
A VIDEO SURVEILLANCE SYSTEM BASED ON  

INTERACTING MULTIPLE MODELS 

 

 

 

by 

Ceren ÖRS SARITAŞ 

 

 

 

 

 

 

Submitted to the Institute of Graduate Studies in  

Science and Engineering in partial fulfillment of  

the requirements for the degree of  

Master of Science 

in 

Electrical & Electronics Engineering 

 

 

 

 

 

 

 

 

Yeditepe University  

2010 



 ii 

 

A VIDEO SURVEILLANCE SYSTEM BASED ON  

INTERACTING MULTIPLE MODELS 

 

 

 

 

 

APPROVED BY: 

 

Assoc. Prof. Dr. Cem Ünsalan    …………….. 

 (Thesis Supervisor) 

Assoc. Prof. Dr. Kemal E. Tepe  …………….. 

 

Asst. Prof. Dr. Duygun E. Barkana     …………….. 

 

 

 

 

 

 

DATE OF APPROVAL:          



 iii

ACKNOWLEDGEMENT 
 

I would like to thank to my thesis supervisor, Assoc. Prof. Dr. Cem Ünsalan, for his 

guidance, instructive comments, suggestions and patience throughout the development of 

this thesis. I appreciate helpful comments given by my thesis committee members Assoc. 

Prof. Dr. Kemal E. Tepe and Asst. Prof. Dr. Duygun E. Barkana. Moreover, I want to 

thank my colleagues Dr.Köksal Hocaoğlu who introduced me to the field of image 

processing and Mehmet Yılmaz for his inspiring discussions.  Finally, I am especially 

grateful to my dear husband I. Engin Sarıtaş and my family for the happiness they brought 

to my life. 

 

 

 

 

 

 

 

 

 

 



 iv

ABSTRACT 
 
 

A VIDEO SURVEILLANCE SYSTEM BASED ON  

INTERACTING MULTIPLE MODELS 
 

The video-based surveillance systems are becoming widespread due to the increasing 

security needs. Consequently, these systems bring huge volumes of visual data to be 

analyzed. The automated systems are developed to assist human operators in time-

consuming scene analysis. Besides, they enhance the surveillance efficiency by tracking 

interesting moving objects and interpreting the tracking results for potentially dangerous 

situations or suspicious activities.  

In this thesis, we present an automated visual surveillance system with real-time and 

robust tracking capabilities. The system detects moving objects under changing 

background conditions by an adaptive Mixture of Gaussians method. The detected objects 

in the consecutive video frames are properly associated with each other by means of data 

validation and association algorithms. The tracking algorithm makes use of the prediction 

and estimation results of the Interactive Multiple Modal (IMM) estimator operating on 

constant velocity and coordinated turn motion models simultaneously. The system has 

been used to analyze PETS 2001 datasets which provide a unique test environment for the 

objective evaluation of the tracking algorithms.  
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ÖZET 
 
 

ETKİLEŞİMLİ ÇOKLU MODELLERE DAYALI  

VİDEO GÖZETİM SİSTEMİ 
 

Video tabanlı gözetim sistemleri artan güvenlik ihtiyaçları sebebiyle giderek 

yaygınlaşmaktadır. Bunun sonucunda, bu sistemler çok büyük miktarlarda kayıtlı görüntü 

veri analizi ihtiyacını beraberinde getirmektedir. Yazılım destekli sistemler, zaman alan 

görüntü analizinde operatörlere yardım etmek üzere geliştirilmektedir. Ayrıca, bu sistemler 

hareketli nesneleri takip ederek, takip sonuçlarını olası tehlikeli durumlar ve şüpheli 

aktiviteler için yorumlayarak gözetim verimliliğini arttırlar. 

Biz bu tezde, gerçek zamanlı ve güvenilir takip yeteneklerine sahip bir yazılım 

destekli gözetim sistemi sunuyoruz. Sistem, hareketli nesneleri değişken arka plan 

koşullarında adaptif bir Gauss’ların karışımı yöntemiyle tesbit eder.  Tesbit edilen 

nesneler, ardışıl video karelerinde veri doğrulama ve eşleştirme algoritmalarıyla uygun 

olarak birbirleriyle eşleştirilir. Takip algoritması, sabit hız ve dönüş hareket modelleri 

üzerinde aynı anda çalışan etkileşimli çoklu model (IMM) kestiricisinin tahmin ve kestirim 

sonuçlarından yararlanır. Bu sistem, takip algoritmalarının tarafsız olarak 

değerlendirilmesine imkan veren özel bir takip ve gözetim performans değerlendirmesi 

(PETS 2001) veri kümesi üzerinde denenmiştir. 
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1.   INTRODUCTION 

Video-based surveillance systems started with analog closed-circuit television 

(CCTV) systems in order to monitor security-sensitive areas. These systems consist of a 

number of cameras connected to a set of monitors through automated switches [1]. As the 

technology evolved, deployment of surveillance cameras become widespread. Eventually, 

human supervision turned out to be expensive and inadequate to ensure proper monitoring.  

Classical visual surveillance systems lost their primary benefit as an active, real-time 

medium [2]. In common practice, the surveillance cameras are monitored sparingly by 

human operators and the recorded videos are used as a forensic tool to make investigation 

after an abnormal event has taken place.  

Next, automated video surveillance systems are developed to assist human operators 

in time-consuming scene analysis. Instead of passively recording the footage, they analyze 

the video streams from a single or multiple cameras by means of software. The analysis 

consists of detecting interesting moving objects, tracking these objects frame by frame and 

interpreting the tracking results. These systems can also be designed to detect potentially 

dangerous situations or suspicious activities as they happen. Besides, they can also take 

appropriate actions like alerting a human operator and/or starting to record the incoming 

images. As a result, they increase both the efficiency and the security. 

These automated systems are especially needed for public and military security 

purposes. They are also proposed in many other application domains like smart video data 

mining, congestion analysis of the people and vehicles, traffic monitoring, etc. The public 

places like airports, museums, stations, parking lots, banks, shopping centers, and 

buildings have long been monitored by surveillance cameras. However, automated systems 

can detect suspicious objects (such as a suitcase left in an airport lounge) or a burglary in 

progress. In addition, these systems can track suspects over a wide area by using the 

cooperation of multiple cameras [3]. For the military security purposes, automated systems 

can track military targets like aircrafts, missiles, land vehicles or monitor national borders.  
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1.1.   Overview 

      In this thesis, an automated visual surveillance system with moving object 

detection and tracking capabilities is proposed. Because of the support role in events, 

automated video surveillance systems have to operate in real-time [4]. This means 

processing of a single frame should be done at a rate equal to or faster than the video frame 

rate. In the proposed system, algorithm selections and design criterions are considered to 

meet the real-time constraints. The proposed system processes each incoming video frame 

recursively. One-cycle of the algorithm can be divided into four steps as illustrated in 

Figure 1.1.  

 

Figure 1.1.  An overview of the proposed surveillance system 

In the object detection step, the moving objects are detected by Mixture of Gaussians 

[5] method. The data validation, filter prediction and estimation steps are processed for 

each detected moving object. The detected objects in the consecutive video frames are 

associated with each other by means of data validation and association algorithms. Data 

validation algorithm determines the probable objects in the current frame to associate with 

the tracked objects. When there is more than one probable object for one tracked object, 
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the Nearest Neighbor (NN) [6] data association algorithm selects the most relevant one. 

The data association step is not illustrated in Figure 1.1. 

Object tracking can be described as the process of determining the locations of the 

moving objects in every frame of a given video stream. The moving object can be located 

as a whole or some extracted features/parts of it depending on the application. The 

proposed tracking algorithm tracks the centroids of moving objects in successive frames 

using Interactive Multiple Modal (IMM) [7]  filtering technique. First, the filter makes a 

prediction about the position of the centroid in the image plane. This prediction is 

compared with object detection results in the data validation step. The validated object 

centroid position is used in the filter in order to estimate the true location of the target in 

the image plane. If there is no validated position for the tracked object, the dedicated filter 

only makes a prediction about its location in each cycle of the algorithm until a validated 

position arrives.  

Kalman filter [8] uses a single motion model to estimate the location of the tracked 

object in the image plane. On the other hand, IMM filter combines several motion models 

appropriately. The reason for using IMM filter is that one motion model inadequately 

represents the whole motion pattern of moving objects. Finally, the median-based object 

detection and mean-shift tracking algorithms are also implemented for the comparison of 

detection and tracking performances, respectively.   

1.2.   Organization of the Thesis 

The remaining part of this thesis is organized as follows: Chapter 2 describes the 

main ideas behind recent research in moving object detection methods used in video 

surveillance applications, with emphasis on the Mixture of Gaussians method. Chapter 3 

provides a brief summary of the tracking approaches proposed in the literature. The 

problems encountered in detection and tracking steps are also presented in relevant 

sections of Chapter 2 and Chapter 3, respectively. Data validation and association 

algorithms are described in Chapter 4. Chapter 5 provides the background information 

about Kalman filters. Kalman and IMM filtering methods are described in Chapter 6 and 
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Chapter 7, respectively. Chapter 8 presents the experimental results of the proposed 

system. Finally, Chapter 9 concludes the thesis with suggestions for future research. 
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2.   OBJECT DETECTION 

Object detection (or motion segmentation) algorithms segment out regions 

corresponding to moving objects in image sequences. These regions provide a focus of 

attention because only these regions need to be considered in subsequent processes such as 

tracking and behavior analysis [3]. 

Most motion segmentation methods build a background model which is a 

representation of the scene without any moving object in it. Then, moving objects are 

segmented by thresholding a per-pixel distance between the current frame and the 

background model [9]. If the per-pixel distance is computed by subtracting the pixel values 

of each new frame from the corresponding pixel values of the background model, this 

technique is known as background subtraction. Here, pixels in which the distance is above 

a threshold belong to the object of interest and are classified as “foreground”. The result of 

the motion segmentation algorithm is a binary image where the background pixels are 

assigned zero and the foreground pixels are assigned one. This binary image is generally 

referred as “foreground image”. 

