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ABSTRACT 

 

INVESTIGATION OF MAXIMUM WIRELESS POWER TRANSFER 

CONDITIONS IN THE NEAR FIELD  

 

 

This study discusses the theory and design of coupled resonant power transmission 

scheme and how array coupled wireless transmission of electrical power. Detailed 

simulation and analysis of near and radiation field, gain, Q factor, efficiency of 

transmission and radiator form comparisons will be studied while changing various 

radiator and medium parameters. Detailed derivation of operational theory and frequency 

and time domain calculations of coupled resonating RLC circuits will be presented. 

Application of negative resistance oscillator and ultra-wideband oscillators and various 

techniques for determining resonant frequency under dynamic loading conditions will be 

discussed. Configuration of radiator arrays for maximum power transfer conditions, 

analysis of mutual coupling between the array elements will be studied for optimum 

performance analysis of the antenna. All antenna parameters will be determined and 

compared with the experimental measurements of the antenna. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  
 

 

ÖZET 
 

EN İYİ YAKIN ALAN KABLOSUZ GÜÇ TRANSFERİ  

KOŞULLARININ ARAŞTIRILMASI 

 

 

Bu çalışma rezonant eşlenik kablosuz güç iletimi ve dizi eşlenik kablosuz güç iletimi 

sisteminin tasarımı ve teorisi üzerine yapılmıştır. Ortam ve radyatör yapısal parametrelerini 

değiştirerek yakın ve uzak alan, kazanç, Q katsayısı, güç iletim verimliliği ve radyatör 

form tasarımı detaylı analiz ve simülasyonlar yapılarak çalışılacaktır. Eşlenik rezonant 

RLC devre modeli kullanılarak sistemin çalışma teorisi, detaylı frekans ve zaman uzayı 

hesapları yapılarak türetilecektir. Negatif dirençli, çok-geniş-bantlı osilatörler ve değişken 

yüklenme koşullarında rezonant frekansın değişmesi tartışılacaktır.  Çoklu radyatör 

dizilerinin en üst güç transferi için ayarlanması, dizi elemanları arasında bağıl eşlenmenin 

analizi en optimum anten performansını sağlamak için yapılacaktır. Tüm anten 

parametreleri hesaplanarak deneysel sonuçlar ile karşılaştırılacaktır.  
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1.  INTRODUCTION 
 

 

1.1.  STATEMENT OF PROBLEM 

 

Power is important to modern systems. From the smallest sensors, bionic implants, 

laptops, consumer products to satellites and oil platforms, it is important to be able to deliver 

power means other than classical wires or transmission lines. Wireless transmission is useful 

in cases where instantaneous or continuous energy transfer is needed but interconnecting wires 

are inconvenient, hazardous, or impossible. In the case of biological implants, there must be a 

battery or energy storage element present that can receive and hold energy. This element takes 

up valuable space inside a person body. In the case of satellites, UAVs and oil platforms, solar 

panels, fuel cells, or combustion engines are currently used to supply power. Solar panels take 

up a great deal of weight and bulk in terms of energy density and must have a tracking system 

to maximize exposure to the sun. Fuel cells and combustion cells needs fuel and maintenance 

to be delivered on site.   

 

This thesis studies the theory, design, and construction of a method to transmit wireless 

electrical power through space. Investigation of various geometrical and physical form factors 

evaluated in order to increase coupling between transmitter and receiver. An array structure is 

also presented in order to utilize wider spectrum while utilizing same physical radiator and 

receiver space. Use of resonant coupling in order to maximize power transfer and analytical 

derivations of coupled network power transfer calculations is presented. 

 

This thesis is broken down into three subsequent chapters. The first chapter starts with 

the introduction of wireless power transmission in nature, historical developments and 

motivations to develop near field high power wireless power transmission systems. The 

second chapter discusses about the selection of radiators and receiver for near field inductive 

transmission and loop radiator design for DC and AC conditions. The third chapter discusses 

about coupled network theorem and calculation of mutual inductance relations. The fourth 
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chapter discusses about array structures and methods of maximizing power transmission by 

means of utilizing wide spectrum.  

 

1.2.  HISTORY OF WIRELESS POWER TRANSMISSION 

 

Magnetic fields and inductive coupling have been studied since the discovery of 

transformer by Hans Oersted and Michael Faraday. In 1886, Westinghouse Company 

developed first commercial AC transformer.  

 

A complete mathematical understanding of the coupled circuits used to make the 

transmitter and receiver was first published by Frederick Terman in 1935.  

 

Idea of using microwave power transmission was put forward by William C. Brown in 

1961.  

 

In 1973, world first passive RFID system demonstrated at Los-Alamos National Lab.  

 

In 1988, a power electronics group led by Prof. John Boys at The University of 

Auckland in New Zealand, developed an inverter using novel engineering materials and power 

electronics and concludes that inductive power transmission should be achievable. A first 

prototype for a contact-less power supply is built.  

 

In 2007, a physics research group, led by Prof. Marin Soljačić, at MIT confirm the 

earlier (1980's) work of Prof. Boys by wireless powering of a 60W light bulb with 40% 

efficiency at a 2 meters distance using two 60 cm-diameter coils.  

 

In 2010, Haier Group debuts the world's first completely wireless LCD television at CES 

2010 based on Prof. Marin Soljacic's research on wireless energy transfer and Wireless Home 

Digital Interface (WHDI). 
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1.3.  MOTIVATION 

 

Wireless energy transfer by radiation of electromagnetic waves and particles is also how 

nature transmits power to remote locations. There is a great harmony of power distribution 

from huge radiators (e.g. stars, sun) to receptors (earth, plants, heat transfer) in nature.  If we 

take nuclear explosions and other reactions in stars as power source, we find almost whole 

spectrum is being utilized as power transmission medium. From very low frequencies up to 

particles can be assumed as source of energy. Harmony of emissions and receptions create us a 

great environment to survive. If we take earth system as a receiver, we find each part of layers 

in atmosphere receives some portion of spectra; lakes, seas, plants, down to core of earth; 

waves and particles carry power and bring to the receivers. This model of wireless power 

transmission in nature helped humanity to understand how artificial wave sources can be 

designed and utilized for transmission of power and information.  

 

Race of wireless power transmission started with Dr. Nikola Tesla in 1880s. There is 

tremendous interest in wireless devices and gadgets in 21. Century, with the compactness of 

such devices created a need for cord-less charging systems. Even busses, trains, cars are 

becoming electric driven. Electric drive offers lower cost fuel, compactness and better 

regenerative use of fuel. Besides all these advantages, high density electric storage is still very 

challenging task. Because either recharging rate and life or energy density of existing battery 

and super capacitor systems are not sufficient to meet industrial criteria’s.  

 

Near field wireless transmission is a technique over distances comparable to, or a few 

times the diameter of the devices, and up to around a quarter of the wavelengths used [1]. Near 

field energy itself is non radiative, but some radiative losses will occur. In addition there are 

usually resistive losses. Near field transfer is usually magnetic (inductive), but electric 

(capacitive) energy transfer can also occur [2]. We restrict our studies in the near field power 

transmission systems.  
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2.  SELECTION OF RADIATOR AND RECEIVER ELEMENTS 
 

 

Wireless energy transfer or wireless power transmission is the process that takes place in 

any system where electrical energy is transmitted from a power source to an electrical load 

without interconnecting wires. The most common form of wireless power transmission is 

carried out using induction, followed by electro-dynamic induction. Other technologies for 

wireless power include those based on microwaves and lasers. Compared to inductive transfer 

in transformers, except when the coils are well within a diameter of each other, the efficiency 

is somewhat lower (around 80% at short range) whereas conventional transformers may 

achieve greater efficiency (around 90-95%), and for this reason, it's unlikely it will be used 

very much at larger distances where high energy is transferred [3]. 

 

However, compared to the costs associated with batteries, particularly non rechargeable 

batteries, the costs of the batteries are hundreds of times higher. In situations where a source of 

power is available nearby, it can be a cheaper solution. In addition, whereas batteries need 

periodic maintenance and replacement, resonant energy transfer could be used instead, which 

would not need this. Batteries additionally generate pollution during their construction and 

their disposal which largely would be avoided. 

 

2.1.  INDUCTIVE POWER TRANSMISSION 

 

The action of an electrical transformer is the simplest instance of wireless energy 

transfer. The primary and secondary circuits of a transformer are not directly connected. The 

transfer of energy takes place by electromagnetic coupling through a process known as mutual 

induction. An added benefit is the capability to step the primary voltage either up or down. 

The battery charger of a mobile phone or the transformers in the street is examples of how this 

principle can be used. Induction cookers and many electric toothbrushes are also powered by 

this technique. 
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The main drawback to induction, however, is the short range. The receiver must be very 

close to the transmitter or induction unit in order to inductively couple with it. 

 

The "electro-dynamic inductive effect" or "resonant inductive coupling" has key 

implications in solving the main problem associated with non-resonant inductive coupling and 

electromagnetic radiation for wireless energy transfer; specifically, the dependence of 

efficiency on transmission distance. [4-7] Electromagnetic induction works on the principle of 

a transmitter coil generating a predominantly magnetic field and a receiver coil being within 

that field so a current is induced in the receiver. This results in a relatively short range because 

most of the magnetic field misses the receiver. Over greater distances the non-resonant 

induction method is inefficient and wastes much of the transmitted energy. 

 

Inductive power radiator is different than classical far field radiation. It is aimed to have 

more inductive power transmission than radiative. We generalize total transmission success of 

resonant system by a generic formula;   

 

 ( )tanSuccess directivity dis ce compatabilityG e D D D= + +  (2.1) 

 

Where SuccessG (1,..., ∞ ) is a success measure of all conditions and parameters which 

effect complete system performance, e (0,...,1) is efficiency, directivityD (1,..., ∞ ) is directional 

success factor which is a function of  transmitter and receiver crossing flux surface and angle, 

tandis ceD (0,...,x) is a distance success factor and it is inversely proportional with transmitter and 

receiver distance, compatabilityD (0,...,1) is a very integrated compatibility success factor which is 

function of electrical (dc, ac resistance, self inductance, self capacitance, resonant frequency, 

bandwidth etc..), geometrical (wire diameter, inter-winding distance, height, number of turns 

and length of wire), physical compatibility (conductive material and medium parameters, 

temperature, pressure) of couples. compatabilityD is also a function of applied frequency and 

transmitting and receiving systems’ resonant frequencies.  
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We define efficiency as;  

 

 
tot tot

rec loss
tot

trans

P Pe
P

−
=  (2.2) 

 

Where tot
transP is the total transmitted inductive and radiative power. Efficiency takes 

values between ( ...0,... )e −∞ + ∞ , thus we can say if the power received is less than %50 of the 

transmitted power, than system is unsuccessful. In order to be successful, received power must 

be greater than half of the transmitted power.  

 

In the next chapter we start from basic magneto-static electromagnetic field calculations 

in order to integrate most of the parameters which impact success parameters. 

 

2.2.  MAGNETOSTATIC FIELD ANALYSIS OF LOOP RADIATOR 

 

 
 

Figure 2.1. Circular thin wire loop located co-axially with z-axis 
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We first derive equations from the DC conditions and apply vector potential approach to 

derive near field wave equations to integrate dispersive characteristics of medium [8, 9, 10].  

 

Magnetic field density of thin wire circular loop of radius R lying in the x-y plane and 

carrying a steady current I, at arbitrary point P is calculated using Biot-Savart Law in 

Cartesian coordinates and vector potential approach in cylindrical coordinates [11].  

