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ABSTRACT

FIBER BUNDLES, DIFFEOMORPHISM GROUPS AND PLASMA DYNAMICS

In the thesis, we investigate the geometrical framework of the Lie-Poisson description
of the Poisson-Vlasov equations which govern the motion of the collisionless plasma. To
this aim, we review symplectic and Poisson manifolds, connections on smooth bundles and
symplectic reduction theory. An element of the first order jet bundle can be considered as a
connection and hence, decomposes vector fields into vertical representative and holonomic
parts, which are generalized vector fields of order one. The complete and the vertical lifts of
vector fields and one-forms are presented and, in the existence of a connection, the
decompositions of iterated bundles TT, T*T, TT* and T*T* into the direct sums of the first

order bundles T and T* are given.

Poisson equation is obtained as the preimage of a regular value of a momentum
mapping coming from the gauge invariance of the Hamiltonian dynamics. We take the
configuration space of the collisionless plasma as the space of canonical diffeomorphisms
and attach Green’s function solution of Poisson equation as a constraint in the calculations.
Lie algebra of the group of canonical diffeomorphisms is the space of Hamiltonian vector
fields. For the dual of the Lie algebra, there are two possibilities, namely density and
momentum representations. From the Lie-Poisson formulation of Vlasov equation on the
momentum representation, we obtain an intermediate system, which is called momentum-
Vlasov equations. It is shown that, momentum-Vlasov equations are generated by the
vertical representative of the complete cotangent lift of the Hamiltonian vector field whose
associated Hamiltonian function is the energy of a charged particle in momentum phase
space.

The algebra of vector fields on a symplectic manifold is decomposed into semi-direct
product algebra of Hamiltonian vector fields and its complement which is isomorphic to its
dual, is presented. A similar discussion on the algebraic properties of the decomposition of

the one-form section into closed and non-closed one-forms is made.



OZET

LiF DEMETLERI, DIFEOMORFiZMALAR GRUBU VE PLAZMA DiNAMIGi

Bu tezde, carpigsmasiz plazma i¢in hareket denklemleri olan Poisson-Vlasov denklem
takiminin Lie-Poisson formu ve bu formun geometrik altyapisi ¢alisilmistir. Bu amag
dogrultusunda, ilk olarak simplektik ve Poisson katmanlari, diizgiin demetler {izerinde
baglanti1 ve simplektik indirgeme teoremi gézden gecirilmistir. Bir diizglin demetin birinci jet
uzaymin elemanlari, demet {izerinde baglanti olarak kullanilmis ve vektdr alanlart dik
temsiller ve holonomik pargalarin direk toplami olarak ifade edilmistir. Vektor alanlarin ve
bir-formlarin tam ve dik kaldiriliglar1 tanimlanmis, ikinci derece demetler TT, T*T, TT* ve

T*T*, birinci dereceden demetlerin T ve T* direk toplamlar1 cinsinden ifade edilmistir.

Poisson denklemi Hamilton dinamiginin ayar simetrisinden kaynaklanan momentum
doniisiimiiniin diizenli bir noktadaki 6ngdriintiisii olarak elde edilmistir. Kanonik doniistimler
grubu plazma hareketi i¢in konfigurasyon uzayi olarak alinmis ve Poisson denkleminin
Green fonksiyonu ile ¢oziimii hesaplar i¢in bir kisit olarak kullanilmistir. Kanonik dontisim
grubunun Lie cebirini Hamiltonyen vektor alanlar1 olusturmaktadir. Bu cebirin dual uzayinda
standart Lie-Poisson denklemleri momentum-Vlasov denklem takimini vermektedir. Yiiklii
parcacigin faz uzayindaki hareketini yoneten Hamiltonyen vektor alaninin tam kotanjant

kaldirilisinin dik temsilinin momentum-Vlasov denklemlerini tirettigi gosterilmistir.

Son olarakta, bir simplektik katman iizerindeki vektor alanlar1 uzayr Hamiltonyen olan
ve olmayan vector alanlarin olusturdugu iki alt uzaymn yari-direk toplami olarak ifade
edilmistir. Benzer olarak bir-form kesitlerin olusturdugu uzay, kapali olan ve olmayan bir
form kesitlerin olusturdugu altuzaylarin direk toplami olarak ifade edilmis ve bu altuzaylarin

tizerindeki cebirsel yapilar incelenmistir.
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1. PROLOGUE

1.1. GEOMETRIC MECHANICS AND REDUCTION

Mechanics has two main points of view, Lagrangian mechanics and Hamiltonian me-
chanics. Lagrangian approach is based on the observation that there are variational princi-
ples behind Newton’s second law. In this approach, the dynamics of a system is formulated
by Lagrangian function L on velocity phase space of the configuration space, formally on
the tangent bundle T'M of the configuration manifold M. The main orientation of the

Lagrangian approach is to extremize an action integral

A(L) = /Ldt (1.1)

with a variational principle called Hamilton’s variational principle [1,2]. In local coordinates

(ma, jcb) on T'M, one obtains the Euler-Lagrange equations

d (0L oL
i (55 ) ~ 5 =0 (12)

On the other hand, the Hamiltonian view of mechanics is based on symplectic geometry.
In this approach, the dynamics is represented by a Hamiltonian function H on the momentum
phase space, formally on the cotangent bundle T* M of M. In the framework of symplectic

geometry, the Hamiltonian dynamics is governed by Hamilton’s equations
ix, (Qr-m)=dH, (1.3)

where Xp is the Hamiltonian vector field for the Hamiltonian function H, iy, is the interior
product and Q7 is the canonical symplectic form on the cotangent bundle 7*M [3,4]. In
canonical coordinates (z%,y) on T* M, the equations of the motion are given by

.. OH 0H

% =— and gg=— .
0Yq Ya ox®

(1.4)



Having a correspondence between dynamics Xy and functions H on M, an algebra of

functions on M can be defined by the Poisson bracket

{H,F} =Xy (F)=-Xr(H)

which is nondegenerate. The dynamics of the system for a given Hamiltonian function H is

governed by the equations

i = {2®, H} and g, = {ya, H}. (1.5)

This generalization of the symplectic geometry is the Poisson geometry [5]. A Poisson struc-
ture is a bilinear skew-symmetric binary operation { , } on the space of smooth functions
that satisfies Jacobi and Leibniz identities. For the general and more rigorous constructions

of Hamiltonian and Lagrangian mechanics, some references are [6,7].

Transformations between Lagrangian mechanics and Hamiltonian mechanics are called
Legendre transformations. If a nondegeneracy condition, called Hessian condition, is satisfied
then the transformation is immediate. Although, a general construction is presented in [8]
without the nondegeneracy condition, one faces with serious complications in transforming

different descriptions of particular mechanical systems [9, 10].

Many physical systems such as rigid bodies, fluids and plasmas can not be expressed
neither in the framework of canonical Hamiltonian formalism nor the variational principles
of usual form due to existence of symmetries and constraints. One of the interests of the
reduction theory is to obtain a noncanonical system from a canonical one by dividing out
the symmetries of the physical system [11]. In Lagrangian reduction theory, one emphasizes
how the variational principles pass to a quotient space whereas Hamiltonian reduction is

interested in how to reduce the symplectic structure and Hamiltonian function.

Although the origins of Hamiltonian reduction theory can be found in the works of
Euler, Lagrange, Hamilton, Jacobi and Poincaré, in the literature, start of the modern history
of the theory has been considered as the pioneering papers of Arnold [12] and Smale [13],

where one can find the reduction procedure for the systems whose configuration spaces are Lie



groups. The papers of Marsden and Weinstein [14] and Meyer [15] developed the Hamiltonian
reduction theory in the general context of symplectic manifolds. The Lagrangian version of
the reduction theory is developed much more later then the Hamiltonian one. One expects
that, the two methodologies must be in relation by the Legendre transform, but most of
the cases are not straightforward way, such as thermodynamics and plasma. A detailed and

comprehensive history of the reduction theory can be found in [11] and [16].

The particular case in which the configuration space of a dynamical system is a Lie
group, say G, attracts deep interests since the configuration space of the systems such as
Euler’s top, incompressible fluid and collisionless plasma, are Lie groups [17,18]. A Lie group
G acts, say on right, on its tangent T'G and cotangent T*G bundles by the lifts of group
multiplication. A Hamiltonian system on 7*G under the symmetry of the lifted action can
be reduced to a Hamiltonian system on the quotient space T*G /G = g* which is the linear
algebraic dual of the Lie algebra g = T.G of G. g* is a Poisson manifold with the Lie-Poisson

bracket

(@) = (o 5 50| ) (16)

where « € g*, [, ] is the Lie bracket on g, ( , ) is the pairing between Lie algebra and its dual
and we assume that the Fréchet derivatives dF/da,0H/éov € g** ~ g. For a Hamiltonian

functional H, the equation of motion, namely the Lie-Poisson equation, is

& = —adisu @, (1.7)
Sa
where ad* denotes the coadjoint representation of g on g* [11,19]. Similarly, a right invariant
Lagrangian L on T'G uniquely defines a real valued function [ on g by reduction. The
Euler-Lagrange equations for L reduces to the Euler-Poincaré equations
dol . dl

for reduced Lagrangian [, where £ € g and §1/0¢ € g* [20-22].



1.2. COLLISIONLESS PLASMA

Plasma consists of free positive and negative charge carriers and looks neutral from the
outside and it is estimated to constitute more than 99 percent of the visible universe [23,24].
To describe the motion of plasma in @ C R3, one may start to write down the whole
microscopic data and Newton formulas and interactions for whole particles, which is very
difficult. The kinetic plasma theory uses statistical and probabilistic concepts to handle the
practical problems of the microscopic theory. The basic element in the kinetic description
of a plasma is the plasma density (distribution) function f = f(q,p) that describes how
particles are distributed in position-momentum phase space T*Q [25-27]. We use z = (q, p)

as local coordinates on 7" Q.

Charged particles in an electromagnetic field are described by the Maxwell-Vlasov

equations consisting of the Maxwell’s equations

VXE:—la—B Vszla—E—l—}J
c Ot and cdt ¢ (1.9)
V-E=p V-B=0
and the Vlasov equation
of p p _
E—I-E'qu#—e(E—i—axB)-fo—O (1.10)

where E and B denotes the electric and magnetic fields,

p= —e/f(q,p) d*p (1.11)

is the charge density, J is the current density vector, c is the speed of the light and p = mv
is the momentum of plasma particles. Some of the references involving the Hamiltonian and

Lagrangian descriptions of Maxwell-Vlasov equations are [28-33].

In case of an unmagnetized plasma B = 0 and absence of any current J = 0, the electric

field E is the purely potential, that is, E = V¢ (q). The potential ¢, (q) is determined



through the Poisson equation

Vepy = —e/f (a,p) d°p, (1.12)
and Vlasov equation reduces to

of  p

o7t Vaf —eVady - Vpf =0. (1.13)
The set of equations Eq.(1.12) and Eq.(1.13) are called the Poisson-Vlasov equations.
One may alternatively regard the Poisson-Vlasov equations as an approximation of the
Maxwell-Vlasov equations in the nonrelativistic zero-magnetic field limit, that is the limit
¢ — o0 [39]. Some of the references for the first attempts to the investigation of the geomet-

ric foundations of the Hamiltonian and Lagrangian descriptions of Poisson-Vlasov equations

are [34-38].

The main orientation of this thesis is to study geometric framework for Lie-Poisson
formulations of the Poisson-Vlasov equations. We present some purely geometrical concepts
in second, third and fourth sections. The rest of the thesis, fifth and sixth sections, is
devoted to the application of these geometric constructions to particular case of the group of
canonical diffeomorphisms, which is the configuration space of the collisionless nonrelativistic
plasma. Foundations of this study can be found in some unpublished works of H. Giimral,

J.E. Marsden, P.J. Morrison and T.S. Ratiu at the beginnings of 90s.

1.3. CONTENTS OF THE THESIS

In the following section, we start with the definition of a smooth bundle (&, m, M)
and present tangent (M, 7, M) and cotangent (T* M, 7, M) bundles. Given a smooth
bundle (€,7, M) we define the first jet manifold J'm and pull-back bundle p*(7) by a
mapping p : NV — M. The first order generalized vector fields are defined as the sections of

the fibration J'm xg¢ TE — Jlm. It is argued that every smooth bundle (£, 7, M) admits a



short exact sequence

0 - VE - TE — 7°(TM) — 0, (1.14)

where V'€ is the bundle of vertical vectors and 7* (T'M) is the pull-back bundle of T M. There
is no canonical way to split the sequence presented in Eq.(1.14), one needs an additional
geometric structure on the sequence, so called connection, to do that. Defining a connection

decomposes the cotangent bundle T*E, because the connection splits also the dual

0 - (#*(ITM)" — T*¢ — V*r — 0 (1.15)

of the sequence Eq.(1.14). We show that, an element of the jet manifold .J'7 can be regarded
as a connection and hence decomposes the tangent bundle T'E of £ into direct sum of vertical
and horizontal components, namely vertical representative and holonomic part. In the last
subsection, we discuss the theory of exterior calculus and review some constructions on

manifolds, such as volume, symplectic and Poisson structures.

In section 3, we start with a vector field X on a manifold M and, in a canonical way,
define vector fields X¢ and X“*, called complete tangent and cotangent lifts of X, on the
tangent bundle T'M and cotangent bundle T* M of M, respectively. Hamiltonian structures
of the complete lifts are discussed. Vertical lift X" of a vector field X on M to the tangent
bundle T M and vertical lift a” of a one-form a on M to the cotangent bundle 7% M are
defined. Under the existence of a connection, the iterated bundles TTM, TT* M, T*T M
and T*T* M are expressed as the direct sums of the first order bundles 7'M and T* M.

In the fourth section, theory of symmetry and reduction is summarized. Symmetries
of a mechanical system are described by invariance of the system under some Lie group
action on its configuration manifold. Momentum maps, which play the fundamental role in
the theory, are defined, and the link between momentum maps and Noether’s theorem is
established. The symplectic and the Lie-Poisson reductions are presented. By several ways,

the Lie-Poisson structure on the dual space g* of the Lie algebra g is derived.

The fifth section is devoted to the applications of geometric constructions described



in previous sections to continuum theories. The momentum map realization of the Poisson
equation gives that the true configuration space for the Poisson-Vlasov dynamics must be the
semi-direct product structure F (Q) @Dif fean (1 Q) with the action of additive group F (Q)
of functions given by fiber translation on 7% Q and by composition on right with canonical
transformations. Following [39], the group of canonical transformations Dif feqn (T*Q) is
considered as the configuration space for collisionless plasma and Green’s function solution
of the Poisson equation is adapted as a constraint while performing variational derivations.
We take Lie algebra of Dif fea, (T*Q) as the space Xpam (1T°Q) of globally Hamiltonian
vector fields which is isomorphic to the space F (T*Q) of smooth functions on 7*Q. The
dual of Xpam (T Q) is the space of one-form densities whereas the dual of F (7*Q) is the
space Den (T*Q) of densities on T*Q, that is the space of nonvanishing top-forms. Therefore,

for the dual space, two equivalent representations are possible, namely density Den (T*Q)

*

and momentum Xj

(T* Q) representations. Hamiltonian functionals Hyp corresponding
to the Lie-Poisson formulations of the Poisson-Vlasov equations for both dual spaces are

given. For the density representation, the constraint variational derivative of

Hpp(f) = T*Qf(z)hf (2) p(2), (1.16)

is computed as 0Hpp/df = h = p*/2m + ed;(q), hence Lie-Poisson equation

af SHp
dt__{f’ 57 } (1.17)

on Den (T*Q) gives Vlasov equation in Eq.(1.13), where hy (z) = p?/2m +e¢;(q) /2. Hamil-
tonian functional Hyp is transferred to X7, (7%Q) with coordinates II;4 = (Il,,II,) and

ham

obtained

Hipho) = [ (Ma(2), X, @) 02 (1.18)

up to modulo divergence. The constraint variational derivative

0Hrp 1
3L, =X} = P Vi —eVyds(a) - Vp (1.19)

of Hpp(Il;4) is the Hamiltonian vector field for the Hamiltonian function h. Lie-Poisson



equations gives the intermediate system

1.Iq = —Xp(ly) +e(Il,-Vy) vq¢f(q)
fl, = X (11,)~ L1, (1.20)

named the momentum-Vlasov equations. Momentum variables (Il,, IT,,) represent equiv-
alence classes up to additions of the terms V,k and V,k for an arbitrary function k(q, p),
respectively. It is shown that, the momentum-Vlasov equations are generated by the vertical

representative
. 1
VX = (—Xp (Iy) + e (I, - Vo) Ved(q)) - an_(%nq + X (1)) - Vi, (1.21)

of the complete cotangent lift X;* of Hamiltonian vector field X}, thereby the precise relation

between the particle motion and the Vlasov equation is established.

