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ABSTRACT

IMAGE CODING AND TRANSMISSION

IN WIRELESS MULTIMEDIA SENSOR NETWORKS

Multimedia data is a versatile tool for any kind of application which aims to collect and

extract information from a phenomenon. It can be ubiquitously available by the utilization

of Wireless Sensor Networks (WSNs). Wireless Multimedia Sensor Networks (WMSNs)

have come into existence as a result of this idea. However, handling this combination is a

challenging task.

This thesis focuses on image coding and transmission in WMSNs. Existing coding

and transmission schemes are examined and considering the requirements of multimedia

transmission together with the constraints of WSN, several contributions are made: A

priority based encoding scheme for self-adaptive prioritization of image partitions is

proposed, with novel priority measures. The superior performance of this scheme,

especially in terms of resources required for it, is shown via experiments and sensor node

implementations. A real testbed environment has been set up to observe the effect of channel

conditions on transmitted images. By utilizing this testbed, the robustness of an existing

coding technique, i.e. error concealment is also validated with over 30,000 transmissions.

Hybrid usage of these two schemes is also examined, and a considerable performance gain

is achieved. Moreover, an image transmission framework (ITF) is suggested to be coupled

with the priority based encoding scheme. ITF is based on bursty and regulated transmission

of large image partitions with prioritization via multiple paths. With these attributes, ITF is

a promising candidate to satisfy Quality of Service requirements of multimedia applications.



ÖZET

KABLOSUZ ÇOKLU ORTAM DUYARGA AĞLARDA İMGE

KODLAMASI VE İLETİMİ

Çokluortam verileri, olgular hakkında bilgi toplamayı amaçlayan her tür uygulama

tarafından kullanılabilecek çok yönlü ve çok amaçlı bir araçtır. Kablosuz Duyarga Ağlar’

ın (KDA) kullanımı ile, bu veriler her yerden eşzamanlı ulaşılabilir hale getirilebilir.

Kablosuz Çokluortam Duyarga Ağlar (KÇDA) bu fikrin sonucu olarak ortaya çıkmışlardır.

Bununla birlikte, bu birleşimi istenilen şekilde yönetmek pek çok zorluğu da beraberinde

getirmektedir.

Bu çalışma KÇDA’ da imge kodlması ve iletimi üzerine yoğunlaşmıştır. Var

olan kodlama ve iletim teknikleri incelenmiş, KDA’ da çokluortam verilerinin iletim

gereksinimleri de göz önüne alınarak birçok katkıda bulunulmuştur: Özgün öncelik ölçüleri

kullanan, önceliğe dayalı, özuyarlanan bir kodlama sistemi önerilmiştir. Bu sistemin

üstün başarısı, özellikle gereksinim duyulan kaynaklar açısından, deneyler ve duyarga

gerçekleştirmeleriyle ortaya konmuştur. Kanal koşullarının iletilen imgeler üzerindeki

etkisinin incelenmesi için gerçek bir sınama ortamı oluşturulmuştur. Bu sınama

ortamı üzerinde, var olan bir kodlama tekniğinin (hata gizleme) dayanıklılığı da 30,000

iletim ile doğrulanmıştır. Söz konusu imge gizleme algoritmasının ve bu çalışmada önerilen

kodlama sisteminin birlikte kullanılması da incelenmiş ve bu hibrit sistemin dikkate değer

performans artışı sağladığı gösterilmiştir. Bunların yanısıra, önceliğe dayalı kodlama

sistemi ile birlikte kullanılmak üzere bir İmge İletimi Çerçevesi (İİÇ) de ortaya konmuştur.

İİÇ, büyük imge kesimlerinin birçok yoldan öncelikli olarak çoğuşmalı ve kararlı veri

iletimi üzerine kuruludur. Bu özellikleri sayesinde İİÇ, çokluortam uygulamalarındaki

hizmet niteliği gereksinimlerinin karşılanması için uygun bir aday olarak ileri çıkmaktadır.
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1. INTRODUCTION

Wireless Sensor Networks (WSNs) consist of intentionally resource-constrained

sensing, processing and communicating devices, i.e. sensor nodes. Sensor nodes are densely

distributed over an area of interest to cooperatively sense physical phenomena and act

accordingly. WSNs are used in several application areas such as environmental and industrial

monitoring, biomedical health monitoring, vehicle tracking, military target tracking and

surveillance [1,2]. Since WSN nodes are supposed to work autonomously and unattended for

long periods of time without any maintenance, their components are designed to consume

relatively low power when compared to traditional sensors. This scheme, together with

the defects inherited from the nature of wireless medium, poses some challenges specific

to WSNs: high transmission error-rate, limited network lifetime, node failures, mobility,

network partitioning, scalability issues and end-to-end delay.

The advances in the micro-electro-mechanical systems (MEMS), especially in the

image sensor technology, have triggered the era of Wireless Multimedia Sensor Networks

(WMSNs) [3–5]. The possibility to process audio and video streams and still images together

with scalar data provides additional flexibility, accuracy and high quality services to the

applications in WSN. In consequence of these benefits, the nature of multimedia delivery

introduces more demand in processing and energy resources together with stringent Quality

of Service (QoS) requirements. These requirements necessitate to revise the knowledge

gained from WSNs to manage resources much more efficiently.

Still-image coding and transmission is an essential part of multimedia applications.

Images are good representatives of multimedia data. Furthermore, gathering images from an

event area helps to identify and quantify the detected event more accurately and descriptively.

For instance, in a border surveillance application, even though it may be sufficient to detect

an intrusion via Passive InfraRed (PIR) sensors, only a snapshot of the area could reveal the

source of the intrusion and the identity of the intruder. In this way, false positives could be

avoided.
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Main challenges in WMSNs can be addressed by extensive researches on the coding

and transmission of images. In this thesis, a coding scheme based on adaptive prioritization

of image partitions is proposed and examined in detail. Besides, the effect of channel

conditions on transmitted images is observed with a real testbed, and the performance

of a well-known technique, i.e error concealment, is evaluated on this testbed. Hybrid

utilization of our proposed method with error concealment is also studied and its performance

is revealed. Moreover, an image transmission framework is proposed to address the

requirements of multimedia transmission in WSNs.

1.1. PROBLEM DEFINITION

In WMSN applications, it is required to get images within accepted quality and time.

To achieve expected lifetime for the application, energy efficiency is an inevitable issue

when satisfying these requirements. There is always a trade-off between delay, energy

consumption, bandwidth usage and image quality.

Fulfilling stringent QoS requirements of multimedia data is a nontrivial process, even

in resourceful traditional networks. Static resource reservation based methods are mostly

used in those networks. WMSNs are erratic, and it is not possible to guarantee the quality of

links and the aliveness of nodes throughout an image transmission. Therefore, static resource

allocation methods are not convenient.

For handling the vast amount of image data with tiny sensors nodes, it is necessary to

use tailored source and channel coding techniques which are efficient in terms of processing

power and required memory. At first sight, it may be thought that compression at the

source eliminates delay by reducing the data size radically. It is not always operative in

WMSNs because of the delay introduced by the computation time [6]. Another intuitive

reasoning may be compressing images prior to transmission is more energy efficient than

direct transmission of uncompressed bigger images. This reasoning comes from the general

situation in WSN, in which the power requirement of transmission is generally greater than

computation. There is not enough study in the literature to enlighten this hypothesis for

WMSNs quantitatively [7]. This hypothesis may not be valid because of the complexity of
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the compression algorithms.

To make use of compression in WMSNs, the traditional complex encoder, simple

decoder approach in source coding should be reversed [5]. Distributed source coding is a

favorable solution specifically when a spatial and/or temporal correlation between camera

nodes exist. Temporal correlation is mainly related to video streams. Spatial correlation in

images may exist when the viewing area of the nodes partially or completely overlaps. In

this case, defining correlating areas is extremely hard especially when the network topology

is unknown, so an initial training phase and in-network processing are mandatory [8].

Another aspect of compression is that in case of packet loss, much more information is

lost because each packet includes much more information than raw transmission of images.

Packet loss tolerance of an image coded with classical compression algorithms (e.g., JPEG

[9], JPEG2000 [10], SPIHT [11]) is very low [12]. Error resilient robust source coding

schemes or extensions to current schemes are required.

To avoid exponential loss of information and to achieve required perceptual quality,

channel coding and error correction techniques must be employed in compressed image

transmission such as Automated Repeat Request (ARQ) [13] or Forward Error Correction

(FEC) [14]. However, these transport schemes may not be suitable for WMSNs. ARQ

scheme achieves efficient bandwidth usage but due to packet retransmissions, it cannot

satisfy strict delay constraints. FEC is based on imposing redundant packets or appending

erasure codes to the packets and so comes up with increased bandwidth which is already

limited in WMSNs [3, 15].

On the other hand, images contain redundant and correlated data, therefore they are

open to diverse error correction and image reconstruction techniques. In this respect, error

concealment (EC) approach has received particular attention as an effective mechanism that

reconstructs the distorted image data as closely as the original one without increasing the

bandwidth demand as well as avoiding the burden of retransmissions and consequent delay

[16]. Consequently, EC algorithms are promising candidates to alleviate packet losses due

to errors and failures in WMSNs.
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Another considerable attribute of image data is unequal importance of pixels to

reconstruct lost parts [5]. Methods that exploit relatively important part of images can

be used to adaptively adjust image coding and transmission strategies to application and

network requirements. Prioritization is one of the fundamental parts of QoS support

mechanisms.

Image quality assessment is another issue when devising image transmission schemes

for every level of communication stack. The purpose of quality assessment is objective

evaluation of encoded and/or transmitted images [17]. This evaluation helps us to ascertain

error tolerance of our methods quantitatively, and consequently to find optimal trade-offs

among resource utilization and application specific QoS requirements.

