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ABSTRACT 
 

 

FIBER BUNDLES, DIFFEOMORPHISM GROUPS AND PLASMA DYNAMICS 
 

In the thesis, we investigate the geometrical framework of the Lie-Poisson description 

of the Poisson-Vlasov equations which govern the motion of the collisionless plasma. To 

this aim, we review symplectic and Poisson manifolds, connections on smooth bundles and 

symplectic reduction theory. An element of the first order jet bundle can be considered as a 

connection and hence, decomposes vector fields into vertical representative and holonomic 

parts, which are generalized vector fields of order one. The complete and the vertical lifts of 

vector fields and one-forms are presented and, in the existence of a connection, the 

decompositions of iterated bundles TT, T*T, TT* and T*T* into the direct sums of the first 

order bundles T and T* are given.  

 

Poisson equation is obtained as the preimage of a regular value of a momentum 

mapping coming from the gauge invariance of the Hamiltonian dynamics. We take the 

configuration space of the collisionless plasma as the space of canonical diffeomorphisms 

and attach Green’s function solution of Poisson equation as a constraint in the calculations. 

Lie algebra of the group of canonical diffeomorphisms is the space of Hamiltonian vector 

fields. For the dual of the Lie algebra, there are two possibilities, namely density and 

momentum representations. From the Lie-Poisson formulation of Vlasov equation on the 

momentum representation, we obtain an intermediate system, which is called momentum-

Vlasov equations. It is shown that, momentum-Vlasov equations are generated by the 

vertical representative of the complete cotangent lift of the Hamiltonian vector field whose 

associated Hamiltonian function is the energy of a charged particle in momentum phase 

space.  

The algebra of vector fields on a symplectic manifold is decomposed into semi-direct 

product algebra of Hamiltonian vector fields and its complement which is isomorphic to its 

dual, is presented. A similar discussion on the algebraic properties of the decomposition of 

the one-form section into closed and non-closed one-forms is made. 
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ÖZET 
 

 

LİF DEMETLERİ, DİFEOMORFİZMALAR GRUBU VE PLAZMA DİNAMİĞİ 
 

Bu tezde, çarpışmasız plazma için hareket denklemleri olan Poisson-Vlasov denklem 

takımının Lie-Poisson formu ve bu formun geometrik altyapısı çalışılmıştır. Bu amaç 

doğrultusunda, ilk olarak simplektik ve Poisson katmanları, düzgün demetler üzerinde 

bağlantı ve simplektik indirgeme teoremi gözden geçirilmiştir. Bir düzgün demetin birinci jet 

uzayının elemanları, demet üzerinde bağlantı olarak kullanılmış ve vektör alanları dik 

temsiller ve holonomik parçaların direk toplamı olarak ifade edilmiştir.  Vektör alanların ve 

bir-formların tam ve dik kaldırılışları tanımlanmış, ikinci derece demetler TT, T*T, TT* ve 

T*T*, birinci dereceden demetlerin T ve T* direk toplamları cinsinden ifade edilmiştir. 

 

Poisson denklemi Hamilton dinamiğinin ayar simetrisinden kaynaklanan momentum 

dönüşümünün düzenli bir noktadaki öngörüntüsü olarak elde edilmiştir. Kanonik dönüşümler 

grubu plazma hareketi için konfigurasyon uzayı olarak alınmış ve Poisson denkleminin 

Green fonksiyonu ile çözümü hesaplar için bir kısıt olarak kullanılmıştır. Kanonik dönüşüm 

grubunun Lie cebirini Hamiltonyen vektör alanları oluşturmaktadır. Bu cebirin dual uzayında 

standart Lie-Poisson denklemleri momentum-Vlasov denklem takımını vermektedir. Yüklü 

parçacığın faz uzayındaki hareketini yöneten Hamiltonyen vektör alanının tam kotanjant 

kaldırılışının dik temsilinin momentum-Vlasov denklemlerini ürettiği gösterilmiştir.  

 

Son olarakta, bir simplektik katman üzerindeki vektör alanları uzayı Hamiltonyen olan 

ve olmayan vector alanların oluşturduğu iki alt uzayın yarı-direk toplamı olarak ifade 

edilmiştir. Benzer olarak bir-form kesitlerin oluşturduğu uzay, kapalı olan ve olmayan bir 

form kesitlerin olusturduğu altuzayların direk toplamı olarak ifade edilmiş ve bu altuzayların 

üzerindeki cebirsel yapılar incelenmiştir. 
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1. PROLOGUE

1.1. GEOMETRIC MECHANICS AND REDUCTION

Mechanics has two main points of view, Lagrangian mechanics and Hamiltonian me-

chanics. Lagrangian approach is based on the observation that there are variational princi-

ples behind Newton’s second law. In this approach, the dynamics of a system is formulated

by Lagrangian function L on velocity phase space of the configuration space, formally on

the tangent bundle TM of the configuration manifold M. The main orientation of the

Lagrangian approach is to extremize an action integral

A (L) =

∫
Ldt (1.1)

with a variational principle called Hamilton’s variational principle [1,2]. In local coordinates(
xa, ẋb

)
on TM, one obtains the Euler-Lagrange equations

d

dt

(
∂L

∂ẋa

)
− ∂L

∂xa
= 0. (1.2)

On the other hand, the Hamiltonian view of mechanics is based on symplectic geometry.

In this approach, the dynamics is represented by a Hamiltonian functionH on the momentum

phase space, formally on the cotangent bundle T ∗M ofM. In the framework of symplectic

geometry, the Hamiltonian dynamics is governed by Hamilton’s equations

iXH (ΩT ∗M) = dH, (1.3)

where XH is the Hamiltonian vector field for the Hamiltonian function H, iXH is the interior

product and ΩT ∗M is the canonical symplectic form on the cotangent bundle T ∗M [3,4]. In

canonical coordinates (xa, yb) on T ∗M, the equations of the motion are given by

ẋa =
∂H

∂ya
and ẏa = − ∂H

∂xa
. (1.4)
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Having a correspondence between dynamics XH and functions H on M, an algebra of

functions onM can be defined by the Poisson bracket

{H,F} = XH (F ) = −XF (H)

which is nondegenerate. The dynamics of the system for a given Hamiltonian function H is

governed by the equations

ẋa = {xa, H} and ẏa = {ya, H} . (1.5)

This generalization of the symplectic geometry is the Poisson geometry [5]. A Poisson struc-

ture is a bilinear skew-symmetric binary operation { , } on the space of smooth functions

that satisfies Jacobi and Leibniz identities. For the general and more rigorous constructions

of Hamiltonian and Lagrangian mechanics, some references are [6, 7].

Transformations between Lagrangian mechanics and Hamiltonian mechanics are called

Legendre transformations. If a nondegeneracy condition, called Hessian condition, is satisfied

then the transformation is immediate. Although, a general construction is presented in [8]

without the nondegeneracy condition, one faces with serious complications in transforming

different descriptions of particular mechanical systems [9, 10].

Many physical systems such as rigid bodies, fluids and plasmas can not be expressed

neither in the framework of canonical Hamiltonian formalism nor the variational principles

of usual form due to existence of symmetries and constraints. One of the interests of the

reduction theory is to obtain a noncanonical system from a canonical one by dividing out

the symmetries of the physical system [11]. In Lagrangian reduction theory, one emphasizes

how the variational principles pass to a quotient space whereas Hamiltonian reduction is

interested in how to reduce the symplectic structure and Hamiltonian function.

Although the origins of Hamiltonian reduction theory can be found in the works of

Euler, Lagrange, Hamilton, Jacobi and Poincaré, in the literature, start of the modern history

of the theory has been considered as the pioneering papers of Arnold [12] and Smale [13],

where one can find the reduction procedure for the systems whose configuration spaces are Lie
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groups. The papers of Marsden and Weinstein [14] and Meyer [15] developed the Hamiltonian

reduction theory in the general context of symplectic manifolds. The Lagrangian version of

the reduction theory is developed much more later then the Hamiltonian one. One expects

that, the two methodologies must be in relation by the Legendre transform, but most of

the cases are not straightforward way, such as thermodynamics and plasma. A detailed and

comprehensive history of the reduction theory can be found in [11] and [16].

The particular case in which the configuration space of a dynamical system is a Lie

group, say G, attracts deep interests since the configuration space of the systems such as

Euler’s top, incompressible fluid and collisionless plasma, are Lie groups [17,18]. A Lie group

G acts, say on right, on its tangent TG and cotangent T ∗G bundles by the lifts of group

multiplication. A Hamiltonian system on T ∗G under the symmetry of the lifted action can

be reduced to a Hamiltonian system on the quotient space T ∗G/G = g∗ which is the linear

algebraic dual of the Lie algebra g = TeG of G. g∗ is a Poisson manifold with the Lie-Poisson

bracket

{F,H} (α) =

〈
α,

[
δF

δα
,
δH

δα

]〉
, (1.6)

where α ∈ g∗, [ , ] is the Lie bracket on g, 〈 , 〉 is the pairing between Lie algebra and its dual

and we assume that the Fréchet derivatives δF/δα, δH/δα ∈ g∗∗ ' g. For a Hamiltonian

functional H, the equation of motion, namely the Lie-Poisson equation, is

α̇ = −ad∗δH
δα

α, (1.7)

where ad∗ denotes the coadjoint representation of g on g∗ [11,19]. Similarly, a right invariant

Lagrangian L on TG uniquely defines a real valued function l on g by reduction. The

Euler-Lagrange equations for L reduces to the Euler-Poincaré equations

d

dt

δl

δξ
= ad∗ξ

δl

δξ
(1.8)

for reduced Lagrangian l, where ξ ∈ g and δl/δξ ∈ g∗ [20—22].
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1.2. COLLISIONLESS PLASMA

Plasma consists of free positive and negative charge carriers and looks neutral from the

outside and it is estimated to constitute more than 99 percent of the visible universe [23,24].

To describe the motion of plasma in Q ⊂ R3, one may start to write down the whole

microscopic data and Newton formulas and interactions for whole particles, which is very

diffi cult. The kinetic plasma theory uses statistical and probabilistic concepts to handle the

practical problems of the microscopic theory. The basic element in the kinetic description

of a plasma is the plasma density (distribution) function f = f (q,p) that describes how

particles are distributed in position-momentum phase space T ∗Q [25—27]. We use z = (q,p)

as local coordinates on T ∗Q.

Charged particles in an electromagnetic field are described by the Maxwell-Vlasov

equations consisting of the Maxwell’s equations

∇×E = −1

c

∂B

∂t

∇ ·E = ρ
and

∇×B =
1

c

∂E

∂t
+

1

c
J

∇ ·B = 0
(1.9)

and the Vlasov equation

∂f

∂t
+

p

m
· ∇qf + e

(
E +

p

m
×B

)
· ∇pf = 0 (1.10)

where E and B denotes the electric and magnetic fields,

ρ = −e
∫
f (q,p) d3p (1.11)

is the charge density, J is the current density vector, c is the speed of the light and p = mv

is the momentum of plasma particles. Some of the references involving the Hamiltonian and

Lagrangian descriptions of Maxwell-Vlasov equations are [28—33].

In case of an unmagnetized plasmaB = 0 and absence of any current J = 0, the electric

field E is the purely potential, that is, E = ∇qφf (q) . The potential φf (q) is determined
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through the Poisson equation

∇2
qφf = −e

∫
f (q,p) d3p, (1.12)

and Vlasov equation reduces to

∂f

∂t
+

p

m
· ∇qf − e∇qφf · ∇pf = 0. (1.13)

The set of equations Eq.(1.12) and Eq.(1.13) are called the Poisson-Vlasov equations.

One may alternatively regard the Poisson-Vlasov equations as an approximation of the

Maxwell-Vlasov equations in the nonrelativistic zero-magnetic field limit, that is the limit

c→∞ [39]. Some of the references for the first attempts to the investigation of the geomet-

ric foundations of the Hamiltonian and Lagrangian descriptions of Poisson-Vlasov equations

are [34—38].

The main orientation of this thesis is to study geometric framework for Lie-Poisson

formulations of the Poisson-Vlasov equations. We present some purely geometrical concepts

in second, third and fourth sections. The rest of the thesis, fifth and sixth sections, is

devoted to the application of these geometric constructions to particular case of the group of

canonical diffeomorphisms, which is the configuration space of the collisionless nonrelativistic

plasma. Foundations of this study can be found in some unpublished works of H. Gümral,

J.E. Marsden, P.J. Morrison and T.S. Ratiu at the beginnings of 90s.

1.3. CONTENTS OF THE THESIS

In the following section, we start with the definition of a smooth bundle (E , π,M)

and present tangent (TM, τM,M) and cotangent (T ∗M, πM,M) bundles. Given a smooth

bundle (E , π,M) we define the first jet manifold J1π and pull-back bundle ρ∗ (π) by a

mapping ρ : N →M. The first order generalized vector fields are defined as the sections of

the fibration J1π ×E TE → J1π. It is argued that every smooth bundle (E , π,M) admits a
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short exact sequence

0 → V E → TE → π∗ (TM) → 0 , (1.14)

where V E is the bundle of vertical vectors and π∗ (TM) is the pull-back bundle of TM. There

is no canonical way to split the sequence presented in Eq.(1.14), one needs an additional

geometric structure on the sequence, so called connection, to do that. Defining a connection

decomposes the cotangent bundle T ∗E , because the connection splits also the dual

0 → (π∗ (TM))∗ → T ∗E → V ∗π → 0 (1.15)

of the sequence Eq.(1.14). We show that, an element of the jet manifold J1π can be regarded

as a connection and hence decomposes the tangent bundle TE of E into direct sum of vertical

and horizontal components, namely vertical representative and holonomic part. In the last

subsection, we discuss the theory of exterior calculus and review some constructions on

manifolds, such as volume, symplectic and Poisson structures.

In section 3, we start with a vector field X on a manifoldM and, in a canonical way,

define vector fields Xc and Xc∗, called complete tangent and cotangent lifts of X, on the

tangent bundle TM and cotangent bundle T ∗M ofM, respectively. Hamiltonian structures

of the complete lifts are discussed. Vertical lift Xv of a vector field X onM to the tangent

bundle TM and vertical lift αv of a one-form α on M to the cotangent bundle T ∗M are

defined. Under the existence of a connection, the iterated bundles TTM, TT ∗M, T ∗TM

and T ∗T ∗M are expressed as the direct sums of the first order bundles TM and T ∗M.

In the fourth section, theory of symmetry and reduction is summarized. Symmetries

of a mechanical system are described by invariance of the system under some Lie group

action on its configuration manifold. Momentum maps, which play the fundamental role in

the theory, are defined, and the link between momentum maps and Noether’s theorem is

established. The symplectic and the Lie-Poisson reductions are presented. By several ways,

the Lie-Poisson structure on the dual space g∗ of the Lie algebra g is derived.

The fifth section is devoted to the applications of geometric constructions described
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in previous sections to continuum theories. The momentum map realization of the Poisson

equation gives that the true configuration space for the Poisson-Vlasov dynamics must be the

semi-direct product structure F (Q)sDiffcan (T ∗Q) with the action of additive group F (Q)

of functions given by fiber translation on T ∗Q and by composition on right with canonical

transformations. Following [39], the group of canonical transformations Diffcan (T ∗Q) is

considered as the configuration space for collisionless plasma and Green’s function solution

of the Poisson equation is adapted as a constraint while performing variational derivations.

We take Lie algebra of Diffcan (T ∗Q) as the space Xham (T ∗Q) of globally Hamiltonian

vector fields which is isomorphic to the space F (T ∗Q) of smooth functions on T ∗Q. The

dual of Xham (T ∗Q) is the space of one-form densities whereas the dual of F (T ∗Q) is the

spaceDen (T ∗Q) of densities on T ∗Q, that is the space of nonvanishing top-forms. Therefore,

for the dual space, two equivalent representations are possible, namely density Den (T ∗Q)

and momentum X∗ham (T ∗Q) representations. Hamiltonian functionals HLP corresponding

to the Lie-Poisson formulations of the Poisson-Vlasov equations for both dual spaces are

given. For the density representation, the constraint variational derivative of

HLP (f) =

∫
T ∗Q

f(z)hf (z)µ(z), (1.16)

is computed as δHLP /δf = h = p2/2m+ eφf (q), hence Lie-Poisson equation

df

dt
= −

{
f,
δHLP

δf

}
(1.17)

on Den (T ∗Q) gives Vlasov equation in Eq.(1.13), where hf (z) = p2/2m+ eφf (q)/2. Hamil-

tonian functional HLP is transferred to X∗ham (T ∗Q) with coordinates Πid = (Πq,Πp) and

obtained

HLP (Πid) =

∫
T ∗Q

〈
Πid (z) , Xhf (z)

〉
µ (z) (1.18)

up to modulo divergence. The constraint variational derivative

δHLP

δΠid
= Xh =

1

m
p · ∇q − e∇qφf (q) · ∇p (1.19)

of HLP (Πid) is the Hamiltonian vector field for the Hamiltonian function h. Lie-Poisson
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equations gives the intermediate system

Π̇q = −Xh (Πq) + e (Πp · ∇q)∇qφf (q)

Π̇p = −Xh (Πp)−
1

m
Πq (1.20)

named themomentum-Vlasov equations. Momentum variables (Πq,Πp) represent equiv-

alence classes up to additions of the terms ∇qk and ∇pk for an arbitrary function k(q,p),

respectively. It is shown that, the momentum-Vlasov equations are generated by the vertical

representative

V Xc∗
h =

(
−Xh (Πq) + e (Πp · ∇q)∇qφf (q)

)
· ∇Πq−(

1

m
Πq +Xh (Πp)) · ∇Πp (1.21)

of the complete cotangent lift Xc∗
h of Hamiltonian vector field Xh thereby the precise relation

between the particle motion and the Vlasov equation is established.

In section 6, algebra of vector fields X (M) on a symplectic manifoldM is decomposed

into a semi-direct product algebra of Hamiltonian vector fields Xham (M) and its complement

isomorphic to the dual of Xham (M), is presented. Some other subalgebras in the space of

vector fields, such as homotheties and locally Hamiltonian vector fields, are presented. A

similar discussion on the decomposition of one-form sections onM into the spaces of closed

and non-closed one-forms is made.
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2. THEORY OF MANIFOLDS AND BUNDLES

2.1. SMOOTH BUNDLES

A smooth (fiber) bundle is a quadruple (E , π,M,F) where

1. E ,M and F are manifolds, called total, base and fiber manifolds, respectively,

2. π : E →M is a smooth surjective map, called projection (or fibration).

In addition, a fiber bundle admits local trivialization property, that is, the exis-

tence of an open cover {Ui} ofM with diffeomorphisms φi : Ui × F → π−1 (Ui) commuting

the following diagram

Ui ×F
φi−−−−−→ π−1 (Ui)

prUi ↘ ↙ π

Ui

(2.1)

where prUi : Ui × F → Ui is the projection operator to the first factor [?, 40—44]. By fixing

x ∈ Ui, the diffeomorphism φi : Ui ×F → π−1 (Ui) is reduced to

φi|x : F → π−1 (x) = Ex, (2.2)

which identifies π−1 (x) = Ex and F . We will denote a smooth bundle with triple (E , π,M)

or with projection π or with the total space E , interchangeably, if there is no risk of confusion.

