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ABSTRACT 

 

 

SOFT MORPHOLOGICAL FILTER OPTIMIZATION USING A 

GENETIC ALGORITHM FOR NOISE ELIMINATION 

 

Digital image quality is an important issue in almost all image processing 

applications.  Images can get corrupted for many reasons.  Many different approaches have 

been proposed for restoring the image quality depending on the nature of the degradation. 

One of the most common problems that cause such degradation is impulse noise. Impulse 

noise causes extremely dark and bright specks spread over the image to emerge. In general, 

well known median filters are preferred for eliminating impulse noise. Soft morphological 

filters are recently introduced and have been in use for many purposes. In this study, a 

search is performed over soft morphological filters using a genetic algorithm as a 

supervised learning mechanism to obtain the best filter for eliminating impulse noise.  The 

experiments yielded a detail preserving multi-stage morphological filter. The performances 

of the proposed filter and median filter are compared over a set of benchmark problem 

instances based on different criteria. Additionally, well-known filters in the literature are 

also compared to the proposed filter. The results indicate the proposed filter outperforms 

the median filter and gets very good result among the best filters known in the literature. 

As a last experiment, this best filter which is obtained using images with impulsive noise is 

tested over images with Gaussian noise. The experiments show that the proposed filter also 

generates significantly better results when compared to the median filter for eliminating 

Gaussian noise. 
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ÖZET 

 

 

GENETĐK ALGORĐTMALAR KULLANILARAK, RESĐMLER 

ÜZERĐNDEKĐ GÜRÜLTÜYÜ AZALTMA AMAÇLI BĐR SOFT 

MORFOLOJĐK FĐLTRE OPTĐMĐZASYONU 

 

Sayısal görüntü kalitesi, neredeyse bütün görüntü işleme uygulamalarında önemli bir 

sorundur. Resimler, pek çok nedenden dolayı bozulabilirler. Görüntü kalitesini onarmak 

için; bozulmanın niteliğine gore, pek çok değişik yaklaşım önerilmiştir. Bozulmaya yol 

açan en genel problem, “impulse noise” olarak isimlendirilen, gürültü türüdür. “Impulse 

noise”, görüntünün üzerine dağılmış, aşırı derecede parlak ve karanlık noktalar oluşmasına 

sebep olur. Genelde, iyi bilinen median filtreleri, “impulse noise” giderimi için tercih 

edilirler. Hafif morfolojik filtreler, yakın zamanda ortaya çıkmışlardır ve pek çok çeşitli 

amaç için kullanılmaktadırlar. Bu çalışmada, “impulse noise” giderimi için, en uygun 

filtreyi bulma amaçlı olarak; kontrol edilen bir öğrenme yöntemi olarak, bir genetik 

algoritma kullanılarak, hafif morfolojik filtreler üzerinde bir arama yapılmıştır. Deneyler 

sonucunda, detayları da koruyan, çok bölümlü bir morfolojik filter elde edildi. Önerilen 

filtre ile median filtrelerinin sonuçları; değişik kriterlere gore, bazı örnek test problemleri 

üzerinde karşılaştırılmıştır. Ek olarak, literatürdeki bilinen filtreler ile, önerilen filtre 

karşılaştırılmıştır. Sonuçlar, önerilen filtrenin, median filtreden daha iyi sonuçlar aldığını 

ve literatürdeki iyi bilinen filtreler arasında da gayet iyi sonuçlar aldığı gösteriyor. Son bir 

deney olarak, “impulsive noise” kullanılarak elde edilmiş en iyi filtre, Gaussian Noise 

eklenmiş resimler üzerinde test edildi. Bu deneyler; önerilen filtrenin, Gaussian Noise 

filtrelemede de, median filtreden önemli derecede daha iyi sonuçlar aldığını göstermiş 

oldu. 
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1. INTRODUCTION 

 

 

Noise reduction, also known as noise smoothing problem is an essential concern in 

image processing. There are many causes of noise in digital images. For example, 

transmitting or scanning an image can boost up the noise due to electrical interference from 

the devices used. There are different types of noises dealt with in image processing such as 

Gaussian noise, periodic noise or impulsive noise. Many researches have proposed a 

variety of approaches for the removal of such noises. Impulsive noise is often encountered 

during image transmission process [1] or malfunctioning in camera sensors or faulty 

memory locations in hardware [2]. For example, modeling of the Impulsive Noise is also 

studied in a paper by representing it as a discontinuous Markov process [3]. There are two 

common types of impulse noise; the salt-and-pepper noise and the random-valued noise. In 

an image which is corrupted by random valued noise; the noisy pixels can take any random 

value, but for an image with salt-and-pepper noise; the noisy pixels can take only the 

maximum and the minimum values in the dynamic range. In this study, impulsive noise 

elimination problem that requires restoration of the image quality which is reduced by 

white and black (salt & pepper) spots spread over the images is tackled. There are some 

previous studies on this topic using different search methods. In most of the studies, the 

search mechanisms are used as a trainer to optimize the filter, the candidate filters are 

applied on a corrupted image; to calculate the fitnesses of the candidates, and the original 

non-corrupted image is compared with the filtered corrupted images. So, by minimizing 

the difference in images, it is expected that an optimized filter will be generated after some 

generations. 

 

At the beginning, 1 stage standard morphological filters are optimized for noise 

filtering. Standard Genetic Algorithms (GAs) are used in the design of standard 

morphological filters [4]. New adaptive morphological operators are proposed using GAs 

[5]. Adaptive immune algorithms are used to optimize standard morphological filters [6]. 

Also, parallel GAs are used for optimizing morphological filters [7]. 
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After soft morphological filters are found, soft flat morphological filters are 

optimized for the same purpose. Some researchers expanded their previous researches into 

different classes of morphological filters [8]. Some studies are done on breakdown 

probability constraints and optimal soft morphology [9, 10]. Also, different optimization 

methods such as simulated annealing, genetic algorithms and tabu search are studied and 

compared for optimization of soft morphological filters [11, 12, 13]. Genetic algorithms 

are also used for optimizing stack filters based on minimum mean absolute error (MAE) 

criterion [14]. 

 

The recent studies are provided on different sizes or multiple stages of optimized 

morphological filters or filters with 3-d SEs for filtering of video sequences. A two-stage 

standard morphological filter is generated using GAs for noise elimination in [15]. Soft 

morphological filters are also used in a study for the removal of noise from CCTV Footage 

[16]. Multi-dimensional soft morphological filters are optimized using GAs for archive 

film material restoration [17, 18]. 

 

For noise removal problem, direct mathematical methods are also used some studies. 

To remove fixed & random valued impulsive noise on gray-scale images, edge information 

of the image is estimated to be used as prior information in order to apply different filters 

adaptively [19]. For removing random-valued impulsive noise on gray-scale images, an 

impulse detector is used and corrupted pixels are replaced using a median-type filter [20]. 

For impulsive noise removal on gray-scale images, difference-type noise detector is used 

and the corrupted pixels are processed by differentiating the cost-function, and a criterion 

called UQI (Universal Quality Index) is used for testing purposes [21]. A statistical method 

which does not require training is used for impulsive noise removal [22]. To remove fixed 

& random valued impulsive noise on gray-scale images, second order difference analysis is 

used for noise detection and cancellation [23]. A global-local noise detector is proposed 

and an adaptive median filter is applied on the corrupted pixels in this paper [24]. An 

adaptive noise detection algorithm and a non-linear low-pass filter are used to remove 

high-level impulsive noise on gray-scale images [25]. An adaptive vector median filtering 

method is studied to take the advantage of the optimal filtering situation and the robust 

order-statistic theory [26]. A two output non-linear filter is studied which is based on the 

subsequent activation of two recursive filtering algorithms that operate on different subsets 
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of input data [27]. A modification of the median-filter using a noise estimation mask is 

presented in this paper [28]. A technique called triangular interpolants is used; this 

restoration technique is applied on the detected corrupted pixels on the gray-scale images 

[29]. A variation of the non-linear peak-and-valley filter is used for removing impulsive 

noise [30]. A statistical method called Jarque-Bera is used to find the corrupted pixels and 

the standard median filter is used to replace those pixels [31]. Statistical impulse detection 

and a nonlinear filter are used for impulsive noise removal; the non-linear filter uses an 

adaptive-network-based fuzzy inference system [32]. In another paper; to improve the 

impulsive noise removal capability of the switching median filter, they modified it by 

adding one more noise detector. The detection mechanism is based on the rank order 

arrangement of the pixels in the sliding window [33]. To remove random-valued impulsive 

noise, a two-phase median filter based iterative method is used in this study [34]. 

 

For the same purpose, neural networks and fuzzy methods are also used. To remove 

impulsive noise on color images, neural network and fuzzy logic are used. An impulse 

detector detects the corrupted pixels and the network generates a new pixel to replace it 

[35]. For removing impulsive noise on gray-scale images; and adaptive fuzzy neural 

network is used with the mean-squared-error (MSE) function used as the test criteria [36]. 

A hybrid filter which combines median filter and a neuro-fuzzy inference system is 

studied; the system is trained using computer generated images [37]. Fuzzy noise detection 

and fuzzy filtering is used to remove random valued impulsive noise on gray-scale images 

[38]. A trained neural network is used to detect the corrupted pixels and a recursive median 

filter is used on those pixels [39]. To improve the performances of impulse noise filters, a 

neuro fuzzy system is trained using a computer generated image, and it is applied to the 

output of an impulse filter [40]. And in another study; a neuro fuzzy system is trained 

using a computer generated image, and it is applied on the corrupted image to removing 

impulsive noise on gray-scale images [41]. An adaptive neural-network using unsupervised 

learning is studied [42]. Adaptive neuro-fuzzy methods are used for impulsive noise 

suppression from highly distorted images [43, 44]. To detect impulsive noise on images, a 

neuro-fuzzy inference system is used in this study and median filter is applied to the noises 

found on those images [45]. Again, for detection of the impulsive noise on images a feed 

forward neural network is used and a modified version of the arithmetic mean filter is used 

to remove the detected impulsive noises. Another difference of this study is the search 
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metrics; they used False Alarm Ratio (FAR), Missed Noise (MN) pixels and Falsely 

Detected Noise (FDN) pixels [46]. To detect impulsive noise in colour images; a novel 

fuzzy detector based on a fuzzy metric is used. The fuzzy detector is inspired on the recent 

rank-ordered differences (ROD) statistic [47]. 

 

In this thesis, a Genetic Algorithm (GA) for optimizing a multi-stage non-flat soft 

morphological filter is presented. The aim is to eliminate salt & pepper noise on images 

while preserving the quality as much as possible. Different objectives are combined in a 

fitness function and an appropriate representation scheme is designed to cover a broad 

range of filter parameters. 

 

The proposed filter is compared with the Median Filter and with table of results 

given in this paper; “A new method for impulsive noise suppression from highly distorted 

images by using Anfis” [43] which presents a filter called “Anfis-based impulsive noise 

removing filter (AIF). And, that table of compared results consists of these papers & 

filters: SMF [48], Iterative Median Filter (IMF) [49] and the complex structured impulsive 

noise removal filters: Progressive Switching Median Filter (PSM) [49], Signal Dependent 

Rank Order Mean Filter (SDROM) [50], Two-state Recursive Signal Dependent Rank 

Order Mean Filter (SDROMR) [50], Impulse Rejecting Filter (IRF) [51], Non-Recursive 

Adaptive-Center Weighted Median Filter (ACWM) [52] Recursive Adaptive-Center 

Weighted Median Filter (ACWMR) [52], Center Weighted Median Filter (CWM) [53], 

Yüksel’s Anfis based filter (YÜKSEL) [41], Russo’s fuzzy filter (RUSSO) [54] and 

Histogram Based adaptive fuzzy filter (HAF) [55]. 

 

In the next section, background information about soft mathematical morphology and 

genetic algorithms is given. In section 3, the representation scheme and other relevant 

components of the genetic algorithms are explained in detail. In section 4, the experimental 

settings used to obtain the best filter are explained and performance comparison of the 

generated filter and median filter is provided over 10 different images. Also, the filters 

generated for different levels of noise are compared with the latest filters presented in the 

literature and the improvement of the GA and the fitness function is shown visually and 

mathematically. Finally, conclusions are discussed in Section 5. 
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2. BACKGROUND 

 

 

2.1.  SOFT MATHEMATICAL MORPHOLOGY 

 

Mathematical morphology was first introduced as an image processing methodology 

for binary images [56]. The basic operators used in mathematical morphology are ‘erosion’ 

and ‘dilation’ operators that accept the image itself and a ‘structuring element’ (SE), also 

referred to as ‘kernel’ as input.  For more details on mathematical morphology, readers can 

refer to [57, 58]. Dilation causes regions of foreground pixels grow in size and holes within 

those areas shrink, while erosion has a reverse effect as illustrated in Figure 2.1. 