 

 (cos sin 0 )q x y zq qr R a a aϕ ϕ= + +
r r r r

 (2.3) 

 

The differential current element is 

 

 ( ) ( sin cos )q
x yq q q q

q

dr
dl d R a a d

d
ϕ ϕ ϕ ϕ

ϕ
= = − +

ur
r r r

 (2.4)      

  

 (cos sin )p x y zp p pr r a a aϕ ϕ= + +
r r r r

 (2.5) 

 

Relative position vector is 

 

 ( cos cos ) ( sin sin )qp x y zp p q p p q pr r R a r R a r aϕ ϕ ϕ ϕ = − + − + 
r r r r

 (2.6) 

 

And the unit vector   

 

 
qp p q

qp
p qqp

r r ra
r r r

−
= =

−

r r rr
r r  (2.7) 

   

qpdl r×
r r

cross product 
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(-sin cos )

( cos - cos ) ( sin - sin )

x yqp q q q

x y zp p q p p q p

dl r R a a d

r R a r R a r a

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

 × = + × 
 + + 

r rr r

r r r  (2.8) 

  

The contribution of the current element to the magnetic field at P is 

 

 0 0
2 34 4

qp qp

qp qp

dl a dl rI IdB
r r

µ µ
π π

× ×
= =

r rr rr
 (2.9) 

 

Plugging terms 

 

 

0
3

2 2

2 2

( sin sin )( )

(sin )

( sin )( sin sin )

(cos )( cos cos )

4
( cos cos )

( sin sin )

xp p q p

yq p

q p p q
z

q p p q
q

p p q

p p q p

r R r a

r a

r R
a

r RIRdB d
r R

r R r

ϕ ϕ

ϕ

ϕ ϕ ϕ

ϕ ϕ ϕµ
ϕ

π
ϕ ϕ

ϕ ϕ

 
 

− 
 

+ 
 − −  +    − −  =

 −
 
+ − +  

r

r

r

r
 

(2.10) 

 

The x, y and the z components of Magnetic flux density at P is 

 

 

2
0

3
2 2 20 2

sin sin
4

( cos cos ) ( sin sin )

p p p q
xx q

p p q p p q p

IRr r R
B a d

r R r R r

πµ ϕ ϕ
ϕ

π
ϕ ϕ ϕ ϕ

−
=

 − + − + 
∫

rr
 (2.11) 

 

 

2
0

3
2 2 20 2

sin
4

( cos cos ) ( sin sin )

p q
yy q

p p q p p q p

IRr
B a d

r R r R r

πµ ϕ
ϕ

π
ϕ ϕ ϕ ϕ

=
 − + − + 

∫
rr

 (2.12) 
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2
0

3
20 2

2

2

( sin )( sin sin )

(cos )( cos cos )
4

( cos cos )

( sin sin )

q p p q

q p p q
zz q

p p q

p p q

p

r R
r RIRB a d

r R

r R

r

π

ϕ ϕ ϕ

ϕ ϕ ϕµ
ϕ

π
ϕ ϕ

ϕ ϕ

− − 
  − − =

 −
 
+ − 

 
+  

∫
rr

 
(2.13) 

 

2.2.1.  Vector Potential Approach In Cylindrical Coordinates 

 

The vector potential at any arbitrary point ( , , )p p pP r zϕ  shown in Figure 2.1 is derived. 

From symmetry, we know that in cylindrical polar coordinates the magnitude of A
ur

 is 

independent ofϕ . Therefore, for simplicity, we choose the point ( , , )p p pP r zϕ  in the r-z plane 

where ϕ = 0.  

 

We notice that when equidistant elements of length dl at ϕ+  and ϕ−  are paired, the 

resultant is normal to r-z plane. Thus, A
ur

 has only the single component Aϕ . Let dlϕ , be the 

component of dl  in this direction,  

 

 
 

(2.14) 

 

 
0

2 2 20

cos
2 2 cosp p p

I R dA
R r z Rr

π

ϕ
µ ϕ ϕ

π ϕ
=

+ + −
∫  (2.15) 

  

Let 2ϕ π θ= +  so that 2d dϕ θ=  and 2cos 2sin 1ϕ θ= − , then this becomes 

 

 
( )

( )

2
0 2

20 2 2

2sin 1
2 4 sinp p p

dIRA
R r z Rr

π

ϕ

θ θµ
π θ

−
=

+ + −
∫  (2.16) 
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Let 

 

 2
2 2

4
( )

p

p

Rr
k

R r z
=

+ +
 (2.17) 

 

And rearrange, we get 

 

 

1
2

2 20 2 2
2 22 20 0

1 1
22 2

3 2 40 0

2 21 1 sin
2 1 sin

3 751 1
2 32 4 128

p

p p

k I R dA k d
r k kk

I IR k RK E k k k
k r r

π π

ϕ
µ θ

θ θ
π θ

µ µ
π

    = − − −        −  

       = − − = + + +                 

∫ ∫

L

 (2.18) 

 

Where, K and E are complete elliptic integrals of the first and second kind. To determine 

the magnetic induction, we must write, from (A.04), (A.05), (A.06), and the components of the 

curl in cylindrical coordinates.   

 

 ( ) ( ) ( )2 3 1 3 1 2 1 2 3
1 2 3 1 2 3

1divA A h h A h h A h h A
h h h u u u

 ∂ ∂ ∂
= ∇ ⋅ = + + ∂ ∂ ∂ 

ur ur ur
 (2.19) 

 

From A.10, this gives 1 1h = , 2h r= , and 1 1h = so that 

 

 

( ) ( )

( ) ( )

( ) ( ) ( )

1 1

0

1 1 1

r p p
p p

r z

z r p
p p p

A
B r A r A

r z r z

B rA A
z r

B A rA r A
r r r r r

ϕ
ϕ ϕ

ϕ

ϕ ϕ

ϕ

ϕ

∂∂ ∂
= − + = −

∂ ∂ ∂

∂ ∂
= − =

∂ ∂
∂ ∂ ∂

= − + =
∂ ∂ ∂

 (2.20) 
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For the derivatives of K and E, we use the formulas 

 

 2

( ) ( ) ( ) ( ) ( ) ( )    and    
(1 )

K k E k K k E k E k K k
k k k k k k k

∂ ∂
= − = −

∂ − ∂
 (2.21) 

   

From (2.20),  

 

 
3 3 3

    and    
4 2 4 4p p p p

k zk k k k k
z Rr r r r R

∂ ∂
= − = − −

∂ ∂
 (2.22) 

 

Carrying out the differentiation, collecting terms, and substituting for k give 

 

 
2 2 2

0
2 22 2

( , , ) ( ) ( )
2 ( )( )

p p p
rr p p

p pp p p

z R r zIB r z R a K k E k
R r zr R r z

µ
π

 + +
= − + 

− ++ +   

rr
 (2.23) 

 

 
2 2 2

0
2 22 2

1( , , ) ( ) ( )
2 ( )( )

p p
zz p p

p pp p

R r zIB r z R a K k E k
R r zR r z

µ
π

 − −
= + 

− ++ +   

rr
 (2.24) 
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Figure 2.2. Cross section of magnetic flux density vector field through the circular loop              

(I = 10 A, r = 4 m)  

 

 
 

Figure 2.3. Comparison of polygon superposition method and circular loop elliptic integral 

method for Bz values along z-axis (I = 1000 A, r = 4 m, Pn=60) 
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Figure 2.4. Comparison of polygon superposition method and circular loop elliptic integral 

method for Bz values along r-axis (I = 1000 A, r = 4 m, Pn=60) 

 

 
 

Figure 2.5. Comparison of polygon superposition method and circular loop elliptic integral 

method for Br, Bz, BT values of loop at pr =4.3, pϕ =0, (I = 100 A, r = 4 m) 
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2.3.  AC CHARACTERISTICS OF COIL 

 

2.3.1.  Estimating Resistance of Coil  

 

The resistive losses in a solenoid are mainly from material conductivity, skin and 

proximity effects, radiation losses accounts small amount [12].   

 

 total M AC DC radiationR R R= Φ Φ +  (2.25) 

 

2.3.1.1.  DC Resistance 

DC resistance of a length of wire is due to the bulk resistivity of the material used and its 

conducting geometry. DC resistivity also changes with wire’s diameter even though it is made 

up from same material. A table presenting the conductivity of copper with various wire 

diameters at  20o C  is presented in Appendix B.  A generic formula for calculating resistivity 

is; 

 

 2 [ ]DC wire wire
wire

length lengthR
Area radius

ρ ρ
π

= = Ω
⋅

 (2.26) 

 

The temperature on the wire has a scaling effect on the DC resistance. The relation of 

temperature effect is:  

 

 ( )2 1 1T TR R Tα= + ∆  (2.27) 

 

Where α  is the temperature coefficient and for copper 3 13.9 10 [ ]copper Kα − −= ⋅ . 

 

2.3.1.2.  AC Resistance 

When direct current is applied to a straight conductor it distributes itself evenly 

throughout the wire’s cross-sectional area. When an alternating current is applied to a straight 

conductor, eddy currents develop and the current will tend to flow on the surface. As the AC 
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frequency is increased it becomes increasingly difficult for the current to penetrate into the 

center of the conductor, which flows along the conductor surface (skin). This increases the 

effective resistance of the wire and is called skin effect and is the major source of resistivity in 

a high frequency solenoid.  

 

 AC AC DCR R= Φ  (2.28) 

 

Skin effect is essentially the inability of current to penetrate from the periphery toward 

the center of a conductor as the frequency is increased. This is a direct result of eddy currents 

established in the conductor from the changing AC flux (Figure 2.6). The eddy currents 

reinforce current flow on the conductor’s “skin”, decreasing exponentially as they move 

toward the center.  

 

 ( ) ( )2

1 1 1( )
Re Re

meters
j

δ
α γ ω εµ ωσµ

= = =
− +

 (2.29) 

 

 
 

Figure 2.6. Illustration of eddy current (skin) effect on a wire 
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Where, δ is depth of current penetration from outer skin in meters, γ  is the propagation 

constant, µ magnetic permeability of conductor, ε  is electric permittivity of conductor and  

σ  is conductivity of the conductor. 

 

2.3.1.3.  Proximity Effect 

Proximity effects result from high-frequency current carrying conductors being in 

proximity to each other. While the proximity effect is dependent on the number of winding 

layers and layer construction, the skin effect is affected by the applied frequency. When a 

straight conductor is wound into a coil, the resulting proximity effects of the adjacent 

windings will produce even further losses.  

 

 proximity M ACR R= Φ  (2.30) 

  

 
 

Figure 2.7. Skin depth versus frequency behavior of various conductors 
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2.3.1.4.  Radiation Resistance 

The radiation resistance increases when the coil structure radiates electromagnetic 

energy like an antenna. The radiation resistance is not strictly a measure of loss in the antenna 

but is analogous to the characteristic impedance, 0Z of a transmission line [7].  

 

 
4 2

20
3

0

2
12 3rad

R RR N
c c

µ π ω ω
ε π

    = +    
     

 (2.31) 

 

2.3.2.  Estimating Self Inductance of Coil  

 

There are many numerical calculation methods and approximation in the literature. We 

present more accurate models below. 

 

 

2.3.2.1.  Long Solenoid Model 

This model uses Ampere’s law to derive inductance of a coil. It assumes that magnetic 

field inside the coil is constant. This assumption is reasonably true for the height of the 

solenoid approximately eight times greater than the radius, H>4R.  

 

 
2 2

0 [ ]s
N RL Henry

Height
µ π

=  (2.32) 

 

2.3.2.2.  Wheeler’s Formula 

This method is the most common and practical one for calculating inductance of a 

uniform cylindrical solenoid. Wheeler’s empirical formula is used primarily in designing RF 

and air core coils. It is useful in calculating inductances of short coils [13].  

 

 
2 2

[ ]
9 10s

R NL Henry
R H

µ=
+

 (2.33) 
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Where, R stands for radius in inches and H stands for height in inches. This formula 

gives good results for single layer wound solenoids and gives %5 accurate results for H>0.8 R. 

 

2.3.2.3.  Lundin’s Formula 

For comparison, Lundin’s formula is the most accurate method of calculating inductance 

of a solenoid .It is derived from first principles and it is quite accurate.  