If there exists a trivialization over the entire manifoldM, then the bundle is called the

trivial bundle. In this case the total space E can be identified with the product manifold

M×F .
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A global section ν of a bundle (E , π,M) is a smooth map ν : M → E such that

π ◦ ν = idM, where idM is the identity mapping on the base manifoldM.We denote the set

of all sections of π by S (π). For an open cover {Ui} of M, a mapping νi : Ui → π−1 (Ui)

satisfying π ◦νi = idUi is called a local section. It is important to note that, not all smooth

bundles admit global sections [45].

A k−dimensional real (complex) vector bundle is a smooth bundle whose fiber

F is a k−dimensional real (complex) vector space V . k = rankπ is rank of the vector

bundle. The tangent and the cotangent bundles are examples of vector bundles and they

will be discussed in detail in forthcoming sections. A vector bundle (E1, π1,M1) is called a

subbundle of a vector bundle (E2, π2,M2) if the fibers of π1 are the linear subspaces of the

fibers of π2 at every x ∈M and π2|E1 = π1.

2.1.1. Bundle Map and Fiber Product

Let (E1, π1,M1) and (E2, π2,M2) be two smooth bundles. A smooth map ϕ̂ : E1 → E2

is called a bundle map (morphism), if ϕ̂ is fiber-preserving, that is, it induces a map

ϕ :M1 →M2 such that the following diagram commutes

E1

ϕ̂−−−−→ E2yπ1

yπ2

M1

ϕ−−−−→ M2.

(2.3)

If the base manifoldsM1 andM2 are identical, that isM1 =M2 then ϕ̂ satisfies π1 = π2◦ϕ̂.

For the case of vector bundles, we require in addition that ϕ̂ is a linear operator from

the vector space (E1)x = π−1
1 (x) to (E2)ϕ(x) = π−1

2 (ϕ (x)) for all x ∈M. The set of all such

linear mappings at x ∈ M is denoted by Hom (E1, E2)x. The triple (Hom (E1, E2) , π,M) is
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the homomorphism bundle, where the total space is

Hom (E1, E2) =
⋃
x∈M

Hom (E1, E2)x . (2.4)

Consider the trivial line bundle (M× R, pr1,M) with pr1 is the projection to the first

factor. Given a vector bundle (E , π,M) , the dual bundle (E∗, π∗,M) is defined to be

(Hom (E ,M× R) , π∗,M) = (E∗, π∗,M) . (2.5)

If V is the fiber of a vector bundle (E , π,M) then its linear algebraic dual V ∗ is the fiber of

the dual bundle (E∗, π∗,M).

Consider two bundles (E1, π1,M) and (E2, π2,M) over the same base manifold M.

The manifold

E1 ×M E2 = {(e1, e2) ∈ E1 × E2 : π1 (e1) = π2 (e2)} (2.6)

is called theWhitney product. In addition, with the projection

(π1 ×M π2) : E1 ×M E2 →M : (e1, e2)→ π1 (e1) = π2 (e2) , (2.7)

(E1 ×M E2, π1 ×M π2,M) is called a bundle product.

2.1.2. Tangent Bundle

Let M be an m−dimensional manifold. We denote by TxM the vector space of all

tangent vectors at x ∈M. The union of the tangent spaces

TM =
⋃
x∈M

TxM (2.8)
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is a 2m−dimensional manifold called tangent manifold ofM. Tangent projection (or

fibration) τM : TM→M maps a tangent vector to its base and makes (TM, τM,M) a

vector bundle with fibers isomorphic to m−dimensional Euclidean space. We will compactly

denote the tangent bundle with its total space TM or with projection τM. We will use the

local coordinates (xa) and
(
xa, vb

)
on M and TM, respectively. The canonical basis for

TxM is given by the set {∂/∂xa|x}.

Let ϕ :M→N be a smooth mapping between two manifoldsM and N , the tangent

lifting (or mapping) Tϕ : TM→ TN of ϕ is defined in a local chart U as

Tϕ (x,v) = (ϕ (x) , Dϕ (x) · v) , (2.9)

that is, Tϕ maps the base point x to the point ϕ (x) ∈ N and maps the vector v ∈ TxM

to a vector in Tϕ(x)N via the Jacobian Dϕ of the transformation ϕ. Tϕ and ϕ make the

following diagram commutative

TM
Tϕ−−−−−−−→ TN

yτM yτN
M

ϕ−−−−−−→ N .

(2.10)

A section X : M → TM of the tangent bundle is called a vector field on M. We

denote the space of all vector fields by X (M). Let X ∈ X (M) and ϕ : M −→ N be a

differentiable mapping then the commutative diagram

TM
Tϕ−−−−−−−→ TN

xX xXN
M

ϕ−−−−−→ N

(2.11)
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defines a vector field XN , called the push-forward of X by ϕ, and denoted by XN = ϕ∗X.

X (M) acts on the space of smooth function F (M) onM. Action

X [f ] = Xa ∂f

∂xa
. (2.12)

of a vector field X = Xa∂/∂xa on f ∈ F (M) is the directional derivative of f in the

direction of X. There is a bilinear, skew-symmetric binary operation on the space of vector

fields X (M) called Jacobi-Lie bracket, defined in terms of the actions of the vector fields

as

[X,Y ]JL [f ] = X [Y [f ]]− Y [X [f ]] , (2.13)

for X,Y ∈ X (M) and ∀f ∈ F (M). The Jacobi-Lie bracket satisfies the Jacobi identity

[[X,Y ]JL , Z]JL + [[Y,Z]JL , X]JL + [[Z,X]JL , Y ]JL = 0. (2.14)

With [ , ]JL, X (M) has the structure of a Lie algebra, that means, it is equipped with a

bilinear, antisymmetric binary operation which satisfies the Jacobi identity. We will turn

back to the concept of the Lie algebra in a more general setting in forthcoming sections.

2.1.3. Dual Tangent Rhombic and Canonical Involution

TTM is a 4m-dimensional tangent manifold of TM with induced coordinates
(
xa, vb; ẋd, v̇e

)
.

TTM has two fibrations over TM, one is the natural tangent bundle fibration τTM :

TTM → TM and the other is induced from τM : TM → M as a tangent mapping

TτM : TTM→ TM. The following commutative diagram, known as dual tangent rhom-
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bic

TTM
τTM−−−−−−−−→ TM

yTτM yτM
TM

τM−−−−−−−→ M.

(2.15)

summarizes the situation [3]. The diagram in Eq.(2.15) is an example of a double vector

bundle structure [46]. Dual tangent rhombic leads to the existence of an isomorphism κM

via commutativity of the following diagram

TTM
κM−−−−−−→ TTM

yTτM yτTM
TM ←−−−−−→ TM.

(2.16)

κM is an involutive map, that is, κM ◦ κM = idTTM [8]. In local coordinates, if the local

representatives of τTM and TτM are

τTM
(
xa, vb; ẋd, v̇e

)
=

(
xa, vb

)
,

T τM
(
xa, vb; ẋd, v̇e

)
=

(
xa, ẋd

)
, (2.17)

then κM is given by

κM
(
xa, vb; ẋd, v̇e

)
=
(
xa, ẋd; vb, v̇e

)
. (2.18)
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2.1.4. Cotangent Bundle

Given a manifoldM, the linear algebraic dual T ∗xM of the vector space TxM is called

the cotangent (covector) space ofM at x ∈M. The union of all cotangent spaces

T ∗M =
⋃
x∈M

T ∗xM (2.19)

is the cotangent manifold ofM. (T ∗M, πM,M) is the dual bundle of the tangent bundle

and called the cotangent bundle of M, where the projection

πM : T ∗M → M is the cotangent bundle projection. T ∗M is a 2m−dimensional

manifold with coordinates (xa, yb). We choose a basis {dxa|x} for T ∗xM dual to the basis

{∂/∂xa|x} of TxM, in the sense that,

〈
dxa,

∂

∂xb

〉
x

= δab , (2.20)

where 〈 , 〉x is the natural pairing at x, and δab is the Kronecker delta. A Section θ :M→

T ∗M of the cotangent bundle is a differential one-form which can locally be written as

θ (x) = θa (x) dxa. The space of one-forms onM is denoted by Λ1 (M). We denot the space

of one-forms onM by Λ1 (M).

Consider two differentiable manifolds M and N and a smooth map

ϕ :M→N , cotangent lift

T ∗ϕ : T ∗N → T ∗M (2.21)

of ϕ is defined by

〈T ∗ϕ (z) ,v〉 = 〈z, Tϕ (v)〉 , (2.22)

where Tϕ is the tangent mapping of ϕ, z ∈ T ∗N and v ∈ TM. Note that, cotangent lift
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switches the order of composition, that is, if ϕ :M→N and ψ : N → Q, then

T ∗ (ψ ◦ ϕ) = T ∗ϕ ◦ T ∗ψ. (2.23)

2.1.5. Pull-back Bundle

Let (E , π,M) be a bundle and ρ : N →M be a map from a manifold N to the base

manifoldM, pull-back bundle of π by ρ is the triplet (ρ∗ (E) , ρ∗ (π) ,N ) , where

ρ∗ (E) = N ×M E = {(n, e) : N × E : ρ (n) = π (e)} (2.24)

is product of manifolds and

ρ∗ (π) : ρ∗ (E) = N ×M E → N : (n, e)→ n

is the projection pr1 to first factor. Diagrammatically, we have

ρ∗ (E) = N ×M E
pr2−−−−−−−−→ E

pr1

yρ∗ (π)
yπ

N
ρ−−−−−−−→ M

(2.25)

where the projection

pr2 : ρ∗ (E) = N ×M E → E : (n, e)→ e (2.26)

is a bundle map.

As an example, we take (E , π,M) to be the tangent bundle (TM, τM,M) and N =

T ∗M so that ρ is the cotangent bundle projection πM : T ∗M → M. The pull-back of
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(TM, τM,M) by πM is then the smooth bundle (π∗M (TM) , π∗M (τM) , T ∗M) where

π∗M (TM) = T ∗M×M TM = {(z,v) : T ∗M× TM : πM (z) = τM (v)} (2.27)

is the Whitney product and π∗M (τM) is the projection pr1 : (z,v) → z to the first factor.

The following diagram

π∗M (TM) = T ∗M×M TM
pr2−−−−−−−−→ TM

pr1

yπ∗M (τM)
yτM

T ∗M
πM−−−−−−−−→ M

(2.28)

summarizes the argument. Similarly, the pull-back of (TM, τM,M) by the tangent bundle

projection τM : TM→M is the bundle (τ∗M (TM) , τ∗M (τM) = pr1, TM) where

τ∗M (TM) = TM×M TM = {(v,u) : TM× TM : τM (v) = τM (u)} . (2.29)

Observe the diagram

τ∗M (TM) = TM×M TM
pr2−−−−−−−−→ TM

pr1

yτ∗M (τM)
yτM

TM
τM−−−−−−−−→ M.

(2.30)

As another example, we take (E , π,M) to be the cotangent bundle (T ∗M, πM,M)

and N = TM so that ρ is the tangent bundle projection τM : TM→M. The pull-back of

(T ∗M, πM,M) by τM is the smooth bundle (τ∗M (T ∗M) , τ∗M (πM) = pr1, TM) where the

total space

τ∗M (T ∗M) = TM×M T ∗M = {(v, z) : TM× T ∗M : τM (v) = πM (z)} . (2.31)
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is again a Whitney product. Diagrammatically,

τ∗M (T ∗M) = TM×M T ∗M
pr2−−−−−−−−→ T ∗M

pr1

yτ∗M (πM)
yπM

TM
τM−−−−−−−−→ M

(2.32)

from which we observe that, τ∗M (T ∗M) is isomorphic to π∗M (TM) by isomorphism

π∗M (TM)↔ τ∗M (T ∗M) : (z,v)↔ (v, z) . (2.33)

Similarly, the pull-back of (T ∗M, πM,M) by πM : T ∗M→M is

(π∗M (T ∗M) , π∗M (πM) = pr1, T
∗M) , (2.34)

where the total space is

π∗M (T ∗M) = T ∗M×M T ∗M = {(w, z) : T ∗M× T ∗M : πM (w) = πM (z)} (2.35)

and we have

π∗M (T ∗M) = T ∗M×M T ∗M
pr2−−−−−−−−→ T ∗M

pr1

yπ∗M (πM)
yπM

T ∗M
πM−−−−−−−−→ M.

(2.36)

2.1.6. First Order Jet Bundle and Generalized Vector Fields

Let (E , π,M) be a bundle with coordinates (xa) and (xa, uα) for a local atlas on M

and E , respectively. Two sections φ, ψ ∈ S (π) of the bundle (E , π,M) at a point x ∈ M
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are called equivalent if their tangent mappings are equal at that point, that is, Txφ = Txψ.

Given a point x, an equivalence class containing a section φ is denoted by j1
xφ and is called

one-jet of φ. The first order jet manifold

J1π =
{
j1
xφ : x ∈M and φ ∈ S (π)

}
(2.37)

associated with (E , π,M) is the set of equivalence classes at every point x ∈M with induced

coordinates

(
xa, uλ, uλa

)
: J1π → Rm+k+mk : j1

xφ→
(
xa, uλ (φ (x)) ,

∂φλ

∂xa

∣∣∣∣∣
x

)
, (2.38)

where m = dimM and k = rankπ. We have the fibrations

π0 : J1π → E : j1
xφ→ φ (x)

π1 : J1π →M : j1
xφ→ x

of J1π over E andM, respectively. These form the commutative diagram

J1π
π0−−−−−−−−→ E

π1 ↘
yπ
M.

(2.39)

Consider the pull back bundle

(
π∗0 (TE) = J1π ×E TE , π∗0 (τE) = pr1, J

1π
)

(2.40)
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of the tangent bundle (TE , τE , E) by the projection π0 : J1π → E , that is

π∗0 (TE) = J1π ×E TE −−−−−−→ TE

pr1

yπ∗0 (τE)
yτE

J1π
π0−−−−−−−−→ E .

(2.41)

A section of π∗0 (τE) is called a generalized vector field of order 1 [48]- [50]. One may regard a

section of π∗0 (τE) as a map from J1π to TE . We additionally require that generalized vector

fields are projectable. In coordinates, a generalized vector field is then given by

ξ
(
j1
xφ
)

= ξa (x)
∂

∂xa

∣∣∣∣
x

+ ξλ
(
j1
xφ
) ∂

∂uλ

∣∣∣∣
φ(x)

. (2.42)

The prolongation pr1ξ of a generalized vector field ξ is defined by

pr1ξ = ξ + Φα
a

∂

∂uαa
, Φα

a = Dxa

(
ξα − ξbuαb

)
+ ξbuαba (2.43)

where Dxa is an operator which differentiates functions on J1π with respect to xa and

uαba (jxφ) = ∂2φα/∂xa∂xb
∣∣
x
is an element of the second order jet bundle [51]. Lie bracket

of two first order generalized vector fields

ξ = ξa
∂

∂xa
+ ξα

∂

∂uα
and η = ηa

∂

∂xa
+ ηα

∂

∂uα

is the unique first order generalized vector field

[ξ, η]pro =

m∑
a=1

(
pr1ξ (ηa)− pr1η (ξa)

) ∂

∂xa
+

k∑
α=1

(
pr1ξ (ηα)− pr1η (ξα)

) ∂

∂uα
. (2.44)

If ξ and η are ordinary vector fields on E , then [ , ]pro reduces to the Jacobi-Lie bracket of

vector fields as in Eq.(2.13).
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Similarly, we define the generalized one-forms as follows. Consider the pull-back

(
π∗0 (T ∗E) = J1π ×E T ∗E , (π0)∗ (πE) , J

1π
)
. (2.45)

of the cotangent bundle (T ∗E , πE , E) by π0 : J1π → E . A generalized one-form of order

1 is a section of this pull-back bundle

J1π ×E T ∗E −−−−−−→ T ∗E

pr1

y yπE
J1π

π0−−−−−−−−→ E .

(2.46)

In coordinates, a generalized one-form λ is written as

λ
(
j1
xφ
)

= λa
(
j1
xφ
)
dxa|φ(x) + λα

(
j1
xφ
)
duα|φ(x) . (2.47)

2.2. CONNECTIONS ON BUNDLES

2.2.1. Vertical Vectors

Let (E , π,M) be a smooth bundle with local coordinates (xa) and (xa, uα). The ver-

tical bundle associated with π is a vector subbundle of the tangent bundle TE consisting

of vectors that are parallel along the fibers, that is,

V E = kerTπ = {ξ ∈ TE : Tπ (ξ) = 0} , (2.48)

where Tπ is the tangent mapping of the projection π. We denote the vector fields on E by the

same notation ξ, since there is no risk of confusion. A vector field ξ on E is a vertical vector

field if Im (ξ) ⊂ V E . In coordinates, a vertical vector field ξ is of the form ξ = ξα∂/∂uα.
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Consider the pull-back bundle

π∗ (TM) = E ×M TM = {(e,v) ∈ E × TM : π (e) = τM (v)} (2.49)

of (TM, τM,M) by the projection π : E →M. There is a homomorphism

Sπ : TE → π∗ (TM) = E ×M TM

: ξ → (τE (ξ) , Tπ (ξ)) , (2.50)

from (TE , τE , E) to (π∗ (TM) , π∗ (τM) , E) [52]. The kernel of Sπ consists of vertical vectors

on π and hence, one has the following short exact sequence of bundle morphisms

0 → V E
ı−−−−→ TE

Sπ−−−−−−→ π∗ (TM) → 0 (2.51)

where ı : V E ↪→ TE is the inclusion mapping.

There is no canonical way to define a direct complement to V E in TE . To establish a

decomposition of TE , one needs an additional geometric structure on π, called a connection

[53—56]. The splitting of sequence in Eq.(2.51) is the same as finding a direct complement

to V E . To split the sequence, one needs to define an operator

Γ : π∗ (TM) = E×MTM→ TE (2.52)

such that Sπ ◦Γ = id. We consider Γ as a fiber-preserving mapping from TxM to TeE , where

π (e) = x and hence, take Γ ∈ T ∗M⊗ TE . Once a connection Γ is introduced, the tangent

bundle TE decomposes into vertical V E and horizontal

HE = Γ (π∗ (TM)) (2.53)

subbundles and the total space can be written as the direct sum of vertical and horizontal

subbundles, that is TE = V E ⊕HE .
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2.2.2. Semi-simple Forms

Consider the pull-back bundle (π∗ (T ∗M) , π∗ (πM) , E) of (T ∗M, πM,M) by

π : E → M, where π∗ (T ∗M) is the Whitney product E ×M T ∗M and π∗ (πM) = pr1

is the projection. We define a mapping µπ from π∗ (T ∗M) to T ∗E by the commutativity of

the following diagram

E ×M T ∗M
π∗E (π) = pr2−−−−−−−−−−→ T ∗M

pr1

y µπ ↘
yT ∗π

E
πE←−−−−−−−− T ∗E .