 

 

 

Figure 2.1. Repetitive dilation and erosion of a given binary image by a given structuring 

element having the origin in the middle for 40 iterations (1:on, 0:off) 

 

Later, in gray-scale morphology erosion and dilation operators are replaced with 

‘minimum’ and ‘maximum’ operators as the fundamental morphological operators, 

respectively. There are also ‘opening’ and ‘closing’ operators which requires application of 

dilation and erosion using the same structuring element in a specified order. Up to now, 

mathematical morphology has been used in many different image processing applications, 

ranging from noise suppression, feature extraction to object recognition.  
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Soft mathematical morphology introduced by Koskinen, Astola, & Neuvo [59] in 

1991. In this approach, weighted order statistics is used instead of the minimum or 

maximum. The main difference from the standard morphology is the division of the 

structuring element into two parts; ‘hard centre’ and ‘soft boundary’. The numbers in the 

hard centre part has weights greater than one, which is set by a parameter called ‘rank’ or 

‘repetition parameter’. The numbers in the soft boundary part of the SE has weights equal 

to one. An example soft dilation operation is illustrated in Figure 2.2. 

 

 

 

Figure 2.2. An example soft dilation operation 

 

Given a structural element B, it is divided into two subsets and, B is divided into two 

subsets: the hard centre structural element A and the soft structural element AB \ , 

where
2, ZBA ⊆ , ∅≠⊆ BA  and \  denotes the set difference. Let ⊕  and � represent ‘soft 

dilation’ and ‘soft erosion’ operations. Soft dilation and soft erosion of an image f with 

rank-order i are defined as: 

 

 

}|)()({                               

}|))()(({max)(

\

)(
,,

AB

A

i

iAB

FBzf

FAzfif

∈+−

∈+−◊=⊕

δδδ

εεε U
 (2.1) 
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}|)()({                            

}|))()(({min)(

\

)(
,,

AB

A

i

iAB

FBzf

FAzfif

∈−+

∈−+◊=Θ

δδδ

εεε U
 (2.2) 

   

Where max(i) and min(i)  denote the ith largest and smallest value in the set 

respectively; ◊ is the repetition operator and )}()...,(),({)( vfvfvfvfi =◊  (i times); FA 

and FB\A represent the field of definition of A and AB \ , respectively. Consequently, soft 

opening (Λ) and soft closing (∆) of an image f are defined as: 

 

 ()(  , , , , iABiAB f ⊕=Λ � B, A, i )( f )  (2.3) 

 

 �B, A, i =∆ )( , , fiAB )( (  , , fiAB⊕ )(4)  (2.4) 

 

It has been shown that soft morphological operations are more robust in noisy 

conditions and are less sensitive to additive noise and to small variations in object shape 

[60]. 

 

2.2.  GENETIC ALGORITHMS 

 

A genetic algorithm (GA) is a nature inspired and population based meta-heuristic 

used in search and optimization [61]. GAs have proven success in solving different classes 

of complex problems [62, 63, 64, 65]. The approach aims to improve a set of randomly 

generated initial candidate solutions, referred to as ‘population’ through Darwinian 

evolution as shown in the below list. A ‘chromosome’ denotes a candidate solution that is 

made up of ‘genes’, where each gene receives a value from a set of ‘alleles’.  For example, 

using binary representation, ‘00010’ might represent a candidate solution for a problem 

requiring 5 genes. Other types of representation schemes are also allowed.  
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1. Generate initial population of size N, Pt(N)|t=0 

2. Evaluate chromosomes, Pt(N)|t=0 

3. Repeat 

4. Select mates Mt(K) 

5. Apply Crossover, Obtain Offspring 

6. Mutate Offspring, Ot(K) 

7. Evaluate chromosomes, Ot(K) 

8. Replace current population, form next population 

 // Pt+1(N): select N from (N+K) chromosomes 

9. Until Termination Criteria are satisfied 

10. Return the best chromosome 

 

In an evolutionary cycle, a set of genetic operators, namely; ‘crossover’, ‘mutation’ 

and ‘replacement’ are applied to the chromosomes in that order. Good building blocks, 

possibly some part of an optimal solution are kept within the population, while the poor 

ones are eliminated based on a ‘fitness function’ denoting the quality of a given candidate 

solution. One point crossover (1PTX) is the traditional crossover used in GAs. Two mates 

are randomly selected within the population favoring better chromosomes having better 

fitness values. Then the genetic material is swapped at a randomly chosen locus. For 

example, assuming that ‘00010’ and ‘01001’ are selected as mates that will go through 

1PTX, if the locus is randomly determined as 2, then two new chromosomes (offspring) 

are generated as follows: ‘00|010’ × ‘11|011’ → ‘00011’, ‘11010’. Next, mutation is 

applied to the offspring by perturbing the allele value at each locus to a different value in 

the allele set with a given probability. In binary representation, mutation is a bit-flip 

operation.  For example, assuming a mutation probability of 1/5, the offspring ‘00011’ 

might change into ‘01010’.  
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3. GENETIC ALGORITHMS FOR GENERATING AN OPTIMAL 

FILTER 

 

 

The need to search and try different combinations of operations, structuring elements 

and parameters expands the search space dramatically (2.14 x 1081) and makes the search 

for the optimal soft morphological filter well suited for GAs.  

 

In this study GAs are used as a supervised learning mechanism to generate a filter for 

impulsive noise removal. The GA optimizes the parameters of the soft morphological filter 

by comparing the results of the filter over a set of training images. 

 

3.1.  IMPULSIVE NOISE 

 

In this study, salt and pepper noise is studied. The usual and effective method for 

suppressing this kind of noise is generally by the use of median filter. Also, in this study, it 

is accepted that the noise is distributed on each pixel over the image with equal probability, 

and the generated filter will be best suitable for a trained noise level, but it can handle all 

different random distributions of that noise level. 

 

3.2.  REPRESENTATION 

 

Each candidate solution coded by a chromosome represents a different filter. In this 

representation scheme, a soft morphological filter that has up to four stages can be 

encoded. Each of these four stages can have different morphological operations, 

parameters and structuring elements. 

 

It is shown in a previous study [15] that having multiple stages gives better results 

compared to a one-staged morphological filter. The representation scheme used in this 

study can give every type of filter, so that we have a broader range of filters to choose. 

 

In the first four genes of the chromosome, the type of the morphological operations 

for each stage are coded ( 0-No Operator, 1-Erosion, 2-Dilation, 3-Opening, 4-Closing ). 
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By using a ‘No Operator’ type, the corresponding stage can be eliminated, or by using one 

of the other operations, the operator can be selected for the corresponding stage. 

 

In the next four genes, the neighborhood type is coded. In this study, 4 and 8 

neighborhood types are allowed. In a 4 neighborhood type, the corners of the SE are not 

used, but in an 8 neighborhood type, all the nine elements in the SE are used. First of all, 

these are the most common ones and some prior tests done showed that, enlarging the 

search space by allowing all types of SE shapes does not give better results. For this part of 

the chromosome, zero means a 4n type neighborhood; one means an 8n type 

neighborhood. 

 

The next four genes are also binary like the previous four genes. They decode the 

information whether the SE is symmetric or not. In a symmetric SE, the numbers are 

symmetrically placed in all planes (horizontally, vertically and diagonally). But, in a non-

symmetric SE, all the numbers are different. For this part of the chromosome, zero means a 

non-symmetric SE, one means symmetric SE. 

 

The next 36 genes represent the numbers in the structuring elements of the four 

stages. 3x3 sized SEs are used in this study; which means each Structuring Element has 

nine numbers in them. Each slot in an SE has a range of (-255, 255). In a previous work 

[15], this range is used and it is shown that [4, 15] expanding the range of the number in 

the SEs gave better results. A grayscale image has a range of (0, 255); in order to change a 

black pixel (255) into a white pixel -255 have to be added, and a value of 255 have to be 

added for the opposite. Therefore, to cover all the values of a grayscale image, this range is 

used.  

 

The last two parts are the parameters only used in soft morphology. The next 36 

genes represent the ‘hard’ and ‘soft’ elements in the SEs. This part of the chromosome is 

also binary. Each gene works for a single number in an SE. When encoding, a zero maps to 

a soft element, and a one maps to a hard element. 

 

The last four genes in a chromosome represent ‘the repetition parameter’ of ‘the rank 

parameter’ for each stage. The range of each gene in this part is (1 – 9). Using one in this 
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field corresponds to a standard morphological filter, other values change the operation 

according to the rules defined in soft mathematical morphology. The values above eight 

give the same results, because the SEs used in this study has nine numbers in them. 

Therefore, the range has a maximum value of nine.  

 

3.3.  EVALUATION FUNCTION 

 

The GA in this study is used like a training mechanism; a filter trainer for a specific 

purpose which is noise elimination. The fitness calculation gives us a value that represents 

the difference between the filtered noisy image and the original non-noisy image. 

Therefore, the lower the difference, the better the filter will be. 

 

This calculation is composed of four parts. The first two comparing criteria (mean-

absolute-error and mean-squared-error) are used in almost all the studies that are done on 

this topic before. Shape Error criteria is a relatively new method compared to that two error 

types and the brightness error is a comparison method that is used in this thesis and didn’t 

used in any of the papers researched in this study.  

 

The mean-absolute-error calculates the difference of the pixels at the same 

coordinates in two images and adds all the differences and gives the mean average of that 

sum. It is a very standard error criterion. 

 

The formulas are arranged for two 8-bit gray-scale images X and its restored image 

Y, with pixel indices “i” and “j”, i.e., image size is of M×N pixels. 
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This criterion is like the mean-absolute-error, but has a difference. In here, the 

squares of the differences are taken before addition. Mean-squared-error criterion 

strengthens the effect of differences on the result. Each one is used in previous studies and 

none of them has precedence over the other. So, in this study, both of them are used 

together. 
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The previous criteria check pixel by pixel comparisons, but do not take the whole 

image or shapes into account. In image reconstruction, that is not enough to preserve the 

shapes or the details in the image. So, the Shape Error is incorporated into the fitness 

function. It is first introduced in the paper [66]. 
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M, N, X and Y represents the same things in previous equations, y is set to 2, (i’, j’) 

specifies the floating windows around (i, j) with the masking element w, which is a 3x3 

window in this case. 

 

After generating filters with the first three objectives and making some tests using 

the resulting filters; it is seen that the filtered image has the necessary properties such as 

smoothed noise and preserved details. But, it has a problem that the brightness of the 

image is a little bit different from the original image. According to my observations, this is 

because of using non-flat structuring elements. The big values can change the average 

pixel value of the image. 

 

This problem is tried to be handled with two different methods, one of them is the 

Brightness Error Criteria. The other method will be explained in the Fitness Calculation 

Section. The Brightness Error Criteria simply calculates the absolute value of the 

difference between the average pixel value of the input image and the output image. By 

embedding this objective into the fitness function, the search is biased into a direction 

where the brightness of the resulting image will be close to the original image’s brightness 

value. 
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The first problem solved when combining these objectives in one fitness function is 

the scaling problem. The scaling is important to equalize the impact of the objectives on 

the fitness value. To scale them, each objective is divided by the maximum possible value 

they can give in an extreme case. 

 

For Mean-Squared and Mean-Absolute-Error criteria, the extreme case is a 

comparison of two images; that if one image has a black pixel, the other one must have a 

white pixel at the same location and vice versa. The example images for this case are given 

in Figure 3.1. Mean-Squared-Error calculates a difference of 65025; Mean-Absolute-Error 

calculates 255 for this case. So, the values of these objectives are divided with these values 

in the fitness calculation. 

 

 

 

Figure 3.1. An example extreme case for MSE and MAE criteria 

 

According to the tests done, the extreme case for the Shape Error Criteria is a case 

that each image has only horizontal or only vertical black lines on a white background with 

one pixel gap between them starting from one end and ending at the other end. But each 

image has the black lines where the other image has gaps (white lines). The example 

images for this case are given in Figure 3.2. This situation also fits the extreme case for the 

MSE and MAE criteria. The Shape Error Criteria calculates a difference of 1238 in a 

situation like this for two 100x100 images. 

 

In this example; each image has a white background, but the first image has black 

lines in the even valued columns, whereas the second image has black lines in the odd 

valued columns. Therefore, these images are appropriate for the extreme cases of MSE, 

MAE and Shape Error criteria. 
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Figure 3.2. An example extreme case for the shape error criteria 

 

The extreme case for Brightness Error Objective is a situation where one image is 

completely black and the other is completely white. This objective returns a value of 255 

for this situation. 