1.2. MOTIVATION

Even the algorithms known as lightweight in traditional systems are generally not

applicable to resource-poor sensor nodes. Many of the solutions proposed for image

transmission in this field of research do not properly consider the facts of WMSNs. Most

of the time, they include several assumptions and cannot go beyond a theoretical basis. In

order to validate and advance these theoretical solutions, exhaustive experiments including

real testbed implementations must be conducted [18].

The challenges in WMSNs can be overcome by interdisciplinary approaches. Images

include redundant and correlated data. Besides, the pixels in images have unequal

importance for perceptual reconstruction. This attribute makes it possible to assign different

priorities to different parts of data to satisfy expected QoS. These inherent properties of

image data can be the key instruments in WMSN solutions.

Multipath transmission is another promising method to overcome bandwidth

deficiencies, overloaded buffers, node and link failures.

Image coding techniques are at the heart of any solution in WMSNs. Performance

evaluation of these techniques helps to check their validity and feasibility. By this way,
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the parameters in these techniques can be tuned and their effect is observed in different

circumstances. Moreover, findings acquired from the evaluation of existing methods would

be inspiring when devising new ones.

With the motivation above, we aim to put forward an adaptive and resource aware

image coding and transmission scheme that gracefully adapts itself to applications’ quality

requirements.

1.3. CONTRIBUTIONS

In addressing the challenges outlined above, the following contributions are made:

1) A simple encoding scheme that dynamically (on-the-fly) prioritizes image partitions

is proposed. In this method, data blocks are prioritized at the source, based on the

information they contain and labeled accordingly.

a) To extract the information, different packet priority measures are considered: entropy,

edge detection, reproducibility and hybrid measures, i.e. delta-entropy and delta-edge.

These measures are applicable to image partitions rather than the full image.

b) To quantitatively evaluate the performance of the measures in prioritization, a new

metric called Object Transmission Rate (OTR) is proposed and used in comparisons.

The case of transmissions over lossy links without any encoding is used as the baseline

for the comparisons.

c) Finally, the proposed priority measures are implemented on Telos [19] equivalent

Tmote Sky nodes and their implementation costs are evaluated, and compared to JPEG

image compression algorithm.

This contribution is accepted for publication as a research paper [20].

2) A real multi-hop testbed is established with Tmote Sky sensor nodes. The testbed is

used to examine the effect of channel conditions on both raw images without encoding

and images encoded with an existing error concealment (EC) algorithm [15]. The EC

algorithm used is a modified version of Sub-bands based Image Error Concealment

(SIEC) [21] algorithm. A series of exhaustive tests including 30,000 transmissions are
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conducted for single-path and disjoint multipath transmission scenarios. This study is

submitted as a research paper [22] and it is under review.

3) Hybrid usage of EC with the proposed priority-based encoding scheme is analyzed and

compared to the real testbed results obtained in EC tests.

4) An image transmission framework is proposed to be coupled with priority-based

encoding. This framework includes a regulated buffer transmission mechanism which

transmits buffers in a bursty manner. In this scalable framework, fine-grained adjustment

of the transmission parameters helps to satisfy the application’s QoS requirements. It

achieves adaptiveness in routing by the included link checking state.

1.4. ORGANIZATION OF THE THESIS

The remainder of this thesis organized as follows. Chapter 2 gives a literature review

about the current research on the subject. Chapter 3 explains the coding schemes, algorithms

and the transmission framework proposed in this study. Chapter 4 discusses the contributed

methods and their experimental evaluations, including the testbed architecture. Chapter 5

concludes the thesis and points out future research directions.
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2. RELATED WORK

Comprehensive surveys of WSNs can be found in [1, 2]. With the integration of the

multimedia data to WSNs, together with its benefits, new challenges arose. [3] covers new

applications, challenges, proposed solutions and open research issues. A comprehensive

survey of WMSNs is given in [5]. Other surveys focus on different aspects of WMSNs.

In [23], the authors examine multimedia streaming in WMSNs. [8] is a survey about visual

sensor networks. In this work, the authors stated:

Future directions in visual sensor networks research should be aimed at exploring the
following interdisciplinary problems.

(i) How should vision processing tasks depend on the underlying network conditions,
such as limited bandwidth, limited (and potentially time-varying) connectivity
between camera nodes or data loss due to varying channel conditions?

(ii) How should the design of network communication protocols be influenced by the
vision tasks? For example, how should different priorities be assigned to data
flows to dynamically find the smallest delay route or to find the best fusion center?

(iii) How should camera nodes be managed, considering the limited network resources
as well as both the vision processing and networking tasks, in order to achieve
application-specific QoS requirements, such as those related to the quality of the
collected visual data or coverage of the monitored area?

2.1. IMAGE CODING AND COMPRESSION

Image coding is the fundamental part of visual data handling in WMSNs. There are

several researches about different aspects of image coding in WMSNs. One of the main

concerns of these researches is about compression. Compressing relatively large image

data for WSN significantly reduces required bandwidth. However, compressing images

is a costly operation in terms of energy consumption. For the limited processors of tiny

sensor nodes, computations included in compression are time-consuming operations, hence

they pose undesirable delay during transmission in multimedia applications. In Figure

2.1, the operations included in one of the remarkable compression technique (JPEG) are

given from [7]. Moreover, compression is sometimes not possible for the methods that

require full image, such as JPEG 2000 [10], because of the limited available memory of

sensor nodes. In these circumstances, optimizing compression for WMSNs and fine-tuning
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Figure 2.1. JPEG compression algorithm

the parameters of it are necessary. In this context, Lee et.al have studied trade-offs in

compression parameters in terms of computational cost, energy consumption, speed and

image quality in [7]. They also proposed optimization methods. For testing the methods on

different hardware platforms, they have utilized a framework which automatically generate

C codes for the platforms. Their findings are used for JPEG comparisons in our work.

In [24], Lu et.al. proposed a low-complexity and energy efficient image compression scheme

designed especially for WMSNs and based on Lapped Biorthogonal Transform (LBT) [25].

Another drawback of compression is its fragility to packet losses. In the real tests of

the work [12] 14 per cent of the JPEG 2000 coded images are unrecoverable in a 2-hop

transmission. Error recovery mechanism should be used to overcome the fragility of the

compressed images. However, employing these mechanisms in the network introduces either

additional delay [26] or increased bandwidth demand.

Another coding method is distributed source coding (DSC) [27] to balance the

computational load on sensor nodes. There are many studies in the literature about DSC

[28–31]. A diagram of DSC, taken from [31], is depicted in Figure 2.2. They are mostly

based on Slepian and Wolf’s and Wyner and Ziv’s information-theoretic works [32, 33].

However, there must be a spatial or temporal correlation between the images taken from

different sensor nodes. With regard to still-images, it is only possible when the field of views

of more than one camera overlaps. Since we are not focused on multiple-camera scenarios

in this study, this method is not further discussed.



9

Figure 2.2. Distributed compression of two statistically dependent random processes

2.2. IMAGE TRANSMISSION

To increase robustness of the transmitted images in WMSN, the redundancy naturally

included in them can be used. In the well-known and pioneer work [34] of Shannon, he

states that:

The redundancy must be introduced in the proper way to combat the particular
noise structure involved. However, any redundancy in the source will usually help if
it is utilized at the receiving point. In particular, if the source already has a certain
redundancy and no attempt is made to eliminate it in matching to the channel, this
redundancy will help combat noise.

In the light of this theory, instead of removing the redundancy with compression, we should

make use of it. Error concealment is a method that increases redundancy of data for

error recovery. Error concealment techniques are well-studied in [35]. Error concealment

techniques that increase redundancy without increasing image size [15, 36–38] should be

preferred in WMSNs.

The redundancy in image data is benefited by image reconstruction techniques [39,40].

The authors in [41] separate image data into two different sets as structure and texture and

propose different reconstruction techniques for them. This is a good example of classified

treatment of image data.

Image transmission is one of the main concerns of WMSN researches. Transmitting

relatively big data in the poor conditions of WSN is a complicated operation. The problem

is not only the amount of data but also tight QoS requirements of the application. Therefore,
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many of the studies in this field are about providing QoS support to applications in WMSN

[42–47].

The bandwidth requirements in image transmission can be satisfied by using multiple

paths [48]. Multipath transmission also helps to overcome congestion problem in WMSNs

[49]. By using multiple paths, that naturally occur in WMSNs, error resilience is also

achieved [50]. Another benefit of multipath transmission is in timeliness domain, thus it

helps to minimize delay in transmission. MMSPEED [44] is the one of the representative of

using multiple paths to achieve QoS in both timeliness and reliability domain.

2.2.1. Prioritized Transmission

Prioritized transmission of different services is a commonly used technique in any

kind of networks. The theoretical study [51] of Albanese et.al. shows the basis of priority

encoding transmission. This paper is probably the most related one to our study. However,

the authors focused on priority encoding transmission of data in a general manner and they

did not offer any priority measure for images. The studies about prioritization are mostly

related to inter-prioritization of different data types, i.e. scalar data, audio, video etc. [52].

On the contrary, we offer intra-image prioritization and measures to weigh the importance of

image partitions. Image data consist of different partitions which have different perceptual,

semantical and structural importance. In [53], authors propose prioritization of image data in

wavelet domain. They assign different priorities to different subbands with a semi-reliable

transmission scheme based on priority-based packet discarding. In that scheme, intermediate

nodes intentionally drop lower priority packets according to their battery’s state-of-charge.