(2.54)

The image space of the mapping µπ is called the space of semi-simple forms (or horizon-

tal covectors) and denoted as H∗E [49]. In other words, if λ ∈ H∗E , we require existence

of α ∈ T ∗M such that λ = T ∗π (α). For ξ ∈ V E

〈λ, ξ〉 = 〈T ∗π (α) , ξ〉 = 〈α, Tπ (ξ)〉 = 0, (2.55)

which means that, horizontal covectors annihilate vertical vectors.

Recall that a connection Γ ∈ T ∗M⊗ TE , since µπ identifies T ∗M with H∗E we take

Γ ∈ H∗E ⊗ TE . If we add a normalization condition Γ (λ) = λ, for all λ ∈ H∗E , Γ can be

written, in local coordinates (xa, uα) on E , as

Γ = dxa ⊗
(

∂

∂xa
+ Γαa

∂

∂uα

)
, (2.56)

where a compatibility condition on the scalars Γαa = Γαa (x,u) is imposed by demanding that

the local structure is preserved under coordinate transformations. In particular, if Γαa’s are

linear with respect to fiber coordinates, namely Γαa (x,u) = Γαβa (x)uβ, then the compatibility
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condition reduces to the well-known relation

Γᾱβ̄ā =
∂uᾱ

∂uα
∂uβ

∂uβ̄
∂xa

∂xā
Γαβa +

∂uᾱ

∂uα
∂2uα

∂xā∂uβ̄
(2.57)

for transformation of components Γαβa of a connection under coordinate transformation

(xa, uα) to (xā, uᾱ) [57].

We thus reduce the problem of finding a direct complement to V E to deciding the

scalars Γαa . Once these transformations are chosen, the horizontal part Hξ and vertical

part V ξ of a vector ξ are

H (ξ) = Γ (ξ) := ξ · Γ and V (ξ) = ξ −Hξ. (2.58)

In coordinates, if ξ = ξa
∂

∂xa
+ ξα

∂

∂uα
, then

Hξ = ξa
(

∂

∂xa
+ Γαa

∂

∂uα

)
and V ξ = (ξα − Γαa ξ

a)
∂

∂uα
. (2.59)

2.2.3. Connection as a Projection on Cotangent Bundle

The definition V E in Eq.(2.48) gives no clue for the dual bundle V ∗E of the vertical

bundle. One may attempt to construct a dual space by choosing {duα} as the generators.

This fails to be globalized because the set {duα} is not invariant under coordinate transfor-

mations. Hence, one must introduce a dual basis in the form

{duα − Γαadx
a : α = 1, ..., rank (π)} (2.60)

where Γαa are the same as scalars in Eq.(2.56) [58]. Thus, defining a connection is the same

as defining the dual V ∗E of V E . The dual of the sequence in Eq.(2.51) is given by

0 → (π∗ (TM))∗
S∗π−−−−−−→ T ∗E

s−−−−→ V ∗E → 0 (2.61)
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where s is a surjective operator and S∗π is the dual of Sπ. Γ decomposes simultaneously the

dual sequence in Eq.(2.61) and T ∗E can be written as V ∗E ⊕H∗E where H∗E is the space

of semi-simple one-forms.

Locally, let λ = λadx
a + λαdu

α be a one-form on E . Then, the image of λ under Γ is

a semi-simple one-form

H∗λ = Γ · λ = (λa + Γαaλα) dxa. (2.62)

The vertical component of λ is

V ∗λ = λ−H∗λ = λα (duα − Γαadx
a) . (2.63)

We have two alternative definitions ofH∗E given by S∗π ((π∗ (TM))∗) and µπ (π∗ (T ∗M)),

where the former one is coming from the exact sequence in Eq.(2.61) and the letter one is

coming from the commutative diagram in Eq.(2.54). From this identification, we have

(π∗ (TM))∗ ' π∗ (T ∗M) . (2.64)

In particular, we replace π : E →M with τM : TM→M and πM : T ∗M→M in Eq.(2.64)

to obtain

(τ∗M (TM))∗ ' τ∗M (T ∗M) , (π∗M (TM))∗ ' πM∗ (T ∗M) , (2.65)

respectively.

2.2.4. Holonomic Lifts and Vertical Representatives

Tangent mapping of a section φ : M → E of the bundle π : E → M satisfies the

requirements of being a connection. Two sections which have the same tangent mappings

define the same connection. Equivalently, choosing an element of the jet bundle J1π splits
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the exact sequence in Eq.(2.51) uniquely [49, 50]. Geometrically, this hides behind the fact

that, J1π is a subbundle of T ∗M⊗ TE [59].

Let (E , π,M) be a smooth bundle. Consider a vector field X ∈ X (M) on the base

manifoldM, and let φ be a section of the bundle π, then the holonomic lift of the vector

X (x) ∈ TxM by φ is defined by

(
j1
xφ, Tφ (X (x))

)
∈ π∗0 (TE) = J1π ×E TE , (2.66)

where J1π ×E TE is the Whitney product. Let X = Xa∂/∂xa, then the holonomic lift of

the vector field X is given by

Xhol = Xa ∂

∂xa
+Xa∂φ

λ

∂xa
∂

∂uλ
= Xa ∂

∂xa
+Xauλa

(
j1
xφ
) ∂

∂uλ
. (2.67)

We define the holonomic part of a projectable vector field ξ ∈ X (E) as the holonomic

lift of its push forward by π, that is

Hξ = (π∗ξ)
hol . (2.68)

Hξ is a generalized vector field of order 1. We define a connection 1− 1 tensor

ΓJ= dxa ⊗
(

∂

∂xa
+ uαa

∂

∂uα

)
(2.69)

satisfying Hξ = ΓJξ. The vertical (or evolutionary) representative

V ξ = ξ − ΓJ (ξ) =
(
ξα − ξauλa

) ∂

∂uλ
(2.70)

of the vector field ξ is vertical valued generalized vector field of order 1 [49—51].

Lemma 2.1. The operation in Eq.(2.68) is a Lie algebra isomorphism into.

We consider two projectable vector fields ξ and η on E . A straight forward calculation
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gives

[ΓJ (ξ) ,ΓJ (η)]pro = [Hξ,Hη]pro = H [ξ, η] = ΓJ [ξ, η] . (2.71)

where [ , ]pro is the Lie bracket for generalized vector fields in Eq.(2.44). On the other hand,

the generalized bracket of vertical representatives satisfies

[V ξ, V η]pro = V [ξ, η]pro +B (ξ, η) , (2.72)

where B is a vertical-vector valued two-form

B (ξ, η) = [Hη, V ξ]pro − [Hξ, V η]pro . (2.73)

The connection ΓJ decomposes the one-form sections into direct sum of two generalized

one-forms. For λ = λadx
a + λαdu

α the horizontal and the vertical parts are

H∗λ = ΓJ (λ) = (λa + λαu
α
a ) dxa and V ∗λ = λα (duα − uαadxa) . (2.74)

V ∗λ is particularly called a contact one-form [60].

2.3. CALCULUS ON MANIFOLDS

2.3.1. Differential Forms and Exterior Derivative

A differential p-form onM is a skew-symmetric p−multilinear functional on X (M)

and can be uniquely represented in local coordinates by

ω (x) =
1

p!
ωa1a2...ap (x) dxa1 ∧ dxa2 ∧ ... ∧ dxap . (2.75)
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Here, the wedge product ∧ of two differential one-forms dxa ∧ dxb is defined by an alter-

nating tensor product

dxa ⊗ dxb − dxb ⊗ dxa (2.76)

and extended by linearity [61,62]. The set of differential p−forms are closed under addition

and scalar multiplication, and they form the vector space ΛpM over the field of reals. The

direct sum

Λ (M) := Λo (M)⊕ Λ1 (M)⊕ ...⊕ Λm (M) (2.77)

is a graded algebra called the Grassmann algebra, where the space of zero forms Λo (M)

is assumed to be the space of smooth functions F (M) on M and the space of one-forms

Λ1 (M) is the space of sections of the cotangent bundle T ∗M.

On Λ (M) , the exterior derivative

d : Λp (M)→ Λp+1 (M) (2.78)

is a linear mapping over R and is defined by

dω (X0, X1, , ..., Xp) =

p∑
i=0

Xi

(
(−1)i ω

(
X0, X1, ..., X̂i, ..., Xp

))
(2.79)

−
∑
i<j

(
(−1)i+j ω

(
[Xi, Xj ] , X0, X1, ..., X̂i, ..., X̂j , ..., Xp

))
,

where the vector fields with hat, e.g. X̂i, are omitted. Exterior derivation is a nilpotent

operator, that is, d2 = 0 and satisfies the generalized Leibniz rule

d (ω ∧ α) = dω ∧ α+ (−1)p ω ∧ dα, (2.80)

for ω ∈ Λp (M) and α ∈ Λ (M) . In coordinates, the exterior derivative of ω in Eq.(2.75) is

dω =
1

p!

∂ωa1a2...ap

∂xa
dxa ∧ dxa1 ∧ ... ∧ dxap , (2.81)
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and, in particular, df = (∂f/∂xa) dxa, for f ∈ F (M).

A p-form ω is called a closed form, if dω = 0. ω is called an exact form if there

exist a (p− 1)-form θ such that ω = dθ. Every exact form is closed whereas the inverse of

this fact is not true. Poincaré lemma states that, a closed p-form ω on open contractible

subsets ofM is exact [47,60].

Let N andM be two smooth manifolds and ϕ : N →M be a differentiable mapping.

The pull back operator

ϕ∗ : Λ (M)→ Λ (N ) (2.82)

maps differential forms on M to differential forms on N . In particular, the pull-back of a

0-form f onM is ϕ∗f = f ◦ϕ and, the pull-back of a p-form ω onM is a p-form ϕ∗ω on N

defined by

ϕ∗ω (X1, X1, ..., Xp) = ω (ϕ∗ (X1) , ϕ∗ (X2) , ..., ϕ∗ (Xp)) , (2.83)

where X1, X1, ..., Xp are vector fields on N and ϕ∗ (Xi) denotes the push forward of Xi by

ϕ. In coordinates, if ω is given by Eq.(2.75) and
(
qi
)
denotes the coordinates of N , then

(ϕ∗ω) (q) =
1

p!
ωa1a2...ap (ϕ (q))

∂ϕa1

∂qi1
∂ϕa2

∂qi2
...
∂ϕap

∂qip
dqi1 ∧ dqi2 ∧ ... ∧ dqip . (2.84)

The pull back operation respects to the exterior derivative and wedge product operation,

that is,

ϕ∗dω = dϕ∗ω and ϕ∗ (ω ∧ α) = ϕ∗ω ∧ ϕ∗α

∀ω, α ∈ Λ (M) .
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2.3.2. Interior product and Lie Derivative

The exterior derivative raises the degree of a differential form one up, whereas the

interior product

iX : Λp (M)→ Λp−1 (M) (2.85)

lowers the degree of a differential form one down. For ω ∈ Λp (M) and X,X1, ..., Xp−1 ∈

X (M), this is defined by

iXω (X1, ..., Xp−1) = ω (X,X1, ..., Xp−1) . (2.86)

As in the case of exterior derivative, interior product satisfies the generalized Leibniz identity,

that is, for ω ∈ Λp (M) and α ∈ Λ (M) ,

iX (ω ∧ α) = iXω ∧ α+ (−1)p ω ∧ iXα. (2.87)

One has also that iX1
◦ iX2

= −iX2
◦ iX1

.

The Lie derivative £X is a linear operation acting on functions, vector fields and one-

forms. Lie derivative £Xf of a function f is the directional derivative X(f) of f in the

direction X. Lie derivative with respect to X of a vector field Y is the Jacobi-Lie bracket of

vector fields

£XY = [X,Y ]JL , (2.88)

as given in Eq.(2.13). Lie derivative of a p−form ω is a p−form and is defined by the Cartan’s

formula

£Xω = diXω + iXdω. (2.89)
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We have the following commutation relations

d ◦£X = £X ◦ d and [£X , iY ] = [iX ,£Y ] = i$XY , (2.90)

where [£X , iY ] = £X ◦ iY − iY ◦£X [1, 47,60].

2.4. GEOMETRIC STRUCTURES ON MANIFOLDS

2.4.1. Volume Manifolds

A volume form on an m dimensional manifoldM is a nowhere vanishing top form,

i.e. m−form µ, with µ (x) 6= 0, for all x ∈ M. The pair (M, µ) is called a volume (or

orientable) manifold. An orientation of M is the class of [µ] = {fµ : f > 0}. Let

(M, [µ]) and (N , [η]) be two volume manifolds, a smooth map ϕ : M → N is volume

preserving if

ϕ∗η = µ (2.91)

and orientation preserving if ϕ∗ [η] = [µ].

Let X be a vector field on (M, µ) . The divergence, divµX, of X is defined by

(divµX)µ = £Xµ. (2.92)

A vector field X is called divergence free (or solenoidal) if divµX = 0. The equality

divµ [X,Y ] = X (divµ Y )− Y (divµX) (2.93)

shows that, if two vector fields X and Y are divergence free then so is [X,Y ]JL and hence, we

conclude that the space of divergence free vector fields Xdiv (M) constitutes a Lie algebra,

that is, the space of divergence free vector fields is closed under the Jacobi-Lie bracket.
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2.4.2. Symplectic Manifolds

A two-form ΩM on M is called nondegenerate if ΩM (X,Y ) = 0 for all X ∈ X (M)

implies Y = 0. A symplectic manifold is a pair (M,ΩM) where ΩM is a closed, nonde-

generate two-form on M [63—65]. Nondegeneracy of the symplectic form ΩM leads to the

isomorphism

Ω[
M : X (M)→ Λ1 (M) : X → iXΩM. (2.94)

The fiberwise inverse of Ω[
M is Ω]

M : Λ1 (M) → X (M). Ω[
M and Ω]

M are called musical

isomorphisms.

Proposition 2.2. The cotangent manifold is a symplectic manifold.

The existence of symplectic structure on a cotangent bundle T ∗M follows from the

double vector bundle structure of TT ∗M, given diagrammatically by

TT ∗M
τT ∗M−−−−−−−−−→ T ∗M

yTπM yπM
TM

τM−−−−−−−→ M.

(2.95)

where TπM denotes the tangent mapping of the fibration πM : T ∗M → M and τT ∗M :

TT ∗M → T ∗M is the natural projection. We define the canonical (Liouville) one-form

θT ∗M on T ∗M as

θT ∗M (ξ) = 〈τT ∗M (ξ) , TπM (ξ)〉 , (2.96)

where ξ ∈ TT ∗M and 〈 , 〉 is the natural pairing between TM and T ∗M. Locally, θT ∗M =

yadx
a. The exterior derivative

ΩT ∗M = −dθT ∗M = dxa ∧ dya (2.97)
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of θT ∗M defines a symplectic two-form on T ∗M called the canonical symplectic two-

form. Darboux’s theorem states that all symplectic two-forms can be put into the form in

Eq.(2.97) in a coordinate system called Darboux’s coordinates.

A (globally) Hamiltonian vector field on a symplectic manifold (M,ΩM) is the

unique vector field Xh satisfying

iXhΩ = dh, (2.98)

for a real valued function h called Hamiltonian function. Eq.(2.98) can be recast as

Ω[
M (Xh) = dh. Since Ω[

M is an isomorphism, one can always find the corresponding Hamil-

tonian vector field Xh for a given smooth function h. X ∈ X (M) is called a locally Hamil-

tonian vector field if iXΩM is a closed form, that is diXhΩM = 0. Poincaré’s lemma

guaranties the existence of a local Hamiltonian function corresponding to a locally Hamil-

tonian vector field, but not necessarily a global one.

A symplectic manifold (M,ΩM) of dimension 2m is a volume manifold with sym-

plectic volume µΩ = (ΩM)m . A Hamiltonian vector field, even if it is local, is divergence

free with respect to the symplectic volume, because

LXµΩ = LX (ΩM)m = (LXΩM)m = (diXΩM + iXdΩM)m = 0. (2.99)

In Darboux’s coordinates, the Hamiltonian vector field on T ∗M for the Hamiltonian

function h ∈ F (M) is

Xh =
∂h

∂ya

∂

∂xa
− ∂h

∂xa
∂

∂ya
(2.100)

and the equations

ẋa =
∂h

∂ya
, ẏa = − ∂h

∂xa
(2.101)
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are called Hamilton’s equations. In Darboux’s coordinate, the symplectic volume is

µΩ = dx1 ∧ ... ∧ dxm ∧ dy1 ∧ ... ∧ dym (2.102)

and the divergence of X = Xa∂/∂xa +Xa∂/∂ya with respect to the symplectic volume is

divµΩ
(X) =

∂Xa

∂xa
+
∂Xa

∂ya
. (2.103)

Proposition 2.3. Tangent manifold of a symplectic manifold is symplectic.

We use the dual tangent rhombic in Eq.(2.15) to define a one-form θTM on the tangent

bundle TM of a symplectic manifold (M,ΩM) as follows

θTM (ξ) = ΩM (TτM (ξ) , τTM (ξ)) , ∀ξ ∈ TTM,

where TτM is the tangent mapping of τM and τTM is the natural tangent bundle projection

of TTM to TM. The exterior derivative ΩTM = dθTM of θTM is the Tulczyjew’s symplectic

two-form on TM [8].

In particular, we takeM to be the canonical symplectic manifold
(
T ∗Q,ΩT ∗Q = dqi ∧ dpi

)
with coordinates

(
qi, pj

)
. The one-form θTT ∗Q and Tulczyjew’s two-form dθTT ∗Q are, in in-

duced coordinates
(
qi, pj ; q̇

i, ṗj
)
on TT ∗Q, given by

θTT ∗Q = q̇idpi − ṗidqi, ΩTT ∗Q = dθTT ∗Q = dq̇i ∧ dpi − dṗi ∧ dqi. (2.104)

Let (M1,Ω1) and (M2,Ω2) be two symplectic manifolds and ϕ : M1 → M2 be a dif-

feomorphism. ϕ is called a symplectic (or canonical) diffeomorphism if ϕ∗Ω2 = Ω1.

Compositions of two canonical diffeomorphisms is canonical.
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2.4.3. Poisson Manifolds

A Poisson structure on a manifold P is a bilinear map

{ , } : F (P)×F (P)→ F (P) , (2.105)

which takes two smooth functions to a new one with properties:

1. skewsymmetry: {h, f} = −{f, h} ,

2. Jacobi identity: {f, {h, g}}+ {h, {g, f}}+ {g, {f, h}} = 0,

3. Leibniz identity: {fh, g} = f {h, g}+ {f, g}h.

The pair (P, { , }) is called a Poisson manifold [5]. For a function h ∈ F (P) , we

define the Hamiltonian vector field Xh on P by

Xh (f) = {f, h} . (2.106)

If the Hamiltonian vector field of a non-constant function C is identically zero, then the

function C is called a distinguished (or Casimir) function. Poisson brackets of Casimir

functions vanishes {C, f} = 0, for all f ∈ F (P) . If Xh is a Hamiltonian vector field for a

Hamiltonian function h, then it is also Hamiltonian vector field of the function h+ C, that

is, Xh+C = Xh. We have the following lemma [3,4].