In section 6, algebra of vector fields X (M) on a symplectic manifold M is decomposed
into a semi-direct product algebra of Hamiltonian vector fields X4, (M) and its complement
isomorphic to the dual of X4, (M), is presented. Some other subalgebras in the space of
vector fields, such as homotheties and locally Hamiltonian vector fields, are presented. A
similar discussion on the decomposition of one-form sections on M into the spaces of closed

and non-closed one-forms is made.



2. THEORY OF MANIFOLDS AND BUNDLES

2.1. SMOOTH BUNDLES

A smooth (fiber) bundle is a quadruple (&, 7, M, F) where

1. £, M and F are manifolds, called total, base and fiber manifolds, respectively,

2. m: & — M is a smooth surjective map, called projection (or fibration).

In addition, a fiber bundle admits local trivialization property, that is, the exis-
tence of an open cover {U;} of M with diffeomorphisms ¢, : U; x F — 7~ (U;) commuting

the following diagram

U, x F - a1 (Ul)

Pry, N Va

U;

where pry : U; x F — Uj is the projection operator to the first factor [?,40-44]. By fixing

x € U;, the diffeomorphism ¢, : U; x F — 71 (U;) is reduced to

bil,  F — at (x) =&, (2.2)

which identifies 7! (x) = &, and F. We will denote a smooth bundle with triple (&, 7, M)

or with projection 7 or with the total space £, interchangeably, if there is no risk of confusion.

If there exists a trivialization over the entire manifold M, then the bundle is called the
trivial bundle. In this case the total space £ can be identified with the product manifold
M x F.
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A global section v of a bundle (£,7, M) is a smooth map v : M — & such that
mov = idpq, where id 4 is the identity mapping on the base manifold M. We denote the set
of all sections of 7 by & (7). For an open cover {U;} of M, a mapping v; : U; — 71 (U;)
satisfying mov; = idy, is called a local section. It is important to note that, not all smooth

bundles admit global sections [45].

A k—dimensional real (complex) vector bundle is a smooth bundle whose fiber
F is a k—dimensional real (complex) vector space V. k = rank is rank of the vector
bundle. The tangent and the cotangent bundles are examples of vector bundles and they
will be discussed in detail in forthcoming sections. A vector bundle (&1, 71, M) is called a
subbundle of a vector bundle (&, w2, M) if the fibers of 71 are the linear subspaces of the

fibers of 79 at every x € M and 772]81 = 7y.

2.1.1. Bundle Map and Fiber Product

Let (&1, 71, M1) and (&, 72, Ma2) be two smooth bundles. A smooth map @ : & — &
is called a bundle map (morphism), if ¢ is fiber-preserving, that is, it induces a map

v : M1 — Mas such that the following diagram commutes

S

& - &

My - M.

If the base manifolds M; and M are identical, that is M1 = My then @ satisfies 71 = m200.

For the case of vector bundles, we require in addition that @ is a linear operator from
the vector space (£1), = m; * (x) to (€2) p(z) = 751 (o (x)) for all x € M. The set of all such
linear mappings at x € M is denoted by Hom (£1,&2),. The triple (Hom (&1, &), m, M) is
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the homomorphism bundle, where the total space is

Hom (£1,&) = | ] Hom (&1,&),. (2.4)
zeM

Consider the trivial line bundle (M x R, pri, M) with pry is the projection to the first
factor. Given a vector bundle (£, 7, M), the dual bundle (£*,7*, M) is defined to be

(Hom (E,M x R), 7%, M) = (E*, 7", M). (2.5)

If V is the fiber of a vector bundle (€, 7, M) then its linear algebraic dual V* is the fiber of
the dual bundle (£*, 7%, M).

Consider two bundles (&1,m1, M) and (&2, 72, M) over the same base manifold M.
The manifold

& X M 52:{(91,92) €& x & :m (el) = T (eg)} (2.6)
is called the Whitney product. In addition, with the projection
(M1 Xpmm2) : €1 Xpm E2 — M (e1,€2) — 71 (e1) = 72 (e2), (2.7)

(&1 X pm E2, 1 XA T2, M) is called a bundle product.

2.1.2. Tangent Bundle

Let M be an m—dimensional manifold. We denote by 7, M the vector space of all

tangent vectors at x € M. The union of the tangent spaces

TM= ] T.M (2.8)
rEM
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is a 2m—dimensional manifold called tangent manifold of M. Tangent projection (or
fibration) 7, : TM — M maps a tangent vector to its base and makes (M, 7, M) a
vector bundle with fibers isomorphic to m—dimensional Euclidean space. We will compactly
denote the tangent bundle with its total space T'M or with projection 7. We will use the
local coordinates (z%) and (:E“,vb) on M and TM, respectively. The canonical basis for

T, M is given by the set {0/0z%|,}.

Let ¢ : M — N be a smooth mapping between two manifolds M and N, the tangent

lifting (or mapping) Ty : TM — TN of ¢ is defined in a local chart U as

T (x,v) = (¢ (x), Dp(x) - v), (2.9)

that is, T'p maps the base point x to the point ¢ (x) € N and maps the vector v € T, M
to a vector in Tw(w)/\/’ via the Jacobian Dy of the transformation ¢. Tp and ¢ make the

following diagram commutative

T
M d TN
lTM lW (2.10)
M d N

A section X : M — TM of the tangent bundle is called a vector field on M. We
denote the space of all vector fields by X (M). Let X € X (M) and ¢ : M — N be a

differentiable mapping then the commutative diagram

Ty

M TN

TX TXN (2.11)
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defines a vector field X/, called the push-forward of X by ¢, and denoted by X = ¢, X.

X (M) acts on the space of smooth function F (M) on M. Action

xo 0

T g

X[f] (2.12)

of a vector field X = X®0/0xz* on f € F (M) is the directional derivative of f in the
direction of X. There is a bilinear, skew-symmetric binary operation on the space of vector
fields X (M) called Jacobi-Lie bracket, defined in terms of the actions of the vector fields

as
(X, Y], U] = XY IS =Y XA, (2.13)
for X,Y € X (M) and Vf € F (M). The Jacobi-Lie bracket satisfies the Jacobi identity
(XY, 2], + 1Y, 2050, X1 + (12, X151, Yy = 0. (2.14)
With [, |;., X(M) has the structure of a Lie algebra, that means, it is equipped with a

bilinear, antisymmetric binary operation which satisfies the Jacobi identity. We will turn

back to the concept of the Lie algebra in a more general setting in forthcoming sections.

2.1.3. Dual Tangent Rhombic and Canonical Involution

TT M is a 4m-dimensional tangent manifold of 7'M with induced coordinates (:U“, ol i, i)e) .
TTM has two fibrations over T'M, one is the natural tangent bundle fibration 77 :
TTM — TM and the other is induced from 7 : TM — M as a tangent mapping

TTap: TTM — TM. The following commutative diagram, known as dual tangent rhom-
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bic

TTM

TTM TM

lTTM lTM (2.15)

TM —M M

summarizes the situation [3]. The diagram in Eq.(2.15) is an example of a double vector
bundle structure [46]. Dual tangent rhombic leads to the existence of an isomorphism kg

via commutativity of the following diagram

KEm
TTM - TTM

lTTM lTTM (2.16)

™ - TM.

Km is an involutive map, that is, kg 0 kKaq = idrraq [8]. In local coordinates, if the local

representatives of 7raq and T are

TT M (w“,vb;dcd,@e) = (wa,vb>,

T7m (w“,vb;:bd,iie) = (:B“,abd> , (2.17)
then ka4 is given by

oy (x“,vb;jtd,i)e> - <a;a,j;d;vb,1}e). (2.18)



15

2.1.4. Cotangent Bundle

Given a manifold M, the linear algebraic dual 7y M of the vector space T, M is called

the cotangent (covector) space of M at x € M. The union of all cotangent spaces

T"M= | TiM (2.19)

reM
is the cotangent manifold of M. (T* M, maq, M) is the dual bundle of the tangent bundle
and called the cotangent bundle of M, where  the  projection
M 2 IT*M — M is the cotangent bundle projection. T*M is a 2m—dimensional
manifold with coordinates (z%,v;). We choose a basis {dz®|,} for Ty M dual to the basis

{0/0z%|,} of T, M, in the sense that,

<da:“, é;j;b> =57, (2.20)

where (, ), is the natural pairing at x, and dj, is the Kronecker delta. A Section 6 : M —

x

T*M of the cotangent bundle is a differential one-form which can locally be written as
0 (x) = 0, (x) do®. The space of one-forms on M is denoted by A! (M). We denot the space
of one-forms on M by Al (M).

Consider two differentiable manifolds M and N and a smooth map

¢ : M — N, cotangent lift
T : TN — T*M (2.21)
of ¢ is defined by
(T (2),v) = (2,Te(v)), (2.22)

where T'p is the tangent mapping of ¢, z € T*N and v € TM. Note that, cotangent lift
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switches the order of composition, that is, if ¢ : M — N and ¢ : N' — Q, then

T* (o) = T"po T, (2.23)

2.1.5. Pull-back Bundle

Let (€,m, M) be a bundle and p : N'— M be a map from a manifold N to the base
manifold M, pull-back bundle of 7 by p is the triplet (p* (£), p* (7),N), where

P (E)=NxpmE={(ne): N xE:p(n)=mn(e)} (2.24)

is product of manifolds and

p () p () =N xpmE—N:(ne)—n

is the projection pr; to first factor. Diagrammatically, we have

pr
PFE) =N xpmE ——— &

pry | o () | (2.25)
p
N E— M
where the projection
pry: p () =N xmE—E:(ne) —e (2.26)

is a bundle map.

As an example, we take (£, 7, M) to be the tangent bundle (TM, ¢, M) and N =
T*M so that p is the cotangent bundle projection wpq : T*M — M. The pull-back of
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(TM,7pm, M) by maq is then the smooth bundle (7%, (T M), 7% (Tam) , T* M) where

T (TM) =T M xXpTM={(2,v) : T"M X TM:7p(z) =Trm(V)} (2.27)

is the Whitney product and 7%, (7r¢) is the projection pr; : (z,v) — z to the first factor.

The following diagram

. . pro
i (TM) = T* M x py TM M
pry md (TMm) lTM (2.28)
T* M ™™ M

summarizes the argument. Similarly, the pull-back of (T'M, 7, M) by the tangent bundle
projection 74 : TM — M is the bundle (7%, (TM) , 73 (TMm) = pry, T’M) where

TMm(ITM)=TM X TM={(v,u) : TMxTM:7p (V) =7Tp (0)}. (2.29)

Observe the diagram

i (TM) = TM x pg TM TM
pry lfj‘w (Tm) lrM (2.30)
T
™ o M.

As another example, we take (€, 7, M) to be the cotangent bundle (T*M,m s, M)
and N = T'M so that p is the tangent bundle projection 7r¢ : TM — M. The pull-back of
(T*M, 7 pq, M) by T g is the smooth bundle (773 (T* M), 73 (Tm) = pry, T M) where the

total space

T (T"M) =TM Xp T*M ={(v,2) : TMXT*M:7p((V) =M (2)}. (2.31)
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is again a Whitney product. Diagrammatically,

pr
75 (T*M) = TM x 0 T*M : T* M
pry lT}‘M (mm) JWM (2.32)
T
™ = M

from which we observe that, 7%, (1*M) is isomorphic to 7} (T'M) by isomorphism

T (TM) = 73 (T*M) : (z,V) < (v,z). (2.33)

Similarly, the pull-back of (T* M, waq, M) by maq : T*M — M is

(T (T*M) s 7wy (T ) = pry, T* M) (2.34)

where the total space is

T (T"M) =T M xp T*"M ={(w,z) : T"M X T*M : mpg (W) =70 (2)} (2.35)

and we have

pr
o (T*M) = T*M x pg T*M : T*M
pry l?% (mm) le (2.36)
T
T*M A M.

2.1.6. First Order Jet Bundle and Generalized Vector Fields

Let (£,7, M) be a bundle with coordinates (z%) and (z%,u®) for a local atlas on M

and &, respectively. Two sections ¢,¢ € & (m) of the bundle (£,7, M) at a point x € M



19

are called equivalent if their tangent mappings are equal at that point, that is, T,¢ = T,.
Given a point x, an equivalence class containing a section ¢ is denoted by jl¢ and is called
one-jet of ¢. The first order jet manifold

Jir={j;p:x € Mand ¢ € &(r)} (2.37)

associated with (&€, 7w, M) is the set of equivalence classes at every point x € M with induced

) , (2.38)

coordinates

d*

Uy Dot

<.§Ua,u/\ u/\) :Jl’ﬂ' N Rm-‘rk-‘rmk ];(ﬁ_) (xa,u)‘ (¢ (X))

where m = dim M and k = rank 7. We have the fibrations

mo : J'm— & i — o (%)

T o Jr s M:igle—x

of J'1 over £ and M, respectively. These form the commutative diagram

Jtr o E
T \ lﬂ' (239)
M.

Consider the pull back bundle

(7 (TE) = J'm xg TE, m§ (T¢) = pry, ') (2.40)
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of the tangent bundle (T€,7¢,£) by the projection g : Jim — &£, that is

75 (TE) = Jin xg TE TE

pry lﬂfﬁ (Te) ng (2.41)

Jir -, E.

A section of 75 (T¢) is called a generalized vector field of order 1 [48]- [50]. One may regard a
section of 7 (T¢) as a map from J L7 to TE. We additionally require that generalized vector

fields are projectable. In coordinates, a generalized vector field is then given by

0 0
-1 a A1
= + — . 2.42
f(]z@f)) £ (%) e | 3 (Jx¢) G s ( )
The prolongation pr'¢ of a generalized vector field ¢ is defined by
0
1 « « « b, o b, a
prﬁ—f—i—@aaug, O = Dya (f —fub>—|—§uba (2.43)

where D,. is an operator which differentiates functions on J'7 with respect to z* and
ul, (jz0) = 6%¢%/ 3:1:“8:1:b|m is an element of the second order jet bundle [51]. Lie bracket

of two first order generalized vector fields

a 0 o 0 . 0 o 0
£_£8$“+€% and 77_778:E“+77 ou®

is the unique first order generalized vector field

m k
6o = D (pr' & (™) — prin (£9)) 8(; + ) (o' (™) — prin(€9) aia' (2.44)

a=1 a=1

If £ and 7 are ordinary vector fields on &, then [, |  reduces to the Jacobi-Lie bracket of

pro

vector fields as in Eq.(2.13).
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Similarly, we define the generalized one-forms as follows. Consider the pull-back
(m5 (T*E) = J'm xg T*E, (m0)* (me), J'm) . (2.45)

of the cotangent bundle (T*E, 7g,E) by 7o : J'r — €. A generalized one-form of order

1 is a section of this pull-back bundle

Jinxe T —— T

pry | |7 (2.46)

Jin — E.