The connected foreground pixels constitute a region called blob in the foreground 

image. Morphological post processing operations are typically applied to fill the small 

holes inside the foreground regions (blobs) and to eliminate very small-sized, noisy blobs. 

Due to the dynamic nature of scenes, common problems in object detection step are 

changing illumination levels, shadows and multi-modal background colors. The next 

section describes these problems and illustrates their consequences in the foreground 

images.  

2.1.   Problems of Background Modeling 

Most background modeling methods are based on the color characteristics of the 

scene. Because of the changes in lighting conditions, the colors of the scene alter 

continuously. For example, in an outdoor scene moving clouds in the sky change 
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illumination levels. Similarly, in an indoor scene opening of doors or windows change 

illumination levels [1].  Figure 2.1 illustrates a scene undergoing an illumination change 

and corresponding motion segmentation results [10]. 

 

 

Figure 2.1.  A scene undergoing an illumination change 

In Figure 2.1, the number of falsely detected foreground regions increase as the 

illumination changes. Therefore, a robust background model must be adaptive to 

illumination changes. Otherwise, illumination changes are falsely detected as foreground 

regions. 

An adaptive model learns the background at some pre-defined learning rate. 

Learning is accomplished by recursively updating the background model with new 

incoming video frames. The learning rate is an important design parameter. However, the 

method has to find a compromise between two conflicting demands. On one hand, learning 

rate should be high enough to deal with changes in illumination. On the other hand, 

learning rate should be low enough to avoid learning slowly moving objects as background 

[11]. The second problem occurs if the color properties of moving objects are very similar 

to the background. Then, it might not be possible to distinguish between the two. An 

example is shown in Figure 2.2 [10]. In this figure, the person at the top right of the image 

(highlighted by a bounding box) could not be detected properly. 
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Figure 2.2.  A camouflaged person 

Another problem is shadows. When objects cast shadows, their exact size and shape 

could not be determined correctly. For instance, a person casting a shadow is illustrated in 

Figure 2.3 [10]. Also, the shadow may touch a nearby object causing the algorithm to 

consider the two separate objects as one [4]. 

 

Figure 2.3.  A person casting a shadow   

In addition to the above problems, during the visualization process, a particular pixel 

may represent a single or multiple background colors [5]. Multiple colors can be the result 

of repetitive background motion, reflectance or shadows. As an example, as illustrated in 

Figure 2.4, swaying branches and leaves on a tree in front of a road will cause the same 

pixel location to represent values from tree leaves, tree branches, and the road itself [10]. 

Moving clouds, small camera displacements, ripples on water are also good examples for 

repetitive background motion. 

 

Figure 2.4.  A tree swaying in the wind 
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Finally, if a previously moving object becomes motionless, it should be considered 

as background. Conversely, when a motionless object starts to move, not only itself but 

also revealed parts of the new background are usually detected (perceived) as a moving 

region. However, in this case the new background should be learned as quickly as possible. 

2.2.   Previous Work 

Background models are built by using the information extracted from images. Color 

information is the most common one. Here, pixels of the background model are 

represented as either having a single color value or a probabilistic distribution of different 

color values. A conventional approach for background modeling is taking sample images 

and computing the cumulative average (arithmetic mean) of the color values for each pixel 

location. Recent studies point out that the median value is far more robust than the mean 

value [12]. [13] proposed to use the median value of the previous N  (typically between 50 

and 200) frames for each pixel location in the background model. They observed that color 

images give better segmentation results than grayscale images especially in low contrast 

areas such as objects in dark shadows. 

If the difference between the reference background image pixel ( )yxB ,  and the 

current image pixel ( )yxI ,  is above a certain threshold T , then the pixel is marked as 

foreground, 

 ( ) ( )
{ }

TyxByxI
BGRC

CC >−∑
∈ ,,

,,  (2.1)

 [13] compute the threshold value as the product of average standard deviation of the 

white noise in the video system for the color channels and some heuristically selected 

constant. The median-based approach is computationally simple but requires the recent 

pixel values of past 1−N  frames. In general, these simple methods are not robust in 

segmentation problems mentioned before. They are very sensitive to illumination changes. 

Hence, they can only work in nearly static background scenes.  
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To improve the accuracy of the segmentation process, some methods use color 

features along with other features of the scene. The rationale here is that, features like edge 

and texture do not vary much with illumination changes as compared to color features [14]. 

For example, [15] utilized both the color and edge information to build background models 

in two separate parts; one is a color model and the other is an edge model. Background 

subtraction is performed for each model and their results are combined to find foreground 

regions. [16] integrated both the color and texture differences between two frames. Some 

object detection methods make use of estimation techniques. In [17], Kalman filtering is 

used for adaptive background model estimation. The approach takes into account the 

changing illumination and the problems caused by the slow or non-continuously moving 

(temporarily stationary) foreground objects.  

More advanced background models use the statistical characteristics of pixel values. 

[18] built a statistical model of the stationary background. They observe the color values at 

each pixel position in consecutive frames and associate them with a single Gaussian 

distribution. Then, for each incoming frame and each pixel position, the likelihood of its 

color coming from associated Gaussian is computed. The pixel which deviates from the 

distribution (background model) is labeled as a foreground pixel [14]. Otherwise, it is used 

to update the mean and covariance of the distribution to compensate for illumination 

changes.  

These methods are less sensitive to illumination changes. But a robust background 

modeling method should also consider multiple-color backgrounds. The method of 

Mixture of Gaussians handles multiple-color backgrounds with simple computations. [5] 

used a mixture of Gaussians to represent the color values of each pixel. Some of the 

distributions correspond to the background model and the others to the foreground model. 

Therefore, each pixel constructs its own background model. It is classified as foreground 

or background depending on whether its new value matches with one of the background 

model distributions. Distribution parameters are recursively updated at each incoming 

video frame.  
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We used the Mixture of Gaussians method in our visual surveillance system. It 

robustly deals with lighting changes, slowly moving objects and multiple-color 

backgrounds. A detailed description of the method is given in the next section. 

2.3.   Mixture of Gaussians 

In [5], Mixture of Gaussians is proposed to represent an adaptive multiple-color 

background model per pixel. In this method, the color value of each pixel is separately 

modeled by the mixture of K  Gaussian distributions. Each thk  distribution in the mixture 

models a different color with mean kμ  and covariance k∑ . Covariance can be thought as a 

measure of dispersion of that color value around its mean.  The time proportions that those 

colors stay in the scene are represented by weight parameters kw  [19]. Weights are 

normalized as 

 ∑
=

=
K

k
kw

1
1  

(2.2)

Let the observed value of a particular pixel at sampled frame t  be denoted by tX .  In 

our project, tX  is one-dimensional (monochrome intensity) but it can be n -dimensional 

depending on the color space chosen. The probability to observe tX  within all the previous 

values of that pixel is determined as 

 { } ∑
=

∑=
K

k
tktkttkt XNwX

1
,,, ),;(Pr μ  

(2.3)

Naturally, the mixture not only models multiple-color backgrounds but also moving 

objects in the scene. However, the statistical properties of Gaussians representing the 

foreground are different from those of the background. Particularly, the background values 

will occur more frequently (with high weights kw ) and do not vary much (having small 

variances kσ ) [9] . 
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When the distributions are ordered according to their fitness values kkw σ/  , in 

decreasing order, the distribution with the highest fitness value is the most probable 

background distribution for that pixel [19]. The others are less probable transient 

background distributions or foreground. Therefore, the first B  of the ordered distributions 

are used as a model of the background scene as  

 ⎟
⎠

⎞
⎜
⎝

⎛
>= ∑

=

b

k
k

b
TwB

1
minarg  

(2.4)

where, a pixel will represent a background value in the %100T  portion of time.  

 

In order to classify pixels as foreground (moving regions) or background, the pixel 

value tX  is checked against the K  Gaussian distributions, in the order of fitness, until a 

match is obtained [5]. A match is defined as a pixel value within 2.5 standard deviations of 

the distribution’s mean value [5]. If tX  matches with one of the pixel’s B  background 

distribution(s), then it is considered a background pixel. The 2.5 standard deviations 

criterion serves as per pixel/per distribution threshold [5]. 

The background model adapts to changes in illumination and runs in real-time by an 

updating procedure [19]. The first matched Gaussian is updated according to the following 

update equations 

 αα +−= −1,, )1( tktk ww  (2.5)

 )()()1( ,,,
2

1,,
2

, tkt
T

tkttktktktk XX μμρσρσ −−+−= −  (2.6)

 ttktktkkt X,1,,, )1( ρμρμ +−= −  (2.7)

In this thesis, we computed the tk ,ρ  term in Equations 2.6 and 2.7 different from the 

original work [5]. According to [9], a faster and more logical computation for tk ,ρ  is as  
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tk

tk w ,
,

αρ ≈  
(2.8)

As a result of these equations, the matched distribution parameters are changed: the 

mean value is moved in the direction of the pixel value, the weight is increased and the 

variance is decreased. α  is the learning constant which controls the amount of change i.e. 

how much the current pixel value influences the background model.  

The parameters for unmatched Gaussians remain the same except the weight 

parameter which is decreased proportional to the learning rate as 

 1,, )1( −−= tktk ww α  (2.9)

If tX  matches none of the K  distributions, the least probable (lowest fitness valued) 

distribution is replaced by a new Gaussian centered at tX  with an initially high variance 

and low prior weight [5]. 

One of the most useful properties of this update scheme is that, it handles the 

situations arising from temporarily stopped objects. If a previously moving object becomes 

stationary long enough, it will gradually become part of the background model. However, 

according to Equation 2.9, the distribution describing the original background still remains 

in the mixture with the same mean kμ  and variance kσ , but with a lower weight kw . 