Several studies in the literature insist on the valuable information extracted from

the images. In [54], authors point out the importance of object recognition. Background

subtraction is a mainly used method for this purpose [55,56]. However, it is a costly method

for tiny sensor nodes.
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Table 2.1. An overview of the current hardware platforms

Table 2.2. An overview of the current testbeds

2.3. TESTBEDS

Although the studies mentioned above include notable theoretical solutions, many of

them are not validated by real testbed experiments. It is important to test the effectiveness

and the feasibility of algorithms and protocols in a controlled environment. Recent testbeds

on WMSNs are exposed, and current applications and hardware platforms are revealed in

[18]. An overview of the features of the platforms and recent testbed studies mentioned

in [18] are given in Table 2.1 and Table 2.2 respectively. Some of the camera platforms, i.e.

Cyclops [55], ALOHA [57], eCAM [58], CMUcam3 [59], are illustrated in Figure 2.3.
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a. Cyclops with Mica2

b. ALOHA platform

c. eCAM platform

d. CMUcam3 camera

Figure 2.3. Current sensor platforms and cameras
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Figure 2.4. A water counter from an example application

2.4. IMAGE QUALITY ASSESSMENT

When evaluating the performance of an image coding and transmission scheme, inter

alia, the quality of the degraded images at the receiving end has significant importance.

Moreover, Image quality assessment (IQA) is utilized in quality aware transmission schemes,

when making rooting decisions. IQA is also beneficial for the adjustment of coding and

transmission parameters. In many applications, transmission of the images in full quality

is not necessary. In those cases, intentionally reducing the quality of the images extremely

improves the network performance and the lifetime of the system. IQA is employed in

several WMSN applications before the information extraction stage to figure out whether the

received image is sufficient to extract the required information or not. For instance, in [60]

authors aim to find a trade off between compression ratio, compression time, transmission

time and image quality. They have applied their methodology to a case study: the use of

wireless visual sensors for remote metering of water counters. A sample image from the

application is given in Figure 2.4. In that application, the authors have used CW-SSIM [61]

as an image quality metric (IQMs). Their success criterion is the ability of detecting the digits

of the water counter with an optical character recognition (OCR) software. They have tested

several images corrupted by various methods and estimated the CW-SSIM threshold value.

This value have been considered as the minimum acceptable quality level of the acquired

image. Then, they have adjusted the compression parameters as to satisfy this value.
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Human Visual System (HVS) has a great ability to determine the quality of the image

[62]. Assessing the quality of an image is most reliably done by subjective evaluation [63].

In this respect, Mean Opinion Score (MOS) is the most widely used subjective IQM. To

attain the MOS values, a study group involving several individuals is formed. Each person

in the group examines the images and gives scores about the quality of them. MOS is taken

as the average rating of their scores. MOS is mainly used for the evaluation of objective

IQMs. Objective IQMs are devised to automatically and quantitatively predict perceived

image quality in a way that is consistent with subjective human evaluation [64]. Objective

IQMs remove the necessity of human interaction and introduces more practical and dynamic

way for IQA. The performance of objective IQMs are evaluated by following criteria [62].

1) Prediction Accuracy; This is revealed by MOS comparisons.

2) Prediction Monotonicity; The IQM values should increase and decrease monotonically

with the corresponding MOS values.

3) Prediction Consistency; The performance of the IQM should not be affected from the

characteristics of different images.

IQMs are examined in three different classes according to availability of the original

image.

1) Full-Reference (FR) Metric; Original image is available.

2) No-Reference (NR) Metric; Original image is not available. It is also called as

“single-ended” and “blind”.

3) Reduced-Reference (RR) Metric; Original image is partially available or information

about the features of the image is available for IQA purposes.

FR metrics are the most commonly used metrics. They can be used for evaluating

the performance of image related methods but they cannot be used dynamically in a

communication system because the reference image is not available at both intermediate

nodes and the sink. NR metrics may be used for this purpose but NR IQA is extremely

difficult for an automated algorithm to execute [65]. Exploiting edge sharpness is a

commonly used technique in NR metrics [66, 67].



15

Figure 2.5. Usage of RR IQA in a wireless imaging system

RR metrics provide a good compromise between FR and NR metrics for image

communication. [68] proposes a IQA method based on a natural image statistic model in

the wavelet transform domain. [69] has a similar wavelet based RR approach, but instead

of transmitting required information for quality assessment via an ancillary channel or

piggybacking, that information is embedded to the image by watermarking. In [65], two

RR metrics are proposed for wireless imaging, considering the system depicted in Figure

2.5.

IQA is a large field of research in image processing. [17,70–72] are surveys comparing

the performance of several IQMs. Although, there are lots of proposed IQMs, there is no

universal IQM which can be used in all situations and all types of images. Because of

this, IQMs should be chosen in accordance with the aim of the application by conducting

experiments over the possible images which would be faced throughout the application.

Since, we use IQMs for only the evaluation of our methods, we further focus on objective

FR IQMs.

2.4.1. The Structural SIMilarity (SSIM) Index

The SSIM index is devised under the assumption that HVS is highly adapted for

structural information extraction from a scene [64]. This index weighs structural distortions
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in the image. This is done by utilizing simple intensity and contrast measures. SSIM index

is calculated as

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(2.1)

where x and y denote two non-negative image signals. µx, µy and σx, σy represent the mean

intensity and the contrast of the image signals, respectively. C1 and C2 are the constants used

for to avoid instabilities when µx, µy and σx, σy approach to zero. They can be chosen as

C1,2 = (K1,2L)2 (2.2)

where L is the maximum number of pixel values (255 for 8-bit grayscale images), and

K1,2 �1 are small constants.

2.4.2. Objective Picture Quality Scale (PQS)

In [73], a methodology is given for the determination of an objective IQM. As an

application of this methodology, PQS is presented. It is based on the properties of visual

perception for both global features and localized impairments caused by image coding. In

this method, source of disturbances are considered as effect of noise, luminance coding

mistakes, end of block disturbances, correlated errors and problems near high contrast

changes. To quantify these factors, they are modeled by five distortion factors, Fi=1, . . . , 5.

Some of these factors are correlated. Principal component analysis is utilized to obtain

the correlation between the factors. And PQS is the linear combination of the principal

components Zj=1, . . . , 5:

PQS = b0 +
J∑

j=1

bjZj (2.3)

where bj is the partial regression coefficients computed using multiple regression analysis of

PQS from MOSs obtained experimentally.
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2.4.3. Peak Signal To Noise Ratio (PSNR)

PSNR is a general quality metric which weighs differences in signals with a

logarithmic base. It is used mainly to assess distortions of the signals caused by external

sources. It is commonly used in image processing especially for comparing the performance

of compression algorithms.

PSNR is based on the Mean Squared Error (MSE) value which is defined as

MSE =
1

N1 ×N2

N1∑
i

N2∑
i

[
I(i, j)− Î(i, j)

]2
(2.4)

where I(i, j) and Î(i, j) are the pixel values of the original and reconstructed images

respectively. And MSE is used to calculate PSNR as,

PSNR(dB) = 20 log10

2n − 1√
MSE

(2.5)

where n = 8 for 8-bit grayscale images and (2n − 1) is the largest possible value of the

signal.
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3. IMAGE CODING AND TRANSMISSION

In WMSN, image coding and transmission are tightly connected to each other. Their

interaction is important to provide QoS support to the applications. Any transmission scheme

should be aware of the coding mechanisms, and the attributes of the images encoded with

that. A coding scheme may result in images that are not robust to packet losses, such as

compressed images. In this case, a transmission scheme which provides reliability should

be employed. On the other hand, a coding scheme can introduce additional error correction

codes to increase the robustness of the images. In such a case, more bandwidth is required,

and the transmission scheme should handle this additional bandwidth requirement. Some

coding methods are designed to make use of multiple paths. In this situation, the transmission

scheme should extract and manage available paths effectively. In this study, coding and

transmission of images are treated together.

In this chapter, a priority encoding scheme is proposed with novel priority measures.

After that an error concealment technique which improves the robustness of the images

is examined. Hybrid usage of error concealment with priority encoding is also discussed.

Finally, an image transmission framework, which is designed to be coupled with priority

encoding, is proposed and explained in detail.

3.1. MACRO-BLOCK BASED PRIORITY ENCODING (MBPE)

Prioritization of packets for different kind of network traffics and services is a

frequently used method for QoS support [52, 74]. Prioritization of image data is beneficial

for resource utilization and data-centric transmission schemes. However, image data are not

homogeneous. The spatial relation in image data makes some partitions of the image more

valuable in terms of reconstruction and information extraction. Main reason for gathering

images from an environment is to get usable information about the subject of the application.

Therefore, the partitions of an image that include structural information is more useful.

Image macro-blocks are m × m pixel image partitions which can be fit into one
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a. The mountain test image b. Macro-blocks of the mountain test

image

Figure 3.1. The mountain test image and its 8× 8 macro-blocks

transmission data packet. A 256× 256 test image and its 8× 8 macro-blocks are depicted in

Figure 3.1.

The proposed coding method, called Macro-block Based Priority Encoding (MBPE),

is based on prioritization of image macro-blocks on-the-fly according to the information

they contain. In this method, priority level of the macro-blocks is intended to be used for

data-driven transmission schemes. Links between a sensor node and its neighbors have

different and temporarily changing qualities. Transmitting macro-blocks via these links

in accordance with their priority levels is the basis of this scheme. An illustration of the

considered system is given in Figure 3.2. Adaptively matching the quality of the link and

the importance of the macro-blocks increases the possibility of valuable image data to arrive

the sink. By this way, load-balancing is also achieved and energy burden on static paths is

avoided. This situation increases overall network lifetime. Using multiple paths prevents

congestion arising from overloaded buffers.

To decide the priority of a macro-block, the importance of it should be evaluated

quantitatively. Since, most of the commercial off-the-shelf (COTS) sensors have not enough
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Figure 3.2. MBPE system model

memory and processing power to handle full image data, the evaluation process should

be done without acquiring the whole image. In this study, several priority measures are

proposed to weigh the importance of macro-blocks. In the proposed measures, full image

data are not required. The required data change according to the measures. It is either

only the macro-block itself or the neighboring macro-blocks together it. The details of the

measures are presented in Section 3.1.1.