 

 
2 2 2

0
2

4 4 2( ) [ ]
3s

N R R RL f Henry
H H H

µ π
π

 
= − 

 
 (2.34) 

 

 
21 0.383901 0.017108( ) ,  0 1

1 0.258952
x xf x x

x
+ += ≤ ≤

+
 (2.35) 

 

This formula is accurate up to three parts per million Henries; it is both nonlinear 

function of the coil’s size and difficult to work with in equations when substituting an 

expression for inductance.  This formula gives much better prediction of induction than 

Wheeler’s formula. 

 

2.3.3.  Estimating Self Capacitance of Coil  

 

The proximity of windings in an inductor results in distributed capacitances. It can be 

imagined as series connected capacitors. Calculating distributed capacitances between the 

coil’s windings and between the coil and ground requires detailed calculations using 

electromagnetic field equations.  

 

2.3.3.1.  Medhurst Capacitance Calculation 

  R.G. Medhurst, experimentally measured and published a table for estimating the 

effective capacitance, 0C , of a single layer solenoidal coil with mean radius R and height H. 

[14]  
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The capacitance is measured between the top winding of the coil and grounded bottom 

winding. This capacitance is assumed as capacitance between the coils windings and between 

the coil and the earth ground plane. Medhurst’s formula is:  

 

 0 2 [ ]C Rh pF≈  (2.36) 

 

Where R is the radius of the solenoid in centimeters and h is a factor found from his 

experimental findings as shown in Table 3.1. 

 

Table 3.1. Medhust Capacitance Table 

 

2
H
R

 h 2
H
R

 h 2
H
R

 h 

50 5.8 5.00 0.81 0.70 0.47 
40 4.6 4.50 0.77 0.60 0.48 
30 3.4 4.00 0.72 0.50 0.50 
25 2.9 3.50 0.67 0.45 0.52 
20 2.36 3.00 0.61 0.40 0.54 
15 1.86 2.50 0.56 0.35 0.57 
10 1.32 2.00 0.50 0.30 0.60 
9.0 1.22 1.50 0.47 0.25 0.64 
8.0 1.12 1.00 0.46 0.20 0.70 
7.0 1.01 0.90 0.46 0.15 0.79 
6.0 0.92 0.80 0.46 0.10 0.96 

 

 

2.3.3.2.  Massarini, Grandi, Kazimierczuk Method 

An analytic derivation also presented by Massarini, Grandi, Kazimierczuk group in 

order to calculate single layer solenoid air core inductors for high frequency applications. [15]  
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2
0

0 2

21 [ ]
1

ln 1

RC pF
N Di Di

d d

π ε
=

−    + −    

 
(2.37) 

 

Where N is the number of turns, Di is inter-winding gap, d is the wire diameter, R is the 

radius of solenoid.  

 

2.3.4.  Impedance and Reactance of a Coil System 

 

Impedance of a coil can be modeled as series resistor and inductor by neglecting 

capacitive component. Application of AC signal to inductive element results in a lag of current 

and needs reactive power compensation. Inductive reactance component can be minimized by 

inserting series tuning capacitor in order to compensate current lagging. This reactive power 

compensation will result in full power transmission from oscillator to the pure resistive load, 

radiator. Similar wise receiver has to be power compensated in order to maximize reception of 

transferred inductive power.  In Figure 2.8 series power compensation is presented. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8. Series power compensation of an inductive radiator 
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Input impedance of a coil is presented in equation 2.38,  

 

 
1

in in in DC AC Proximity Radiation s
s

Z R jX R R jwL
jwC+ += + = + + +  (2.38) 

 

At resonant frequency of a series RLC system, inductive reactance and capacitive 

reactance equalizes and results in pure resistive component. This allow oscillator to pump 

maximum power through this low resistive load.   

 

 
 

Figure 2.9. Impedance and total resistance versus frequency of a compensated radiator 

 

As the frequency changes, input impedance becomes either inductive or capacitive 

reactive and results in increase of input impedance. 
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Figure 2.10. Inductive and capacitive reactance versus frequency  

 

 
 

Figure 2.11. Current-Voltage Phase relationships at resonant frequency 
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Adding extra series capacitance will create lead in current and drive system to capacitive 

reactive state and system will have lower resonant frequency as shown in Figure 2.12. 

 

 
 

Figure 2.12. Effect of adding extra series capacitance 
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3.  CIRCUIT MODEL OF WIRELESS POWER TRANSMISION 
 

 

3.1.  COUPLED NETWORK MODEL 

 

A coupled resonant circuit is a pair of two circuits, each oscillating or resonating at one 

or more frequencies, mutually coupled by electromagnetic influences. These influences can be 

either electromagnetic, as observed in a transmitting antennae, inductive (magnetostatic), as in 

transformer, or capacitive (electrostatic). [16-20]  

 

The coupled resonant circuit theory can be analyzed using second order RLC circuits 

and their mutual coupling to each other. Lumped element decomposition of system into 

generic elements such as resistances, inductances and capacitances makes analysis of the 

structure simple. The fundamental model of a coupled resonant system is shown in Figure 3.1. 

 

 
 

Figure 3.1. Lumped element (series RLC) model of resonant coupled circuit 

 

This model shows two series circuits, comprised of a resistor, inductor, and capacitor 

(RLC), magneto-statically coupled by the mutual flux connecting their two inductors. The 

designation of series versus parallel topology comes from the location of the loss mechanism 

(resistance) in the circuit relative to the energy storage elements (capacitors or inductors).   
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3.1.1.  Lumped Parameter Analysis and Second Order RLC Circuits 

 

This section consists of an analysis of the frequency domain responses of second order 

RLC circuits and expressions to analyze maximum power transmission. There are general 

methods of analyzing second order circuits that allow tailored system responses to fit design 

criteria. One method is to introduce a generic frequency representation that can be adapted to 

fit both the series and parallel RLC cases, the Laplace transform.  

 

The damping coefficient ( )ξ representation is one of the most common methods used to 

represent second order response formulations. The representation comes from the second order 

differential equation shown in equation 3.1.  

 

 
2

2
2 2 ( )n n

d f df f D t
dt dt

ξω ω+ + =  (3.1) 

 

The variables and parameters used in equation 3.1 are as follows: f is the function that 

describes a waveform in the second order system. It could represent a voltage or current as a 

function of time. The parameter ξ  (unit-less) is the damping coefficient. Its value is an 

indication of the energy lost in the system per cycle of oscillation. It is used to calculate other 

parameters that describe features of the second order response. The frequency nω  (rad/sec) is 

the characteristic resonant frequency of the system, the frequency at which the system would 

oscillate if uncoupled or undisturbed from any external influences. The term ( )D t is the 

driving force that couples the system to an external influence. This force can take the form of 

an input voltage or current. 

 

The Q or Quality factor representation more directly relates to coil design requirements 

and is considered more useful in describing coil behavior. Q represents the ratio of the energy 

stored in the system divided by the energy lost per cycle.  For a second order series RLC 

circuit, Q can be related to the ratio of circuit impedances: /L totalZ R , the ratio of inductive 

impedance relative to total resistive loss, at the system resonant frequency, nω . The 
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conversion between Q and ξ  is 1/ 2Q ξ= . As Q goes to infinity, the damped oscillation 

frequency approaches ideal resonant frequency, nω . 

 

 
(avarage energy stored)
(energy loss / second)

magnetic electric
n n

loss

W W
Q

P
ω ω

+
= =  (3.2) 

 

At ideal resonant frequency nω , magnetic stored energy and electric stored energy is 

equal.  In order to maximize Q, lossP  needs to be minimized and magnetic electricW W+ needs to be 

maximized.  

 

 
2 2 2

2

1 1 1 1,   ,   P
4 4 4magnetic electric lossW I L W I I R

Cω
= = =  (3.3) 

 

From equation 3.2, Q factor can be derived as in equation 3.4 for series resonant coupled 

circuits,  

 

 

2 2
2 2

2

1 1 1 1
4 4

1
4

I L I L
C CQ

RI R
ω ωω ω

+ +
= =  (3.4) 

 

3.1.2.  Coupled Resonant RLC Networks 

 

Any circuit with two or more energy storage devices is called a resonating network. For 

the second order RLC circuit, there are two storage devices: a capacitor and an inductor. These 

two energy storage devices give the circuit, regardless of its topology, a single resonant 

frequency. Circuits with multiple pairs of energy storage elements have multiple resonant 

frequencies. These frequencies represent the speed of energy transfer between inductors and 

capacitors in the circuit. The power behind the lumped parameter model is that it takes a 

geometrically and spatially dependent system, containing distributed inductances and 
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capacitances and converts it into an electrical circuit model that can be analyzed with the tools 

of circuit theory.  

 

When combining two second order circuits, each with its own resonant frequency and Q 

factor, the behavior of the total, fourth order system is not simply a sum, difference, or average 

of the two circuits. Different parts of the circuit resonate at different frequencies related to the 

original independent fundamental frequencies. As the system is driven by an external source, 

the energy it transfers to the circuit is moved between the energy storage elements of the 

circuit according to each device’s constitutive relations. The result is that circuits will load one 

another and affect their natural resonance frequencies and individual Q factors. 

 

3.1.3.  Derivation of Dynamics in the Frequency Domain 

 

A solution describing the operation of the coupled resonant system is presented below.  

The relationship between transmitter and receiver network helps us to understand the nature of 

the induced waveforms in the receiver. 

 

We begin with derivation of series impedances as seen from the transmitter ( )tZ  and 

receiver ( )rZ  alone:  

 

 
1( )t t t

t

Z R j L
C

ω
ω

= + −  (3.5) 

 

 
1( )r r r

r

Z R j L
C

ω
ω

= + −  (3.6) 

 

These impedances are defined for the circuit elements in series. Kirchhoff’s rules are 

used on the circuit to derive system transfer function [13]. 
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For a system driven by an input of the form ( )inV s , a transfer function ( )H s  can be 

derived that relates the input, ( )inV s  to an output ( )outV s . The frequency domain variables are 

written in upper case letters.  Kirchhoff’s voltage equations are written for going around the 

transmitter and receiver circuits below:  

 

 in t t rV I Z j MIω= +  (3.7) 

 

The equation 3.8 utilizes Faraday’s and Lenz’s laws to find the induced EMF in the 

circuit in the form of coupled inductance.  

 

 t r rj MI I Zω− =  (3.8) 

 

Solving equation 3.8 for sI and then plugging it in the first equation to solve for pI

yields: 

 

 ( )2
in

t

t
r

VI
M

Z
Z

ω
=

+

 
(3.9) 

 

 ( )2
t in

r
r t r

j MI j MVI
Z Z Z M
ω ω

ω

− −
= =

+
 (3.10) 

 

The effect of the receiver coupled to the transmitter is identical to that of additional 

impedance in the series path. Instead of the current in the transmitter being a simple voltage 

divided by its own impedance, there is an additional impedance of ( )2 / rM Zω . This is due to 

the back EMF from the coupled receiver, with the sign according to Lenz’s law. The receiver 

coil, having its own voltage produced by the transmitter, loads the transmitter in an effort to 

oppose the creation of magnetic flux in its inductor. This effect appears as a drop in the 

voltage around the transmitter circuit loop, acting as additional impedance.  
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The output voltage on the receiver coil, measured as the voltage across the capacitor is:  

 

 ( )( )2

1 in
out r

r r t r

MVV I
j C C Z Z Mω ω

−
= =

+
 (3.11) 

 

 ( )21 1
out

in
r t t r r

t r

V M
V

C R j L R j L j M
j C j C

ω ω ω
ω ω

−
=

   
+ + + + +       

 
(3.12) 

  

Equation 3.12 is the transfer function, ( )H jω , of the coupled second order series RLC 

resonant system.   