When the object starts moving again, the original background pixel values reappears in the 

scene and quickly incorporates into the background model [5]. 

A practical minimum value is 3=K  in order to model two-colored background and 

one foreground in each pixel. Only one foreground Gaussian will be enough because it can 

be used roughly to model any foreground pixel [9]. It has been reported that not much 

improvement is obtained beyond 5=K .  
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The resulting binary segmented image can be refined by standard morphological 

functions. In this thesis, we eliminate very small noise-generated blobs with simple area 

thresholding and set a pixel to 1 if five or more pixels in its 3-by-3 neighborhood are 1's; 

otherwise, set the pixel to 0. An example of Mixture of Gaussian modeling for background 

subtraction is given in Figure 2.5 [14]. 

 

Figure 2.5.  A person is walking across the scene 

The image in the first column of Figure 2.5 is taken from a sequence in which a 

person is walking across the scene.  The second column represents the mean value of the 

highest-weighted Gaussian at each pixel position. These values represent the stationary 

background. The third column is the mean value of the second-highest weighted Gaussian 

at each pixel position. These values represent colors which are observed less frequently.  

The last column is the result of background subtraction. The foreground consists of pixels 

in the current frame that does not match a background Gaussian distribution. 
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3. OBJECT TRACKING 

In visual surveillance applications, the object tracking phase generates the trajectory 

of a moving object by locating its position in every frame of a given video stream [14]. 

Algorithms start the tracking of new objects when they enter the scene and terminate the 

tracking of existing objects when they exit the scene.  

As in the object detection phase there are also some problems encountered in object 

tracking. For instance, in some frames the tracked object could not be located properly 

because of the occlusion problems. A moving object can be occluded by stationary scene 

structures like trees or buildings. Also, when moving objects come very close to each 

other, they form a single moving region in the foreground image. Thereby, they occlude 

each other. Since the view of an occluded object is partially or fully blocked, a robust 

tracking algorithm should be able to predict its possible locations in the image plane. 

Another problem is the appearance change of tracked objects. Objects can change 

their velocity and direction as they move through a camera's field of view.  Even if objects 

move with constant speeds and directions, their size will change according to relative 

distance to the camera. Hence, tracking algorithms have to take into account the 

appearance changes. 

The next section describes some of the methodologies which are commonly used in 

object tracking applications. The methodologies can be classified as region-based, feature-

based and boundary-based approaches. However, these approaches can also be combined 

to improve the accuracy, with the cost of computational complexity.  

3.1. Methods of Object Tracking 

In this section, the approaches used in object tracking applications are briefly 

described and a representative work for each of them is given. The mean-shift tracking 
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method under region-based approach is described in detail. Because, this method is also 

implemented in this thesis for performance and tracking quality comparisons. 

3.1.1. Region-Based Tracking 

Once the motion segmentation algorithm segments out the regions corresponding to 

moving objects, region-based tracking algorithms establish a correspondence between 

these regions in subsequent video frames [4]. This correspondence is usually based on the 

similarities between one or more properties of these regions such as size (area), color, 

shape, velocity, centroid, etc. In our visual surveillance system, we track the centroids of 

segmented regions.  

Region-based algorithms are suitable for real-time processing but their performance 

highly depends on the motion segmentation step. In [20] a region tracking algorithm by 

using the mean shift procedure is proposed. The mean-shift tracking algorithm is initialized 

with the segmented region of the tracked object namely the target region. Segmentation is 

done only at the beginning of the algorithm. In order to represent (the color properties of) 

the target region, they build an m -bin histogram using both the color values of the pixels 

comprising the region and a kernel which weights the pixels according to their distances 

from the region center.  

Tracking is accomplished by iteratively searching a region having the most similar 

histogram to the histogram which represented the target region in the previous video frame. 

The similarity between the two histograms is measured by a similarity function derived 

from the Bhattacharyya coefficient. The local maximum of this similarity function in the 

image plane indicates the new target location. The iterations are repeated to find the local 

maximum by using the mean-shift procedure. Mean-shift is an efficient gradient-based 

optimization method [21]. The iterations start at the location of the target in the previous 

frame, namely the first candidate location. In each iteration, the mean shift algorithm 

increases the similarity by shifting the candidate location to a new location. Iterations are 

repeated until the shifting amount becomes very small. 



 16

In this method, the kernel should be isotropic (differentiable) with a convex and 

monotonic decreasing kernel profile like Gaussian or Epanechnikov kernels. The reason is 

two-fold; first, this kernel profile gives smaller weights to the pixels farther from the 

region center [22]. So, the peripheral pixels are assigned the smallest weight because they 

are the least reliable, being often affected by occlusions.  Second, a differentiable kernel 

profile yields a differentiable similarity function which is suitable for applying a gradient-

based optimization method [22]. 

The mean-shift tracking algorithm is computationally fast, but it relies on small 

displacements in target position. This assumption can be thought as a drawback of the 

algorithm. Another drawback is that a mean-shift tracker cannot adjust to large appearance 

(scale, shape and color, etc.) changes of the target region during the tracking period [10].  

Some scale adaptation schemes are applied in the literature [23, 24]. The cam-shift 

(continuously adaptive mean-shift) tracker in [24] is one of the successful methods, which 

uses the moment information. Finally, the mean-shift method can only handle infinitesimal 

partial occlusions. 

3.1.2. Feature-Based Tracking 

Instead of tracking the entire region, feature-based tracking algorithms track some 

extracted features of moving objects. Features can be the line segments, curve segments, 

corner vertices, etc. or a variety of distances and geometric relations between extracted 

features [3]. Distinguishable object features greatly simplify the tracking problem, because 

they are to be matched in successive frames.  

The tracking technique proposed by [25] extracted corner features from every frame 

of a sequence. Figure 3.1 shows the corner features extracted for the selected frames of a 

toy car sequence. The extracted corners are used as measurements for the tracking filter. 

They demonstrate the ability of various tracking filters (like Kalman filters) using a variety 

of image sequences. The combination of Bayesian Multiple Hypothesis Tracking (MHT) 

technique and IMM algorithm handles the motion transition of features efficiently.  
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Figure 3.1. Corner features of toy cars 

3.1.3. Boundary-Based Tracking 

Apart from feature-based and region-based approaches, there are also boundary-

based approaches. The region-based tracking algorithms take advantage of the entire 

region whereas boundary-based algorithms rely on the information provided by the object 

boundaries as in [26]. They used boundary-based information to detect and track several 

non-rigid moving objects over a sequence of frames. The boundary-based approaches like 

active contours extract the shape of the moving objects [12]. 

Active-contour-based tracking algorithms represent the outline (boundary) of a 

moving object as an evolving active contour, which is updated dynamically in successive 

frames [3].  Tracking can be performed by using state-space models to model the contour 

shape and motion or minimizing the contour energy by techniques such as gradient descent 

[14].  For example, [27] defined the object state in terms of spline shape parameters and 

affine motion parameters of the contour and updated them at each time instant using a 

particle filter where the measurements are the image edges computed in the normal 

direction to the contour [14]. Figure 3.2 is an illustration of a contour tracking result. 
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Figure 3.2.  Tracking a hand across a desk 

The active contour-based algorithms require an accurate contour initialization for 

each moving object. This means, moving objects have to be well separated (not occluded) 

during the initialization period. 
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4. DATA VALIDATION AND DATA ASSOCIATION 

The foreground regions obtained from the object detection process are evaluated in 

the data validation and association step. For each tracked object, the data validation step 

ensures that the detected region in the current frame is originated from the tracked target 

by means of validation gating. When there is more than one validated region for the 

tracked object, data association algorithm selects the most relevant one.  

4.1. Data Validation 

Before providing the details of the data validation step, the Mahalanobis distance and 

its properties are described in detail. The Mahalanobis distance is essential in 

understanding the validation algorithm. 

4.1.1. Mahalanobis Distance  

Suppose an n -dimensional Gaussian random vector X  with mean μ  and 

covarianceΣ . The locus (the set of points which satisfy a certain condition) for which the 

probability density function is greater than or equal to a specified constant can be defined 

as,  
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Equation 4.1 becomes 

 [ ] [ ] KXXXN T ≤−Σ−=Σ − μμμ 1),;( (4.2)
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If there is equality in Equation 4.2 rather than an inequality, then  

 [ ] [ ] KXXXN T =−Σ−=Σ − μμμ 1),;(
 

(4.3)

This equation is known as the squared Mahalanobis distance of vector X  to the 

mean μ . The Mahalanobis distance is a normalized distance where normalization is 

achieved through the covariance matrix. In the special case where the covariance matrix Σ  

is a diagonal matrix with all its diagonal elements equal, then the Mahalanobis distance 

becomes equivalent to the Euclidean distance. 

The locus of Equation 4.3 may be interpreted as the set of points of equal probability 

density represented by an n -dimensional ellipsoid centered about the mean μ . The 

ellipsoid semi-axes are the K  times the square roots of eigenvalues of the covariance 

matrix Σ  [7]. To illustrate this concept, if we assume a two-dimensional Gaussian vector 

[ ]TxxX 21=  with mean [ ]T21 μμμ = and diagonal covariance matrix, 

 
⎥
⎦

⎤
⎢
⎣

⎡
=Σ

2
2

1
2

0
0

σ
σ  

(4.4)

Then, the Equation 4.3 can be written for this particular case as 
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 The eigenvalues of the covariance matrix Σ  are variance values 1
2σ  and 2

2σ , 

respectively. So, ellipsoid axis lengths are K12σ  and K22σ . 

Therefore, the locus in Equation 4.2 is the border and inner points of the ellipsoid. 

The probability that a given value of the random vector X  lies within the ellipsoid 

increases with the increase of K .  