At the source node, we classify image data to priority levels by applying thresholds

to the weights attained from the measures. At each node, the priority levels are assigned

to available links prior to transmission. Determining the priority levels and corresponding

threshold values should be adaptive based on the setup of the sensor nodes and the

application’s requirements. This subject is discussed in Section 3.1.2.

3.1.1. Priority Measures

3.1.1.1. Entropy Measure

The first measure proposed for image packet prioritization is based on

Shannon-entropy [34]. Shannon-entropy defines a quantity that measures the amount of

information included in a dataset, in other words the rate of the information included in

it. With regard to image data, conceptually, it reflects the redundancy in the image. If the
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Figure 3.3. Entropy based measure of macro-blocks in the mountain test image

entropy of a macro-block is relatively low, the redundancy included in it is high and the

importance of the macro-block is low. For a macro-block in which all the pixels have the

same value, entropy is zero. On the other hand, for a 8× 8 pixels macro-block in which all

the pixels have different values, entropy is six.

Entropy can be taken as the probabilistic information measure of a given macro-block

[75]. For each image macro-block, entropy is calculated by its normalized grayscale intensity

histogram. This is actually the sample probability mass function, P (k), of the packet. The

entropy for a 256 level grayscale image is calculated by

W ent
p = −

256∑
k=1

P (k) log2(P (k)) (3.1)

The entropy is calculated for all macro-blocks. For the mountain test image in Figure 3.1,

the entropy measures of 8× 8 macro-blocks are given in Figure 3.3. The macro-blocks are

prioritized and transmitted via appropriate channels based on these values. As can be seen,

the macro-blocks corresponding to the background have lower entropy values. The other

sections of the image have relatively higher entropy measures.
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Figure 3.4. Edge based measure of macro-blocks in the mountain test image

3.1.1.2. Edge Measure

The second packet priority measure is based on edge information. In the image,

structured data correspond to edges [41]. Therefore, if a priority measure can be developed

based on the edge information, then it can also increase aliveness of structure of the subject.

There is a vast amount of literature on edge detection [76]. In this study, the simplest edge

detection method based on Haar filter (with coefficients {+1,−1}) is used without direction

selectivity. The absolute values of these edge filter responses in the image macro-block are

summed and taken as the edge measure.

The edge measure of the macro-blocks in the mountain test image is given in Figure

3.4. As can be seen in this figure, the macro-blocks corresponding to the skaters have the

highest edge measures. The other macro-blocks have fairly low edge measures. It can be

deduced that this measure hints on the possible objects in the macro-block.

3.1.1.3. Reproducibility Measure

The last “pure” packet priority measure is based on image reproducibility. The idea

for developing this measure is as follows. If a macro-block is lost, can it be reproduced
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Figure 3.5. Reproducibility operation

easily by its neighbors? This is in fact a simple form of the well-known technique in image

processing called as image inpainting [77]. Reproducibility measure depends on this idea.

Each macro-block is represented by the mean value of its grayscale pixel values. If the

mean value of a macro-block is close to the mean values of its neighboring macro-blocks,

in general terms it resembles its neighbors. Hence, it is possible to reproduce it. If the

mean values are different, then the macro-block differs from its neighbors and it may not

be easy to reproduce it. Here, it is important to mention that the present study does not

focus on reproduction. Only the basic idea is used for packet prioritization. Based on these

definitions, the weight for the macro-block p is calculated as

W rep
p =

8∑
n=1

|µ(p)− µ(n)| (3.2)

where µ(p) is the mean value of the macro-block p. In the summation, n = 1, ..., 8 are the

eight neighbors of the macro-block p. The diagram of this operation is depicted in Figure 3.5.

Reproducibility measure differs from the previous measures in terms of used data. In

the previous measures only intra macro-block information is used, but here, this measure

makes use of inter macro-block information. This approach improves the efficiency of the

measure with a tolerable memory overhead.



24

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.6. Reproducibility based measure of macro-blocks in the mountain test image

This measure is applied on the mountain test image. Macro-block weights can be seen

in Figure 3.6. As can be seen, image macro-blocks containing objects have higher weights

compared to the rest of the macro-blocks. This indicates that the reproducibility measure

may be of use for packet prioritization.

3.1.1.4. Hybrid Measures

In this class of measures, edge and entropy measures are combined with reproducibility

measure separately. As mentioned before, reproducibility measure is based on mean

grayscale values of macro-blocks and their differentiations. It tries to extract representability

of a macro-block by its neighbours in terms of mean grayscale values. By using edge

and entropy values, instead of mean grayscale values of macro-blocks, and applying the

same differentiation, some performance gain can be obtained. These hybrid measures i.e.

delta-entropy and delta-edge are calculated for entropy and edge values respectively as

WDent
p =

8∑
n=1

|W ent
p −W ent

n | (3.3)
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WDedg
p =

8∑
n=1

|W edg
p −W edg

n | (3.4)

The diagrams of these operations are depicted in Figure 3.7 and Figure 3.8.

Example results for the hybrid measures in the mountain test image is given for

entropy and edge are depicted in Figure 3.9 and Figure 3.10 respectively. As can be seen,

the performance of delta-entropy measure is worse than the “pure” entropy approach but

delta-edge measure results show some performance gain.

3.1.2. Priority Levels And Thresholds

In a prioritization scheme, priority levels and the corresponding thresholds should

be determined. These are critical parameters which must be defined prior to network

deployment. The priority levels depend on the network architecture and the application’s

subjects and requirements. With regard to network architecture, the density of the network,

available links between nodes and environmental conditions that effect the channels are

determinant. On the other hand, applications’ considerations are different. Here, the possible

images that would be encountered in the field of application are decisive. The complexity

and the structure of the images must be considered. From the application’s point of view,
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Figure 3.9. Delta-entropy based measure of macro-blocks in the mountain test image
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Figure 3.10. Delta-edge based measure of macro-blocks in the mountain test image

the most significant factor is the information that to be exploited from the image. Another

issue is determining the threshold values for associating macro-blocks with the priority

levels. The distribution of the macro-block values for each image varies dramatically. These

issues are already research topics in the field of image processing. Determining the levels

and thresholds is not trivial and therefore exhaustive tests on the possible images for the

application are required. An example of this operation is done in our experiments. It can be

examined in Section 4.2.2.

3.2. ERROR CONCEALMENT (EC)

Error concealment is the one of the favorable methods for robust image transmission.

Main idea behind it is using inherently redundant and correlated image data for

reconstruction of lost image partitions. One of the benefits of EC is achieving error

robustness without increasing required bandwidth. When using EC the necessity of using

reliable transmission is removed to some extent, and so no additional delay is introduced.

As a part of this study, we focused on the EC algorithm that is modified and evaluated by

Sarisaray et. al. [15]. They have examined several aspects of the EC algorithm by comparing
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with FEC and no error concealment on different transmission schemes with simulations.

On the other hand, in this study, the performance of the EC algorithm on real devices and

environmental conditions is evaluated.

3.2.1. The EC Algorithm

The EC algorithm realized in this study is a modified version of Sub-bands based Image

Error Concealment (SIEC) [21] algorithm. The algorithm employs a modified Discrete

Wavelet Transform (DWT) for embedding downsized replicas of original image into itself,

thereby mitigating degradations in a backward-compatible scheme without increasing the

total size of the data to be transmitted. It corrects pixel and block losses due to transmissions

using the embedded replicas. The replicas of the original image’s M × M macro-blocks

are embedded in the sub-bands of the to-be-transmitted image, excluding LL (low-low)

sub-bands, in order to limit the visual degradation. The host macro-blocks where replicas

are embedded are chosen by using a shared-key-dependent pseudo-random sequence, so

the extraction of the replicas is blind. If all of the replicas embedded in the sub-bands

are lost, then each pixel in the lost macro-block is replaced by the median value of the

sequence composed of non-zero values of neighboring macro-blocks’ corresponding pixel.

The detailed algorithm can be described as follows:

At the Source Nodes Cj ,

1. Capture the original image, I, with size of N1 ×N2 pixels.

2. If there are macro-blocks consisting of all 0’s, then replace a pixel value in each of these

macro-blocks with 1. This step facilitates fragile watermarking for error detection, and

is inspired by work of Kundur et al [78].

3. Take lth level pyramid-structured DWT of the original image I. Note that k ≥ l, where

k is the number of levels of the tree structured DWT.

4. Store each (M/2k) × (M/2k) macro-block of the tree structured DWT of the original

image, namely replicas. Note that there are (N1 ×N2/M
2) macro-blocks.

5. Scale each replica by the designated coefficient, then embed that scaled replica in

each pyramid-structured wavelet sub-band, excluding LL ones, by using shared-key
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dependent sequence for each individual sub-band. Note that step 4 to 6 actualizes

robust watermarking schema, which uses repeated watermark technique which is a

modified version of the method studied by Kundur et al. [79].

6. Take inverse DWT (IDWT) of the watermarked image, namely IWM, and round the

floating-point pixel values to the corresponding integer values.

At the Sink,

1. Read the received image, Irec, and determine the lost pixels by searching blocks

consisting of 0’s. Thus, we utilize fragile watermarks in this step for error-detection.

2. Take lth level pyramid-structured DWT of the received image Irec.

3. By generating shared-key dependent random sequence, which was also used in the

encoder, determine the location of lost pixels’ replicas for each individual sub-band.

4. Multiply each replica with the known scaling coefficient used in encoder and take kth

level IDWT of the extracted replicas.

5. If there is more than one non-zero extracted pixels, take average of all those non-zero

values, then place that average into the received image, Irec, as the lost pixels. After

this process is finished, the extracted image, Iext is constructed.