 

So the scaled fitness function looks like this: 
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At the beginning of this study, a single non-noisy image with a size of 100x100 and a 

100x100 20% impulsive noise added version of that image is given as an input into the 

GA. At each fitness calculation for each candidate filter, the filter is applied to the noisy 

image. The fitness value will be the difference of the original image and the resulted image 

according to the four objectives defined before. 

 

But, using a single image gives a filter that is best suitable for an image with similar 

attributes like the training image. So, it is seen that to achieve a generalized filter, more 

than one image is needed for the training phase. In this study, three different 100x100 sized 

images are used for the fitness calculation. The fitness of each candidate filter is calculated 

with the same way described before, and the average value of these calculations made up 

the final fitness value. 
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Using more than a single image for the fitness calculation is the second method for 

solving the Brightness Error Problem. The three images are selected specially for this 

purpose. The average pixel value of a grayscale image ranges between (0, 255). If this 

range is divided into four equal parts, each part has a range of 64. Therefore, the three 

images used here have average pixel values of 64, 128 and 192 individually. The aim here 

is to adapt the filter for different brightness conditions incorporating with the brightness 

error criteria. 
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4. COMPUTATIONAL RESULTS 

 

 
4.1.  EXPERIMENTAL DATA AND SETTINGS 

 

4.1.1.  Training Set 

 

The three Images used for the training of the filters are shown in the Figure 4.1. This 

figure only shows the images that have 20% level of noise. But for the last test which is 

explained in the Section 4.4, the same images are used but with noise levels ranging from 

10% to 90%.   

 

These three Images are cropped from the Flowers, Mandrill and Lena Images. Small 

Images are used in the training because; GA takes too much time when bigger sized 

Images are used. And the main difference between these Images is described at the end of 

the previous Section. They have different average brightness values (64, 128 and 192) 

which we think that will help the GA to generate a filter that is not dependent on the 

brightness of an image. The training Images and their source images are illustrated in 

Figures 4.1 – 4.5. 

 

 

 

Figure 4.1. Three training images (noisy and clean versions) 
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Figure 4.2. The cropped part of the Flowers image (335, 320) – (434, 419) 

 

 

 

Figure 4.3. The cropped part of the Baboon image (170, 17) – (269, 116) 
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Figure 4.4. The cropped part of the Lena image (212, 213) – (311, 312) 
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Figure 4.5. 27 (3x9) Noisy training images for all levels of noises used (10%-90%) 
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For the training phase; the GA parameters shown in the Table 4.1 are used. The 

MATLAB GA Library is used as the backbone of the GA, but the population generation 

operation, fitness function, cross-over and the mutation operators are written as customized 

functions and called from the GA Library. 

 

Table 4.1. Genetic Algorithm Parameters 

 

Population Size:              50 

Termination Criteria:       Number of Generations (1000) 

Selection Method:         Tournament Selection (Size 4) 

Cross-Over Method:       Scattered Crossover 

Mutation:                        Simple Mutation (1 / ChromosomeLength = 1 / 88) 

 

An Initial Population with a size of 50 individual is randomly generated according to 

the value ranges of each gene. To simply explain scattered cross-over; a vector with a size 

of 88 is formed with random values of 0 and 1. After this operation, the corresponding 

genes which have a value of 1 in the vector are swapped within parents. Therefore, the 

children are formed after this swapping operation. 

 

To generate a final filter; the GA is run with the same parameters and with the same 

training images for 30 runs. At each run, a different random seed is used. After 30 runs are 

finished; the fitness values of the final filters for all runs are collected and the filter with 

the best fitness value is selected as the generated filter.   

 

4.1.2.  Test Set 

 

In the Figure 4.6., the non-noisy Images used in the tests are shown. To fit them in a 

page; all of them are scaled. The original sizes are as follows: 

 

  Camera (256x256), Bridge (256x256), Peppers (512x512), 

  Reptile (441x331), Parrots (384x256), Airplane (512x512), 

  Mandril (350x350), Lena (512x512), Boat (512x512), GoldHill (512x512) 
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Figure 4.6. All 10 non-noisy test images 

(Camera, Bridge, Peppers, Reptile, Parrots, Airplane, Mandrill, Lena, Boat, Goldhill) 
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4.1.3.  Image Properties 

 

In this part; the properties of both the training and test images are presented. Two 

types of image properties are calculated and showed here.  

 

One is called histogram; the histogram of an image refers to a histogram of the pixel 

intensity values. The histogram is a graph showing the number of pixels in an image at 

each different intensity value found in that image. For an 8-bit grayscale image there are 

256 different possible intensities, and so the histogram will graphically display 256 

numbers showing the distribution of pixels amongst those grayscale values. 

 

 The other critera is called Average Pixel Value; which is simply the average value 

of the sum of all the pixels of an image. 

 

The main aim of showing these properties is to highlight the difference of the 

training images and test images. And it is shown that the cropped training images do not 

carry the same properties with the original test images as it can be seen from the 

histograms and average pixel values in the Table 4.2 and Figures 4.7 – 4.19. 
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Figure 4.7. Histogram data of the Airplane image 

 

 

 

Figure 4.8. Histogram data of the Baboon image 
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Figure 4.9. Histogram data of the Boat image 

 

 

 

Figure 4.10. Histogram data of the Bridge image 
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Figure 4.11. Histogram data of the Camera image 

 

 

 

Figure 4.12. Histogram data of the Goldhill image 
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Figure 4.13. Histogram data of the Lena image 

 

 

 

Figure 4.14. Histogram data of the Parrots image 
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Figure 4.15. Histogram data of the Peppers image 

 

 

 

Figure 4.16. Histogram data of the Reptile image 
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Figure 4.17. Histogram data of the X1 training image 

 

 

 

Figure 4.18. Histogram data of the X2 training image 
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Figure 4.19. Histogram data of the X3 training image 

 

Table 4.2. Average pixel values (brightness values) for all images 

 

Image Name Average Pixel Value 

airplane 178.68 

baboon 129.81 

boat  136.14 

bridge 113.88 

camera 118.72 

goldhill 112.21 

lena 124.04 

parrots 109.56 

peppers 120.29 

reptile 125.47 

X1 training  63.77 

X2 training  128.61 

X3 training  192.53 
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4.2.  DOES GENETIC ALGORITHM IMPROVE THE FILTER? 

 

In this part of the testing; what we aim is to prove that our GA and the fitness 

function really improve a filters capability of noise removal and shape preservation.  

 

Therefore, to show this; we stop the GA runs at some intervals and take the soft 

morphological filter formed at those generations and applied them to a noisy Lena Image 

and calculated the MSE, MAE and Peak Signal to Noise Ratio (PSNR) Values of the 

filtered Images. The results of these experiments can be seen in Figures 4.20 – 4.25. 

 

The results clearly showed that, the GA and the fitness function we had used 

improves a filter through the generations according to these criteria. Also, when we look at 

the images filtered by the filters from different generations of the GA; we can see clearly 

that the Image quality is increasing and the noise density is decreasing when the Filters 

from the future generations are used. 

 

The Filter is generated with the same method and parameters used in the previous 

tests; by using three different Images with different brightness values and using the same 

fitness function. We had used 20% noisy versions of the training images, and also for 

testing the generated filters 256x256 sized Lena Image is used with a noise level of 20%. 

The MSE Value of the noisy Image is 3767,6. 
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Figure 4.20. Fitness change over generations 

 

 

 

Figure 4.21. MSE value change over generations 
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Figure 4.22. MAE value change over generations 

 

 

 

Figure 4.23. PSNR value change over generations 
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Figure 4.24. The original and the 20% noisy Lena images 

 

 

 

Figure 4.25. Filtered Lena image over generations of GA (1,10,100,1000th generations) 
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4.3.  COMPARISON TO THE MEDIAN FILTER FOR A SINGLE NOISE LEVEL  

 

To test the generated filter, it is applied on ten different images. The generated filter 

is illustrated in Tables 4.3 – 4.4. In this experiment; each image is corrupted with 20% of 

salt & pepper noise. But, to achieve statistically significant results, 30 different noisy 

variations of the images are generated; each having the same percentage of noise, but with 

different random noise distributions. The filter is applied on each of those images and the 

resulting images are compared with the original non-corrupted ones using the objectives 

defined in the fitness function. 

 

The same operations are done using the 3x3, 4x4 and 5x5 median filters on the same 

images. For the performance test of the generated filter, the average and the best results 

taken from the median filters are compared with our filter’s results and the outcomes of 

these experiments are shown in Tables 4.5 – 4.6. 

 

The results showed that, according to mean-squared-error and shape error criteria, 

the generated filter gave better results in both average and best values for all images. 

According to mean-absolute-error criteria, the result is almost the same, for only one of the 

images; the 3x3 median filter gave a better result. According to brightness error criteria, for 

half of the images the generated filter gave better results than all sizes of median filters, but 

for the other images it could not. So, this is the worst criteria for our filter, but according to 

this criterion it can be considered as equal to the median filter. Therefore, when we look at 

the results in general, the generated filter outperforms the median filter in a significant 

way. 
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Table 4.3. The Chromosome of the generated filter for 20% impulsive noise 

 

Operation Sequence 4 0 4 0           

Neighbourhood 0 0 0 1 

    

  

Symmetric 1 1 1 0 

    

  

          

    

  

Structuring Elements 156 -10 227 -13 -15 77 73 -194 17 

  169 -43 231 206 -203 -153 -230 57 247 

  102 -11 157 -33 -10 208 113 -248 104 

  -35 -66 -250 -9 -128 122 -195 183 -204 

                    

Hard Soft Map  1 0 1 0 0 0 1 0 0 

  1 1 0 0 1 1 1 1 1 

  1 0 0 0 0 0 1 0 1 

  1 0 1 1 1 0 0 0 1 

            

Rank 3 3 2 8           

 

Table 4.4. The generated filter for 20% impulsive noise 

 

      1st Stage : Soft Closing       2nd Stage : Soft Closing 

        

  -10     -11   

-13 -15 -13 -33 -10 -33 

  -10     -11   

        

1 0 1 1 0 0 

0 0 0 0 0 0 

1 0 0 1 0 1 

        

     Repetition Parameter : 3        Repetition Parameter : 2 
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Table 4.5. Average values taken from the test done with 30 different noisy variations of the 

images (first 5 images) 

(The training images are portions of the Lena, Mandrill and Flowers images) 

 

             MAE           MSE      Shape Error  Brightness Error 

Baboon Image Average StdDev Average StdDev Average StdDev Average StdDev 

Our Filter 10,72 0.02 300,25 1.80 64,66 0.12 0,32 0.07 

3x3 Median 11,74 0.03 392,60 3.99 75,18 0.26 0,43 0.08 

4x4 Median 14,43 0.03 491,62 2.70 77,68 0.12 0,64 0.07 

5x5 Median 14,69 0.03 502,10 3.97 79,06 0.15 0,72 0.08 

                  

Boat Image Average StdDev Average StdDev Average StdDev Average StdDev 

Our Filter 3,67 0.01 58,84 0.82 26,18 0.12 0,20 0.02 

3x3 Median 4,22 0.02 123,17 3.06 38,74 0.41 0,12 0.04 

4x4 Median 6,17 0.02 176,19 2.34 38,81 0.16 0,17 0.03 

5x5 Median 5,76 0.03 151,44 3.35 37,84 0.26 0,04 0.02 

                  

Bridge Image Average StdDev Average StdDev Average StdDev Average StdDev 

Our Filter 8,55 0.03 184,34 2.52 49,64 0.22 0,23 0.08 

3x3 Median 9,76 0.05 289,72 6.65 62,90 0.57 0,39 0.10 

4x4 Median 12,48 0.04 374,73 3.43 64,32 0.20 0,78 0.09 

5x5 Median 12,47 0.04 373,07 4.70 64,06 0.26 0,90 0.09 

                  

Flowers Image Average StdDev Average StdDev Average StdDev Average StdDev 

Our Filter 4,68 0.02 79,60 1.44 28,14 0.20 1,16 0.03 

3x3 Median 4,01 0.02 119,47 3.47 38,60 0.58 0,09 0.03 

4x4 Median 5,99 0.02 160,71 1.48 37,24 0.12 0,21 0.03 

5x5 Median 5,44 0.02 131,49 1.64 35,19 0.16 0,49 0.03 

                  

Goldhill Image Average StdDev Average StdDev Average StdDev Average StdDev 

Our Filter 3,95 0.01 49,56 0.80 25,04 0.13 0,06 0.02 

3x3 Median 4,58 0.02 111,79 2.97 37,89 0.42 0,21 0.03 

4x4 Median 6,15 0.02 122,13 1.61 34,36 0.13 0,41 0.02 

5x5 Median 5,99 0.02 121,17 3.70 34,97 0.36 0,51 0.03 
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Table 4.6. Average values taken from the test done with 30 different noisy variations of the 

images (last 5 images) 