 21

The scalar random variable K  can be shown to be the sum of the squares of n  

independent zero-mean, unity variance Gaussian random variables, such a random variable 

has a chi-square distribution 2χ  with n -degrees of freedom [7]. 

When a particular probability value is desired, the value of K  that yields an 

ellipsoidal region satisfying that probability can be obtained from chi-square probability 

density function. This probability is expressed as )%1(100 α−  confidence level where α  

is the significance level.  

 { } [ ] [ ]{ } αχμμχ αα −=≤−Σ−=≤ − 1PrPr 212 xxK T  (4.6)

As an example, the %95  confidence level for two-dimensional Gaussian vectors can 

be obtained by the corresponding 2χ  distribution value for two-degrees of freedom and 

significance level 05.0=α  which is 99.52
05.0 =χ . Then, the ellipsoidal region can be 

defined as 

 { } [ ] [ ]{ } 95.099.5PrPr 12
05.0 =≤−Σ−=≤ − μμχ xxK T  (4.7)

4.1.2. Validation Gating 

Validation gating establishes the confidence region for each tracked target where the 

occurrence of the target is expected to happen with a certain probability. In this section, the 

terminology and equations are held consistent with the filter equations and they are 

clarified in the relevant sections of Chapter 5.  

Detected moving object region centroid position is the measurement information for 

the filter dedicated to the target. But, only one valid measurement is needed for each target. 

Before obtaining the true measurement )(kz  at the time labeled by k , the filter predicts the 

expected value of measurement )1|(ˆ −kkz j  for tracked target j  in the filter prediction 
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step (Equation 6.38).  The normalized squared Mahalanobis distance between each 

detected measurement )(kzi  and predicted measurement )1|(ˆ −kkz j  is computed as 

 )1|(ˆ)()( −−= kkzkzk jiijυ  (4.8)

 [ ] RHkkHPkkEkS TT
ijij +−== )1|()()()( υυ  (4.9)

 )()()( 12 kkSkd ij
T

ijmah υυ −=  
(4.10)

The term )(kυ  in Equation 4.8 is referred as innovation and )(kS  in Equation 4.9 

represents the covariance of the innovation. Innovation covariance matrix can be thought 

as a measure of accuracy of the filter in predicting the target position. According to 

Kalman filter theory, it is shown in [7] that the innovation sequence is a zero mean 

Gaussian sequence and normalized innovation is chi-square distributed with the ))(dim( kz  

(dimension of the measurement vector) degrees of freedom. 

In relation to Mahalanobis distance, the validation gate can be defined as an 

ellipsoidal region centered at the predicted measurement )1|(ˆ −kkz j . This region can also 

be defined as a rectangular region but the ellipsoidal region is ideal for linear-Gaussian 

systems like the Kalman filter [28]. An ideal gate would have minimal volume in the 

measurement space for a given coverage probability [28]. The confidence region is defined 

as the inside of the ellipsoidal validation gate with gate thresholdγ  [7].  

 γυυ ≤= − )()()()( 1 kkSkkgate ij
T

ijij  (4.11)

The desired probability, )%1(100 α−  confidence level, of the true measurement 

falling into the gate is determined by the gate threshold which can be obtained from the 

chi-squared distribution tables or direct calculations [6]. Increasing the desired confidence 

level will enlarge the confidence region which can be defined as, 



 23

 [ ]{ } αχυυ α −=≤− 1)()()(Pr 21 kkSk ij
T

ij  (4.12)

So, the validity of a measurement is determined from the squared Mahalanobis 

distance of less than or equal to a gate thresholdγ  from the predicted measurement. The 

measurement )(kzi  which falls inside the gate volume is assumed to be valid for track j  

and used in the filter estimation step to estimate the true target location in the image plane.  

4.2. Data Association 

When there are more than one validated measurements for one tracked object, data 

association algorithm selects the most relevant one. In this thesis, the Nearest Neighbor 

(NN) data association method is used. The validated measurement that is nearest to the 

predicted measurement (position) is selected and the rest is discarded. ‘Nearest’ means the 

minimum normalized squared Mahalanobis distance. This is illustrated in Figure 4.1 [29], 

 

Figure 4.1.  A data validation and association illustration 

In this figure, there are two targets with predicted positions 1ẑ  and 2ẑ  and their 

validation regions, respectively. The measurements 1z  and 2z  are validated for the first 

target and the measurements 2z  and 3z  are validated for the second. The measurement 2z  

is validated with both tracks but it is more close to the second target (track #2). 

Accordingly, the measurements 1z  and 2z  are associated to the first and second targets 
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respectively. Although the measurement 3z  is more close to 1ẑ  than measurement 1z , it is 

not in the validation region for the first target (track #1). 

The main reason in using the NN method is that, it is easy to implement, 

computationally efficient, and adequate for our implementation. NN algorithm implicitly 

assumes loosely spaced targets and low rate of clutter in the gate. In this context, clutter 

refers to falsely detected spurious objects. When the targets are closely spaced, 

probabilistic data association techniques like Joint Probabilistic Data Association (JPDA) 

can be used. Instead of choosing only one validated measurement for each target and 

discarding the others, Probabilistic Data Association (PDA) techniques use all of the 

validated measurements with different weights (probabilities) [30].  
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5. STATE ESTIMATION 

In the theory of stochastic processes, filtering is the estimation of the state of a 

dynamic (time varying) system from indirectly observed, noisy measurements [31]. 

Accordingly, the word filter is used with the meaning of reducing the effect of noise for 

obtaining the best estimate of the system state.  

In this thesis, for each target, the measurement is the detected and validated moving 

object region centroid position in the image plane. The state variables are the subset of 

some particular properties of this centroid like position, velocity, and acceleration. The 

centroid position is a noisy observation due to the imperfections of the object detection 

step. Since targets are continuously affected by the problems mentioned in Section 2.1, the 

imperfections are inevitable. Tracking is performed by estimating the state of the target 

centroid in consecutive frames by using Kalman and IMM filtering techniques. The state 

estimation should localize the target as correct as possible in the current image plane and 

predict its future position in the next image plane. 

Kalman filter is an optimum Minimum Mean Square Error (MMSE) estimator for 

linear dynamical systems. The IMM is a bank of Kalman filters running in parallel to 

increase the estimation accuracy. This chapter presents background information for 

Kalman filters. 

5.1. State Estimation History 

The history of optimal estimation theory starts with the Wiener filter [32]. Wiener 

filter is a spectral domain solution to the problem of reducing the amount of noise present 

in a signal by making a comparison with MMSE estimate of the desired noiseless signal. 

Both the signal and noise are assumed to be stationary linear stochastic processes with 

known spectral characteristics [33].  
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In the 1960’s, Kalman [8] described the recursive solution to the optimal estimation 

problem of a random process using time-domain formulations with state-space methods. 

Recursive means that only the estimated state from the previous time step and the current 

measurement are needed to compute the estimate for the current state. In contrast to the 

Wiener filter, the history of measurements and/or estimates is not required. This property 

makes the Kalman filter an effective state estimator. Kalman's original derivation uses 

orthogonal projections theorem. In the years that followed, simpler derivations based on 

statistical concepts are appeared.  

At first, Kalman filter was used in trajectory estimation for the Apollo space 

program. Later on, many variations and extensions of Kalman filters have been developed.  

They find applications in several areas including aerospace, land, marine navigation 

systems, guidance of cruise missiles, nuclear power plant instrumentation, demographic 

modeling, manufacturing, telecommunications, the detection of underground radioactivity, 

fuzzy logic and neural network training, computer vision, and multi-sensor fusion [34]. 

5.2. State Estimation Considerations 

In general, estimators model the noise as Gaussian white noise process. The 

following section describes the reasons for using white noise processes. The next section 

gives some desirable properties of estimators.  

5.2.1. White Noise 

Whiteness implies that its value is not correlated in time [35]. Stated more simply, if 

its value in present time is known, this knowledge makes no sense in predicting what its 

value will be at any other time. This means, the autocorrelation function and power 

spectral density of a stationary zero-mean continuous-time white noise “process” )(tw  are 

respectively [7],  
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In Equation 5.2, F  refers to Fourier transform, w  is the frequency and )(τδ  is the 

continuous Dirac delta function (impulse function), 
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Likewise, the discrete-time white noise is a random “sequence” with an 

autocorrelation function being a Kronecker discrete delta function [ ]nδ  (instead of Dirac 

continuous delta function as in Equation 5.1) with properties,  
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A white noise autocorrelation function has constant power at all frequencies in the 

frequency spectrum. It is completely uncorrelated with itself at any time except the present. 

This property of white noise is very useful for design and analysis purposes. 

Physical systems have a certain frequency range to which they can respond to inputs. 

Out of this range, either the input has no effect, or the system severely attenuates the input. 

Thus, the real wideband noise can be replaced by white noise that, from the system’s point 

of view, is identical but the mathematics involved is substantially simple. As an 

illustration, a typical system and noise power spectral densities (the amount of power 

content at a certain frequency) are plotted in Fig. 5.1. [35].  
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Figure 5.1.  Power spectral density bandwidths 

A system noise is typically emerges as a result of the cumulative effect of small 

sources. It can be shown mathematically by the central limit theorem that when a number 

of independent random variables are added together, the summed effect can be described 

very closely by a Gaussian probability density function, regardless of the shape of the 

individual densities [35]. Consequently, the Gaussian white noise provides mathematically 

simple models for various uncertainties inherent in the system. 

5.2.2. Estimator Properties 

Estimators have two naturally desirable properties, one of them is being unbiased and 

the other is having small Mean Squared Error (MSE). A state estimator bias represents the 

expected value of error in the state estimate and MSE provides a measure of the accuracy 

of the estimator [7]. 