In coordinates, a generalized one-form A is written as

A(420) = Aa (429) da| 40y + Aa (20) du| 5 - (2.47)

2.2. CONNECTIONS ON BUNDLES

2.2.1. Vertical Vectors

Let (€, 7, M) be a smooth bundle with local coordinates (z%) and (z%, u®). The ver-
tical bundle associated with 7 is a vector subbundle of the tangent bundle T'€ consisting

of vectors that are parallel along the fibers, that is,
VE=kerTn={{eTE :Tn () =0}, (2.48)
where T'm is the tangent mapping of the projection m. We denote the vector fields on £ by the

same notation &, since there is no risk of confusion. A vector field £ on £ is a vertical vector

field if Im (¢) € VE. In coordinates, a vertical vector field ¢ is of the form £ = £*0/0u®.
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Consider the pull-back bundle
T (TM)=ExpmTM={(e,v) €eEXTM:7m(e)=Tpm(V)} (2.49)
of (T M, 7, M) by the projection 7 : £ — M. There is a homomorphism

Sy ¢ TE -7 (TM)=E xpmTM

5 - (7—8 (6) I (6)) ) (2'50)

from (TE,7¢,E) to (7* (TM),7* (TMm),E) [52]. The kernel of Sy consists of vertical vectors

on w and hence, one has the following short exact sequence of bundle morphisms
% S»
0 — V& ¢ ——— 1 (TM) — 0 (2.51)

where ¢ : VE — T& is the inclusion mapping.

There is no canonical way to define a direct complement to V& in TE. To establish a
decomposition of T'E, one needs an additional geometric structure on 7, called a connection
[53-56]. The splitting of sequence in Eq.(2.51) is the same as finding a direct complement

to VE. To split the sequence, one needs to define an operator
7" (ITM)=ExpmTM —TE (2.52)
such that S;oI' = id. We consider I" as a fiber-preserving mapping from T, M to T,.&E, where

7 (e) = x and hence, take I' € T*M ® TE. Once a connection I is introduced, the tangent

bundle T'E decomposes into vertical V& and horizontal
HE =T (7" (TM)) (2.53)

subbundles and the total space can be written as the direct sum of vertical and horizontal

subbundles, that is TE = VE ® HE.
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2.2.2. Semi-simple Forms

Consider the pull-back bundle (7*(T*"M),7*(7m),E) of (T*M,7nm, M) by
7w : & — M, where 7 (T*M) is the Whitney product & X, T*M and 7* (7mpq) = pry
is the projection. We define a mapping p,. from 7* (T*M) to T*E by the commutativity of

the following diagram

g (m) = pry

& X M M M
pr, l [TEAN lT*w (2.54)
v
£ - T*€

The image space of the mapping .. is called the space of semi-simple forms (or horizon-
tal covectors) and denoted as H*E [49]. In other words, if A € H*E, we require existence

of @ € T* M such that A = T*n (a). For £ € VE

</\>§> = <T*7T (O‘) >§> = <a7T7T (€)> =0, (2‘55)

which means that, horizontal covectors annihilate vertical vectors.

Recall that a connection I' € T*M ® T'E, since p, identifies T* M with H*E we take

I'e H*¢ @ TE. If we add a normalization condition I' (A) = A, for all A € H*E, I' can be

written, in local coordinates (z% u®) on &, as

0 0
F'=dz*® ((%a + Fg@u“) ) (2.56)
where a compatibility condition on the scalars I' = I'? (x, u) is imposed by demanding that
the local structure is preserved under coordinate transformations. In particular, if I'’s are

linear with respect to fiber coordinates, namely I'y (x,u) = I'§, (x) u”, then the compatibility
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condition reduces to the well-known relation

s  OutouPoxe_,  Ou® 9*u®
FB& = %Wﬁrﬁa + WiaxaauB (257)

for transformation of components '3, of a connection under coordinate transformation

(2% u®) to (2% u®) [57].

We thus reduce the problem of finding a direct complement to VE to deciding the
scalars I'Y. Once these transformations are chosen, the horizontal part H¢ and vertical

part V¢ of a vector £ are

H(E)=T(€)=¢T and V() =£— HE (2.58)
In coordinates, if £ = £ 8(3:“ + §aaia, then
a 8 (0% 8 (0% o ¢-a
HE=¢E (3$“+Fa(9w3‘> and V&= (£*-Tg¢ )% (2.59)

2.2.3. Connection as a Projection on Cotangent Bundle

The definition V€ in Eq.(2.48) gives no clue for the dual bundle V*E of the vertical
bundle. One may attempt to construct a dual space by choosing {du®} as the generators.
This fails to be globalized because the set {du®} is not invariant under coordinate transfor-

mations. Hence, one must introduce a dual basis in the form
{du® —=Tdz® : a« =1, ...,rank (m)} (2.60)

where I'Y are the same as scalars in Eq.(2.56) [58]. Thus, defining a connection is the same

as defining the dual V*€ of VE. The dual of the sequence in Eq.(2.51) is given by

*

ju s
0 — (7" (TM)" ———— T*E Ve — 0 (2.61)
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where s is a surjective operator and S is the dual of S;. I' decomposes simultaneously the
dual sequence in Eq.(2.61) and T*E can be written as V*E @ H*E where H*E is the space

of semi-simple one-forms.

Locally, let A = Aydx® + Apdu® be a one-form on £. Then, the image of A under T is

a semi-simple one-form

H*A=T-X= (A +T%\,) da”. (2.62)

The vertical component of A is

VA= A— H*X = Aq (du® — T%dz?) . (2.63)

We have two alternative definitions of H*€ given by S ((7* (T'M))*) and p,. (7* (T*M)),

where the former one is coming from the exact sequence in Eq.(2.61) and the letter one is

coming from the commutative diagram in Eq.(2.54). From this identification, we have

(7 (TM))* ~7* (T*M). (2.64)

In particular, we replace 7 : £ — M with 7o : TM — M and g : T*M — M in Eq.(2.64)

to obtain

(T (TM))* =13, (T*M), (T (TM))* ~ 7p* (T M), (2.65)

respectively.

2.2.4. Holonomic Lifts and Vertical Representatives

Tangent mapping of a section ¢ : M — & of the bundle 7 : £ — M satisfies the
requirements of being a connection. Two sections which have the same tangent mappings

define the same connection. Equivalently, choosing an element of the jet bundle J'7 splits
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the exact sequence in Eq.(2.51) uniquely [49,50]. Geometrically, this hides behind the fact
that, J1m is a subbundle of T*M ® TE [59].

Let (£,m, M) be a smooth bundle. Consider a vector field X € X (M) on the base
manifold M, and let ¢ be a section of the bundle 7, then the holonomic lift of the vector

X (x) € T, M by ¢ is defined by

(a9, Th (X (x))) € 7 (TE) = J'm x¢ TE, (2.66)

where JI7 x¢ TE is the Whitney product. Let X = X%9/0z®, then the holonomic lift of
the vector field X is given by
) L0 0 )

hol __ _ A(s1
X = X g+ g g — X g W (359)

o (2.67)

We define the holonomic part of a projectable vector field { € X (€) as the holonomic

lift of its push forward by 7, that is

HE = (m,8) (2.68)

H¢ is a generalized vector field of order 1. We define a connection 1 — 1 tensor

a a (6% a
FJ— dlL‘ & <83§“ + ’U:aaua> (269)

satisfying H¢ = I'y€. The vertical (or evolutionary) representative

VE=£-T5(6) = (£~ e') 5y (2.70)

of the vector field ¢ is vertical valued generalized vector field of order 1 [49-51].

Lemma 2.1. The operation in Eq.(2.68) is a Lie algebra isomorphism into.

We consider two projectable vector fields € and 7 on £. A straight forward calculation
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gives
[FJ (5) 7FJ (n)]pro = [Hé’ Hn]pro =H [ga 77] = FJ [5777] . (271)

where [, ] is the Lie bracket for generalized vector fields in Eq.(2.44). On the other hand,

pro

the generalized bracket of vertical representatives satisfies
VE Vo = VIE Mo + B (1), (2.72)
where ‘B is a vertical-vector valued two-form
B (¢, 1) = [Hn, VE],,, — HE Vi, (2.73)

The connection I'y decomposes the one-form sections into direct sum of two generalized

one-forms. For A = A dz® + A du® the horizontal and the vertical parts are
H*X=T35(A) = (Ag + Aquy)dz® and VA=A, (du® —ugdz®). (2.74)

V*\ is particularly called a contact one-form [60].

2.3. CALCULUS ON MANIFOLDS

2.3.1. Differential Forms and Exterior Derivative

A differential p-form on M is a skew-symmetric p—multilinear functional on X (M)

and can be uniquely represented in local coordinates by

1
w(x) = HW‘““Q”'“” (x)dx™ Ndz® A ...\ dx. (2.75)
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Here, the wedge product A of two differential one-forms dz® A dz® is defined by an alter-

nating tensor product
dz® @ dzb — dab @ da® (2.76)
and extended by linearity [61,62]. The set of differential p—forms are closed under addition

and scalar multiplication, and they form the vector space AP M over the field of reals. The

direct sum
AM) = A (M)A (M) D ... & A™ (M) (2.77)
is a graded algebra called the Grassmann algebra, where the space of zero forms A° (M)
is assumed to be the space of smooth functions F (M) on M and the space of one-forms
Al (M) is the space of sections of the cotangent bundle T* M.
On A (M), the exterior derivative

d: AP (M) — AP (M) (2.78)

is a linear mapping over R and is defined by

p

dw (Xo, X1, sy X ZXZ< (XO,Xl,...,E,...,X,,» (2.79)
—Z( 1)1+ (XZ,X] XO,Xl,...,E,...,)?j,...,xp)),
i<j

where the vector fields with hat, e.g. 5(:, are omitted. Exterior derivation is a nilpotent

operator, that is, d> = 0 and satisfies the generalized Leibniz rule
dwha)=dvAa+ (1)’ wAda, (2.80)
for w € AP (M) and « € A (M) . In coordinates, the exterior derivative of w in Eq.(2.75) is

10 aias...a
dw = = Z20920 gra n gaar p A dx, (2.81)
p!  Oz°
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and, in particular, df = (9f/0x*) dz?, for f € F (M).

A p-form w is called a closed form, if dw = 0. w is called an exact form if there
exist a (p — 1)-form 6 such that w = df. Every exact form is closed whereas the inverse of
this fact is not true. Poincaré lemma states that, a closed p-form w on open contractible

subsets of M is exact [47,60].

Let N and M be two smooth manifolds and ¢ : N' — M be a differentiable mapping.

The pull back operator

¢* T A (M) = AN (2.82)

maps differential forms on M to differential forms on N. In particular, the pull-back of a
O-form f on M is o*f = f o p and, the pull-back of a p-form w on M is a p-form ¢*w on N’
defined by

SO*W (Xla le ) Xp) =w (50* (Xl) y Px (XQ) y ey Px (XP)) ) (283)

where X1, X1, ..., X}, are vector fields on N and ¢, (X;) denotes the push forward of X; by
¢. In coordinates, if w is given by Eq.(2.75) and (¢*) denotes the coordinates of N/, then
1 ™ Q> Jplr

(p*w) (a) = SjWers..a, (¢ (a)) A B B

dg™ Adg A ... Ndg'. (2.84)

The pull back operation respects to the exterior derivative and wedge product operation,

that is,

Prdw =dp*w and " (WA a)=¢wAp a

Yw, o € A(M).
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2.3.2. Interior product and Lie Derivative

The exterior derivative raises the degree of a differential form one up, whereas the

interior product

ix : AP (M) — AP~H (M) (2.85)

lowers the degree of a differential form one down. For w € AP (M) and X, X1,...,X,—1 €

X (M), this is defined by

’in (Xl,...,Xp_l) :w(X,Xl,...,Xp_l). (286)

As in the case of exterior derivative, interior product satisfies the generalized Leibniz identity,

that is, for w € AP (M) and a € A (M),
ix(wWAha)=ixwAa+ (-1)PwAixa. (2.87)
One has also that ix, oix, = —ix, oix,.

The Lie derivative £ x is a linear operation acting on functions, vector fields and one-
forms. Lie derivative £xf of a function f is the directional derivative X (f) of f in the
direction X. Lie derivative with respect to X of a vector field Y is the Jacobi-Lie bracket of
vector fields

£xY = [X,Y],;, (2.88)

as given in Eq.(2.13). Lie derivative of a p—form w is a p—form and is defined by the Cartan’s

formula

£xw=dixw+ ixdw. (2.89)
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We have the following commutation relations

dofx=~£xod and [£x,iy]=[ix,Ly]=1r,y, (2.90)

where [Jffx,iy] = £X Oiy — iy o £X [1,47,60].

2.4. GEOMETRIC STRUCTURES ON MANIFOLDS

2.4.1. Volume Manifolds

A volume form on an m dimensional manifold M is a nowhere vanishing top form,
i.e. m—form p, with p(x) # 0, for all x € M. The pair (M, p) is called a volume (or
orientable) manifold. An orientation of M is the class of [u] = {fu: f > 0}. Let
(M, [p]) and (N, [n]) be two volume manifolds, a smooth map ¢ : M — N is volume

preserving if

©'n = p (2.91)

and orientation preserving if ©* [] = [u].

Let X be a vector field on (M, p1) . The divergence, div, X, of X is defined by

(div, X) p = Lxp. (2.92)

A vector field X is called divergence free (or solenoidal) if div, X = 0. The equality

div,, [X,Y] = X (div, Y) — Y (div,, X) (2.93)

shows that, if two vector fields X and Y are divergence free then so is [X, Y] ;; and hence, we

conclude that the space of divergence free vector fields Xg4;, (M) constitutes a Lie algebra,

that is, the space of divergence free vector fields is closed under the Jacobi-Lie bracket.
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2.4.2. Symplectic Manifolds

A two-form Qx on M is called nondegenerate if Q¢ (X,Y) = 0 for all X € X (M)
implies Y = 0. A symplectic manifold is a pair (M, Q) where Qp is a closed, nonde-
generate two-form on M [63-65]. Nondegeneracy of the symplectic form Qxq leads to the

isomorphism
D X (M) = AL M) - X — ix Q. (2.94)

The fiberwise inverse of Q% is Qﬁw P AT (M) — X (M). @), and ng are called musical

isomorphisms.

Proposition 2.2. The cotangent manifold is a symplectic manifold.

The existence of symplectic structure on a cotangent bundle T*M follows from the

double vector bundle structure of TT* M, given diagrammatically by

TT*M

TT*M - T*M

lT”M le (2.95)

T
TM M M.

where T'maq denotes the tangent mapping of the fibration waq : T°M — M and 77 pq :
TT*M — T*M is the natural projection. We define the canonical (Liouville) one-form

Or-pq on T* M as

O7-pm (&) = (Tr-pm (§) , Tag (€)) (2.96)

where £ € TT*M and (, ) is the natural pairing between T'M and T* M. Locally, 07 =

yadz®. The exterior derivative

QT*M = _daT*M = dl‘a AN dya (297)
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of 07 defines a symplectic two-form on T*M called the canonical symplectic two-
form. Darboux’s theorem states that all symplectic two-forms can be put into the form in

Eq.(2.97) in a coordinate system called Darboux’s coordinates.

A (globally) Hamiltonian vector field on a symplectic manifold (M, Qx) is the

unique vector field X}, satisfying

ix,Q = dh, (2.98)

for a real valued function h called Hamiltonian function. Eq.(2.98) can be recast as
QE\A (X}) = dh. Since QB\A is an isomorphism, one can always find the corresponding Hamil-
tonian vector field X, for a given smooth function h. X € X (M) is called a locally Hamil-
tonian vector field if ixQ is a closed form, that is dix, Qr = 0. Poincaré’s lemma
guaranties the existence of a local Hamiltonian function corresponding to a locally Hamil-

tonian vector field, but not necessarily a global one.

A symplectic manifold (M, Q) of dimension 2m is a volume manifold with sym-
plectic volume pq = (20)™ . A Hamiltonian vector field, even if it is local, is divergence

free with respect to the symplectic volume, because

Lxpg=Lx (QM)m = (ﬁxﬁM)m = (dixﬂM + ideM)m =0. (2.99)

In Darboux’s coordinates, the Hamiltonian vector field on T* M for the Hamiltonian

function h € F (M) is

Oh 0 Oh 0

Xn = 0Yq 0z® P g

(2.100)

and the equations

Oh oh
t? = g = — 2.101
x 8ya7 y axa ( 0 )
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are called Hamilton’s equations. In Darboux’s coordinate, the symplectic volume is

o = dzt A Adz™ Adyr A ... A dym, (2.102)

and the divergence of X = X%0/0x® + X,0/0y, with respect to the symplectic volume is

9X* 90X,
0xc Oy,

div,,_ (X) (2.103)

Proposition 2.3. Tangent manifold of a symplectic manifold is symplectic.