Lemma 2.4. If Xh and Xf are Hamiltonian vector fields for h and f , respectively, then

[Xh, Xf ]JL = −X{h,f}. (2.107)

Every symplectic manifold (M,ΩM) is a Poisson manifold with the Poisson structure

{f, h}ΩM = ΩM (Xf , Xh) , (2.108)
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where Xf and Xh are Hamiltonian vector fields in the sense of Eq.(2.98). The closedness of

ΩM corresponds to the Jacobi identity for { , }ΩM .

Let ϕ : P1 → P2 be a diffeomorphism between two Poisson manifolds (P1, {., .}1) and

(P2, {., .}2) . ϕ is called a Poisson (or canonical) map, if

{f, h}2 ◦ ϕ = {f ◦ ϕ, h ◦ ϕ}1 , (2.109)

for all f, h ∈ F (P2) . If a Poisson structure is induced from a symplectic form, then a Poisson

map is also a symplectic diffeomorphism.

We define an equivalence relation ∼ on the Poisson manifold P. We call z ∈ P and

w ∈ P equivalent, if there exists a finite sequence z0, ..., zk such that z0 = z and zk = w,

and all zi and zi+1 can be joined by a flow of a Hamiltonian vector field. The equivalence

classes of this relationship, that is elements of P/ ∼, are symplectic manifolds. They are

called symplectic leaves of the Poisson manifold [66]. If a Poisson structure is induced

from a symplectic form, then there exists a unique symplectic leaf.

Proposition 2.5. Given a Poisson manifold P, centered at any point z ∈ P, there are

coordinates

(
x1, x2, ..., xn, y1, y2, ..., yn, w

1, w2, ..., wk
)

such that

{
xa, xb

}
= 0, {ya, yb} = 0,

{
xa, wi

}
= 0{

ya, w
i
}

= 0,
{
wi, wj

}
= 0, {xa, yb} = δab .

In this coordinates system, Poisson bracket of two functions f and h is

{f, h} =
∂f

∂xa
∂h

∂ya
− ∂f

∂ya

∂h

∂xa
. (2.110)
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For a Hamiltonian function h, the Hamiltonian vector field

Xh =
∂h

∂ya

∂

∂xa
− ∂h

∂xa
∂

∂ya
(2.111)

looks like as in symplectic case whereas the equations of motion are

ẋa = {h, xa} , ẏa = {h, ya} and ẇi = 0. (2.112)

A Casimir function is a function of variables
(
wi, i = 1, ..., k

)
. When k = 0, Poisson structure

can be induced from a symplectic form and the proposition is reduced to Darboux’s theorem.
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3. LIFTS OF VECTOR FIELDS AND FORMS

3.1. COMPLETE TANGENT AND COTANGENT LIFTS

The flow ϕt :M→M of a vector field X onM satisfies

X (x) =
d

dt
ϕt (x)|t=0 , (3.1)

for all x ∈ M. Induced mappings ϕct on the tangent bundle TM are defined through the

following equation

τM ◦ ϕct = ϕt ◦ τM. (3.2)

ϕct constitutes a one-parameter group of diffeomorphisms on TM and called complete

tangent lift of the flow ϕt [67], [68]. Note that the tangent map Tϕt of ϕt satisfies the

conditions of being a tangent lift. The infinitesimal generator of the flow ϕct is denoted by

Xc and is called the complete tangent lift of X. From differentiation of Eq.(3.2) with

respect to t at t = 0 we obtain the equation

TτM ◦Xc = X ◦ τM. (3.3)

involving X and Xc. In local coordinates (xa, va) of TM, the complete tangent lift of X =

Xa∂/∂xa is computed to be

Xc = Xa ∂

∂xa
+ vb

∂Xa

∂xb
∂

∂va
. (3.4)

The tangent map TX : TM→ TTM of a vector field X is called the linearization

of the vector field X. The value of the linearization at a point x ∈ M is given locally and
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explicitly as

TX = (xa, Xa, va,
∂Xa

∂xb
vb). (3.5)

The tangent lift Xc and linearization TX of X are connected to each other with

κM ◦ TX = Xc,

where κM is the canonical involution on TTM given in Eq.(2.18) [45].

Similarly, the complete cotangent lift of a flow ϕt is a one-parameter group of

diffeomorphisms ϕc∗t : T ∗M→ T ∗M satisfying

πM ◦ ϕc∗t = ϕt ◦ πM, (3.6)

where πM is the natural projection of T ∗M to M. The cotangent lift of the inverse flow

T ∗ϕ−t satisfies the argument in Eq.(3.6). The vector field X
c∗, which has the flow ϕc∗t , is

called the complete cotangent lift of X [69]. The infinitesimal version of the Eq.(3.6) is

TπM ◦Xc∗ = X ◦ πM. (3.7)

One may relate a vector field X ∈ X (M) and its complete tangent and cotangent lifts

Xc ∈ X (TM) and Xc∗ ∈ X (T ∗M) via the mappings

c : X (M)→ X (TM) : X → Xc

c∗ : X (M)→ X (T ∗M) : X → Xc∗. (3.8)

We have the following proposition [11,70].

Proposition 3.1. Maps given in Eqs.(3.8) are Lie algebra isomorphism intos, that is,

[X,Y ]c = [Xc, Y c] and [X,Y ]c∗ = [Xc∗, Y c∗] , (3.9)
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for all X,Y ∈ X (M) .

3.1.1. Hamiltonian Structures of Complete Lifts

The complete cotangent lift Xc∗ of a vector field X on M is a Hamiltonian vector

field on T ∗M for the Hamiltonian function P (X) = iXc∗θT ∗M called the momentum

function [11, 52, 68]. Let X = Xa∂/∂xa. In Darboux’s coordinates (xa, yb) on T ∗M,

the momentum function is P (X) (xa, yb) = ybX
b and the complete cotangent lift has the

expression

Xc∗ = XP(X) = Xa ∂

∂xa
− yb

∂Xb

∂xa
∂

∂ya
. (3.10)

P can be considered as a map P : X (M) → FL (T ∗M) , where FL (T ∗M) is the space of

functions on T ∗M which are linear on fibers.

If (M,ΩM) is a symplectic manifold then its tangent bundle TM carries a symplectic

structure as given in Eq.(2.104).

Proposition 3.2. The complete tangent lift of a Hamiltonian vector field Xh on a symplec-

tic manifold (M,ΩM) is Hamiltonian.

In particular, we take (M,ΩM) to be the canonical symplectic manifold (T ∗Q,ΩT ∗Q)

and compute the tangent lift of a generic Hamiltonian vector field on T ∗Q. In Darboux’s

coordinates
(
qi, pj

)
on T ∗Q, the symplectic two-form is ΩT ∗Q = dqi∧dpi and the Hamiltonian

vector field for h becomes

Xh(q,p) =
∂h

∂pi

∂

∂qi
− ∂h

∂qi
∂

∂pi
∈ X(T ∗Q). (3.11)

For the induced coordinates
(
qi, pj ; q̇

i, ṗj
)
on TT ∗Q, the Tulczyjew symplectic two-from on

TT ∗Q is given by

ΩTT ∗Q = dqi ∧ dṗi + dq̇i ∧ dpi. (3.12)
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The complete tangent lift is computed as

Xc
h (z, ż) = Xh +XT ∗Q

(
∂h

∂pi

)
∂

∂q̇i
−XT ∗Q

(
∂h

∂qi

)
∂

∂ṗi
∈ X(TT ∗Q), (3.13)

where XT ∗Q = τTT ∗Q (Xc
h) = q̇i∂/∂qi + ṗi∂/∂pi. X

c
h is a Hamiltonian vector field for the

Hamiltonian function

H̃ = ΩT ∗Q (Xh, XT ∗Q) =
∂h

∂pi
ṗi +

∂h

∂qi
q̇i ∈ F(TT ∗Q). (3.14)

The complete cotangent lift Xc∗
h ∈ X(T ∗T ∗Q) of Xh ∈ X(T ∗Q) with induced coordinates

Π =
(
qi, pi; Πi,Π

i
)
on T ∗T ∗Q is

Xc∗
h (Π) = Xh(z) + Π]

(
∂h

∂qi

)
∂

∂Πi
+ Π]

(
∂h

∂pi

)
∂

∂Πi
∈ X(T ∗T ∗Q), (3.15)

where Π] is image of Π by the musical isomorphism Ω]
T ∗Q, which, in coordinates, is given

by Π] = Πi∂/∂qi − Πi∂/∂pi. The corresponding degenerate Hamiltonian function of the

Hamiltonian vector field Xc∗
h is

H = 〈Π, Xh〉 =
∂h

∂pi
Πi −

∂h

∂qi
Πi ∈ F(T ∗T ∗Q) (3.16)

where 〈 , 〉 is the natural pairing between TT ∗Q and T ∗T ∗Q. We have the relation H̃ =(
Ω[
T ∗Q

)∗
H between Hamiltonian functions H̃ and H.

3.1.2. Decompositions of Complete Lifts

Recall the complete tangent lift

Xc = Xa (x)
∂

∂xa
+ vb

∂Xa

∂xb
∂

∂va
∈ X (TM) (3.17)
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of a vector field X = Xa (x) ∂/∂xa ∈ X (M). The vertical representatives and the horizontal

part of Xc are

V Xc = (vb
∂Xa

∂xb
−Xa ∂v

b

∂xa
)
∂

∂vb
, (3.18)

HXc = Xa ∂

∂xa
+Xa ∂v

b

∂xa
∂

∂vb
. (3.19)

For the mapping κM : TTM→ TTM defined in Eq.(2.18), we have the following commu-

tations

κM ◦HXc = H ◦ κM (Xc) = H (TX) and κM ◦ V Xc = V ◦ κM (Xc) . (3.20)

The holonomic lift Xhol of X coincides with horizontal part of Xc, that is, HXc = Xhol.

Similarly, the complete cotangent lift

Xc∗ = Xa ∂

∂xa
− yb

∂Xb

∂xa
∂

∂ya
(3.21)

of the vector field X ∈ X (M) is defined in Eq.(3.10). The vertical representative and the

horizontal part of Xc∗ are

V Xc∗ = −(yb
∂Xb

∂xa
+Xb∂ya

∂xb
)
∂

∂ya
, (3.22)

HXc∗ = Xa ∂

∂xa
+Xa ∂yb

∂xa
∂

∂yb
. (3.23)

Lemma 3.3. The mappings defined by

V c : X (M)→ X (TM) : X → V Xc,

V c∗ : X (M)→ X (T ∗M) : X → V Xc∗ (3.24)

are Lie algebra isomorphism intos.
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Indeed, the vector valued two-form

B (ξ, η) = [Hη, V ξ]pro − [Hξ, V η]pro , (3.25)

in Eq.(2.73) vanishes for the lifts, that is, B (Xc, Y c) = 0 and B (Xc∗, Y c∗) = 0 for all

X,Y ∈ X (M) , therefore, one has the isomorphisms

V [Xc, Y c] = [V Xc, V Y c]pro and V [Xc∗, Y c∗] = [V Xc∗, V Y c∗]pro . (3.26)

Using Eqs.(3.9) the desired results

V c [X,Y ] = [V Xc, V Y c]pro and V c∗ [X,Y ] = [V Xc∗, V Y c∗]pro (3.27)

are obtained.

3.2. VERTICAL LIFTS

3.2.1. Vertical Lifts of Vectors

Vertical lift operator

ver : TM×M TM→ TTM : (v,u)→ d

dt
(v + tu)|t=0 (3.28)

is a mapping which takes an element of the Whitney product

TM×M TM = {(v,u) ∈ TM× TM : τM (v) = τM (u)} (3.29)

to the iterated tangent bundle TTM [3, 52]. Image space of ver consists of vertical vectors,

that is the vectors in kerTτM = V TM. In local coordinates, if v =
(
xa, vb

)
and u =

(
xa, ub

)
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then

ver
((
xa, vb

)
,
(
xa, ud

))
=
(
xa, vb; 0, ud

)
. (3.30)

If the first entry v of the Whitney product (v,u) is fixed then

verv : TM→ V TM : u→ verlift (v,u) (3.31)

is a vertical vector field. Vertical lift Xv of a vector field X on M is a vector field on

TM, that is an element of X (TM) defined by

Xv (v) = ver (v,X (x)) . (3.32)

If X = Xa∂/∂xa, then vertical lift of X is Xv = Xa∂/∂va.

The Jacobi-Lie bracket of two vertical lifts is zero, that is,

[Xv, Y v] = 0 (3.33)

hence, the space of vertical lifts is a Lie subalgebra of the space of vector fields on TM. The

Lie bracket of a vertical lift Xv and a complete lift Y c is a vertical lift

[Xv, Y c] = [X,Y ]v . (3.34)

If {X1, X2, .., Xm} is a local basis for TM, then

{Xv
1 , X

v
2 , .., X

v
m, X

c
1, X

c
2, .., X

c
m} (3.35)

is a local basis for TTM [71].
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3.2.2. Decompositions of TTM and T ∗TM

Consider the pull-back bundle (τ∗M (TM) ,pr1, TM) in Eq.(2.30), where the total

space τ∗M (TM) = TM×M TM is the Whitney product in Eq.(2.29). The short exact

sequence in Eq.(2.51) for the tangent bundle τM : TM→M takes the particular form

0 → V TM
ı−−−−→ TTM

SτM−−−−−−−→ τ∗M (TM) → 0 , (3.36)

where SτM (ξ) = (τTM (ξ) , T τM (ξ)) . For every v ∈ TM, verv is an isomorphism of TxM

with the vertical subspace VvTxM of TvTxM, where τM (v) = x. Thus, ver establishes an

isomorphism between TM×MTM = τ∗M (TM) and V TM. If a connection Γ is introduced

on the bundle τM : TM→M, the iterated tangent bundle TTM is decomposed into the

direct sum of two copies of τ∗M (TM) , that is

TTM ' V TM⊕HTM' τ∗M (TM)⊕ τ∗M (TM)

' τ∗M (TM⊕ TM) , (3.37)

since HTM ' Γ (τ∗M (TM)) and ver (τ∗M (TM)) = V TM. The identification of the pull

back bundle τ∗M (TM⊕ TM) and the iterated bundle TTM is summarized in the diagram

TTM
ΞΓ−−−−−−−→ TM⊕ TM

yτTM yτM
TM

τM−−−−−−−−→ M

(3.38)

where the bundle morphism ΞΓ is explicitly given by

ΞΓ (ξ) =
(
pr2 ◦ ver−1 ◦ (I − Γ) (ξ) ,pr2 ◦SτM (ξ)

)
. (3.39)
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For the holonomic lift operator ΓJ = dxa ⊗
(
∂/∂xa +

(
∂vb/∂xa

) (
∂/∂vb

))
in Eq.(2.69), we

have

ΞΓJ
: ξa

∂

∂xa
+ ξ̄

a ∂

∂va
→
((

ξ̄
a − ∂va

∂xb
ξb
)

∂

∂xa
, ξa

∂

∂xa

)
. (3.40)

For an alternative exposition of this decomposition we refer to [72] and the references therein.

Assume that a connection Γ on τM : TM→M is defined. Then, we obtain an

invariant way of defining the dual space V ∗TM of the vertical bundle V TM. The linear

algebraic dual of the map verv : TxM → VvTM is ver∗v : V ∗v TM → T ∗xM. We define the

mapping

ver∗ : V ∗TM→ TM×MT ∗M

: λ→ (πTMλ = v, ver∗v λ) , (3.41)

which may be considered as the dual of ver. The image space TM×MT ∗M of ver∗ is the

Whitney product which is the total space of the pull-back bundle (τ∗M (T ∗M) ,pr1, TM) in

Eq.(2.32). ver∗ identifies V ∗TM with TM×MT ∗M = τ∗M (T ∗M). After the identification

τ∗M (T ∗M) ' (τ∗M (TM))∗ = H∗T ∗M in Eq.(2.65) the dual of the sequence in Eq.(3.36)

takes the form

0 → τ∗M (T ∗M)
S∗τM−−−−−−−→ T ∗TM

s−−−−→ τ∗M (T ∗M) → 0 , (3.42)

where S∗τM is the dual of SτM and s is a surjection. Thus, the cotangent bundle T ∗TM is

decomposed as

T ∗TM ' V ∗T ∗M⊕H∗T ∗M' τ∗M (T ∗M)⊕ τ∗M (T ∗M)

' τ∗M (T ∗M⊕ T ∗M) (3.43)
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and we have the commutative diagram

T ∗TM
ΘΓ−−−−−−−→ T ∗M⊕ T ∗M

yτT ∗M yπM
TM

τM−−−−−−−→ M

(3.44)

where ΘΓ is a bundle morphism given explicitly by

ΘΓ (λ) =
(
pr2 ◦ ver∗ ◦ (I − Γ) (λ) , pr2 ◦µ−1

τM ◦ Γ (λ)
)
, (3.45)

with µ−1
τM : T ∗TM → TM×M T ∗M being the inverse of the mapping µτM obtained from

the diagram in Eq.(2.54) by replacing E with TM. In particular, for the case ΓJ = dxa ⊗(
∂/∂xa +

(
∂vb/∂xa

) (
∂/∂vb

))
, we have

ΘΓJ
:
(
λadx

a + λ̄adv
a
)
→
((

λa +
∂vb

∂xa
λ̄b

)
dxa, λ̄adx

a

)
. (3.46)

3.2.3. Vertical Lifts of Covectors

Consider the cotangent lift T ∗πM : T ∗M → T ∗T ∗M of the projection

πM : T ∗M → M and recall the musical isomorphism Ω]
T ∗M : T ∗T ∗M → TT ∗M asso-

ciated with the symplectic two-form ΩT ∗M on the cotangent bundle T ∗M.We define Euler

vector field

XE : T ∗M→ TT ∗M : z→ Ω]
T ∗M ◦ T

∗πM (z) , (3.47)
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which is given diagrammatically

T ∗T ∗M
Ω]
T ∗M−−−−−−−−−→ TT ∗M

↖ T ∗πM

xXE
T ∗M.

(3.48)

XE is a vertical vector field, that is, Im (XE) ⊂ ker (TπM) . Indeed,

〈z, TπM ◦ XE (z)〉 =
〈
T ∗πM (z) ,Ω]

T ∗M ◦ T
∗πM (z)

〉
= ΩT ∗M (T ∗πM (z) , T ∗πM (z)) = 0, (3.49)

∀z ∈ T ∗M, where we use the skew-symmetry property of the symplectic form ΩT ∗M. Euler

vector field is the unique field satisfying the following equalities

iXEΩT ∗M = θT ∗M, LXEΩT ∗M = −ΩT ∗M and LXEθT ∗M = −θT ∗M, (3.50)

where iXE and LXE are interior product and Lie derivative operators [4]. In coordinates

z = (xa, yb), Euler vector field is computed as XE = −ya∂/∂ya. Its divergence is

divµΩ
XE= −dim (M) ,

where µΩ is the symplectic volume on T
∗M and dim (M) is the dimension ofM.