Let x  represent the state (usually a vector) we want to estimate, which is unknown, 

and let z  represent observed/measured value of the state. Then, estimate x̂  will be a 

function of the measurement z , denoted by )(ˆ zx . The bias can be defined as, 

 [ ] [ ] [ ]xzxExzxEzxbias −=−= )(ˆ)(ˆ)(ˆ  (5.5)

A state estimator is said to be unbiased if its bias is equal to zero. Similarly, the 

variance and MSE of an estimator are respectively,  
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 [ ] [ ][ ]2))(ˆ)(ˆ()(ˆvar zxEzxEzx −=  (5.6)

 [ ] [ ] [ ] [ ] 22 ))(ˆ()(ˆvar))(ˆ()(ˆ zxbiaszxxzxEzxMSE +=−=  (5.7)

If there is a bias in the estimate, this will increase the MSE which is the variance plus 

the bias squared. The next section describes the properties and design criteria of a 

Minimum Mean Square Error (MMSE) estimator. 

5.3. Minimum Mean Square Error Estimator 

A Minimum Mean Square Error estimator is defined as an estimator with minimal 

MSE which can be written mathematically as, 

 [ ]zxzxEzx
x

MMSE |))(ˆ(minarg)(ˆ 2

ˆ
−=  (5.8)

The estimate which satisfies the above equation for vector random variables can be 

obtained by setting the gradient of the mean of the squared norm of this error to zero [7],  

 [ ] [ ] 0)|ˆ(2|)ˆ)(ˆ(ˆ =−=−−∇ zxExzxxxxE T
x  (5.9)

 [ ]zxEzxMMSE |)(ˆ =  (5.10)

Equation 5.10 uniquely defines the MMSE estimate as the conditional expectation 

(mean) of the state x  given the measurement .z The MMSE state estimator for stochastic 

linear dynamic systems makes use of the initial state estimate and covariance with process 

and measurement models. They can be describes as follows, 

Initial state estimate and covariance: The state is a random variable. According to 

Equation 5.10, the “mean” value of this random variable is initially set as our initial 

estimate of the state. Likewise, the “covariance” is initially set as a measure of the 
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accuracy of our initial estimate [7]. The estimator determines the future values of these 

distribution values.  

Process (state evolution) model: The evolution of the state is modeled as a dynamic 

system perturbed by the process noise. This noise is used for modeling the uncertainties in 

dynamic models. The state-space representation for continuous-time LTI stochastic 

systems can be written as, 

 )()()( tLwtFxtx +=&  (5.11)

In this equation )(tx  represents the state vector, F  is the system matrix describing 

system dynamics. L  is the noise gain and )(tw  is the process noise. The input control term 

is discarded in Equation 5.11 since we don’t have any control over the target state in our 

application.   

Measurement model: Measurement model describes the dynamic model from the 

observers’ perspective. Since measurements are obtained at discrete time instants, the 

discrete-time measurement equation can be written as, 

 )()()( krkxHkz k +=  (5.12)

In this equation, mRkz ∈)(  represents our measurement at time instant k . The nm×  

measurement matrix kH  establishes the “linear” relationship between the state 

nRkx ∈)( and the measurement )(kz  in the absence of measurement noise )(kr .  

Noise: In Equations 5.11 and 5.12, the noise terms model the disturbances which we 

can neither be controlled nor modeled deterministically. Accordingly, they are modeled as 

random variables having a certain distribution of possible values. In general, the process 

noise )(tw  is assumed to be stationary zero-mean white noise process with power spectral 
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density cQ . Similarly, the measurement noise )(kr  is assumed to be stationary zero-mean 

white noise sequence with the covariance matrix kR .  
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6. DISCRETE-TIME KALMAN FILTER 

The discrete-time Kalman filter is the optimum MMSE estimator for the discrete-

time linear dynamic systems under some statistical assumptions [7]. This section describes 

these assumptions and the realization of these assumptions in the proposed system. The 

algorithm is given with the computational origins of the filter at the end of the chapter. 

6.1. Assumptions of the Discrete Kalman Filter 

The assumptions of the discrete Kalman filter are related to process model and 

statistics of the state and model noise distributions. 

6.1.1. Assumptions on Process Model  

For the discrete Kalman filter, measurements occur and the states are estimated at 

discrete points in time. The discrete measurement model of MMSE estimator, as defined in 

Equation 5.12, can be used in discrete Kalman filter equations. However, the process 

model described in Equation 5.11 must be discretized and represented in the state-space 

form of discrete-time linear stochastic systems as 

 
kk qkxAkx +=+ )()1(  (6.1)

The index 1+k  represents the next sampling time after k .  The nn×  state transition 

matrix kA  defines how the state would change “ideally”, in the absence of process noise 

sequence 1−kq , from the previous time step to the current time step. We want to emphasize 

the linear transition of the state variable from one time step to another by means of kA  

matrix. 
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6.1.2. Assumptions on Initial State Estimate and Covariance 

The state is modeled with a Gaussian distribution which can be completely described 

by the mean and covariance values. Since the Kalman filter is a MMSE estimator, 

according to Equation 5.10, the state estimate is the conditional expectation of the state 

given the measurements.  

The Kalman filter needs initial “mean” and “covariance” values of the state. As in 

the MMSE, the initial “mean” value of the state is initially set as our initial estimate of the 

state,  

 )0|0(ˆ)]0(|)0([ xzxE =  (6.2)

When this mean value is used in the covariance computation, then initial state 

covariance becomes, 

The state covariance in Equation 6.3 is at the same time the covariance of the 

estimation error hence mostly referred as the “estimate error covariance” matrix. It 

represents the uncertainty in our initial estimate of )0|0(x̂ . After these initializations, the 

filter computes the future state estimations and uncertainties. 

6.1.3. Assumptions on Process and Measurement Model Noise Sequences: 

Considering the evolution of the system state as in Equation 6.1 and the 

measurement model in Equation 5.12, the process and measurement noise sequences are 

zero-mean Gaussian white noise sequences. Under this assumption, each noise sequence is 

represented by only a covariance matrix as  

 )0|0()]0(|))0|0(ˆ)0())(0|0(ˆ)0([()]0(|)0(cov[( PzxxxxEzx T =−−=  (6.3)
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 ( )kk QNqp ,0~)(  (6.4)

 ( )kk RNrp ,0~)(  (6.5)

The initial state, the process and measurement noises are mutually uncorrelated as 
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 0][ 0 =kqxE    0][ 0 =T
lrxE      +Ζ∈∀ lk ,  (6.9)

6.2. Realization of Assumptions 

In this section, how these assumptions are realized in our tracking system is 

described in detail.  

6.2.1. Process Models 

In filtering applications, the most important part is the proper selection of the process 

model. Because, incorrect modeling of the target’s movements leads to higher inaccuracies 

in position estimation or may even result in divergence of the estimated target position 

from the actual position [36]. In this thesis, we use two target motion models; one of them 

is the nearly constant velocity model and the other is the turn model.  

Small observation intervals and/or small target accelerations can be reasonably 

modeled by nearly constant velocity motion models like Continuous White Noise 
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Acceleration (CWNA) model [37]. We first describe the CWNA model in detail. In order 

to represent our process model in discrete-time as given in Equation 6.1, we discretized the 

CWNA model.  Later on, we describe the turn motion model which greatly simplifies the 

estimation problem for the turning targets like parking cars. 

The CWNA motion model: Consider again the stochastic differential equation of 

Equation 5.11 (repeated below), 

 )()()( tLwtFxtx +=&  

After examining the image sequences we conclude that, most of the times humans 

and vehicles are moving at nearly constant velocities. The state vector containing the pixel 

coordinates of the target centroid and centroid velocities are adequate to describe these 

target movements at any time. Therefore, the state of the target can be represented by the 

four-dimensional column vector as 

 [ ]TyxyxX &&=  (6.10)

Since movements are assumed at “nearly” constant velocities, the velocity 

component can change slightly during the course [7]. This change leads to an uncertainty 

in the target trajectory. Hence this unsteady acceleration, random velocity changes, can be 

modeled as a white process noise )(tw  giving the model name CWNA model [6] as 

 )()( twtx x=&&  (6.11)

 )()( twty y=&&  (6.12)

According to this model, the properties of the zero-mean Gaussian white noise 

process with a power spectral density cQ  and the associated process model matrices are, 
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 0)]([ =twE  (6.13)

 )()]()([ τδτ cQtwtwE =+  (6.14)
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The cQ  matrix in Equation 6.17 has the same uncertainty q  in each Cartesian 

coordinate (diagonal entries) and these uncertainties are not mutually correlated (off-

diagonal entries).  

The uncertainty is determined according to the target’s conformity to the selected 

process (dynamic) model and/or the noise present in the states itself. If the target doesn’t 

deviate too much from its process model then cQ  should be set as small as possible 

( )1.0~q  [25]. Relatively, large values ( )10~q  makes the model to act as a “nearly” 

acceleration model.  Then, the filter quickly adapts to the measurements and makes noisy 

estimates for the position and velocity. These effects are further investigated in the filter 

algorithm part. 

The discretized CWNA motion model: Since the CWNA model dynamics are LTI 

the discretization depends only on the time difference kkk ttt −=Δ +1 . The discretized 



 37

matrices kA  and kQ  (the covariance of the discrete-time process noise sequence kq ) are as 

given below. For their derivation, please see [38] 

 )exp( kk tFA Δ=  (6.18)

 τττ dtFLLQtFQ T
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T
c

t

kk
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))(exp())(exp(
0
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(6.19)

In some cases kQ  can be calculated analytically. Even when a closed form solution is 

unavailable, the matrix can still be calculated efficiently using the following matrix 

fraction decomposition 
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 1−= kkk DCQ  (6.21)

Assuming kA  and kQ  to be constant, the resulting discretized matrices are computed 

as 
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In the remaining of the thesis state transition, measurement, process noise and 

measurement noise matrices are assumed to be constant and replaced by A , H , Q  and R   

matrices respectively. This simplification is done for computational constrains.  