6. Scan Iext for lost blocks, which could not be healed. If there are still blocks consisting

of all 0’s, then replace them with the median value of the neighboring healthy blocks.

After this process, the healed image Ihealed is constructed in the sink.

3.3. ERROR CONCEALMENT WITH PRIORITY ENCODING (ECPE)

In the previous chapters, the advantages of error concealment and priority encoding

are mentioned. Their advantages are in different aspects; EC increases the error robustness

of image data whereas MBPE offers a lightweight infrastructure for prioritized transmission

of favorable parts of the data. Here, Error Concealment with Priority Encoding (ECPE)

is proposed as a combination of these two orthogonal approaches. EC is based on

reconstruction of lost data. In conjunction with this, priority measures proposed for MBPE

increase reconstruction performance. Combining these methods improves the perceptual

quality of the received image along with an increased network lifetime.
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In this method, first EC is applied to the images. Then, the images are priority encoded.

By this means, embedded replicas are prioritized as well as other valuable parts of the image,

so error robustness of the image is increased.

3.4. IMAGE TRANSMISSION FRAMEWORK

Image transmission is crucial in WMSN. Any approach suggested for image

transmission should take several aspects of WMSNs and the nature of image data into

account. First of all, WSNs are erratic and the links have very poor qualities than traditional

networks. On the other hand, broadcast nature of WSN should be utilized. With the addition

of multimedia data, new factors which influence the design of transmission schemes are

emerged, such as delay, delay-jitter, additional bandwidth requirement, congestions caused

by streaming data and QoS support.

With the considerations above, a new image transmission framework, to be coupled

with MBPE, is devised. It is based on the bursty transmission of large image partitions with

prioritization via multiple paths.

This framework is scalable in terms of required memory and bandwidth. It gives

opportunity for fine-grained adjustment of the transmission parameters to satisfy the

application’s QoS requirements. By the regulated buffer transmission mechanism included

in it, congestions at intermediate nodes are avoided. This mechanism also helps to overcome

delay-jitter. With the utilization of the link checking mechanism, it also achieves adaptive

routing of the data, and by-passes holes caused by failing nodes.

First phase of the transmission occurs at the source node as shown in Figure 3.11. In

the majority of the hardware platforms, images do not fit into the memory of the nodes.

Therefore, the images are acquired from CMOS cameras via serial bus as partitions that can

fit in available memory. The partitions are to be called as pages in the rest of the thesis.

The page coming from the camera is prioritized according to pre-determined priority

levels, discussed in Section 3.1.2. As the result of this process, the macro-blocks in the page
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Figure 3.11. Source Node

are put into set of buffers according to the priority levels. Then, the information about links

are gathered and fed to a cost function which weighs available links. The collection of the

link and neighborhood information is assumed to be done by making use of the broadcast

nature of the medium. With the weights calculated by the cost function, the priority levels

are mapped to the available links. The highest priority buffer sets are to be sent via the best

available link. When all the buffer sets in the page are transmitted, another page is taken

from the camera until all the pages are completed. Figure 3.12 shows the algorithm for these

operations.

So far, we explained the operations followed in the source node prior to transmission.

Transmission of the pages as buffer sets also has an intrinsic mechanism. This mechanism is

the most distinctive part of the proposed image transmission scheme. In this mechanism,

buffer sets are transmitted in a bursty and regulated manner to avoid congestions and

delay-jitter. Basically, an intermediate node receives a streaming buffer, holds it until the

child node completes previous transmission, and then sends the buffer when the child node

is ready. The state diagram of this mechanism is depicted in Figure 3.13.

In this mechanism, two kind of messages are used, namely control messages (CM)

and data messages (buffers). The buffers are transmitted without any reliability mechanism

so no delay is introduced because of them. However, CM messages are assumed to be
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1: pLevels← PLEV ELS {Number of priority levels.}

2: loop

3: Wait for image query

4: Send(CMimageStart, camera)

5: pageId← 0

6: while pageID < numPages do

7: PAGE ← getNextPage(camera)

8: (pBuff1[n1], pBuff2[n2] . . . pBuffpLevels[n3])← prioritize(PAGE)

9: (links, linkInfos[links])← CollectLinkInfos()

10: qualities[links] = CostFunction(linkInfos)

11: children[pLevels]←MapPlevelsToLinks(pLevels, links, qualities)

12: for i = 1 to pLevels do

13: Send(CMpageStart, children[i])

14: for j = 1 to ni do

15: BUFFER← pBuffi[j]

16: Send(BUFFER, children[i]) as if RouterNode

17: end for

18: end for

19: pageId← pageId+ 1

20: end while

21: end loop

Figure 3.12. Source node algorithm
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Figure 3.13. State diagram of an image transmission

transmitted reliably. Transmission of a page starts with a page start message (CMpageStart).

This message includes meta information about the buffer set i.e. number of buffers and

priority level. When a node gets a CMpageStart message, sends it to its child immediately,

and to acquire a buffer, sends CMnextBuffer to its parent. Then the parent sends the next

buffer to the node without any interruption till the end. When the buffer completes, the parent

informs the node with CMbufferEnd message. The node holds the buffer until it gets both

CMbufferEnd from the parent, and CMnextBuffer from his child. After it gets both of the

messages, it sends the buffer to its child and so on. The steps of the algorithm are given in

Figure 3.14. The illustration of an example transmission is also depicted in Figure 3.15.
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1: pLevels← PLEV ELS {Number of priority levels.}

2: loop

3: buffEnd← false, nextBuff ← false

4: while incomingMessage 6= CMpageStart do

5: incomingMessage← Receive(){Idle state; wait for an image transmission.}

6: end while

7: (numBuffers, bufferPriority)← pageInit(CMpageStart)

8: (links, linkInfos[links])← CollectLinkInfos()

9: qualities[links] = CostFunction(linkInfos)

10: child←MapPriorityToLink(pLevels, bufferPriority, links, qualities)

11: Send(CMpageStart, child)

12: bufferId← 0

13: while bufferID < numBuffers do

14: Send(CMnextBuffer, parent)

15: while (bufferEnd and nextBuffer) = false do

16: incomingMessage← Receive()

17: if incomingMessage = CMbufferEnd then

18: bufferEnd← true

19: else if incomingMessage = CMnextBuffer then

20: nextBuffer ← true

21: else

22: BUFFER← incomingMessage

23: end if

24: end while

25: Send(BUFFER, child)

26: Send(CMbufferEnd, child)

27: bufferId← bufferId+ 1

28: end while

29: end loop

Figure 3.14. Router node algorithm
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4. EXPERIMENTS

In this study, the proposed methods are validated by real implementations and

exhaustive tests. The real implementations help us to see applicability of the methods on

COTS sensor nodes. The exhaustive tests reveal the robustness of the methods in different

circumstances.

In this chapter, first, image quality metrics that are used for the evaluation of

the received images in our experiments are exposed. After that, the details of the

implementations and the experimental tests are given with the performance analysis and

the discussions.

4.1. IMAGE QUALITY METRICS

In our study, we encountered the lack of a suitable image quality evaluation metric

for packet based networks in which transmitted images are not reconstructed. Therefore, for

the evaluation of MBPE, we propose an IQM called Object Transmission Rate (OTR). This

IQM is explained in the following section. On the other hand, we utilize a well-known PSNR

metric for the evaluation of EC coded images, since it is suitable for the situations in which

any kind of reconstruction mechanism is employed after the transmission.

4.1.1. Object Transmission Rate (OTR)

In image processing, most of the evaluation metrics try to cope with some kind of

distortion, i.e. change in brightness and luminance. However, in packet-based networks,

image data is not distorted. Only the packets representing some part of the image are

lost or not. The packets received by the sink are in full quality. Therefore, there is no

widespread quality degradation. Considering this situation, we devise a new metric called

Object Transmission Rate (OTR). OTR measures the rate of the transmitted objects which

are subjects of the applications.
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To compare OTR with PSNR, we performed the following experiment. We picked a

test image containing objects. We labeled objects in it as given in Figure 4.1.b manually.

For each image packet priority measure, we calculated the PSNR and OTR values. As

shown in Figure 4.1, although the images transmitted with different measures have very

close PSNR values, their OTR values differ much. Delta-edge measure is the worst one

in PSNR but the most successful in OTR and the most of the objects in it (98 per cent) is

transmitted. Therefore, OTR is utilized to evaluate the performance of the proposed image

priority measures.

4.2. MBPE EVALUATION

We establish an experimental setup for the analysis of macro-block based priority

encoding (MBPE). Border surveillance is taken into account as an example application

scenario. Border surveillance is such an application, where sensor nodes equipped with

low-power cameras can be utilized in an intrusion detection scenario. Critical parameters in

MBPE, such as priority levels and thresholds, are determined according to requirements of

this application. In order to compare the performance of the proposed priority measures, we

use OTR as a performance metric. Transmissions over lossy links without any encoding case

is used as the baseline for the comparisons. We also justify the feasibility of the measures by

implementing them on Tmote Sky sensor nodes.

4.2.1. System Model

In this part of the study, a WMSN based border surveillance system is considered.

The system consists of a set of sensors (Vi, i=1, 2 . . . , k) equipped with simple low power

CMOS cameras such as Cyclops and CMUcam3, a set of routing sensors (Rij , i=1, 2 . . . , k1,

j=1, 2 . . . , k2) and a sink as given in Figure 4.2. If intruders cross the border, camera sensors

capture their image and then transmit these images to the sink via routing sensors Rij . Prior

to transmission, the camera sensors partition the capturedN×M 8-bit grayscale images into

m×m pixel macro-blocks. These macro-blocks are serially passed to the network layer for

encoding.
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a. Original image b. Labeled objects

c. Entropy measure;

OTR=0.85, PSNR=10.20 dB

d. Edge measure;

OTR=0.89, PSNR=10.90 dB

e. Reproducibility measure;

OTR=0.60, PSNR=11.80 dB

f. Delta-entropy measure;

OTR=0.84, PSNR=11.04 dB

g. Delta-edge measure;

OTR=0.98, PSNR=9.87 dB

Figure 4.1. Comparison of OTR and PSNR values on a test image
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Figure 4.2. WMSN scenario for border surveillance

In the border surveillance application, the information needed to be extracted from the

gathered images is intruders. The quality of the image parts containing objects is valuable.