(The training images are portions of the Lena, Mandrill and Flowers Images) 

 

             MAE           MSE      Shape Error  Brightness Error 

Lena Image Average StdDev Average StdDev Average StdDev Average StdDev 

Our Filter 2,52 0.01 31,91 0.66 18,34 0.14 0,03 0.02 

3x3 Median 2,79 0.02 79,87 3.05 30,59 0.54 0,17 0.03 

4x4 Median 4,53 0.02 120,77 1.85 29,15 0.17 0,31 0.03 

5x5 Median 3,81 0.02 79,73 2.98 25,94 0.39 0,40 0.03 

                  

Peppers Image Average StdDev Average StdDev Average StdDev Average StdDev 

Our Filter 2,53 0.01 31,21 1.22 18,21 0.27 0,16 0.02 

3x3 Median 2,80 0.02 78,96 3.59 31,03 0.60 0,11 0.03 

4x4 Median 4,41 0.01 131,34 2.44 30,40 0.21 0,12 0.02 

5x5 Median 3,55 0.02 67,40 2.44 24,68 0.35 0,25 0.03 

                  

Parrots Image Average StdDev Average StdDev Average StdDev Average StdDev 

Our Filter 3,05 0.02 77,08 1.73 31,40 0.24 0,13 0.04 

3x3 Median 3,36 0.03 125,00 4.35 40,50 0.55 0,09 0.05 

4x4 Median 4,69 0.03 150,92 3.79 39,89 0.30 0,29 0.04 

5x5 Median 4,29 0.04 141,83 5.02 40,10 0.40 0,26 0.05 

                  

Camera Image Average StdDev Average StdDev Average StdDev Average StdDev 

Our Filter 5,27 0.04 169,86 3.74 46,61 0.35 0,16 0.07 

3x3 Median 5,94 0.07 276,02 10.15 59,91 0.89 0,58 0.09 

4x4 Median 8,19 0.05 414,40 6.75 64,48 0.37 1,28 0.08 

5x5 Median 7,77 0.06 373,53 8.06 62,85 0.48 1,20 0.09 

                  

Airplane Image Average StdDev Average StdDev Average StdDev Average StdDev 

Our Filter 2,90 0.01 47,02 1.15 21,77 0.22 0,23 0.02 

3x3 Median 3,21 0.02 110,46 3.46 35,58 0.54 0,20 0.04 

4x4 Median 5,20 0.02 191,47 3.51 36,24 0.26 0,21 0.03 

5x5 Median 4,52 0.02 128,10 3.22 32,54 0.34 0,14 0.04 
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4.4.  COMPARISON OF THE EVOLVED FILTERS TO THE STATE-OF-THE-

ART FILTERS 

 

In the previous part of the tests; we had generated a filter for a single level of noise 

and test that filter for that specific level of noise which it is trained for. But, in this part of 

the testing; we had changed this approach.  

 

In this part, for 9 different levels of noise (10% - 20% - 30% - ... – 90%), 9 different 

filters are generated. This is done by using the same 3 Images, different versions of those 

Images are generated with those levels of noise and they are given as inputs to the GA. 

And the filter is generated with the same fitness function and with the same methods as the 

previous tests. The GA is again ran for 30 separate times and the filter resulted from the 

best fit generation is used for testing purposes. 

 

At first 3 images are generated for the 3 small test Images which has a 10% level of 

noise. And the GA is run for those 6 Images (3 non-noisy, 3 noisy) for 30 runs, after those 

runs; the filter from the best generation is taken out for testing. 

 

For testing; 3 Images are used; Lena, Peppers, Mandrill which are shown in the 

Figure 4.26. These images are selected because they are the mostly used Images in the 

Literature and we have extensive test results for those Images in the Literature. But, at this 

point; we need to generate noisy versions of these Images which has the same Mean-

Squared-Error Value. 

 

Therefore, by using computational brute-force try-and-error approach, 9 different 

versions of those 3 Images with different levels of noise from 10% to 90% are generated. 

But those noisy Images are generated in such a way that they will have the same MSE 

Values with the Images used in the test results seen in the Literature.  

 

After generating all those noisy Images for 9 levels of noise, the filter generated by 

using images with 10% level of noise is applied on each of them, and the 27 different 

results are collected for 3 Images x 9 different levels of noise. 
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Figure 4.26. 512x512 Lena, Mandrill, Peppers images 

 

These whole set of operations are also repeated for other levels of noise. Therefore, 9 

different filters are generated by training the GA for 9 different levels of noise. And, those 

filters are applied on those 3 Images with noise levels ranging from (10% - 90%). 

 

You can see all the results taken from this test in the Tables 4.7 – 4.12. At each page, 

the test results for a specific image are presented. In the “Our Method” part; you can see 

the MSE values of the images filtered by the filters generated by our GA with different 

training noise levels. For our method; the best filter results for each level of noise are 

marked as bold. And, in below, the MSE values of the images filtered by the filters in the 

literature can be seen. 

 

From these results; there is more than one conclusion that we can perceive. The first 

one is; in most cases, the filters generated with our method give their best results at the 

noise level that they are generated.  

 

The second conclusion is, our filter does not give the best results among all the 

filters, but if we look at the results of each for their generated noise level, it can be 

observed that our method gets a rank in the best 3 or 4 filters among the state-of-the-art 

filters in the literature as illustrated in Table 4.13 and Figure 4.27. The values in Table 4.13 

are formed with the values taken from the Tables A.1 – A.3. Each approach is ranked from 

1 (best) to 14 (worst) based on the MSE values, and then the average ranking of each 

approach is plotted for each test image considering different levels of noise. This of course 

requires prior knowledge about the level of the noise that we have for a given filter. 



 
40 

Table 4.7. Comparison of our approach to the other approaches from literature based on 

MSE values for the Lena image - Part I 

(The training images are portions of the Lena, Mandrill and Flowers images) 

 

 10 20 30 40 50 

Noisy image  1852,70 3767,60 5563,60 7451,50 9268,40 

Our Method 63,96 93,12 129,28 162,34 206,68 

10% 63,96 125,41 336,90 823,43 1717,71 

20% 67,64 93,12 151,24 296,04 659,00 

30% 79,71 101,04 136,61 224,36 447,25 

40% 95,13 108,01 129,28 171,60 275,60 

50% 128,16 138,57 157,62 188,62 257,80 

60% 120,30 130,94 142,82 162,34 206,68 

70% 230,67 233,72 254,33 260,33 305,43 

80% 215,40 220,46 227,01 243,98 265,07 

90% 281,29 291,88 306,34 338,26 387,36 

AIF 12,46 24,13 47,44 71,68 114,05 

IMF  124,05 140,06 158,84 203,36 261,87 

SMF - 3x3 87,09 148,82 353,46 958,83 2046,10 

PSM  54,92 85,76 132,48 272,63 647,30 

SDROM  60,52 136,35 408,80 1105,70 2339,10 

SDROMR  56,79 91,21 171,88 287,33 553,76 

IRF  61,15 127,84 366,24 981,06 2098,80 

ACWM  51,97 121,51 367,27 993,73 2119,40 

ACWMR  46,95 85,67 170,71 299,57 536,23 

CWM  76,27 259,94 727,17 1729,30 3273,40 

YÜKSEL 63,63 94,21 151,67 256,73 417,24 

RUSSO  51,45 111,90 208,57 346,21 605,95 

HAF  12,53 24,66 49,61 83,16 121,66 
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Table 4.8. Comparison of our approach to the other approaches from literature based on 

MSE values for the Lena image - Part II 

(The training images are portions of the Lena, Mandrill and Flowers images) 

 

 60 70 80 90 Average 

Noisy image  11152,00 13078,00 14769,00 16804,00 9300,76 

Our Method 356,48 629,36 1235,10 2356,58   

10% 3417,09 5735,92 8579,54 12308,65 3310,87 

20% 1668,65 3487,04 6238,84 10310,34 2297,21 

30% 1171,02 2744,55 5369,45 9653,81 1992,81 

40% 600,56 1650,92 3627,65 7965,03 1462,42 

50% 519,31 1330,86 3280,31 8206,04 1420,78 

60% 370,18 1022,40 2851,88 7606,07 1261,42 

70% 381,12 842,92 2045,64 5043,67 959,85 

80% 356,48 629,36 1332,46 3726,48 721,75 

90% 521,77 762,78 1235,10 2356,58 648,23 

AIF 153,18 204,08 276,45 383,37 142,98 

IMF  491,57 1402,70 3971,50 10140,00 1877,11 

SMF - 3x3 3856,60 6769,10 9938,00 14269,00 4269,67 

PSM  1938,30 5036,00 9495,10 14862,00 3613,83 

SDROM  4322,30 7404,70 10619,00 14831,00 4580,83 

SDROMR  1071,80 2452,10 5615,90 13152,00 2605,86 

IRF  3918,50 6821,70 9982,40 14290,00 4294,19 

ACWM  3951,00 6859,10 10015,00 14311,00 4310,00 

ACWMR  1007,80 2042,30 4230,20 9975,40 2043,87 

CWM  5431,60 8350,40 11291,00 15060,00 5133,23 

YÜKSEL 647,59 970,07 1375,40 1968,40 660,55 

RUSSO  1114,90 2175,50 4372,30 8848,00 1981,64 

HAF  154,23 221,77 463,38 491,17 180,24 
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Table 4.9. Comparison of our approach to the other approaches from literature based on 

MSE values for the Mandrill image - Part I 

(The training images are portions of the Lena, Mandrill and Flowers images) 

 

 10 20 30 40 50 

Noisy image  1766,50 3585,30 5351,70 7093,50 8898,20 

Our Method 193,38 250,13 308,52 361,50 423,27 

10% 193,38 273,47 486,69 928,09 1909,83 

20% 216,13 250,13 311,09 452,69 858,00 

30% 248,72 270,17 308,52 392,61 646,38 

40% 279,36 296,53 320,37 361,50 487,28 

50% 335,46 347,61 366,95 386,44 448,94 

60% 332,73 340,80 354,34 370,92 423,27 

70% 403,74 409,45 420,37 430,45 472,66 

80% 391,25 398,22 408,75 420,01 455,22 

90% 410,60 417,88 431,38 449,19 496,96 

AIF 31,16 70,37 113,88 164,86 220,92 

IMF  324,10 340,02 358,99 386,60 456,02 

SMF - 3x3 271,04 329,47 560,00 1094,30 2184,30 

PSM  108,39 147,80 205,12 335,73 736,27 

SDROM  165,39 259,65 544,67 1187,70 2443,10 

SDROMR  171,74 224,09 312,82 429,68 692,46 

IRF  171,56 252,63 497,92 1071,00 2190,20 

ACWM  125,94 215,00 470,31 1052,30 2180,10 

ACWMR  115,20 176,27 263,32 381,32 620,87 

CWM  184,00 348,50 836,76 1795,20 3319,70 

RUSSO  46,95 85,67 170,71 299,57 536,23 

YÜKSEL 76,27 259,94 727,17 1729,30 3273,40 

HAF  31,77 72,04 115,01 172,19 227,46 
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Table 4.10. Comparison of our approach to the other approaches from literature based on 

MSE values for the Mandrill image - Part II 

(The training images are portions of the Lena, Mandrill and Flowers images) 

 

 60 70 80 90 Average 

Noisy image  10623,00 12415,00 14201,00 15998,00 8881,36 

Our Method 521,01 749,35 1115,79 1856,10   

10% 3407,13 5459,72 8321,25 11616,21 3259,59 

20% 1753,92 3251,77 5943,98 9561,00 2259,89 

30% 1310,97 2605,18 5182,08 8980,67 1994,56 

40% 835,22 1777,41 3818,16 7306,28 1548,25 

50% 650,10 1334,54 3438,57 7207,29 1451,64 

60% 573,06 1165,95 3019,14 6854,64 1343,55 

70% 555,06 875,49 2027,21 4792,20 1038,73 

80% 521,01 778,69 1443,19 3269,92 808,71 

90% 571,95 749,35 1115,79 1856,10 650,01 

AIF 293,77 370,09 461,06 599,19 258,37 

IMF  657,79 1653,40 4082,50 9688,00 1994,16 

SMF - 3x3 3836,80 6583,00 9739,10 13720,00 4257,56 

PSM  1932,40 5146,60 9665,40 14527,00 3644,97 

SDROM  4264,30 7185,30 10451,00 14272,00 4530,35 

SDROMR  1122,90 2482,90 5432,60 12614,00 2609,24 

IRF  3856,00 6614,30 9786,60 13742,00 4242,47 

ACWM  3851,70 6620,20 9798,60 13749,00 4229,24 

ACWMR  975,77 1888,50 3713,40 8619,00 1861,52 

CWM  5272,30 8037,50 10960,00 14346,00 5011,11 

RUSSO  1007,80 2042,30 4230,20 9975,40 2043,87 

YÜKSEL 5431,60 8350,40 11291,00 15060,00 5133,23 

HAF  301,71 387,19 482,01 611,48 266,76 
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Table 4.11. Comparison of our approach to the other approaches from literature based on 