The turn motion model: The turn motion model is similar to the discretized CWNA 

model. The process noise matrix is the same as Equation 6.23. The only difference is the 

state transition matrix which is, 
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where, the ω  term represents the constant turn rate [25].   

 

6.2.2. Measurement Model 

In this thesis, the measurements are the outcomes of the object detection module 

which are the detected target positions in the image plane. An approximate measure of 

position errors (uncertainties) are represented by the measurement noise covariance matrix. 

The measurement matrix and measurement noise covariance matrix in Equation 5.12 

(repeated below) are determined as 
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The R  matrix in Equation 6.26 has the same error variance 2σ  in each Cartesian 

coordinate (diagonal entries) and these errors are not mutually correlated (off-diagonal 

entries). The position errors are the cumulative effect of several factors like camera noise, 

partial occlusions, illumination changes in the object detection step. As 2σ  increases, the 

filter becomes slower to adapt the measurements and the estimates start to alter slowly. 

The effect of measurement noise is also investigated in the filter algorithm part.  

6.2.3. Initial State and Initial State Covariance Estimates  

In addition to the noise covariance values, the Kalman filter needs initial state 

estimate )0|0(x̂  and initial estimate error covariance )0|0(P  values in order to start 

tracking. In our application, the estimate is initiated with the pixel coordinates of the first 

measurement with zero velocities in each coordinate. A few frames later, the filter will 

learn the velocity components. It seems reasonable to give the initial error covariance a 

small value. However, if )0|0(P  is too small the filter tightly bounds to the initial estimate 

and it takes a long time to adapt the measurements and to stabilize. The reason is that, we 

do not provide any prior knowledge about the target velocity. A good choice is to start with 

a high value of )0|0(P , then it will quickly decrease and converge to some nearly constant 

value [39].  
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6.3. The Discrete Kalman Filter Algorithm 

6.3.1. The Computational Origins 

This section gives an overview of the computational origins of the Kalman filter. The 

material presented in this section is mostly inspired from [39].  

The A Priori and A Posteriori Error Covariance Matrix: At each iteration of the 

algorithm, the Kalman filter makes a prediction about the state kx( ). The prediction is 

made before the measurement information at time step k . This state is denoted by 

)1|(ˆ −kkx  which is known as “a priori” estimate, i.e. “predicted” state. Then, the Kalman 

filter evaluates both the a priori estimate and the measurement information to make an 

estimate of the true value of the state )(kx . This state is denoted by )|(ˆ kkx  and known as 

“a posteriori” estimate, i.e. “estimated” state. The corresponding a priori and a posteriori 

estimate errors with respect to the true value of the system state can be defined as 

 )1|(ˆ)( −−=− kkxkxek  (6.27)

 )|(ˆ)( kkxkxek −=  (6.28)

Then, the a priori and a posteriori error covariance matrices associated with each estimate 

error can be given as, 

 ( ) [ ]T

kk eeEkkP −−=−1|  (6.29)

 ( ) [ ]T
kk eeEkkP =|  (6.30)

A posteriori error covariance matrix represents of the accuracy of the state estimate. 
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The Optimal Kalman Gain: In Kalman filtering, the goal is to compute the a 

posteriori state estimate )|(ˆ kkx  as a linear combination of the a priori estimate )1|(ˆ −kkx   

and a weighted difference between the actual measurement )(kz  and the predicted 

measurement )1|(ˆ −kkxH  as 

 [ ])1|(ˆ)()()1|(ˆ)|(ˆ −−+−= kkxHkzkKkkxkkx  (6.31)

The difference )1|(ˆ)( −− kkxHkz  is the so-called the measurement “innovation” or 

the “residual”. The residual reflects the discrepancy between the predicted and the actual 

measurements. The matrix K  in Equation 6.31 is the “gain” or blending factor. The gain 

term simply makes a correction on the a priori estimate )1|(ˆ −kkx  in order to yield the a 

posteriori state estimate )|(ˆ kkx . 

The trace of a square matrix is defined to be the sum of the elements on the main 

diagonal. Therefore, the trace of a posteriori error covariance matrix )|( kkP  gives the 

sum of the mean squared error. Since the Kalman filter is a “minimum” mean square error 

estimator, the trace of the )|( kkP  matrix must be minimized by setting the value of gain 

K  to an appropriate value. This minimization can be accomplished by first substituting 

Equation 6.31 into the definition of a posteriori estimate error, )(ke , and substituting it 

into Equation 6.30. After performing the indicated expectations, the derivative of the trace 

of the result with respect to Kalman gain is equalized to zero. One popular form of the 

solution is given as 

 
RHkkHP

HkkPkK T

T

+−
−

=
)1|(
)1|()(  

(6.32)

The Kalman gain determines the effect of obtained measurement and predicted value 

of the measurement on the state estimate according to the measurement and process noise 

covariances, R  and Q  respectively. The relation between measurement noise 

covariance R  and the Kalman gain is clear. However, the effect of the process noise 
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covariance can be seen in the a priori error covariance )1|( −kkP  equation later on. 

Taking a simple view of the optimal filter gain in Equation 6.32 and a posteriori state 

estimate in Equation 6.31 we can conclude that, 

i) When the measurement noise covariance R  approaches zero (a trusted 

measurement), then a posteriori estimate is nearly equal to the measured value. 

ii) When the a priori error covariance )1|( −kkP  approaches zero (a trusted 

process model), then a posteriori estimate is nearly equal to the a priori 

estimate. 

iii) If the measurement noise covariance is relatively high with respect to process 

noise covariance (measurement is less accurate than process) the gain will be 

small and filter puts more confidence on the process model. 

iv) Conversely, if the process noise covariance is relatively high the gain will be 

large and filter trusts measurements more. 

6.3.2. The Algorithm 

The Kalman filter recursively computes the MMSE estimates of the state of a 

dynamic system through the time and measurement update steps. Each iteration, except 

from the first one, starts with a posteriori estimates of the previous cycle. For the 

derivation of these equations, we refer to [38], [7]. 

Time Update: Starting from the initial state estimate )0|0(x̂  and estimate error 

covariance matrix )0|0(P  as defined in Section 6.2.3; this step predicts their 

corresponding values for the next sampling time. This prediction is based on the state 

evolution model in Equation 6.1. The prediction equations are as  
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 )1|1(ˆ)1|(ˆ −−=− kkxAkkx  (6.33)

 QAkkAPkkP T +−−=− )1|1()1|(  (6.34)

Measurement Update: When the new measurement is obtained, its value is used to 

correct/improve the predicted values coming from the Time Update step. The correction 

equations are as  

 [ ] 1)1|()1|()( −
+−−= RHkkHPHkkPkK TT  (6.35)

 [ ])1|(ˆ)()()1|(ˆ)|(ˆ −−+−= kkxHkzkKkkxkkx  (6.36)

 [ ] )1|()()|( −−= kkPHkKIkkP  (6.37)

The predicted state of the target )1|(ˆ −kkx  in Equation 6.33 is used to predict the 

position of the target for the next sampling time by multiplying it with the measurement 

matrix as 

 )1|(ˆ)1|(ˆ −=− kkxHkkz j  (6.38)

This predicted measurement is used along with the innovation covariance matrix (the 

RHkkHP T +− )1|(  term in Equations 6.35 and 4.11 in the data validation algorithm of 

Section 4.1.2. Then, the validated measurement is used in Equations 6.36 in order to make 

the state estimation.  

The Equations 6.34 and 6.37 updates the accuracy statistics of the filter: when targets 

are under occlusion, the object detection module could not determine the accurate position 

of target centroids. Then, the measurement update step is skipped because there are no 

available measurements. The Kalman filter efficiently tolerates these situations by 

propagating the predictions forward in time. Nevertheless, the accuracy of the estimate 
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decreases with every iteration. As Equation 6.34 states, if the measurement step is skipped 

the uncertainty of estimate grows due to the process noise. However, if target deviates too 

much from the process model or occlusions last very long, the filter will operate wrongly. 

Since the prediction (time update) step largely depends on the process model, the 

filter will obey this model until a measurement arrives. As the measurements arrive, the 

estimate error covariance value decreases (toward its lower limit) because the new 

information reduces the uncertainty (Equation 6.37).  

6.4. Summary of Kalman Filters 

To summarize, Kalman filter makes the best utilization of the prior knowledge of the 

system dynamics to produce an optimal estimate of the state in such a manner that a 

posteriori error covariance is minimized statistically when some presumed conditions are 

met. The Kalman filter updates only the state estimate and covariance matrices as they give 

sufficient statistics to summarize the entire past and make the best estimate.  

Kalman filter is an efficient recursive estimator for linear dynamical systems 

discretized in time domain. Linear means that the process and measurement models are 

linear functions of the state variable. For nonlinear systems (process and/or measurement 

models) extended and unscented Kalman filters have been proposed in the literature.  

There are also alternate but equivalent formulations of the Kalman filter equations. 

Some of them are sequential Kalman filter and information filter. They provide efficient 

implementation of the linear estimation techniques. Sequential Kalman filtering allows for 

the implementation of the Kalman filter without computing matrix inversions. Information 

filtering propagates the inverse of the covariance matrix 1−P  [40]. Information filtering is 

computationally simpler than Kalman filtering under certain conditions. 
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7. INTERACTING MULTIPLE MODEL ESTIMATOR  

The IMM estimator using Kalman filters is presented in this chapter. In the 

explanation of the Kalman filter, we used a single motion (process) model. However, 

sometimes more than one model is needed to represent the motion of targets during their 

course (i.e. a single constant velocity model is inadequate to model the maneuvers like 

turns and accelerations). In such cases, multiple model algorithms are needed to use 

multiple models simultaneously. 