Therefore, their successful transmission to the sink node is more important than transmitting

the background image. Since there are two classes of data ,i.e. objects and background in the

images, for this application, it is suitable to employ two priority levels as “important” and

“not-important”. The thresholds to classify macro-block weights obtained by the priority

measures are determined by using possible images in such a border surveillance scenario.

The packets at the network are labeled as “important” or “not-important” according to

applied measures and corresponding thresholds.

In the experimental setup, it is assumed that sensor nodes do not fail during image

transmission and a reliable communication path between node Vi and the sink is established

prior to image transmission using a reliable transport protocol. Establishment of the reliable

path is not the focus of this thesis and is not studied further.

In our transmission scheme, each macro-block labeled as “important” in accordance

with the selected priority measure is transmitted as one data packet through the reliable
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channel Ch with a transmission probability p = 1 as shown in Figure 4.3. The

“not-important” macro-blocks are transmitted through channel Cl with p = 0, i.e. these

packets are dropped from the network buffer.

4.2.2. Methodology

In this study, we selected test images in accordance with their suitability to surveillance

applications. For this purpose, we picked 26 images (Ij=[1,26]) from [80, 81]. Some of

these test images are shown in Table 4.4. We employ the following operational steps in

the experiments.

We first implemented the proposed measures under Matlab. We represented

each measure by index i = {entropy, edge, reproducibility, delta-entropy, delta-edge}.

Applying each measure i to test images (Ij), we obtain macro-block weight matrices for

each measure-image pair as M i
j . Examples are previously given in Figure 3.3, Figure 3.4

and Figure 3.6.

The distribution of macro-block weights for each image varies dramatically. On
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I1 I3 I6 I7

I13 I14 I16 I25

Figure 4.4. Sample test images used in MBPE experiments

the other hand, because of the limited memory and processing capacity of sensor nodes,

finding a reasonable threshold value on-the-fly is a non-trivial task. This situation led us

to group-based thresholding. We aimed to label approximately half of the macro-blocks as

“important”. To find the required threshold to achieve this ratio, for each measure, first we

found the median of the macro-block weights of each image in the group (M̃ i
j ). As a result,

we got a set of medians (mi = {M̃ i
1, M̃

i
2, .., M̃

i
26}) for the group. Then, we determined

the group threshold (ti) as the median of this set (m̃i). Cumulative Distribution Functions

(CDFs) and histograms of the macro-block weight matrices together with calculated ti values

for each measure are depicted as two parts in Figure 4.5 and Figure 4.6.

At this step, we applied the thresholds to macro-block weights. Since our thresholding

mechanism is group and measure based, we obtained different Prioritized Packet Rates

(PPRs) for each measure-image pair. The acquired PPRs are given in Figure 4.7 and

Figure 4.8 as two parts.
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Figure 4.5. CDFs with group thresholds and histograms of each measure (Part 1 of 2)
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Figure 4.6. CDFs with group thresholds and histograms of each measure (Part 2 of 2)
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Figure 4.7. PPR values for all measures (Part 1 of 2)
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Figure 4.8. PPR values for all measures (Part 2 of 2)
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According to our model, only the prioritized macro-blocks are transmitted. Thus,

resulting images consist of only “important” macro-blocks. We also assumed that a network

packet includes one macro-block. Therefore, the prioritized macro-blocks are equal to the

transmitted packets.

4.2.3. Performance Analysis

We finally focus on the performance analysis of our measures in this section. We

achieve this through several comparative tests and simulations. Moreover, implementation

costs of the measures on real sensor nodes are given and compared to the JPEG compression

algorithm.

4.2.3.1. Monte Carlo Simulations

We conducted a set of Monte Carlo simulations under Matlab to compare the results

of the proposed measures. To make reliable comparisons, for each measure-image pair we

fed the simulations with the corresponding PPRs. Running the simulations 128 times, we

obtained 128 different transmitted images with uniformly distributed prioritized packets for

each measure-image pair. Then, we calculated OTR values of these images and calculated

the median of them as the representative of the measure-image pair (OTRsimi
j ). These

values with the corresponding OTRi
j values and the rate of the objects in original images are

given in Figure 4.9 and Figure 4.10 as two parts.

As a success criterion of the proposed measures, the number of tests in which OTRi
j

is greater than the corresponding OTRsimi
j is considered. In this way, entropy and edge

measures are unsuccessful for the images I2, I7, I10 and I12. This yields to 85% success rate

for these measures. However, reproducibility measure has 100% success rate.

4.2.3.2. Object Transmission Index

Another consideration points out the relation between OTR and PPR. To assess this

relation, we generated the Object Transmission Index (OTI) which is calculated as

OTI = OTR/PPR (4.1)
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Figure 4.9. OTR values for all measures and corresponding simulations (Part 1 of 2)
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Figure 4.10. OTR values for all measures and corresponding simulations (Part 2 of 2)
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Table 4.1. Object transmission index values

Measures µ(OTRj) µ(PPRj) µ(OTIj)

Entropy 0.8164 0.5176 1.58

Edge 0.8186 0.4832 1.69

Reproducibility 0.8782 0.4845 1.81

Delta-edge 0.9300 0.4765 1.95

Delta-entropy 0.5662 0.4312 1.31

This index shows us the best measure in which maximum amount of objects are transmitted

with minimum amount of packets. We calculated it for all images and measures by taking the

mean of their OTR and PPR values. The mean OTIs for all measures are shown in Table 4.1.

The results reveal that delta-edge measure is the most successful one with the highest OTI.

4.2.3.3. Implementation Cost

We examined the implementation costs of the proposed priority measures on

resource-poor real WSN nodes. As WSN nodes, Tmote sky motes are used. We implemented

each measure in TinyOS v2.1 with nesC v1.3. At this stage, the processing capability of the

nodes is examined. Image data is transmitted in packets as 8×8 pixel macro-blocks from base

computer to the sensor node via serial interface in a bursty manner without any delay between

packets. At the reception of each packet, the corresponding priority weight for the selected

measure is calculated and the packet with a weight higher than threshold is forwarded

through the reliable routing path. At the first implementation, edge and reproducibility based

measures succeeded by forwarding all the packets. However, in entropy based measure,

some packet losses occurred. The reason for the losses were the inability of the node to

process floating point calculations included in this measure at the packet transmission rate.

As a solution to the computational deficiency, we transformed the floating point operations

to fixed point operations by storing the terms including logarithmic expressions as tables in

program memory. With this modification, entropy based measure succeeded without any

packet loss. Implementation costs of each measure for a macro-block are given in Table 4.2
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Table 4.2. Implementation costs of the measures for a macro-block

Measures CPU Cycles Program Memory Data Memory Network Buffer

(bytes) (bytes) (bytes)

Entropy 8270 206 454 64

Edge 2800 126 72 64

Reproducibility 1820 514 154 4480

Delta-entropy 10090 720 608 4544

Delta-edge 4620 640 226 4544

in terms of memory usage and CPU cycles.

4.2.3.4. JPEG Comparison

To compare the implementation costs of the priority measures with the well-known

compression algorithm JPEG, we use the JPEG implementation costs in [7] for two different

quality levels. With regard to computational cost, three phases of JPEG compression are

considerable. Those are Discrete Cosine Transform (DCT), quantization and entropy coding.

In that work, the authors propose optimizations for the DCT and quantization phases. By

adjusting integer and fractional bit-widths needed in view of other approximations inherent

in the compression process and choice of image quality parameters, they achieve speed and

energy improvements ranging from factors of 2 to 5 depending on the considered portion of

the algorithm.

In JPEG compression, quantization is performed by using a quantization table. To

adjust the resulting image quality and the ratio of compression, the values at the quantization

table are rescaled in inverse proportion to a quality setting Qtab ranging from 1 (very poor

image quality) to 100 (very good image quality). Qtab = 50 corresponds to no scaling of the

quantization table. We use two Qtab values 50 and 90 in our comparisons. Table 4.3 shows

the execution time and energy consumption of a macro-block for the priority measures and

the JPEG algorithm. As the results point out that computational costs of the proposed priority
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Table 4.3. JPEG comparison

Methods CPU Cycles Time (ms) Energy (mJ)

Entropy 8270 1.03 3.10

Edge 2800 0.35 1.05

Reproducibility 1820 0.23 0.68

Delta-entropy 10090 1.26 3.78

Delta-edge 4620 0.58 1.73

Fast JPEG (Qtab = 50) 20918 2.61 7.84

Fast JPEG (Qtab = 90) 34864 4.36 13.07

measures are far less than the traditional and mostly used compression algorithm JPEG.

4.2.4. Discussion

The results of the experiments show the performance gain in OTR and OTI, achieved

by the proposed measures in MBPE. Each measure has different advantages. While

edge measure has the minimum memory requirement, reproducibility measure needs least

processing time. Besides, delta-edge measure is the most successful one in terms of OTI.

The measures should be chosen according to the application and considering the underlying

hardware. By using MBPE scheme in this scenario approximately half of the bandwidth is

saved. By means of this, approximately half of the energy consumption of the whole system

is reduced.

The results also indicate that adaptive labeling can successfully be done using

application specific group based thresholds. Labeling the macro-blocks without acquiring

full image data and computational simplicity of the proposed measures make it possible to

implement this method on COTS sensor devices.
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Considering the results above, MBPE is a lightweight and energy efficient method and

can be adopted to different kind of application scenarios in WMSNs.