 

 t rM k L L=  (3.13) 

 

We place mutual inductance M, expand and order terms by their degree and present in s 

domain: 

 

 

2

2 4 3

2

(1 ) ( )
( ) ( ) 1

t r tout

in t r t r t r t r r t t r

t r t r t t r r t t r r

k L L C sV
V k C C L L s R L C C R L C C s

R R C C L C L C s R C R C s

−
=

 − + +


+ + + + + +

 
(3.14) 

 

The effect of coupling is actually adding impedance in series with transmitter RLC 

circuit. The magnitude of this coupled impedance is ( )2 /coupled rZ j M Zω= − , as derived in 

equation 3.9 and equation 3.10. 
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Figure 3.2. Schematic of equivalent transmitter circuit 

 

 

( )

( )

2

2
1

1

t
tr t coupled t

r

t t
t

r r
r

M
Z Z Z Z

Z

j M
R jwL

jwC R jwL
jwC

ω

ω

= + = +

= + + −
+ +

 (3.15) 

 

The output impedance is more complicated to calculate in that the receiver capacitance 

is in parallel with the output terminals. The voltage induced on the receiver can be modeled as 

a voltage source supplying current to the receiver. Because of symmetry, the coupled 

impedance remains ( )2 /coupled tZ j M Zω= − . The output impedance is computed by finding the 

voltage across the capacitor in the receiver due to the induced voltage.  

 

Using the expression for the receiver current derived in equation 3.10 and an induced 

voltage magnitude of ( ) /induced in tV j MV Zω= −  yields: 

 

 ( )2 ,                    in induced
r out

rt r

j MV VI Z
IZ Z M

ω

ω

−
= =

+
 (3.16) 

 

This can be expanded to give,  
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2 3 2

2 4 3

2

( ) ( )
( )

( ) ( )
( ( ) ) ( ) 1

t r t t t r r t

t t r r r
out

t r t r t r t r r t

t t r r t r r t t r r

M L L C s C R L R L s
C R R L s R

Z
M L L C C s C C R L R L s

C R R C L L C s R C R C s

 − − +


− + −=
 − − +


− + + − + −

 (3.17) 

 

 
 

Figure 3.3. Schematic of Equivalent Receiver Circuit Impedance 

 

Output resistance is proportional to the characteristic impedance of a transmission line. 

Furthermore outZ always has a resistive and capacitive component in series.  

 

There is no physically consistent mathematical substitution for one of the parameters 

that will make it appear purely resistive or purely capacitive. 

 

3.2.  NONLINEAR DYNAMICS OF OSCILLATORS 

 

 Oscillators convert direct current (DC) power to radio frequency (RF). They are one of 

the most fundamental components in RF and microwave systems. However, an oscillator is 

inherently non-linear. If it were linear, the oscillation amplitude would grow indefinitely with 

time. [21, 22, 23] No steady state would be reached. For linear systems, the principle of 

superposition holds.  
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Oscillators are typically characterized as either L-C or R-C oscillators. We will work 

exclusively with L-C, or resonant, oscillators. L-C oscillators use a resonant circuit modeled 

by an inductor and capacitor to set the oscillation frequency. Depending on the frequency 

range, the resonant circuit is realized using a crystal (up to 500 MHz), dielectric transmission 

lines (500 MHz to 5 GHz), or dielectric resonators (2 to 40 GHz). The other major category of 

oscillator, the R-C type, is more commonly found in integrated circuits. Lacking inductors, R-

C oscillators have much lower Q than L-C oscillators, and instead rely upon the charging and 

discharging of a capacitor to reach a threshold voltage that causes switching from one mode to 

another (as in the relaxation oscillator), or rely upon the propagation time delay and inversion 

through several devices to achieve a delayed output that can be fed back to the input (as in the 

ring oscillator). Although R-C oscillators are noisier than L-C oscillators, they can be tuned 

over much larger bandwidths (up to a decade), simply because the charging resistance can be 

implemented using an active device whose impedance can then be varied over a large range. 

 

Ideally, an oscillator will generate an output current of the form,  

 

 0 0( ) cos( ) cos(2 )i t A t A f tω π= =  (3.18) 

 

 This is a pure sinusoid, represented by a single phasor of frequency 0f  in the 

frequency domain. In practice, both A and 0f will fluctuate about their average values. The 

first fluctuation is amplitude noise and is generally lower in power than the second fluctuation, 

known as phase noise. Achieving the desired levels of A and 0f , minimizing the sources of 

phase noise, and tuning the frequency 0f are the key oscillator design criteria 

 

3.2.1.  A Series Resonant Circuit as an Oscillator 

 

We will take a simple circuit shown in Figure 3.4 to derive some fundamental 

expressions that are helpful in analyzing the behavior of an oscillator.  
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Figure 3.4. Series oscillator circuit, showing device resistance, resonant circuit,  

and load resistor 

 

Assume that the excitation voltage in the Figure 3.4 is the bias voltage, which is 

switched on at t = 0. We can apply Kirchhoff’s voltage law to the circuit to obtain; 

 

 
0

1 t

IN D L
die R i idt L R i

C dt
= − + + +∫  (3.19) 

 

Or if we use the Laplace transform of the circuit and consider INe  being step voltage; 

 

 ( )IN
L D

e iR R i sLi
s sC

= − + +  (3.20) 

 

The output voltage taken across RL may be written as LiR  or 

 

 2 2
0 0

1
2

L
o IN

Re e
L s sξω ω

 =   + + 
 (3.21) 

 

Where,  
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 2
0

1 ,
LC

ω =  (3.22a) 

 

 ( )
0

1
,

2 2

D

L D L

R
R R R

L Q
ξ

ω

−
−

= =  (3.22b) 

 

  

 0

L

LQ
R

ω
=  (3.22c) 

  

The roots of equation 3.21 are given by,  

 

 ( )2
0 1s jω ξ ξ= ± −  (3.23) 

 

So the inverse Laplace transform of equation 3.21 is given by,  

 

 0 2
02

0

1 sin( 1 )
1

tL
o IN

Re e e t
L

ξω ω ξ
ω ξ

−
 
 = −
 − 

 (3.24) 

 

Equation 3.24 is plotted in Figure 3.5 for both positive and negative values ofξ . 
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Figure 3.5. Output voltage of the series RLC circuit to a step response at the input 

 

The time-domain response given by equation 3.24 is a sinusoid of frequency 2
0 1ω ξ−  

multiplied by an envelope of value 0te ξω− . .The envelope can be written as /te τ− , where τ   is the 

time for oscillations to decay to 1 / e  of their initial value. The τ is equal to 01/ ω ξ  so is 

directly proportional to Q. For positive values ofξ , the envelope decays over time and there is 

no steady-state oscillation. However, for negative values ofξ , oscillation grows exponentially 

because the envelope increases with time [24-27].  

 

3.3.  MUTUAL INDUCTANCES OF COILS 

 

The mutual inductance (M) is affected by the proximity of the transmitter coil to the 

receiver and the geometries of both the transmitter and receiver. As the magnetic flux ( B
ur

) 

from the transmitter induces (couples) its magnetic field to the receiver, the magnetic field 

strength (H) in the receiver will have a higher density as it is moved closer to the transmitter 

and the more perpendicular the field is to the conductor (winding).  
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The basic building block of a cylindrical coil is the single turn or loop of wire. To 

evaluate the total inductance, self-inductance of a loop is first determined as a function of the 

wire diameter and the loop diameter. The coil consist of a number, N, of coaxial loops 

connected in series. The mutual inductances between all of the loops contribute to the total 

coil inductance. A general expression for the mutual inductance between two coaxial loops as 

a function of the mean diameters of the loops and the axial spacing is determined and this is 

used to calculate entire array of mutual inductance’s between all of the coil’s turns. In the 

general case the cross-section of the coil may be of any shape, rectangular, etc. The simplest 

case is the single layer solenoid. The method presented below is valid when all turns are 

coaxial. In general, the vector magnetic potential, A
ur

, at a point r from a current element Ids is 

given by,  

 

 
 

(3.25) 

 

The mutual inductance between two circuits, 1 and 2, is defined as the flux, 12Φ , through 

the circuit 1 due to a unit current in circuit 2, or vice versa. The flux of  B n
ur r

i  field integrated 

over the area of any closed circuit is equal to the line integral of the magnetic vector potential 

around that circuit. The mutual inductance, trM , is therefore given by; 

 

 
 

(3.26) 

 

In principle, equation 3.26 can be applied to any two circuits to obtain the mutual 

inductance or to a single circuit to obtain self inductance. 

 

The only component of the vector potential, Aϕ , at point P on loop b due to a current in 

loop a is independent of ϕ . Here z and a1 are constant because of the coaxial location of the 

two loops. 
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Figure 3.6. Mutual coupling between loops 

 

It is assumed that current distribution is uniform on the current conductor and therefore 

current has symmetrical line location at the radius 1a . Under these conditions the vector 

potential at point P has only the component Aϕ , and is given by;  

 

 1
2 2 2

0 1 2 1 2

cos( )
2 2 cos( )

a dIA
a a z a a

π

ϕ
ϕ ϕµ

π ϕ
=

+ + −∫  (3.27) 

 

Since Aϕ  is the only component and is everywhere tangent to the loop radius 2a , then 

by equation 3.26, the mutual inductance trM between two loops of radii 1a  and 2a  axially 

spaced at trz  is;  

 

 1 2 2 2 2
0 1 2 12 1 2

cos( )
2 cos( )

tr
dM a a

a a z a a

π ϕ ϕµ
ϕ

=
+ + −∫  (3.28) 
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3.3.1.  Self Inductance of a Loop of Finite Size Wire  

 

Figure 3.7 is the diagram of a loop of radius R made of wire with radius d and 

permeability 'µ carrying a uniformly distributed total current I. The total self inductance can 

be determined by evaluating the B field energy within the wire plus the flux coupled to the 

inside diameter of the loop. The B field inside the wire is a function of the radius and is given 

by:  

 

 2

'( )
2

RIB R
d

µ
π

=  (3.29) 

 

The total inductive energy stored in the wire is given by; 

 

 
2

2 3 2
112 4

0

1 ' 12
2 ' 8 2

d

i
v

I RW B dV R dR L I
d

µ
π

µ π
= = =∫ ∫  (3.30) 

 

The inductance component due to energy inside the wire is; 

 

 11' ' RL
d

µ=  (3.31) 

 

 

 

 

 

 

 

 

 

Figure 3.7. Loop radius illustration for magnetic flux calculations 
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The total flux external to the conductor, i.e., the total flux contained within radius R-d, is 

a measure of the inductance component external to the conductor. The flux is evaluated by 

equation 3.27. The vector potential component Aϕ  evaluated at radius R-d and z=0 and 

multiplied by the circumference, 2 ( )R dπ − , is the external flux by equation 3.26. Therefore 

the total inductance of the loop is given by; 

 

 2 2
0

cos( )( ( ))
4 ( ) 2 ( ) cos( )

o
R dL R R d

R R d R R d

π ϕ ϕµ µ
ϕ

= + −
+ − − −∫  (3.32) 

 

3.3.2.  Derivation of Co-Axial Coil Self Inductance 

 

 
 

Figure 3.8. Coil with its design parameters 

 

The general configuration of a co-axial coil is shown in Figure 3.8. The coil consist of N 

total coaxial loops, each having a specified wire radius, a loop mean radius, and axial position.  
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The axial position is only important in the determination of the relative axial positions of 

the N loops. The basic definition of inductance referred to two terminals is expressed as;  

 

 
1,2

1,2

E
L di

dt

=  (3.33) 

 

Where; 1,2E is the total voltage at terminals 1-2 as a result of the unit time rate of change 

of current passing through the terminals.  

 

If we consider the general coil of Figure 3.8, the total voltage per unit rate of change of 

current consists of the total self inductance of the loops plus the sum of all of the mutual 

inductances.  

 

Since , ,v w w vM M=  each mutual will appear twice in determining the total voltage. Thus 

the total inductance of the coil is the sum of all of the elements in the inductance matrix as in 

equation 3.34.  

 

The diagonal elements are the self inductances of the loops as determined by equation 

3.32 and the symmetrical mutual inductances are determined by equation 3.34. 