We use the dual tangent rhombic in Eq.(2.15) to define a one-form 674 on the tangent

bundle T'M of a symplectic manifold (M, Q) as follows

Oram (§) = Qum (TTMm (§) s T (£)), YVEETTM,

where T'7 4 is the tangent mapping of 74 and 774 is the natural tangent bundle projection
of TT M to T M. The exterior derivative Qg = dOraq of 0744 is the Tulczyjew’s symplectic
two-form on TM [8].

In particular, we take M to be the canonical symplectic manifold (T* Q,07-g = dg' A dpi)
with coordinates (qi, pj) . The one-form f77+o and Tulczyjew’s two-form dfrr+¢g are, in in-

duced coordinates (qi,pj; q'i,pj) on TT*Q, given by
Orr-0 = ¢'dp; — pidq', Qrr-g = dfrr-0 = dg' A dp; — dp; A dg'. (2.104)
Let (Mj,€Q1) and (Ma2,£2) be two symplectic manifolds and ¢ : M; — Mz be a dif-

feomorphism. ¢ is called a symplectic (or canonical) diffeomorphism if p*Qy = ;.

Compositions of two canonical diffeomorphisms is canonical.
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2.4.3. Poisson Manifolds

A Poisson structure on a manifold P is a bilinear map

{, }: F(P)xF(P)— F(P), (2.105)

which takes two smooth functions to a new one with properties:

1. skewsymmetry: {h, f} = —{f, h},
2. Jacobi identity: {f,{h,g}} + {h,{9, f}} +{9,{f,h}} =0,
3. Leibniz identity: {fh,g} = f{h,g} + {f, g} h.

The pair (P,{, }) is called a Poisson manifold [5]. For a function h € F (P), we

define the Hamiltonian vector field X} on P by

Xn (f) ={f,n}. (2.106)

If the Hamiltonian vector field of a non-constant function C' is identically zero, then the
function C' is called a distinguished (or Casimir) function. Poisson brackets of Casimir
functions vanishes {C, f} = 0, for all f € F(P). If X} is a Hamiltonian vector field for a
Hamiltonian function h, then it is also Hamiltonian vector field of the function h 4 C, that

is, Xp+c = Xp. We have the following lemma [3,4].

Lemma 2.4. If X}, and X; are Hamiltonian vector fields for h and f, respectively, then

(X, X¢],, = —Xin sy (2.107)

Every symplectic manifold (M, Q) is a Poisson manifold with the Poisson structure

{fih}a,, = Qm (Xp, Xn), (2.108)
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where X; and X}, are Hamiltonian vector fields in the sense of Eq.(2.98). The closedness of

Qm corresponds to the Jacobi identity for {, }tg .

Let ¢ : P1 — Pa be a diffecomorphism between two Poisson manifolds (P, {.,.};) and

(P2,{.,.}5) . ¢ is called a Poisson (or canonical) map, if

{fih}gopo={fop,hop}, (2.109)

for all f,h € F (P2). If a Poisson structure is induced from a symplectic form, then a Poisson

map is also a symplectic diffeomorphism.

We define an equivalence relation ~ on the Poisson manifold P. We call z € P and
w € P equivalent, if there exists a finite sequence zy, ...,z such that zgp = z and z; = w,
and all z; and z;y1 can be joined by a flow of a Hamiltonian vector field. The equivalence
classes of this relationship, that is elements of P/ ~, are symplectic manifolds. They are
called symplectic leaves of the Poisson manifold [66]. If a Poisson structure is induced

from a symplectic form, then there exists a unique symplectic leaf.

Proposition 2.5. Given a Poisson manifold P, centered at any point z € P, there are

coordinates

1 .2 n 1 2 k
(.’L’ sy ey XYL, Y2y ey Y, W, W, L, W >

such that

{ma’xb} = 0, {ya,yb} =0, {xa’wi} =0

{yaawi} = 07 {wzuwj} = 07 {mavyb} = 5z

In this coordinates system, Poisson bracket of two functions f and h is

_Of oh  Of O

{f,n} = 0x% Oy, Oy, Ox®’

(2.110)
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For a Hamiltonian function h, the Hamiltonian vector field

Oh 0 Oh 0

Xn = - 2.111
"= Sya 0zt 020 Oy (2.111)
looks like as in symplectic case whereas the equations of motion are
i ={h,a"}, o ={h,ya} and W' =0. (2.112)

A Casimir function is a function of variables (wi,i =1,..., k:) When k = 0, Poisson structure

can be induced from a symplectic form and the proposition is reduced to Darboux’s theorem.
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3. LIFTS OF VECTOR FIELDS AND FORMS

3.1. COMPLETE TANGENT AND COTANGENT LIFTS

The flow ¢; : M — M of a vector field X on M satisfies

d

X (%)= 5 0 )iy (3.

for all x € M. Induced mappings ¢§ on the tangent bundle TM are defined through the

following equation

TMO WP, =P OoTM. (3.2)

©f constitutes a one-parameter group of diffeomorphisms on 7'M and called complete
tangent lift of the flow ¢, [67], [68]. Note that the tangent map T'¢, of p, satisfies the
conditions of being a tangent lift. The infinitesimal generator of the flow ¢f is denoted by
X¢ and is called the complete tangent lift of X. From differentiation of Eq.(3.2) with

respect to ¢t at ¢t = 0 we obtain the equation
TrpmoX=XoTp. (3.3)

involving X and X¢. In local coordinates (z®,v*) of T'M, the complete tangent lift of X =
X9 /0x® is computed to be

¢ va O p0X% 0
X=X Oxo ozt ova’

(3.4)

The tangent map TX : TM — TTM of a vector field X is called the linearization

of the vector field X. The value of the linearization at a point x € M is given locally and
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explicitly as

oxe
S v’).

TX = (2% X 0"
The tangent lift X¢ and linearization T'X of X are connected to each other with
kmoTX = X€,

where k¢ is the canonical involution on 77'M given in Eq.(2.18) [45].

Similarly, the complete cotangent lift of a flow ¢, is a one-parameter group of

diffeomorphisms ¢f* : T* M — T* M satisfying
TMO Q" = @, 0T, (3.6)
where ma4 is the natural projection of T*M to M. The cotangent lift of the inverse flow
T*p_, satisfies the argument in Eq.(3.6). The vector field X, which has the flow ¢f*, is
called the complete cotangent lift of X [69]. The infinitesimal version of the Eq.(3.6) is
Trpmo X =X ompm. (3.7)
One may relate a vector field X € X (M) and its complete tangent and cotangent lifts

X¢eX(IT'M) and X € X (T*M) via the mappings

CrXWM) - X(TM) X — X©
SR (M) = X (TM) : X — X (3.8)

We have the following proposition [11,70].

Proposition 3.1. Maps given in Egs.(3.8) are Lie algebra isomorphism intos, that is,

[(X,YV]°=[XY and [X,Y]® =[X* Y], (3.9)
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for all X,Y € X (M).

3.1.1. Hamiltonian Structures of Complete Lifts

The complete cotangent lift X“* of a vector field X on M is a Hamiltonian vector
field on T*M for the Hamiltonian function P (X) = ixe-07-a¢ called the momentum
function [11,52,68]. Let X = X%9/0xz® In Darboux’s coordinates (z% y,) on T*M,
the momentum function is P (X) (2%, vy5) = 1 X° and the complete cotangent lift has the

expression

o oxt o
dra e o

X = Xp(y) = X° (3.10)
P can be considered as a map P : X (M) — Fr (T*M), where Fr, (I*M) is the space of

functions on T* M which are linear on fibers.

If (M, Qx) is a symplectic manifold then its tangent bundle T M carries a symplectic

structure as given in Eq.(2.104).

Proposition 3.2. The complete tangent lift of a Hamiltonian vector field X} on a symplec-

tic manifold (M, Qx,) is Hamiltonian.

In particular, we take (M, Qaq) to be the canonical symplectic manifold (7*Q, Q7-g)
and compute the tangent lift of a generic Hamiltonian vector field on 7% Q. In Darboux’s
coordinates (qi, pj) on T*Q, the symplectic two-form is Qr-o = dq' Adp; and the Hamiltonian

vector field for A becomes

0hd On D
~ Op;i 0¢t Oq' Op;

Xn(a,p) € X(T*Q). (3.11)

For the induced coordinates (qi, Dji q, pj) on TT*Q, the Tulczyjew symplectic two-from on
TT*Q is given by

QOrr-g = dg’ Adp; + dg’ A dp;. (3.12)
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The complete tangent lift is computed as

L oh\ o on\ o )

where X7-0 = Trr-0 (X5) = ¢'0/0¢" + p;0/0p;. X is a Hamiltonian vector field for the
Hamiltonian function
oh oh

H=Qr-¢ (Xpn, X1-Q) = 2—pi +

ap i T gl € F(TT*Q). (3.14)

The complete cotangent lift X;* € X(T*T*Q) of X) € X(1™Q) with induced coordinates
I = (¢, pi; T, IT') on T*T*Q is

oh\ 0 oh\ 0

X)) = X I —— I : T*T* 3.15

P = X+ 1 (50) o () g e XTI, @)

where TI* is image of II by the musical isomorphism Qg* o which, in coordinates, is given

by II* = 1I°0/dq' — 11;0/0p;. The corresponding degenerate Hamiltonian function of the
Hamiltonian vector field X is

oh oh _.

H=(II, X)) = —1II, — —II' € F(T*T* 3.16

(X)) = = G40 € F(T'T*Q) (3.16)

where (, ) is the natural pairing between TT*Q and T*T*(Q. We have the relation H =

(QbTQ> H between Hamiltonian functions H and H.

3.1.2. Decompositions of Complete Lifts

Recall the complete tangent lift

0 +vl,(?X“ 0
Oxo ozl e

X¢ = X(x) € X (TM) (3.17)
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of a vector field X = X (x) 9/0z* € X (M). The vertical representatives and the horizontal

part of X¢ are

oxe ot 0

c b a

VX = ('U 83511 — a$a)w, (318)
. B B SN

For the mapping kaq : TTM — TTM defined in Eq.(2.18), we have the following commu-

tations
kmoHX =Horpm (X)=H((TX) and kpmoVX =Vorp(X9). (3.20)
The holonomic lift X" of X coincides with horizontal part of X¢, that is, HX¢ = X"l

Similarly, the complete cotangent lift

o ox?b K2
ox?® Yo 0x® Oy,

X* = X° (3.21)

of the vector field X € X (M) is defined in Eq.(3.10). The vertical representative and the

horizontal part of X¢* are

OX"  ,0a, O

VX = — — 3.22
(yb axa J’_ axb)aya7 ( )
0 Oyp O

HX* = X¢ X —. 2

oz® oz® Jyy (3:23)
Lemma 3.3. The mappings defined by
Ve o XM) =X (ITM): X - VXE,

Ve o X(M) - X(T"M) : X - VX (3.24)

are Lie algebra isomorphism intos.



Indeed, the vector valued two-form

B(&n) =[Hn, Vel — [HE Vi,
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(3.25)

in Eq.(2.73) vanishes for the lifts, that is, B (X Y°¢) = 0 and B (X*,Y*) = 0 for all

X,Y € X (M), therefore, one has the isomorphisms

VXY =[VvX,VYe,, and V[X Y| =[VXT VY] .

Using Eqgs.(3.9) the desired results

VX, Y] = [VXS, VY, and VIX,Y]=[VX* VY]

are obtained.

3.2. VERTICAL LIFTS
3.2.1. Vertical Lifts of Vectors
Vertical lift operator
d
ver : TM xpyTM —TTM: (v,u) — o (v +tu)],_q

is a mapping which takes an element of the Whitney product

TMXpmTM={(v,u) e TM xTM:7p(v) =7p (0)}

(3.26)

(3.27)

(3.28)

(3.29)

to the iterated tangent bundle TT'M [3,52]. Image space of ver consists of vertical vectors,

that is the vectors in ker T'T oy = VI M. In local coordinates, if v = (:v“, vb) and u = (.’L‘a, ub)
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then

ver ((ma,vb) , <:ca,ud>) = (m“,vb;O,ud> . (3.30)

If the first entry v of the Whitney product (v, u) is fixed then
very : TM — VT M : u — verlift (v, u) (3.31)

is a vertical vector field. Vertical lift XV of a vector field X on M is a vector field on

T M, that is an element of X (T'M) defined by
XY (v) =ver(v,X (x)). (3.32)
If X = X*0/0x®, then vertical lift of X is XV = X%9/0v®.
The Jacobi-Lie bracket of two vertical lifts is zero, that is,
(X, V"] =0 (3.33)

hence, the space of vertical lifts is a Lie subalgebra of the space of vector fields on T M. The

Lie bracket of a vertical lift XV and a complete lift Y is a vertical lift
(XY, Y =[X,Y]". (3.34)
If {X1, Xo,.., X} is a local basis for M, then
{X7, X5, .., X0, X1, X5, .., X}, } (3.35)

is a local basis for TT'M [71].
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3.2.2. Decompositions of TT'’M and T*T M

Consider the pull-back bundle (7%, (TM),pr;,TM) in Eq.(2.30), where the total
space T (TM) = TM xp TM is the Whitney product in Eq.(2.29). The short exact

sequence in Eq.(2.51) for the tangent bundle 7 : TM — M takes the particular form

Tm

{
0 - VIM *TTM

P (TM) = 0, (3.36)

where S;  (§) = (T (§) , TTMm (§)) . For every v € TM, ver, is an isomorphism of 7;; M
with the vertical subspace V, T, M of T,,T, M, where 7 (v) = x. Thus, ver establishes an
isomorphism between T'M x py TM = 7 ( (T'M) and VT M. If a connection I is introduced
on the bundle 7oq : TM — M, the iterated tangent bundle TT'’M is decomposed into the

direct sum of two copies of 7%, (T'M), that is

TTM

12

VIM @ HTM ~ 7y (TM) & 7y (TM)

1

Ty (TM&TM), (3.37)

since HITM ~ T' (13, (TM)) and ver (7%, (T'’M)) = VI M. The identification of the pull
back bundle 7% (T'’M @ T'M) and the iterated bundle 7'M is summarized in the diagram

TTM — L TMeTM
lTTM lT M (3.38)
T
TM M M

where the bundle morphism =r is explicitly given by

Er (§) = (prgover ' o (I —=T) (&), pryoS,, (£))- (3.39)
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For the holonomic lift operator I'y = dz® @ (/82 + (avb/ama) (8/81}1’)) in Eq.(2.69), we

have

R R, W O\ 8, 0
‘—'FJ 'g 8.%'& +£ 8'[}0‘ - <<£ awbg ) axa’£ a$a> N (3'40)

For an alternative exposition of this decomposition we refer to [72] and the references therein.

Assume that a connection I' on 70 : TM — M is defined. Then, we obtain an
invariant way of defining the dual space V*T'M of the vertical bundle VI'M. The linear
algebraic dual of the map ver, : T, M — V,,TM is ver) : V;TM — T;M. We define the

mapping

ver* : V'TM — TMxT*M

A — (TrpmA = v, ver, A), (3.41)

which may be considered as the dual of ver. The image space T M X p(T*M of ver* is the
Whitney product which is the total space of the pull-back bundle (7%, (7*M), pry, TM) in
Eq.(2.32). ver* identifies V*TM with TMx pT*M = 73 (T*M). After the identification
T (T*M) ~ (75, (TM))* = H*T*M in Eq.(2.65) the dual of the sequence in Eq.(3.36)
takes the form

TM S
0 - (TM — TTM — - Ty (T*M) — 0, (3.42)

where S} is the dual of S;,, and s is a surjection. Thus, the cotangent bundle T*T'M is

decomposed as

2

T*TM ~ VT*M& H'T*M ~ 'y (T*M) & 7, (T* M)

12

T (T*M & T* M) (3.43)
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and we have the commutative diagram

T*T M - T*M @ T* M
|7rm [ ma (3.44)
™M
M - M
where Or is a bundle morphism given explicitly by
Or (A) = (pryover*o (I —T) (), pry O/L;j\l/l oT'(N)), (3.45)

with /LT_L : T*TM — TM x p T* M being the inverse of the mapping j, , obtained from
the diagram in Eq.(2.54) by replacing & with M. In particular, for the case I'y = dz® ®
(0/0z + (9v°/0z®) (8/0v°)) , we have

b
Or, : ()\adma + S\dea) — <<)\a + 2;%) dz?, Xad:n“) . (3.46)

3.2.3. Vertical Lifts of Covectors

Consider the cotangent lift T*7mpny : T*M — T*T*M of the projection
Tm 2 T*M — M and recall the musical isomorphism QﬁT M TTTPM — TT* M asso-
ciated with the symplectic two-form 27«4 on the cotangent bundle 7% M. We define Euler

vector field

Xp:T"M = TT*M 2 — Qb 0 T mpq (2), (3.47)
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which is given diagrammatically

T*T* M M TT* M
T 7 pm TXE (3.48)
T* M.