Let α be a one-form onM. The vertical lift

αv = XE ◦ α ◦ πM : T ∗M→ TT ∗M (3.51)

of the one-from α is a vertical vector field on T ∗M. In coordinates, the vertical lift of the

one-form α = αadx
a is αv = −αa∂/∂ya. If {X1, X2, .., Xm} is a basis for the space of vector
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fields onM and {α1, α2, .., αm} is a basis for the space of one-forms then

{Xc∗
1 , X

c∗
2 , .., X

c∗
m , α

v
1, α

v
2, .., α

v
m} (3.52)

forms a basis for the vector fields on T ∗M. The Jacobi-Lie bracket

[Xc∗, αv] = (LXα)v (3.53)

of a complete cotangent lift and a vertical lift is a vertical lift [69]. The following lemma

establishes the link between the vertical lifts of one-forms and vertical representatives of

complete cotangent lifts of vector fields.

Lemma 3.4. Let α(x) = ya(x)dxa be a one-form, then

(LX(yadx
a))v = V Xc∗ (xa, ya) . (3.54)

For any function f ∈ F(M), (df)v : T ∗M → TT ∗M is a Hamiltonian vector field

with respect to the canonical symplectic two-form ΩT ∗M for the Hamiltonian function f̂ =

f ◦ πM ∈ F(T ∗M), we actually have

(dF(M))v ' V T ∗M∩ Xham (T ∗M) . (3.55)

The Jacobi-Lie bracket of two vector fields αv and βv obtained from the one-forms α and

β is zero, therefore we have the commutative subalgebra of the algebra Xham (T ∗M) of all

Hamiltonian vector fields.
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3.2.4. Decompositions of TT ∗M and T ∗T ∗M

Consider the pull-back bundle π∗M (T ∗M) = T ∗M×MT ∗M in Eq.(2.35). The follow-

ing commutative diagram defines a mapping χ from π∗M (T ∗M) to V T ∗M,

π∗M (T ∗M) = T ∗M×MT ∗M
pr2−−−−−−−−→ T ∗M

pr1

y χ↘
y−XE

T ∗M
τT ∗M←−−−−−−−−− V T ∗M

(3.56)

where XE is the Euler vector field in Eq.(3.47). Using χ, we define

χz : T ∗M→ V T ∗M : w→ χ (z,w) (3.57)

by fixing an element z ∈ T ∗M. In coordinates, for z = (xa, yb) and w = (xa, wb) ,

χ (z,w) = χ (xa; yb, wb) = (xa, yb, 0, wb) (3.58)

The inverse of the mapping χ is

χ−1 : TT ∗M→ T ∗M×MT ∗M : ξ →
(
τT ∗M (ξ) ,−πT ∗M ◦ Ω[

T ∗M (ξ)
)
. (3.59)

χ identifies the Whitney product T ∗M×MT ∗M with the space of vertical vectors V T ∗M.

The exact sequence in Eq.(2.51), with the choice E = T ∗M, takes the form

0 → V T ∗M
χ−−−−−→ TT ∗M

SπM−−−−−−−→ π∗M (TM) → 0 (3.60)

where SπM (ξ) = (τT ∗M (ξ) , TπM (ξ)). With a connection Γ : π∗M (TM)→ TT ∗M, we have
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the decomposition of TT ∗M as

TT ∗M ' V T ∗M⊕HT ∗M' π∗M (T ∗M)⊕ π∗M (TM)

' π∗M (T ∗M⊕ TM) , (3.61)

where we used the identification V T ∗M ' π∗M (T ∗M) and HT ∗M ' π∗M (TM). The

following diagram

TT ∗M
ΥΓ−−−−−−−→ T ∗M⊕ TM

yτT ∗M yπM
T ∗M

πM−−−−−−−−→ M

(3.62)

defines the bundle morphism

ΥΓ (ξ) =
(
pr2 ◦χ−1 ◦ (I − Γ) (ξ) , pr2 ◦SπM (ξ)

)
.

In particular, for ΓJ = dxa ⊗ (∂/∂xa + (∂yb/∂x
a) ∂/∂yb), we have

ΥΓJ

(
ξa

∂

∂xa
+ ξa

∂

∂ya

)
=

((
ξb − ξa

∂ya
∂xb

)
dxb, ξa

∂

∂xa

)
. (3.63)

Using the connection Γ : π∗M (TM)→ TT ∗M, one defines the dual bundle V ∗T ∗M⊂

T ∗T ∗M and hence the dual χ∗z : V ∗T ∗M → TM of the mapping χz. First we define the

map

χ∗ : V ∗T ∗M→ π∗M (TM) = T ∗M×M TM : λ→ (πT ∗M (λ) = z, χ∗z (λ)) (3.64)

to identify the bundle of vertical one-forms V ∗T ∗M and the pull-back bundle π∗M (TM) .

As discussed in the previous section, the decomposition of TT ∗M simultaneously decompose



52

the cotangent bundle T ∗T ∗M. Formally,

T ∗T ∗M ' V ∗T ∗M⊕H∗T ∗M' π∗M (TM)⊕ π∗M (T ∗M)

' π∗M (TM⊕ T ∗M) , (3.65)

where we used the identification induced by χ∗ at the first term and the one to one mapping

µπM : π∗M (T ∗M) → H∗T ∗M in Eq.(2.54) for the second term at the right hand side. We

have the following commutative diagram

T ∗T ∗M
∆Γ−−−−−−−→ TM⊕ T ∗M

yπT ∗M yπ
T ∗M

πM−−−−−−−−→ M

where the bundle morphism is

∆Γ (λ) =
(
pr2 ◦χ∗ ◦ (I − Γ) (λ) ,pr2 ◦µ−1

πM ◦ Γ (λ)
)

and µ−1
πM : H∗T ∗M → π∗M (T ∗M) is the inverse of µπM . For ΓJ, we have the following

decomposition

∆ΓJ
: λadx

a + λadya →
(
λa

∂

∂xa
,

(
λb + λa

∂ya
∂xb

)
dxb
)
. (3.66)
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4. THEORY OF SYMMETRY AND REDUCTION

4.1. LIE GROUPS AND LIE ALGEBRAS

A Lie groupG is a C∞ manifold having a group structure compatible with its manifold

structure, in the sense that, the group multiplication and the inversion

ς : G×G→ G : (g, h)→ gh and ı : G→ G : g → g−1 (4.1)

are C∞maps [73]. The induced maps

Lg : G→ G : h→ ς (g, h) and Rh : G→ G : g → ς (g, h) (4.2)

from the group multiplication are called left and right translation maps, respectively.

A differentiable map ϕ between two Lie groups, say (G1, ς1) and (G2, ς2), is called a Lie

group homomorphism, if it respects the group operations, that is

ϕ ◦ ς1 (g, h) = ς2 (ϕ (g) , ϕ (h)) , ∀g, h ∈ G1.

If ϕ is a bijection, then it is called a Lie group isomorphism. A (linear) representation

of a Lie group G is a Lie group homomorphism G→ Gl(V ) for some representation space

V . Here Gl(V ) denotes the group of all invertible linear mappings on the vector space V [41].

A Lie algebra g is a vector space with a skew-symmetric R−bilinear operation

[ , ] : g× g→ g, (4.3)

called the Lie bracket satisfying the Jacobi identity

[ϑ, [η, ζ]] + [η, [ζ, ϑ]] + [ζ, [ϑ, η]] = 0, ∀ϑ, η, ζ ∈ g. (4.4)
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A linear operator ϕ from a Lie algebra (g1, [ , ]1) to a Lie algebra (g2, [ , ]2) is called a

Lie algebra homomorphism if

ϕ ([ζ, η]1) = [ϕ (ζ) , ϕ (η)]2 , ∀ζ, η ∈ g1. (4.5)

A Lie algebra homomorphism is called a Lie algebra isomorphism if it is bijective.

In finite dimensions, a Lie algebra g with basis
{
η1, ..., ηm

}
gives rise to the structure

constants cijk (i, j, k = 1, ...,dim g) obtained through the Lie bracket of the basis elements

[ηi, ηj ] = cijk η
k. (4.6)

We have the following properties of the structure constants

cijk = −cjik and cijk c
kl
m + clik c

kj
m + cjlk c

ki
m = 0 (4.7)

as a manifestation of the skew-symmetry property of [ , ] and the Jacobi identity.

Example 1 The space of all vector fields X (M) on a manifold M with the Jacobi-Lie

bracket is a Lie algebra. If M is a symplectic manifold, the space of Hamiltonian vector

fields Xham (M) is a Lie algebra since

[Xh, Xf ] = −X{h,f}.

Similarly, the space of all divergence free vector fields Xdiv (M) on an orientable manifold

M has the structure of a Lie algebra.

We call a vector field X : G→ TG on a Lie group G to be left invariant, if

ThLg ·X(h) = X (Lgh) , ∀g, h ∈ G, (4.8)

where ThLg is the tangent mapping of the left translation Lg at h ∈ G. The condition in

Eq.(4.8) can also be written as (Lg)∗X = X, ∀g ∈ G. XL (G) will denote the set of all
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left-invariant vector fields on G. Since, the push forward operation is natural, that means,

for X,Y ∈ XL (G)

(Lg)∗ [X,Y ] = [(Lg)∗X, (Lg)∗ Y ] = [X,Y ], ∀g ∈ G, (4.9)

XL(G) is a Lie algebra. There is a one to one correspondence between the space of left

invariant vector fields and the tangent space TeG at the identity element e ∈ G given by

TeG→ XL(G) : η → Xη, Xη (g) = TeLg(η). (4.10)

Identification of XL (G) and TeG enables us to define a bracket on TeG,

[ζ, η] := [Xζ,Xη] (e), (4.11)

for ζ, η ∈ TeG and Xζ,Xη ∈ XL(G). The Lie algebra of a Lie group is TeG with the

bracket defined in Eq. (4.11), and is denoted as Lie (G).

A right invariant vector field X on G satisfies (Rg)∗X = X, ∀g ∈ G. The space of

right invariant vector fields XR (G) has the structure of a Lie algebra. The tangent mapping

T ı : TG → TG of the inversion map ı : g → g−1 is a Lie algebra isomorphism between

XL (G) and XR (G) [42]. We may define a Lie algebra structure on TeG induced from XR (G)

as well. At the identity, the tangent mapping

Teı : TeG→ TeG : η → −η (4.12)

manifests that, the Lie algebra structure on TeG induced from the left invariant vector fields

and the Lie algebra structure on TeG induced from the right invariant vector fields are anti-

isomorphic. In this thesis, Lie algebra of a Lie group is taken as the vector space TeG with

the Lie bracket structure obtained from the left invariant vector fields.

Let Xη be a left invariant vector field as defined in Eq.(4.10). There is a unique integral

curve γη : R→ G of Xη passing through e ∈ G. The exponential map takes an element η
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of a Lie algebra to an element of the underlying Lie group G and is given by

exp : g→ G : η → γη (1) . (4.13)

4.1.1. Actions of Lie Groups on Manifolds

The left action of a Lie group G on a manifoldM is a smooth mapping

Φ : G×M→M (4.14)

such that Φ(e,x) = x, and Φ (g,Φ(h,x)) = Φ(gh,x), ∀g, h ∈ G, ∀x ∈M.

We call an action Φ :M×G→M a right action if

Φ(x,e) = x and Φ (Φ(h,x), g) = Φ(x,hg), (4.15)

∀g, h ∈ G and ∀x ∈M. In this section, we mean by an action to be a left action and denote

it by Φ (g,x) = g · x. By fixing the first and second arguments of Φ, we define the following

mappings

Φg :M→M : x→ Φ (g,x) and Φx : G→M : g → Φ(g,x). (4.16)

An action is called a transitive action if for every x1,x2 ∈ M there is a g ∈ G such that

g · x1 = x2. If Φg = idM implies g = e; that is, g → Φg is one-to-one, then Φ is said to

be a faithful (or effective) action. An action is free if it has no fixed points, that is,

Φg (x) = x implies g = e, or alternatively, if for each x ∈M, Φx is one-to-one.

Under the action of G, orbit of a point x ∈M is

Orb(x) = {Φg(x) : g ∈ G} ⊂ M. (4.17)
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If the action is free and proper so that inverse images of compact sets are compact under the

action Φ, then the set of orbitsM/G = {Orb(x) : x ∈M} has a manifold structure [3]. We

define a mapping π :M→M/G which takes an element ofM to its orbit. The quadruple

(M, π,M/G,G) is a principle fiber bundle, where M is the total space, M/G is the

base space, G is the structure group and π is the canonical projection [22, 42].

The isotropy (or stabilizer) group

Gx = {g ∈ G : Φg(x) = x} ⊂ G (4.18)

of Φ at x ∈M is a Lie subgroup of G. The mapping

Φ̌x : G/Gx → Orb(x) : gGx → Φx (gGx) = g · x (4.19)

is a bijection between the coset space G/Gx and Orb(x), that means G/Gx ' Orb(x) [55].

The inner automorphism

I : G×G→ G : (g, h)→ g−1hg (4.20)

is an action of G on itself. The mapping Ig : G→ G : h→ I (g, h) is a Lie group isomorphism

on G. The adjoint action

Ad : G× g→ g : (g, η)→ Te
(
Rg−1 ◦ Lg

)
(η) , (4.21)

is an action of a Lie group G on its Lie algebra g. The induced mapping Adg : g→ g : η →

Ad (g, η) is a Lie algebra homomorphism, that is,

Adg [ζ, η] = [Adg (ζ) , Adg (η)] , ∀ζ, η ∈ g and ∀g ∈ G. (4.22)

Observe that Adg is the differential of Ig at the identity, that is Adg := TeIg. Adjoint action
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satisfies the following identities

Ade = Idg, Adg ◦Adh = Adgh, (Adg)
−1 = Adg−1 , ∀g, h ∈ G. (4.23)

Let gt be a curve in G passing through the identity element at t = 0 in the direction η ∈ g,

that means g0 = e and dgt/dt
∣∣
t=0

= η. From the differentiation of the adjoint action, we

define

adηζ =
d

dt
Adgtζ|t=0 . (4.24)

Observe that ad is the action of g onto itself and it is equal to the Lie algebra bracket on

Lie (G) , that is

adηζ = [η, ζ] . (4.25)

The coadjoint action is the mapping

Ad∗ : G× g∗ → g∗ : (g, α)→
(
Adg−1

)∗
α, (4.26)

where
(
Adg−1

)∗ is the linear algebraic dual of Adg−1 [11]. The coadjoint representation ad∗

of g on its dual g∗ is defined by means of the linear algebraic dual of adη, that is

〈
ad∗ηα, ζ

〉
= 〈α, adηζ〉 = 〈α, [η, ζ]〉 , ∀ζ, η ∈ g and ∀α ∈ g∗. (4.27)

Let Φ be an action of a group G on a manifold M. The left tangent lift of Φ to

TM is a left action defined by

TLΦ : G× TM→ TM : (g,v)→ TxΦg (v) , v ∈ TxM (4.28)



59

The left cotangent lift of Φ to T ∗M is a left action defined by

T ∗LΦ : G× T ∗M→ T ∗M : (g, z)→ T ∗Φ(g,x)Φg−1 (z) , z ∈ T ∗xM. (4.29)

T ∗Φg−1 is the cotangent lift of the diffeomorphism Φg−1 .

4.1.2. Infinitesimal Generators

Let Φ : G ×M → M be an action of a Lie group G to a manifold M. For every

element η of the Lie algebra g = TeG we construct a vector field

ηM (x) =
d

dt
Φ (exp (tη) ,x)|t=0 (4.30)

onM, called infinitesimal generator (or fundamental vector field) corresponding to

η. ηM is the vector field generating the flow Φexp tη :M→M hence, tangent to the orbits

inM/G, or in other words, the tangent space of an orbit Orb(x) at x̃ ∈ Orb(x) is

Tx̃ Orb(x) = {ηM (x̃) : η ∈ g} . (4.31)

ηM is a vertical vector field with respect to the smooth bundle structure (M, π,M/G)

[41, 42].

The infinitesimal action of a Lie algebra onM is defined by

g×M→ TM : (η,x)→ ηM (x) . (4.32)

The mapping g→ X (M) : η → ηM is an anti-homomorphism, that is,

[ζM, ηM]JL = − [ζ, η]g , (4.33)

where [ , ]JL is the Jacobi Lie bracket of vector fields and the bracket at the right hand side

is the Lie algebra bracket on g [11].
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The action Φ is said to be a canonical action if G acts on a symplectic manifold

(M,ΩM) by canonical diffeomorphisms, that is, Φ∗gΩM = ΩM, ∀g ∈ G. The action of a Lie

group G on a Poisson manifold (M, { , }) is called canonical if

{k, f} ◦ Φg = {k ◦ Φg, f ◦ Φg} , (4.34)

for all f, k ∈ F (M) and g ∈ G.

4.1.3. Gauge Transformations

Let F(Q) be the additive group of functions onQ and F(Q) acts on T ∗Q by momentum

translations

Φ : F(Q)× T ∗Q →
(
φ,
(
qi, pi

))
→
(
qi, pi −

∂φ

∂qi

)
. (4.35)

This action is the gauge invariance of canonical Hamiltonian dynamics. The infinitesimal

generator

Xφ (q,p) = − ∂φ
∂qi

∂

∂pi
(4.36)

of the action Φ is a Hamiltonian vector field on T ∗Q for the Hamiltonian function φ̂ =

φ ◦ πQ ∈ F (T ∗Q). The Jacobi-Lie bracket of two such generators is zero, that means, they

constitute a commutative Lie algebra.

F (Q) acts on TT ∗Q by the tangent lift, in coordinates,

Φc : F (Q)× TT ∗Q → TT ∗Q

:
(
φ,
(
qi, pi; q̇

i, ṗi
))
→
(
qi, pi −

∂φ

∂qi
; q̇i,−q̇j ∂φ

∂qj∂qi
+ ṗi

)
, (4.37)
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where the infinitesimal generator

Xc
φ (q,p; q̇, ṗ) = − ∂φ

∂qi
∂

∂pi
− q̇j ∂φ

∂qj∂qi
∂

∂ṗi
, (4.38)

is the complete tangent lift of Xφ. Xc
φ is a Hamiltonian vector field with respect to the

symplectic structure

ΩTT ∗Q = dθTT ∗Q = dq̇i ∧ dpi + dqi ∧ dṗi (4.39)

for the Hamiltonian function H̃ = q̇j∂φ/∂qj ∈ F (TT ∗Q) , that is

iXc
φ
ΩTT ∗Q = dH̃.

Cartan’s formula LXc
φ

= diXc
φ

+ iXc
φ
d gives

LXc
φ
ΩTT ∗Q = 0, (4.40)

which means that F (Q) is also the gauge group of the Hamiltonian dynamics on TT ∗Q with

respect to the symplectic two-form ΩTT ∗Q.

The cotangent lift of the action Φ in Eq.(4.35) is

Φc∗ : F (Q)× T ∗T ∗Q → T ∗T ∗Q

:
(
φ,
(
qi, pi; Πi,Π

i
))
→
(
qi, pi +

∂φ

∂qi
; Πi + Πj ∂φ

∂qj∂qi
,Πi

)
, (4.41)

whose infinitesimal generator

Xc∗
φ =

∂φ

∂qi
∂

∂pi
+ Πj ∂φ

∂qj∂qi
∂

∂Πi
(4.42)

is a Hamiltonian vector field on T ∗T ∗Q for the Hamiltonian function H = −Πi∂φ/∂qi with
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respect to the canonical symplectic two-form

ΩT ∗T ∗Q = dqi ∧ dΠi + dpi ∧ dΠi (4.43)

on T ∗T ∗Q. Hence, we find that F (Q) is also a gauge group of the canonical Hamiltonian

dynamics on T ∗T ∗Q.