MSE values for the Peppers image - Part I 

(The training images are portions of the Lena, Mandrill and Flowers images) 

 

 10 20 30 40 50 

Noisy image  1940,10 3988,80 5897,70 7914,50 9960,80 

Our Method 59,68 95,49 131,67 179,93 232,53 

10% 59,68 141,56 335,98 896,96 2002,49 

20% 65,95 95,49 141,92 330,03 799,81 

30% 78,51 101,45 131,67 233,20 516,94 

40% 112,00 125,67 142,25 190,90 313,82 

50% 142,05 162,01 176,23 213,34 276,59 

60% 132,36 143,66 152,65 179,93 232,53 

70% 254,87 267,27 270,68 306,71 350,39 

80% 363,50 369,63 376,93 399,49 423,48 

90% 759,92 769,86 778,24 811,31 876,05 

AIF 12,95 28,77 52,32 83,96 123,28 

IMF  123,82 149,80 190,54 249,05 335,41 

SMF - 3x3 77,69 160,17 389,36 1021,90 2161,00 

PSM  55,24 94,58 159,79 301,41 714,25 

SDROM  63,70 195,43 482,43 1240,30 2528,90 

SDROMR  61,34 149,97 268,08 474,06 750,02 

IRF  60,14 182,08 437,96 1126,40 2299,90 

ACWM  55,70 181,99 442,58 1139,30 2317,90 

ACWMR  54,51 142,14 259,92 463,44 727,67 

CWM  84,55 303,75 818,32 1860,70 3557,80 

YÜKSEL 228,79 321,47 467,54 670,77 946,99 

RUSSO  72,12 160,29 297,64 507,32 820,94 

HAF  18,03 39,12 67,14 96,36 137,03 
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Table 4.12. Comparison of our approach to the other approaches from literature based on 

MSE values for the Peppers image - Part II 

(The training images are portions of the Lena, Mandrill and Flowers images) 

 

 60 70 80 90 Average 

Noisy image  11929,00 13993,00 15930,00 17908,00 9940,21 

Our Method 403,68 829,00 1806,19 3267,65   

10% 3695,31 6464,19 9521,83 13342,63 3646,07 

20% 1851,95 4166,26 7234,87 11588,18 2627,47 

30% 1225,95 3183,28 6046,20 10606,69 2212,42 

40% 657,04 1880,93 4304,51 8589,78 1631,73 

50% 517,54 1604,82 4129,07 9010,14 1623,23 

60% 403,68 1260,99 3487,42 8291,24 1428,51 

70% 470,06 946,16 2570,58 5990,11 1142,75 

80% 514,31 829,00 1806,19 4365,73 944,91 

90% 990,60 1355,43 1938,14 3267,65 1154,81 

AIF 171,87 233,66 331,48 487,90 169,58 

IMF  667,77 1693,60 4329,20 10742,00 2053,47 

SMF - 3x3 4151,50 7271,20 10690,00 15164,00 4565,20 

PSM  1952,20 5280,30 9673,30 15099,00 3703,34 

SDROM  4674,00 7960,80 11444,00 15787,00 4930,73 

SDROMR  1568,00 3167,30 6270,00 13218,00 2880,75 

IRF  4309,50 7444,10 10835,00 15306,00 4666,79 

ACWM  4333,40 7471,50 10859,00 15324,00 4680,60 

ACWMR  1395,30 2753,00 4820,70 10357,00 2330,41 

CWM  5858,40 8999,30 12226,00 16049,00 5528,65 

YÜKSEL 1343,80 1852,70 2468,70 3267,10 1285,32 

RUSSO  1420,30 2528,40 4767,70 9732,40 2256,35 

HAF  219,60 288,96 378,12 520,49 196,09 
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Table 4.13. Average rank of each filter over all noisy images 

(The training images are portions of the Lena, Mandrill and Flowers images) 

 

  Lena Mandrill Peppers 

Our Method 4,44 5,11 3,56 

AIF 1,00 1,00 1,00 

IMF 6,78 7,11 5,78 

SMF - 3x3 10,56 10,33 9,78 

PSM 7,56 6,89 6,33 

SDROM 12,11 11,11 12,44 

SDROMR 7,22 7,44 7,56 

IRF 10,56 9,89 10,44 

ACWM 10,78 9,11 10,89 

ACWMR 5,67 5,11 5,78 

CWM 13,78 13,11 13,67 

YÜKSEL 5,33 4,56 8,33 

RUSSO 7,22 12,22 7,44 

HAF 2,00 2,00 2,00 
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Figure 4.27. Comparison of our approach to the other approaches in literature based on the 

average rankings over all noisy data using MSE values for a given image 

(Here, the filters of our method are used on the noise level that they are trained for) 
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In general, there is no prior knowledge regarding the noise level for a given image, 

hence we compare the performance of different filters generated using our approach at 

different noise levels as illustrated in Table 4.14 and Figure 4.28. The below table is 

formed with the values taken from the Tables A.4 – A.6.  The results indicate that the filter 

obtained by using training instances with 60% noise yields a better average performance. 

 

Table 4.14. Average rank of each filter over all noisy images 

(The training images are portions of the Lena, Mandrill and Flowers images) 

 

 Lena Mandrill Peppers 

10% 15,44 15,00 14,11 

20% 12,56 12,33 11,11 

30% 10,78 11,33 9,44 

40% 8,33 9,67 7,67 

50% 9,44 9,89 8,78 

60% 7,56 8,67 6,67 

70% 10,67 10,56 9,56 

80% 9,11 9,33 10,22 

90% 11,44 10,67 13,22 

AIF 1,00 1,00 1,00 

IMF  10,44 10,78 9,67 

SMF - 3x3 17,56 17,11 16,44 

PSM  12,22 10,89 10,89 

SDROM  18,78 17,33 19,11 

SDROMR  11,56 11,33 12,33 

IRF  17,11 16,11 17,11 

ACWM  17,22 15,22 17,56 

ACWMR  9,78 7,89 10,11 

CWM  20,89 19,89 20,78 

YÜKSEL 7,56 7,56 13,00 

RUSSO  11,56 18,44 12,22 

HAF  2,00 2,00 2,00 
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Figure 4.28. Average performance ranking of the filters, which are obtained by using the 

training instances with a given noise level, over all noisy data 

 

And as the last part of the comparisons; as shown in Table 4.15 and Figure 4.29 

which are formed with the values taken from the Tables A.7 – A.9.  A comparison using 

the filter generated by training over images with 60% noise yields a comparable 

performance to the existing approaches. Still, the state of the approaches cannot be beaten. 
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Table 4.15. Average rank of each filter over all noisy images 

(The training images are portions of the Lena, Mandrill and Flowers images) 

 

 Lena Mandrill Peppers 

Our Method  - 60% 5,33 6,00 4,56 

AIF 1,00 1,00 1,00 

IMF  6,78 6,89 5,67 

SMF - 3x3 10,44 10,11 9,67 

PSM  7,56 6,89 6,33 

SDROM  12,11 11,00 12,33 

SDROMR  7,22 7,33 7,44 

IRF  10,44 9,78 10,33 

ACWM  10,67 9,11 10,89 

ACWMR  5,67 5,11 5,67 

CWM  13,67 13,11 13,56 

YÜKSEL 5,00 4,56 8,22 

RUSSO  7,11 12,11 7,33 

HAF  2,00 2,00 2,00 
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Figure 4.29. Comparison of approaches using average ranking of that are obtained after 

training for each image with the given noise level 
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4.5.  PERFORMANCE OF THE BEST EVOLVED FILTER  

 

As we had concluded from the results presented at the end of the previous Section. 

According to the average ranking between the filters generated with training data which 

has noise level in the range (10% - 90%). It is seen that the filter trained with images that 

has a noise level of 60% gets the best average ranking result through the other filters 

generated. The filter is illustrated in the Tables 4.16 – 4.17. 

 

Therefore, in this Section, the filter generated with 60% level of noise is presented 

and the Clean, Noisy and Filtered Versions of the three test Images processed by this filter 

are shown in the Figures 4.30 – 4.32. 

 

Table 4.16. The Chromosome of the generated filter for 60% impulsive noise  

 

Operation Sequence 0 3 4 4           

Neighbourhood 0 1 1 1   

Symmetric 0 1 1 1   

            

Structuring Elements 169 103 -17 122 78 242 228 -105 18 

  -6 -4 -25 -5 -1 -156 -190 -36 152 

  9 11 163 13 -229 -101 128 -250 -4 

  4 4 -250 38 12 62 55 -177 82 

                    

Hard Soft Map  0 1 0 0 0 0 0 1 1 

  0 0 0 0 0 0 0 0 0 

  0 0 0 0 0 0 0 0 0 

  0 0 0 0 0 0 0 0 0 

            

Rank 8 5 5 4           
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Table 4.17. The generated filter for 60% of impulsive noise 

 

              1st Stage : Soft Opening 

    

-6 -4 -6 

-5 -1 -5 

-6 -4 -6 

    

0 0 0 

0 0 0 

0 0 0 

    

             Repetition Parameter : 5 

    

               2nd Stage : Soft Closing 

    

9 11 9 

13 -229 13 

9 11 9 

    

0 0 0 

0 0 0 

0 0 0 

    

            Repetition Parameter : 5 

    

               3rd Stage : Soft Closing 

    

4 4 4 

38 12 38 

4 4 4 

    

0 0 0 

0 0 0 

0 0 0 

    

             Repetition Parameter : 4 
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Figure 4.30. Filtered Lena images with noise levels (10% - 90%) with the filter trained 

with 60% level of noise 
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Figure 4.31. Filtered Mandrill images with noise levels (10% - 90%) with the filter trained 

with 60% level of noise 
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Figure 4.32. Filtered Peppers images with noise levels (10% - 90%) with the filter trained 

with 60% level of noise 
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4.6.  PERFORMANCE OF THE BEST FILTER OVER THE TRAINING IMAGES 

 

In this part; the selected best filter which is trained at 60% Noise Level is applied to 

the 3 training Images. With this test; our aim is to show that the trained filter is also got 

good results with the training images itselves. Since, those images are used to rank and 

evolve the filter during generations of the GA; it is expected to have good results when the 

filter is applied on the training images. And from the results seen in the Tables 4.18 and 

Figure 4.33; the result of the filtering of the training images is really good both in its own 

context and also compared to other images. 

 

First, salt&pepper noise ranging between (10%-90%) is applied on the training 

images which give us nine different noisy images for each training image. After generating 

the noisy Images, the select filter is applied on each of them. In the below table and figure; 

the difference between the filtered and the original images are listed with mean-squared-

error criteria. Also, the results for the Lena, Mandrill and Peppers Images are also listed 

here. 

 

Table 4.18. Selected filter results on the training images & Lena, Mandrill, Peppers images 

(MSE criteria) 

(The training images are portions of the Lena, Mandrill and Flowers images) 

 

Noise Level X1 (64) X2 (128) X3 (192) Lena Mandrill Peppers 

10% 67,96 398,44 117,84 120,30 332,73 132,36 

20% 73,82 409,86 135,27 130,94 340,80 143,66 

30% 81,44 428,39 147,90 142,82 354,34 152,65 

40% 123,53 471,58 163,77 162,34 370,92 179,93 

50% 142,09 523,40 194,39 206,68 423,27 232,53 

60% 246,46 812,96 319,86 370,18 573,06 403,68 

70% 1443,61 1280,15 1015,76 1022,40 1165,95 1260,99 

80% 3482,46 3095,32 3112,49 2851,88 3019,14 3487,42 

90% 8607,60 7454,19 8238,67 7606,07 6854,64 8291,24 

Average 1585,44 1652,70 1493,99 1401,51 1492,76 1587,16 
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Figure 4.33. Selected filter results on the training images & Lena, Mandrill, Peppers 

images (MSE criteria) 
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4.7.  PERFORMANCE OF THE BEST FILTER OVER THE IMAGES WITH 

GAUSSIAN NOISE 

 

In this part; a completely different noise type is used. Although our filter is trained 

on impulsive noise added images; we want to test and see the capabilities of the generated 

filter for Gaussian noise added images, also. 

 

In salt and pepper noise (impulsive noise), pixels in the image are very different in 

color or intensity from their surrounding pixels; the defining characteristic is that the value 

of a noisy pixel bears no relation to the color of surrounding pixels. Generally this type of 

noise will only affect a small number of image pixels. When viewed, the image contains 

dark and white dots, hence the term salt and pepper noise. Typical sources include flecks 

of dust inside the camera, or with digital cameras, faulty CCD elements. 