Xp is a vertical vector field, that is, Im (Xg) C ker (T'ma¢) . Indeed,

(z, T pq 0 X (2)) = <T*7TM (2) . g0 T pg (z)>

= Qpr-pm (T*T"M (Z) T T m (Z)) =0, (349)

Vz € T* M, where we use the skew-symmetry property of the symplectic form Q7. 4. Euler

vector field is the unique field satisfying the following equalities
1, Qo m = 01y, L Qrom = —Qprepm and Ly, 07 = =07+ 0, (3.50)

where iy, and Ly, are interior product and Lie derivative operators [4]. In coordinates

z = (2% yp), Euler vector field is computed as Xg = —y,0/0y,. Its divergence is
div,,, Xp= — dim (M),
where piq is the symplectic volume on 7% M and dim (M) is the dimension of M.
Let a be a one-form on M. The vertical lift
o' =Xgoaompy : T"M — TT*M (3.51)

of the one-from « is a vertical vector field on T* M. In coordinates, the vertical lift of the

one-form o = a,dz? is a¥ = —a,0/0yq. If {X1, X2, .., Xin} is a basis for the space of vector
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fields on M and {a1, a9, .., a, } is a basis for the space of one-forms then

{X7, X575, ., X af, a8, .., a0} (3.52)

forms a basis for the vector fields on T* M. The Jacobi-Lie bracket

(X, a"] = (Lxa)’ (3.53)

of a complete cotangent lift and a vertical lift is a vertical lift [69]. The following lemma

establishes the link between the vertical lifts of one-forms and vertical representatives of

complete cotangent lifts of vector fields.

Lemma 3.4. Let a(x) = y,(x)dz® be a one-form, then

(Lx (yadx®))’ = VX" (2% y,) . (3.54)

For any function f € F(M), (df)" : T*M — TT*M is a Hamiltonian vector field
with respect to the canonical symplectic two-form Q7.4 for the Hamiltonian function f =

fomm € F(IT*M), we actually have
(dF(M))’ ~VT*MN Xpam (T*M). (3.55)
The Jacobi-Lie bracket of two vector fields oV and 8Y obtained from the one-forms « and

B is zero, therefore we have the commutative subalgebra of the algebra Xpq, (T*M) of all

Hamiltonian vector fields.
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3.2.4. Decompositions of TT*M and T*T* M

Consider the pull-back bundle 7% (T*M) = T* Mx \T* M in Eq.(2.35). The follow-

ing commutative diagram defines a mapping x from 7%, (I*M) to VI*M,

pr
iy (T*M) = T* Mx T M : T*M
pry l X\ l — X (3.56)
TT*M
T* M VT M

where X is the Euler vector field in Eq.(3.47). Using y, we define
Xy : T"M = VI*M:w — x(z,w) (3.57)
by fixing an element z € T* M. In coordinates, for z = (z%,y) and w = (2%, wy) ,
X (2, W) = x (2% yp, wp) = (2, yp, 0, wp) (3.58)
The inverse of the mapping x is
L TT M = T Mx T M € = (770 (€) =773 0 Do pg (6) ) (3.59)
x identifies the Whitney product T M x ,(T* M with the space of vertical vectors V1I™* M.
The exact sequence in Eq.(2.51), with the choice & = T* M, takes the form

M

0 — VM ——  TT*M i (TM) — 0 (3.60)

where Sy, (§) = (T7-m (§) , T aq (€)). With a connection I' : 7} (T'M) — TT* M, we have
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the decomposition of TT* M as

2

TT*M =~ VI*M& HT*M ~ 7' (T*M) & 7'y (TM)

12

i (T*M & TM), (3.61)

where we used the identification VI*M ~ 73 (T*M) and HT*M ~ w3, (TM). The

following diagram

TT*M T"M®TM
lTT*M lTFM (3.62)
"M — M

defines the bundle morphism

Tr (€) = (praox "o (I =T) (§),praoSx,, (€)) .

In particular, for I'y = dz® ® (9/0z + (9yp/0x*) 0/Oyp), we have

0 0 0Ya 0
TFJ <§a oo + gaaya> - <<£b - ga 83:’)) dwb,§GW> . (363)

Using the connection I' : 7} (T'M) — T'T* M, one defines the dual bundle V*T*M C
T*T*M and hence the dual x% : V*T*M — TM of the mapping x,. First we define the

map

X VM — i (TM) =T M xpf TM : X = (mp-pmq (X)) = 2, X5 (V) (3.64)

to identify the bundle of vertical one-forms V*T*M and the pull-back bundle 7}, (T'M) .

As discussed in the previous section, the decomposition of T7* M simultaneously decompose
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the cotangent bundle T*T* M. Formally,

TT*M =~ V"M@ H'T*M ~ 1y (TM) & ' (T* M)

12

Ty (TM & T M), (3.65)

where we used the identification induced by x* at the first term and the one to one mapping
Py, Tag (T*M) — H*T*M in Eq.(2.54) for the second term at the right hand side. We

have the following commutative diagram

Ar
T*T* M TMDT*M
lWT*M lw
T
T* M M M

where the bundle morphism is

Ar (N) = (praox* o (I =T) (A),pryopiz,, o T' (V)

and p;l : H*T*M — %, (T*M) is the inverse of . . For I'y, we have the following

decomposition

. a a ai a% b
Ar, : Agdz® + Ndy, — ()\ pry <)\b + A 8xb> dx > . (3.66)
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4. THEORY OF SYMMETRY AND REDUCTION

4.1. LIE GROUPS AND LIE ALGEBRAS

A Lie group G is a C'*° manifold having a group structure compatible with its manifold

structure, in the sense that, the group multiplication and the inversion

¢:GxG—G:(9g,h) »gh and 1:G —G:g—g " (4.1)

are C*° maps [73]. The induced maps

Ly:G—G:h—c(g,h) and Rp:G—G:9—¢(g,h) (4.2)

from the group multiplication are called left and right translation maps, respectively.

A differentiable map ¢ between two Lie groups, say (G1,s1) and (G2,¢2), is called a Lie

group homomorphism, if it respects the group operations, that is

posi(gh)=s2(p(9),¢(h), Vg,heG
If ¢ is a bijection, then it is called a Lie group isomorphism. A (linear) representation
of a Lie group G is a Lie group homomorphism G — GI(V') for some representation space
V. Here GI(V') denotes the group of all invertible linear mappings on the vector space V' [41].
A Lie algebra g is a vector space with a skew-symmetric R—bilinear operation

[, J:igxg—uy, (4.3)

called the Lie bracket satisfying the Jacobi identity

[0, [0, ¢I] + [0, [C91) + [C, [0, m]] = 0, VI,m,C € g. (4.4)
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A linear operator ¢ from a Lie algebra (gi,[ , ];) to a Lie algebra (go,[ , |,) is called a

Lie algebra homomorphism if

@ ([¢nl) =) ey, YE¢m € a1 (4.5)

A Lie algebra homomorphism is called a Lie algebra isomorphism if it is bijective.

In finite dimensions, a Lie algebra g with basis {771, e nm} gives rise to the structure

constants c}ij (1,7,k = 1,...,dim g) obtained through the Lie bracket of the basis elements

', ) = P, (4.6)

We have the following properties of the structure constants

cf{j = —c;: and czjc’,ﬁfb + i+ c,ilcf,i =0 (4.7)
as a manifestation of the skew-symmetry property of [ , ] and the Jacobi identity.

Example 1 The space of all vector fields X (M) on a manifold M with the Jacobi-Lie
bracket is a Lie algebra. If M is a symplectic manifold, the space of Hamiltonian vector
fields Xpqm (M) is a Lie algebra since

[(Xn, Xf] = = X¢n,f3-

Similarly, the space of all divergence free vector fields X4, (M) on an orientable manifold

M has the structure of a Lie algebra.

We call a vector field X : G — T'G on a Lie group G to be left invariant, if

TyL,- X(h) = X (Lyh), Vg,h€G, (4.8)

where T} L, is the tangent mapping of the left translation L, at h € G. The condition in
Eq.(4.8) can also be written as (Ly), X = X, Vg € G. X (G) will denote the set of all
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left-invariant vector fields on G. Since, the push forward operation is natural, that means,

for X,Y € X1, (G)

Y] =[X,Y], VgeG, (4.9)

Xr(G) is a Lie algebra. There is a one to one correspondence between the space of left

invariant vector fields and the tangent space T.G at the identity element e € G given by

T.G— X0(G) :n— X,, X, (g9) =TeLy(n). (4.10)

Identification of Xy, (G)) and TG enables us to define a bracket on TG,

(€] == [Xe Xy ] (e), (4.11)

for ¢,n € T.G and X X, € X(G). The Lie algebra of a Lie group is 7.G with the
bracket defined in Eq. (4.11), and is denoted as Lie (G).

A right invariant vector field X on G satisfies (Ry), X = X, Vg € G. The space of
right invariant vector fields X (G) has the structure of a Lie algebra. The tangent mapping

Tv : TG — TG of the inversion map ¢ : g — ¢~

is a Lie algebra isomorphism between
X1 (G) and Xg (G) [42]. We may define a Lie algebra structure on 7.G induced from Xy (G)

as well. At the identity, the tangent mapping

Ter: T.G - T.G:n— —n (4.12)

manifests that, the Lie algebra structure on T.G induced from the left invariant vector fields
and the Lie algebra structure on 7.G induced from the right invariant vector fields are anti-
isomorphic. In this thesis, Lie algebra of a Lie group is taken as the vector space T.G with

the Lie bracket structure obtained from the left invariant vector fields.

Let X, be a left invariant vector field as defined in Eq.(4.10). There is a unique integral

curve 7, : R — G of X, passing through e € G. The exponential map takes an element 7
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of a Lie algebra to an element of the underlying Lie group G and is given by

exp:g—Gin—,(1). (4.13)

4.1.1. Actions of Lie Groups on Manifolds

The left action of a Lie group G on a manifold M is a smooth mapping
P:GxM—->M (4.14)
such that ®(e,x) = x,and ® (g, ®(h,x)) = ®(gh,x), Vg, h € G, Vx € M.
We call an action ® : M x G — M a right action if
d(x,e) =x and @ (P(h,x),9) = P(x,hg), (4.15)
Vg,h € G and Vx € M. In this section, we mean by an action to be a left action and denote
it by ® (¢,x) = ¢ - x. By fixing the first and second arguments of ®, we define the following
mappings
Py M—->M:x—®(g,x) and P,:G—>M:g— O(g,x). (4.16)
An action is called a transitive action if for every x;1,xs € M there is a ¢ € G such that
g-x1 = Xg. If &, = idp¢ implies g = e; that is, g — ®, is one-to-one, then ® is said to
be a faithful (or effective) action. An action is free if it has no fixed points, that is,
P, (x) = x implies g = e, or alternatively, if for each x € M, ®, is one-to-one.

Under the action of G, orbit of a point x € M is

Orb(x) = {®4(x): g € G} C M. (4.17)
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If the action is free and proper so that inverse images of compact sets are compact under the
action @, then the set of orbits M /G = {Orb(x) : x € M} has a manifold structure [3]. We
define a mapping 7 : M — M /G which takes an element of M to its orbit. The quadruple
(M, 7, M/G,G) is a principle fiber bundle, where M is the total space, M/G is the
base space, G is the structure group and 7 is the canonical projection [22,42].
The isotropy (or stabilizer) group
Go={9€eG:P,(x)=x} CG (4.18)
of ® at x € M is a Lie subgroup of G. The mapping
d,: G/Gy — Orb(x) : gGp — B, (9Gy) = g-X (4.19)
is a bijection between the coset space G/G, and Orb(x), that means G/G5 ~ Orb(x) [55].
The inner automorphism

I:GxG—G:(g,h)— g thg (4.20)

is an action of G on itself. The mapping I, : G — G : h — I (g, h) is a Lie group isomorphism

on (G. The adjoint action

Ad:Gxg—g:(9.n) — Te (Rg-10Lg) (n), (4.21)

is an action of a Lie group G on its Lie algebra g. The induced mapping Ad, : g — g: 1 —

Ad (g,n) is a Lie algebra homomorphism, that is,

Ady [¢,n] = [Ady (C) , Adg ()], V(,;n€g and Vged. (4.22)

Observe that Ad, is the differential of I, at the identity, that is Ad, := T.1,. Adjoint action
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satisfies the following identities
Ad, = Idy, Adyo Ady = Ady,, (Ady)™" = Ady-1, Vg,h€G. (4.23)

Let g* be a curve in G passing through the identity element at ¢ = 0 in the direction 1 € g,
that means ¢° = e and dg’/ dt’ 1o = n- From the differentiation of the adjoint action, we

define

d
ady( = = AdgeC,_. (4.24)

Observe that ad is the action of g onto itself and it is equal to the Lie algebra bracket on

Lie (G), that is
ady = [, (4.25)
The coadjoint action is the mapping
Ad*: G x g* — g*: (g,0) — (Adg—1)" a, (4.26)

where (Adg—l)* is the linear algebraic dual of Ad,-: [11]. The coadjoint representation ad*

of g on its dual g* is defined by means of the linear algebraic dual of ad,, that is

(adya, ¢) = (@, adyC) = (a,[n,¢]), VY¢ne€g and Vae g (4.27)

Let ® be an action of a group G on a manifold M. The left tangent lift of ® to
TM is a left action defined by

TP :GXxTM—=TM:(9,v) = T,®4(v), veTM (4.28)
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The left cotangent lift of ¢ to 7" M is a left action defined by
T2 :GxT"M = T"M: (9,2) > Ty Py (2), z€T;M. (4.29)

T*® -1 is the cotangent lift of the diffeomorphism ®,-1.

4.1.2. Infinitesimal Generators

Let ® : G x M — M be an action of a Lie group G to a manifold M. For every

element 7 of the Lie algebra g = T.G we construct a vector field

N (%) = % P (exp (tn) ,x)|,—0 (4.30)

on M, called infinitesimal generator (or fundamental vector field) corresponding to
1n. Mg is the vector field generating the flow ®eyp 4y : M — M hence, tangent to the orbits

in M/G, or in other words, the tangent space of an orbit Orb(x) at x € Orb(x) is
T3 Orb(x) = {np (X) : € g} . (4.31)

NMa 1s a vertical vector field with respect to the smooth bundle structure (M, 7, M/G)
[41,42].

The infinitesimal action of a Lie algebra on M is defined by
gXM—TM:(n,x)— np(x). (4.32)
The mapping g — X (M) : 7 — 1, is an anti-homomorphism, that is,
[Catspdl g = = 167l s (4.33)

where [, ];; is the Jacobi Lie bracket of vector fields and the bracket at the right hand side

is the Lie algebra bracket on g [11].
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The action ® is said to be a canonical action if G acts on a symplectic manifold
(M, Q) by canonical diffeomorphisms, that is, ®; Q¢ = Qa4, Vg € G. The action of a Lie

group G on a Poisson manifold (M, { , }) is called canonical if

{k,f}o®y={ko®, fod,}, (4.34)

for all f,k € F(M) and g € G.