Amongst the multiple model techniques, the IMM was shown to achieve an excellent 

compromise between performance and complexity [41]. It was originally proposed by [42] 

and successfully used in the implementation of an air traffic control system. The IMM was 

further developed by [7] and used in applications where multiple and different sensors 

along with highly-maneuverable targets are present [41]. The following sections present a 

detailed description of the IMM algorithm and some design considerations. 

7.1. Algorithm  

The IMM estimator uses a bank of filters each based on a different state-space model 

which corresponds to a particular mode of target movements like turning, accelerating, and 

not accelerating. In this thesis, we used Kalman filters as building blocks of the IMM 

algorithm. 

The IMM is a recursive algorithm. Figure 7.1 describes the overall IMM algorithm 

with two interacting filters operating in parallel. The equations involved in one iteration 

cycle can be divided into four steps: calculation of the mixing probabilities, mixing 

(interacting) of the estimates, mode-matched filtering and mode probability update. The 

steps are performed in parallel for each Kalman filter. For the derivation of these 

equations, please see [7].  
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Figure 7.1.  An IMM cycle. 

At the end of an iteration, each filter computes its own state estimate and estimate 

error covariance, and also associated model likelihood. At the beginning of an iteration, 

each filter weights (suitably mixes/combines) these estimation results from all filters and 

aggregates them. Weights are the so-called mixing probabilities. This mixing/interaction 

makes the IMM estimator to maintain all of the filters in track [41]. As a result of this, it is 

capable of adapting itself to the more likely motion model (target maneuver) available 

from the bank of models. 

i) Calculation of the mixing probabilities: 

The mixing probability for mode j  at time step k  is calculated under the assumption 

that mode i  was in effect at 1−k  as 
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 ( ) ( ) rjikp
c

kk iij
j

ji ,....,1,111|1| =−=−− μμ  
(7.1)

In this equation, how probable it is that the system was in mode i  is denoted by 

( )1−kiμ , called the (predicted) probability of mode i , and  how probable it is that the 

system will switch to mode j  from mode i  is denoted by ijp . Finally jc  is the 

normalization constant,  

 ( ) rjkpc i

r

i
ijj ,....,11

1
=−= ∑

=

μ  
(7.2)

The “mode probabilities” )0(iμ  and “mode transition probabilities” ijp  are assigned 

by the user a priori but the latter doesn’t change with time. The considerations for setting 

the mode transition probabilities are explained in Section 7.3. 

ii) Mixing (Interacting) of the estimates: 

The state estimate and estimate error covariance of the Kalman filter corresponding 

mode i  are denoted as )1|1(ˆ −− kkx i  and )1|1( −− kkP i  respectively.  

Since we assume that mode j  is the active mode at k , we want to update the filter 

equations corresponding to mode j  with a new measurement )(kz . At this point, the filter 

cannot use directly the estimates from Kalman filter matched to mode i  but instead it 

“mixes” the estimates (outputs) of all the filters (obtained in the previous time step) by 

mixing probabilities ( )1|1| −− kkjiμ  as  

( ) ( ) ( ) rjkkkkxkkx ji

r

i

ij ,....,11|11|1ˆ1|1ˆ |
1

0 =−−−−=−− ∑
=

μ  
(7.3)
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(7.4)

This way, the input to the filter matched to mode j  is obtained from an interaction of 

the r  filters. 

iii) Mode-matched filtering: 

The state estimate in Equation 7.3 and its covariance Equation 7.4 are used as inputs 

to the Kalman filter matched to mode j  to obtain updated (a posteriori) state estimate 

)|(ˆ kkx j  and covariance )|( kkP j  respectively with measurement )(kz . This Kalman 

filtering is done as described in Chapter 6. 

As a measure of how likely it is that the model used in Kalman filter (matched to j ) 

is the correct one, the likelihood function ( )kjΛ  of mode j   is computed as 

( ) ( ) ( ) ( )[ ] ( ) ( )[ ]
rj

kSkNkSkkzkzNk jjjjj

,....,1

,0;,1ˆ;

=

=−=Λ υ
 

(7.5)

The ( ) ( ) ( )1ˆ −−= kkzkzk jjυ  term is residual and ( )kS j  is its covariance. 

iv) Mode probability update: 

The new mode probability )(kjμ  is computed using the mode likelihood function as 
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The jc  term is as defined in Equation 7.2 and c  is the normalization constant, 
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(7.7)

7.2. Combination of Estimates and Covariances 

The overall state estimate and covariance of the IMM filter is the sum of the model-

conditioned estimates and covariances of all filters weighted by the corresponding model 

probabilities as 

 ( ) ( ) ( )∑
=

=
r

j
j

j kkkxkkx
1

|ˆ|ˆ μ  
(7.8)

 ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]{ }∑
=

−⋅−+=
r

j

Tjjj
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(7.9)

These combinations can be calculated at each iteration. However, they are not used 

in the algorithm cycle. These equations are for output purposes. We use only Equation 7.8 

to represent the target position estimate in the image plane.  

7.3. Determining Mode Transition Probabilities 

A proper choice is to derive the diagonal coefficients of the transition probability 

matrix from the expected sojourn time iτ (in units of the sampling interval) in each model 

i  [7]. Sojourn time is the typical amount of time that we expect the target to stay in that 

mode [6]. The probability of transition from model i  to itself iip  is roughly, 
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The T  term is the sampling interval (i.e. time between two consecutive frames). The 

remaining probability )1( iip−  for model i can be shared equally between the off-diagonal 

entries as 
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The performance of the IMM algorithm is not very sensitive to the choice of the 

transition probabilities including the off-diagonal elements. The only exception is that the 

matrices with diagonal entries less than 0.75 degrade the performance of the tracker [43]. 

7.4. Validation Gating For IMM Filtering 

For the IMM filter, there is a different innovation and innovation covariance )(kS  

(Equation 4.11) for each Kalman filter in the combined model. According to the 

Centralized Gating method, the validation gate center (predicted measurement) for r  

models can be found as a weighted combination of each model prediction with the 

probability associated with each model ( )1−kmμ  as 

 ( ) ( ) ( )11|ˆ1)1|(ˆ)1|(ˆ
11

−−=−−=− ∑∑
==

kkkxHkkkzkkz m

r

m

m
m
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(7.12)

The model probability comes from the previous time step 1−k  [44]. 

The matrix with the largest determinant )(kSr  is chosen as the innovation 

covariance matrix. The other method can be the Model-Based Gating in which there is no 

single gate center and region, each model establishes its own gates. All validated 

measurements from all gates are taken into consideration for subsequent processing. In this 

thesis, Centralized Gating method is used for the data validation step. 
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8. EXPERIMENTAL RESULTS   

This chapter presents the experimental results of the algorithm implemented on 

PETS (Performance Evaluation of Tracking and Surveillance) datasets. This dataset 

originates from Second IEEE International Workshop on PETS 2001. We run our 

algorithm on a PC having Intel Core 2 Quad Q9000 processor with 3 GBytes RAM in 

MATLAB. The first section briefly describes the test material used. The algorithm 

improvements and results are presented in the following sections. At the end of the chapter, 

median-based background subtraction and mean-shift tracking algorithms are implemented 

and the results are compared with the proposed method.  

8.1. Test material description 

PETS 2001 dataset provides a unique test environment for the objective evaluation of 

the tracking algorithms. Dataset scenarios take place in a car park environment. These 

scenarios contain the most problematic tracking situations like illumination changes, 

varying reflectance, shadows, and repetitive background motions such as moving clouds, 

small camera displacements, swaying branches, and leaves. In some scenarios, there are 

similar colored objects with the background making it difficult to distinguish between the 

two and stationary scene structures like street lamp or tree blocking the view of moving 

objects.  The dataset consist of 576x768x3 pixel color image sequences taken at 25 fps. 

8.2. Algorithm improvements 

We improved on the standard Mixture of Gaussians object detection method for 

illumination changes and stopped objects. We also improved the data validation step to 

handle occlusion more reliably. Finally, we improved the track initialization step. Our aim 

in these was to have a more robust system. We also considered the real-time constraints. At 

first, in order to speed up the algorithm, we used one out of two images from the dataset. 

We decreased the resolution of the images to 173x231 pixels and converted them to 

monochrome (grayscale) intensities. 
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8.2.1. Adaptations on Mixture of Gaussians method  

In dataset scenarios, there occur sudden illumination changes affecting the whole 

frame. Actually, the Mixture of Gaussians is an adaptive algorithm. But, high adaptation 

rates handle lightning changes at the cost of learning slowly moving objects as 

background. Therefore, we choose a small learning rate enough to handle slow 

illumination changes. To handle sudden illumination changes, the method is further made 

adaptive by subtracting the mean value of the incoming image with the average of the first 

Gaussian distribution mean values. If the difference is above a certain threshold, the mean 

value of the first Gaussian distribution in the mixture is shifted by an amount proportional 

to the difference and variance value is increased. After this adaptation, the algorithm 

becomes more attentive to the lightning changes. So, the brightness values of the incoming 

images are compared with the background image in each frame. If many pixels are affected 

by brightness, then the mean value check is performed again. This gradual adaptation 

scheme does not destroy or eliminate the detected objects. Thereby, slowly moving objects 

are not incorporated into the background and lightning changes are handled appropriately.  

The other important adaptation is about stopped objects. In dataset scenarios, there 

are temporarily or totally stopped objects. If one of the tracked objects is in the vicinity of 

a stopped object, we incorporate the stopped object into the background model. Since there 

are two Gaussian distributions which model the background pixel values, we assign the 

stopped object pixel values to the one of the Gaussian distribution mean values. So, the 

stopped object is learned as background very quickly and do not disturb the detection 

results of other objects. If we incorporate every stopped object in the background model, 

we will loose the track of temporarily stopped objects. 

