98825 1813 88.53 1.62

Aerial14 104× 413 18711 16622 2432 88.84 13.00

Aerial15 210× 336 36022 30214 928 83.88 2.58

Aerial16 248× 240 28113 25325 4473 90.08 15.91

Aerial17 321× 301 57248 50785 450 88.71 0.79

Aerial18 618× 651 200195 175628 998 87.73 0.50

Aerial19 1816× 3090 355790 315510 53717 88.68 15.10

Aerial20 1371× 1141 271684 209795 45219 77.22 16.64

Aerial21 671× 658 86618 83959 5389 96.93 6.22

Total 1688936 1451225 184851 85.93 10.94
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89.52% correct urban region detection performance with an 8.02% false alarm rate. False alarms

occurred because of terrain formations resembling buildings (such as sand hillocks) in satellite

images. This performance on such a diverse test was noteworthy. Besides this high performance,

proposed system had some deficiencies. First, the proposed system needs template buildings

which contain specific characteristics of buildings in study region. Second, extracting SIFT

features in large satellite images and multiple sub-graph matching operations need very high

computation time. In addition to that, computation time increases with number of buildings in

given region. Third, SIFT based urban region detection system can not be used on aerial images

because of the characteristics of SIFT descriptor vectors. Since our aerial images are saved in

lossy Jpeg standard, small details are distorted in these images. This distortion effects support

region of SIFT feature descriptors. As a result, descriptor vectors are not generated correctly and

detection application could not be performed on our aerial image data set.

In Section 2.3, we introduced the Gabor feature based system. In this system, we used

the same data set as in SIFT based system. In 30 satellite images, we obtained TP = 89.33%

with FA = 5.91. Comparing the performances with SIFT and graph theory based system, the

detection and false alarm rates are almost the same. In Gabor feature based algorithm, we can

further apply probabilistic relaxation to improve obtained results. However, we will need extra

computations for performing it. Unfortunately, we could not run our SIFT and graph theory

based algorithm on aerial image data set. Therefore, here we can not compare performances on

aerial image data set.

To compare both methods in terms of CPU timings, we pick the Adana8 satellite test image

as a benchmark. The time needed for the SIFT based method was 81.97 sec. With Gabor feature

based method, we only need 3.85 sec. Therefore, our Gabor feature based method is fairly

fast and almost has the same performance with our SIFT based urban region detection method.

Besides, we do not need any template building images (as in the SIFT based method) to detect

urban region in Gabor feature based method. Therefore, user can directly run the algorithm on

given test image.

2.5.4. Grading the Urban Region Using Local Features

Ünsalan [30] used a data set composed of 19 different urban regions having diverse charac-

teristics for grading land development. Each urban region is imaged either three or four different
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times. Therefore, there is a total of 69 images. Here, we also benefited from the same data set to

test our new land development measures. We expect our land development measures to indicate

the degree of development automatically on these image sets.

2.5.4.1. Overall Performance

We obtain the overall performance of our measures in accordance with the evaluation

method given in [30]. There, to assess the performance of a feature, we define an ordinal po-

sition for each image in the sequence (from one to three or four) based on the advancement in

construction. Next, we sort the image sequence with respect to feature values. We define the

error for the image sequence to be 1/2 of the absolute difference (to avoid double counts) in the

ordinal position as assigned by the feature versus that of the ordinal position. The sum of the

per-image deviations over the sequence provides the error score for the feature for that image

sequence. Finally, we formalize the error as

e =
1

2
min(

B∑
i=1

|so(i)− sf (i)|,
B∑

i=1

|so(i)− sf (B − i)|) (2.20)

where so is the ordinal (desired) sort, and sf is the sort by the feature. B is the total number

of satellite images in given sequence (either three or four in our application). We perform the

same calculations for the 19 construction zones separately and obtain the overall error. We obtain

the total correct sort value by subtracting the overall error from the total number of images (69

here). Finally, we obtain the percentage of the total correct sort to the total number of images.

We indicate it as the average performance of the feature.

We obtain the following overall performance values for m1 to m5 as 75.4%, 76.8%, 76.8%,

78.3%, 78.3% respectively. Although the performance values are close to each other, the normal-

ized urban region measure, m4, and the normalized sum of votes in the urban region measure,

m5, have slightly better performance values. As we fuse all the measures, we obtain an 82.3%

performance. Therefore, we gain a 4% performance improvement after fusion.

We provide some sample image sequences and obtained land development measure fusions

in Figs. 2.21, 2.22.
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Figure 2.21. Land development test results with Gabor feature based algorithm for Test image

sequences (1 to 4) for each row separately. First four column: test images in sequence; fifth

column: fusion of land development measures for each image in the sequence

Figure 2.22. Land development test results with Gabor feature based algorithm for Test image

sequences (7, 8, 10, 13, 16) for each row separately. First four column: test images in sequence;

fifth column: fusion of land development measures for each image in the sequence
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2.5.5. Comparison of the Proposed Land Development Measures

In Section 2.4, we introduced a novel approach to detect land development in sequential

satellite images based on Gabor features. In Ünsalan’s [30] graph theoretical land development

measures, the best performance as 72.5% using one measure alone. Our Gabor feature based land

development measures introduced in this study have at least 2.9% to 5.8% better performances

compared to the graph theoretical ones.

In terms of the computational cost (in terms of CPU times), graph theoretical land devel-

opment measures need 59.51 sec. on average (over 69 images) with a PC with Intel Core2Due

Processor with 2.2 GHz. clock speed. Our Gabor feature based land development measures need

2.17 sec. on average with the same settings. This test indicates that, the computational cost of

our new land development measures are also remarkably low compared to the previous method.

2.6. SUMMARY OF THE CHAPTER

In this chapter, we introduced two novel systems to detect urban region boundaries on gray

scale very high resolution satellite and aerial images. We also proposed a novel system to grade

land development in an urban region using image sequences captured in different times.

First, we introduced novel SIFT feature based method (in Section 2.2). SIFT approach

leads to extracting local features and descriptor vectors, invariant to translation, scaling, and ro-

tation. Buildings can be considered as interested objects in the satellite images. Since buildings

can have different illumination conditions and their appearance (such as viewing angle) is un-

controlled, SIFT features are suitable for object detection in satellite images. There, we picked

two template building images, one representing dark buildings and the other representing bright

buildings. We obtain their SIFT features. We also obtain the SIFT keypoints for the test image.

Then, by applying multiple subgraph matching between template and test images SIFT features,

we detect the urban region in the test image. We test our urban region detection method on a

diverse and representative image set. We obtain an 89.52% correct urban region detection per-

formance on such a diverse test set is noteworthy. False alarms in urban region detection mostly

occur because of terrain formations resembling buildings (such as sand hillocks) in satellite im-

ages. One important feature of the system is that, one can generalize the system to detect any

kind of objects in satellite images. However our SIFT based algorithm gives high performance



46

using only grayscale information, it has some deficiencies. In order to use proposed algorithm, a

user should prepare a template building data set which includes buildings showing general build-

ing characteristics of the study region. However our algorithm detects urban region boundaries

in a few minutes in our test images, calculation time increases exponentially when complexity

and size of image increases. As another deficiency we observed that, SIFT based algorithm does

not perform well on lossy compressed images (like Jpeg images).

To overcome drawbacks of the SIFT based algorithm, we developed another urban region

detection algorithm based on Gabor features. We extracted Gabor features in a given test image

using Gabor filters. We use these local features in forming a spatial voting matrix. Then by

using an optimum decision making approach, we were able to detect the urban region in given

remotely sensed image. After extensive testings, we obtain very encouraging results with our

method. Comparing with SIFT based algorithm, we can also conclude that our new urban region

detection method is fairly fast and reliable.

Computation time of Gabor feature based algorithm was also very impressive. Also, we

do not benefit from multispectral information as in previous studies. We can further apply prob-

abilistic relaxation to improve our results. However, we will need extra computations for per-

forming it. As a further step, we also developed Gabor feature based algorithm to detect urban

development. In order to measure development, we used very high resolution panchromatic

satellite image sequences of the region. Proposed method depends on the same Gabor features.

We used these local features in forming a spatial voting matrix. Then, we defined five differ-

ent land development measures on it. After extensive testings, we observed that our novel land

development measures have similar or better performances compared to previous land develop-

ment measures in the literature. Besides, the computational cost of our novel land development

measures is fairly low compared to previous methods. Therefore, land development measures

based on local features (introduced in this study) have their strengths compared to previous ones.

Novel studies presented in this chapter can be taken as the first step in monitoring urbaniza-

tion. The next chapters will be on detecting separate objects such as buildings and road segments

in very high resolution satellite and aerial images.
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3. BUILDING DETECTION

Buildings are important objects in remotely sensed images. Therefore, robust detection of

buildings is an important part of the automated satellite and aerial image interpretation problem.

Automatic detection of buildings enables creation of maps, detecting changes, and monitoring

urbanization. However, detecting buildings in satellite and aerial images is a difficult task for sev-

eral reasons. Building may be imaged from different viewpoints. The illumination and contrast

in the image may not be sufficient for detecting buildings. There may be several other structures,

such as nearby trees and street segments making the building detection problem harder. In ad-

dition to these difficulties, buildings do not have standard size and shape. All these issues make

building detection a hard problem.

In this chapter, we propose novel approaches to detect separate buildings in very high reso-

lution satellite and aerial images using local invariant features. To this end, we expand our urban

region detection methods that we presented in Chapter 2. After presenting building detection

approaches, we propose a novel method to detect damaged buildings and to extract approximate

building shapes automatically. At the end of the chapter, we compare performances, beneficial

features, and deficiencies of the proposed building detection methods. Next, we present previous

work on building detection.

3.1. PREVIOUS STUDIES ON BUILDING DETECTION

In the literature various algorithms are proposed for building detection. Mayer [47], pro-

vides an excellent overview of building detection studies developed between 1984 and 1998.

These studies generally use gray-scale aerial images and detect the buildings by thresholding and

edge detection techniques. Ünsalan and Boyer [5], also provide an extended overview as well as

a novel method to detect houses and street segments in residential regions. These overviews may

be used to see the overall picture in building detection studies.

Levitt and Aghdasi [48] used the region growing algorithm on grayscale images and seg-

mented most of the buildings in their test images. They verified the existence of buildings using

the edge map. Kim and Muller [49], used graph theory to detect buildings in aerial images. They

extracted linear features in a given satellite image. They used these features as vertices of a
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graph. Then, they extracted buildings by applying subgraph matching with their model building

graph. Finally, they used intensity and shadow information to verify the building appearance.

Segl and Kaufmann [50] combined supervised shape classification with unsupervised image seg-

mentation in an iterative way. Their method allows searching objects (like buildings) in high

resolution satellite images. Mayunga et al. [51] used polygons (formed by edge information) to

detect buildings. They proposed a novel snake algorithm starting from an approximate polygon

center. The snake grows radially until it fits a closed polygon shape. Then, they used linear fea-

tures to verify the building appearance. The main drawback of this algorithm is its dependence

on manually labeled starting points. Peng et al. [52] also proposed an improved snake model to

detect buildings in color aerial images. They report good detection results with their system.

Huang et al. [53] considered fusion of multispectral Ikonos imagery to classify objects (in-

cluding buildings) in urban regions. Molinier et al. [54] considered detecting man-made struc-

tures in satellite images using PicSOM. Wei and Xin [55] introduced a method based on level-sets

to segment out man-made objects in aerial images. Katartzis and Sahli [56] used a hierarchical

stochastic model based on perceptual organization to detect building rooftops in color satellite

images. Karantzalos and Paragios [57] developed a novel framework for building detection from

grayscale satellite and aerial images. For this purpose, they used level-set segmentation method

with multiple shape priors to extract building shapes and poses. Akçay and Aksoy [58] proposed

a novel method for unsupervised segmentation and object detection in high-resolution satellite

images. They used morphological operators on each spectral band to extract candidate segments.

They proposed an object detection algorithm formulating the detection process as an unsuper-

vised grouping problem for the automatic selection of coherent sets of segments corresponding

to meaningful structures among a set of candidate segments from multiple hierarchical segmen-

tations obtained from individual spectral bands. Idrissia et al. [59] extracted edges of man-made

structures (buildings and roads) using Gabor filters together with the NDVI (Normalized Differ-

ence Vegetation Index) in SPOT5 images. Comparing their edges of two image sequences taken

from same region, they detected changes.

Some researchers used the shadow information to detect buildings. McKeown et al. [60]

detected shadows in aerial images by thresholding. They showed that building shadows and

their boundaries contain important information about building heights and roof shapes. Zim-

merman [61] integrated basic models and multiple cues for building detection. He used color,

texture, edge information, shadow and elevation data to detect buildings. This algorithm extracts
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buildings using blob detection. Tsai [62] compared several invariant color spaces including HSI ,

HSV , HCV , Y IQ, and Y CbCr models for shadow detection and compensation in aerial images.

Vu et al. [63] also used shadows to model buildings. They showed that shadow information can

be used to estimate damages and changes in buildings. Chen and Hutchinson [64] developed a

system to detect damages using bi-temporal grayscale satellite images. First, they compared two

images to detect pixel based changes. Then, they extracted object based changes by a probabilis-

tic approach.

Wei and Prinet [65], used a probabilistic framework to detect buildings in high resolu-

tion panchromatic satellite images. First, they segmented homogeneous regions using a band

pass filter. They assumed these regions as possible building locations. They developed novel

structural and textural features and used them to calculate probability of building appearance in

this region. Jaynes et al. [66] proposed a framework to detect buildings in aerial images. For

this purpose, they extracted primitive structures (straight edges) using Boldt algorithm. Using

perceptual grouping laws, they detected polygon shapes considering corners and neighbor lines.

Unfortunately, this approach is not robust to occlusion and it does not have a step to verify if the

polygon shape belongs to a building or not. Mordohai et al. [67] used two images of the same

region taken with small view angle differences to detect buildings in aerial images. They slid one

of these images on another to evaluate the disparity map. Using this disparity map and tensor

voting approach, they detected buildings.

In order to generate land maps and discriminate particular buildings, it is also important to

detect exact shapes. Shadows in image may help to detect building shapes and they can be used

to verify building appearance. Huertas and Nevatia [68] used the relationship between buildings

and shadows. They first extracted corners from the image. They labeled these corners as either

bright or shadow. They used the bright corners to form rectangles. Shadow corners confirm

building hypothesis for these rectangles. McKeown et al. [60] showed that building shadows and

their boundaries contain important information about building heights and roof shapes. Katartzis

and Sahli [56] used shadow information in order to verify wall appearance and to model 3D

rooftop models. Krishnamachari and Chellappa [69] introduced a Markov Random Field (MRF)

based building detection method in aerial images. They benefit from straight line segments in

the image and form their MRF based detection method on their interactions. Wei and Prinet [29]

recently introduced a probabilistic method to detect building shapes. They proposed using region

information and a probabilistic measure on these to detect man-made structures in the image.



50

Neuenschwander et al. [70] and Rüther et al. [71] used snake models to determine exact building

shapes from the edge information of remotely sensed images. Although active contour and level

set methods provide good detection performances (with building shapes as extra information),

as the number of buildings in the image increases their detection time also increases. Besides,

occlusions may cause problems for these methods.

3.2. BUILDING DETECTION USING SIFT DESCRIPTORS AND GRAPH THEORY

In Section 2.2, we proposed an urban region detection approach based on SIFT and graph

theory. There, we matched SIFT descriptor vectors of the template buildings to SIFT descriptor

vectors of test building by our multiple graph matching approach. Then, by applying multiple

subgraph matching between template and test image SIFT features we detected a subgraph for

test image. We assumed the boundaries of obtained subgraph as urban region boundaries. In

this section, we propose a novel graph cut method to detect separate buildings using previously

detected urban region subgraph.

3.2.1. Graph Cut Method to Detect Separate Buildings

In Section 2.2, we benefit from the close proximity of buildings in detecting the urban

region. In our test image, we obtained two subgraphs Gd and Gb by applying subgraph matching

using dark building template and bright building template respectively. Here, our purpose is

expanding this approach to detect separate buildings. For building detection, we need extra

information. Therefore, we cut some edges of Gd and Gb based on the intensity criteria. We

hypothesize that vertices (feature locations) on the same building have similar intensity values

due to the building color. Therefore, to locate separate buildings, we cut edges between vertices

having different intensity values. We expect the cut edges to be the ones between vertices on

different buildings. We form two new graphs as Gp = (V p, Ep) and Gq = (V q, Eq). Here,

V p = V d and V q = V b. Let’s consider Gp, we assign weights to its edges as

Ep(k, l) =





1 Ed(k, l) 6= 0 ∧ wkl < ε4

0 otherwise
(3.1)



51

where wkl = |Ib(xk, yk) − Ib(xl, yl)|. (xk, yk) and (xl, yl) stand for the spatial coordinates of

vk,vl ∈ V p. Ib(x, y) is our bilateral filtered image. ε4 = 0.1 is the tolerance value (remember

Ib(x, y) ∈ [0, 1]). We apply the same procedure to obtain Eq as

Eq(k, l) =





1 Eb(k, l) 6= 0 ∧ wkl < ε4

0 otherwise
(3.2)

The weight assignment step may not work properly if features are located outside the building.