4.1.3. Gauge Transformations

Let F(Q) be the additive group of functions on Q and F(Q) acts on 7*Q by momentum
translations

®:F(Q)xT*Q— (¢, (¢"pi)) — (' pi — o) (4.35)

This action is the gauge invariance of canonical Hamiltonian dynamics. The infinitesimal

generator

99 0
dq" Op;

Xy (a,p) = (4.36)
of the action ® is a Hamiltonian vector field on T*Q for the Hamiltonian function ¢ =
pomg € F(T*Q). The Jacobi-Lie bracket of two such generators is zero, that means, they

constitute a commutative Lie algebra.
F (Q) acts on TT*Q by the tangent lift, in coordinates,

¢ : F(Q)xTT*Q—TT*Q

i o\ (i 0P i 09 .
(0, (¢, pis ' i) <q,pz g 4 qaqjaqiﬂLpz), (4.37)
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where the infinitesimal generator

. 960 . 9 D

is the complete tangent lift of Xy. X7 is a Hamiltonian vector field with respect to the

symplectic structure

Qrr-g = dipp-g = dd* A dp; + dg* A dp; (4.39)
for the Hamiltonian function H = ¢70¢/0¢/ € F (TT*Q), that is
ix:Qrr-g = dH.
Cartan’s formula £ Xe = di xg T+ X;d gives
(4.40)

QX;QTT*Q = 0,

which means that F (Q) is also the gauge group of the Hamiltonian dynamics on T7*Q with

respect to the symplectic two-form Qp7«g.

The cotangent lift of the action ® in Eq.(4.35) is

™ 1 F(Q) x T*T*Q — T*T*Q

4 , . o6 - 0¢ .
¢ iy 1, IT° o+ — I+ T ——— 1T ), 4.41
(0 () = (ot G W)
whose infinitesimal generator
e _ 00 0 ng o0 9 (4.42)

o " agap | ogiog oL,

is a Hamiltonian vector field on T*T*Q for the Hamiltonian function H = —I1!d¢/dq" with
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respect to the canonical symplectic two-form
Qp-7-g = dq' A dII; 4 dp; A dIT* (4.43)

on T*T*Q. Hence, we find that F (Q) is also a gauge group of the canonical Hamiltonian

dynamics on T*T*Q.

4.1.4. Momentum Maps

Let (P,{, }) be a Poisson manifold and ® : G x P — P be a canonical action of a Lie
group GG on P. In this case, infinitesimal generators are locally Hamiltonian. We will assume

that they are globally Hamiltonian, that is, there exists a globally defined function J (1) on
P such that

15 = X()- (4.44)

Eq.(4.44) implies the existence of a mapping J : g — F (P) and determines J up to an
addition of a Casimir function and, for symplectic and connected manifolds, up to addition

of a constant [11,63].

Proposition 4.1. Let f be a G invariant function on the Poisson manifold P, then the

function J (n) is a constant of the motion for the dynamics generated by f.

Indeed,

U T @) = d (@) Xy () = df () 5 @ (expin, )] g

d d
— LT (@(exptn2) ) = L f (1) =0, (1.45)

Vz € P [19,32]. The map J: P — g* defined by

(J(2),m) =J () (2) (4.46)
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Vn € g and Vz € P is called a momentum mapping of the action .
Example 2 The dual of any Lie algebra homomorphism is a momentum map.

Theorem 4.2. (Noether’s Theorem) Let J be a momentum mapping for the canoni-
cal action ® of G on (M,Qnq). Then J is a constant of the motion for any G invariant

Hamiltonian function f, that is

Jog, =17 (4.47)

where ¢, is the flow of f.

From {f,J (n)} (x) = 0 we compute

d

0 = ()60 Xy (x) = AT () () &4 Ry
= )06 (0= o 1700 (x), sy (4.48)

Vx € M, n € g, and the result follows [11,19]. We say that a momentum mapping J of an

action ® is an equivariant momentum mapping, if

Jod,=AdioJ, Vgea. (4.49)

A canonical action is called a Hamiltonian action if J is equivariant.

Example 3 Let a Lie algebra acts on a manifold M with g — X (M) : £ — £, The left
cotangent lift of this action is g — X (M) : & — €%y, where £ is the complete cotangent

lift of £ 4. This action is a Hamiltonian action with the momentum mapping

<J <Z> 7§> = <Z7£M (X)> =J (5) (Z) )

for x € M and z € Ty M.
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4.2. SYMPLECTIC AND POISSON REDUCTION

Let @ be a canonical action of a Lie group G on a symplectic manifold (M, Q2x¢) and
J : M — g* be an equivariant momentum map for this action. We denote G, the isotropy

group of « € g* under the coadjoint action Ad* of G, that is

Go={9eG:Ad, .a=a}. (4.50)

G, is a Lie group, being a closed subgroup of G [73]. Let a be a regular value of J, that is,
J71 () is a submanifold of M. If g € G, and x € J~! (a) then from the equivariance we

have
Jod,(x) = AdZJ (x) =J (%) (4.51)

which says g -z € J7! (a). Thus J~! (o) C M is an invariant set for dynamics. Hence we

restrict the action of Lie group G, on J=! (), that is
Gox I Ha)—= I (a). (4.52)
Assume this action be free and proper. Then, J~!(a)/G, = P, is a manifold, which

is called the reduced phase space, with projection 7, : J7!(a) — J7!(a)/G,. Let

i: J7 (@) — M be a natural injection. We have the symplectic reduction theorem [14,15,19].

Theorem 4.3. There is a unique symplectic structure 2, on P, satisfying

Q= 7 Q. (4.53)

Let [x] € Py and viy], ujq € 1,1 Pa- The value of symplectic form is

Qo (X)) (Vi) upe)) = Q(X)|3-1(0) (Var 1) (4.54)
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where T,mq (Vo) = Vg, Tema (0z) = up,) and x € 7! ([x]). Given a G—invariant Hamil-
tonian function h, the reduced Hamiltonian function is h, = h o m,. Corresponding Hamil-
tonian vector fields X, and X, are m, related and the trajectories of X} project into those

of thy .
More generally, let us consider free, proper and canonical action of a Lie group G on a
Poisson manifold (P,{ , }p). We define a Poisson structure on the quotient manifold P/G

by requiring that the projection 7 : P — P/G to be a Poisson map. For the G invariant

functions f,h on P, one has that

{fomhom}pg={fh}por. (4.55)

This procedure is called Poisson reduction [74]. It is important to remark that, a canonical

Lie group action on a Poisson manifold does not necessarily preserve its symplectic leaves [75].

4.2.1. Coadjoint Orbits

We will focus on the particular case when a Lie group G acts on its cotangent bundle

T*G by the cotangent lifts of left and right translations

GxT*G—T*G and T*GxG — T*G. (4.56)

Momentum mappings of these actions are

Jp:T;G—g: Vg —=T.RTy, and Jr:T,G—g:T;— T.LTy, (4.57)

respectively. We are particularly interested in the left action. The inverse image of a regular

value « is

I () ={Yy €eT;G: T.R;Yy = a,Vg € G} (4.58)
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and can be identified with the image of a right invariant one-form Y,, on G, given by Y, (¢9) =
T,, that means, T, (g9) = T4R,-. . The orbit Orb (o) and isotropy subgroup G, of the

coadjoint action are given by

Orb (o) = {L;Ta (9): g€ G}

Go = {9geG: LT, =7,}. (4.59)

We know that Orb (a) ~ G/G, and deduce the fact that,

Go x I (@) = I (@) i (g, Yo (R) — Yo (gh), (4.60)

is a well defined left action of G, on J; ! () [19].

We identify the preimage J Zl (o) with G by the mapping Y, — g~1, therefore we have

the reduced phase space T*G,, as the coadjoint orbit of «, that is

Orb () ~ J7* (a) /Ga. (4.61)

Coadjoint orbits have unique symplectic structures, literarily called Krillov-Kostant-Souriau

two-form, given explicitly by

Qa (’7) (gg* ('7) 7779* (/7)) = - (7) [57 77]> 9 (462)

for {,n € g and &;. () = adiy,ng- (v) = adyy € T, Orb () are obtained from Eq.(4.31)
76, 77).
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4.2.2. Lie-Poisson Structure

The linear algebraic dual g* of a Lie algebra g is a Poisson manifold with the Lie-

Poisson bracket

{F.G}1 () =F <a, [fsﬁ: (;ﬂ > : (4.63)
g

where [, | is the Lie algebra bracket and, §F/d € g™ ~ g is the Fréchet derivative of F'

with respect to o € g defined by

<ﬂ7<(55];>:hmF(a+eﬁ)—F(a)7 (4.64)

e—0 €

Va, 5 € g. Observe that we have two Poisson structures, one is with plus sign and the other
is with minus sign. Hamiltonian vector field Xy for a given Hamiltonian function H € F (g*)

is obtained from

Xy (F)={F,H}=7F <a, [‘;Z ?;IL> =4 <ad’gHa, (;F> . (4.65)

Sa (87

The equations of motion, called the Lie-Poisson equations, are

& = +adya. (4.66)
ba

There are several alternative ways to define the Lie-Poisson structure on g*. We may

define the Lie-Poisson bracket on g* directly from Eq.(4.62) as

{F.G} (@) = { Flona)» Glomb(e oy () (4.67)
where F|q,,) is the restriction of the function on g* to the orbit Orb (), and { , }q,44)
is the nondegenerate Poisson structure on Orb («) induced from the symplectic structure in
Eq.(4.62) [77]. From Eq.(4.67) we arrive at the Lie-Poisson structure with minus sign. For

the Lie-Poisson bracket with plus sign one needs to start with right action instead of left
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action.

If g is a Lie algebra of a Lie group G, then the dual space g* is the space of covectors
at the identity e € G, that is g* = TG. Let F' and G be two functions on g* and F.G -
T*G — R be their right invariant extensions, that is, for every g € G, we require that the

following diagram commutes

;G g
) (4.68)
lF JF
R

where T} R, is the cotangent lift of right translation. The Lie-Poisson structure with plus
sign is the restriction of the canonical Poisson bracket { , };., on T*G to the identity. Left

invariant extension gives the Lie-Poisson structure with minus sign.

Example: The configuration space of the rigid body is the special orthogonal group
SO (3,R) whose associated Lie algebra is the algebra of skew-symmetric matrices so (3, R)
in which the matrix commutator is the Lie algebra bracket. so (3,R) can be identified with
R3 where the Lie algebra bracket is the cross product of vectors. The Lie-Poisson structure

with minus sign on (R?’)* ~ R3 is

{F,HY(II) = —II - (VF x VH), (4.69)

where VF and VH are the gradients of functions F,G € F (R3). In this case, Hamilton’s

equations for a Hamiltonian function H € F (R3) are I = II x VH. In particular, for

= W ML) (1)

4.
26 21 213’ (4.70)

where I1,Io and I3 are constants that refer to the moments of inertia of rigid body, and

I = (IIy, I, II3) € R3, the equations of motion

I, — I . I3 —1T .
= 2SI, Iy = 2105, 15 =

I, 1T 4.71
I3 L3 LI, 17 (4.71)



are the Euler’s equations for rigid body [11].

69
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5. GROUP OF CANONICAL DIFFEOMORPHISMS AND PLASMA DY-
NAMICS

5.1. MAXWELL-VLASOV AND POISSON-VLASOV EQUATIONS

To describe the motion of the plasma, one may start to write down the whole micro-
scopic data, Newton formulas and interactions for whole particles, which is very difficult.
The kinetic theory of plasma uses statistical and probabilistic concepts to handle practical
problems of microscopic theory. The basic element in kinetic description of plasma is the
plasma density (distribution) function f = f(q,p) which describes particle distribution in
momentum phase space. We consider a plasma consisting only of one species of particles

with charge e and mass m.

It is known that a charged particle with mass m and charge e is subjected to the

Lorentz force law
p:—e(E+—><B), (5.1)

where E is the electrical field, B is the magnetic field and p is the time derivative of the
momenta. Electromagnetic field is described by the Maxwell’s equations
10B 10E 1

E = -2 B=-2"4-J
VX c Ot VX c@t+c

V-E = p, V-B =0, (5.2)
where p is the charge density, J is the current density vector and c is the speed of the light.
We let @ C R? be the region in which plasma particles move and f = f (q, p) be the

plasma density at z = (q,p) € 7*Q. In this case, charge and plasma densities are connected

each other with

p= —6/f(q,p) d°p. (5.3)
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The number N of particles in a volume of phase space T*Q is given by

N=[ f(qp)d=z (5.4)
™9
and the conservation of the number of particles requires that the total time derivative of N

must vanish, that is,

N
AN _ [ Of s, / fadS =0, (5.5)
dt T+ Q ot T+ Q)

where z = (q, p) is the phase velocity of the plasma [26]. We apply the divergence theorem

to the second integral on the right hand side and obtain

/T*Q (%: + div (fi)) d*z = 0. (5.6)

Thus, we have the equation of continuity

0
£+sz~2+fdiv(i) =0
for the plasma. Liouville theorem states that the phase space volumes are preserved under
the motion of plasma, so that div (z) = 0 [25]. Hence, substituting the Lorentz force law in
the equation of continuity, we obtain the Vlasov equation
of | p P
TP ov,f- (E L B)-v =0 5.7
The coupled system of equations in Eqs.(5.2) and (5.7) are called the Maxwell-Vlasov

equations.
Let us consider an unmagnetized plasma B = 0 and the absence of the current J = 0.

Then the electrical field E becomes the gradient of a potential ¢, that is E = V¢, (q), in

which ¢ is determined through the Poisson equation

Vig; = —e/f(q7 p)d’p (5.8)
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and the Vlasov equation in Eq.(5.7) reduces to

of

E—I—f Vof —eVgdy-Vpf =0. (5.9)
The system of equations in Eqs.(5.8) and (5.9) are called the Poisson-Vlasov equations.
One may alternatively regard the Poisson-Vlasov equations as an approximation of the

Maxwell-Vlasov equations in the nonrelativistic zero-magnetic field limit, that is the limit

¢ — oo [39].

We consider the cotangent bundle 7*Q of @ C R3 position space in which the plasma
particles move. The momentum phase space T*Q is a 6—dimensional symplectic manifold
with symplectic structure Qr-g = dg* A dp;. The induced Poisson bracket { , }T*Q on T%Q

from the symplectic structure Qp-g is given, in Darboux’s coordinates, as

_of 8h 8f 8h
If we take the Hamiltonian function
p-p
h = o + eqbf( ), (5.11)

for the motion of individual plasma particles, then the Vlasov equation can be written in

form

of _

at {f> h}T* . (512)

Thus, the plasma density f evolves by the canonical transformations [32]. This is a clue
for us to arrive the point that, the appropriate framework for the configuration space of the

plasma is the group of canonical diffeomorphism Dif fean (TQ) on T*Q [18,28].

On the contrary, the momentum map realization of the Poisson equation gives that
the configuration space for the Poisson-Vlasov dynamics must be the semi-direct product
structure F (Q) ©Dif fean (IQ) with the action of the additive group F (Q) of functions

given by fiber translation on 7*Q and by composition on right with the canonical transfor-
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mations. In this thesis, we take the group of canonical transformations Dif feqn (T*Q) as
our configuration space for collisionless plasma and adapt a constraint variational derivative

instead of dealing with the complications of the semi-direct product structure.

5.2. GROUP OF DIFFEOMORPHISMS

Let M be a smooth volume manifold (possibly with boundary). The group Dif f (M)

of diffeomorphisms on M is an infinite dimensional Lie group with multiplication

Dif f (M) x Diff (M) — Dif f (M) : (g, ) = ot (5.13)

and inversion ¢ — ¢ ~!. The unit element of the group is the identity automorphism ids. As
a manifold, Dif f (M) is locally diffeomorphic to an co—dimensional vector space, which can
be a Banach, Hilbert or Fréchet space, and called respectively Banach Lie group, Hilbert Lie
group or Fréchet Lie Group [78]. We will not discuss the details of the functional analytical

issues and refer [79-82].

The elements of the tangent space T,Dif f (M) at ¢ € Dif f (M) are material ve-
locity fields

V,: M —TM, (5.14)

satisfying 7p;spam) © Vi, = ¢. In particular, the tangent space at the identity TiqDif f (M)

is the space of smooth vector fields on M, that is,

TaDif f (M) = X (M). (5.15)

A vector field on Diff (M) is amap V : Dif f (M) — TDiff (M), whose value at ¢ €
Dif f (M) is the material velocity field V,, € T,Diff(M). V., can be represented as a
composition of a diffeomorphism ¢ and a vector field X, that is V,, = X o ¢. This is the
manifestation of the parallelizability of the tangent group TDif f (M) ~ Dif f (M) ®X (M)
[39].