4.3. REAL TESTBED

In order to examine the effect of channel conditions on transmitted images, a real

testbed is set up. Using this testbed, images are transmitted over a WSN in different channel

conditions and the quality degradations caused by channel impairments are measured in

terms of PSNR. Both raw images and EC coded images are considered in the testbed.

4.3.1. System Model

Figure 4.11 depicts the considered system in our experiments. This is a multi-tier

system that includes two types of sensors; Type 1 Vi, i = 1, 2 . . . w sensors are equipped with

camera and Type 2 Rij, i = 1, 2 . . . w1, j = 1, 2 . . . w2, sensors are simple routing sensors.

Since the EC algorithm includes DWT, full image is necessary to realize it. Therefore, Vi’s

and the sink’s capabilities are higher than that of the Rij’s in terms of energy, processing

power and storage capacity.

In the tests, the received image quality is compared for three transport variants:

1. No error concealment (NC)

2. Error Concealment over single path (EC)

3. Error Concealment over disjoint multipath (ECDP)

In all schemes, N1 × N2 8-bit grayscale images are tiled into m × m pixel macro-blocks

at the Vi node. Each macro-block is transmitted in a separate network packet towards the

sink over a multihop WSN. So, the number of distinct data packets to be transmitted is

N = N1 ×N2/m
2 per image. Scheme (1) is the simplest case, in which raw images are

transmitted on a single path, selected as a baseline for performance improvement. Scheme

(2) employs the error concealment algorithm on a single path. Scheme (3) employs the error

concealment algorithm on two disjoint paths.
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Figure 4.11. Testbed WMSN scenario

Disjoint multipath transmission is employed to provide fault tolerance at the expense of

increased bandwidth usage and processing overhead. In this scheme, images are transmitted

through diverse paths to improve the perceptual quality of the received image at the

sink. Disjoint multipath transmission scheme constructs np disjoint paths (np = 2 in our

case). These parallel streams may independently suffer from node failures and channel

impairments. Therefore, received redundant images may include both lost and correct pixel

values. However, the likelihood of simultaneous losses on all the paths is lower than losses

on a single path. This probabilistic leverage facilitates an additional robustness of multipath

transmission. Disjoint multipath scheme also utilizes a simple fusion algorithm, namely,

select max on the sink. The algorithm performs fusion in the pixel value domain by selecting

for each fused pixel the input coefficient with the largest absolute value. The block diagram

of this operation is depicted in Figure 4.12.
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Figure 4.12. An illustration of ECDP

4.3.2. Methodology

The system modelled in Section 4.3.1 is realized as follows. Since Vi is supposed

to be more capable, its role is accomplished by a computer via functions implemented

under Matlab and Java. A test image, coded and tiled into macro-blocks according to the

transmission scheme, is sent in data packets serially to the first node of the established WSN

testbed. The testbed consists of Tmote Sky sensor nodes. The nodes are programmed using

TinyOS v2.1 libraries and tool-chain [82]. In the testbed, the test image is transmitted to the

sink through a chain topology. A novel backchannel mechanism is devised to collect received

images at each hop concurrently in a non-intrusive manner. Quality indicators of each link

are also appended to the results. Received images with the indicators are sent to the computer

serially. At the computer side, for each transmission, loss patterns are extracted from the

received images. Then, the patterns and transmission details such as Packet Reception Rate

(PRR), hop count, quality indicators etc. are stored in a MySQL database. Overall software

diagram of this setup is given in Figure 4.13.
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Figure 4.13. Testbed software diagram

After the transmission phase, to make more equitable comparisons of the EC algorithm

on different images, instead of repeating the tests for different images, the stored image loss

patterns are used as masks. These masks are projected to 30 encoded test images. Then,

the images are decoded using the EC algorithm. The block diagram of this operation is

given in Figure 4.14. The quality evaluations are made over the resulting images, in terms of

PSNR. The results to be given at the following parts of the thesis include only five images,

depicted in Figure 4.15, due to size and readability considerations in the graphics. However,

the results for the other images are similar to the ones presented.

The difficulties to establish a test setup for disjoint paths in a building with the

requirements above led us to use another method to realize the tests for ECDP scheme.

The tests taken place at the same time of two different days are matched, the gathered image

loss patterns are combined as if they are coming from disjoint paths. Again, the image loss

patterns are projected as masks to the other test images.
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Figure 4.15. Test images used in EC tests
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Figure 4.16. A view from testbed area

4.3.3. Testbed Setup

An indoor testbed is established in this study. The testbed includes 20 Tmote Sky

nodes in a 10-hop chain topology. Ten of them are used for data collection as backchannel.

The details of the testbed are given in the following sections.

4.3.3.1. Node Deployment

We aim to achieve a clear line of sight between nodes and make them to share the

same communication medium to homogenize environmental effects on the communication

channels. Therefore, the tests are conducted inside a building with a large atrium illustrated

in Figure 4.16. Moreover, the nodes are partitioned into two groups, namely, Group0 and

Group1. The nodes in the groups are lined up vertically on thin linear sticks (Figure 4.17)

which are horizontally pointed out from the windows on the first floor, approximately 5m

above from the ground, with no obstacles between them. The distance between the groups

is measured as 27m. The groups consist of five “hop couples” with intra and inter-couple

spacings of 4 and 17cm respectively. The output power of nodes is set to -3dBm.
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Figure 4.17. Node Group 0

As depicted in Figure 4.18, the sticks attached with the sensors nodes are positioned

parallel to each other to complete a hypothetical rectangular area when looked from above.

Each group is connected to a base station computer via self-powered USB hubs in order to

avoid performance variation due to power differences when run on batteries.

4.3.3.2. Transmission Scheme

The actual image transfer scheme is as follows: A grayscale image of 256 × 256 size

is partitioned into 4× 4 macro-blocks at the computer. So, each packet includes 18B of data

as 16B macro-block with extra 2B block offset. The packets are sent from the computer to

the source node serially via USB links. Then, the source node sends the packets to the sink

node over ten hops with best-effort delivery.

Conducting the tests on different time periods and consequently on different diurnal

conditions causes dramatic changes in packet loss patterns. The result of a one-day-long

transmission test for five hops is given in Figure 4.19 as an example of this situation. As can

be seen in this figure, in the afternoon, very low PRRs occur due to the noise induced by the

crowd in the atrium, but in the midnight, the PRRs are high.
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Figure 4.18. Testbed Diagram
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Figure 4.19. The result of a one day long test for five hops
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The preliminary tests had been conducted for each hop individually without using

the backchannel at different days so in different channel conditions. Figure 4.20 depicts

the PRR results for one, three, five and seven hops. In these tests, it was observed that

circumstantially, the PRRs obtained for seven hops (µPRR=0.92) are better than five hops

(µPRR=0.83), while expecting vice versa. The results have revealed that to make hop based

comparisons accurately and equitably, it is necessary to get the packet loss patterns occurred

in each hop at the same time. To satisfy this concurrency requirement, ten extra snooping

nodes are used as backchannel. By this way, while transferring an image over ten hops, the

intermediate results are recorded in each hop by using these snooping nodes. Figure 4.21

depicts the results of an example test in which the results are gathered by the backchannel.

In our image transmission scheme, each hop consists of two nodes called “hop couple”.

They have given the same node ID. In each hop couple, one of the nodes, called relay

node (Ri, i=1, 2 . . . 9), is used to send the incoming data to the other hop couple with

the consecutive node ID via radio link, while the other node, called snooping node (Si,

i=1, 2 . . . 9), is used to send the incoming data to the base station computer via USB link.

There are only two single nodes numbered with 0 and 10, as the source and the sink node

respectively. The base station computers at each side records the image data along with

Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) values.

4.3.4. Testbed Results and Analysis

We conducted over 3,000 image transmission tests spreading approximately 15 days.

We gathered over 30,000 image loss patterns via 10 hops. The graphs representing the PSNR

and PRR relations for NC and EC scheme are given in Figure 4.22 including all the results

projected to five different images. As can be seen in Figure 4.22.a, NC scheme is very fragile

to channel impairments. The quality of the images dramatically drops even at very high PRRs

for a WSN. On the other hand, The EC scheme copes with worse channel conditions robustly.

Image quality slowly and linearly decreases from 30-35 dB to 20-25 dB for PRR between 1

to 0.4. Even though the quality expectations would be application specific, received image

quality, even when PRR = 0.4, is acceptable for human visual system. The received images

at different PRRs are presented as an example in Figure 4.23.
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Figure 4.20. Example results for 1,3,5,7 hops tests without using the backchannel
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Figure 4.21. The result of a 1-to-8 hops test using the backchannel
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a. NC scheme

b. EC scheme

Figure 4.22. Scatter plot of PSNR vs. PRR for each scheme including 30,000 transmissions
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Figure 4.23. The received EC coded images at different PRRs

To evaluate the effect of the number of hops on image transmission for all schemes,

one-day-long tests within our result set are used. Only the tests from weekends are used to

avoid variance in packet loss patterns due to environmental changes. In the tests, PRRs vary

from 0.77 to 1.00. Hop based results are depicted in Figure 4.24. The rapid fall-off in PSNR

values is clearly observed in NC scheme. The images transmitted by this scheme cannot go

further than six hops within an acceptable quality. As for the EC scheme, when the number

of hops is increasing, PSNR values decrease very slowly and almost linearly. Even ten hops

later, only 1.2 dB degradation in the received image quality is observed. ECDP scheme

is the most successful one with almost no degradation caused by transmission. However,

performance gain attained by integrating the EC and disjoint multipath transmission schemes

is at most 1.1 dB. Hence, the performance is not profoundly improved by ECDP. The little

gain achieved by this scheme is at the expense of additional energy cost.

Average LQI values and corresponding PRRs are also given in Figure 4.25 to figure

out the channel conditions throughout our experiments.