To overcome this problem, descriptor vectors may be used to shift each feature location by an

offset. For bright buildings (the bright building template is matched with), feature locations are

directed outside the building center. For dark buildings (the dark building template is matched

with), feature locations are directed towards the building center (as can be seen in Fig. 2.3). This

information may be used to shift each feature location inside the building.

Eqns. 3.1 and 3.2 lead to disconnected subgraphs. Each disjoint and connected subgraph

possibly represents a building. Therefore, we detect disjoint and connected subgraphs from Gp

and Gq. A graph G(V, E) can be decomposed into disjoint and connected subgraphs Gl(Vl, El)

l = 1, ..., L. Each subgraph satisfies the following conditions:

i- Vl ⊆ V

ii-
⋃L

l=1 Vl = V

iii- ∀vi, vj ∈ Vl ∃ a path between vi and vj . A path in G is a finite alternating sequence of

vertices and edges.

iv-

El(i, j) =





1 if E(i, j) = 1 ∧ vi, vj ∈ Vl

0 otherwise
(3.3)

We obtain disjoint and connected subgraphs for Gp using the above definition as Gp
i i = 1, ..., I .

However, there may be many noise terms. To discard them, we select subgraphs having at least
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two vertices. Similarly, we obtain disjoint and connected subgraphs for Gq as Gq
j j = 1, ..., J . For

the Adana8 subpart image, we provide the obtained disjoint and connected subgraphs Gp
i i = 1, 2

in Fig. 3.1. As can be seen, each disjoint and connected subgraph lies on a different building in

this test image. As we hypothesized, each subgraph Gp
i i = 1, ..., I and Gq

j j = 1, ..., J represents

(a) Graph cut (b) Buildings

Figure 3.1. Graph cut on the Adana8 subpart image

a candidate building. To locate buildings, we obtain the region of each subgraph as A(Gp
i ) and

A(Gq
j) separately. Some subgraphs in Gp

i and Gq
j may represent the same building. In other

saying, the building may be detected by both dark and bright building templates. To eliminate

double counts, we obtain the union of regions as

F = A(Gp
i )

⋃
A(Gq

j) ∀i, j (3.4)

We apply binary labeling on F and obtain its connected components [39]. Each connected com-

ponent represents a building. If the size of a connected component is less than 1000 pixels we

take it to be noise and discard it. This corresponds to approximately a building of size 6 × 5

pixels in the original image (remember we upsample the test image by six in each coordinate at

the beginning). We obtain the center of mass of each connected component and take it as the

location of the building it represents.

We provide the building detection result on the Adana8 subpart image in Fig. 3.1. As can

be seen, both buildings are correctly detected in this image. We also provide the building de-

tection results on the Adana8 test image in Fig. 3.2. Again, most of the buildings are correctly

detected in this test image. Since the contrast between the background and the building rooftops

are very low for this image, it is really hard to detect these buildings even for a human observer.

We quantify our building detection results on our diverse Ikonos satellite image dataset in Sec-

tion 3.7. In the next section, we present another novel approach to detect buildings using Gabor
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Figure 3.2. Detected buildings in the Adana8 test image

features.

3.3. BUILDING DETECTION USING DIFFERENT LOCAL FEATURES

To overcome difficulties in building detection and to increase accuracy, in this section we

propose another novel building detection method using several local feature vectors and a prob-

abilistic framework. We first introduce three different local feature vector extraction methods.

Extracted local feature vectors serve as observations of the probability density function to be

estimated. Using a nonparametric variable kernel density estimation method, we estimate the

corresponding probability density function. In other saying, we represent building locations (to

be detected) in the image as joint random variables and estimate their pdf. Using modes of the

estimated density, as well as other probabilistic properties, we detect building locations in the im-

age. We also introduce data and decision fusion methods based on our probabilistic framework

to detect buildings. We pick our very high resolution panchromatic aerial and Ikonos satellite

images to test our method. Extensive tests indicate that our method can be used to automatically

detect buildings in a robust and fast manner in satellite and aerial images. We represent detection

results in Section 3.7.

3.3.1. Local Feature Vector Extraction

Our probabilistic building detection method depends on local feature vectors extracted

from the test image. These are taken as observations of the random building location coordinates

(to be estimated). Therefore, we introduce three different local feature vector extraction methods

in this section. The first method is based on Harris corner detection. The second method is based

on gradient magnitude based support region (GMSR) extraction [72]. Finally, the third method
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is based on Gabor filtering in different directions. Next, we explore each method in detail.

3.3.1.1. Harris Corner based Local Feature Vectors

Fonte et al. [73] considered (improved) Harris and Susan corner detectors to obtain the

type of structure in a satellite image. They concluded that, corner detectors are not sufficient

alone to give distinctive information on the type of structure in an image. Schmid et al. [74] on

the other hand evaluated and compared different corner detectors for general image processing

applications. They concluded that the best results are provided by the Harris corner detector [75].

Therefore, we first pick it to extract local feature vectors.

Harris and Stephens define their corner detector (generally known as the Harris corner de-

tector) in three steps: gradient calculation, matrix formation, and eigenvalue calculation. There-

fore, first we should calculate smoothed (using a Gaussian function) gradients in x and y direc-

tions to detect corners in a given grayscale image I(x, y). We define smoothed gradient filters

for x and y directions as

gx(x, y) =
−x

2πτ 4
g

exp(−x2 + y2

2τ 2
g

) (3.5)

gy(x, y) =
−y

2πτ 4
g

exp(−x2 + y2

2τ 2
g

) (3.6)

where τg is the smoothing parameter. We take it as unity in this study due to the scale of Ikonos

satellite and aerial images at hand. Although our method is fairly robust to this parameter, it

should be adjusted by the resolution of the image to be analyzed in future studies.

We calculate the smoothed gradients for the image I(x, y) as

Ix =
∂I(x, y)

∂x
= gx(x, y) ∗ I(x, y) (3.7)

Iy =
∂I(x, y)

∂y
= gy(x, y) ∗ I(x, y) (3.8)
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Harris corner detector depends on calculating a matrix (related to autocorrelation function) as

A(x, y) =


axx axy

axy ayy


 (3.9)

where

axx =
∑

xi∈W

∑
yi∈W

I2
x(xi, yi) (3.10)

axy =
∑

xi∈W

∑
yi∈W

Ix(xi, yi)Iy(xi, yi) (3.11)

ayy =
∑

xi∈W

∑
yi∈W

I2
y (xi, yi) (3.12)

As can be seen, axx, axy, ayy are gradient magnitudes averaged over a window W . We pick

this averaging window width as seven pixels (due to the resolution of our images) in this study.

For further details on this averaging operation, please see [75]. The eigenvalues of matrix A

provide information about the edge in a given location. If both eigenvalues of the matrix at a

given location is large, then there is a corner there. Harris and Stephens suggested that exact

eigenvalue computation can be avoided by calculating the response function

R(A) = |A| − κ trace2(A) (3.13)

where κ is a tunable parameter with values from 0.04 to 0.15 were reported as appropriate in the

literature. Therefore, we picked κ = 0.06 in this study. Harris and Stephens extract their corner

points by checking the local maxima of R(A). For a detailed explanation, please see their paper

[75].

As we obtain corner points with their spatial coordinates, we define local feature vectors
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using them. Besides spatial coordinates, we also add direction and weight information as follows.

First, we calculate the gradient orientation, O(x, y), and magnitude, M(x, y), for each image

coordinate as

O(x, y) = arctan

(
Iy(x, y)

Ix(x, y)

)
(3.14)

M(x, y) =
√

I2
x(x, y) + I2

y (x, y) (3.15)

For the corner point at coordinate (xj, yj), the corresponding orientation is θj = O(xj, yj). To

assign a weight for the local feature vector, we threshold M(x, y) using Otsu’s method for each

image separately in an adaptive manner. As a result, we obtain Bm(x, y) as a binary image.

In this image, pixels having value one correspond to strong responses. We obtain connected

pixels to (xj, yj) in Bm(xj, yj). By definition, two pixels are connected (in a binary image) to

each other if there is a path (of pixels with value one) connecting them. As we obtain all the

connected pixels to (xj, yj), we assign their sum as the weight wj . Therefore, if a candidate local

feature vector has more connected pixels, it has more weight. Finally, we have Harris corner

based local feature vectors as ~kh(j) = (xj, yj, θj, wj) for j = 1, ..., Kh.

3.3.1.2. GMSR based Local Feature Vectors

We next pick a previous study on support region extraction, gradient magnitude based sup-

port regions (GMSR) to extract local feature vectors [72]. The method benefits from smoothed

gradients to form support regions. Then, these features are used to extract structural and condi-

tional statistical features to classify land use. In this chapter, we extract support regions using

smoothed gradient values, Ix and Iy, given in Eqns. 3.7 and 3.8. To extract support regions,

we threshold M(x, y) by the 10 % of the maximum gradient magnitude in the test image. The

rationale here is as follows. We take the maximum gradient magnitude as a benchmark. After

experiments, we observed that even 10 % of this value still gives information about the structure

in the image. Therefore, we have an adaptive threshold value. Similar to Harris corner detection

method, we obtain Bm(x, y) as a binary image after thresholding. In this image, pixels having

value one correspond to support regions. For more details, please see [72].
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We define local feature vectors based on the extracted support regions. Therefore, we pick

each support region pixel as a local feature vector coordinate. Assume that, we have a local

feature vector (xj, yj). By definition, Bm(xj, yj) = 1. We define the orientation and magnitude

of the local feature vector having spatial coordinate (xj, yj) with the same method as we used in

the previous section. As a result, we obtain local feature vectors as ~kg(j) = (xj, yj, θj, wj) for

j = 1, ..., Kg from the GMSR.

3.3.1.3. Gabor Filtering based Local Feature Vectors

Finally, we introduce Gabor filtering based local feature vector extraction in this section.

In this method, the first step is smoothing the image by median filtering to eliminate small noise

terms. Then, we apply Gabor filtering in different directions. Based on these responses, we

obtain our local feature vectors.

Mathematically, the two dimensional Gabor filter can be defined as in Eqn. 2.13. As we

explained in detail in Section 2.3, f is the frequency of the complex exponential signal, ϕ is the

direction of the Gabor filter, and σg is the scale parameter. We observed that, for our test images

σg = 1.5, and f = 0.65 as suitable values after extensive testing. To cover differently oriented

building edges, we tested different ϕ values. We conclude that choosing ten different directions

for Gabor filtering (ϕ = {0, π/10, 2π/10, ..., 9π/10} radians) is suitable for building detection.

We can detect building edges and corners in a test image using Gabor filtering. There-

fore, for a test image I(x, y) (with size N × M ), we benefit from the real part of the Gabor

filter response as in Eqn. 2.14. Here, Gϕ(x, y) is maximum for image regions having simi-

lar characteristics with the filter. To extract local feature vector spatial coordinates, we first

search for the local maxima in Gϕ(x, y) for x = 1, ..., N and y = 1, ..., M . If any pixel

(xj, yj) in Gϕ(x, y) has the largest value among its eight neighbors, Gϕ(xj, yj) > Gϕ(xn, yn)

∀ (xn, yn) ∈ {(xj − 1, yj − 1), (xj, yj − 1), ..., (xj + 1, yj + 1)}; we call it as a local maximum.

It is a candidate for being a local feature vector coordinate. Next, we check the amplitude of the

filter response Gϕ(xj, yj). We call our local maximum (xj, yj) as a candidate local feature vector

coordinate if and only if Gϕ(xj, yj) > α. To handle different images, we obtain α using Otsu’s

method on Gϕ(x, y) in an adaptive manner for each image separately. Therefore, we eliminate

weak candidate local feature vectors in future calculations.

As we obtain the spatial coordinates of local feature vectors in one Gabor filter direction,
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we assign an orientation and weight to them. However, we assign the orientation different than

the two previous methods as follows. We check for the orientations in the eight-neighborhood of

(xj, yj) and pick the orientation, θj , as the one having highest magnitude. We applied this proce-

dure to obtain a robust orientation information. We obtain the weight for each local feature vector

similar to the methods in previous sections. However, we obtain our binary image Bm(x, y) by

thresholding Gϕ(x, y) with α. We assign a weight to each local feature vector similar to previous

sections. The only difference is that we discard local feature vectors having weight larger than

60 pixels. We observed that, these features correspond to non-building segments in the image.

We apply this procedure in all ϕ directions and obtain Gabor filtering based local feature vectors

as ~kf (j) = (xj, yj, θj, wj) for j = 1, ..., Kf .

We pick the Adana1 test image given in Fig. 3.3 and provide the spatial coordinates of

local feature vectors extracted by three methods mentioned above. As can be seen, Harris corner

detector gives only building corners. Although most of these are detected reliably, some of

them are missing. Therefore, we have the least number of local feature vectors with the Harris

corner detection method. The GMSR based method gives both corners and building edges. The

Gabor filtering based method has similar results. However, some extra road segments and tree

structures (resembling buildings) are also detected. Next, we use these local feature vectors to

detect buildings.

3.3.2. Building Detection

We propose a probabilistic framework to detect buildings in this section. To explain our

method in detail, we first explore nonparametric kernel based density estimation. Then, we focus

on nonparametric variable kernel based density estimation. Next, we introduce our probabilistic

building detection framework using it. Finally, we introduce data and decision fusion methods

based on our probabilistic framework to detect buildings.

3.3.2.1. Kernel based Density Estimation

Each local feature vector indicates a building to be detected in the image. However, only

one of them is not sufficient alone to detect a building. In fact, the more local feature vectors

a building has, the more probable its detection. On the other hand, we do not know how many

buildings are there in the image. Therefore, we formulate our building detection method with

a probabilistic framework. To do so, we represent possible building locations as discrete joint
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(a) Adana1 test image (b) ~kh coordinates

(c) ~kg coordinates (d) ~kf coordinates

Figure 3.3. The Adana1 test image and local feature vector coordinates extracted with different

methods

random variables. We estimate their probability density function (pdf) by taking local feature

vectors as observations.

Since we do not know how many buildings are there in a given image, we benefit from

nonparametric kernel density estimation. In this method, a kernel function is selected. Based

on the observations of the random variable, the corresponding pdf is estimated. Silverman [76]

defines the kernel density estimator for a discrete and bivariate pdf as follows. First, the bivariate

kernel function, K(x, y) should satisfy the conditions

∑
x

∑
y

K(x, y) = 1 (3.16)

and

K(x, y) ≥ 0 ∀(x, y) (3.17)

Usually, K(x, y) is taken as a symmetric pdf, the Gaussian function for instance. Then, the pdf
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estimator with kernel K(x, y) is defined by

p(x, y) =
1

nh

n∑
i=1

K

(
x− xi

h
,
y − yi

h

)
(3.18)

where h is the window width (also called the smoothing parameter) and (xi, yi) for i = 1, ..., n

are observations.

If observations can not be represented reliably by a fixed kernel function, then a variable

kernel function can be used. Therefore, the variable kernel based density estimation method

allows adaptation of the amount of smoothing to the local density of the data (observation).

Hence, the scale parameter is allowed to vary from one observation point to another. Besides,

the estimate is constructed similarly to the classical kernel estimate. The pdf estimate given in

Eqn. 3.18 then becomes

pv(x, y) =
1

nh

n∑
i=1

1

σi

K

(
x− xi

hσi

,
y − yi

hσi

)
(3.19)

where σi is the variable scale parameter for i = 1, ..., n.