74

We assume that a continuum rests in M and Dif f (M) acts on left by evaluation on

the space M
Diff ( M) x M — M : (p,x) — ¢ (x) (5.16)

to produce the motion of particles. The right action of Dif f (M) commutes with the particle
motion and constitute an infinite dimensional symmetry group of the kinematical description.

This is the particle relabelling symmetry [17].

The first attempt to use the diffeomorphism group as the configuration space of a
continuum is the one introduced in [12], which concerns the geometrical background for
the dynamics of the ideal fluid. Since that time, ideal fluid has been worked by several
authors such as [17,83,84,86,87]. In this section, we apply the pure geometrical constructions
described in the previous sections to the case of canonical diffeomorphisms group and present
the geometrization of Hamiltonian structure of the Poisson-Vlasov equations in Eqgs.(5.8) and

(5.9).

5.2.1. Lie Algebra of Diff (M)

The inner automorphism on the group Dif f (M) is

Iy (¢') =v o' oy, (5.17)

and its differentiation at ¢ = 0 along the direction X gives adjoint operator, that is

d d
Ady (X) = Tely (X) = Tely (dt Sot\to) R

d _ _
= @wogotozp oo =TvoXoy ' =y, X (5.18)
Thus, the adjoint action of Dif f(M) on its Lie algebra X (M) is the push-forward operation

Ady (X) = ¥, X. (5.19)
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The tangent space of Dif f (M) at the identity ida consists of vector fields on M. The
Lie algebra bracket on TigDiff (M) can be calculated as the differential of the adjoint
representation at the identity. We differentiate Ad,: (X) with respect to ¢ at ¢t = 0 and in

the direction of Y to obtain
d
Y, X1 pifromy = ady X = 7 VX, =Y, X];, = —LyX, (5.20)
where [, |;; is the standard Jacobi-Lie bracket of vector fields and Ly X is the Lie derivative
of X with respect to Y. Thus, the Lie algebra structure on Lie (Diff (M)) is minus the

Jacobi-Lie bracket.

The dual space Lie* (Dif f(M)) of Lie (Dif f(M)) is the space of one-forms densities

on M, that is,
Lie* (Dif f(M)) = X* (M) ~ AV (M) ® Den (M) . (5.21)
The pairing between Lie (Dif f(M)) and Lie* (Dif f(M)) is
o) = [ (060, X (0. (5.22)
where X € X (M), a € A (M) and p is a volume form on M. The pairing inside the

integral is the natural pairing of finite dimensional spaces T, M and T M [17,30,83]. The

dual ad* of the adjoint action ad is defined by

(ady (@@ p),Y) = ((a®@p),adxY) = — /M {a(x), [X, Y] (%)) p (%), (5.23)

and after applying integration by parts, we find the explicit expression

ady (a®@p) =Lx (@@ p) = (Lxa+ (divg, X) a) ® 4, (5.24)

of the coadjoint action ad*, where div, X is the divergence of the vector field X with respect
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to the volume form p. For the case of divergence free vector fields Eq.(5.24) reduces to

adya = Lxa. (5.25)

5.2.2. Canonical Diffeomorphisms

The group of canonical diffeomorphisms Dif feqn (T*Q) on the canonical symplectic
manifold (7% Q, Q7-g) consists of diffeomorphisms ¢ on 7*Q preserving the symplectic form

Qr. o, that is,

" Qr-g = Qrg. (5.26)

The differential companion of Eq.(5.26) is £xQ7+o = 0 and the Cartan’s formula £x =

dix + ixd leads to

dixQrp-g = 0. (5.27)

That means, Lie Dif fean (T*Q) of Dif fean (T*Q) is the space of locally Hamiltonian vec-
tor fields gy, = X2 (T*Q) [88]. We assume that Lie Dif feqn (T*Q) consists of globally

Hamiltonian vector fields g = Xpqp, (T Q) and postpone discussions on the subalgebras of

the space of vector fields to the next section. The following equalities

[Xn, Xrlg = = [Xn, X¢lor = Xinpya,. (5.28)

link Xpam (T%Q) with the space of smooth functions F (77Q). Namely, we have the Lie

algebra isomorphism

h — X : (]:(T*Q)v{ ) }QT*Q) - (g = Xham (T*Q) v[ ’ ]g) (5'29)

up to additions of constants to the real valued function h. Here, { , }q,., is the (nondegen-

erate) canonical Poisson bracket of smooth functions in F (7% Q).
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Lemma 5.1. The dual space of the Lie algebra X4, (T*Q) is

g = X}, (T*Q) = {Ilig € AHT*Q) : diva,., I} # 0}. (5.30)

To find the precise definition of the dual space X7, . (T*Q), we require the Ly pairing

(Xp,IIig) to be nondegenerate. We take the volume p = Q%*Q and compute

/T*Q (X () Tsq (2)) i (2) = —/*Q (an. 1t ) = —/*Qinfd (dh) p

= —/ dh/\ingu:/ hdity: ji
*Q i TQ

= hdiva,., Ty, (5.31)

where we use the musical isomorphism QﬂT*Q 1L — Hiﬁd induced from the symplectic two-
form Qp.g at the first step and apply integration by parts at the last step. Thus the dual

of the isomorphism h — X}, is
Mg (z) — diva,., I (2) . (5.32)

In Darboux’s coordinates z = (q,p) = (qi,pi) on T*Q, if Iiq = I; (z) dg* + IT* (z) dp; then
its image under the momentum mapping in Eq.(5.32) is
Ol (z) 0L (z)

f (Z) = diVQT*Q H?d (Z) 8qZ 8pZ )

(5.33)

which is defined to be the plasma density function. Note that, if II;3 = d;; g—idqj — 69 g;@ dp;
for some function v, then the identification in Eq.(5.33) reduces to the following Laplace

equation

f= A (5.34)
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It is important to remark that, the action of Dif feun (T*Q) on T*Q is a canonical
action with the momentum mapping J : 7*Q — Lie* (Dif fean (T Q)) defined by

<J (Z) 7Xh> =h (Z) ) (535)

where X, is the Hamiltonian vector field for the Hamiltonian function h.

5.3. HAMILTONIAN STRUCTURE OF VLASOV EQUATION

5.3.1. Density Formulation of Vlasov Equation

The dual of the space of smooth functions F (7% Q) is the space of densities Den (T*Q)

through the following pairing

ny= [ h@s@ne), (5.36)

where h € F (T*Q) and fu € Den (T*Q) with u = Q3 .o being the symplectic volume. The

adjoint action is the canonical Poisson bracket, that is,

adp f = {ha f}QT*Q' (537)

For the coadjoint action ad*, we compute

(i) = (fadik) = (140 kg, ) = [ kg,

= — | g kn=—{{h Yo, k). (5.33)

T=Q

and deduce that

adpf = —{h, f}a,., - (5.39)
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The Lie-Poisson bracket on the dual space Den (T*Q) is

0F 0H

mmn= [ s@{55 5, o) (5.40)

where F, H € F (Den (T*Q)) and 6F/df,0H/df € F (T*Q). The equation of the motion for

a Hamiltonian functional H is

f= —adis f = {(Zl,f}gwg : (5.41)
The Poisson equation
Vig; = —e/f (a,p) d’p. (5.42)
has a Green’s function solution
ps(a,t) =e K(ala)f(z)u(z), (5.43)

T+Q

where K(q|q) is the symmetric Green’s function, that is K(q|q) = K(q|q). We consider

Eq.(5.43) as a constraint in variations. The constraint variational derivative of

Hip(f)= [ S () ts), (5.44)

where hy (z) = 6Yp;p;/2m + edr(q)/2, is

SHyp d
< 5 ’5f> >
d

Hpp(f+eif)

[ 988 (1 4 o) uta)
o) m

- /T 0I5+ eon(@) s @uta) (5.45)

The symmetry of the Green’s function is used at the second step and the Poisson constraint
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is used at the first and last steps [18,31,35]. We deduce that

is the Hamiltonian function in Eq.(5.11) and thus the Lie-Poisson equation for the Hamil-

tonian Hpp gives the Vlasov equation

af__{ SHpp

ot 5f }Qm =1 hap., - (5.47)

5.3.2. Momentum Formulation of Vlasov Equation

The precise definition of the dual space is
g = X, (T*Q) = {Iliy € AY(T*Q) : divg,.,, IT%, # 0}. (5.48)

The Lie-Poisson structure on g* is

(HOL) KT} = [ Mala)- |5 @t (5.49)

where H and K are functionals on g* and 6 H /6114, 0K /611, € g [11,39]. For a Hamiltonian

functional H, the Lie-Poisson equations are

dll; "
o = 0 Dsmgon,, (Wia) = ~Lopjom,, (Mia) (5.50)

In momentum formulation, the Poisson equation takes the form

oIl

v2¢ﬂ (q) = —¢ aql d b,

(5.51)

and its Green’s function solution becomes

om(@) = e [ (@) LK el @), (5.52)
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In general, we consider the following functional

i i\ 99
F (1L, IT) = / PH (11 (2) 1T (2)) 9% () (5.53)
T Q q
on the dual space g* = X}, (1™Q), where
P (I (z) , 1T (z)) = o™ I IF2 TP, 10, .. T, (5.54)

kiy...im
JieJn

denotes the symmetry of the indices we have o/(cj(“ ]“;) The constraint variational derivatives

is a mixed monomial whose degree is n + m. a’; are scalars and if the parentheses ()

of the functional F' with respect to II; and II* are

OF kiy..im—_1T 11772 in 6¢H
5HT = mOéjl Jin H H Hzn_lﬂj Iz, IV qu
oF kiy. j1TTJ2 jn—1 9 (¢f ((1))
STI™ = na]f j’:[/L 17‘]'_'[J H‘] ]._.['] HZ‘IHiz...Himqu
0 / kz 4 8K(q‘Q>
te v [ T2 T T, T, T, S o (2 5.55
i | I
In particular, we take m = 0, n = 1 and a? = 6?, that is
i O
Pe [ W @), (5.56)

Then, the constraint variational derivative of F’ with respect to 11, vanishes and the constraint

variational derivative of F' with respect to II" is

oF 3¢f( )
o = e (5.57)
Consider the Hamiltonian functional
Hpp(Iliy) = Q<Hid(z)>th (z)) p(2)
T*
|y 3¢n( )
— = §iip,11; — € . .
| Lopt - S (5.59)
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We compute the constraint variational derivatives

0Hp(ILig)
o11;

1 .. 0H I/P(IIid) H(q)
= —§Yp;, and — 86¢ 5.59
m OlIT aq’ (5:59)

of Hyp(Il;y) with respect to II; and II* and obtain

dHp(IL;g)
— " = X. .
i h (5 60)

Thus, the Lie-Poisson equations generating by the functional Hyp (Il;4) is

dtd = —adsy, .51, (Mia) = —Lsn, psom,,(Wia) = —Lx, ia. (5.61)

In coordinates, the equations of motion in Eq.(5.61) read

dHth() = —Xh(ni(z))+emnﬂ (z) (5.62)
T X1 @)~ 91 (o)

with the constraint

ot

_d>p. 5.63
¢ | 5P (5.63)

Vo (q) =

Eqgs.(5.62) are the momentum-Vlasov equations [39]. The back-substitution

_ o oI
- 9¢ Op

f(2) (5.64)

defines the plasma density function f and the momentum-Vlasov equations give the Vlasov

equation in form Eq.(5.9). By definition, the momentum variables (II;, IT?) represents equiv-

oq’

Ok
(q,p) and a—(q, p), respectively. Thus, the
Pi

reduced dynamics on g* has a further symmetry given by the action of the additive group

alence classes up to additions of the terms

F(T*Q) of functions on 7*Q. In the following proposition, we show the equivalence of

Hamiltonian functionals in Eqs.(5.44) and (5.58).

Proposition 5.2. Hyp(Il;4) = Hrp(f) (mod div)
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We take Hrp(f) and replace f by divg,., 1‘.[?(17 then

Hip(f) = /T L iy MLy ) 4 >/ O OV b @)z

.0 2m g Op; dq’ g’
-0
AT O ; e OIT; OT1;
—62/ — I K(qlg)u(z)u(z —l—/ LI K (qla)u(z)u(z
¢ 5, (al@)p(z)p(z) + 5 I O, (ala)u(z)u(z")
7-0 70
= [ L+ / w2 ([ W K@) ule) (mod aiv
TQ 2 5q T*Q 8q]
= / (Wig, Xn, ) (2) = Hpp (I1i) (5.65)

where we omit divergence terms at the second step. Conversely, starting from the functional

Hpp (II;4) we compute

HLP (Hid) = / <Xh_fa Hid> (Z) H (Z)

/. Q{a’;;z 1 (@) - S )} )

= / hy(z 81_[1 aHi),u(z) (mod div)

>

T Q dq’ Op;
- / he (z) f(z) p(z) = Hpp(f). (5.66)
T+Q

5.3.3. Gauge Symmetries of Hamiltonian Dynamics and Poisson Equation

Recall that action of additive group of functions F(Q) on T*Q by momentum trans-

lations

& F(Q) x T"Q — (&, (¢'.p1)) — (qi,pz- - gj) , (5.67)

with the infinitesimal generator

0¢ 0
dq' Op;

X¢(a,p) =— (5.68)
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Lie algebra of the additive group F(Q) can be identified by itself with the trivial bracket as

the Lie algebra bracket. Thus, the mapping
Jy:=AXpod:F(Q) = 8= Xpam (T7Q) : ¢ — Xy (5.69)

is a Lie algebra homomorphism, where X is Euler vector field in Eq.(3.47). The dual
Jy : g* — Den (Q) of the Lie algebra homomorphism Jy is a Poisson and a momentum map.

In coordinates, associated momentum mapping J is computed as

(Jo (ia) ;¢ (@) = (ia, Jy (6)) = (ia (2) , Xz (do (a)))
09 (a) 2 11 (2) — Tl (z) ]
/*Q oq II" (z) p (z) /T*QGb(Q) g w(z)  (5.70)

where we apply integration by parts at the last step. Thus, we have

1) @) = ([ 25 ) o (5.71)

The exterior derivative d : F(Q) — dF(Q) is a Lie algebra homomorphism between
additive algebras F(Q) and dF(Q). The dual of the homomorphism is a momentum mapping

Jg given diagrammatically

Fo — 47 (Q)
i 1 (5.72)
Jg

dF(Q)* ~ *dF(Q)

where we identify the two-forms with one-forms using the Hodge * operator induced from

the scalar product on Q C R3 [54]. We have

(0, 3 (+d)) = (dop, +ds) — / b A xdp = — / wd « dop, (5.73)

that is Jg (xd¢) = — (Vgaﬁ) d3q, because *d * d = Vg on R3 [60].
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We combine the Lie algebra homomorphisms J, : F(Q) — g in Eq.(5.69) and d :
F(Q) — dF(Q) and obtain Lie algebra homomorphism

(Jp,d) : F(Q) = g x dF(Q) : ¢ — (Xy,do), (5.74)
where the Lie bracket on g x dF(Q) is the trivial one. Then the dual

(Jo,d)" = g" x (xdF(Q)) — Den (Q)

(ILig, #ddyy) — (—v§¢n L[

" PPp | &? 5.75
o7 p> q, (5.75)

of (Jg,d) is a momentum and Poisson map. The zero value of the mapping leads to

Vién (q) = / aniqu) &’p. (5.76)

the Poisson equation in momentum formulation.