4.1.4. Momentum Maps

Let (P, { , }) be a Poisson manifold and Φ : G×P → P be a canonical action of a Lie

group G on P. In this case, infinitesimal generators are locally Hamiltonian. We will assume

that they are globally Hamiltonian, that is, there exists a globally defined function J (η) on

P such that

ηP = XJ(η). (4.44)

Eq.(4.44) implies the existence of a mapping J : g → F (P) and determines J up to an

addition of a Casimir function and, for symplectic and connected manifolds, up to addition

of a constant [11,63].

Proposition 4.1. Let f be a G invariant function on the Poisson manifold P, then the

function J (η) is a constant of the motion for the dynamics generated by f .

Indeed,

{f, J (η)} (z) = df (z) ·XJ(η) (z) = df (z) · d
dt

Φ (exp tη, z)|t=0

=
d

dt
f (Φ (exp tη, z)|t=0) =

d

dt
f (z) = 0, (4.45)

∀z ∈ P [19, 32]. The map J : P → g∗ defined by

〈J (z) , η〉 = J (η) (z) (4.46)
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∀η ∈ g and ∀z ∈ P is called a momentum mapping of the action Φ.

Example 2 The dual of any Lie algebra homomorphism is a momentum map.

Theorem 4.2. (Noether’s Theorem) Let J be a momentum mapping for the canoni-

cal action Φ of G on (M,ΩM) . Then J is a constant of the motion for any G invariant

Hamiltonian function f, that is

J ◦ φt = J (4.47)

where φt is the flow of f.

From {f, J (η)} (x) = 0 we compute

0 = dJ (η) (x) ·Xf (x) = dJ (η) (x) · d
dt
φt (x)|t=0

=
d

dt
J (η) ◦ φt (x)|t=0 =

d

dt
〈J ◦ φt (x) , ξ〉|t=0 (4.48)

∀x ∈ M, η ∈ g, and the result follows [11, 19]. We say that a momentum mapping J of an

action Φ is an equivariant momentum mapping, if

J ◦ Φg=Ad
∗
g ◦ J, ∀g ∈ G. (4.49)

A canonical action is called a Hamiltonian action if J is equivariant.

Example 3 Let a Lie algebra acts on a manifold M with g → X (M) : ξ → ξM. The left

cotangent lift of this action is g → X (M) : ξ → ξc∗M, where ξ
c∗
M is the complete cotangent

lift of ξM. This action is a Hamiltonian action with the momentum mapping

〈J (z) , ξ〉 = 〈z, ξM (x)〉 = J (ξ) (z) ,

for x ∈M and z ∈ T ∗xM.
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4.2. SYMPLECTIC AND POISSON REDUCTION

Let Φ be a canonical action of a Lie group G on a symplectic manifold (M,ΩM) and

J :M→ g∗ be an equivariant momentum map for this action. We denote Gα the isotropy

group of α ∈ g∗ under the coadjoint action Ad∗ of G, that is

Gα =
{
g ∈ G : Ad∗g−1α = α

}
. (4.50)

Gα is a Lie group, being a closed subgroup of G [73]. Let α be a regular value of J, that is,

J−1 (α) is a submanifold of M. If g ∈ Gα and x ∈ J−1 (α) then from the equivariance we

have

J ◦ Φg (x) = Ad∗gJ (x) = J (x) (4.51)

which says g · z ∈ J−1 (α) . Thus J−1 (α) ⊂ M is an invariant set for dynamics. Hence we

restrict the action of Lie group Gα on J−1 (α) , that is

Gα × J−1 (α)→ J−1 (α) . (4.52)

Assume this action be free and proper. Then, J−1 (α) /Gα = Pα is a manifold, which

is called the reduced phase space, with projection πα : J−1 (α) → J−1 (α) /Gα. Let

i : J−1 (α)→M be a natural injection. We have the symplectic reduction theorem [14,15,19].

Theorem 4.3. There is a unique symplectic structure Ωα on Pα satisfying

i∗Ω = π∗αΩα. (4.53)

Let [x] ∈ Pα and v[x],u[x] ∈ T[z]Pα. The value of symplectic form is

Ωα ([x])
(
v[x],u[x]

)
= Ω (x)|J−1(α) (vx,ux) , (4.54)
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where Txπα (vx) = v[x], Txπα (ux) = u[x] and x ∈ π−1
α ([x]) . Given a G−invariant Hamil-

tonian function h, the reduced Hamiltonian function is hα = h ◦ πα. Corresponding Hamil-

tonian vector fields Xh and Xhα are πα related and the trajectories of Xh project into those

of Xhα .

More generally, let us consider free, proper and canonical action of a Lie group G on a

Poisson manifold (P, { , }P). We define a Poisson structure on the quotient manifold P/G

by requiring that the projection π : P → P/G to be a Poisson map. For the G invariant

functions f, h on P, one has that

{f ◦ π, h ◦ π}P/G = {f, h}P ◦ π. (4.55)

This procedure is called Poisson reduction [74]. It is important to remark that, a canonical

Lie group action on a Poisson manifold does not necessarily preserve its symplectic leaves [75].

4.2.1. Coadjoint Orbits

We will focus on the particular case when a Lie group G acts on its cotangent bundle

T ∗G by the cotangent lifts of left and right translations

G× T ∗G→ T ∗G and T ∗G×G→ T ∗G. (4.56)

Momentum mappings of these actions are

JL : T ∗gG→ g : Υg → TeR
∗
gΥg and JR : T ∗gG→ g : Υg → TeL

∗
gΥg, (4.57)

respectively. We are particularly interested in the left action. The inverse image of a regular

value α is

J−1
L (α) =

{
Υg ∈ T ∗gG : TeR

∗
gΥg = α,∀g ∈ G

}
(4.58)
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and can be identified with the image of a right invariant one-form Υα on G, given by Υα (g) =

Υg, that means, Υα (g) = TgR
∗
g−1α. The orbit Orb (α) and isotropy subgroup Gα of the

coadjoint action are given by

Orb (α) =
{
L∗gΥα (g) : g ∈ G

}
Gα =

{
g ∈ G : L∗gΥα = Υα

}
. (4.59)

We know that Orb (α) ' G/Gα and deduce the fact that,

Gα × J−1
L (α)→ J−1

L (α) : (g,Υα (h))→ Υα (gh) , (4.60)

is a well defined left action of Gα on J−1
L (α) [19].

We identify the preimage J−1
L (α) with G by the mapping Υg → g−1, therefore we have

the reduced phase space T ∗Gα as the coadjoint orbit of α, that is

Orb (α) ' J−1
L (α) /Gα. (4.61)

Coadjoint orbits have unique symplectic structures, literarily called Krillov-Kostant-Souriau

two-form, given explicitly by

Ωα (γ)
(
ξg∗ (γ) , ηg∗ (γ)

)
= −〈γ, [ξ, η]〉 , (4.62)

for ξ, η ∈ g and ξg∗ (γ) = ad∗ξγ, ηg∗ (γ) = ad∗ηγ ∈ Tγ Orb (α) are obtained from Eq.(4.31)

[76,77].
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4.2.2. Lie-Poisson Structure

The linear algebraic dual g∗ of a Lie algebra g is a Poisson manifold with the Lie-

Poisson bracket

{F,G}∓ (α) = ∓
〈
α,

[
δF

δα
,
δG

δα

]
g

〉
, (4.63)

where [ , ]g is the Lie algebra bracket and, δF/δα ∈ g∗∗ ' g is the Fréchet derivative of F

with respect to α ∈ g defined by

〈
β,
δF

δα

〉
= lim

ε→0

F (α+ εβ)− F (α)

ε
, (4.64)

∀α, β ∈ g. Observe that we have two Poisson structures, one is with plus sign and the other

is with minus sign. Hamiltonian vector field XH for a given Hamiltonian function H ∈ F (g∗)

is obtained from

XH (F ) = {F,H} = ∓
〈
α,

[
δF

δα
,
δH

δα

]
g

〉
= ±

〈
ad∗δH

δα

α,
δF

δα

〉
. (4.65)

The equations of motion, called the Lie-Poisson equations, are

α̇ = ±ad∗δH
δα

α. (4.66)

There are several alternative ways to define the Lie-Poisson structure on g∗. We may

define the Lie-Poisson bracket on g∗ directly from Eq.(4.62) as

{F,G} (α) =
{
F |Orb(α) , G|Orb(α)

}
Orb(α)

(α) (4.67)

where F |Orb(α) is the restriction of the function on g
∗ to the orbit Orb (α), and { , }Orb(α)

is the nondegenerate Poisson structure on Orb (α) induced from the symplectic structure in

Eq.(4.62) [77]. From Eq.(4.67) we arrive at the Lie-Poisson structure with minus sign. For

the Lie-Poisson bracket with plus sign one needs to start with right action instead of left
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action.

If g is a Lie algebra of a Lie group G, then the dual space g∗ is the space of covectors

at the identity e ∈ G, that is g∗ = T ∗eG. Let F and G be two functions on g∗ and F̂ , Ĝ :

T ∗G → R be their right invariant extensions, that is, for every g ∈ G, we require that the

following diagram commutes

T ∗gG
T ∗eRg−−−−−−−−→ g∗

yF̂ ↙ F

R

(4.68)

where T ∗eRg is the cotangent lift of right translation. The Lie-Poisson structure with plus

sign is the restriction of the canonical Poisson bracket { , }T ∗G on T ∗G to the identity. Left

invariant extension gives the Lie-Poisson structure with minus sign.

Example: The configuration space of the rigid body is the special orthogonal group

SO (3,R) whose associated Lie algebra is the algebra of skew-symmetric matrices so (3,R)

in which the matrix commutator is the Lie algebra bracket. so (3,R) can be identified with

R3 where the Lie algebra bracket is the cross product of vectors. The Lie-Poisson structure

with minus sign on
(
R3
)∗ ' R3 is

{F,H} (Π) = −Π · (∇F ×∇H) , (4.69)

where ∇F and ∇H are the gradients of functions F,G ∈ F
(
R3
)
. In this case, Hamilton’s

equations for a Hamiltonian function H ∈ F
(
R3
)
are Π̇ = Π×∇H. In particular, for

H (Π) =
(Π1)2

2I1
+

(Π2)2

2I2
+

(Π3)2

2I3
, (4.70)

where I1, I2 and I3 are constants that refer to the moments of inertia of rigid body, and

Π = (Π1,Π2,Π3) ∈ R3, the equations of motion

Π̇1 =
I2 − I3

I2I3
Π2Π3, Π̇2 =

I3 − I1

I1I3
Π1Π3, Π̇3 =

I1 − I2

I1I2
Π1Π2 (4.71)
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are the Euler’s equations for rigid body [11].
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5. GROUPOFCANONICALDIFFEOMORPHISMSANDPLASMADY-

NAMICS

5.1. MAXWELL-VLASOV AND POISSON-VLASOV EQUATIONS

To describe the motion of the plasma, one may start to write down the whole micro-

scopic data, Newton formulas and interactions for whole particles, which is very diffi cult.

The kinetic theory of plasma uses statistical and probabilistic concepts to handle practical

problems of microscopic theory. The basic element in kinetic description of plasma is the

plasma density (distribution) function f = f (q,p) which describes particle distribution in

momentum phase space. We consider a plasma consisting only of one species of particles

with charge e and mass m.

It is known that a charged particle with mass m and charge e is subjected to the

Lorentz force law

ṗ = −e
(
E +

p

m
×B

)
, (5.1)

where E is the electrical field, B is the magnetic field and ṗ is the time derivative of the

momenta. Electromagnetic field is described by the Maxwell’s equations

∇×E = −1

c

∂B

∂t
∇×B =

1

c

∂E

∂t
+

1

c
J

∇ ·E = ρ, ∇ ·B = 0, (5.2)

where ρ is the charge density, J is the current density vector and c is the speed of the light.

We let Q ⊂ R3 be the region in which plasma particles move and f = f (q,p) be the

plasma density at z = (q,p) ∈ T ∗Q. In this case, charge and plasma densities are connected

each other with

ρ = −e
∫
f (q,p) d3p. (5.3)
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The number N of particles in a volume of phase space T ∗Q is given by

N =

∫
T ∗Q

f (q,p) d3z (5.4)

and the conservation of the number of particles requires that the total time derivative of N

must vanish, that is,

dN

dt
=

∫
T ∗Q

∂f

∂t
d3z +

∫
∂(T ∗Q)

f żdS = 0, (5.5)

where ż = (q̇, ṗ) is the phase velocity of the plasma [26]. We apply the divergence theorem

to the second integral on the right hand side and obtain

∫
T ∗Q

(
∂f

∂t
+ div (f ż)

)
d3z = 0. (5.6)

Thus, we have the equation of continuity

∂f

∂t
+∇zf · ż + f div (ż) = 0

for the plasma. Liouville theorem states that the phase space volumes are preserved under

the motion of plasma, so that div (ż) = 0 [25]. Hence, substituting the Lorentz force law in

the equation of continuity, we obtain the Vlasov equation

∂f

∂t
+

p

m
· ∇qf − e

(
E +

p

m
×B

)
· ∇pf = 0. (5.7)

The coupled system of equations in Eqs.(5.2) and (5.7) are called the Maxwell-Vlasov

equations.

Let us consider an unmagnetized plasma B = 0 and the absence of the current J = 0.

Then the electrical field E becomes the gradient of a potential φf , that is E = ∇qφf (q), in

which φf is determined through the Poisson equation

∇2
qφf = −e

∫
f (q,p) d3p (5.8)
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and the Vlasov equation in Eq.(5.7) reduces to

∂f

∂t
+

p

m
· ∇qf − e∇qφf · ∇pf = 0. (5.9)

The system of equations in Eqs.(5.8) and (5.9) are called the Poisson-Vlasov equations.

One may alternatively regard the Poisson-Vlasov equations as an approximation of the

Maxwell-Vlasov equations in the nonrelativistic zero-magnetic field limit, that is the limit

c→∞ [39].

We consider the cotangent bundle T ∗Q of Q ⊂ R3 position space in which the plasma

particles move. The momentum phase space T ∗Q is a 6−dimensional symplectic manifold

with symplectic structure ΩT ∗Q = dqi ∧ dpi. The induced Poisson bracket { , }T ∗Q on T ∗Q

from the symplectic structure ΩT ∗Q is given, in Darboux’s coordinates, as

{f, h}T ∗Q =
∂f

∂qi
∂h

∂pi
− ∂f

∂pi

∂h

∂qi
. (5.10)

If we take the Hamiltonian function

h =
p · p
2m

+ eφf (q), (5.11)

for the motion of individual plasma particles, then the Vlasov equation can be written in

form

∂f

∂t
= −{f, h}T ∗Q . (5.12)

Thus, the plasma density f evolves by the canonical transformations [32]. This is a clue

for us to arrive the point that, the appropriate framework for the configuration space of the

plasma is the group of canonical diffeomorphism Diffcan (T ∗Q) on T ∗Q [18, 28].

On the contrary, the momentum map realization of the Poisson equation gives that

the configuration space for the Poisson-Vlasov dynamics must be the semi-direct product

structure F (Q)sDiffcan (T ∗Q) with the action of the additive group F (Q) of functions

given by fiber translation on T ∗Q and by composition on right with the canonical transfor-
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mations. In this thesis, we take the group of canonical transformations Diffcan (T ∗Q) as

our configuration space for collisionless plasma and adapt a constraint variational derivative

instead of dealing with the complications of the semi-direct product structure.

5.2. GROUP OF DIFFEOMORPHISMS

LetM be a smooth volume manifold (possibly with boundary). The group Diff (M)

of diffeomorphisms onM is an infinite dimensional Lie group with multiplication

Diff (M)×Diff (M)→ Diff (M) : (ϕ,ψ)→ ϕ ◦ ψ (5.13)

and inversion ϕ→ ϕ−1. The unit element of the group is the identity automorphism idM. As

a manifold, Diff (M) is locally diffeomorphic to an∞−dimensional vector space, which can

be a Banach, Hilbert or Fréchet space, and called respectively Banach Lie group, Hilbert Lie

group or Fréchet Lie Group [78]. We will not discuss the details of the functional analytical

issues and refer [79—82].

The elements of the tangent space TϕDiff (M) at ϕ ∈ Diff (M) are material ve-

locity fields

Vϕ :M→ TM, (5.14)

satisfying τDiff(M) ◦ Vϕ = ϕ. In particular, the tangent space at the identity TidDiff (M)

is the space of smooth vector fields onM, that is,

TidDiff (M) = X (M) . (5.15)

A vector field on Diff (M) is a map V : Diff (M) → TDiff (M), whose value at ϕ ∈

Diff (M) is the material velocity field Vϕ ∈ TϕDiff (M). Vϕ can be represented as a

composition of a diffeomorphism ϕ and a vector field X, that is Vϕ = X ◦ ϕ. This is the

manifestation of the parallelizability of the tangent group TDiff (M) ' Diff (M)sX (M)

[39].
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We assume that a continuum rests inM and Diff (M) acts on left by evaluation on

the spaceM

Diff (M)×M→M : (ϕ,x)→ ϕ (x) (5.16)

to produce the motion of particles. The right action of Diff (M) commutes with the particle

motion and constitute an infinite dimensional symmetry group of the kinematical description.

This is the particle relabelling symmetry [17].

The first attempt to use the diffeomorphism group as the configuration space of a

continuum is the one introduced in [12], which concerns the geometrical background for

the dynamics of the ideal fluid. Since that time, ideal fluid has been worked by several

authors such as [17,83,84,86,87]. In this section, we apply the pure geometrical constructions

described in the previous sections to the case of canonical diffeomorphisms group and present

the geometrization of Hamiltonian structure of the Poisson-Vlasov equations in Eqs.(5.8) and

(5.9).

5.2.1. Lie Algebra of Diff (M)

The inner automorphism on the group Diff (M) is

Iψ
(
ϕt
)

= ψ ◦ ϕt ◦ ψ−1, (5.17)

and its differentiation at t = 0 along the direction X gives adjoint operator, that is

Adψ (X) = TeIψ (X) = TeIψ

(
d

dt
ϕt
∣∣
t=0

)
=

d

dt
Iψϕ

t
∣∣
t=0

=
d

dt
ψ ◦ ϕt ◦ ψ−1

∣∣
t=0

= Tψ ◦X ◦ ψ−1 = ψ∗X. (5.18)

Thus, the adjoint action of Diff(M) on its Lie algebra X (M) is the push-forward operation

Adψ (X) = ψ∗X. (5.19)
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The tangent space of Diff (M) at the identity idM consists of vector fields on M. The

Lie algebra bracket on TidDiff (M) can be calculated as the differential of the adjoint

representation at the identity. We differentiate Adψt (X) with respect to t at t = 0 and in

the direction of Y to obtain

[Y,X]Diff(M) = adYX =
d

dt
ψt∗X

∣∣
t=0

= − [Y,X]JL = −LYX, (5.20)

where [ , ]JL is the standard Jacobi-Lie bracket of vector fields and LYX is the Lie derivative

of X with respect to Y . Thus, the Lie algebra structure on Lie (Diff (M)) is minus the

Jacobi-Lie bracket.