 

 

1 1,2 1, 1,

1,2 2 2, 2,
,

1 1 1, 2, ,

1, 2, ,

n N

N N
n N

v w
n n n n N

N N n N N

L M M M
M L M M

M
M M L M
M M M L

= ∑∑  (3.34) 
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3.3.3.  Mutual inductance of Coaxial Concentric Coils 

 

 
 

Figure 3.9. Coaxial concentric coil representation 

 

 
2 2 2 2

4 2

(0.5 )( ) 0.0501 1 3 4
8

r t r t r t

r

R N N R R HM H
g g R

µ
  

= + −  
  

 (3.35) 

 

Where, M is the mutual inductance of coaxial concentric transmitter and receiver coil in 

µH, Rr is the radius of receiver coil, Rt is the radius of transmitter coil, Nt is the number of 

transmitter coil turns, Nt is the number of receiver coil turns, Ht is the height of transmitter, g 

is the hypotenuse of imaginary right triangle formed from base of receiver coil and outer edge 

of the transmitter.  

 

 2 2(0.5 )t rg R H= +  (3.36) 

 

Where, Hr is the height of receiver. The coefficient of coupling (k) can be calculated 

with the mutual inductance,  
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t r

Mk
L L

=  (3.37) 

 

Where, k is coefficient of coupling between transmitter and receiver windings (less 

than1.0), M is mutual inductance of transmitter and receiver winding in µH, tL  is inductance 

of transmitter coil in µH, rL  is inductance of receiver coil in µH. 

 

Table 3.2. Example transmitter and receiver coil parameters  

 

Ambient temperature (TA) = 25 C Transmitter Current = 10 A 

Transmitter turns N1 = 13 Receiver turns N2 = 2440 

Transmitter wire diameter d1 = 3.24 mm Receiver wire diameter d2 = 0.324 mm 

Transmitter Radius R2 = 22.86 cm Receiver Radius R2 = 5.715 cm 

Transmitter inter-winding gap di1 = 25.4 mm Receiver inter-winding gap di2= 0 mm 

 

We take parameters as in defined in Table 3.2 and have simulations for mutual 

inductance and coupling coefficient analysis for various parameter changes. 
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Figure 3.10. Mutual Inductance at Various Transmitter Radius and Turns 

 

 
 

Figure 3.11. Coupling coefficient vs. transmitter radius with various turns 
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Figure 3.12. Coupling coefficient vs. various receiver radius and turns 
 

 
 

Figure 3.13. Coupling coefficient vs. various transmitter and receiver wire diameters 
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Figure 3.14. Coefficient coupling with various transmitter & receiver turns 

 

3.3.4 Mutual inductance of Coaxial Non-concentric Coils 
 

 
 

Figure 3.15. Coaxial non-concentric coil representation 
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 [ ]
2 2

( ) 0.02505 1 1 3 3 5 5
4(0.5 0.5 )

s p p s

p s

R R N N
M H K k K k K k

H H
µ = + +  (3.38) 

 

Where, M is mutual inductance of coaxial concentric transmitter and receiver winding in 

µH, Rr is radius of receiver coil, Rt is radius of transmitter coil, Nt is number of transmitter 

turns, Nt  is number of receiver coil turns, Ht is height of transmitter, Hr  is height of receiver. 

And the following form factors,  

 

 ( )0.5 0.5s pD H H Dsh= − +  (3.39) 

 

Where, Dsh is the separation from base of transmitter to base of receiver, k1 = Hr is the 

height of receiver 

 

 2

2 2 11
2 1p

x xK
R r r

 = − 
 

 (3.40) 

 

Where, x1 is the distance from center of receiver coil to the upper edge of transmitter 

and calculated from x1 = D − (0.5Hp), x2 is the distance from center of the receiver coil to the 

lower edge of transmitter and calculated from x2 = D + (0.5Ht), r1 is the hypotenuse of 

imaginary right triangle formed from center of receiver coil and upper edge of the transmitter 

and calculated from 2 21 1r x A= + , r2 is the hypotenuse of imaginary right triangle formed 

from center of receiver coil and lower edge of the transmitter and calculated from 

2 22 2r x A= + ,  

 

 5 5

1 23 0.5
1 2
x xK
r r

 = − 
 

 (3.41) 

 

 
( )2

2
2

4 0.5
3 0.5 3 s

s s
s

H
k R H

R

 
 = −
 
 

 (3.42) 
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2 2 2

9 2 9 2

1 4 1 2 4 25 3 3
8 1 2

p

p p

R x x x xK
r R r R

    
= − − −            

 (3.43) 

 

 
( ) ( )2 2

4
2 4

0.5 0.555 0.5 10 4
2

s s
s s

s s

H H
k R H

R R

 
 = − +
 
 

 (3.44) 

 

 
 

Figure 3.16. Mutual inductance and coupling coefficient while axially moving receiver out 

 

3.3.5.  Leakage Inductance Calculation 

 

The mutual inductance is the degree of coupling the transmitter and receiver share. The 

leakage inductance is the inductance not shared between the transmitter and receiver. The 

mutual inductance couples the transmitter energy to the receiver. Since all the power must be 

accounted for (law of conservation), the power not transferred to the receiver is dissipated in 

the leakage inductance.  
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 1
t

Leakagek
L

 
= −  

 
 (3.45) 

 

Where, k is the coefficient of coupling, leakage is measured leakage inductance of 

transmitter (magnetizing) winding in henries with receiver winding shorted together, Lt is 

inductance of transmitter (magnetizing) winding in henries.  

 

The mutual inductance and coefficient of coupling affect the magnetizing inductance. 

Therefore the magnetic flux density (B) also depends on M and k. The magnetizing inductance 

is the inductance of the winding the current is being applied to (transmitter), the other winding 

in the transformer being the one the current is being transferred to (receiver). The magnetizing 

inductance is decreased by the coefficient of coupling:  

 

 ( ) (1 )tL h L k= −  (3.46) 

 

Where, L is the inductance of transmitter (magnetizing) coil in henries, Lt is the 

inductance of transmitter coil in henries, k is the coefficient of coupling. Since k is always less 

than 1.0, the magnetizing inductance and B will always be less than that calculated without k. 

Higher k will result in lower magnetizing inductance. 
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4.  ARRAY STRUCTURE FOR MAXIMUM POWER TRANSMISSION  
 

 

4.1.  POWER TRANSFER EFFICIENCY ANALYSIS 

 

The efficiency of the coupled system depends on how much energy is transferred from 

the transmitter to the receiver circuit.  

 

 
,max

,max

receiver
energy

transmitter

E
E

η =  (4.1) 

 

The maximum energy found on the transmitter, ,maxtransmitterE , is the amount of energy 

initially put on the input capacitor tC  by the voltage source 0V .  

 

 2
,max

1
2transmitter init t inE E C V≈ =  (4.2) 

 

Where inV  is the voltage on tC  at time t=0, during positive pulse duration tC acts like a 

voltage source and completes a series loop with the transmitter circuit elements, tR , tL  and tC  
 

 
 

Figure 4.1. Resonant Wireless Power Transmission Lumped Circuit Diagram 
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The maximum energy transferred to the receiver is only a fraction of input energy. The 

energy found is receiver circuit is:  

 

 2 2
2

1 1
2 2receiver r r r CE L I C V= +  (4.3) 

 

The voltage across the receiver capacitor is defined to be the output voltage outv of the 

coupled system. When this output voltage is at maximum, the energy in the capacitor is at 

maximum. When the energy stored in the capacitor is at maximum, the energy in the receiver 

can be assumed as maximum. 

 

At maximum voltage level on receiver circuit, current becomes zero and no current 

flows from the circuit. At this point energy stored in receiver inductor is zero because current 

is zero. Thus, maximized receiver energy is:  

 

 2
,max ,max

1
2receiver s outE C V=  (4.4) 

 

To explicitly determine this maximum receiver energy, it is necessary to first determine 

the output voltage and its maximum value. The load LR is connected across the receiver 

capacitance. The total output energy is defined to be the power dissipated by the load 

integrated over the lifetime of the output waveform. The output voltage across the load resistor 

is found by using the equivalent output impedance outZ in a Thevenin equivalent circuit. 

Voltage across the load is:  

 

 ( ) ( ) load
load out

load out

Rv t v t
R Z

 
=  + 

 (4.5) 

 

To compute the energy delivered to the load, it is convenient to find the power delivered 

to the load;  



51 
 

 
2

out
load load

load out

vP R
R Z

 
=  + 

 (4.6) 

 

The power delivered to the load is maximized when the impedances are matched and 

purely resistive ( load outR Z= ). We derive peak receiver current using coupled circuit theory;  

 

 ro t
r

r

MII
Z

ω
=  (4.7) 

 

From current equation, we derive peak oscillating voltage on receiver,  

 

 
sin( tan )

r
r r

ro r

ZV I
t S Sω δ φ

 
= −  + − 

 (4.8) 

 

 
2 1tan ro r r

ro r r

L CS
C Z

ω
φ

ω
−

=  (4.9) 

  

 
 

Figure 4.2. Receiver voltage and current while changing transmitter and receiver turns 
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We find power induced on receiver coil from:  

 

 ( )2

( )r rms
r

r

V
P

Z
=  (4.10) 

 

And efficiency as a ratio of power received on receiver and transmitted power:  

 

 100r

t

P
P

η = ×  (4.11) 

 

 
 

Figure 4.3. Received power on receiver while moving out of transmitter coil 

 

As we remove receiver coil axially out of transmitter, we see exponential decrease on 

received power. Transmission efficiency is inversely proportional with the axial distance.  

 

This is where the resonance comes in and helps efficiency dramatically by "tunneling" 

the magnetic field to a receiver coil that resonates at the same frequency. If resonant coupling 
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is used, where coils are tuned to a mutual frequency and the input current is modified from a 

sinusoidal into a non sinusoidal rectangular or transient waveform so as to more aggressively 

drive the resonance, significant power may be transmitted over a range of many meters.  

 

Unlike the multiple-layer windings typical of non-resonant transformers, such 

transmitting and receiving coils are usually single layer solenoids or flat spirals with series 

capacitors, which in combination allow the receiving element to be tuned to the transmitter 

frequency and give low losses.  

 

The tradeoff between high Q and bandwidth is a major problem with resonant coupling 

systems and needs to be analyzed deeper to utilize wider frequency spectrum. An array system 

with different resonant frequencies is presented in the next part in order to utilize wider 

spectrum as transmission medium.  

 

4.2.  MAXIMIZING TRANSMITTED POWER  

 

In order to maximize transmission efficiency and transmitted power to the receiver, we 

need to maximize mutual inductance and coupling coefficient:  

 

 so t
r

r

MII
Z

ω
=  (4.12) 

 

 
t r

Mk
L L

=  (4.13) 

 

Mutual coupling is directly related to geometrical design of the coils, i.e.: larger 

transmitter and receiver radius and higher transmitter and receiver turns increase mutual 

inductance while increasing the height of the coils decreases mutual inductance.  

 

The ratio of the inductance L to the resistance R of a coil remains constant for different 

winding arrangements in the same volume and shape. It makes sense to define this value as a 
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figure of merit to distinguish different coil structures. The quality factor Q is defined by this 

ratio. The voltage, which is induced by the same current in an inductor scales with the 

frequency f and thus the apparent power in the device.  

 

The general definition of the quality factor is based on the ratio of apparent power to the 

power losses in a device. From this definition, the quality factor of a coil results to:  

 

 
(avarage energy stored)
(energy loss / second)

magnetic electric

loss

W W LQ
P R

ω
ω ω

+
= = =  (4.14) 

 

Increasing Q factor results in lower BW radiator and receivers. The tradeoff between 

bandwidth and Q factor, limits us to utilize small portion of spectrum while having high Q 

factor. In the next part, we propose an array structure approach to solve narrow band 

utilization. 

 

4.3.  MAXIMIZING TRANSMISSION SPECTRA  

 

As indicated in Chapter 2, we limit ourselves to use a limited rectangular box space for 

the transmitter and receiver radiators.  

 

Our approach to solve limited space power transmission is to maximize transmission 

spectra with array structured transmitter and receiver apertures.  We know that high Q 

receivers tuned for a part of spectrum receive only related part of the spectrum (receiver’s 

resonant frequency), so we design array transmitter system with separate resonant frequencies 

and receivers with exact couples of transmitters.  