3.3.2.2. Detecting Buildings using Variable Kernel based Density Estimation

We use the variable kernel based density estimation method to detect buildings in a given

image. As we mentioned previously, we use local feature vectors (~kh, ~kg, ~kf ) as observations to

estimate the pdf. Without loss of generality, we explain pdf estimation on a generic local feature

vector ~k = (xi, yi, θi, wi) for i = 1, ..., Ki. These vectors provide information on buildings to be

detected. However, their spatial coordinates are not sufficient enough since they either represent

building corners or edges. To detect a building, we need an ensemble of edges or corners. To

achieve this, we adjust the effect of local feature vectors with respect to their orientation and

weight. In doing so, we observed that for bright and dark building corners the gradient directions

are towards the building center. For bright building edges, gradient directions are also towards

building centers. Therefore, each local feature vector will have its effect as x̂i = xi +wi sin(−θi)

and ŷi = yi + wi cos(−θi). In other saying, each local feature vector is shifted in the reverse

direction of θi. We apply a weight in shifting to approximately locate the building center. Using
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these adjusted and updated observations, we form the estimated pdf as

pb(x, y) =
1

R

Ki∑
i=1

1√
2πσi

exp

(
−(x− x̂i)

2 + (y − ŷi)
2

2σi

)
(3.20)

where σi = βwi. Here, β = 0.2 for ~kh, ~kg and β = 0.5 for ~kf . We added β as a normalizing

constant since we obtain weights by different methods. We will obtain modes of pb(x, y) in

detecting buildings. Therefore, we did not use a normalized kernel in this equation. However,

we normalized the final estimated pdf pb(x, y) by the normalizing constant R.

Before proceeding further, we provide the kernel density estimation results in Fig. 3.4 us-

ing three local feature vector extraction methods introduced earlier. As can be seen, for the

Harris and GMSR based corner detector, the estimated pdf is smooth. For the Gabor filtering

based method, the estimated pdf has more fluctuations in non building regions. The estimated

(a) ~kh based pdf (b) ~kg based pdf (c) ~kf based pdf

Figure 3.4. The Adana1 test image kernel density estimation results for three different local

feature vector extraction methods

pdf pb(x, y) will be multimodal since we have unknown number of buildings to be detected in

the image. We hypothesize that the modes of this pdf are possible building centers. Therefore,

we detect building locations by the modes of pb(x, y). However, all modes do not correspond

to a building center. Therefore, we assume that for a location to be a building center, it should

have at least a minimum probability. We adjust this value in an adaptive manner as follows.

Since we are detecting buildings in an urban area, we assume that there is at least one build-

ing there. Therefore, we pick the mode location having the highest probability as a building

location, (xb, yb) = arg max(x,y) pb(x, y). Then, we pick the remaining mode locations having

probabilities at least 0.4 × pb(xb, yb) as building locations. By eliminating mode locations hav-

ing probabilities less than 0.4 × pb(xb, yb), we eliminate false alarms. Here, we obtained 0.4
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coefficient after extensive tests on our data set. It is also possible to choose this coefficient as

equal to Otsu’s automatically detected threshold value, however we obtained higher performance

using 0.4 value. This method also automatically assigns probabilities to detected building loca-

tions. The higher probability the location has, the more probable it represents a building. This

information may be of use in some other applications.

We provide the detected buildings in the Adana1 test image in Fig. 3.5 by three local

feature vector extraction methods mentioned above. As can be seen, for three methods almost all

of the buildings are reliably detected. There is a missing building and a false alarm for the Harris

corner and GMSR based local feature vector extraction methods. The false alarm rate increases

to three with the Gabor filtering based local feature vector extraction method. We comment on

the performance of these methods on several images in detail in the experiments section. Next,

we introduce fusion methods to improve our building detection method.

(a) Harris buildings (b) GMSR buildings (c) Gabor buildings

Figure 3.5. Buildings detected by three different local feature vector extraction method from the

Adana1 test image

3.3.2.3. Data and Decision Fusion for Building Detection

The three local feature vector extraction methods extract different information from the

same image. In Section 3.3.2.2, we separately used these to detect building locations. Their

fusion may also improve our building detection results. Fortunately, the proposed probabilistic

building detection method allows fusion of information. Therefore, in this section we introduce

two fusion methods using our probabilistic framework to improve our building detection results.

Our first method is based on data fusion. This method is straightforward, such that we

use all the local feature vectors extracted with different methods as one unique group. In other

saying, ~kF = {~kh, ~kg, ~kf}. We estimate the pdf using this group. With the same method in the

previous section, we detect buildings.
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Our second method is based on decision fusion. Here, we mix the estimated pdfs by differ-

ent methods and obtain a final pdf. While mixing the estimated pdfs, we assign a weight to each

of them directly proportional to their maximum mode value. As we mentioned in the previous

section, in detecting buildings from the estimated pdf we label the mode with the maximum value

as a building. By normalizing three different pdfs this way, we can mix them and obtain the final

pdf estimate as

pD(x, y) =
1

R

∑

l={h,g,f}

pl(x, y)

max(x,y) pl(x, y)
(3.21)

where ph(x, y), pg(x, y), pf (x, y), are the estimated pdfs from ~kh, ~kg, and ~kf . R is again the

normalizing constant. We call this method as decision fusion, since we apply the fusion operation

close to the building detection step. Again, we use the building detection method in the previous

section on pD(x, y) to detect buildings.

We provide the detected buildings in the Adana1 test image in Fig. 3.6 by the introduced

data and decision fusion methods. As can be seen in this figure, for both data and decision

fusion methods we have similar detection results with the Harris and GMSR based local feature

extraction methods for this test image. In Section 3.7, we compare all building detection methods

in detail.

(a) Data fusion (b) Decision fusion

Figure 3.6. Buildings detected by data and decision fusion methods from the Adana1 test image

3.4. BUILDING DETECTION USING STEERABLE FILTERS

In this section, we propose another novel approach for building detection. For this purpose,

we extract edges of these objects using a steerable filter set. Before using steerable filters, we

apply bilateral filtering to eliminate noise terms. Then we apply steerable filters in different ori-

entations. We take these filter responses as local features and detect buildings on these. We test
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our algorithm on very high resolution panchromatic Ikonos satellite images and aerial images in-

cluding buildings with diverse characteristics. Experimental results indicate practical usefulness

of the algorithm.

3.4.1. Edge Detection with Steerable Filters

Edges and curvilinear structures are crucial features to detect buildings in remotely sensed

images. For example, buildings generally have edges or curves around one center.

In order to extract object edges, herein we benefit from steerable filters. Steerable filters

provide directional edge detection since they behave as band-pass filters in particular orienta-

tions. Differently from Gabor filters, steerable filters can be synthesized easily as a linear com-

bination of a set of basis filters. In this study, we use steerable filter as shown by Freeman and

Adelson [77].

For a symmetric Gaussian function G(x, y) = exp(−(x2 + y2)), it is possible to define

basis filters Gp0 and Gpπ
2

as

Gp0 =
∂

∂x
G(x, y) = −2x exp(−(x2 + y2)) (3.22)

Gpπ
2

=
∂

∂y
G(x, y) = −2y exp(−(x2 + y2)) (3.23)

We can find a derivative in an arbitrary direction θ using the following rotation

Gpθ = cos(θ)Gp0 + sin(θ)Gpπ
2

(3.24)

We represent shape of Gpθ filter function for θ = 0 filtering direction in spatial domain in

Fig. 3.7. After obtaining steerable filter function in θ direction, we convolve the smoothed

image Ib(x, y) with filter Gpθ (Jθ(x, y) = Ib(x, y) ∗ Gpθ), to detect edges in the θ direction.

In Jθ(x, y), we expect high responses in edge locations perpendicular to the filtering direction.

Therefore, we obtain local features by thresholding Jθ(x, y). To obtain an adaptive method, we
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Figure 3.7. Steerable filter function (Gpθ) in spatial domain for θ = 0 filtering direction

pick the threshold value as the 20% of maximum magnitude in Jθ(x, y). We picked this value

after extensive testing. After thresholding, we obtain a binary image with pixel locations having

value one representing possible building features. As in the previous section, we apply connected

components analysis to the thresholded image and obtain each local feature separately. We expect

this novel local feature to behave more robust than our previous local features, since it also gives

structural information.

We extract local feature vectors in all θ directions. Since we do not have a prior knowledge

about the building alignments, these different directions are necessary. In this study, we pick our

steerable filtering directions as θ ∈ [0, π/12, ..., 23π/12] interval. Therefore, we have a total of

12 filtering directions. After these operations, we may have either a straight line segment or an

L shaped curve representing buildings in the image. This is due to the properties of the building

shape and the steerable filtering operation. In fact, the L shaped corners are more valuable in

representing building appearance. Therefore, we first classify our local features into two groups

as straight line segments and curves.

To detect curved edges, Orrite et al. [78] developed a nice approach. They extended end

points of curves, if extended end points of two curves intersect each other then they grouped

these two curves as a close shape. In our problem, we have many buildings in a scene, hence

applying this test to all edge couples may require too much computation time. Therefore, in this

study we developed a novel and fast approach to detect curved edges. For feature classification,

we apply the following test. First, we obtain the skeleton of the local feature [39]. Then, we

detect the endpoints of this skeleton. Endpoints are chosen as two pixels which have only one

neighbor pixel and which have highest Euclidean distance between each other. Assume that, we

obtain two endpoints as (x1, y1) and (x2, y2). We demonstrate curved feature detection process

in Fig. 3.8. We calculate (xm, ym) as the midpoint of the skeleton, and (xo, yo) as the midpoint



66

of the virtual line (dashed line) which connects endpoints. We obtain the Euclidean distance

between (xm, ym) and (xo, yo). If the local feature is a straight line then (xm, ym) and (xo, yo)

overlaps. Therefore, the distance between them equals to zero. On the other hand, if the local

feature is a curve, then this distance is greater than zero. This way, we can classify local features

as either a straight line or a curve.

Figure 3.8. Curve detection example

3.4.2. Building Detection

After extracting and classifying steerable filtering features, we group edges using the prob-

abilistic approach as in the previous section. We introduced kernel based density estimation

method in Section 3.3.2.1. Here, we formed the pdf again using Eqn. 3.20. However, we choose

σi as equal to 1 for curves, and 0.5 as straight lines. As a result, in final estimated pb(x, y)

pdf curves have higher effect than straight lines. We provide kernel density estimation result in

Fig. 3.9 at the left hand side. Comparing with Gabor feature based estimated pdf (in Fig. 3.4),

steerable filtering based pdf has less fluctuations in non building regions. Comparing with Harris

and GMSR based pdf’s (in Fig. 3.4), steerable filtering based pdf is more successful to estimate

dark buildings.

Using estimated pdf pb(x, y), we detect building locations using a similar method as in

our previous approach. We hypothesize that the modes of pdf are possible building centers.

Therefore, again we detect building locations by the modes of pb(x, y). In order to prevent

false detections, we assume that for a location to be a building center, it should have at least a

minimum probability. We pick the mode location having the highest probability as a building

location, (xb, yb) = arg max(x,y) pb(x, y). Then, we pick the remaining mode locations having

probabilities at least 0.4 × pb(xb, yb) as building locations. As a result, we detect building loca-

tions automatically as in Fig. 3.9. As can be seen in this figure, we detected all buildings in the

given scene. In Fig. 3.10 we provide a sample building detection result using steerable filters on
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(a) pb (b) buildings

Figure 3.9. Possible building centers for the Adana8 test image and detected buildings

a large Ikonos image. However there are some false alarms especially on roads, overall building

detection performance of proposed method is fairly good. We present experimental results of

steerable filtering based method on our satellite and aerial image data set in Section 3.7.

Figure 3.10. Building detection results using steerable filters on a sample Ikonos image

3.5. BUILDING DETECTION USING COLOR INDICES

So far, we have used only grayscale information to detect urban region boundaries and

buildings. If available, using color bands of captured image provides valuable information for

object detection. Since our aerial images are captured in RGB color format, in this section we

propose a novel approach to detect buildings using color information. For this purpose, we

first extract areas of interest using invariant color features. We also extract shadow information

using invariant color features. We use shadow segments to determine the illumination direction

and verify building locations. Finally, we present a novel method to determine shapes of the

buildings using the edge information.
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3.5.1. Detecting Buildings

We provide a sample test image (with its buildings labeled manually) in Fig. 3.11. To

detect buildings similar to the ones given in this image, we benefit from color invariants. We

explore them next.

Figure 3.11. Manually labeled buildings in the Sample1 aerial test image

3.5.1.1. Detecting Rooftop and Shadow Pixels

Color invariants help extracting color properties of objects without being affected by imag-

ing conditions. Imaging conditions can be counted as, the illumination of the environment, the

surface properties of the object, the highlights or shadows on the object, and the change of the an-

gle of view. In literature, Gevers and Smeulders [79] proposed several color invariants. Ünsalan

and Boyer [7] applied PCA to the data in order to decorrelate color components. By projecting

the components to the uncorrelated random variables and calculating their slope, the normalized

difference vegetation index is obtained. The color invariant used in this project is originated from

this study. Here, we apply the same procedure to RGB images to obtain a new color invariant as

ψr =
4

π
arctan

(
R−G

R + G

)
(3.25)

where R stands for the red band and G stands for the green band of the color image. This

color invariant has a value of unity for red colored objects independent of their intensity values.

Similarly, it has a value of minus unity for green colored objects in the image. Therefore, the red

rooftops (of buildings) can be easily segmented using ψr. Since most buildings have red rooftops

in the test region, this invariant is of great use to detect buildings. To segment out the red rooftops
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automatically, we benefit from Otsu’s thresholding method.

Shadow information is dominantly found in the blue band of the RGB color space. So, we

can propose a similar color invariant (to Eqn. 3.25) to enhance shadow regions as

ψb =
4

π
arctan

(
B −G

B + G

)
(3.26)

where B stands for the blue band of the color image. Again, in this invariant shadow regions

have high intensity values. Therefore, they can easily be segmented out by a simple thresholding

operation on the ψb image. To segment out the shadow regions automatically, we again benefit

from Otsu’s thresholding method.

3.5.1.2. Estimating the Illumination Direction

In literature, some of the researchers provided the illumination direction to the system

manually [80]. In our study, we assume that the illumination direction can be estimated if a

connected rooftop and shadow region couple can be obtained from the image. We consider the

illumination direction as the direction of the line beginning from the center of the rooftop region

to the center of the shadow region.

For the rooftop and shadow couple, if center of the rooftop region is at (xb, yb), and the

center of the shadow region is at (xs, ys), then the illumination angle θ is

θ = arctan

( |yb − ys|
|xb − xs|

)
(3.27)

The quadrant θ lies is also important. We can adjust θ according to its actual quadrant as

θ =





θ if xs > xb, ys < yb

π − θ if xs < xb, ys < yb

π + θ if xs < xb, ys > yb

2π − θ if xs > xb, ys > yb

(3.28)
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3.5.1.3. Verifying the Building Appearance

If the rooftop (of a building) to be detected is not red, then our color invariant ψr may

not be sufficient to detect it from the aerial image. To detect such rooftops (hence buildings),

we have to look for other cues. Since we determined the illumination angle θ in Eqn. 3.28, this

information may be of help to verify red rooftops as well as infer non-red rooftops. To do so, we

introduce a hypothesis test such that; if we detect a shadow somewhere in the image it should

originate from a building. Therefore, we check for the possible locations of a building based on

the illumination direction and the center position of the shadow region as

(xe, ye) = (xs + d cos θ, ys + d sin θ) (3.29)

where (xe, ye) represents the coordinates of the estimated building center. d is the possible dis-

tance that a building can be located. In this study, we use this distance as 17 pixels considering

the size of the buildings. We provide a simple illustrative example for building verification in

Fig. 3.12. In Fig. 3.12, the first image shows a sample building without a red rooftop. In the

(a) A non-red rooftop building (b) The detected shadow segment

and illumination direction

(c) Possible location of the building

Figure 3.12. Using the shadow information to detect non-red rooftop buildings

second image, dark region represents the shadow segment that is extracted using the color in-

variant ψb. Since the building rooftop is not red, the building location could not be detected

by thresholding ψr. So, we use the illumination direction information to estimate the possible

building location. The illumination angle and direction is calculated using the red rooftop and

shadow couples of other buildings (in the image) as we have introduced in the previous section.

We provide this result in the next image. We assume that, the building should be in the opposite

direction of the illumination vector. We illustrate building center estimation process in the third

image. We locate a 30×30 window on this center coordinates. Hereafter, we will call this region
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as the estimated building segment. Size of window is chosen considering approximate sizes of

buildings in test images. We will try to estimate this window size in our future studies.

3.5.2. Determining the Building Shape with a Novel Approach

Most buildings have rectangular shapes. To use this property, we introduce a novel box-

fitting approach to edges of buildings. We use the Canny edge detector for extracting edges of

candidate building regions [81]. This method first finds gradients the image using derivative of

the Gaussian in both the vertical and horizontal directions. Gradients higher than a threshold are

chosen as Canny edges. To define smoothing parameter of Gaussian kernel and the threshold

value, we use default parameters of Canny edge detector function in Matlab. There, smoothing

parameter of Gaussian kernel is chosen as 1, and the threshold value is chosen as 0.4 times

of Otsu’s automatically detected threshold value. From these Canny edges, the rectangle that

represents the building will be constructed. The proposed algorithm works on both the red and

non-red rooftop building segments. Therefore, our method does not specifically depend on the

red rooftop information.