The dual space Lie∗ (Diff(M)) of Lie (Diff(M)) is the space of one-forms densities

onM, that is,

Lie∗ (Diff(M)) = X∗ (M) ' Λ1 (M)⊗Den (M) . (5.21)

The pairing between Lie (Diff(M)) and Lie∗ (Diff(M)) is

〈α⊗ µ,X〉 =

∫
M
〈α (x) , X (x)〉µ (x) , (5.22)

where X ∈ X (M) , α ∈ Λ1 (M) and µ is a volume form on M. The pairing inside the

integral is the natural pairing of finite dimensional spaces TxM and T ∗xM [17, 30, 83]. The

dual ad∗ of the adjoint action ad is defined by

〈ad∗X (α⊗ µ) , Y 〉 = 〈(α⊗ µ) , adXY 〉 = −
∫
M
〈α (x) , [X,Y ]JL (x)〉µ (x) , (5.23)

and after applying integration by parts, we find the explicit expression

ad∗X (α⊗ µ) = LX (α⊗ µ) = (LXα+ (divdµX)α)⊗ µ, (5.24)

of the coadjoint action ad∗, where divµX is the divergence of the vector field X with respect
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to the volume form µ. For the case of divergence free vector fields Eq.(5.24) reduces to

ad∗Xα = LXα. (5.25)

5.2.2. Canonical Diffeomorphisms

The group of canonical diffeomorphisms Diffcan (T ∗Q) on the canonical symplectic

manifold (T ∗Q,ΩT ∗Q) consists of diffeomorphisms ϕ on T ∗Q preserving the symplectic form

ΩT ∗Q, that is,

ϕ∗ΩT ∗Q = ΩT ∗Q. (5.26)

The differential companion of Eq.(5.26) is LXΩT ∗Q = 0 and the Cartan’s formula LX =

diX + iXd leads to

diXΩT ∗Q = 0. (5.27)

That means, LieDiffcan (T ∗Q) of Diffcan (T ∗Q) is the space of locally Hamiltonian vec-

tor fields glh = Xlocham (T ∗Q) [88]. We assume that LieDiffcan (T ∗Q) consists of globally

Hamiltonian vector fields g = Xham (T ∗Q) and postpone discussions on the subalgebras of

the space of vector fields to the next section. The following equalities

[Xh, Xf ]g = −[Xh, Xf ]JL = X{h,f}ΩT∗Q (5.28)

link Xham (T ∗Q) with the space of smooth functions F (T ∗Q) . Namely, we have the Lie

algebra isomorphism

h→ Xh : (F (T ∗Q) , { , }ΩT∗Q)→ (g = Xham (T ∗Q) , [ , ]g) (5.29)

up to additions of constants to the real valued function h. Here, { , }ΩT∗Q is the (nondegen-

erate) canonical Poisson bracket of smooth functions in F (T ∗Q).
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Lemma 5.1. The dual space of the Lie algebra Xham (T ∗Q) is

g∗ = X∗ham (T ∗Q) = {Πid ∈ Λ1(T ∗Q) : divΩT∗Q Π]
id 6= 0}. (5.30)

To find the precise definition of the dual space X∗ham (T ∗Q) , we require the L2 pairing

〈Xh,Πid〉 to be nondegenerate. We take the volume µ = Ω3
T ∗Q and compute

∫
T ∗Q
〈Xh (z) ,Πid (z)〉µ (z) = −

∫
T ∗Q

〈
dh,Π]

id

〉
µ = −

∫
T ∗Q

iΠ]id
(dh)µ

= −
∫
T ∗Q

dh ∧ iΠ]idµ =

∫
T ∗Q

hdiΠ]µ

=

∫
T ∗Q

hdivΩT∗Q Π]
idµ, (5.31)

where we use the musical isomorphism Ω]
T ∗Q : Πid → Π]

id induced from the symplectic two-

form ΩT ∗Q at the first step and apply integration by parts at the last step. Thus the dual

of the isomorphism h→ Xh is

Πid (z)→ divΩT∗Q Π]
id (z) . (5.32)

In Darboux’s coordinates z = (q,p) =
(
qi, pi

)
on T ∗Q, if Πid = Πi (z) dqi + Πi (z) dpi then

its image under the momentum mapping in Eq.(5.32) is

f (z) = divΩT∗Q Π]
id (z) =

∂Πi (z)

∂qi
− ∂Πi (z)

∂pi
, (5.33)

which is defined to be the plasma density function. Note that, if Πid = δij
∂ψ
∂pi
dqj − δij ∂ψ∂qidpj

for some function ψ, then the identification in Eq.(5.33) reduces to the following Laplace

equation

f = ∆ψ. (5.34)
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It is important to remark that, the action of Diffcan (T ∗Q) on T ∗Q is a canonical

action with the momentum mapping J : T ∗Q → Lie∗ (Diffcan (T ∗Q)) defined by

〈J (z) , Xh〉 = h (z) , (5.35)

where Xh is the Hamiltonian vector field for the Hamiltonian function h.

5.3. HAMILTONIAN STRUCTURE OF VLASOV EQUATION

5.3.1. Density Formulation of Vlasov Equation

The dual of the space of smooth functions F (T ∗Q) is the space of densities Den (T ∗Q)

through the following pairing

〈fµ, h〉 =

∫
T ∗Q

h (z) f (z)µ (z) , (5.36)

where h ∈ F (T ∗Q) and fµ ∈ Den (T ∗Q) with µ = Ω3
T ∗Q being the symplectic volume. The

adjoint action is the canonical Poisson bracket, that is,

adhf = {h, f}ΩT∗Q . (5.37)

For the coadjoint action ad∗, we compute

〈ad∗hf, k〉 = 〈f, adhk〉 =
〈
f, {h, k}ΩT∗Q

〉
=

∫
T ∗Q

f {h, k}ΩT∗Q µ

= −
∫
T ∗Q
{h, f}ΩT∗Q kµ = −

〈
{h, f}ΩT∗Q , k

〉
. (5.38)

and deduce that

ad∗hf = −{h, f}ΩT∗Q . (5.39)
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The Lie-Poisson bracket on the dual space Den (T ∗Q) is

{F,H} (f) =

∫
T ∗Q

f(z)

{
δF

δf
,
δH

δf

}
ΩT∗Q

(z)µ(z) (5.40)

where F,H ∈ F (Den (T ∗Q)) and δF/δf, δH/δf ∈ F (T ∗Q). The equation of the motion for

a Hamiltonian functional H is

ḟ = −ad∗δH
δf

f =

{
δH

δf
, f

}
ΩT∗Q

. (5.41)

The Poisson equation

∇2
qφf = −e

∫
f (q,p) d3p. (5.42)

has a Green’s function solution

φf (q, t) = e

∫
T ∗Q

K(q|q̄)f(z̄)µ(z̄), (5.43)

where K(q|q̄) is the symmetric Green’s function, that is K(q|q̄) = K(q̄|q). We consider

Eq.(5.43) as a constraint in variations. The constraint variational derivative of

HLP (f) =

∫
T ∗Q

f(z)hf (z)µ(z), (5.44)

where hf (z) = δijpipj/2m+ eφf (q)/2, is

〈
δHLP

δf
, δf

〉
=

d

dε

∣∣∣∣
ε=0

HLP (f + εδf)

=
d

dε

∣∣∣∣
ε=0

∫
T ∗Q

δij
pipj
2m

(f + εδf) (z)µ(z)

+
d

dε

∣∣∣∣
ε=0

e2

2

∫∫
T ∗Q

(f + εδf) (z)K(q|q̄) (f + εδf) (z̄)µ(z̄)µ(z)

=

∫
T ∗Q

(
δij
pipj
2m

+ eφf (q)
)
δf(z)µ(z). (5.45)

The symmetry of the Green’s function is used at the second step and the Poisson constraint
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is used at the first and last steps [18,31,35]. We deduce that

δHLP

δf
= δij

pipj
2m

+ eφf (q) = h (5.46)

is the Hamiltonian function in Eq.(5.11) and thus the Lie-Poisson equation for the Hamil-

tonian HLP gives the Vlasov equation

∂f

∂t
= −

{
f,
δHLP

δf

}
ΩT∗Q

= −{f, h}ΩT∗Q . (5.47)

5.3.2. Momentum Formulation of Vlasov Equation

The precise definition of the dual space is

g∗ = X∗ham (T ∗Q) = {Πid ∈ Λ1(T ∗Q) : divΩT∗Q Π]
id 6= 0}. (5.48)

The Lie-Poisson structure on g∗ is

{H(Πid),K(Πid)}LP =

∫
T ∗Q

Πid (z) ·
[
δH

δΠid
,
δK

δΠid

]
(z)µ(z) (5.49)

where H and K are functionals on g∗ and δH/δΠid, δK/δΠid ∈ g [11,39]. For a Hamiltonian

functional H, the Lie-Poisson equations are

dΠid

dt
= −ad∗δH/δΠid(Πid) = −LδH/δΠid(Πid). (5.50)

In momentum formulation, the Poisson equation takes the form

∇2φΠ (q) = −e
∫
∂Πi

∂qi
d3p, (5.51)

and its Green’s function solution becomes

φΠ (q) = −e
∫
T ∗Q

Πi (z̄)
∂

∂q̄i
K(q|q̄)µ (z̄) . (5.52)
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In general, we consider the following functional

F
(
Πi,Π

i
)

=

∫
T ∗Q

P k
(
Πi (z) ,Πi (z)

) ∂φΠ

∂qk
µ (z) (5.53)

on the dual space g∗ = X∗ham (T ∗Q), where

P k
(
Πi (z) ,Πi (z)

)
= αki1...imj1...jn

Πj1Πj2 ...ΠjnΠi1Πi2 ...Πim (5.54)

is a mixed monomial whose degree is n + m. αki1...imj1...jn
are scalars and if the parentheses ( )

denotes the symmetry of the indices we have αk(i1...im)
(j1...jn) . The constraint variational derivatives

of the functional F with respect to Πi and Πi are

δF

δΠr
= mα

ki1...im−1r
j1...jn

Πi1Πi2 ...Πim−1
Πj1Πj2 ...Πjn ∂φΠ

∂qk

δF

δΠr
= nαki1...imj1...jn−1r

Πj1Πj2 ...Πjn−1Πi1Πi2 ...Πim

∂
(
φf (q)

)
∂qk

+e
∂

∂qr

∫
T ∗Q

αki1...imj1...jn
Πj1Πj2 ..ΠjnΠi1Πi2 ...Πim

∂K(q|q̄)

∂qk
µ (z) (5.55)

In particular, we take m = 0, n = 1 and αkj = δkj , that is

F =

∫
T ∗Q

Πk ∂

∂qk
(
φf (q)

)
µ (z) . (5.56)

Then, the constraint variational derivative of F with respect to Πr vanishes and the constraint

variational derivative of F with respect to Πr is

δF

δΠr
= 2

∂φf (q)

∂qr
. (5.57)

Consider the Hamiltonian functional

HLP (Πid) =

∫
T ∗Q

〈
Πid (z) , Xhf (z)

〉
µ (z)

=

∫
T ∗Q

[
1

m
δijpiΠj −

e

2
Π
i∂φΠ(q)

∂qi
]µ(z). (5.58)
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We compute the constraint variational derivatives

δHLP (Πid)

δΠi
=

1

m
δijpi, and

δHLP (Πid)

δΠi
= −e∂φΠ(q)

∂qi
(5.59)

of HLP (Πid) with respect to Πi and Πi and obtain

δHLP (Πid)

δΠid
= Xh. (5.60)

Thus, the Lie-Poisson equations generating by the functional HLP (Πid) is

dΠid

dt
= −ad∗δHLP /δΠid(Πid) = −LδHLP /δΠid(Πid) = −LXhΠid. (5.61)

In coordinates, the equations of motion in Eq.(5.61) read

dΠi (z)

dt
= −Xh(Πi (z)) + e

∂2φΠ (q)

∂qi∂qj
Πj (z) (5.62)

dΠi (z)

dt
= −Xh(Πi (z))− 1

m
δijΠj (z)

with the constraint

∇2φΠ (q) = e

∫
∂Πi

∂qi
d3p. (5.63)

Eqs.(5.62) are the momentum-Vlasov equations [39]. The back-substitution

f(z) =
∂Πi

∂qi
− ∂Πi

∂pi
(5.64)

defines the plasma density function f and the momentum-Vlasov equations give the Vlasov

equation in form Eq.(5.9). By definition, the momentum variables (Πi,Π
i) represents equiv-

alence classes up to additions of the terms
∂k

∂qi
(q,p) and

∂k

∂pi
(q,p), respectively. Thus, the

reduced dynamics on g∗ has a further symmetry given by the action of the additive group

F(T ∗Q) of functions on T ∗Q. In the following proposition, we show the equivalence of

Hamiltonian functionals in Eqs.(5.44) and (5.58).

Proposition 5.2. HLP (Πid) = HLP (f) (mod div)
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We take HLP (f) and replace f by divΩT∗Q Π]
id, then

HLP (f) =

∫
T ∗Q

1

2m
δkjpkpj(

∂Πi

∂qi
− ∂Πi

∂pi
)µ(z) +

e2

2

∫∫
T ∗Q

∂Πi

∂qi
∂Π̄j

∂q̄j
K(q|q̄)µ(z)µ(z′)

−e2

∫∫
T ∗Q

∂Πi

∂qi
∂Π̄j

∂p̄j
K(q|q̄)µ(z)µ(z′) +

e2

2

∫∫
T ∗Q

∂Πi

∂pi

∂Π̄j

∂p̄j
K(q|q̄)µ(z)µ(z′)

=

∫
T ∗Q

1

m
δkjpkΠjµ(z) +

e

2

∫
T ∗Q

Πi ∂

∂qi
e

(∫
T ∗Q

Π̄j ∂

∂q̄j
K(q|q̄)dµ(z)

)
µ(z′) (mod div)

=

∫
T ∗Q

〈
Πid, Xhf

〉
(z)µ (z) = HLP (Πid) (5.65)

where we omit divergence terms at the second step. Conversely, starting from the functional

HLP (Πid) we compute

HLP (Πid) =

∫
T ∗Q

〈
Xhf ,Πid

〉
(z)µ (z)

=

∫
T ∗Q

{
∂hf (z)

∂pi
Πi (z)− ∂hf (z)

∂qi
Πi (z)

}
µ (z)

=

∫
T ∗Q

hf (z)(
∂Πi

∂qi
− ∂Πi

∂pi
)µ (z) (mod div)

=

∫
T ∗Q

hf (z) f (z)µ (z) = HLP (f). (5.66)

5.3.3. Gauge Symmetries of Hamiltonian Dynamics and Poisson Equation

Recall that action of additive group of functions F(Q) on T ∗Q by momentum trans-

lations

Φ : F(Q)× T ∗Q →
(
φ,
(
qi, pi

))
→
(
qi, pi −

∂φ

∂qi

)
, (5.67)

with the infinitesimal generator

Xφ (q,p) = − ∂φ
∂qi

∂

∂pi
. (5.68)
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Lie algebra of the additive group F(Q) can be identified by itself with the trivial bracket as

the Lie algebra bracket. Thus, the mapping

Jφ := XE ◦ d : F(Q)→ g = Xham (T ∗Q) : φ→ Xφ (5.69)

is a Lie algebra homomorphism, where XE is Euler vector field in Eq.(3.47). The dual

Jφ : g∗ → Den (Q) of the Lie algebra homomorphism Jφ is a Poisson and a momentum map.

In coordinates, associated momentum mapping Jφ is computed as

〈Jφ (Πid) , φ (q)〉 = 〈Πid, Jφ (φ)〉 = 〈Πid (z) ,XE (dφ (q))〉

=

∫
T ∗Q
−∂φ (q)

∂qi
Πi (z)µ (z) =

∫
T ∗Q

φ (q)
∂Πi (z)

∂qi
µ (z) (5.70)

where we apply integration by parts at the last step. Thus, we have

Jφ (Πid) (q) =

(∫
∂Πi (z)

∂qi
d3p

)
d3q. (5.71)

The exterior derivative d : F(Q) → dF(Q) is a Lie algebra homomorphism between

additive algebras F(Q) and dF(Q). The dual of the homomorphism is a momentum mapping

Jd given diagrammatically

F(Q)
d−−−−→ dF(Q)

m m

Den (Q)
Jd←−−−−− dF(Q)∗ ' ∗dF(Q)

(5.72)

where we identify the two-forms with one-forms using the Hodge ∗ operator induced from

the scalar product on Q ⊂ R3 [54]. We have

〈ψ,Jd (∗dφ)〉 = 〈dψ, ∗dφ〉 =

∫
dψ ∧ ∗dφ = −

∫
ψd ∗ dφ, (5.73)

that is Jd (∗dφ) = −
(
∇2
qφ
)
d3q, because ∗d ∗ d = ∇2

q on R3 [60].
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We combine the Lie algebra homomorphisms Jφ : F(Q) → g in Eq.(5.69) and d :

F(Q)→ dF(Q) and obtain Lie algebra homomorphism

(Jφ, d) : F(Q)→ g × dF(Q) : φ→ (Xφ, dφ) , (5.74)

where the Lie bracket on g × dF(Q) is the trivial one. Then the dual

(Jφ, d)∗ : g∗ × (∗dF(Q))→ Den (Q)

: (Πid, ∗dφΠ)→
(
−∇2

qφΠ +

∫
∂Πi (z)

∂qi
d3p

)
d3q, (5.75)

of (Jφ, d) is a momentum and Poisson map. The zero value of the mapping leads to

∇2
qφΠ (q) =

∫
∂Πi (z)

∂qi
d3p. (5.76)

the Poisson equation in momentum formulation.