 

In order to simulate near field characteristics of transmitter and receiver coils, we have 

designed set of FEKO simulations based upon our Q factor calculations.  
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We first analyze broadband response of 10 MHz resonant transmitter and receiver 

couples with FEKO simulation software, then we analyze 5MHz transmitter and receiver 

couple. We compare FEKO results with our analytical calculations in MathCAD for 

comparison,  

 

10 MHz coupled system parameters:  Dsh (axial distance between coils) = 10 cm, N 

(number of turns) = 4, R (radius) = 4 cm, d (wire diameter) = 0.5 mm, Di (inter-winding 

distance) = 0.8 mm. 

 

 
 

Figure 4.4. FEKO simulation of 10 MHz resonant transmitter and receiver coils. 
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Figure 4.5. Wideband current response of transmitter coil with fo =10 MHz 

Dsh = 13 cm, N = 4, R = 26.5 cm, d = 0.8 mm, Di = 2.5 cm (FEKO simulation) 

 

 
 

Figure 4.6. Wideband current response of receiver coil with fo =10 MHz 

Dsh = 13 cm, N = 4, R = 26.5 cm, d = 0.8 mm, Di = 2.5 cm (FEKO simulation) 
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Figure 4.7. MathCAD simulation of receiver current near resonant frequency with various 

receiver wire diameters Dsh = 13 cm, N = 4, R = 26.5 cm, d = 0.8 mm, Di = 2.5 cm  

 

 
 

Figure 4.8. Wideband current response of transmitter coil with fo = 5 MHz 

fo = 5 MHz, Dsh = 13 cm, N = 6, R = 38.1 cm, d = 0.8 mm, Di = 2.5 cm (FEKO Sim.) 
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Figure 4.9. Wideband current response of receiver coil with fo =5 MHz 

fo = 5 MHz, Dsh = 13 cm, N = 6, R = 38.1 cm, d = 0.8 mm, Di = 2.5 cm (FEKO Sim.) 

 

 
 

Figure 4.10. MathCAD simulation of receiver current near resonant frequency with various 

receiver wire diameters fo= 5 MHz, Dsh= 13 cm, N= 6, R = 38.1 cm, d = 0.8 mm, Di = 2.5 cm  
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 Next, we analyze array transmitter and receiver system. We combine 10 MHz coupled 

system with 5 MHz coupled system. We find that each coupled circuit has small interference 

from the neighboring wireless transmission line.  

 

 
 

Figure 4.11. Dual transmitter and dual receiver   

(10 MHz + 5 MHz transmitter and receiver) (FEKO simulation) 
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Figure 4.12. Wideband current response of transmitter coil with fo = 5 MHz (Array System) 
 

 
 

Figure 4.13. Wideband current response of transmitter coil with fo = 10 MHz (Array System) 
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Figure 4.14. Wideband current response of transmitter coil with fo = 5 MHz and fo = 10 MHz 

(Array System) 

 

4.4.  MAXIMIZING FIELD INTENSITY  

 

If we do not limit ourselves to use a limited space, we can use combinations as in 

Figure 4.15 in order to increase transmitter number.  

 

 
 

Figure 4.15. Array transmitter and single receiver system 
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 In figure 4.16, we present current spectrum on the receiver side, 

 

 
 

Figure 4.16. Received current spectrum for array transmitter and single receiver system 

 

 In figure 4.17, we increase radius of the receiver and observe extra reception on its 

self-resonant frequency. 

 

 
 

Figure 4.17. Array transmitter and single tuned receiver system 
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Figure 4.18. Received current spectrum for array transmitter and single tuned receiver system 

 

4.5.  CONCLUSION 

 

 Our studies on high Q RF resonators for strongly coupled resonant power transmission 

method clearly shown that power can be transferred further distances than loosely coupled 

coils. Wideband excitation of coils results in emission of waves in natural resonant frequencies 

of the coil – oscillator system. Upper harmonic emissions are also present in a narrow band 

high Q helix radiator. Strongly coupled inductive power transmission has small bandwidth 

utilization. This can be thought as downside of this system, but this problem can be solved by 

utilizing array transmitter and receiver systems with different resonant frequencies. 

 

Even though phased array systems are common increasing transmitted and received 

power in the far field, but it is quite hard to pump and extract high power densities in the far 

field. Unlike the far-field where EM waves are usually characterized by a single polarization 

type (horizontal, vertical, circular, or elliptical), all four polarization types can be present in 

the near-field. The near-field is further divided into the "reactive" near-field and the 

"radiative" near-field. [28] 
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The reactive powers, which are present in very near field and circulate stored energy 

around it, cancel at resonance [28]. Using long-lived oscillatory resonant electromagnetic 

modes, with localized slowly-evanescent field patterns, efficient wireless non-radiative mid-

range energy transfer can be realized. Non-radiative resonant coupling mechanism allows 

wireless power transmission with very low electromagnetic radiation. 

 

Downside of strongly coupled resonant coils with high Q is small bandwidth utilization 

for power transmission. We propose to utilize coupled array of transmitters and receivers with 

different resonant frequencies in order to utilize different parts of the spectrum. Our coupled 

pairs clearly shows strong coupling to its resonant counterpart (receiver). FEKO simulations 

clearly show very small interaction between high Q transmitters. Most of the radiated energy 

is being captured by its resonant receiver pair.  

 

Future studies can be focused on utilizing wider bandwidth with having multi resonant 

frequencies on the transmitter system. One approach may be synthesis of multiple resonant 

networks [16-18]; another may be upper harmonic maximization. Upper harmonic suppression 

is a common method in power electronics, but for wireless power transmission, it may be 

advantageous to utilize harmonics. 

 

Different core, coil and surface materials and left handed dispersive mediums can be 

investigated to increase system performance.  

 

Effective utilization of high power negative resistance oscillators may open a new 

perspective. Theoretical and practical nature of parametric resonance [27, 28] and damped 

oscillations can be studied. Near field dynamics of damped wideband coherent slow waves (1 

Hz…1 MHz) can be studied [29-44].  

 

Lastly, phase, speed, coherence related array transmitter combinations and wideband 

inductive receivers with high gain resemble exciting scientific research area to be explored.  
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APPENDIX A: BACKGROUND 
 

 

A.1.  MAXWELL’S FIELD EQUATIONS 

 

In a region where µ  andε are continuous and in which there may be an electric charge 

density together with electric convection or conduction currents, we shall assume that the 

electric and magnetic quantities are connected by the equations; 

 

 ( , ) ( , )D r t r tρ∇ ⋅ =
uur ur

 (A.1) 

 

 ( , ) 0B r t∇ ⋅ =
uur ur

 (A.2) 

 

 ( , )( , ) B r tE r t
t

∂
∇ × = −

∂

uruur ur
 (A.3) 

 

 ( , ) ( , )( , ) ( , )B r t D r tH r t J r t
tµ

∂
∇ × = ∇× = +

∂

ur urur uur ur ur
 (A.4) 

 

Where E(r, t) in V/m is the vector representing the electric field intensity, ( , )D r t
ur

 in 

2/C m  is the electric flux density, ( , )H r t
uur

 in A/m is the magnetic field intensity, ( , )B r t
ur

 in T 

is the magnetic flux density, ρ(r, t) in 3/C m  is the charge density and ( , )J r t
ur

 in 2/A m  is the 

current density. All of the above electromagnetic field variables depend on the spatial position 

with respect to some coordinate system, r, and the elapsed time, t in s. 

 

The electric and magnetic field vectors can be related through the constitutive relations,  

 

 0( , ) ( , )rD r t E r tε ε=
ur ur

 (A.5) 
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 0( , ) ( , )rB r t µ µ H r t=
ur uur

 (A.6) 

 

 ( , ) ( , )J r t E r tσ=
ur ur

 (A.7) 

 

Where, 12
0 8.85 10ε −≈ ×  F/m is the free space permittivity, rε is the material-dependent 

relative permittivity (also called the dielectric constant), and 0 rε ε ε=  simply permittivity; 

6
0 1.257 10µ −≈ ×  H/m is the free space permeability, rµ is the material-dependent relative 

permeability, and 0 rµ µ µ= simply permeability; and σ is the material-dependent conductivity 

expressed in S/m.  

 

A.1.1.  Physical Interpretation of Maxwell’s Field Equations 

 

The div operation characterizes how much a vector field linearly diverges and the curl 

operation characterizes the strength of the curl (rotation) in the field. Both relate to spatial 

operations, i.e. they do not involve any operations with respect to time. 

 

( , ) ( , )D r t r tρ∇ ⋅ =
uur ur

 means that static or dynamic charges in a given volume are 

responsible for a diverging electric field. That implies that there must be a distinct source and 

sink for the electric field since a field cannot possibly (linearly) diverge and start and end in 

the same location. 

 

( , ) 0B r t∇ ⋅ =
uur ur

 means that there is no physical medium which makes a magnetic field 

diverge. This equation comes from the observation that there are no magnetic charges known 

to physics. Note that magnetic charges are sometimes introduced in theoretical 

electrodynamics so as to simplify and beautify the derivation of certain theories. 

 

( , ) ( , ) /E r t B r t t∇ × = −∂ ∂
uur ur ur

 means that a spatially varying (curling) electric field will 

cause a time-varying magnetic field. Alternatively, it can be rewritten as
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( , ) / ( , )B r t t E r t− ∂ ∂ = ∇ ×
ur ur ur

, i.e. a time-varying electric field will cause a curl in the magnetic 

field.  

 

( , ) ( , ) / ( , )H r t D r t t J r t∇ × = ∂ ∂ +
uur uur ur ur

can be read as follows. A spatially varying (curling) 

magnetic field will cause a time-varying electric field and, if existent, also a current through a 

medium capable of carrying a flow of electric charges. The equation can also be read as either 

a current flow through a medium or as a time-varying electric field producing a spatially 

curling magnetic field. 

 

The first two equations yield separately an insight into the properties of the electric and 

magnetic field, respectively. The remaining two equations, however, show that both fields are 

closely coupled through spatial (curl) and temporal (∂/∂t) operations. We can also observe that 

the equations are entirely symmetric apart from the current density ( , )J r t
ur

. It turns out that 

this asymmetry is responsible for any radiation process occurring in nature, including the 

transmission and reception of electromagnetic waves. 

 

Let’s plug constitutive equations to Maxwell’s equations and rewrite, 

 

 0
( , )( , ) r

H r tE r t
t

µ µ
∂

∇ × = −
∂

uuruur ur
 (A.8) 

 

 0
( , )( , ) ( , )r

E r tH r t J r t
t

ε ε∇ × = +
∂

uruur uur ur
 (A.9) 

 

Let us assume first that there is a static current density ( )J r
ur

 available which, according 

to Equation (A.9), causes a spatially curling magnetic field ( )H r
uur

; however, it fails to generate 

a temporally varying magnetic field which means that ( ) / 0H r t∂ ∂ =
uur

. According to Equation 

(A.8), this in turn fails to generate a spatially and temporally varying electric field ( )E r
ur

. 

Therefore, a magnetic field is only generated in the location where we have a current density 
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( )J r
ur

 present. Since we are interested in making a wave propagating in a wireless environment 

where no charges (and hence current densities) can be supported, a static current density ( )J r
ur

 

is of little use. 

 

Our observations, however, change when we start generating a time-varying current 

density ( , )J r t
ur

 which, according to Equation (A.9), generates a spatially and temporally 

varying magnetic field ( , )H r t
uur

. Clearly, ( , ) / 0H r t t∂ ∂ ≠
uur

 which, according to (A.9), generates 

a spatially and temporally varying electric field E(r, t), i.e. ( , ) / 0E r t t∂ ∂ ≠
ur

.With reference to 

(A.9), this generates a spatially and temporally varying magnetic field H(r, t), even in the 

absence of a current density ( , )J r t
ur

.  