We introduce the building shape determination process for two purposes. First, presenting

a reliable shape of a building is important for constructing a land map. Second, we verify ap-

pearance of buildings in estimated building segments (which are obtained by using only shadow

and illumination information).

The proposed box-fitting method discards edges out of the building segments and processes

edges of one segment at a time. Therefore, dealing with only candidate building edges decreases

the number of unnecessary edges. For each segment, we detect possible corners of the line

segments. We calculate the angle between lines for each corner. We call this angle as β. We

choose the corner which has the smallest |π/2−β| value and satisfies |π/2−β| < βerr condition

as a starting point. Due to the noise and the angle of the aerial camera, corners may not be exactly

π/2 radians apart. We use a tolerance βerr = 0, 05π radians in our experiments to compensate

this. We put the initial seed box on the corner which is chosen as the starting point. Then, the

edges belonging to the box corner at the opposite side of the start point are swept outwards. We

stop the iteration process when the energy E of the box shape reaches a minimum. Energy of the

box shape is defined as the sum of minimum distances between building edge pixels and the box
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edge pixels as

E =
n∑

i=1

min(
√

(xv(i)− xe(j))2 − (yv(i)− ye(j))2) (3.30)

where, (xv(i), yv(i)) represents coordinates of ith pixel on the edges of the box shape. (xe(j), ye(j))

represents the jth pixel on the building edges.

Since the buildings we are looking for are constructed by rectangular shaped structures, it

makes sense to try to fit rectangular shapes on the detected edges. The algorithm gives successful

results even the edges are not well-determined, there is not a closed shape, or the corners are

not found. The algorithm also needs less computation time comparing with the active contour

methods. We provide an example to this box fitting method in Fig. 3.13. In Fig. 3.13, the first

(a) The edges of the building (b) Initial box position (c) The fitted box

Figure 3.13. Box fitting method to detect shape of the buildings

image represents edges that are found in a sample building segment. In the second and third

images, we demonstrate the box-fitting approach. As can be seen in these image, an initial seed

box is located on the corner which has smaller |π/2 − β| angle between its edges. Then we

sweep edges of this virtual box outwards until the smallest box energy (E) is achieved. In the

third image, final building shape is presented.

We provide a real example to this box fitting method continuing from the non-red rooftop

building given in Fig. 3.12. We provide the final extracted shape of this building in Fig. 3.14. As

one outcome of this algorithm, we reject the building appearance if the box can not converge a

shape (if energy can not be minimized) in this region. Therefore, we also verify the appearance
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Figure 3.14. An example of the box fitting method to detect shape of the building

of buildings in the estimated building segments using this algorithm. To note here, using box

fitting approach our purpose is not to detect exact building shapes. Study region can contain

buildings with very different structures. However, by detecting approximate shapes we verify

building appearance and obtain more planned land map using box fitting approach. We provide

a sample result of box fitting method on an L-shaped building in Fig. 3.15.

Figure 3.15. A sample result of box fitting method on L-shaped building

3.5.3. Validity of Results

Our method gives reliable results for aerial images having buildings with red and non-red

rooftop buildings. If there are non-red rooftops in the test image, then at least one red rooftop

and shadow couple should be found in the image to determine the illumination angle. After

determining the illumination angle, locations of buildings that have rooftop in different color can

be estimated by our method.

3.6. DAMAGED BUILDING DETECTION USING SHADOW INFORMATION

Natural disasters such as earthquakes or hurricanes may cause a great damage to a region.

Although these disasters are inevitable, it is still possible to minimize the problems afterwards.



74

After an earthquake or a hurricane, the road network may be damaged. Therefore, the region may

not be accessible using ground transportation. It is also highly possible that the communication

network to be damaged. These deficiencies may limit the information flow from the disaster

region. However, it is utmost important for rescue planners to get reliable information from

these regions to effectively guide their resources. To get reliable information from a disaster

region, one possible solution is sending an aerial surveillance system. This system may collect

aerial images from the disaster region. Although the images may be of use for rescue planners,

it is still hard to manually locate damaged buildings in these images. With the same reasoning,

automatically locating the damaged buildings after a military air strike is utmost importance to

military personnel. This information may give insight on the success of the air strike. Therefore,

automatic damaged building detection from aerial or satellite images is an important problem in

remote sensing.

In this section, we present a novel approach for automatic detection of damaged buildings

in color aerial images. Our method is based on color invariants for building rooftop segmentation

as in Section 3.5. Then, here we benefit from grayscale histogram to extract shadow segments.

After building verification using shadow information, we define a new damage measure for each

building. Experimentally, we show that using our damage measure it is possible to discriminate

nearby damaged and undamaged buildings on aerial images.

3.6.1. Detecting Buildings and their Shadows

In our study, we assume that the damaged region is not imaged beforehand. Therefore,

it is not possible to compare two images (as in standard change detection algorithms) to detect

damaged buildings. We have to detect the damaged buildings using just one image (obtained

after the earthquake or the air strike). In order to extract the building rooftops we benefit from

invariant color features. In Section 3.5, we were able to locate the building rooftops in a reliable

manner on color aerial images. Here also our first aim is to detect buildings and their shadows

automatically as in Section 3.5. Then, we will use this information to define a measure to estimate

the degree of damage. We provide a sample test image in Fig. 3.16 to explain our method. As

can be seen in Fig. 3.16, there are only undamaged buildings in this region. We benefit from

color invariants and grayscale information to extract rooftop and shadow segments from this test

image. We explore them in detail next.
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Figure 3.16. Damage1 test image from our aerial image dataset

In Section 3.5, we used ψb color invariant feature to detect shadow segments. In extensive

tests, we observed that using only ψb color invariant feature can lead to false alarms since it

also detects regions which are more or less in blue color. Therefore, here we used grayscale

information to detect shadows. In our experiments we observed that using grayscale histogram

of image can also provide information for robust shadow detection. To extract shadow segments

from grayscale histogram of the image, we first smooth the histogram with a median filter. Since,

shadows generally appear in the darker regions of an image, we choose the first local minimum in

the histogram as the threshold value. We extract shadow segments by thresholding the grayscale

image with this automatically calculated threshold value. Using this method, we obtain the

rooftops and shadow segments as in Fig. 3.17. In Fig. 3.17, blue segments represent detected

Figure 3.17. Building rooftop and shadow segments in Damage1 image

shadows and red segments represent detected red rooftops in the Damage1 test image. We

provide the detection results on a blank image to increase visibility of segments.
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As in the previous section, we assume that the illumination direction can be estimated if a

connected rooftop and shadow region couple can be located in the image. Here, we use the same

approach to detect centers of red and non-red building rooftops. We assume (xb, yb) coordinates

as detected building centers.

3.6.2. Measuring the Degree of Damage

As we obtain the rooftop and shadow segments, we define a measure to determine the

degree of damage. For this purpose, we calculate the ratio of rooftop and shadow areas for each

building as

r =
N

M
(3.31)

where N is the area of the rooftop segment and M is the area of the corresponding shadow

segment. Since shadow and rooftop areas are larger for undamaged buildings, this ratio gives

similar results. But if the building is decayed or if there is a structural damage on it, its shadow

region will be smaller which leads rooftop to shadow ratio to have higher values. Again, to

note here, we do not have image of the test region taken beforehand. Therefore, this ratio gives

important information about the degree of damage using a single image.

3.7. EXPERIMENTAL RESULTS

In this section, we present experimental results of our building detection methods. We test

our methods on panchromatic Ikonos images and aerial images. We also use aerial images in

RGB color format to test our color invariant feature based algorithms.

In these images, the size and shape of buildings, their proximity, environment, and contrast

of the building rooftops with respect to background all differ. These test images are specifi-

cally selected to represent wide and diverse building and region characteristics. In the following

subsections, we analyze detection results of proposed methods quantitatively. At the end of the

section, we compare performances, advantages and disadvantages of each building detection

method. In the following subsection, we start with analyzing building detection result of SIFT

and graph theory based algorithm.
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3.7.1. Building Detection Using SIFT Descriptors and Graph Theory

Having detected urban areas in Section 2.5.1, here we concentrate on detecting buildings.

As can be seen in the second columns of Figs. 3.18, 3.19, 3.20, and 3.21, our method detects

buildings in each urban area fairly well. To quantify building detection results, we apply the

following methodology. If a part of a building is detected, we assume it to be detected correctly.

If our method detects a building multiple times (especially for large buildings), we assume it

to be detected correctly. If a building is in construction (showing building characteristics), we

expect our method to detect it. Based on these assumptions, we provide the building detection

performances for all test images in Table 3.1. In this table, TP stands for the total number of

buildings correctly detected in the image. FA stands for the total number of false alarms in the

image. We also tabulate the total number of buildings in each test image.

From a total of 850 buildings in 30 different panchromatic satellite images, our method

detected 751 of them correctly. This corresponds to a TP = 88.4%. There are 140 false alarms

in building detection. This corresponds to a FA = 16.5%. On such a diverse test set, these re-

sults are very promising. Next, we consider interesting test images in detail. The lowest building

detection rate is obtained on the Adana18 image. The main reason for this poor performance

is that, buildings are closely spaced and they are small in this test site. Therefore, some of the

buildings could not be detected. The highest false positive rate is obtained on the Adana21 im-

age. The reason for this poor performance is viewing angle of the satellite. The highest building

detection rate is obtained on the Adana2,4,7, Ankara1,3,4, and Istanbul1,3,4 images. In all these

test images, buildings are well separated and distinctive. Therefore, our method works fairly

well. One of the lowest false alarm rate is obtained on the Adana14 image. In this test image,

there are no building like structures besides the actual buildings. This led to a low false alarm

rate.

Beside these test images, there are other noteworthy test sites. For the Adana5 test image,

buildings are closely spaced. However, most of the buildings are correctly detected. For the

Adana11 test image, buildings are occluded by trees. It is even hard for a human expert to

detect buildings in this image. However, again most of the buildings are correctly detected. For

the Adana15 test image, there are regularly spaced trees near buildings. One may think that, our

building detection method may fail. However, for this test image there is only one false alarm and

most of the buildings are correctly detected. In the Adana8 and Adana9 test images, the contrast
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Figure 3.18. Building detection test results for Adana images (1 to 8) for each row separately.

First column: original test images; second column: detected buildings using SIFT based

algorithm; third column: detected buildings using Gabor based algorithm; fourth column:

detected buildings by fusing features; fifth column: detected buildings with steerable filters
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Figure 3.19. Building detection test results for Adana images (9 to 16) for each row separately.

First column: original test images; second column: detected buildings using SIFT based

algorithm; third column: detected buildings using Gabor based algorithm; fourth column:

detected buildings by fusing features; fifth column: detected buildings with steerable filters
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Figure 3.20. Building detection test results for Adana images (17 to 23) for each row

separately. First column: original test images; second column: detected buildings using SIFT

based algorithm; third column: detected buildings using Gabor based algorithm; fourth column:

detected buildings by fusing features; fifth column: detected buildings with steerable filters
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Figure 3.21. Building detection test results for Ankara1to5 and Istanbul images (1 to 4) for

each row separately. First column: original test images; second column: detected buildings

using SIFT based algorithm; third column: detected buildings using Gabor based algorithm;

fourth column: detected buildings by fusing features; fifth column: detected buildings with

steerable filters
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Table 3.1. Building detection performances of SIFT based approach for Ikonos test images.

Image Name Buildings TP FA TP (%) FA (%)

Adana1 29 25 4 86.2 13.8

Adana2 9 9 6 100.0 66.7

Adana3 31 27 1 87.1 3.2

Adana4 21 21 4 100.0 19.0

Adana5 54 49 1 90.7 1.9

Adana6 47 45 6 95.7 12.8

Adana7 28 28 9 100.0 32.1

Adana8 24 21 2 87.5 8.3

Adana9 24 23 5 95.8 20.8

Adana10 14 13 9 92.9 64.3

Adana11 21 19 5 90.5 23.8

Adana12 32 29 4 90.6 12.5

Adana13 67 60 2 89.6 3.0

Adana14 33 29 0 87.9 0.0

Adana15 28 27 6 96.4 21.4

Adana16 23 17 1 73.9 4.3

Adana17 24 21 8 87.5 33.3

Adana18 70 48 13 68.6 18.6

Adana19 24 23 7 95.8 29.2

Adana20 20 17 2 85.0 10.0

Adana21 18 16 21 88.9 116.7

Ankara1 18 18 1 100.0 5.6

Ankara2 44 34 1 77.3 2.3

Ankara3 14 14 5 100.0 35.7

Ankara4 23 23 5 100.0 21.7

Ankara5 61 47 0 77.0 0.0

Istanbul1 11 11 4 100.0 36.4

Istanbul2 13 12 0 92.3 0.0

Istanbul3 14 14 1 100.0 7.1

Istanbul4 11 11 7 100.0 63.6

Total 850 751 140 88.4 16.5
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between buildings and background is fairly low. However, correct building detection rates for

these images are again reasonable. Based on these experimental results, we can conclude that our

building detection method works fairly well on a diverse test set. There are minor shortcomings.

First, very closely spaced buildings can not be separated. They are detected as a single building.

Second, the contrast between the background and the building is very important for detection.

3.7.1.1. Tests on Different Modules

In Table 2.2, we tabulated the effect of different parameters on urban region detection by

our SIFT based method. Here, we also provide the building detection results based on the same

variations in Table 3.2.

Table 3.2. Building detection results on the Adana8 image, parameter variations.

Normal BF Fast BF

Template TP FA TP FA

Bright 17 1 17 1

Dark 21 2 19 2

Both 22 2 20 2

As can be seen in Table 3.2, in detecting buildings the bright building template again has

the lowest performance. Using the dark building template or both templates improves the build-

ing detection performance. Unlike the urban area detection case, the type of the bilateral filter

affects the building detection performance. Using the fast bilateral filter implementation slightly

decreases the building detection performance in all template settings.

3.7.1.2. Tests on Parameter Values

In order to validate our parameter settings, we explore them in detail here. As a benchmark,

we pick the building detection results (in terms of TP ) on the Adana8 test image. We change

the value of each parameter and plot the TP values in Fig. 3.22. As can be seen, for ε1 the

optimal parameter is around 30. As we increase ε1, the TP performance does not decrease

drastically. For ε3, the acceptable value is around 4. Increasing ε3 further does not change the

result further. We obtain a similar result for ε4. The optimal value is around 0.1 and increasing

ε4 does not affect the result much. These experiments indicate the fairly robust characteristics of

our parameter adjustment methods. Further details on the physical meanings of these parameters
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can be found in previous sections.
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Figure 3.22. TP vs. ε values for the building detection performance on the Adana8 test image

3.7.1.3. Comparison with Derivative of Morphological Profiles

We also compare our building detection method with the well-known derivative morpho-

logical profiles (DMP) method [4]. To note here, DMP is not introduced for building detection

alone. However, because of its strength it can also be used for building detection in panchromatic

images. Therefore, we pick three test images and provide their segmentation results using DMP

in Fig. 3.23. In testing DMP, we applied its principal components analysis based implementation.

In segmentation, we picked the best threshold value for the Adana8 test image. As can be seen

in Fig. 3.23, detected buildings using DMP are not as good as our method. The main reason for

this difference is that, we designed our method to building and urban area detection alone. On

the other hand, the time needed for DMP operation on the Adana8 test image is 19.19 sec. This

timing is much less than the time needed for our method. Next, we discuss our method’s timing

requirements in detail.

(a) Adana1 (b) Adana8 (c) Adana10

Figure 3.23. DMP test results on the Adana1, Adana8, and Adana10 images
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3.7.1.4. Computation Times

We finally tabulate the time needed for building detection. To note here, timing directly

depends on the test image. As the number of buildings in a test image increases, number of local

features will also increase. Therefore, the graph matching and graph cut algorithms will need

more computation times. To give an idea for the possible reader, we consider the Adana8 test

image as a benchmark. We tabulate all CPU timings for each module in Table 3.3. In reporting

these results, we used a PC with Intel Core2Due processor with 2.13 GHz. clock speed and

having 4 GB of RAM. We used Matlab as our coding platform.

Table 3.3. CPU times (in sec.) for SIFT based building detection the Adana8 test image.