 

In Gaussian noise, each pixel in the image will be changed from its original value by 

a (usually) small amount. A histogram, a plot of the amount of distortion of a pixel value 

against the frequency with which it occurs, shows a normal (Gaussian) distribution of 

noise. While other distributions are possible, the Gaussian distribution is usually a good 

model, due to the central limit theorem that says that the sum of different noises tends to 

approach a Gaussian distribution. 

 

Gaussian noise is applied on the 10 test images used in the previous Sections and the 

3 training images. The Variance range of the applied Gaussian noise is ranging from 10% 

to 90%. After that; the 3 by 3 median filter and the selected filter which is trained at 60% 

Noise Level is applied to all these images and the results are recorded according to mean-

squared-error criteria. The outcomes of this experiment are illustrated in the Tables 4.19 – 

4.22  

 

The noise is generated using MATLAB Application with the imnoise function, the 

default mean value is used and the variance value is given within the range of (10 – 90). 

The test results show that, our method also can eliminate Gaussian noise and gets 

significantly better results than the median filter for all images and all noise levels. 
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Table 4.19. Selected filter results on the Gaussian Noise added training images & 10 test 

images (MSE criteria) 

(The training images are portions of the Lena, Mandrill and Flowers images) 

 

Noise 

Variance 10% 20% 30% 40% 50% 60% 70% 80% 90% Average 

img64 302.72 559.33 747.73 754.74 1202.27 1298.77 1488.67 1215.65 1668.23 1026.46 

img128 661.18 906.44 1147.19 1375.37 1624.70 1757.60 1895.79 2307.44 2209.89 1542.85 

img192 359.50 535.06 727.85 914.04 1141.13 1152.28 1468.60 1683.09 1572.46 1061.56 

airplane 383.56 584.42 759.72 928.64 1076.05 1245.39 1369.31 1567.58 1718.49 1070.35 

baboon 669.45 907.42 1117.78 1358.77 1558.14 1722.10 1985.51 2123.05 2301.10 1527.03 

Boat 374.43 597.75 816.50 983.35 1174.31 1382.08 1561.87 1721.68 1904.98 1168.55 

Bridge 595.42 828.47 1062.75 1223.51 1407.05 1656.60 1790.70 1962.27 2159.26 1409.56 

camera 545.62 756.17 1010.60 1187.30 1337.88 1531.73 1705.44 1916.04 2114.30 1345.01 

goldhill 325.73 543.98 747.81 953.63 1118.93 1323.80 1475.47 1684.21 1824.55 1110.90 

Lena 308.85 527.90 723.42 933.92 1119.14 1313.05 1510.73 1668.58 1833.52 1104.35 

parrots 357.41 572.78 771.17 961.73 1186.96 1399.18 1551.92 1702.00 1931.74 1159.43 

peppers 331.10 544.61 752.96 955.84 1124.76 1294.10 1496.64 1634.10 1807.25 1104.59 

Reptile 452.73 686.63 912.97 1127.09 1278.18 1543.82 1690.18 1891.15 2096.32 1297.67 

Average 435.98 657.77 869.11 1050.61 1257.65 1432.35 1614.68 1775.14 1934.01   
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Table 4.20. Median filter (3x3) results on the Gaussian Noise added training images & 10 

test images (MSE criteria) 

(The training images are portions of the Lena, Mandrill and Flowers images) 

 

 Noise 

Variance 10% 20% 30% 40% 50% 60% 70% 80% 90% Average 

img64 909.55 1748.22 2452.59 2734.47 3828.18 4074.30 4691.99 4568.32 5436.86 3382.72 

img128 1450.47 2418.05 3142.61 3914.83 4552.98 4990.00 5520.60 6044.87 6033.31 4229.75 

img192 1090.06 1871.08 2583.58 3195.85 4127.17 4353.75 5200.18 5635.15 5783.14 3760.00 

airplane 997.83 1774.03 2420.66 3051.72 3615.02 4177.64 4618.51 5091.66 5506.52 3472.62 

Baboon 1381.58 2371.85 3169.12 3879.83 4476.66 5020.10 5534.81 5859.28 6181.43 4208.30 

Boat 1098.32 1973.75 2753.08 3395.05 3999.15 4544.46 5011.39 5449.46 5853.64 3786.48 

Bridge 1272.02 2148.68 2923.09 3574.60 4134.96 4707.06 5118.28 5523.57 5890.17 3921.38 

Camera 1195.71 2083.94 2911.73 3550.43 4140.22 4666.16 5012.47 5522.32 5975.54 3895.39 

goldhill 1078.75 1988.35 2741.33 3418.36 4008.90 4530.13 4973.23 5402.85 5803.29 3771.69 

Lena 1076.21 1976.67 2747.91 3426.39 4005.04 4514.01 5031.98 5421.99 5847.27 3783.05 

Parrots 1145.40 2015.13 2779.76 3403.56 4069.62 4608.53 5019.09 5412.01 5901.68 3817.20 

peppers 1056.29 1928.59 2674.93 3355.15 3923.60 4388.27 4888.37 5276.31 5718.97 3690.05 

Reptile 1186.30 2157.44 2974.18 3692.85 4237.71 4855.69 5285.85 5694.84 6097.56 4020.27 

Average 1149.12 2035.06 2790.35 3430.24 4086.09 4571.55 5069.75 5454.05 5848.41   

 

Table 4.21. Comparison of the average values of Median Filter (3x3) and selected filter 

results for each Gaussian Noise variance (MSE criteria) 

(These values are taken from the Table 4.14 & 4.15) 

(The training images are portions of the Lena, Mandrill and Flowers images) 

 

  Our Method Median Filter 

10% 435.98 1149.12 

20% 657.77 2035.06 

30% 869.11 2790.35 

40% 1050.61 3430.24 

50% 1257.65 4086.09 

60% 1432.35 4571.55 

70% 1614.68 5069.75 

80% 1775.14 5454.05 

90% 1934.01 5848.41 
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Table 4.22. Comparison of the average values of Median Filter (3x3) and selected filter 

results for each image (MSE criteria) 

(These values are taken from the Table 4.14 & 4.15) 

(The training images are portions of the Lena, Mandrill and Flowers images) 

 

  Our Method Median Filter 

img64 1026.46 3382.72 

img128 1542.85 4229.75 

img192 1061.56 3760.00 

airplane 1070.35 3472.62 

baboon 1527.03 4208.30 

Boat 1168.55 3786.48 

Bridge 1409.56 3921.38 

Camera 1345.01 3895.39 

goldhill 1110.90 3771.69 

Lena 1104.35 3783.05 

Parrots 1159.43 3817.20 

peppers 1104.59 3690.05 

Reptile 1297.67 4020.27 
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5. CONCLUSION 

 

 

In this thesis, an evolutionary approach is used to generate a noise filter which is 

based on soft mathematical morphology. The generated filter is best suitable for a level of 

salt & pepper noise, but it can also be classified as a generalized filter, too; because it can 

be used for every different image having different shapes and tones. 

 

The aim in this study is to fulfill two goals. The first goal is to minimize the level of 

noise; the second one is to preserve the details. Both of them are achieved by using an 

appropriate representation which allows multi-stage filters with a wide range of structuring 

elements and by combining four different objectives in the fitness function. 

 

And, also in the first of the testing, we had proved that the GA and the fitness 

function we had used improve a soft morphological filter both visually and also by means 

of some most used image comparison criteria. 

 

The first comparisons are done with the median filter which is the most known filter 

for impulsive noise suppression. The results show that the filter generated in this study 

outperforms the median filer significantly.  

 

In the next part of the testing, we had generated filters for different levels of noise 

and compared those filters with the best filters known in the literature. The results showed 

that the method we had used helps us to generate filters that are best suitable for specific 

level of noise. Our filter didn’t out perform all the filters in the literature, but it got a rank 

in the best 3 or 4 filters according to the MSE criterion.  

 

Although our filter is specifically trained for impulsive noise, we had tested and 

shown the results of the effects of the generated filter on Gaussian Noise added images. 

And, the selected filter also outperformed the Median Filter significantly for all images and 

noise levels tested. 
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Within this study; we had seen the effectiveness of the soft morphological filters for 

impulsive noise problem on images and we had also seen the effect of Genetic Algorithms 

on generating a multi-stage filter. A new fitness function with different criterions is used 

and its effects on the generated filters are tested.  

 

At this point, it can be accepted that this method has proved itself. It can be used to 

as a tool for impulsive noise suppression on images. The generated filters for different 

noise levels can be embedded into an application for the users to select. Or those filters can 

be embedded into an application which detects the level of noise on images and select the 

best one from the list of filters that our GA generated. 
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APPENDIX A: PERFORMANCE RANKING TABLES 

 

 

Table A.1. Comparison of our approach to the other approaches in the literature based on 

the average rankings over all noisy data using MSE values for the Lena image  

(Here, the filters of our method are used on the noise level that they are trained for) 

(The training images are portions of the Lena, Mandrill and Flowers images) 

 

Noise Level 10 20 30 40 50 60 70 80 90 Rank Average STDEV 

Our Method  11 6 4 3 3 3 3 3 4 3 4,44 2,65 

AIF 1 1 1 1 1 1 1 1 1 1 1,00 0,00 

IMF  14 12 6 4 4 4 5 5 7 5 6,78 3,70 

SMF - 3x3 13 13 10 10 10 10 10 10 9 10 10,56 1,42 

PSM  6 4 3 6 9 9 9 9 13 9 7,56 3,09 

SDROM  8 11 13 13 13 13 13 13 12 13 12,11 1,69 

SDROMR  7 5 8 7 7 7 8 8 8 8 7,22 0,97 

IRF  9 10 11 11 11 11 11 11 10 11 10,56 0,73 

ACWM  5 9 12 12 12 12 12 12 11 12 10,78 2,39 

ACWMR  3 3 7 8 6 6 6 6 6 7 5,67 1,66 

CWM  12 14 14 14 14 14 14 14 14 14 13,78 0,67 

YÜKSEL 10 7 5 5 5 5 4 4 3 4 5,33 2,06 

RUSSO  4 8 9 9 8 8 7 7 5 6 7,22 1,72 

HAF  2 2 2 2 2 2 2 2 2 2 2,00 0,00 
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Table A.2. Comparison of our approach to the other approaches in the literature based on 

the average rankings over all noisy data using MSE values for the Mandrill image  

(Here, the filters of our method are used on the noise level that they are trained for) 

(The training images are portions of the Lena, Mandrill and Flowers images) 

 

Noise Level 10 20 30 40 50 60 70 80 90 Rank  Average STDEV 

Our Method 12 8 6 5 3 3 3 3 3 3 5,11 3,14 

AIF 1 1 1 1 1 1 1 1 1 1 1,00 0,00 

IMF  14 13 8 7 4 4 4 5 5 5 7,11 3,89 

SMF - 3x3 13 12 12 11 10 9 9 9 8 11 10,33 1,73 

PSM  5 4 4 4 8 8 8 8 13 8 6,89 2,98 

SDROM  8 10 11 12 12 12 12 12 11 12 11,11 1,36 

SDROMR  10 7 7 8 7 7 7 7 7 7 7,44 1,01 

IRF  9 9 10 10 11 11 10 10 9 10 9,89 0,78 

ACWM  7 6 9 9 9 10 11 11 10 9 9,11 1,69 

ACWMR  6 5 5 6 6 5 5 4 4 4 5,11 0,78 

CWM  11 14 14 14 14 13 13 13 12 13 13,11 1,05 

YÜKSEL 3 3 3 3 5 6 6 6 6 6 4,56 1,51 

RUSSO  4 11 13 13 13 14 14 14 14 14 12,22 3,23 

HAF  2 2 2 2 2 2 2 2 2 2 2,00 0,00 
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Table A.3. Comparison of our approach to the other approaches in the literature based on 

the average rankings over all noisy data using MSE values for the Peppers image 

(Here, the filters of our method are used on the noise level that they are trained for) 

(The training images are portions of the Lena, Mandrill and Flowers images) 

 