 

A wave is hence generated where the electric field stimulates the magnetic field and vice 

versa. This wave is electromagnetic (EM) wave, since it contains both magnetic and electric 

fields. From the above it is clear that such a wave can now propagate in space without the 

need of a charge-bearing medium; however, such a medium can certainly enhance or weaken 

the strength of the electromagnetic wave by means of an actively or passively created current 

density ( , )J r t
ur

. 

 

From Maxwell’s equations electric and magnetic components in explicit from can be 

derived by the help of two auxiliary concepts, the magnetic vector potential ( , )A r t
ur

 defined 

such that 

 

 ( , ) ( , )A r t B r t∇ × =
uur ur ur

 (A.10) 

 

And the electric scalar potential ( , )r tΦ defined such that 

 

 ( , )( , ) ( , ) A r tr t E r t
t

∂
− ∇ ⋅Φ = +

∂

urur ur
 (A.11) 
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When plugged into Maxwell’s equation, the two potentials manage to decouple, 

Equations (A.3) and (A.4), given that the following normalization is maintained between both 

auxiliary potentials; 

 

 ( , )( , ) 0r tA r t
t

µε
∂Φ

∇ ⋅ + ≡
∂

uur ur
 (A.12) 

 

This normalization condition is also often referred to as the Lorentz gauge. When 

applied, it leads to a set of decoupled differential equations,  

 

 
2

2
2 2

1 ( , )( , ) ( , )A r tA r t J r t
c t

µε µ
∂

∇ − = − ⋅
∂

urur ur
 (A.13) 

 

 
2

2 1
2 2

1 ( , )( , ) ( , )r tr t r t
c t

µε ε ρ−∂ Φ∇ Φ − = − ⋅
∂

 (A.14) 

 

Where, 1/c εµ=  is the speed of light in the material under consideration, and 2∇  is 

the Laplace operator, the exact mathematical description of which depends on the coordinate 

system of choice.  

 

The two equations (A.13) and (A.14) are often referred to as the wave equations, and 

solved in a fairly standard manner in dependency of prevailing sources and boundary 

conditions for ( , )J r t
ur

and ρ(r, t), to arrive at  

 

 

 

(A.15) 

 

 

(A.16) 

 



70 
 

Which are often referred to as retarded potentials. The reason for this nomenclature is 

that the effects of current density and charge time t and position 'r  are felt at position r after a 

time delay of ' /r r c− , which is exactly the time the electromagnetic wave needs to propagate. 

 

A.1.2.  Propagation Equation, Electrodynamic Potentials and Hertz Vector 

 

Taking the curl of (A.4) gives when µ  is constant,  

 

 
( ) ( )

( ) ( )

2( , ) ( , ) ( , )

( , ) ( , )

B r t B r t B r t

E r t E r t
t

µ γ ε

∇ × ∇× = ∇ ∇ ⋅ − ∇ ⋅

∂ = ∇× + ∇× ∂ 

uur ur ur ur ur ur ur

ur ur ur ur  (A.17) 

 

Substitution for ( , )B r t∇ ⋅
ur ur

 from (A.2) and for ( , )E r t∇ ×
ur ur

 from (A.3) give, 

 

 
2

2
2

( , ) ( , )( , ) E r t E r tE r t
t t

µγ µε
∂ ∂

∇ × = +
∂ ∂

ur urur
 (A.18) 

 

These are the propagation equations for the magnetic induction and the electric intensity. 

The first term on the right represents a dissipation of energy as heat or a damping term in the 

wave which is absent in insulating mediums where γ  is zero. We have used extensively an 

electrostatic scalar potential whose negative gradient is the electric field and a magnetostatic 

vector potential whose curl is the magnetic induction and whose divergence is zero. We wish 

to extend these potential definitions to include rapidly fluctuating fields. Let us, therefore, 

choose a general magnetic vector potential A
ur

 whose curl always gives the magnetic induction 

B
ur

 and which, for steady fields, reduces to the magnetostatic vector potential. Thus, 

 

 B A= ∇ ×
uur ur ur

 (A.18) 
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Eliminating B
ur

 by (A.3) and changing the differentiation order give 

 

 AE
t

∂
∇ × = −∇×

∂

uruur ur ur
 (A.19) 

 

Integration of this removes the curls but adds an integration constant whose curl is zero 

and hence must be the gradient of a scalar. Thus 

 

 AE
t

∂
= − − ∇Φ

∂

urur
 (A.20) 

 

Φ is called the electric potential, which is identical with the electrostatic potential for 

static fields. It is convenient, but not necessary to have A and Φ satisfy the same propagation 

equations as E
ur

 and B
ur

,  

 

 
2

2
2

A AA
t t

µγ µε
∂ ∂

∇ = +
∂ ∂

ur urur
 (A.21) 

 

 
2

2
2t t

µγ µε∂Φ ∂ Φ∇ Φ = +
∂ ∂

 (A.22) 

 

This gives another relation between A and Φ for if we take the divergence of both sides 

of (A.20) then, if ρ  is zero, E∇ ⋅ is zero by (A.1) so that 

 

 2 A
t

∂∇ ⋅
∇ Φ = −

∂

ur ur
 (A.23) 

 

Comparison of this with (A.22) shows that the latter will hold if 
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 A
t

µγ µε
∂Φ

∇ ⋅ = − Φ −
∂

ur ur
 (A.24) 

 

To show that (A.21) and (A.24) are consistent, take the gradient of both sides of (A.24), 

expand the left side by using again the vector relation at the first of this article, and substitute 

for B∇×
ur ur

 from (A.4). On the right side substitute for ∇Φ  from (A.20). Canceling terms 

appearing on both sides of the resultant equation gives (A.21). Electromagnetic field may be 

described by means of a single vector Z
ur

, called the Hertz vector;  A
ur

 and Φ can be obtained 

by the equations 

 

 ,          ZA Z Z
t

µγ µε
∂

= + Φ = −∇ ⋅
∂

urur ur ur ur
 (A.25) 

 

These equations satisfy (A.24) and also (A.20) if we take 

 

 ( ) ( )2E Z Z Z= ∇ ∇ ⋅ − ∇ = ∇× ∇ ×
ur ur ur ur ur ur ur ur

 (A.26) 

 

 
2

2
2

Z ZZ
t t

µγ µε
∂ ∂

∇ = +
∂ ∂

ur urur
 (A.27) 

 

The magnetic induction is given by (A.18) and (A.19) in terms of Z
ur

.  
 

 ZB Z
t

µγ µε
∂∇ ×

= ∇× +
∂

ur urur ur ur
 (A.28) 

  

Equation (A.27) contains all the properties of the electromagnetic wave. In non-

conducting mediums the elimination of Φ  from (A.20) and (A.24) gives 
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 1 '               'A AE Adt B A
t tµε

∂ ∂
= − + ∇∇⋅ = − = ∇×

∂ ∂∫
ur urur urur ur ur ur ur

 (A.29) 

 

When 0ρ = , the new vector potential 'A
ur

 has zero divergence. 

 

A.1.3.  Propagation in Dispersive Medium 

 

A pulse or "signal" of any specified initial form may be constructed by superposition of 

harmonic wave trains of infinite length and duration. The velocities with which the constant-

phase surfaces of these component waves are propagated have been shown to depend on the 

parameters ,  and ε µ σ . In particular, if the medium is non-conducting and the quantities 

 and ε µ  are independent of the frequency of the applied field, the phase velocity proves to be 

constant and the signal is propagated without distortion. The presence of conductivity, on the 

other hand, leads to a functional relation between the frequency and the phase velocity, as well 

as to attenuation. Consequently the harmonic components suffer relative displacements in 

phase in the direction of propagation and the signal arrives at a distant point in a modified and 

perhaps unrecognizable form. A medium in which the phase velocity is a function of the 

frequency is dispersive medium. 

 

At sufficiently high frequencies a substance may exhibit dispersive properties even when 

the conductivity σ  due to free charges is wholly negligible. In dielectric media the phase 

velocity is related to the index of refraction  by / ,  where   e mn v c n n к к= = . At frequencies 

less than 100 MHz, the specific inductive capacities of most materials are substantially 

independent of the frequency, but they manifest a marked dependence on frequency within a 

range which often begins in the ultra- high-frequency radio region and extends into the 

infrared and beyond. Thus, while the refractive index of water at frequencies less than 100 

MHz is about 9, it fluctuates at frequencies in the neighborhood of 10 GHz. and eventually 

drops to 1.32 in the infrared. Apart from solutions or crystals of ferromagnetic salts, the 
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dispersive action of a nonconductor can be attributed wholly to a dependence of eк  on the 

frequency. 

 

All modern theories of dispersion take into account the molecular constitution of matter 

and treat the molecules as dynamical systems possessing natural free periods which are 

excited by the incident field. Both the classical and the quantum theories of dispersion 

undertake to calculate the displacement of charge from the center of gravity of an atomic 

system as a function of the frequency and intensity of the disturbing field. After a process of 

averaging over the atoms contained within an appropriately chosen volume element, one 

obtains an expression for the polarization of the medium; that is to say, the dipole moment per 

unit volume. The classical result corresponds closely in form to the quantum mechanical 

formula and leads in most cases to an adequate representation of the index of refraction as a 

function of frequency. The electric polarization in the neighborhood of a resonance frequency 

can be expressed approximately by the real part of,  

 

 
2

02 2
0

aP E
i g

ε
ω ω ω

=
− −

ur ur
 (A.30) 

 

By the electric field intensity, we shall now understand the real part of the complex 

vector 

 

 0
tE E e ω−=

ur ur
 (A.31) 

 

The constant 2a  is directly proportional to the number of oscillators per unit volume 

whose resonant frequency is 0ω . The constant 0ω  is related to this resonant frequency by 

 

 2 2 2
0 0

1
8

aω ω= −  (A.32) 

Such that 0 0ω ω→ at sufficiently small densities of matter. The constant g takes account 

of dissipative, quasi-frictional forces introduced by collisions of the molecules. The constants 
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0ω  and g which characterize the molecules of a specific medium must be determined from 

experimental data. At sufficiently low incident frequenciesω , the polarization P according to 

equation A.30 approaches a constant value 

 

 
2

02
0

aP Eε
ω

=
ur ur

 (A.33) 

 

And, since the specific inductive capacity is related to the polarization by; 

 

 ( ) 01P к Eε= −
ur ur

 (A.34) 

 

к can be expressed in terms of the molecular constants; 

 

 
2

2
0

1 aк
ω

= +  (A.35) 

 

When, however, the incident frequency is increased, further neglect of the two 

remaining terms in the denominator becomes inadmissible. In that case we shall define by 

analogy a complex inductive capacity к' through either of the equations, 

 

 ( ) 0 01 ,       D= ,P к E к Eε ε′ ′= −
ur ur ur ur

 (A.36) 

 

Hence from (A.30) we obtain; 

 

 
2

2 2
0

1 aк
i gω ω ω

′ = +
− −

 (A.37) 

 

In terms of this complex parameter the Maxwell equations in a medium whose magnetic 

permeability is 0µ  are, 
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 0 00,       0,H EE H к
t t

µ ε
∂ ∂′∇× + = ∇× − =
∂ ∂

uur urur ur ur uur
 (A.38) 

 

As a consequence of which the rectangular components of the field vectors satisfy the 

wave equation; 

 

 
2

2
0 0 2 0,к

t
ε µ ∂ Φ′∇ Φ − =

∂
 (A.39) 

 

A plane wave solution of (A.39) is represented by, 

 

 0 ,ikz i te ω−Φ = Φ  (A.40) 

 

Where, 

 

 ,k к i
c
ω

α β′= = +  (A.41) 

 

So that, 

 

 ( )
2

2
2 .cк iα β

ω
′ = +  (A.42) 

 

The wave is propagated with a velocity / /v c nω α= = , but α  and the refractive index 

are now explicit functions of the frequency obtained by introducing (A.37) into (A.42). In 

gases and vapors the density of polarized molecules is so low that к' differs by a very small 

amount from unity. The constant 2a  is therefore small, so that 0ω  differs by a negligible 

amount from the natural frequency  0ω  and the root of к' can be obtained by retaining the first 

two terms of a binomial expansion. Thus, 
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 ( )
2

2 2
0

11
2

c ai
i g

α β
ω ω ω ω

+ = +
− −

 (A.43) 

 

When the impressed frequency ω  is sufficiently low, the last two terms of the 

denominator may be neglected so that, 

 

 
2

2
0

1
2

c anα
ω ω

= = +  (A.44) 

 

The index of refraction and consequently the phase velocity in this case are independent 

of the frequency; there is no dispersion. If the impressed frequency ω  is appreciable with 

respect to the resonant frequency 0ω  but does not approach it too closely, the damping term 

may still be neglected. 2 2
0 ,gω ω ω− >>

 
 

 
2

2 2
0

11
2

c anα
ω ω ω

= = +
−

 (A.45) 

 

The attenuation factor is zero and the medium is transparent, but the refractive index and 

the phase velocity are functions of the frequency.  