5.4. LIFTS OF HAMILTONIAN VECTOR FIELDS AND MOMENTUM-VLASOV
EQUATIONS

We consider a Hamiltonian vector field

oh 0 oh 0
Xn(a,pP) = =5 — 7 € X(T*Q). 5.77
whose complete cotangent lift X;* € X(T*T*Q) is
Xy (Iiq) = Xn(2) + 117, <8qi) oIl + 1T, <3pi Ea € X(1T"1*Q), (5.78)

where II;; = (qi,pi; I1;, Hi) are the induced coordinates on T*T*Q and H?d = QﬁT*Q (I;q) =
11°0/9q" — 11,0/ Op;. Hgd (8h/8qi) denotes simply the action of Hgd to Oh/0q'. The vertical

representative V X;* and the holonomic part HX;* of cotangent lift X;* of a Hamiltonian
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vector field X}, are computed as

oh 0 oh ) 0
VX Hﬁ — X (IL ”ﬁ — X, (II*
h < id <8qi> a Z)> o1, ( id <3pi> h ( )> o11e’

cx ) a 7 a
HXP = Xp+ X, (1L) 1L + X, (ITY) PR (5.79)
The complete tangent lift of X}, is
oh\ 0 oh\ 0
Xy (z,z2)=Xp+Xpro| — | = —Xro| =— | = TT* 5.80
h(2,%) h+ TQ(api> g TQ(aq,> 8]51'6%( Q), (5.80)

where X7.g = Trr-g (X5) = ¢'0/9¢" + p;0/0p;. The vertical representative and the holo-

nomic part of complete tangent lift X} are

oh N\ o oh N 9
VX, = (XT*Q <6p-> — Xn(q )) o (XT*Q <8q’i> +Xh(Pj)> o
0 .. 0

HXf = Xp+ Xn(d)oe + Xn(0)) = 5.81
h h+ h(q)aqz + h(pj)apz ( )
In particular, we consider the Hamiltonian function
h= L ipp, 5.82
= om Dbip; +€¢f(q)' (5.82)
The corresponding Hamiltonian vector field
1., 0 0dr 0
Xp(z) = —6Yp;— O (5.83)

- — € N
m bi gl oq* Op;

generates the motion of a charged particle. The complete tangent and cotangent lifts of X,

are the Hamiltonian vector fields

Xf = X4 —09p—— — e — L L 84
h nt 0P oi T ogiog op: (584)
ok 8% T TT. J

X¢ X = 8 i el oo (5.85)
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for the Hamiltonian functions

- 1 .. 0 1 ...
H = —0"pip; + eql—(bf and H = —§"plIl; —e
m m

5 11t (5.86)

respectively. In this case, the vertical representatives of tangent and cotangent lifts are given

by
1 . ) - 0%
VX, = (—d"p; — Xin(d - — (eq' ——=— + Xp(p;)) =—— 5.87
P Gt~ X)) (el g+ X)) 5 50
. 0%¢ 0 1 y 0
VX;r = IV—— — X;,(I1;) | —=——(—1IL;¢"" + Xp(IT")) == 5.88
P (e X)) S ) (589
Thus, we have proved the following lemma.
Lemma 5.3. Momentum-Vlasov equations
I, = —X,(I0; —TI7,
n( )+68q18qﬂ
. . 1 .
I = —-X,(Ir") — %WJHJ: (5.89)

are obtained as the flow generated by vertical representative of complete cotangent lift of

Hamiltonian vector field corresponding to the Hamiltonian function in Eq.(5.82).

The coadjoint action of Xp, € g = Xpom (T*Q) on g* = X7 (T*Q) generates the Lie-

ham

Poisson dynamics which is identical to the dynamics generated by Eq.(5.88). More precisely,

we can recast the Poisson-Vlasov dynamics into the form

VX (Wia) = (L£x, (Lia))" (5.90)

with the choice of the particular Hamiltonian function in Eq.(5.82).
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6. ALGEBRA OF DIFFERENTIAL FORMS AND VECTOR FIELDS

6.1. ALGEBRA OF THE DIFFERENTIAL FORMS

Let (M, Q) be a symplectic manifold. Recall the musical isomorphism Qb\/t X (M) —
Al (M) given in Eq.(2.94) and its fiberwise inverse QB\A Using the notation @, (X) = X°

and QBM (o) = af, we have the following identities

Qg (aﬁ,ﬁﬁ) — <a,ﬁﬁ> — <ﬁ,aﬁ> (6.1)

and Qg (aﬁ, X ) = (a, X), where X, Y and «, 3 are sections of tangent and cotangent bundles

of M, respectively. (, ) denotes the pairing between the vector and covector fields.

We define a Lie algebra bracket

U s ALM) AT (M) = AT (M) (62
(2. 8) = @ ([t ] ) (6.3)

on the space of sections of cotangent bundle T*M — M in such a way that, the musical

isomorphisms Q?Vl and QﬁM become Lie algebra isomorphisms, that is,

{a,ﬂ}%:[aﬁ,ﬁﬂ and {Xb,Yb} — X, Y]. (6.4)

AL
To have a more explicit definition for { , },., we make the following calculation,
0 (.9.5) = o o (7.3)) 7 (o () < 00 (05
(7] 3) [ ]) ~ [55] 9
+

= ({8, X)) = B (& X)) + (d (igriazQp) , X)

—{o, B, X —< [aﬁ,Xb < [ D (6.5)
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Since

(ot (8),X) = of ((8.X)) = (8 [ X]).
)

(£5 (@), X) = B (X)) = (o [ X] (6.6)

the nondegeneracy of pairing and the fact that the symplectic form Qx4 is closed imply

{0, BYar = Lot (B) — L5 (@) + d (igria: Q) - (6.7)

We identify the dual space g* of Xpem (M) with the non-closed one-forms. Let o and

5 be two closed forms, then we have

{a,8},, = d (ia:f —igra+ igia: ) (6.8)
which is exact. In particular, if & = df and 8 = dh are two exact one-forms, then

{df,dh}y, = Lx, (dh) — Lx, (Xp) +d (ix,ix,Q)
= d(X;(h) —d(Xp (f) +d{f h}q,,
= d{h,f}QM - d{f>h}QM +d{f’ h}QM

= d{h,flg,, - (6.9)

where {h, f }QM is the Poisson bracket on the space of functions induced from the symplectic
structure 2p¢. Thus the set of all exact one-forms is a Lie subalgebra of the Lie algebra of all
one-forms. From the calculation in Eq.(6.9) we see that exterior derivative d is a Lie algebra
homomorphism between the algebra of smooth functions on the symplectic manifold M and

the algebra of exact one-forms on M. If « is closed and dS # 0, then
{a, BIar = ipdB +d (iaﬁHid — ’iﬁna + iﬁnianQM) , (6.10)

where the condition that the first term to be closed requires the invariance relations di:df =

Lardf =dL: 6 =0.
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Let X}, be a Hamiltonian vector field for the Hamiltonian function A on the symplectic
manifold (M, Qu), that is X? = dh and (dh)* = X},. Since X,y = — [Xn, Xyl , we have

that

b b
[XhaXf]Diffcan(M) == [Xh7Xf]JL = Xgh,f} = d{h, f}QM = {dhadf}Al ) (6.11)

where [, |p;s. (v is the Lie algebra bracket on Lie Dif fean (M) . In addition, if X is
locally Hamiltonian, then X” is closed by definition. Thus, the set of all Hamiltonian vector
fields in X (M) is isomorphic to the set of all closed one-forms in A' (M). Note that, the set
of locally but not globally Hamiltonian vectors in X (M) corresponds to the first de Rham
cohomology space consisting of closed and non-exact one-forms. Hence, we have the vector

space isomorphism
Q08 = Xnam (M) — g =kerd N A (M). (6.12)

Proposition 6.1. If g* denotes the space of non-closed one forms we have

ANM) =g ag (6.13)
furthermore,
b b b * % * h ¥ *
{g,g}Alcg, {g".g"ty Cg" and {g,g}mcg- (6.14)
This result implies that (gb,{ , }ar) and (g*,{ , },:) are Lie subalgebras of (AP (M), {, Yar)

Moreover, g* is an ideal of the algebra. Observe that Eq.(6.10) implies

{glbhwgb}/\l C gb) (615)

where g, denotes the space of locally Hamiltonian vector fields.
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6.2. DECOMPOSITION OF SPACE OF VECTOR FIELDS

Let X}, be a Hamiltonian vector field. The identity
ix.x,) = Lxix, —ix,Lx (6.16)

implies that if X is locally Hamiltonian then the Lie bracket [X, X}] is globally Hamiltonian,

that is

i, 8] C & (6.17)

More precisely, we compute
i, x,) ! = Lxix, Q —ix, LxQ = Lxdh = dixdh (6.18)
so that the Hamiltonian function is X (h). Note that for two locally Hamiltonian vector

fields X and Y we get i[x,y1Q2 = d2 (X,Y), that means [X,Y] is also Hamiltonian. Hence,

we have

&in, 81n] C & (6.19)

One may show that Eq.(6.19) is actually an equality, see [4] and references therein. If, on
the other hand, X is (locally) Hamiltonian and of € (g*)* is not Hamiltonian in any sense

we get
ix0fQ = Lxia:Q = dQ (J,X) FixdigQ (6.20)

which need not be closed for arbitrary choices of X € g and af € (g*)ﬁ and hence not

Hamiltonian,

& (&) < (&) (6.21)
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We summarize the above discussion in the following proposition.

Proposition 6.2. The space of vector fields on a symplectic manifold M can be decomposed

as the direct sum
X(M)=ga (g, (6.22)

where g denotes the set of Hamiltonian vector fields and (g*)jj denotes the set of non-
Hamiltonian vector fields. g and (g*)* are Lie subalgebras of X (M), the space of vector

fields, that is

[g,g] Cg and [(g*)ﬁ,(g*)ﬂC(g*)ﬂ- (6.23)

In addition, the space of non-Hamiltonian vector fields is an ideal in the algebra of vector

fields

8 (&) @), and [ (8] C &, (6.24)
and the following inclusions hold

[gin,8] Cg, and [gm,gn). Cg. (6.25)

6.3. HOMOTHETIES

In the formulation of dynamics with the Lagrangian representation of kinematics, the
plasma density is a constant. The fixed values of density in the space Den (M) of densities
corresponds via definition in Eq.(5.48) to vector fields II* in M with constant divergence.
Such vector fields, called homotheties, generate similarity transformations (of the first kind)
which are also called homotheties [89]. In this section we shall investigate the properties of
homotheties in the algebra of vector fields X (M) =g ® (g*)ti with the Jacobi-Lie bracket.

i

We denote the set of all vectors in (g*)* with constant divergence by (g*)*, and we
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*

*)* is of constant

let p be the symplectic volume on M. We also observe that if HE € (g
divergence Lz = cp with respect to symplectic volume (in » dimension) then it follows

from the non-degeneracy of symplectic two-form that
c
L Qpm = = (6.26)
¢ n

We recall that X is a locally Hamiltonian vector if and only if ¢ x Qo is closed. Then previous
equation is equivalent to diyQa = (¢/n) Qa which is a manifestation of the fact that Tt

is not even locally Hamiltonian and hence is in (g*)ﬁ. However, it follows from the identity

Lixyp=LxLyp—LyLxp

that the Lie bracket of two vectors with constant divergence is locally Hamiltonian. Next
result summarizes the algebraic relations between (locally) Hamiltonian vector fields, non-

Hamiltonian vector fields and homotheties.

Proposition 6.3. [g, (87)'] C & [(8"), (8] < ()", [(8)). (&) c &
Indeed, for the first assertion we have

)M = L, — i £x, O
= ithiHQQM —i—diXhngQM
= iXh%QM + dQm (Xh»HD

— d (%h O (Xh, Hfg)) . (6.27)

If we replace X}, with a locally Hamiltonian vector field then a similar computation implies

that the bracket is locally Hamiltonian. For the second, we compute from the definition of
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locally Hamiltonian vector fields

div, T,

di [HEdJ-LuJ]QM = Enﬁdding Qm — dZHﬁC Qam

1 1
= 5 div, Q0 —d (ndivu H§d> N = — (v, 125, ) digs g

1
= —d <n div,, H§d> A s Q. (6.28)

This can be zero only if HﬁC is globally Hamiltonian with divergence of the arbitrary element

H? g of (g*)*, which is not possible.

We compute the action of homotheties on the space of densities using the identity in

the Eq.(4.11) as

Lo = Lre, (ew) = Ly (F1)
= cfp—df Nigs (0) —cfp

= —df Niggs () = —ipp (df) p = —TIE(f) o (6.29)

That means, if f is the density associated with Il;; € g*, then we have

g — fu
T - T () (6.30)

7. DISCUSSION AND CONCLUSIONS

Starting from a vector field X on a manifold M, we have defined vector fields X¢ and
X on TM and T* M, respectively. X is a canonically Hamiltonian vector field whereas
X¢ is Hamiltonian if M is symplectic and if T'M is equipped with Tulczyjew’s symplectic
form. A connection on a smooth bundle (£, 7, M) was considered as a mapping from 7'M
to TE. The first order generalized vector fields are sections TE — J'm, where J'7 is the
first jet bundle. Elements of J'm were used as connections on the bundle 7 hence, TE

was decomposed into subbundles, namely bundle of vertical representatives and bundle of
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holonomic lifts. From this decomposition, iterated bundles 77T, T*T, TT™ and T*T* were

expressed as the direct sums of first order bundles T" and 1.

The momentum map realization of the Poisson equation has given that the true con-
figuration space for the Poisson-Vlasov dynamics must be the semi-direct product structure
F(Q)O®Dif fean (T*Q). We have taken the group of canonical transformations Dif feqn (T*Q)
as our configuration space for collisionless plasma and adapted the Green’s function solution

of the Poisson equation as a constraint while taking variational derivatives.

Lie algebra of Dif fean (T*Q) is the space of Hamiltonian vector fields Xpam (TQ)

which is isomorphic to the space of smooth functions F (7*Q) on 7% Q. The dual
Xham (T7Q) — Den (T*Q) : Ty — diva,., I, = f (7.31)

of the isomorphism F (T*Q) — Xpam (T*Q) is a momentum mapping and defines the plasma
density function f. For the dual space of the Lie algebra of Dif feqn (T%Q), two equiva-
lent representations are possible, namely the density and the momentum formulations on
Den (T*Q) and Xj,, (T*Q), respectively. In density representation, constraint variational

derivative of

Hiplf) = [ 1whs () ), (7.32)

where hy (z) = 5ijp2-pj/2m +edr(q)/2, is

0Hrp
of

—h= 5@']’2;’% +edp(a) (7.33)

thus the Lie-Poisson equation for the Hamiltonian Hyp gives the Vlasov equation

of OHLp L
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In momentum representation, we have considered the functional

Hrp(Iliq) = /*Q (iq (z) , Xp, (2)) dp (z)

which is equivalent to Hrp(f) up to some divergence factors. The constraint variational

derivative

0H p(1I1;
gﬁ(d ia) _ X, (7.35)
(2
has given the Lie-Poisson equations
dll;g "
dtl = —adsy, . sn,(Wid) = —Lsu, ,jom,, (Wia) = —Lx, Wia. (7.36)

In the momentum variables (II;, IT?), we have arrived the intermediate system

) 0%¢ .
I, = —X,(IL) +e——1IT
h( )+€aqzaqj
. ) 1 ...
I = -X, (HZ)—EcS”H]- (7.37)

named the momentum-Vlasov equations, where

1 .. 0 3¢f 0
X = —§Up 2 /
h m(S pzaqi e(‘)ql Op;

(7.38)

is the Hamiltonian vector field corresponding to the Hamiltonian function h. Back-substitution
of the plasma density f = divg,., Hfd in the momentum-Vlasov equations has given the

Vlasov equation.

We have obtained the momentum-Vlasov equations from Hamiltonian vector field X,
for the Hamiltonian function A, which is the total energy of a single charged particle. The

vertical representative

0
O1T?

v = (v 200 m) B+ xm) (7.:39)

dgidg o1l;
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of the complete cotangent lift X;* of the Hamiltonian vector field X}, generates the momentum-

Vlasov equations.

A Lie algebra structure

{a,B 1 = Lo (B) — L5 (@) + d (igria: Q)

on the space of one-form section A!(M) on a symplectic manifold M was defined. It
was shown that, the space of non-closed one-forms g* and the space of exact one-forms
gb, which is the isomorphic copy of the space of Hamiltonian vector fields g, are two Lie
subalgebras of (A1 M), {, }AI(M)) . The space of vector fields on M was decomposed into
the direct sum of the spaces of Hamiltonian g and nonHamiltonian (g*)* vector fields, that

is X (M) =g & (g
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