Noise Level 10 20 30 40 50 60 70 80 90 Rank  Average STDEV 

Our Method 6 4 3 3 3 3 3 3 4 3 3,56 1,01 

AIF 1 1 1 1 1 1 1 1 1 1 1,00 0,00 

IMF  13 6 5 4 4 4 4 5 7 5 5,78 2,91 

SMF - 3x3 11 8 9 10 10 10 10 10 10 10 9,78 0,83 

PSM  4 3 4 5 5 9 9 9 9 9 6,33 2,60 

SDROM  9 12 13 13 13 13 13 13 13 13 12,44 1,33 

SDROMR  8 7 7 7 7 8 8 8 8 8 7,56 0,53 

IRF  7 11 10 11 11 11 11 11 11 11 10,44 1,33 

ACWM  5 10 11 12 12 12 12 12 12 12 10,89 2,32 

ACWMR  3 5 6 6 6 6 7 7 6 7 5,78 1,20 

CWM  12 13 14 14 14 14 14 14 14 14 13,67 0,71 

YÜKSEL 14 14 12 9 9 5 5 4 3 4 8,33 4,30 

RUSSO  10 9 8 8 8 7 6 6 5 6 7,44 1,59 

HAF  2 2 2 2 2 2 2 2 2 2 2,00 0,00 
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Table A.4. Average performance ranking of the filters, which are obtained by using the 

training instances with a given noise level, over all noisy data for the Lena image 

(The training images are portions of the Lena, Mandrill and Flowers images) 

 

Noise Level 10 20 30 40 50 60 70 80 90 Rank Average STDEV 

Our Method             

10% 11 12 17 17 17 17 17 16 15 17 15,44 2,35 

20% 12 6 7 13 16 15 15 15 14 14 12,56 3,64 

30% 14 8 5 7 11 14 14 13 11 13 10,78 3,38 

40% 16 9 3 4 7 9 10 9 8 9 8,33 3,74 

50% 19 16 9 5 4 7 8 8 9 8 9,44 4,93 

60% 17 14 6 3 3 4 7 7 7 7 7,56 4,85 

70% 21 20 15 10 8 5 5 6 6 6 10,67 6,40 

80% 20 19 14 8 6 3 3 4 5 5 9,11 6,79 

90% 22 22 16 15 9 8 4 3 4 4 11,44 7,55 

AIF 1 1 1 1 1 1 1 1 1 1 1,00 0,00 

IMF 18 17 10 6 5 6 9 10 13 10 10,44 4,72 

SMF - 3x3 15 18 18 18 18 18 18 18 17 18 17,56 1,01 

PSM 6 4 4 11 15 16 16 17 21 16 12,22 6,24 

SDROM 8 15 21 21 21 21 21 21 20 21 18,78 4,49 

SDROMR  7 5 12 12 13 12 13 14 16 15 11,56 3,43 

IRF 9 13 19 19 19 19 19 19 18 19 17,11 3,62 

ACWM  5 11 20 20 20 20 20 20 19 20 17,22 5,45 

ACWMR  3 3 11 14 12 11 11 11 12 12 9,78 3,96 

CWM  13 21 22 22 22 22 22 22 22 22 20,89 2,98 

YÜKSEL 10 7 8 9 10 10 6 5 3 3 7,56 2,51 

RUSSO 4 10 13 16 14 13 12 12 10 11 11,56 3,40 

HAF 2 2 2 2 2 2 2 2 2 2 2,00 0,00 
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Table A.5. Average performance ranking of the filters, which are obtained by using the 

training instances with a given noise level, over all noisy data for the Mandrill image 

(The training images are portions of the Lena, Mandrill and Flowers images) 

 

Noise Level 10 20 30 40 50 60 70 80 90 Rank Average STDEV 

Our Method             

10% 12 13 17 16 16 16 16 15 14 15 15,00 1,66 

20% 13 8 7 15 15 14 14 14 11 13 12,33 3,00 

30% 14 12 6 10 12 13 13 12 10 12 11,33 2,40 

40% 16 14 9 5 8 9 9 9 8 8 9,67 3,32 

50% 19 18 12 8 4 7 7 7 7 7 9,89 5,30 

60% 18 17 10 6 3 6 6 6 6 6 8,67 5,32 

70% 21 21 14 13 7 4 5 5 5 5 10,56 6,93 

80% 20 20 13 11 5 3 4 4 4 4 9,33 6,96 

90% 22 22 15 14 9 5 3 3 3 3 10,67 7,89 

AIF 1 1 1 1 1 1 1 1 1 1 1,00 0,00 

IMF 17 16 11 9 6 8 8 10 12 10 10,78 3,70 

SMF - 3x3 15 15 20 19 18 17 17 17 16 19 17,11 1,69 

PSM 5 4 4 4 14 15 15 16 21 16 10,89 6,60 

SDROM 8 10 19 20 20 20 20 20 19 20 17,33 4,77 

SDROMR  10 7 8 12 13 12 12 13 15 14 11,33 2,55 

IRF 9 9 18 18 19 19 18 18 17 18 16,11 4,08 

ACWM  7 6 16 17 17 18 19 19 18 17 15,22 5,04 

ACWMR  6 5 5 7 11 10 10 8 9 9 7,89 2,26 

CWM  11 19 22 22 22 21 21 21 20 21 19,89 3,48 

RUSSO 3 3 3 3 10 11 11 11 13 11 7,56 4,39 

YÜKSEL 4 11 21 21 21 22 22 22 22 22 18,44 6,46 

HAF 2 2 2 2 2 2 2 2 2 2 2,00 0,00 
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Table A.6. Average performance ranking of the filters, which are obtained by using the 

training instances with a given noise level, over all noisy data for the Peppers image 

(The training images are portions of the Lena, Mandrill and Flowers images) 

 

Noise Level 10 20 30 40 50 60 70 80 90 Rank Average STDEV 

Our Method             

10% 6 7 14 17 17 17 17 16 16 17 14,11 4,43 

20% 10 4 4 10 13 15 15 15 14 15 11,11 4,48 

30% 13 5 3 6 9 10 14 13 12 13 9,44 3,97 

40% 15 6 5 4 5 7 10 9 8 9 7,67 3,39 

50% 18 14 8 5 4 6 7 8 9 8 8,78 4,49 

60% 17 9 6 3 3 3 5 7 7 7 6,67 4,42 

70% 20 18 12 9 7 4 4 6 6 4 9,56 5,92 

80% 21 21 15 11 8 5 3 3 5 3 10,22 7,24 

90% 22 22 21 16 15 9 6 4 4 5 13,22 7,63 

AIF 1 1 1 1 1 1 1 1 1 1 1,00 0,00 

IMF 16 10 9 7 6 8 8 10 13 10 9,67 3,12 

SMF - 3x3 12 12 16 18 18 18 18 18 18 18 16,44 2,60 

PSM 4 3 7 8 10 16 16 17 17 16 10,89 5,71 

SDROM 9 17 20 21 21 21 21 21 21 21 19,11 4,01 

SDROMR  8 11 11 13 12 14 13 14 15 14 12,33 2,12 

IRF 7 16 17 19 19 19 19 19 19 19 17,11 3,95 

ACWM  5 15 18 20 20 20 20 20 20 20 17,56 5,00 

ACWMR  3 8 10 12 11 12 12 12 11 12 10,11 2,98 

CWM  14 19 22 22 22 22 22 22 22 22 20,78 2,73 

YÜKSEL 19 20 19 15 16 11 9 5 3 6 13,00 6,30 

RUSSO 11 13 13 14 14 13 11 11 10 11 12,22 1,48 

HAF 2 2 2 2 2 2 2 2 2 2 2,00 0,00 
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Table A.7. Comparison of approaches for the Lena image using average ranking of that are 

obtained after training for each image with the given noise level 

(The training images are portions of the Lena, Mandrill and Flowers images) 

 

Noise Level 10 20 30 40 50 60 70 80 90 Rank Average STDEV 

Our Method             

60% 13 10 4 3 3 3 4 4 4 4 5,33 3,61 

AIF 1 1 1 1 1 1 1 1 1 1 1,00 0,00 

IMF  14 12 6 4 4 4 5 5 7 5 6,78 3,70 

SMF - 3x3 12 13 10 10 10 10 10 10 9 10 10,44 1,24 

PSM  6 4 3 6 9 9 9 9 13 9 7,56 3,09 

SDROM  8 11 13 13 13 13 13 13 12 13 12,11 1,69 

SDROMR  7 5 8 7 7 7 8 8 8 8 7,22 0,97 

IRF  9 9 11 11 11 11 11 11 10 11 10,44 0,88 

ACWM  5 8 12 12 12 12 12 12 11 12 10,67 2,50 

ACWMR  3 3 7 8 6 6 6 6 6 7 5,67 1,66 

CWM  11 14 14 14 14 14 14 14 14 14 13,67 1,00 

YÜKSEL 10 6 5 5 5 5 3 3 3 3 5,00 2,18 

RUSSO  4 7 9 9 8 8 7 7 5 6 7,11 1,69 

HAF  2 2 2 2 2 2 2 2 2 2 2,00 0,00 
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Table A.8. Comparison of approaches for the Mandrill image using average ranking of that 

are obtained after training for each image with the given noise level 

(The training images are portions of the Lena, Mandrill and Flowers images) 

 

Noise Level 10 20 30 40 50 60 70 80 90 Rank Average STDEV 

Our Method              

60% 14 13 7 5 3 3 3 3 3 3 6,00 4,47 

AIF 1 1 1 1 1 1 1 1 1 1 1,00 0,00 

IMF  13 12 8 7 4 4 4 5 5 5 6,89 3,48 

SMF - 3x3 12 11 12 11 10 9 9 9 8 11 10,11 1,45 

PSM  5 4 4 4 8 8 8 8 13 8 6,89 2,98 

SDROM  8 9 11 12 12 12 12 12 11 12 11,00 1,50 

SDROMR  10 7 6 8 7 7 7 7 7 7 7,33 1,12 

IRF  9 8 10 10 11 11 10 10 9 10 9,78 0,97 

ACWM  7 6 9 9 9 10 11 11 10 9 9,11 1,69 

ACWMR  6 5 5 6 6 5 5 4 4 4 5,11 0,78 

CWM  11 14 14 14 14 13 13 13 12 13 13,11 1,05 

RUSSO  3 3 3 3 5 6 6 6 6 6 4,56 1,51 

YÜKSEL 4 10 13 13 13 14 14 14 14 14 12,11 3,30 

HAF  2 2 2 2 2 2 2 2 2 2 2,00 0,00 
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Table A.9. Comparison of approaches for the Peppers image using average ranking of that 

are obtained after training for each image with the given noise level 

(The training images are portions of the Lena, Mandrill and Flowers images) 

 

Noise Level 10 20 30 40 50 60 70 80 90 Rank Average STDEV 

Our Method              

60% 13 5 3 3 3 3 3 4 4 4 4,56 3,24 

AIF 1 1 1 1 1 1 1 1 1 1 1,00 0,00 

IMF  12 6 5 4 4 4 4 5 7 5 5,67 2,60 

SMF - 3x3 10 8 9 10 10 10 10 10 10 10 9,67 0,71 

PSM  4 3 4 5 5 9 9 9 9 9 6,33 2,60 

SDROM  8 12 13 13 13 13 13 13 13 13 12,33 1,66 

SDROMR  7 7 7 7 7 8 8 8 8 8 7,44 0,53 

IRF  6 11 10 11 11 11 11 11 11 11 10,33 1,66 

ACWM  5 10 11 12 12 12 12 12 12 12 10,89 2,32 

ACWMR  3 4 6 6 6 6 7 7 6 7 5,67 1,32 

CWM  11 13 14 14 14 14 14 14 14 14 13,56 1,01 

YÜKSEL 14 14 12 9 9 5 5 3 3 3 8,22 4,44 

RUSSO  9 9 8 8 8 7 6 6 5 6 7,33 1,41 

HAF  2 2 2 2 2 2 2 2 2 2 2,00 0,00 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
72 

REFERENCES 

 

 

1. Pitas, I. and A. N. Venetsanopoulos, Nonlinear Digital Filters - Principles and  

 Applications, Boston: Kluwer Academic Publisher, 1990. 

 

2. Bovik, A., Handbook of Image and Video Processing, New York: Academic Press, 

 2000. 

 

3. Kontorovich, V. and V. Lyandres, “Impulsive noise: A nontraditional approach”, Signal 

 Processing, 51, pp. 121-132, 1996. 

 

4. Harvey, N. R. and S. Marshall, “Using genetic algorithms in the design of morphological  

 filters”, In J. Serra, & Pierre S., Mathematical Morphology and Its Application to Image  

 Processing, France: Kluwer Academic Publishers, pp. 53-59, 1994. 

 

5. Romulos, T., B. Monica, B. Yuan, L. Olivier and B. Pierre, ”Adaptive filtering using 

morphological operators and genetic algorithms”, In Proceedings of the 6th International 

Conference on Signal Processing, Beijing, China, pp. 853-857, 2002. 

 

6. Tongslieng, S., L. Soiigtslo and Z. Xiaodong, “Optimal design of morphological filters 

based on adaptive immune algorithm”, In Proceedings of the 7th International 

Conference on Signal Processing, Beijing, China, pp. 1064-1067, 2004. 