65

1 2 3 4 5 6 7 8 9 10
15

20

25

30

35

40

45

Number of Hops

P
S

N
R

 (
dB

)

 

 
NC
EC
ECDP

Figure 4.24. PSNR vs. Number of Hops for all schemes

50 60 70 80 90 100 110
0

0.2

0.4

0.6

0.8

1

Average LQI

P
R

R

Figure 4.25. PRR vs. Average LQI



66

4.3.5. Discussion

The performance results attained from the tests, indicate the fragility of raw

transmissions. On the contrary, error robustness of the EC algorithm is notable. With

this encoding scheme we also avoid delays caused by retransmissions included in reliability

mechanisms such as ARQ. We also avoid extra bandwidth required for FEC mechanisms.

FEC schemes append extra data to the transmitted packets for error correction. On the

contrary, in the EC scheme, the required data for correction embedded into the images.

Although, this causes a little degradation in image quality prior to transmission, human visual

system can easily tolerate it.

It is necessary to mention that the EC algorithm can be used in multi-tiered systems

in which camera nodes have more processing and energy resources. However, by means of

the multi-tiered architecture, much simpler intermediate nodes would be used and overall

lifetime of the system would be increased. Therefore, the ratio of the camera nodes and the

intermediate nodes is determinant to employ the EC algorithm.

4.4. ECPE EVALUATION

ECPE is a good example of a combination of two different coding schemes. This

method is applied to the images by coding them with EC and MBPE consecutively. In

theory, by applying MBPE over EC, we expect to achieve better image quality, as PSNR

values, than using EC scheme alone. To validate this theory, we compare ECPE with the real

testbed performance of EC.

4.4.1. Methodology

In order to get the results for ECPE, we use the same test images in MBPE tests. First,

employing the EC algorithm on these images, we obtain EC coded images. Second, we

follow all the operational steps for MBPE evaluation, declared in Section 4.2.2. Thus, we

get the received EC coded images for each measure-image pair. Finally, the received images

are reconstructed with the EC algorithm and PSNR values are calculated.
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To compare the ECPE results with the previous EC testbed results, we follow these

steps for each measure-image pair:

• We get the prioritized packet rates (PPRs) incurred as the result of ECPE. Note that,

according to the transmission scheme employed in ECPE tests, PPR is equal to PRR.

• We query the testbed results database for the tests which are five per cent close to the

PRR values obtained from the previous step. As a result of the query, we come up

with the real image loss patterns. The amount of the patterns changes according to the

measure used.

• We attain resulting images by projecting the loss patterns to the image individually.

Thus, we have several transmission results for the image.

• We calculate the PSNR of the resulting images and get the mean of them as the result

of the measure-image pair.

These operations are illustrated in Figure 4.26. An example image transmitted with both EC

and ECDP is also presented in Figure 4.27.

4.4.2. ECPE Results

The results of ECPE scheme for each priority measure in terms of PSNR are shown

in Figure 4.28 and Figure 4.29 as two parts. As a success criterion, the PSNR differences

for each image are calculated and the means of the PSNR differences for each measure are

obtained. In Table 4.4, these values with associated success rates are depicted. Most of the

measures are successful in terms of PSNR but delta-entropy. The most successful one is

entropy for this scheme with a 18.93 per cent gain in PSNR. Entropy measure succeeds

because entropy weighs simply the amount of information included in a dataset; and in

EC scheme, the amount of information in a macro-block is increased by embedding the

downsized replicas of the image.
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Figure 4.26. Operations to compare ECPE with EC

a. EC (PSNR=22.99 dB) b. ECPE (PSNR=30.96 dB)

Figure 4.27. EC vs. ECPE



69

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

5

10

15

20

25

30

35

40

45

50

Images (#)

P
S

N
R

 (
d

B
)

 

 

ECPE

EC

a. Entropy measure

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

5

10

15

20

25

30

35

40

45

50

Images (#)

P
S

N
R

 (
d

B
)

 

 

ECPE

EC

b. Edge measure

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

5

10

15

20

25

30

35

40

45

50

Images (#)

P
S

N
R

 (
d

B
)

 

 

ECPE

EC

c. Reproducibility measure

Figure 4.28. PSNR values for all measures, for EC and ECPE schemes (Part 1 of 2)
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Figure 4.29. PSNR values for all measures, for EC and ECPE schemes (Part 2 of 2)
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Table 4.4. ECPE analysis

Measures µ(∆PSNRj) Success (%)

Entropy 4.39 18.93

Edge 4.04 16.78

Reproducibility 2.90 12.61

Delta-entropy -0.95 -4.16

Delta-edge 2.12 9.40

4.4.3. Discussion

In ECPE method, prioritization, erasure code injection and reconstruction are

employed together. Utilizing EC over MBPE increases the robustness of important parts of

the image. First, the region of interest (ROI) of the application, is extracted simply making

use of MBPE. Then, it is transmitted without any reliability mechanisms owing to EC. Thus,

the important data survived from source to sink without additional delay and with balanced

traffic. It also makes it possible to have an idea about the whole scene. When using this

method, the requirement of more computationally capable nodes at the source for EC should

be considered.
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5. CONCLUSION AND FUTURE WORK

By the addition of multimedia data, the capability and the accuracy of the current

applications in WSNs are highly improved along with new applications. Majority of the

WMSN applications include still-image transmission, since lots of valuable information can

be extracted from images. This thesis mainly focuses on image coding and transmission.

With the motivation that the challenges and problems in image transmission can be addressed

by natural properties of wireless medium and image data, several proposals are made with

their performance evaluations.

A new self-adaptive, priority-based coding scheme (MBPE) is proposed which utilizes

a set of novel priority measures on image partitions rather than a full image. The performance

of the measures is evaluated in an application scenario based on border surveillance. Hybrid

usage of the measures is also analyzed. All performance results are compared with Monte

Carlo simulations. All of the measures are implemented on real sensor nodes and their

processing cost in CPU cycles are presented. For the performance measurements, a new

metric called Object Transmission Rate (OTR) is proposed.

The results show that each measure has achieved better performance than the

simulations, except delta-entropy measure. However, the measures have advantages in

different respects. Edge measure has minimum memory demand, whereas reproducibility

measure requires the least processing time. Delta-edge measure is the most efficient one,

since it achieves high OTRs with minimum number of transmitted packets.

This scheme also makes it possible to extract information from the area of

interest without acquiring the whole scene. Using MBPE with two-level prioritization,

approximately half of the bandwidth is saved; hence, approximately half of the energy

consumption of the whole system is reduced. This superior performance is achieved in a

much simpler and computationally efficient manner than traditional compression methods.

To examine the effect of real erratic channels on image transmission, a real testbed is
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established and the performance of an existing error concealment (EC) algorithm is examined

with it. Thousands of image transmissions are realized. In the testbed, an orthogonal

backchannel mechanism is employed for gathering the image loss patterns and link qualities

occurred in each hop, at the same time. By projecting the patterns to different images, the

accuracy of the results is justified. The test results are also stored in a database to make use

of for future experiments.

The result of the extensive tests revealed that the EC algorithm is robust to packet

losses in WSN. Thus, it removes the delay and additional bandwidth requirements introduced

by the reliability and error correction mechanisms i.e. ARQ and FEC. Another advantage

of the algorithm is that it does not require additional processes and capabilities at the

intermediate nodes. However, the utilization of this algorithm can be possible only by

using more capable nodes at the source, because of the complexity of the algorithm. To

decrease the computational burden on the source nodes, the algorithm should be optimized

and improved.

Hybrid usage of EC with MBPE (ECPE) is also promising. Since, conceptually, both

of them are related with different aspects of reconstruction of image data. The result of

their synergy is studied in detail by using previously stored real testbed results. The results

indicate that some performance gain is attained by employing MBPE over EC. Another

hybrid approach may be coupling MBPE with compression algorithms. This can be done

in different ways. One of them is to compress only the most prioritized parts of the images.

Another way is to adjust the compression parameters according to the priority level.

Another contribution of this work is a new image transmission framework

which utilizes MBPE. This framework addresses several problems faced in multimedia

transmission such as, delay, delay-jitter, additional bandwidth, congestions caused by

streaming data, and QoS support. The transmission mechanism included in it, which is

based on the bursty and regulated transmission of large image partitions with prioritization

via multiple paths, makes it possible to address the mentioned problems. Another advantage

of this framework is scalability in terms of available memory and bandwidth.
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Finally, following objectives are accomplished in this thesis. A lightweight coding

scheme, which significantly decreases the energy consumption of the network by minimizing

the required bandwidth, is devised. The need for computationally more capable nodes

at the source is eliminated. A database is created including thousands of real image

transmission loss patterns which can be used in future works, instead of unrealistic

simulations. Additionally, an image transmission framework considering the shortcomings

and needs of WMSN is devised.

There are many works in the literature which are based on prioritization of different

entities. The measures proposed for MBPE can be employed in almost any of those works.

For instance, it can be easily adopted to packet dropping schemes. In those schemes,

relatively low priority packets can be dropped in case of congestion or energy deficiency.

In the proposed MBPE scheme, determination of priority levels and corresponding

thresholds is done prior to deployment by statistical methods. However, adaptive

determination of them can increase ease of deployment add additional flexibility to

applications. This is a highly challenging goal. Interdisciplinary approaches inspired by

information theory and image processing will be beneficial.

The proposed image transmission framework should be tailored and evaluated within

a real testbed in which cameras suitable for WMSNs are used. A detailed infrastructure for

determining link qualities by using the broadcast nature of the medium, and mapping the

priority levels to them, should be suggested.

An extensive survey about applicable compression algorithms, accompanied with real

tests, will be enlightening. The use of compression algorithms together with our coding and

transmission scheme should be examined as a future work.
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