# Module / Template Dark Both

I Upsampling 0.19 0.19

II Bilateral filtering 62.67 63.89

III Bilateral filtering, fast 9.92 9.92

IV SIFT features 0.28 0.38

V Graph matching 12.86 36.18

VI Graph cut 137.66 329.50

In Table 3.3, we provide both normal and fast bilateral filtering implementations. Similarly,

we provide the computation times for using only the dark building template and both templates.

We can summarize different scenarios as follows. Using normal bilateral filtering and both tem-

plates, urban area detection operation requires 100.64 sec. In the same setting, building detection

requires 430.14 sec. This scenario is for obtaining the best performances for both urban area and

building detection. If we can tolerate slightly lower detection performances, then we can use fast

bilateral filtering and only the dark template. In this scenario, urban area detection requires only

23.25 sec. Here, building detection only requires 160.91 sec. The possible reader should select

the suitable scenario (both in terms of detection performance and CPU time needed) for his or

her needs.

3.7.2. Building Detection Using Harris, GMSR and Gabor based Local Features

We test our building detection algorithm based on three different feature vectors on 32 high

resolution panchromatic Ikonos images taken from Istanbul, Ankara and Adana cities of Turkey.

We also tested the algorithm on aerial images taken from Istanbul city. We first tabulate building
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detection results using Gabor filtering based features. Then we consider fusion of the proposed

three features.

3.7.2.1. Building Detection Results on Satellite Images

We provide Gabor filtering based building detection performance in Table 3.4. Using Ga-

bor feature based algorithm, we detected 784 of 911 buildings correctly. Unfortunately, if false

features are located closely, sum of their probabilities generated a local maximum point in voting

matrix. We could not prevent detection of these false local maximums as buildings. As a result,

we obtain TP as 86.1% and FA as 19.4% for 911 buildings. Considering diverse characteris-

tics of buildings in our test image data set, these results are encouraging. We also provide the

detected buildings for each test image in the third columns of Figs. 3.18, 3.19, 3.20, and 3.21.

3.7.2.2. Building Detection Results on Aerial Images

Our Gabor filtering based local features can also work on aerial images. We tabulate the

detection results in Table 3.5. In our aerial image data set, using Gabor feature based algorithm

we detected 575 of the 652 buildings correctly. Very high resolution of aerial images bring some

problems. Visible small details on ground surface lead to false feature detection. Unfortunately,

if false features are located closely, sum of their probabilities generated a local maximum point

in voting matrix. Here also we could not prevent detection of these false local maximums as

buildings. As a result, we obtain TP as 88.2% and FA as 66.1%.

We also provide the building detection results in Figs. 3.24, 3.25, 3.26, and 3.27. In these

figures, original grayscale aerial images are presented in the first column, and Gabor feature

based detection results are presented in the second column.

3.7.3. Building Detection by Fusing Different Local Features

Here, we test our fusion of local features based method on panchromatic Ikonos satellite

and aerial image data sets. Again, we provide building detection results for both aerial and Ikonos

satellite images in a quantitative manner. Here we also report the performance of all three local

feature vector extraction methods, data and decision fusion methods separately. The most impor-

tant advantage of our novel building detection method is its computation time and robustness to

false alarms. Therefore, we examine the computation time of each building detection module in
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Table 3.4. The building detection performance of Gabor filtering based local features on

satellite images.

Image Name Buildings TP FA TP (%) FA (%)

Adana1 18 17 3 94.4 16.7

Adana2 9 9 1 100.0 11.1

Adana3 31 31 0 100.0 0.0

Adana4 21 20 1 95.2 4.8

Adana5 54 45 5 83.3 9.3

Adana6 47 45 10 95.7 21.3

Adana7 28 27 4 96.4 14.3

Adana8 24 20 1 83.3 4.2

Adana9 24 16 6 66.7 25.0

Adana10 14 11 6 78.6 42.9

Adana11 21 16 22 76.2 104.8

Adana12 32 28 4 87.5 12.5

Adana13 67 61 1 91.0 1.5

Adana14 33 25 3 75.8 9.1

Adana15 28 26 4 92.9 14.3

Adana16 23 16 1 69.6 4.3

Adana17 24 23 15 95.8 62.5

Adana18 70 59 15 84.3 21.4

Adana19 24 24 8 100.0 37.5

Adana20 20 16 0 80.0 0.0

Adana21 18 15 5 83.3 33.3

Adana22 27 25 6 92.6 22.2

Adana23 48 43 12 89.6 25.0

Ankara1 18 17 0 94.4 0.0

Ankara2 44 20 2 45.5 4.5

Ankara3 14 12 1 85.7 7.1

Ankara4 23 23 31 100.0 147.8

Ankara5 61 54 1 88.5 1.6

Istanbul1 8 8 4 100.0 50.0

Istanbul2 13 7 0 53.8 0.0

Istanbul3 14 14 1 100.0 7.1

Istanbul4 11 11 4 100.0 36.4

Total 911 784 177 86.1 19.4
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Table 3.5. The building detection Performance of the Gabor filtering based local features on

aerial images.

Image Name Buildings TP FA TP (%) FA (%)

Aerial1 17 17 3 100.0 17.64

Aerial2 27 21 51 77.8 188.9

Aerial3 6 6 15 100.0 250.0

Aerial4 9 9 17 100.0 188.9

Aerial5 11 10 13 90.9 118.2

Aerial6 16 15 5 93.7 31.25

Aerial7 9 8 16 88.9 177.8

Aerial8 11 11 6 100.0 54.5

Aerial9 42 33 17 78.6 40.5

Aerial10 50 44 19 88.0 38.0

Aerial11 47 41 25 87.2 53.2

Aerial12 57 43 9 75.4 15.8

Aerial13 30 27 35 90.0 116.7

Aerial14 19 18 30 94.7 157.8

Aerial15 57 49 37 85.9 64.9

Aerial16 56 45 15 80.3 26.7

Aerial17 44 40 36 90.9 81.8

Aerial18 65 63 44 96.9 67.7

Aerial19 11 10 9 90.9 81.8

Aerial20 16 15 12 93.7 75.0

Aerial21 52 50 17 96.1 32.7

Total 652 575 431 88.2 66.1
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Figure 3.24. Building detection test results for Aerial images (1 to 6) for each row separately.

First column: original test images; second column: detected buildings using Gabor filtering

based local features; third column: detected buildings by fusing features; fourth column:

detected buildings by steerable filtering features
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Figure 3.25. Building detection test results for Aerial images (7 to 12) for each row separately.

First column: original test images; second column: detected buildings using Gabor filtering

based local features; third column: detected buildings by fusing features; fourth column:

detected buildings by steerable filtering features
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Figure 3.26. Building detection test results for Aerial images (13 to 17) for each row

separately. First column: original test images; second column: detected buildings using Gabor

filtering based local features; third column: detected buildings by fusing features; fourth

column: detected buildings by steerable filtering features
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Figure 3.27. Building detection test results for Aerial images (18 to 21) for each row

separately. First column: original test images; second column: detected buildings using Gabor

filtering based local features; third column: detected buildings by fusing features; fourth

column: detected buildings by steerable filtering features
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a separate section.

3.7.3.1. Building Detection Results on Satellite Images

We first test our building detection method on 32 Ikonos satellite images as in the previous

section. To observe the performance of each local feature extraction and fusion method, we

provide their building detection performances over all test images in Table 3.6.

Table 3.6. Building detection performances for Ikonos satellite images.

Method TP FA TP (%) FA (%)

Harris 699 186 76.7 20.4

GMSR 792 215 86.9 23.6

Gabor filtering 780 187 85.6 20.5

Data fusion 824 206 90.5 22.6

Decision fusion 833 188 91.5 20.7

As can be seen in Table 3.6, Harris corner based local feature vector extraction method

has the lowest detection performance. GMSR and Gabor filtering based local feature vector

extraction methods have similar detection performances. Both performances are also far better

than the Harris corner based method. In both data and decision fusion methods the performance

increases significantly. However, using decision fusion TP reaches 91.5% with 20.7% FA rate.

This result is remarkable on such a diverse satellite image set.

We evaluate building detection performances for Ikonos satellite images in Table 3.7. As

can be seen, 833 of the 911 buildings are detected correctly, which corresponds to 91.4% detec-

tion performance. There are only 188 false positives. We provide the detected buildings for each

test image in the fourth columns of Figs. 3.18, 3.19, 3.20, and 3.21.

3.7.3.2. Building Detection Results on Aerial Images

We also test our probabilistic building detection method based on decision fusion on 21

aerial images. The total number of buildings in these images is 652. We evaluate building

detection performances for our aerial image set in Table 3.8.

As can be seen in Table 3.8, we detected 560 of the 652 buildings. Unfortunately, we also
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Table 3.7. Building detection performances using decision fusion on Ikonos satellite images.

Image Name Buildings TP FA TP (%) FA (%)

Adana1 18 17 1 94.4 5.6

Adana2 9 8 0 88.9 0.0

Adana3 31 31 1 100.0 3.2

Adana4 21 21 1 100.0 4.8

Adana5 54 47 0 87.0 0.0

Adana6 47 45 12 95.7 25.5

Adana7 28 26 1 92.9 3.6

Adana8 24 23 3 95.8 12.5

Adana9 24 18 5 75.0 20.8

Adana10 14 11 7 78.6 50.0

Adana11 21 19 18 90.5 85.7

Adana12 32 27 2 84.4 6.3

Adana13 66 65 0 98.5 0.0

Adana14 33 26 5 78.8 15.2

Adana15 28 27 1 96.4 3.6

Adana16 23 18 0 78.3 0.0

Adana17 24 23 21 95.8 87.5

Adana18 70 67 23 95.7 32.9

Adana19 24 24 12 100.0 50.0

Adana20 20 16 0 80.0 0.0

Adana21 18 17 11 94.4 61.1

Adana22 27 26 6 96.3 22.2

Adana23 48 41 6 85.4 12.5

Ankara1 18 18 0 100.0 0.0

Ankara2 44 36 4 81.8 9.1

Ankara3 14 13 2 92.9 14.3

Ankara4 23 23 37 100.0 160.9

Ankara5 61 57 0 93.4 0.0

Istanbul1 8 8 2 100.0 25.0

Istanbul2 13 10 1 76.9 7.7

Istanbul3 14 14 0 100.0 0.0

Istanbul4 11 11 6 100.0 54.5

Total 911 833 188 91.5 20.7
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Table 3.8. Building detection performances on aerial images using decision fusion.

Image Name Buildings TP FA TP (%) FA (%)

Aerial1 17 16 1 94.1 5.9

Aerial2 27 22 34 81.5 125.9

Aerial3 6 6 15 100.0 250.0

Aerial4 9 9 13 100.0 144.4

Aerial5 11 8 9 93.7 21.25

Aerial6 16 15 7 93.7 43.7

Aerial7 9 8 15 88.9 166.6

Aerial8 11 11 8 100.0 72.7

Aerial9 42 32 26 76.2 61.9

Aerial10 50 41 25 82.0 53.2

Aerial11 47 44 34 93.6 72.3

Aerial12 57 51 14 89.5 24.6

Aerial13 30 26 27 86.6 90.0

Aerial14 19 17 27 89.5 142.1

Aerial15 57 46 32 80.7 56.1

Aerial16 56 45 8 80.3 14.2

Aerial17 44 36 43 81.8 97.7

Aerial18 65 56 40 86.1 61.5

Aerial19 11 9 8 81.8 72.7

Aerial20 16 14 13 87.5 81.2

Aerial21 52 48 20 92.3 32.6

Total 652 560 419 85.8 64.2
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have 419 false alarms. These detection results correspond to TP = 85.8% and FA = 64.2%

respectively. We provide our aerial image set and building detection results of the proposed

algorithm in the third column of Figs. 3.24, 3.25, 3.26, and 3.27.

We also provide building detection results on aerial images in Table 3.9. For all methods

the false alarm rate is remarkably higher compared to the satellite image detection results. One

possible reason for this poor performance is that, in aerial images road segments and nearby land

formations resemble buildings due to resolution of these images. Among different local feature

vector extraction methods, GMSR has the lowest and Gabor filtering has the highest building

detection performance. Besides, decision fusion has a clear advantage compared to all methods

(including data fusion) in detecting buildings.

Table 3.9. Building detection performances for aerial test images.

Method TP FA TP (%) FA (%)

Harris 518 366 74.3 52.5

GMSR 479 425 68.7 61.0

Gabor filtering 551 363 79.1 52.1

Data fusion 530 373 76.0 53.5

Decision fusion 600 475 86.1 68.1

3.7.3.3. Computation Times

The most important advantage of our local feature based building method is its computation

time. Therefore, in this section we consider the time needed by all building detection modules in

detail. To note here, as in our previous methods timing directly depends on the test image. As

the number of buildings in a test image increases, the number of local feature vectors will also

increase. Therefore, our building detection method will need more computation time. To give an

idea for the possible reader, we consider the Adana1 test image as a benchmark. We tabulate all

CPU timings for each module in Table 3.10. In reporting these results, we used a PC with Intel

Core2Due processor with 2.13 GHz. clock speed and has 4 GB of RAM. We used Matlab as our

coding platform.

As can be seen in Table 3.10, all modules need similar CPU times. To note here, pre-

processing module summarizes image read and variable assignment operations. The total time
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Table 3.10. CPU times (in sec.) for building detection operations on the Adana1 test image.

Local Feature Vector

Module Harris GMSR Gabor

Preprocessing 0.11 0.16 0.20

Local feature vectors 0.36 0.88 1.67

Kernel density estimation 0.03 1.24 0.63

Building detection 0.53 0.34 0.03

Total 1.02 2.62 2.53

needed to detect buildings (using any local feature vector extraction method) is fairly short. How-

ever, depending on the local feature vector extraction step, it changes slightly. If the user needs

a faster building detection system, then these slight changes should be taken into account. If we

consider data and decision fusion methods, we need 4.80 sec. and 4.67 sec. respectively. Al-

though these methods need more computation times, their building detection performances are

also better.

3.7.4. Building Detection Using Steerable Filters

We test our proposed steerable filtering based building detection method on same image

set as in the previous section. In the following subsections, we analyze our building detection

results on these images quantitatively.

3.7.4.1. Building Detection on Satellite Images

We provide our test images in Figs. 3.18, 3.19, 3.20, and 3.21. In these figures, we provide

the detected buildings by steerable filtering for each test image in the fifth column. We tabulate

performance of the algorithm on each test image in Table 3.11.

As can be seen in Table 3.11, using steerable filter features we detected 820 of the 911

buildings. We have 124 false alarm. As a result, we obtained TP and FA as 90.0% and 13.6%

respectively. Using steerable filtering increased detection performance and decreased false posi-

tives dramatically. Therefore, we can claim that using features which can also include structural

information increase robustness of the building detection method.
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Table 3.11. Building detection performances in Ikonos satellite images using steerable filtering.

Image Name Buildings TP FA TP (%) FA (%)

Adana1 18 17 3 94.4 16.7

Adana2 9 9 1 100.0 11.1

Adana3 31 30 0 96.8 0.0

Adana4 21 21 1 100.0 0.0

Adana5 54 53 3 98.1 5.6

Adana6 47 43 3 91.5 6.4

Adana7 28 27 5 96.4 17.9

Adana8 24 23 1 95.8 4.2

Adana9 24 15 0 62.5 0.0

Adana10 14 13 6 92.9 42.9

Adana11 21 13 2 61.9 9.5

Adana12 32 25 4 78.1 12.5

Adana13 67 64 1 95.5 1.5

Adana14 33 27 5 81.8 15.2

Adana15 28 25 2 89.3 7.1

Adana16 23 17 0 73.9 0.0

Adana17 24 24 15 100.0 62.5

Adana18 70 50 6 71.4 8.6

Adana19 24 24 4 100.0 16.7

Adana20 20 18 0 90.0 0.0

Adana21 18 18 10 100.0 55.6

Adana22 27 27 4 100.0 14.8

Adana23 48 45 7 93.8 14.6

Ankara1 18 18 4 100.0 22.2

Ankara2 44 37 2 84.1 4.5

Ankara3 14 14 3 100.0 21.4

Ankara4 23 23 30 100.0 130.4

Ankara5 61 60 0 98.4 0.0

Istanbul1 8 8 2 100.0 25.0

Istanbul2 13 7 0 53.8 0.0

Istanbul3 14 14 0 100.0 0.0

Istanbul4 11 11 1 100.0 9.1

Total 911 820 124 90.0 13.6
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3.7.4.2. Building Detection on Aerial Images

We also test our steerable filtering based building detection algorithm on aerial images. De-

tection results are provided in the last columns of Figs. 3.24, 3.25, 3.26, and 3.27. In Table 3.12,

we also tabulate detection results for each aerial image.