 

7. Kraft, P., S. Marshall, J.J. Soraghan and N.R. Harvey, “Parallel genetic algorithms for  

optimizing morphological filters”, In Proceedings of the Fifth International onference on 

Image Processing and Its Applications, Edinburgh, UK, pp. 762-766, 1995. 

 

8. Harvey, N. R. and S. Marshall, “The design of different classes of morphological filter 

using genetic algorithms”, In Proceedings of the Fifth International Conference on 

Image Processing and Its Applications, Edinburgh, UK, pp. 227-231, 1995. 

 

9. Koivisto, P., H. Huttunen and P. Kuosmanen, ”Optimal soft morphological filtering  



 
73 

under breakdown probability constraints”, In Proceedings of the International 

Symposium on Circuits and Systems, Atlanta, pp. 112-115, 1996. 

 

10. Koivisto, P., H. Huttunen and P. Kuosmanen, ”Breakdown points and optimal soft 

morphological filtering”, In Proceedings of 7th IEEE Signal Processing Workshop, 

Loen, Norway, pp. 490-493, 1996. 

 

11. Chunhui, Z., S. Shenghe and H. Junying, “Optimization of soft morphological filters by 

simulated annealing”, In Proceedings of the 5th International Conference on Signal 

Processing, Beijing, China, pp. 494-498, 2000. 

 

12. Chunhui, Z., “Optimization design of soft morphological filters based on improving 

genetic algorithm”, In Proceedings of the International Conference on Neural Networks 

& Signal Processing, Nanjing, China, pp. 491-494, 2003. 

 

13. Chun-hui, Z., L. Gang-jian and N. Hai-chun, “Optimization of soft morphological filter 

based on tabu search”, In Proceedings of the First International Conference on 

Innovative Computing, Information and Control, Beijing, China, pp. 611-614, 2006. 

 

14. Zhao, C. and W. Zhang, “Using genetic algorithm optimizing stack filters based on 

MMSE criterion”, Image and Vision Computing, 23, pp. 853–860, 2005 

 

15. Jelodar, M. S., S.M. Fakhraie and M.N. Ahmadabadi, “Two-stage morphological filter 

design using genetic algorithm”, In Proceedings of the IEEE International Conference 

on Engineering of Intelligent Systems, Islamabad, Pakistan, pp. 129-133, 2006. 

 

16. Hough, K. and S. Marshall, “Soft morphological filters applied to the removal of noise 

from CCTV footage”, In Proceedings of the IEE International Symposium on Imaging 

for Crime Detection and Prevention, London, UK, pp. 61-66, 2005. 

 

17. Harvey, N. R. and S. Marshall, “Restoration of archive film material using multi-

dimensional soft morphological filters”, In Proceedings of the IEEE-EURASIP 



 
74 

Workshop on Nonlinear Signal and Image Processing, Antalya, Turkey, pp. 811-815, 

1999. 

 

18. Hamid, M. S., N.R. Harvey and S. Marshall, “Genetic algorithm optimization of 

multidimensional grayscale soft morphological filters with applications in film archive 

restoration”, IEEE Transactions on Circuits and Systems for Video Technology, 13(5), 

pp. 406-416, 2003. 

 

19. Lin, T. N. and K.J. Chan, “Adaptive-hierarchical filtering approach for noise removal”, 

Displays, 29, pp. 209–213, 2008. 

 

20. Lin, T. C., “Progressive decision-based mean type filter for image noise suppression”, 

Computer Standards & Interfaces, 30, pp. 106–114, 2008. 

 

21. Yuan, S. Q., Y.H. Tan and H.L. Sun, ”Impulse noise removal by the difference-type 

noise detector and the cost function-type filter”, Signal Processing, 87, pp. 2417–2430, 

2007. 

 

22. Luo, W., “An efficient algorithm for the removal of impulse noise from corrupted 

Images”, Int. J. Electron. Commun. (AEÜ), 61, pp. 551 – 555, 2007. 

 

23. Dang, D. and W. Luo, “Impulse noise removal utilizing second-order difference 

analysis”, Signal Processing, 87, pp. 2017–2025, 2007. 

 

24. Yuan, S. Q. and Y.H. Tan, ”Impulse noise removal by a global–local noise detector and 

adaptive median filter”, Signal Processing, 86, pp. 2123–2128, 2006. 

 

25. Hsia, S. C., “A fast efficient restoration algorithm for high-noise image filtering with 

adaptive approach”, J. Vis. Commun. Image R., 16, pp. 379–392, 2005. 

 

26. Lukac, R., “Adaptive vector median filtering”, Pattern Recognition Letters, 24, pp. 

1889–1899, 2003 

 



 
75 

27. Russo, F., “Impulse noise cancellation in image data using a two-output nonlinear 

filter”, Measurement, 36, pp. 205–213, 2004. 

 

28. Cabrera, L. G., M.J.G. Salinas, P.L.L. Escamilla, J.M. Aroza, J.F.G. Lopera and R.R. 

Roldan, “Median-type filters with model-based preselection masks”, Image and Vision 

Computing, 14, pp. 741-752, 1996. 

 

29. Çivicioğlu, P. and M. Alçı, “Impulsive Noise Suppression from Highly Distorted 

Images with Triangular Interpolants”, Int. J. Electron. Commun. (AEÜ), 58, pp. 311–

318, 2004. 

 

30. Alajlan, N., M. Kamel and E. Jernigan, ”Detail preserving impulsive noise removal”, 

Signal Processing: Image Communication, 19, pp. 993–1003, 2004. 

 

31. Beşdok, E. and M.E. Yüksel, “Impulsive noise suppression from images with Jarque-

Bera test based median filter”, Int. J. Electron. Commun. (AEÜ), 59, pp. 105 – 110, 

2005. 

 

32. Beşdok, E., P. Çivicioğlu and M. Alçı, “Using Anfis with circular polygons for 

impulsive noise suppression from highly distorted images”, Int. J. Electron. Commun. 

(AEU), 59, pp. 213 – 221, 2005. 

 

33. Kang, C. C. and W.J. Wang, “Modified switching median filter with one more noise 

detector for impulse noise removal”, AEU - International Journal of Electronics and 

Communications, 63 (11), pp. 998-1004, 2009. 

 

34. Zhang, J., “An efficient median filter based method for removing random-valued 

impulse noise”, Digital Signal Processing, Article in Press, Corrected Proof, 2009. 

 

35. Li, Y., F. L. Chung and S. Wang, “A robust neuro-fuzzy network approach to impulse 

noise filtering for color images”, Applied Soft Computing, 8, pp. 872–884, 2008. 

 



 
76 

36. Çivicioğlu, P., “Using neighborhood-pixels-information and ANFIS for impulsive 

noise suppression”, Int. J. Electron. Commun. (AEÜ), 61, pp. 657 – 664, 2007. 

 

37. Yüksel, M. E., “A median/ANFIS filter for efficient restoration of digital images 

corrupted by impulse noise”, Int. J. Electron. Commun. (AEÜ), 60, pp. 628 – 637, 

2006. 

 

38. Schulte, S., V. DeWitte, M. Nachtegael, D.V. DerWeken and E.E. Kerre, “Fuzzy 

random impulse noise reduction method”, Fuzzy Sets and Systems, 158, pp. 270 – 283, 

2007. 

 

39. Majhi, B. and P.K. Sa, ”FLANN-based adaptive threshold selection for detection of 

impulsive noise in images”, Int. J. Electron. Commun. (AEÜ), 61, pp. 478 – 484, 2007. 

 

40. Yüksel, M. E., “A simple neuro-fuzzy method for improving the performances of 

impulse noise filters for digital images”, Int. J. Electron. Commun. (AEÜ), 59, pp. 463 

– 472, 2005. 

 

41. Yüksel, M. E. and A. Baştürk, “Efficient Removal of Impulse Noise from Highly 

Corrupted Digital Images by a SimpleNeuro-Fuzzy Operator”, Int. J. Electron. 

Commun. (AEÜ), 57(3), pp. 214−219, 2003. 

 

42. Kong, H. and L. Guan, “A Neural Network Adaptive Filter for the Removal of Impulse 

Noise in Digital Images”, Neural Networks Letter, 9(3), pp. 373-378, 1996. 

 

43. Beşdok, E., “A new method for impulsive noise suppression from highly distorted 

images by using Anfis”, Engineering Applications of Artificial Intelligence, 17, pp. 

519–527, 2004. 

 

44. Beşdok, E., P. Çivicioğlu and M. Alçı, “Using an adaptive neuro-fuzzy inference 

system-based interpolant for impulsive noise suppression from highly distorted 

images”, Fuzzy Sets and Systems, 150, pp. 525–543, 2005. 

 



 
77 

45. Türkmen, I., “Efficient impulse noise detection method with ANFIS for accurate image 

restoration”, AEU - International Journal of Electronics and Communications, Article 

in Press, Corrected Proof, 2010. 

 

46. Kaliraja, G. and S. Baskarb, “An efficient approach for the removal of impulse noise 

from the corrupted image using neural network based impulse detector”, Image and 

Vision Computing, 28 (3), pp. 458-466, 2009. 

 

47. Camarena, J. G., V. Gregori, S. Morillas and A. Sapena, ”Two-step fuzzy logic-based 

method for impulse noise detection in colour images”, Pattern Recognition Letters, 

Article in Press, Corrected Proof, 2010. 

 

48. Tukey, J. W., ”Nonlinear (nonsuperposable) methods for smoothing data”, Congress 

Records EASCON’74, 673, 1974. 

 

49. Wang, Z. and D. Zhang, ”Progressive switching median filter for the removal of 

impulse noise from highly corrupted images”, IEEE Transactions on Circuits and 

Systems-II: Analog and Digital Signal Processing, 46 (1), pp. 78–80, 1999. 

 

50. Abreu, E., M. Lightstone, S.K. Mitra and K. Arakawa, ”A new efficient approach for 

the removal of impulse noise from highly corrupted images”, IEEE Transactions on 

Image Processing 5 (6), pp. 1012–1025, 1996. 

 

51. Chen, T. and H.R. Wu, ”A new class of median based impulse rejecting filters”, IEEE 

International Conference on Image Processing 1, pp. 916–919, 2000. 

 

52. Chen, T., and H.R. Wu, ”Adaptive impulse detection using center weighted median 

filters”, IEEE Signal Processing Letters 8 (1), pp. 1–3, 2001. 

 

53. Muneyasu, M., N. Nishi and T. Hinamoto, ”A new adaptive center weighted median 

filter using counter propagation networks”, Journal of the Franklin Institute 337, pp. 

631–639, 2000. 

 



 
78 

54. Russo, F. and G. Ramponi, ”A fuzzy filter for images corrupted by impulse noise”, 

IEEE Signal Processing Letters 6 (3), pp. 168–170, 1996. 

 

55. Wang, J. H. and W.J. Liu, L.D. Lin, “Histogram-based fuzzy filter for image 

restoration”, IEEE Transactions on Systems, Man, and Cybernetics, Part B 32 (2), pp. 

230–238, 2002. 

 

56. Matheron, G., Random sets and integral geometry. New York: Wiley, 1975. 

 

57. Serra, J., Image analysis and mathematical morphology, Vol. 1. London: Academic 

Press, 1982. 

 

58. Serra, J., Introduction to mathematical morphology, Comp. Vision Graph. Image Proc., 

35(3), pp. 283-305, 1986. 

 

59. Koskinen, L., J. Astola and Y. Neuvo, ”Soft morphological filters”, In Proceedings of 

the SPIE Symp, Image Algebra and Morphological Image Processing, San Diego, CA, 

pp. 262-270, 1991. 

 

60. Kuosmanen, P. and J. Astola, “Soft morphological filtering”, Journal Mathematical 

Imag. Vision, 5(3), pp. 231-262, 1995. 

 

61. Holland, J. H., Adaptation in natural and artificial systems, Ann Arbor: University of 

Michigan Press, 1975. 

 

62. Goldberg, D. E., Genetic algorithms in search, optimization, and machine learning. 

New York: Addison-Wesley, 1989. 

 

63. Ozcan, E. and C. K. Mohan, “Partial shape matching using genetic algorithms”, Pattern 

Recognition Letters, 18, pp. 987-992, 1997. 

 

64. Ozcan, E., “Memetic algorithms for nurse rostering”, Lecture Notes in Computer 

Science, 3733, pp. 482-492, 2005. 



 
79 

65. Ozcan, E. and E. Onbasioglu, “Memetic algorithms for parallel code optimization”, 

International Journal of Parallel Programming, 35(1), 33-61, 2007. 

 

66. Kuosmanen, P., P. Koivisto, H. Huttunen and J. Astola, ”Shape preservation criteria 

and optimal soft morphological filtering”, J. Math. Imag. Vision, 5(4), pp. 319-335, 

1995. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