8.2.2. Improvements on data validation and occlusion 

The tracked objects are perceived as larger and faster as they move towards the 

camera and vice versa. However, the similar effects can be caused by occlusions. When a 

stationary scene structure is blocking the view of a moving object, the detected object size 

is smaller than the original size or the object could not detected at all. Also, when moving 
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objects come very close to each other, the detected region is bigger than individual object 

sizes. Therefore, we track the centroids of moving objects as they are not much affected 

with appearance changes. 

The centroid motions are the most important cues for locating the objects in the 

image plane especially when they are under occlusion. The IMM filter dedicated to each 

target predicts the possible location for that target centroid in the current image plane. 

Validation gating establishes the confidence region around the predicted location where the 

occurrence of the target is expected to happen with 99% probability. The nearest detected 

object to our target whose centroid is falling in the gate is validated for further processing. 

When the predicted positions for different targets are very near as to introduce ambiguity, 

none of them validates a detected object. 

The other consideration is, in order to ensure the right object to validate and to detect 

occlusions; the regional properties of the validated foreground object (blob) are compared 

with the tracked object. These properties are size, orientation and length of the major axis 

of the ellipse which has the same normalized second moment as the detected region. The 

confirmed region centroid is used in the filter equations to locate the tracked object and 

update the filter accuracy statistics.  

8.2.3. Improvements on track initialization 

Detected but not validated objects can be initialized as new targets. The criterion is 

that, they have to be apart from existing targets. The most important reason is, as 

mentioned before, inter object occlusions form a single moving region in the foreground 

image and the tracked targets won’t validate this merged region. But the region does not 

belong to a new object. Rather a few frames later the moving objects will move away from 

each other and the constituent parts will split up.  
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8.3. Test Results  

We tested the algorithm on four different image sequences taken from two different 

camera views and settings. The color properties of each sequence are different from others. 

However, the object detection algorithm is run with the same parameter set for all of them. 

The results are illustrated with screenshots taken at critical points in each scenario. In each 

of the screenshots, the moving object locations are linked and superimposed throughout the 

length of the sequence and the trajectories are obtained.  

i) Dataset 1 - Camera 1 
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Figure 8.1.  Frames 980, 1276, 1456, 1882, 2194, 2532, 2910, 3028 

At the beginning of the first dataset, between frames 980 and 1360, the car with the 

blue trajectory is departing from the parking position very slowly and the other car with the 

red trajectory is parking to another position rapidly. Later, two persons start walking from 

the right side of the camera view to the left. When the person with the cyan trajectory 

comes very close to the newly parked car, at frame 1650, the algorithm learns the stopped 

car as a background object. So, both the pedestrian and the person leaving the car are 

detected properly. Although the pedestrians with yellow and cyan trajectories become very 

small in the image plane, they are tracked properly until they leave the scene. Starting from 

frame 2940, a car moves towards the camera with an increasing velocity.  

In this scenario, the lamppost partially occludes the moving objects and splits the 

detected object regions into two parts. If one of the splitting parts is wrongly validated, the 

other part can be initiated as a new object. But our validation control and new track 

initialization algorithms are well-prepared for these situations.  

ii) Dataset 1 - Camera 2 
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Figure 8.2.  Frames 1000, 1536, 2100, 2342, 2766, 2812, 3016, 3036 

The second camera sequences are very dark. The number of frames is nearly same 

but this view represents the scenario more clearly. For example, the cycling man changes 

his course when the car with the cyan trajectory comes close to it.  This information is lost 

in the previous sequence. 
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iii) Dataset 2 - Camera 2  
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Figure 8.3.  Frames 680, 776, 968, 1122, 1250, 1826, 1952, 2382, 2478, 2624 

In this scenario, the pedestrians and cycling man are tracked until they leave the 

scene. Around frame number 960, there appears a highly maneuvering car. The IMM filter 

with velocity and turn models easily tracks the target.  

The second dataset has significant illumination changes than the first one. When we 

compare the first and final snapshots, the lightning increase can be seen more easily. Our 

gradual adaptation scheme performs well. The illumination changed pixels are not falsely 

detected as moving objects. Besides, real moving objects are accurately found and tracked 

in the sequence. The only exception can be seen in frame 2478. The algorithm fails to 

initialize the track of the person leaving the parked car. Because, as he walks very near to 

the parking cars, he is very similar colored with the background. In this special case, the 

tracking is started when he departs from the parking area. Between frames 1820 and 2400 

two pedestrians are walking so close in the image that they are extracted as one region. 

iv) Dataset 2 - Camera 1 
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Figure 8.4.  Frames 485, 601, 791, 961, 1219, 1545, 1675, 2069, 2479, 2535, 2779 

In this scenario, the illumination changes are much more significant than the other 

scenarios. Also, the camera view is darker than the first one and there is a big tree blocking 

its view. All of the moving objects are fully occluded with the tree at least once. They 

appear after many frames, and are correctly validated by our system. The accurate filter 

predictions greatly reduced the validation problem. When objects are passing behind the 

tree, their predicted locations are also plotted.  

We also implement the same scenario with a single Kalman filter. The motion model 

is the same velocity model of the IMM filter. The elapsed time is 1887 seconds for Kalman 

filter and 1918 seconds for the IMM filter. For uniformly moving targets, there is not much 

difference between the estimates of the IMM filter and the Kalman filter. However, during 

turns the IMM filter has much better speed and position estimates at the cost of 31 seconds.  

8.4. Algorithm Evaluation 

The Tracking Accuracy (TA) of our algorithm is evaluated with the manually 

generated ground truth data. Data represents the true trajectories of targets. We define True 

Positives (TP) as the number of observations located within the ground truth data and False 

Positives (FP) as the number of observations not located within the ground truth data. 

Finally, False Negatives (FN) can be defined as the number of frames which the tracking 

algorithm not observed any locations for the tracked objects. Then TA can be computed as  
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FNFPTP
TPTA

++
=  

(8.1) 

The evaluation results can be seen in Table 1. As can be seen in this table, our 

method works fairly well on diverse test sets. Last row represents the evaluation results of 

the single Kalman filter.  

Table 8.1.  The evaluation results 
 Scenario TP FP FN TA(%) 

Proposed Method Dataset 1-Camera 1 1849 46 21 96.5 
Proposed Method Dataset 1-Camera 2 1447 64 6 95.3 
Proposed Method Dataset 2-Camera 1 2093 93 97 91.6 
Proposed Method Dataset 2-Camera 2 1819 40 76 94.0 
Kalman Method Dataset 2-Camera 1 1883 164 236 82.4 

 

8.5. Algorithm Comparisons 

In this section, median-based background subtraction and mean-shift tracking 

algorithms are implemented for comparison purposes. 

8.5.1. Median based background subtraction algorithm 

The median based algorithm is simple to implement when compared to Mixture of 

Gaussians method. First, at each pixel location, the median value of the previous N  

frames is computed. Then, median values are subtracted from the incoming frame pixel 

values. The pixels where the difference is above a certain threshold are assigned as moving 

object pixels.  

We used the past 20 frames in order to not degrade the speed of the algorithm too 

much. The performance of the algorithm is evaluated by running the Dataset 2-Camera 2 

sequence on the same computer for two background subtraction methods. The object 

detection accuracies are nearly same. But, the elapsed time is 1918 seconds for Mixture of 

Gaussians method and 4832 seconds for the median-based method. However, the main 
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limitation is, it cannot be used for situations where the moving objects are temporarily 

stopped for more than N  frames. In this case, the algorithm incorporates the stopped 

object in the background model. When the object starts to move again, nearly N /2 frames 

later it is recognized as a moving object.   

8.5.2. Mean-shift tracking algorithm  

The mean-shift tracking algorithm is implemented for tracking quality comparisons. 

We applied the algorithm on a simple and short frame sequence where a woman is walking 

along the road. Figure 8.5 illustrates the tracking result for the mean-shift tracker.  

Figure 8.5.  Frames 2050, 2290 

Since the mean-shift tracker could not adjust to scale changes, the algorithm fails to 

track the woman as she is moving away from the camera and getting smaller. Our 

algorithm tracked the woman correctly until she leaves the camera view as illustrated in 

Figure 8.6. 

 



 63

Figure 8.6.  Frames 2050, 2500 
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9. CONCLUSION 

The automated visual surveillance system presented in this thesis is designed to 

accurately cope with changing background conditions like illumination levels, shadows, 

and repetitive background motions such as moving clouds, small camera displacements, 

swaying branches and leaves. In addition, the system properly handles both temporary and 

totally stopped objects. These are accomplished by making some adaptations on Mixture of 

Gaussians object detection method. 

The detected objects are validated for the tracked targets according to their distances 

to predicted target positions and the errors made in these predictions by validation gating 

and NN data association algorithms. However, to ensure the right object to validate; we 

further make some controls on the validated object region. The control criterions are size, 

orientation and length of the major axis of an ellipse which has the same normalized 

second moment as the tracked object region. Their limits are selected for normal object 

appearance changes according to usual movements and relative distances to camera. The 

validated object region centroid position is used in the IMM estimator in order to estimate 

the true location of the target. Since the IMM estimator operates on both constant velocity 

and turn motion models simultaneously, estimation results are far more robust than any 

single model based estimator. When the algorithm does not validate any object for the 

tracked target, the IMM estimator efficiently makes the predictions about the possible 

target locations in the image plane. The primary reason for non validation is the occlusions 

either by static scene structures or between moving objects.  

This thesis mainly focused on developing a robust tracking algorithm with real-time 

processing capability. We track people and vehicles on four image sequences provided by 

PETS 2001 datasets and the overall tracking accuracy is computed as 94.3% according to 

the manually generated ground truth data. On a total of 8676 frames, the processing time is 

0.8sec per frame.  
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In the future, the algorithm could be made more robust by discriminating between 

the closely spaced moving pedestrians from each other. The main limitation of the 

algorithm is that it not designed to cope with congested situations. Our system can be used 

in less congested public places like building complexes or ministry buildings.   
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