Table 3.12. Building detection performance using steerable filtering on aerial images.

Image Name Buildings TP FA TP (%) FA (%)

Aerial1 17 12 0 70.6 0.0

Aerial2 27 21 14 77.8 51.9

Aerial3 6 6 1 100.0 16.7

Aerial4 9 8 4 88.9 44.4

Aerial5 11 10 5 90.9 45.5

Aerial6 16 16 1 100.0 6.3

Aerial7 9 6 3 66.7 33.3

Aerial8 11 11 1 100.0 9.1

Aerial9 42 20 6 47.6 14.3

Aerial10 50 23 5 46.0 10.0

Aerial11 47 23 12 48.3 25.5

Aerial12 57 31 3 54.4 5.3

Aerial13 30 28 17 93.3 56.7

Aerial14 19 19 2 100.0 10.5

Aerial15 57 30 2 52.6 3.5

Aerial16 56 28 1 50.0 1.8

Aerial17 44 20 8 45.5 18.2

Aerial18 65 52 8 80.0 12.3

Aerial19 11 10 1 90.9 9.1

Aerial20 16 12 3 75.0 18.7

Aerial21 52 36 4 69.2 7.7

Total 652 422 101 64.7 15.5

As can be seen in Table 3.12, we detected 422 of the 652 buildings. We have 101 false

alarm. TP and FA ratios are 64.7% and 15.5% respectively. By checking low ratio of false

alarms we can conclude that, our steerable filtering based features are robust to small details of
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the image. Unfortunately, our detection percentage is decreased comparing with the results of

satellite images. In our study region, road edges are very close to building roof edges (they are

generally detected as a single edge). Therefore, road edges caused false building edge curvature

calculations.

3.7.5. Building Detection Using Color Indices

We tested our color based building detection method on 12 aerial images. These images

have 0.3 m resolution. Test images are taken from Istanbul, where buildings generally have red

rooftops. Some building detection results can be seen in Fig. 3.28. These examples indicate that

our method works fairly well for given aerial test images. We next tabulate building detection

performance. Therefore, again we calculate TP and (FA) ratios. In Table 3.13, we tabulate the

test results for each image. As can be seen, 162 of the 177 buildings are correctly detected in

test images. Unfortunately, some tree clusters in the images are detected as possible buildings by

our system. They are possible causes of 25 false positives. As a result, we obtain TP as 91.5%

and FA as 14.1% for 177 test buildings. Considering this high detection percentage, proposed

algorithm gives consistent results for test images.

Table 3.13. Building detection performance on aerial test images using color indices.

Image Name Buildings TP FA TP (%) FA (%)

Sample1 14 14 0 100.0 0.0

Sample2 8 8 0 100.0 0.0

Sample3 3 3 0 100.0 0.0

Sample4 37 34 12 91.9 32.4

Sample5 29 28 0 96.5 0.0

Sample6 7 7 0 100.0 0.0

Sample7 13 9 4 69.2 30.7

Sample8 20 17 6 85.0 30.0

Sample9 10 10 0 100.0 0.0

Sample10 24 20 3 83.3 12.5

Sample11 6 6 0 100.0 0.0

Sample12 6 6 0 100.0 0.0

Total 177 162 25 91.5 14.1
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Figure 3.28. Sample building detection results using color indices in aerial images. First

column: Sample test images (1,2,4,10,11,12). Second column: building detection results
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3.7.6. Damaged Building Detection Using Shadow Information

In this part, we give experimental results of our damaged building detection method. Un-

fortunately, we do not have many damaged buildings in our test image database. Therefore, we

analyze experimental results on two damaged buildings.

In this section, we provide two test images, one containing undamaged buildings (Damage1)

and the other containing damaged buildings (Damage2). Detected buildings in Damage1 test

image are given in Fig. 3.29. Damage measures, r, of these buildings are calculated as follows.

On the upper side only first three buildings are detected, and their damage measures are calcu-

lated as 1.94, 1.79, and 2.26 respectively. For the buildings laying horizontally in the center of the

image, damage measures are calculated as 1.79, 1.79, 2.34, 2.38, 2.70, 2.35, 2.31 respectively.

Finally, for the building on the lower left side of the image, the damage measure is calculated as

2.23. It can be seen that the obtained damage measures of these buildings are very similar. The

average of these damage measures is calculated as 2.17. Since the user knows that all of these

buildings are healthy, the degree of the damage on other buildings can be estimated by compar-

ing their damage measures with the average value 2.17. After calculating the damage measures

Figure 3.29. Detected buildings in Damage1 test image. (Undamaged building measures are

calculated on these detected buildings)

for the undamaged building set (selected by the user), we use the Damage2 image that contains

damaged buildings in order to test our algorithm as given in Fig. 3.30. For the building which

is on the upper left side of this test image, damage measure is 1.6. The second building on the

upper side could not be found by our method, so damage degree could not be measured. For the

building on the upper left side of the image, the damage measure is obtained as 1.6 again. By
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comparing with the average value 2.17, we can say that these two buildings are undamaged. For

the building on the lower left side of the image, the damage measure is calculated as 2.78. This

result is also similar to damage measures of undamaged buildings, and that indicates this build-

ing is also undamaged. On the lower side of the image, damage measures of last three buildings

are calculated as 7.75, 4.22, and 4.67 respectively. These values are very high compared to the

average value 2.17. Therefore, these values can give an idea to user about the damage in these

buildings. However we could make very few experiments on damaged buildings, our experi-

Figure 3.30. Detected buildings in Damage2 test image. Detected damaged buildings are

labeled with a star

mental results show importance of developed method. First, most of the studies in the literature

needs prior information about region, however developed method does not need previous images

of the disaster region. Second, proposed method needs very low computation time and may help

to human observers for fast damage disaster. Deficiency of proposed method is that; the system

may not be used if shadow regions are not detected robustly.

3.7.7. Comparison of the Proposed Building Detection Methods

After presenting experimental results of each building detection method in detail, we fi-

nally compare all building detection methods presented in this chapter in terms of detection

performance, computation times, and robustness.
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In SIFT and graph theory based building detection method (Section 3.2), we obtained

88.4% detection performance and 16.5% false alarms. This performance on our satellite images

with different building characteristics is very encouraging. Unfortunately, this method may not

detect buildings if the contrast between their rooftop and the background is low. Besides, closely

spaced buildings may be detected as one single building. It always needs template buildings to

find similarities in given test image. In addition, finding these similarities by sub-graph matching

requires high computation time. Lastly, SIFT based detection algorithm can not be used on lossy

compressed images. Thus, we could not test algorithm on our aerial image data set. These are

the main drawbacks of the system.

In order to overcome drawbacks of the SIFT and graph theory based algorithm, we devel-

oped local feature based probabilistic building detection method. We first provide the specific

Gabor filtering based local features. In the same Ikonos image data set, we obtained TP = 86.1%

with FA = 19.4%. Since Gabor features are robust to lossy compression effects, we also tested

algorithm on our aerial test image data set. There, we obtained TP = 88.2% with FA = 66.1%

false alarms. However in Ikonos image data set detection performance decreased and false alarms

are increased slightly, Gabor feature based method has impressive timing requirements. To com-

pare with SIFT based algorithm we can choose Adana8 test image. On this image, SIFT based al-

gorithm detected buildings in 269.44 sec. Whereas, for the same test image Gabor based method

detects buildings in 26.05 sec. This very low timing requirement makes Gabor based method

suitable for real time applications such as unmanned aerial vehicles. Furthermore, Gabor fil-

ter based method does not require building samples from study region in order to detect other

buildings. Fixing Gabor filter parameters is enough to adapt the algorithm to a different kind of

remotely sensed image. The only disadvantage of Gabor based method is that it may not detect

a building if it is very dark compared to background.

In feature fusion based method, we obtained best detection performance in decision fusion

method. After extensive testings, we observed that our fusion based method is able to detect

most of the buildings (having different size, shape and intensity values) in a correct manner

on both aerial and satellite images. In our panchromatic Ikonos image data set we obtained

TP = 91.5% with FA = 20.7%. In grayscale aerial image data set, we obtained TP = 85.8%

with FA = 64.2%. Although, in fusion based method FA in aerial images decreased slightly, it

is still very high. Therefore, to cope with very high resolution and noise effects in aerial images

more robust algorithms are needed.
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In all of these building detection methods we observed that more robust features are needed

to decrease false alarms (especially for aerial images). To increase robustness of building detec-

tion method to false alarms, we developed steerable filtering based features. Since these novel

features also contain structural information, we decreased number of false alarms which occur

because of noise or small changes on ground surface. In our panchromatic Ikonos image dataset,

we obtained TP and FA as 90.0% and 13.6% respectively. Since these structural features are

also robust to compression effects, we could also test algorithm on grayscale aerial images. In

our aerial image data set we obtained TP and FA as 64.7% and 15.5% respectively. Compar-

ing with feature fusion based algorithm we decreased false alarms in aerial images impressively.

Unfortunately, this also decreased the detection performance.

To overcome the difficulty of building detection in aerial images, we used color indices.

On a different color aerial image dataset we obtained TP = 91.5% with FA = 14.1%. These

results indicate that; if color information is available, it can provide very useful information to

increase detection performance. Besides, by developing the color indices based approach, we

also detected damaged structures.

3.8. SUMMARY OF THE CHAPTER

In this chapter, we introduced novel methods for building detection in very high resolu-

tion satellite and aerial images. First, we started with developing our SIFT based urban region

detection approach that we introduced in Section 2.2. There, we used SIFT algorithm to extract

features of both template and test images, and we presented these features as a graph. Then, we

developed multiple subgraph matching to detect urban region subgraph in test image. Based on

detected subgraph we extracted urban region boundaries. In Section 3.2, we introduced a novel

graph cut method to cut urban region subgraph. After cutting the urban region subgraph, we

detected separate buildings. For satellite images the building detection performance is very high.

To overcome drawbacks of SIFT based building detection algorithm, we introduce a novel

method in Section 3.3. We used a probabilistic framework to detect building centers. To do so, we

defined the spatial coordinates of buildings (to be detected) as joint random variables. We formed

their pdf by the nonparametric variable kernel density estimation method. In estimating the pdf,

we used local feature vectors (extracted from the image) as observations. Then, we detected

building locations using the modes of the estimated pdf and other probabilistic constraints. After
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extensive testings, we observed that our method is able to detect most of the buildings (having

different size, shape and intensity values) in a correct manner on both aerial and satellite images.

However, for aerial images the false alarm rate is fairly high.

In order to decrease false alarm rates, we proposed a more robust feature in Section 3.4.

There, we used steerable filters to extract structural features. We detected buildings regarding

curvature of these features. Using this structural information increased robustness of our al-

gorithm to noise and redundant details in image. Using steerable filtering based features, we

obtained the lowest false alarm rate in aerial image data set.

Detection performance in aerial images was always problematic in the proposed methods.

In order to increase the detection capability, we also proposed a novel building detection method

using color invariant features in Section 3.5. We used color invariant features to extract red-

rooftops and shadows. We verify the appearance of buildings (having red and non-red rooftops)

using shadow information. As a final step, we developed a novel method (box-fitting) to deter-

mine building shapes.

In Section 3.6, we developed the same system to detect damaged buildings. We defined a

measure to estimate damage degree using rooftop and shadow segments for each building. Most

important feature of the algorithm is that it works without pre-knowledge about study region.

Results indicate the possible use of system in disaster management and military applications.

In Section 3.7, we presented experimental results of each building detection method on real

Ikonos satellite and aerial images. We also tabulated detection performances for each test image

in tables. After introducing each building detection method in detail, in Section 3.7.7 we com-

pared building detection methods in terms of performance, timing requirements and computation

times.

As a result, we can conclude the chapter with presenting following observations. First, one

can use SIFT based building detection method (Section 3.2), if high performance is desired and

if the contrast difference of the background and buildings are very high. If slightly lower perfor-

mance is tolerable, fusion of local feature vectors can be preferred (Section 3.3). The steerable

filtering based method (Section 3.4) will be best choice if study region is very complex. For

color aerial images, color index based method can also be used for damage detection purposes.
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Unfortunately, this method may not work if the color of terrain is close to red.
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4. ROAD DETECTION

Urban regions are dynamic environments and road maps change frequently. Therefore,

automatic detection of roads from very high resolution aerial and satellite images is a very im-

portant research field. Although road segments have simpler shapes compared to buildings, de-

tecting them in remotely sensed images is more difficult. The main problem in detection is the

occlusion. Roads are generally occluded by other nearby objects like buildings and trees. Road

segments may also have different colors and their widths may change. In addition to that, junc-

tions of unknown number of roads, roundabouts, and other road characteristics may increase the

difficulty of the problem. Therefore, advanced methods are needed to detect road segments in

aerial and satellite images. In this chapter, we propose novel methods for automatic road segment

detection in very high resolution aerial and satellite images. Before presenting our methods, we

start investigating previous studies on road detection.

4.1. PREVIOUS STUDIES ON ROAD DETECTION

Some researchers developed semi-automatic techniques to detect roads [82, 83, 84]. Yang

and Wang [85] developed a method to detect main roads from satellite images. First, they de-

tected road primitives such as straight lines and homogenous regions. Then, they linked detected

primitives. Unfortunately, their method can not detect urban roads and occluded road segments.

Ma et al. [86] detected parallel edges in panchromatic ETM (Enhanced Thematic Mapper) im-

ages to detect road segments. They linked discontinuous road segments using perceptual organi-

zation rules. Dell’Acqua and Gamba [17] detected road networks and built areas in SAR images.

They extracted straight edges and detected built areas with a clustering based approach. They

assumed longitudinal gaps as road networks. Rianto et al. [87] proposed an approach to detect

main roads in SPOT satellite images. For this purpose, they detected Canny edges and classified

straight line segments using the Hough transform. They assumed straight and parallel line seg-

ments as roads. Unfortunately, this approach can not be sufficient alone to detect curvilinear and

complex roads in urban scenes. Mayer et al. [88] and Ünsalan and Boyer [5] provide excellent

surveys on road detection in aerial and satellite images.

Some researchers developed algorithms to detect both buildings and roads. Ünsalan and

Boyer [5] detected separate buildings and street networks from multispectral satellite images.
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Their method depends on using vegetation indexes, clustering, decomposing binary images, and

graph theory. Sarkar and Boyer [9] used graph theory to detect edges which obey perceptual

organization rules to detect building and road edge segments in panchromatic satellite images.

Akçay and Aksoy [58] proposed a novel system for detecting built areas and roads using unsuper-

vised segmentation in high resolution satellite images. Montesinos and Alquier [89], developed

a novel approach to detect thin objects in noisy images. They performed perceptual grouping on

edge segments using active contours. They tested validity of their approach by detecting roads

in aerial images and detecting blood vessels in medical images.

4.2. ROAD DETECTION USING STEERABLE FILTERS

In this section, we propose a new approach to detect main roads automatically from very

high resolution panchromatic satellite images in a fast and robust manner. For this purpose, first

we extract local structural features using steerable filters as in our building detection approach

(Section 3.4). Then, we group these features using basic laws of perceptual organization [90]. We

detect missing road segments by a simple tracking approach. Finally, we present experimental

results of proposed approach on Ikonos satellite images in Section 4.4.

4.2.1. Preprocessing

Due to very high resolution of satellite images, edge detectors may not work properly to

detect road edges. They can also detect very small noisy terms in the image. These redundant

edges may give rise to false detection and increase the complexity of the problem. To prevent

this drawback, we filter the grayscale satellite image with the bilateral filter introduced in Sec-

tion 2.2.1. After filtering, we obtain Ib(x, y).

4.2.2. Extracting Road Features using Steerable Filtering

In order to extract discriminative local road features, we follow a similar approach to steer-

able filtering based building detection algorithm in Section 3.4. By filtering our Ib(x, y) test

image with a steerable filter in θ direction, we obtain Jθ(x, y). In Jθ(x, y), we expect edges

laying perpendicular to the filtering direction to have higher values. Therefore, by thresholding

Jθ(x, y) we obtain representative object edges which are perpendicular to the filtering direction.

In our extensive tests, we observed that choosing the threshold value as 20% of maximum magni-
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tude in Jθ(x, y) is suitable to extract road edges. As a result, we obtain a binary image, Fθ(x, y)

that holds locations of road features.