 

If 0ω ω< , n will be greater than unity and an increase in ω  leads to an increase in n and 

a decrease in v.  

 

If 0ω ω> , the refractive index is less than unity but an increase in ω  still results in an 

increase in the numerical value of n. The dispersion in this case is said to be normal.  

 

If ω  approach the resonance frequency 0ω , with resolving (A.43) into its real and 

imaginary parts,  
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( )

( )

2 22
0

22 2 2 2
0

2

22 2 2 2
0

1
2

2

c an
g

a g
c g

ω ωα
ω ω ω ω

β
ω ω ω

−
= = +

− +

=
− +

 (A.46) 

 

A molecule is a complicated dynamical system possessing infinite series of natural 

frequencies, each affecting the reaction of the molecule to the incident field. The location of 

these natural periods cannot be determined by classical theory; by proper adjustment of 

constants to experimental data, an empirical dispersion formula can be set up, of which (A.37) 

is a typical term and which is found to satisfy the observed data over an extensive range of 

frequencies. 

 

A.2.  MAGNETOSTATIC VECTOR POTENTIAL AND MAGNETIC FLUX DENSITY 

OF CIRCULAR LOOP 

 

Wire segment and loops with stationary electric currents (electric charges moving with 

constant speeds) creates static magnetic flux densities around the wire. Ampère’s experiments 

on the interaction between two small loops of electric current have shown that they also 

interact via a mechanical force, much the same way that electric charges interact. Magnetic 

flux density B is defined as, 

 

 0
24

qp

p q

dl aIdB
r r

µ
π

×
=

−

uuurr
 (A.47) 

 

Which expresses the small element dB of the static magnetic field set up at the field 

point ( , , )p p pP r zϕ  by a small line element dl of stationary current I at the source point qr
r . The 

SI unit for the magnetic field, sometimes called the magnetic flux density or magnetic 

induction, is Tesla (T). 
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Figure A.1. Thin wire arbitrarily placed in space ( bL to cL ) and observer point P 

 

The Biot-Savart superposition integral can be derived analytically for relatively few 

configurations. Nevertheless, its evaluation amounts to no more than a summation of the field 

contributions from each of the current elements. Many practical current distributions can be 

approximated by, connected straight-line current segments, or current “sticks.”  

 

The Biot-Savart law is used to find the field at an arbitrary observer position prr  

associated with a current stick having an arbitrary location. The current stick, shown in Figure 

A.1 is represented by a vector ar . Thus, the current is uniformly distributed between the base of 

this vector at pr b+
rr

and the tip of the vector at pr c+
r r . The source coordinate qr

r   is located 

along the current stick. Integration over the length of the current stick is carried out to obtain 

an expression for B. Because the current stick does not represent a solenoidal current density 

at its ends, the field derived is of physical significance only if used in conjunction with other 

current sticks that together represent a continuous current distribution. In Figure A.1 L is the 
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source coordinate denotes the position along the stick. The origin of this coordinate is at the 

point on a line through the stick that is closest to the observer coordinate.  

 

The cross product solution;  

 

 sinqp qpdl a dl a θ× =
uuur uuurr r

 (A.48) 

 

where dl is the differential along the line current and  

 

 
1

2 2 2
0( )p qr r l r− = +  (A.49) 

 

Integration of the Biot-Savart law is first performed over the cross-section of the stick. 

The cross-sectional dimensions are small, so during this integration, the integrand remains 

essentially constant. Thus, the current density is replaced by the total current and the integral 

reduced to one on the axial coordinate L of the stick.  

 

 0
2( , , )

4
qp

p q

L dl aI cB r z L r rb

µ
ϕ

π
×

= ∫
−

uuurr
r

 (A.50) 

 

This integral is expressed in terms of the source coordinate integration variable L as  

 

 
0

3
2 2 2

0

( )( , , )
4 ( )

LI c a dlcB r z Lb a L r

µ
ϕ

π
×

= ∫
+

rr rr
r

 (A.51) 

 

This integral is carried out to obtain;  
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 0
1

2 2 2 2
0 0

( )( , , )
4 ( )

c

b

L

L

I c a LB r z
a r L r

µ
ϕ

π

 
×  =  

+  

r rr
r  (A.52) 

 

Applying limits;  

 

 0
1 1

2 2 2 2 2 22 2
0 0 0 0

( )( , , )
4 ( ) ( )

c b

c b

I L Lc aB r z
a r L r r L r

µ
ϕ

π

 
×  = − 

+ +  

r rr
r  (A.53) 

 

Plugging bL and cL into (A.53),  

 

 0
2 2

0 0

( )( , , )
4

a c a b
a aI c aB r z

a r c r b
µϕ

π

 ⋅ ⋅
 
 ×

= − 
 
 
 

r r r r
r rr rr

rr r  (A.54) 

 

So that  becomes an expression for the field intensity at the observer location expressed 

in terms of vectors a, b, and c that serve to define the relative location of the current stick.  

 

 0
2

( )( , , )
4

I c a a c a bB r z
c a c b

µ
ϕ

π

 × ⋅ ⋅ = −
 ×  

r r r rr rr
r rr r  (A.55) 

 

Magnetic flux density field vector diagram for a segment wire placed along r axis 

starting from ( , , ) ( 10,180,0)bL r zϕ = −  and finish at ( , , ) (10,180,0)cL r zϕ = is presented in 

Figure A.1. (r-z plane cross section of the wire 90pϕ = ° ), 
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A.2.1.  Magnetostatic Field of Polygon Thin Wire Loop 

 

 
 

Figure A.2. Superposition of B field from a polygon-wire loop 

 

Polygon wire loop can be constructed from minimum of three wire segments. Increasing 

the number of corners or polygons result in better estimation of B field at any arbitrary 

position ( , , )P r zϕ . A generic formulation is derived to numerically calculate superposition of 

,  and Br zB Bϕ

r r r
vectors for each segment of the polygon at point ( , , )P r zϕ . 

 

For each polygon segment, starting ( , , )bL r zϕ  and finishing ( , , )cL r zϕ  points calculated 

and superposition accumulation of ,  and Br zB Bϕ

r r r
 vectors at any arbitrary point ( , , )P r zϕ  is 

calculated.  From ,  and Br zB Bϕ

r r r
vectors totalB

r
is derived.  
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 2 2 2( , , ) ( , , ) ( , , ) ( , , )total r zB r z B r z B r z B r zϕϕ ϕ ϕ ϕ= + +
r r r r

 (A.56) 

 

If we locate loop co-axial with z axis; along the z-axis r φB  and B
r r

 components cancel out 

due to symmetry. Magnitude of magnetic flux density vectors along the z-axis is shown in 

Figure A.3. 

 

 
 

Figure A.3. r φ zB , B , B and Bt

r r r r
values along the z axis (I = 100 A, r = 4 m, Pn=60) 

 

Similarly r-axis scan of magnetic flux density magnitudes for a loop co-axial with z-axis 

is presented in Figure A.4, 
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Figure A.4. r φ zB , B , B and Bt

r r r r
values along the r axis (I = 100 A, r = 4 m, Pn=60) 

 

Applied DC current applied on loop wire directly proportional to the magnetic flux 

density, Figure A.5 represents r-axis Bt

r
 magnitude graph 10 cm. above the r-axis, pz = 10 cm. 

 

 
 

Figure A.5. Bt

r
 along r axis with increasing I current 
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Magnetic flux density of a polygon loop with constant current will establish static field 

distribution that does not change with time (Figure A.6).   

 

Different configurations of polygon loop placements will result in different magnetic 

flux density field vector distribution around the polygon loop. Magnetic fields between two 

co-axially placed polygon loops vanish as two loops pushed each other.  

 

 
 

Figure A.6. Cross section of magnetic flux density vector field with three inner placed loops 
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APPENDIX B : TABLES 
 

 

B.1.  DC Resistance of Stranded Copper at 20 Celsius Degrees 

 

AWG Diameter DCR @ 20 Bare 

Copper 
AWG Diameter DCR @ 20 Bare 

Copper 
32 0.236 mm 543.6 ohms/Km 18 1.154 mm 20.0 ohms/Km 
30 0.297 mm 321.5 ohms/Km 18 1.143 mm 21.9 ohms/Km 
30 0.305 mm 311.4 ohms/Km 18 1.219 mm 18.7 ohms/Km 
29 0.343 mm 251.3 ohms/Km 18 1.118 mm 21.9 ohms/Km 
28 0.373 mm 204.1 ohms/Km 18 1.118 mm 22.3 ohms/Km 
28 0.373 mm 202.4 ohms/Km 18 1.346 mm 22.9 ohms/Km 
27 0.432 mm 164.4 ohms/Km 16 1.524 mm 12.5 ohms/Km 
26 0.483 mm 127.3 ohms/Km 16 1.488 mm 13.8 ohms/Km 
26 0.483 mm 142.1 ohms/Km 16 1.372 mm 14.4 ohms/Km 
26 0.483 mm 118.1 ohms/Km 16 1.422 mm 13.8 ohms/Km 
26 0.457 mm 145.7 ohms/Km 16 1.448 mm 13.8 ohms/Km 
25 0.533 mm 100.7 ohms/Km 16 1.448 mm 14.1 ohms/Km 
24 0.610 mm 78.7 ohms/Km 16 1.448 mm 13.8 ohms/Km 
24 0.559 mm 88.9 ohms/Km 14 1.842 mm 8.86 ohms/Km 
24 0.559 mm 88.9 ohms/Km 14 1.930 mm 8.53 ohms/Km 
24 0.610 mm 76.1 ohms/Km 14 1.715 mm 8.53 ohms/Km 
24 0.559 mm 92.5 ohms/Km 14 1.803 mm 8.86 ohms/Km 
22 0.762 mm 50.5 ohms/Km 14 1.778 mm 8.86 ohms/Km 
22 0.711 mm 56.1 ohms/Km 12 2.337 mm 5.58 ohms/Km 
22 0.762 mm 46.9 ohms/Km 12 2.159 mm 5.91 ohms/Km 

22 0.737 mm 55.1 ohms/Km 12 2.235 mm 5.58 ohms/Km 
22 0.737 mm 52.8 ohms/Km 12 2.261 mm 5.58 ohms/Km 
22 0.711 mm 59.4 ohms/Km 12 2.540 mm 5.58 ohms/Km 
21 0.876 mm 37.1 ohms/Km 10 2.845 mm 3.61 ohms/Km 
20 0.965 mm 31.5 ohms/Km 10 2.743 mm 3.94 ohms/Km 
20 0.914 mm 35.8 ohms/Km 10 2.921 mm 3.28 ohms/Km 
20 0.965 mm 29.1 ohms/Km 8 3.505 mm 2.17 ohms/Km 
20 0.914 mm 34.4 ohms/Km 8 4.064 mm 2.13 ohms/Km 
20 0.914 mm 35.4 ohms/Km 8 4.115 mm 2.13 ohms/Km 
20 0.914 mm 34.1 ohms/Km 6 5.055 mm 1.35 ohms/Km 
20 1.02 mm 36.4 ohms/Km 4 6.350 mm 1.28 ohms/Km 
19 1.07 mm 22.9 ohms/Km 4 6.400 mm 0.85 ohms/Km 
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