5.4. LIFTS OF HAMILTONIAN VECTOR FIELDS ANDMOMENTUM-VLASOV

EQUATIONS

We consider a Hamiltonian vector field

Xh(q,p) =
∂h

∂pi

∂

∂qi
− ∂h

∂qi
∂

∂pi
∈ X(T ∗Q). (5.77)

whose complete cotangent lift Xc∗
h ∈ X(T ∗T ∗Q) is

Xc∗
h (Πid) = Xh(z) + Π]

id

(
∂h

∂qi

)
∂

∂Πi
+ Π]

id

(
∂h

∂pi

)
∂

∂Πi
∈ X(T ∗T ∗Q), (5.78)

where Πid =
(
qi, pi; Πi,Π

i
)
are the induced coordinates on T ∗T ∗Q and Π]

id = Ω]
T ∗Q (Πid) =

Πi∂/∂qi − Πi∂/∂pi. Π]
id

(
∂h/∂qi

)
denotes simply the action of Π]

id to ∂h/∂q
i. The vertical

representative V Xc∗
h and the holonomic part HXc∗

h of cotangent lift Xc∗
h of a Hamiltonian
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vector field Xh are computed as

V Xc∗
h =

(
Π]
id

(
∂h

∂qi

)
−Xh (Πi)

)
∂

∂Πi
+

(
Π]
id

(
∂h

∂pi

)
−Xh

(
Πi
)) ∂

∂Πi
,

HXc∗
h = Xh +Xh (Πi)

∂

∂Πi
+Xh

(
Πi
) ∂

∂Πi
. (5.79)

The complete tangent lift of Xh is

Xc
h (z, ż) = Xh +XT ∗Q

(
∂h

∂pi

)
∂

∂q̇i
−XT ∗Q

(
∂h

∂qi

)
∂

∂ṗi
∈ X(TT ∗Q), (5.80)

where XT ∗Q = τTT ∗Q (Xc
h) = q̇i∂/∂qi + ṗi∂/∂pi. The vertical representative and the holo-

nomic part of complete tangent lift Xc
h are

V Xc
h =

(
XT ∗Q

(
∂h

∂pi

)
−Xh(q̇i)

)
∂

∂q̇i
−
(
XT ∗Q

(
∂h

∂qi

)
+Xh(ṗj)

)
∂

∂ṗi

HXc
h = Xh +Xh(q̇i)

∂

∂q̇i
+Xh(ṗj)

∂

∂ṗi
. (5.81)

In particular, we consider the Hamiltonian function

h =
1

2m
δijpipj + eφf (q) . (5.82)

The corresponding Hamiltonian vector field

Xh(z) =
1

m
δijpi

∂

∂qj
− e

∂φf
∂qi

∂

∂pi
(5.83)

generates the motion of a charged particle. The complete tangent and cotangent lifts of Xh

are the Hamiltonian vector fields

Xc
h = Xh +

1

m
δij ṗi

∂

∂q̇i
− eq̇j

∂2φf
∂qj∂qi

∂

∂ṗi
, (5.84)

Xc∗
h = Xh − δij

1

m
Πi

∂

∂Πj
+ eΠj ∂

2φf
∂qj∂qi

∂

∂Πi
(5.85)
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for the Hamiltonian functions

H̃ =
1

m
δij ṗipj + eq̇i

∂φf
∂qi

and H =
1

m
δijpiΠj − e

∂φf
∂qi

Πi, (5.86)

respectively. In this case, the vertical representatives of tangent and cotangent lifts are given

by

V Xc
h = (

1

m
δjiṗj −Xh(q̇i))

∂

∂q̇i
− (eq̇i

∂2φ

∂qi∂qj
+Xh(ṗj))

∂

∂ṗj
, (5.87)

V Xc∗
h =

(
eΠj ∂2φ

∂qj∂qi
−Xh(Πi)

)
∂

∂Πi
−(

1

m
Πjδ

ji +Xh(Πi))
∂

∂Πi
. (5.88)

Thus, we have proved the following lemma.

Lemma 5.3. Momentum-Vlasov equations

Π̇i = −Xh(Πi) + e
∂2φf
∂qi∂qj

Πj ,

Π̇i = −Xh(Πi)− 1

m
δijΠj . (5.89)

are obtained as the flow generated by vertical representative of complete cotangent lift of

Hamiltonian vector field corresponding to the Hamiltonian function in Eq.(5.82).

The coadjoint action of Xh ∈ g = Xham (T ∗Q) on g∗ = X∗ham (T ∗Q) generates the Lie-

Poisson dynamics which is identical to the dynamics generated by Eq.(5.88). More precisely,

we can recast the Poisson-Vlasov dynamics into the form

V Xc∗
h (Πid) = (LXh(Πid))

v, (5.90)

with the choice of the particular Hamiltonian function in Eq.(5.82).
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6. ALGEBRA OF DIFFERENTIAL FORMS AND VECTOR FIELDS

6.1. ALGEBRA OF THE DIFFERENTIAL FORMS

Let (M,ΩM) be a symplectic manifold. Recall the musical isomorphism Ω[
M : X (M)→

Λ1 (M) given in Eq.(2.94) and its fiberwise inverse Ω]
M. Using the notation Ω[

M (X) = X[

and Ω]
M (α) = α], we have the following identities

ΩM
(
α], β]

)
=
〈
α, β]

〉
= −

〈
β, α]

〉
(6.1)

and ΩM
(
α], X

)
= 〈α,X〉 , whereX,Y and α, β are sections of tangent and cotangent bundles

ofM, respectively. 〈 , 〉 denotes the pairing between the vector and covector fields.

We define a Lie algebra bracket

{ , }Λ1 : Λ1 (M)× Λ1 (M)→ Λ1 (M) (6.2)

: (α, β)→ Ω[
([
α], β]

])
(6.3)

on the space of sections of cotangent bundle T ∗M → M in such a way that, the musical

isomorphisms Ω[
M and Ω]

M become Lie algebra isomorphisms, that is,

{α, β}]Λ1 =
[
α], β]

]
and

{
X[, Y [

}
Λ1

= [X,Y ][ . (6.4)

To have a more explicit definition for { , }Λ1 , we make the following calculation,

dΩM
(
α], β], X

)
= α]

(
ΩM

(
β], X

))
− β]

(
ΩM

(
α], X

))
+X

(
ΩM

(
α], β]

))
−ΩM

([
α], β]

]
, X
)

+ ΩM
([
α], X

]
, β]
)
− ΩM

([
β], X

]
, α]
)

= α] (〈β,X〉)− β] (〈α,X〉) +
〈
d
(
iβ]iα]ΩM

)
, X
〉

−〈{α, β}Λ1 , X〉 −
〈
β,
[
α], X

]〉
+
〈
α,
[
β], X

]〉
. (6.5)
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Since

〈Lα] (β) , X〉 = α] (〈β,X〉)−
〈
β,
[
α], X

]〉
,〈

Lβ] (α) , X
〉

= β] (〈α,X〉)−
〈
α,
[
β], X

]〉
(6.6)

the nondegeneracy of pairing and the fact that the symplectic form ΩM is closed imply

{α, β}Λ1 = Lα] (β)− Lβ] (α) + d
(
iβ]iα]ΩM

)
. (6.7)

We identify the dual space g∗ of Xham (M) with the non-closed one-forms. Let α and

β be two closed forms, then we have

{α, β}
Λ1 = d

(
iα]β − iβ]α+ iβ]iα]Ω

)
(6.8)

which is exact. In particular, if α = df and β = dh are two exact one-forms, then

{df, dh}Λ1 = LXf (dh)− LXh (Xf ) + d
(
iXhiXfΩ

)
= d (Xf (h))− d (Xh (f)) + d {f, h}ΩM

= d {h, f}ΩM − d {f, h}ΩM + d {f, h}ΩM

= d {h, f}ΩM . (6.9)

where {h, f}ΩM is the Poisson bracket on the space of functions induced from the symplectic

structure ΩM. Thus the set of all exact one-forms is a Lie subalgebra of the Lie algebra of all

one-forms. From the calculation in Eq.(6.9) we see that exterior derivative d is a Lie algebra

homomorphism between the algebra of smooth functions on the symplectic manifoldM and

the algebra of exact one-forms onM. If α is closed and dβ 6= 0, then

{α, β}Λ1 = iα]dβ + d
(
iα]Πid − iβ]α+ iβ]iα]ΩM

)
, (6.10)

where the condition that the first term to be closed requires the invariance relations diα]dβ =

Lα]dβ = dLα]β = 0.



90

Let Xh be a Hamiltonian vector field for the Hamiltonian function h on the symplectic

manifold (M,ΩM), that is X[
h = dh and (dh)] = Xh. Since X{h,f} = − [Xh, Xf ]JL , we have

that

[Xh, Xf ][Diffcan(M) = − [Xh, Xf ][JL = X[
{h,f} = d {h, f}ΩM = {dh, df}Λ1 , (6.11)

where [ , ]Diffcan(M) is the Lie algebra bracket on LieDiffcan (M) . In addition, if X is

locally Hamiltonian, then X[ is closed by definition. Thus, the set of all Hamiltonian vector

fields in X (M) is isomorphic to the set of all closed one-forms in Λ1 (M). Note that, the set

of locally but not globally Hamiltonian vectors in X (M) corresponds to the first de Rham

cohomology space consisting of closed and non-exact one-forms. Hence, we have the vector

space isomorphism

Ω[
M : g = Xham (M)→ g[ = ker d ∩ Λ1 (M) . (6.12)

Proposition 6.1. If g∗ denotes the space of non-closed one forms we have

Λ1 (M) = g[ ⊕ g∗ (6.13)

furthermore,

{
g[,g[

}
Λ1
⊂ g[, {g∗,g∗}Λ1 ⊂ g∗, and

{
g[,g

∗}
Λ1
⊂ g∗. (6.14)

This result implies that
(
g[, { , }Λ1

)
and (g∗, { , }Λ1) are Lie subalgebras of

(
Λ1 (M) , { , }Λ1

)
.

Moreover, g∗ is an ideal of the algebra. Observe that Eq.(6.10) implies

{g[lh,g[}Λ1 ⊂ g[, (6.15)

where glh denotes the space of locally Hamiltonian vector fields.
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6.2. DECOMPOSITION OF SPACE OF VECTOR FIELDS

Let Xh be a Hamiltonian vector field. The identity

i[X,Xh] = LXiXh − iXhLX (6.16)

implies that if X is locally Hamiltonian then the Lie bracket [X,Xh] is globally Hamiltonian,

that is

[glh,g] ⊂ g. (6.17)

More precisely, we compute

i[X,Xh]Ω = LXiXhΩ− iXhLXΩ = LXdh = diXdh (6.18)

so that the Hamiltonian function is X (h) . Note that for two locally Hamiltonian vector

fields X and Y we get i[X,Y ]Ω = dΩ (X,Y ), that means [X,Y ] is also Hamiltonian. Hence,

we have

[glh,glh] ⊂ g. (6.19)

One may show that Eq.(6.19) is actually an equality, see [4] and references therein. If, on

the other hand, X is (locally) Hamiltonian and α] ∈ (g∗)] is not Hamiltonian in any sense

we get

i[X,α]]Ω = LXiα]Ω = dΩ
(
α], X

)
+ iXdiα]Ω (6.20)

which need not be closed for arbitrary choices of X ∈ g and α] ∈ (g∗)] and hence not

Hamiltonian,

[
g, (g∗)]

]
⊂ (g∗)] . (6.21)
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We summarize the above discussion in the following proposition.

Proposition 6.2. The space of vector fields on a symplectic manifoldM can be decomposed

as the direct sum

X (M) = g ⊕ (g∗)] , (6.22)

where g denotes the set of Hamiltonian vector fields and (g∗)] denotes the set of non-

Hamiltonian vector fields. g and (g∗)] are Lie subalgebras of X (M) , the space of vector

fields, that is

[g,g] ⊂ g and
[
(g∗)] , (g∗)]

]
⊂ (g∗)] . (6.23)

In addition, the space of non-Hamiltonian vector fields is an ideal in the algebra of vector

fields

[
g, (g∗)]

]
⊂ (g∗)] , and

[
glh, (g

∗)]
]
⊂ (g∗)] , (6.24)

and the following inclusions hold

[glh,g] ⊂ g, and [glh,glh] . ⊂ g. (6.25)

6.3. HOMOTHETIES

In the formulation of dynamics with the Lagrangian representation of kinematics, the

plasma density is a constant. The fixed values of density in the space Den (M) of densities

corresponds via definition in Eq.(5.48) to vector fields Π] in TM with constant divergence.

Such vector fields, called homotheties, generate similarity transformations (of the first kind)

which are also called homotheties [89]. In this section we shall investigate the properties of

homotheties in the algebra of vector fields X (M) = g ⊕ (g∗)] with the Jacobi-Lie bracket.

We denote the set of all vectors in (g∗)] with constant divergence by (g∗c)
] , and we
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let µ be the symplectic volume on M. We also observe that if Π]
c ∈ (g∗c)

] is of constant

divergence LΠ]c
µ = cµ with respect to symplectic volume (in n dimension) then it follows

from the non-degeneracy of symplectic two-form that

LΠ]c
ΩM =

c

n
ΩM. (6.26)

We recall that X is a locally Hamiltonian vector if and only if iXΩM is closed. Then previous

equation is equivalent to diΠ]cΩM = (c/n) ΩM which is a manifestation of the fact that Π]
c

is not even locally Hamiltonian and hence is in (g∗)]. However, it follows from the identity

L[X,Y ]µ = LXLY µ− LY LXµ

that the Lie bracket of two vectors with constant divergence is locally Hamiltonian. Next

result summarizes the algebraic relations between (locally) Hamiltonian vector fields, non-

Hamiltonian vector fields and homotheties.

Proposition 6.3.
[
g, (g∗c)

]
]
⊂ g,

[
(g∗)] , (g∗c)

]
]
⊂ (g∗)] ,

[
(g∗c)

] , (g∗c)
]
]
⊂ g.

Indeed, for the first assertion we have

i[Xh,Π]c]ΩM = LXhiΠ]cΩM − iΠ]cLXhΩM

= iXhdiΠ]cΩM + diXhiΠ]cΩM

= iXh
c

n
ΩM + dΩM

(
Xh,Π

]
c

)
= d

( c
n
h+ ΩM

(
Xh,Π

]
c

))
. (6.27)

If we replace Xh with a locally Hamiltonian vector field then a similar computation implies

that the bracket is locally Hamiltonian. For the second, we compute from the definition of
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locally Hamiltonian vector fields

di[Π]id,Π
]
c]ΩM = LΠ]id

diΠ]cΩM − diΠ]c
divµ Π]

id

n
ΩM

=
c

n2
divµ Π]

idΩM − d
(

1

n
divµ Π]

id

)
∧ iΠ]cΩM −

1

n

(
divµ Π]

id

)
diΠ]cΩM

= −d
(

1

n
divµ Π]

id

)
∧ iΠ]cΩM. (6.28)

This can be zero only if Π]
c is globally Hamiltonian with divergence of the arbitrary element

Π]
id of (g∗)] , which is not possible.

We compute the action of homotheties on the space of densities using the identity in

the Eq.(4.11) as

L[Π]id,Π
]
c]µ = LΠ]id

(cµ)− LΠ]c
(fµ)

= cfµ− df ∧ iΠ]c (µ)− cfµ

= −df ∧ iΠ]c (µ) = −iΠ]c (df)µ = −Π]
c (f)µ. (6.29)

That means, if f is the density associated with Πid ∈ g∗, then we have

Πid → fµ[
Π]
c,Π

]
id

]
→ Π]

c (f)µ. (6.30)

7. DISCUSSION AND CONCLUSIONS

Starting from a vector field X on a manifoldM, we have defined vector fields Xc and

Xc∗ on TM and T ∗M, respectively. Xc∗ is a canonically Hamiltonian vector field whereas

Xc is Hamiltonian if M is symplectic and if TM is equipped with Tulczyjew’s symplectic

form. A connection on a smooth bundle (E , π,M) was considered as a mapping from TM

to TE . The first order generalized vector fields are sections TE → J1π, where J1π is the

first jet bundle. Elements of J1π were used as connections on the bundle π hence, TE

was decomposed into subbundles, namely bundle of vertical representatives and bundle of
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holonomic lifts. From this decomposition, iterated bundles TT , T ∗T , TT ∗ and T ∗T ∗ were

expressed as the direct sums of first order bundles T and T ∗.

The momentum map realization of the Poisson equation has given that the true con-

figuration space for the Poisson-Vlasov dynamics must be the semi-direct product structure

F (Q)sDiffcan (T ∗Q). We have taken the group of canonical transformationsDiffcan (T ∗Q)

as our configuration space for collisionless plasma and adapted the Green’s function solution

of the Poisson equation as a constraint while taking variational derivatives.

Lie algebra of Diffcan (T ∗Q) is the space of Hamiltonian vector fields Xham (T ∗Q)

which is isomorphic to the space of smooth functions F (T ∗Q) on T ∗Q. The dual

X∗ham (T ∗Q)→ Den (T ∗Q) : Πid → divΩT∗Q Π]
id = f (7.31)

of the isomorphism F (T ∗Q)→ Xham (T ∗Q) is a momentum mapping and defines the plasma

density function f . For the dual space of the Lie algebra of Diffcan (T ∗Q), two equiva-

lent representations are possible, namely the density and the momentum formulations on

Den (T ∗Q) and X∗ham (T ∗Q), respectively. In density representation, constraint variational

derivative of

HLP (f) =

∫
T ∗Q

f(z)hf (z)µ(z), (7.32)

where hf (z) = δijpipj/2m+ eφf (q)/2, is

δHLP

δf
= h = δij

pipj
2m

+ eφf (q) (7.33)

thus the Lie-Poisson equation for the Hamiltonian HLP gives the Vlasov equation

∂f

∂t
= −

{
f,
δHLP

δf

}
T ∗Q

= −{f, h}T ∗Q . (7.34)
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In momentum representation, we have considered the functional

HLP (Πid) =

∫
T ∗Q

〈
Πid (z) , Xhf (z)

〉
dµ (z)

which is equivalent to HLP (f) up to some divergence factors. The constraint variational

derivative

δHLP (Πid)

δΠid
= Xh (7.35)

has given the Lie-Poisson equations

dΠid

dt
= −ad∗δHLP /δΠid(Πid) = −LδHLP /δΠid(Πid) = −LXhΠid. (7.36)

In the momentum variables (Πi,Π
i), we have arrived the intermediate system

Π̇i = −Xh (Πi) + e
∂2φ

∂qi∂qj
Πj

Π̇i = −Xh

(
Πi
)
− 1

m
δijΠj (7.37)

named the momentum-Vlasov equations, where

Xh =
1

m
δijpi

∂

∂qj
− e

∂φf
∂qi

∂

∂pi
(7.38)

is the Hamiltonian vector field corresponding to the Hamiltonian function h. Back-substitution

of the plasma density f = divΩT∗Q Π]
id in the momentum-Vlasov equations has given the

Vlasov equation.

We have obtained the momentum-Vlasov equations from Hamiltonian vector field Xh

for the Hamiltonian function h, which is the total energy of a single charged particle. The

vertical representative

V Xc∗
h =

(
eΠj ∂2φ

∂qj∂qi
−Xh(Πi)

)
∂

∂Πi
−(

1

m
Πjδ

ji +Xh(Πi))
∂

∂Πi
(7.39)
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of the complete cotangent liftXc∗
h of the Hamiltonian vector fieldXh, generates the momentum-

Vlasov equations.

A Lie algebra structure

{α, β}Λ1 = Lα] (β)− Lβ] (α) + d
(
iβ]iα]ΩM

)

on the space of one-form section Λ1 (M) on a symplectic manifold M was defined. It

was shown that, the space of non-closed one-forms g∗ and the space of exact one-forms

g[, which is the isomorphic copy of the space of Hamiltonian vector fields g, are two Lie

subalgebras of
(

Λ1 (M) , { , }Λ1(M)

)
. The space of vector fields onM was decomposed into

the direct sum of the spaces of Hamiltonian g and nonHamiltonian (g∗)] vector fields, that

is X (M) = g ⊕ (g∗)] .
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