In this study, we pick our steerable filtering directions as θ ∈ [0, π/12, ..., 23π/12]. There-

fore, we have a total of 12 filters. Since we do not have a prior knowledge about the road align-

ments, these different directions are necessary. We extract local feature vectors in all θ directions.

In Fθ(x, y) we eliminate some complex shaped features since they can not represent road edges.

Therefore, we check the compactness of each feature separately. Compactness is defined as the

ratio of a region’s area to the square of its perimeter, normalized by 4π. We eliminate features

having compactness < 4π/60 as in [5].

We pick the Road1 test image to explain our algorithm. In Fig. 4.1 (a), we present the

original Road1 test image. In Fig 4.1 (b), we represent all detected road features (Fθ(x, y) where

θ ∈ [0, π/12, ..., 23π/12]). In Fig 4.1 (c), we represent the road features after the compactness

operation. We present features over the test image to increase visibility.

(a) Test image (b) Detected road features (c) After the compactness test

Figure 4.1. Original Road1 test image, detected road features before and after the compactness

test

4.2.3. Grouping Extracted Features to Detect Road Centers

Road edges are generally symmetric and close to each other. They generally have good

continuation. Considering these characteristics, road features may be grouped. Herein we benefit

from perceptual organization laws to group detected features in Fθ(x, y). Then, using grouped

features we detect road segment centers.

To group road features, we use Fθ1(x, y) and Fθ2(x, y) matrices where θ2 = θ1 +π. There-
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fore, when Fθ1(x, y) holds features of one side of the road segment, Fθ2(x, y) holds features of

the other side of the same road segment.

To group mutual road features in Fθ1(x, y) and Fθ2(x, y), we benefit from morphological

operations in order to reduce computation time and complexity. Assume that we have a total of K

features in Fθ1(x, y) denoted as F k
θ1

(x, y) for k ∈ [1, 2, ..., K]. Also assume that we have a total of

L features in Fθ2(x, y) denoted as F l
θ2

(x, y) for l ∈ [1, 2, ..., L]. To obtain the associated features

in Fθ1(x, y) and Fθ2(x, y) we pick each feature from these matrices separately. To explain the

following steps clearly, we pick an example as in Fig. 4.2 by zooming in to our Road1 test image.

To check whether these two features are associated, we first apply the dilation operation with a

Figure 4.2. Zoomed Road1 test image and sample F k
θ1

and F l
θ2

features on it

disk of radius 10 pixels [91]. We then obtain Dk
θ1

(x, y) and Dl
θ2

(x, y). We then check their

intersection as

Ck,l(x, y) = Dk
θ1

(x, y) ∩Dl
θ2

(x, y) (4.1)

if Ck,l(x, y) 6= ∅, we label these two features as associated. We assume a portion of the road

segment to be laying between Ek
θ1

(x, y) = Ck,l(x, y) ∩ F k
θ1

(x, y) and El
θ2

(x, y) = Ck,l(x, y) ∩
F l

θ2
(x, y). We label the center of this road segment by Ck,l(x, y). We can approximately calculate

the width of this road segment as

wk,l =
1

N

N∑
i=1

dist(Ek
θ1

(xi, yi), E
l
θ2

(x, y)) (4.2)

where, N is the total number of pixels in Ek
θ1

. Here dist(·, ·) is the minimum Euclidean dis-

tance between the point Ek
θ1

(xi, yi) and El
θ2

(x, y). In some cases, one feature can be longer than
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Ck,l(x, y). As can be seen in Fig. 4.2, some part of the F k
θ1

(x, y) feature will not intersect with

F l
θ2

(x, y). Therefore, this part will not contribute to form the road segment. We would like to use

this non-intersecting part in road segment extraction. Therefore, we benefit from Ck,l(x, y) and

wk,l. Let’s call the non-intersecting part of F k
θ1

(x, y) as Gk
θ1

(x, y) = F k
θ1

(x, y)\Ek
θ1

(x, y). To esti-

mate the corresponding road center, we calculate two normal vectors for each pixel in Gk
θ1

(x, y).

We multiply these two normal vectors by wk,l/2. We assume end points of two normal vectors as

(xn(i), yn(i)) where i ∈ [1, 2]. We pick the end point (xn(i), yn(i)) which has smaller Euclidean

distance to Ck,l(x, y), and set Ck,l(xn(i), yn(i)) = 1.

After applying the same method to each F k
θ1

(x, y) and F l
θ2

(x, y) for k ∈ [1, 2, ..., K] and

l ∈ [1, 2, ..., L] respectively, we detect the road segments for θ1 as

Cθ1(x, y) =
⋃

k,l

Ck,l(x, y) (4.3)

We finally obtain all the road segments in 12 different θ directions using the above method.

Combining them, we obtain the final road segment from the test image as C(x, y). In Fig. 4.3,

we provide the detected road segments for our Road1 sample image. As can be seen in this figure,

most of the road segments are detected correctly. Unfortunately, we could not detect junctions

and very small road segments. To recover these missing road segments, next we present a road

tracking method.

Figure 4.3. Detected road centers from the Road1 test image by feature grouping method

4.2.4. Road Tracking

Sometimes road segments may be occluded by other objects like buildings and trees. The

contrast between the road and the nearby region may be very low. In these cases, some of the road
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segments may not be detected by our previous approach. Also, road junctions and roundabouts

may not be detected because of their complex shapes. To detect these missing road segments, we

propose using a prediction based road tracking algorithm in this section.

For tracking, first we obtain skeleton of detected road segments matrix C(x, y) [39]. Then,

we detect the endpoints of this skeleton. Endpoints are chosen as two pixels which have only

one neighbor pixel and which have highest Euclidean distance between each other. Assume that,

we obtained endpoints as (xp(h), yp(h)) where h ∈ [1, 2, ..., H]. Generally road segments do

not end suddenly. Therefore, we assume that there is a missing road segment starting from each

(xp(h), yp(h)) pixel. It can be used to start tracking in order to extract missing road segment.

Before starting the tracking process, we should estimate the tracking direction. For this

purpose, we use 10 road pixels in C(x, y) which form a connected segment with (xp(h), yp(h))

pixel. We fit an ellipse to these points. We calculate the tracking orientation as the angle (θt)

between horizontal axis and the major axis of the fitted ellipse. Our tracking algorithm works

iteratively until a possible road segment can not be found in the tracking direction. At the first

step of iteration, we assume tracking direction as equal to θt. At each iteration, we calculate θt

angle again.

After determining the tracking direction, we estimate the next road pixel in tracking di-

rection. Since roads generally do not have sharp turns, we only consider three neighbor pix-

els to (xp(h), yp(h)) in θt direction as the next road pixel candidates. We calculate x and

y coordinates of candidate pixels as; xc(n) = xp(h) + (cos(θt) + (n − 2)π
4
) and yc(n) =

yp(h) + (sin(θt) + (n − 2)π
4
) respectively. Here (xc(n), yc(n)) n ∈ [1, 2, 3] are candidate road

pixels in tracking direction. We illustrate candidate road pixels in Fig. 4.4. In Fig. 4.4, each box

Figure 4.4. Tracking example. Red pixels indicate 10 pixels belong to previously detected road

segment, and green pixels indicate new road pixel candidates
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represents a pixel in the image. Red pixels show 10 road pixels in C(x, y) that are connected

to (xp(h), yp(h)). (xp(h), yp(h)) which is represented by a darker red. Three green pixels are

(xc(n), yc(n)) n ∈ [1, 2, 3] candidate pixels.

Now, the strongest candidate should be chosen to continue tracking. Since we know ap-

proximate tracking direction (θt), in another saying since we know approximate direction of road

segment, we can use Jθ(x, y) filter responses to find the strongest candidate. To speed-up the

algorithm, we do not check each Jθ(x, y) for 12 different directions to find the strongest candi-

date. We know that, the road segment is laying in θt direction. Therefore, each pixel of road

segment will give similar response when we filter image in (θt + π/2) direction. Therefore, we

only use J(θt+π/2)(x, y) filter response to choose the strongest road candidate. First, we assume

that ten road pixels in C(x, y) matrix that are connected to (xp(h), yp(h)) are presented with

(x̂p(m), ŷp(m)) (where m ∈ [1, 2, ..., 10]). We calculate mean of their responses in (θt + π/2)

filtering direction as

µ =
1

10

10∑
m=1

J(θt+π/2)(x̂p(m), ŷp(m)) (4.4)

Calculating S(n) = |J(θt+π/2)(xc(n), yc(n)) − µ| for n ∈ [1, 2, 3], we obtain the similarity of

filter responses of candidate pixels to the filter responses of previous road pixels. We select

(xc(n), yc(n)) pixel which gives the smallest S(n) value as our next road pixel in tracking. Then,

we assume the selected (xc(n), yc(n)) pixel as our next end point and estimate the new candidate

pixel. This tracking method is applied iteratively to extract the missing road segment. When

missing road segment is extracted completely, iteration should be stopped. Therefore, we use a

control threshold cth = 10. At the each step of the iteration, we control if similarity measure

satisfy µ < cth, otherwise we stop iteration and pick another (xp(h), yp(h)) endpoint to start

tracking.

In Fig. 4.5, we present detected roads in our Road1 test image by tracking approach with

green labels. In Section 4.4, we analyze our road detection method on panchromatic Ikonos

satellite images quantitatively. Next, we present another road detection approach based on color

information.
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Figure 4.5. Detected road centers using tracking (labeled with green)

4.3. ROAD DETECTION USING COLOR INFORMATION

Besides using structural features as in the previous section, color information (if available)

may also give important cues to detect asphalt road segments. Therefore, in this section we

introduce a new algorithm to detect asphalt road segments using their color information. To do

so, we introduce a color feature and benefit from one class classification method.

4.3.1. Training the Classifier with Invariant Color Features

In many computer vision applications, the CIELab color space is used since it mimics the

human visual system [92]. CIELab color space bands enhance different colors best and minimize

color variances. After transforming the RGB image into CIELab color space, we again obtain

three bands as L, a, and b [93]. Here, L band corresponds to intensity of the image pixels. a, b

bands contain chroma features of the image. They give information about the color independent

of illumination. In the literature, many researchers used Euclidean distances of L, a, and b bands

of images to find similar regions generally for segmentation purposes [94]. We apply a similar

methodology to segment out the asphalt road segments from the image in this section.

In order to detect asphalt roads in given test image, first we constructed a training set. We

cut 10 asphalt road patches from several color aerial images manually. We applied the CIELab

transform to all of these patches, and stored the a and b band values for each pixel. We did not

use the L band values, since we want our training set to be invariant from illumination. We store

the chroma features in our data base as fj = [at(j), bt(j)] where j ∈ [1, 2, ..., J ]. Here, J is

total number of pixels in 10 asphalt patches. For a sample test image Asphalt1, we provide the

distributions of both road pixel and non-road pixel values in Fig. 4.6.
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(a) Original image
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Figure 4.6. The Asphalt1 test image and the pixel distributions in the a, b color space

4.3.2. Detecting Asphalt Roads Using One Class Classifier

In most classification problems, the label for each class is known. In remotely sensed

images, we have unknown number of classes (such as trees, buildings, parks, roads, agricultural

fields, etc.). If we have only samples of one class as in our problem, classification can not be

done by a classical two-class classifier, since we can not represent all other classes in one class.

This is also the case for our asphalt road detection problem. Fortunately, a one class classifier

can be used to separate this small class from other classes [95].

The problem in one class classification is to make a description of a training set features

and to detect which new feature resemble this training set. The difference with conventional

classification is that; in one class classification only examples of one class are available. The

features from this class will be our training set. All of the other irrelevant features will be outliers.

Therefore, real problem is defining a boundary around the target class. In the related literature,

Erçil and Büke [96] fitted a surface around the feature point cloud in feature space by implicit

surface fitting. They labeled points inside this surface.

To achieve a faster system, we represent the training set with its mean and covariance

value. Then we classify the test samples using the Mahalanobis distance [97]. Different from

previous approaches, for a given test image we calculate the Mahalanobis distance for all pixels.

To classify them, we calculate Otsu’s threshold as a class boundary. For the Asphalt1 test image,

we provide the detected road pixels using one class classifier in Fig. 4.7.
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Figure 4.7. Detected asphalt road pixels from the Asphalt1 test image

4.4. EXPERIMENTAL RESULTS

In this section, we present experimental results of our two road detection methods. After

representing results on real test images and tabulating their performances, we discuss important

properties and deficiencies of both methods. Next, we start with the experimental results of

steerable filtering based road detection method.

4.4.1. Road Detection Using Steerable Filters

We test steerable filtering based road detection approach on 8 Ikonos satellite images. We

provide road detection results on our data set in Figs. 4.8 and 4.9. In these figures, we provide

the original images in the first column, and detected roads in the second column. Here, red labels

indicate extracted road segments using steerable filtering based features and green labels indicate

road segments extracted by the tracking approach. We tabulate performance of the algorithm

on each test image in Table 4.1. In this table, we provide the total length of roads (in pixels) for

each test image under the ’RL’ column.

As can be seen in Table 4.1, on 8 test images our road detection approach detected 14263

of the 19752 road pixels correctly. This corresponds to a 72.21% detection rate. There are also

8320 false alarms and this corresponds to a FA = 42.12% rate. TP percentage of our road

detection method is satisfactory for the given Ikonos satellite images. Among these test images,

the best performances are obtained for Road2, Road4, and Road5 images. In these images,

intensity differences between road segments and background is very high. Lowest performance

is obtained for the Road8 test image. It represents the most complex scene with many buildings

and road junctions. The highest false alarm rate is obtained for the Road4 image. In this image,

edges of agricultural fields lead to false alarms.
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Figure 4.8. Road detection results with steerable filtering based algorithm for Road images (1

to 4) for each row separately. First column: original test images; second column: detected road

pixels (red labels show detected road segments with steerable filter features, and green labels

show tracking results)
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Figure 4.9. Road detection results with steerable filtering based algorithm for Road images (5

to 8) for each row separately. First column: original test images; second column: detected road

pixels (red labels show detected road segments with steerable filter features, and green labels

show tracking results)
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Table 4.1. Road detection performances of the steerable filtering based method on Ikonos

satellite images.

Image Name RL TP FA TP (%) FA (%)

Road1 897 886 13 98.77 1.45

Road2 1519 1519 538 100.00 35.42

Road3 573 502 234 87.61 40.84

Road4 1758 1758 2462 100.00 140.05

Road5 1447 1529 1636 100.00 113.06

Road6 2160 1754 804 81.20 37.22

Road7 725 648 173 89.38 23.86

Road8 10673 5667 2460 53.10 23.05

Total 19752 14263 8320 72.21 42.12

We tabulate calculation times needed for road detection steps for the Road1 test image in

Table 4.2. As can be seen in this table, road network in the Road1 image is extracted in 98.82

sec. This computation time is very encouraging for road detection in very high resolution satellite

images.

Table 4.2. CPU times (in sec.) for steerable filtering based road detection on the Road1 test

image.

Operation Time

Feature extraction 26.92

Feature grouping 2.85

Road detection 38.65

Tracking 30.40

Total 98.82

4.4.2. Road Detection Using Color Information

In this section, we test our color based road detection approach on color satellite and aerial

images. First, we provide road detection results on 4 color satellite images that we used in

Section 4.4.1. We provide road detection results on our data set in Fig. 4.10. In this figure, we
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provide the original color satellite images in the first column, and detected roads for each test

image in the second column. Here, red labels indicate road pixels detected using color features.

We also present detection performances for each test image in Table 4.3. As can be seen in this

table, our method has TP = 66.88% with FA = 25.28%. Unfortunately, the performance is not

satisfactory here.

Table 4.3. Road detection performances of color feature based method on satellite images.

Image Name RL TP FA TP (%) FA (%)

Road1 5336 4525 2873 84.80 53.84

Road2 8243 7780 2584 94.38 31.34

Road3 5246 3406 227 64.92 4.32

Road4 34589 20014 7823 57.86 22.61

Total 53414 35725 13507 66.88 25.28

The best detection performances are obtained in Road1 and Road2 test images. In these

two images color of road pixels are distinguishable from nearby regions. In addition to that, we

have used some of the road pixels of these test images in training set. Therefore, we obtained

higher performances on these images. In Road3 test image, one segment of the road was missing

at the middle of the road with steerable filtering based filter (in Section 4.4.1). However, using

color features we detected it completely. The reason of this result is that; in the panchromatic

Road3 test image we could not detect any strong edge at the middle of the road, so we could

not detect this part. However, we can detect the asphalt color in this region. Therefore, we also

detected this part of the road segment successfully in our color feature based method. Unfor-

tunately, the performance on Road4 test image is not very promising. The reason of high false

alarms and low detection performance is the similar color of nearby pixels to the road segment.

The calculation time of the proposed method is very encouraging. For the Road1 test image,

road detection using color features takes only 8.33 sec.

We finally test our color based road detection approach on 5 color aerial images. We

provide the road detection results on our data set in Fig. 4.11. In this figure, we provide original

images in the first column, and detected roads for each test image in the second column. Here, red

labels indicate road pixels which are extracted roads using color features. We present detection

performances for each test image in Table 4.4. As can be seen in this table, the proposed method

has TP = 85.10% with FA = 23.17%. Although we do not use any structural feature in this
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Figure 4.10. Road detection results with color feature based algorithm for color Road images (1

to 4) for each row separately. First column: original color satellite test images; second column:

detected road pixels
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Figure 4.11. Road detection results with color feature based algorithm for Asphalt images (1 to

5) for each row separately, first column: original aerial test images; second column: detected

road pixels
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method, detection performance is fairly high for these test images.

Table 4.4. Road detection performances of color feature based method on aerial images.

Image Name RL TP FA TP (%) FA (%)

Asphalt1 316908 272119 31337 85.87 9.89

Asphalt2 88210 85539 42159 96.97 47.79

Asphalt3 52879 37444 3256 70.81 6.16

Asphalt4 154842 136905 56220 88.42 36.31

Asphalt5 52353 34052 21146 65.04 40.39

Total 665192 566059 154118 85.10 23.17

4.4.3. Comparison of the Proposed Road Detection Methods

In Section 4.2 we developed a new method to detect road segments in very high resolution

panchromatic satellite images automatically. There, we used basic rules of perceptual organiza-

tion. For this purpose, first we extracted local structural features using steerable filters as in our

building detection approach (Section 3.4). Then, we grouped these features using basic laws of

perceptual organization. We detected missing road segments by a new road tracking approach. In

8 test images, our road detection approach detected 14263 of 19752 road pixels correctly, which

corresponds to a 72.21% detection rate. There are also 8320 false alarms and this corresponds

to a FA = 42.12% . TP of the proposed road detection method is satisfactory for the given

very high resolution panchromatic Ikonos images. The best detection performances are obtained

when intensity differences between road segments and background are very high. Unfortunately,

complex buildings and edges of agricultural fields led to false detections. These false alarms may

be eliminated if multispectral or color information is used.

In Section 4.3, we introduced a new method to detect asphalt roads using color information.

For this purpose we used training features belonging to asphalt road patches. We then detected

pixels having similar values in the given test image. We tested our method on 5 color aerial

images. We obtained TP = 85.10%. TP of the proposed method is satisfactory for asphalt road

detection. We obtained the FA as 23.17%. We also tested our color feature based method on 4

color satellite images that we used in Section 4.2. In these images, we obtained TP = 66.88%

and FA = 25.28%. Since we do not detect the same entities in both methods, it is not possible

to compare them by their performances. However, there are some observations based on the
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performed tests. First, in steerable feature based method we can miss some of road segments if

their edges are not very strong. However, color feature based method can detect these missing

segments easily. Unfortunately, color feature based method detects too many false alarms if

nearby regions has very similar color to the road pixels. In order to increase performance, color

features can be fused with steerable filtering features.

4.5. SUMMARY OF THE CHAPTER

In this chapter, we introduced two new methods to detect roads automatically on panchro-

matic satellite and color aerial images. In Section 4.2 we proposed a new approach to detect

roads in panchromatic Ikonos satellite images. In order to detect roads in a robust manner, we

used structural features. We extracted these features using a set of steerable filters. We used the

idea of perceptual organization to group detected features. After detecting feature couples (two

mutual edge structures of a road segment), we detected road centers. In order to recover missing

road segments, we introduced a road tracking approach. Although our detection performance is

satisfactory, straight and long edges of a terrain (like edges of agricultural fields) can cause false

alarms.

Unfortunately, our steerable filtering based method does not provide good results on com-

plex aerial scenes. Thus, in Section 4.3 we introduced another method to detect asphalt roads us-

ing their color information. For this purpose, we introduced a one class classifier based method.

We first constructed a training set which includes color features of manually extracted asphalt

road regions. We used CIELab color space to extract color features. We also extracted color

features of given test image. Using training features and a one class classifier, we detected as-

phalt roads in aerial and satellite images. Although the classification results are encouraging, the

proposed method may be improved further by fusing color and structural features.
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5. CONCLUSIONS

In this dissertation, we proposed novel approaches to detect man-made objects in very high

resolution satellite and aerial images. Specifically, we aimed to detect urban regions, separate

buildings and road segments. For this purpose, we developed novel approaches using local and

semi-local invariant features. These features are very powerful in detecting objects under var-

ious imaging conditions (like illumination, viewing angle, etc.). Unfortunately, extraction of

invariant features is not sufficient for detecting objects. Therefore, we formalized the problem by

developing graph theoretical, probabilistic, region and perceptual organization based methods.

The aim here is to extract structural information to verify object appearance. We presented our

approaches for each urban object detection problem (urban region detection, building detection,

and road detection) in a separate chapter. At the beginning of each chapter, we reviewed the re-

lated literature. At the end of each chapter, we evaluated and compared our approaches in terms

of performance, timing, and complexity.

In Chapter 1, we briefly introduced satellite and aerial images. We also provided the back-

ground of the urban object detection problem. We introduced local and semi-local invariant

features for robust object detection. We observed that, many local features are used to detect

different kind of objects in the literature, but they are not used to detect man-made objects in

remotely sensed images. Thus, we decided to use local and semi-local features for robust object

detection in very high resolution satellite and aerial images.

In Chapter 2, we introduced two novel methods to detect urban region boundaries on gray

scale very high resolution satellite and aerial images. First, we introduced novel SIFT feature

based method in Section 2.2. There, we picked two template building images, and obtained their

SIFT features. We also obtained the SIFT keypoints for the test image. Then, we introduced

novel multiple subgraph matching approach to match template and test images SIFT features.

Detected subgraph in the test image provided us the urban region in test image. One important

feature of this method is that, one can generalize it to detect any kind of object in satellite images.

Our SIFT based algorithm has high performance using only grayscale information. It has also

some deficiencies. In order to use the proposed algorithm, a user should prepare a template

building data set. Calculation time increases exponentially when complexity and size of image

increases. As another deficiency, we observed that SIFT based algorithm does not work well on
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lossy compressed images.

To overcome drawbacks of SIFT based algorithm, in following study we developed an-

other urban region detection algorithm based on Gabor features. We extracted local features in

the given test image using Gabor filters. We use these local features in forming a spatial vot-

ing matrix. Then by using an optimum decision making approach, we were able to detect the

urban region in given image. Comparing with SIFT based algorithm, we concluded that new

urban region detection method was fairly fast and reliable. The computation time of the Gabor

feature based algorithm is also very impressive. As a further step, we developed a Gabor feature

based algorithm to detect urban region development. We used these local features in forming a

spatial voting matrix. Then, we defined five different land development measures on it. After

extensive testings, we observed that our novel land development measures have similar or better

performances compared to previous land development measures. Our method did not need to

register two images perfectly. This is the main contribution to the related literature. Besides, the

computational cost of our novel land development measures is fairly low compared to previous

methods.

In Chapter 3, we introduced novel methods to detect buildings in very high resolution satel-

lite and aerial images. First, we started with developing our SIFT based urban region detection

approach that we introduced in Section 2.2. We introduced a novel graph cut method to de-

tect separate buildings. Unfortunately, SIFT based method needs template buildings and timing

requirements are fairly high. To overcome drawbacks of SIFT based building detection algo-

rithm, we introduced three local feature extraction methods (Harris, GMSR, and Gabor filtering)

in Section 3.3. Using these descriptor vectors and a probabilistic approach we detected build-

ing centers. However, performance of system decreased slightly comparing with SIFT based

algorithm, computation time requirements of the Gabor feature based system was impressive.

Proposed system was very useful for real-time applications. We also fused three local features.

We observed that our method is able to detect most of the buildings (having different size, shape

and intensity values) in a correct manner on both aerial and satellite images. However, for aerial

images the false alarm rate is fairly high. To decrease this false alarm rate, we proposed a more

robust feature in Section 3.4 using steerable filters. We detected buildings regarding curvature

of these features. Using this structural information increased the robustness of our algorithm.

Hence, we obtained the lowest false alarm rate in aerial image data set using steerable filtering

based features.
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In order to increase the detection capability in aerial images, we developed a novel building

detection system using color invariant features in Section 3.5. We used color invariant features to

extract red-rooftops and shadows. We verify the appearance of buildings (having red and non-red

rooftops) using shadow information. As a final step, we developed a novel method (box-fitting) to

determine building shapes. There are many shape detection algorithms in the literature (such as

gradient vector flow, and level-set algorithm), but computation times of these algorithms are very

high. Contribution of our box-fitting approach was low computation time requirements when

approximate shape detection is needed (even for remotely sensed images including high number

of buildings). In Section 3.6, we used the same system to detect damaged buildings. We defined

a measure to estimate damage degree using rooftop and shadow segments for each building.

The most important contribution of this algorithm is that it worked without pre-knowledge about

study region. Finally, in Section 3.7 we compared proposed building detection systems in terms

of performance, timing requirements, and complexity.

In Chapter 4, we proposed two methods to detect road segments automatically on panchro-

matic satellite and color aerial images respectively. First, in Section 4.2 we proposed a novel

approach to detect roads in panchromatic Ikonos satellite images. In order to detect road seg-

ments in a robust manner, we used structural features extracted using a set of steerable filters.

We used the idea of perceptual grouping laws to group detected features. After detecting feature

couples (two mutual edge structures of a road segment), we detected road centers. In order to

recover missing road segments, we used a tracking approach. Our road segment detection perfor-

mance is satisfying. Only, straight and long edges of a terrain (like edges of agricultural fields)

can cause false alarms. These false alarms can be eliminated if multispectral information is used.

When using structural features, we had too many false alarms in aerial images. The main cause

of this problem is the spatial resolution of these images. Thus, in Section 4.3 we introduced a

novel algorithm to detect asphalt road segments using only color information. For this purpose,

we used training asphalt road patches and detect similar regions in given test image. In order

to find similar regions, we proposed a novel approach based on color features extracted from

CIELab color space. The performance of the proposed algorithm may be increased by fusing the

color and structural features.

In our all object detection systems, we could not prevent detecting some false objects if they

have straight and noteworthy edges similar to building or road edges. Especially, we have slightly

higher false alarms on aerial test image data set. Since these images have very high spatial
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resolution, edges and corners of non-interested objects are also visible. These redundant edge and

corners lead false local feature extraction. As a result, false detection increase in these images.

Unfortunately, if we try to eliminate these redundant edges and corners with smoothing, building

edge and corners are also smoothed. Therefore, we lose information by smoothing, and our

true detection performance also decrease. In the future, more advanced pre-processing methods

can be developed for very high resolution aerial images. In each object detection method, false

alarms can also be reduced by fusing features extracted in grayscale with color features. In

building detection, however we obtained promising results on our test images, our methods may

not discriminate adjoint buildings. In SIFT based building detection method, it is not possible to

cut graph edges between buildings if intensity of buildings are very similar, and if they are very

close to each other. In Gabor feature based and steerable feature based methods, probabilities

of adjoint buildings will be summed. Therefore, in our each building detection method, adjoint

buildings will be detected as one single building. If robust shape features can be extracted, they

can help to discriminate very close objects and also to verify buildings. This problem will be

investigated in our future studies.

Throughout this dissertation, we used very high resolution panchromatic satellite and aerial

images (color and grayscale) to test each method. Urban region, buildings, and roads in these

images have diverse characteristics. The proposed urban region, building, and road detection

algorithms work fairly well. Our novel methods may be used to generate land maps, detect

houses, and extract road networks automatically. Using proposed approaches, it is also possible

to detect approximate shapes of the buildings, damaged buildings, and measure of development in

time. Therefore, we believe that the proposed methods in this study will be of great use for urban

monitoring, city planning, land mapping, disaster management, and map updating purposes.
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72. Ünsalan, C., “Gradient magnitude based support regions in structural land use classifica-

tion”, IEEE Geoscience and Remote Sensing Letters, Vol. 3, No. 4, pp. 546–550, 2006.

73. Fonte, L. M., S. Gautama, W. Philips and W. Goeman, “Evaluating corner detectors for

the extraction of man made structures in urban areas”, IEEE International Geoscience and

Remote Sensing Symposium, pp. 237–240, 2005.

74. Schmid, C., R. Mohr and C. Bauckhage, “Evaluation of interest point detectors”, Interna-

tional Journal of Computer Vision, Vol. 37, No. 2, pp. 151–172, 2000.

75. Harris, C. and M. Stephens, “A combined corner and edge detector”, Proceedings of the

Fourth Alvey Vision Conference, pp. 147–151, 1988.

76. Silverman, B. W., Density estimation for statistics and data analysis, Chapman Hall, first

edn., 1986.

77. Freeman, W. and E. Adelson, “The design and use of steerable filters”, IEEE Transactions

on Pattern Analysis and Machine Intelligence, Vol. 13, pp. 891–906, 1991.

78. Orrite, C., A. Roy and A. Alcolea, “Surface segmentation based on perceptual grouping”,

International Conference on Image Analysis and Processing, pp. 328–333, 1999.

79. Gevers, T. and A. W. M. Smeulders, “PictoSeek: combining color and shape invariant fea-

tures for image retrieval”, IEEE Transactions on Image Processing, pp. 102–119, 2000.

80. Zhang, K., J. Yan and S. C. Chen, “Automatic construction of building footprints from air-



138

borne LIDAR data”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 9,

pp. 2523–2533, 2006.

81. Canny, J., “A computational approach to edge detection”, IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 8, No. 6, pp. 679–698, 1986.

82. Udomhunsakul, S., “Semi-automatic road detection from satellite imagery”, International

Conference on Image Processing, Vol. 3, pp. 1723–1726, 2004.

83. Ameri, F., A. M. Mobarraki and M. J. Valadan Zoej, “Semi-automatic extraction of different

shaped road centerlines from MS and pan-sharpend Ikonos images”, XXIth Congress of The

International Society for Photogrammetry and Remote Sensing, pp. 621–626, 2008.

84. Dell’Acqua, F., P. Gamba and G. Lisini, “A semi-automatic high resolution SAR data in-

terpretation procedure”, International Conference on Photogrammetric Image Analysis, pp.

19–24, 2007.

85. Yang, J. and R. S. Wang, “Classified road detection from satellite images based on perceptual

organization”, International Journal of Remote Sensing, Vol. 28, No. 20, pp. 4653–4669,

2007.

86. Ma, H., Q. Qin, S. Du, L. Wang and C. Jin, “Road extraction from ETM panchromatic

image based on dual-edge following”, IEEE International Geoscience and Remote Sensing

Symposium, pp. 460–463, 2007.

87. Rianto, Y. and S. Kondo, “Detection of roads from satellite image using optimal search”,

IEEE Asia-Pacific Conference on Circuits and Systems, pp. 587–590, 1998.

88. Baumgartner, A., C. Steger, H. Mayer and W. Eckstein, “Multi-resolution, semantic objects,

and context for road extraction”, In Semantic Modeling for the Acquisition of Topographic

Information from Images and Maps, pp. 140–156, Birkhauser Verlag, 1997.

89. Montesinos, P. and L. Alquier, “Perceptual organization of thin networks with active contour

functions applied to medial and aerial images”, 13th International Conference on Pattern

Recognition, Vol. 1, pp. 647–651, 1996.



139

90. Sarkar, S. and K. L. Boyer, “Perceptual organization in computer vision: a review and a pro-

posal for a classificatory structure”, IEEE Transactions on Systems, Man and Cybernetics,

Vol. 23, No. 2, pp. 382–399, 1993.

91. Gonzalez, R. C. and R. E. Woods, Digital Image Processing, Prentice Hall, New Jersey,

second edn., 2002.

92. Fairchild, M., Color Appearance Models, Addison-Wesley, 1998.

93. Paschos, G., “Perceptually uniform color spaces for color texture analysis: an empirical

evaluation”, IEEE Transactions on Image Processing, Vol. 10, pp. 932–937, 2001.

94. Haoting, L., G. Jiang and L. Wang, “Multiple objects tracking based on snake model and

selective attention mechanism”, International Journal of Information Technology, Vol. 12,

No. 2, pp. 76–86, 2006.

95. Moya, M., M. Koch and L. Hostetler, “One class classifier networks for target recognition

applications”, World Congress on Neural Networks for Target Recognition Applications, pp.

797–801, 1993.
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