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ABSTRACT

SOFT MORPHOLOGICAL FILTER OPTIMIZATION USING A
GENETIC ALGORITHM FOR NOISE ELIMINATION

Digital image quality is an important issue in almost all image processing
applications. Images can get corrupted for many reasons. Many different approaches have
been proposed for restoring the image quality depending on the nature of the degradation.
One of the most common problems that cause such degradation is impulse noise. Impulse
noise causes extremely dark and bright specks spread over the image to emerge. In general,
well known median filters are preferred for eliminating impulse noise. Soft morphological
filters are recently introduced and have been in use for many purposes. In this study, a
search is performed over soft morphological filters using a genetic algorithm as a
supervised learning mechanism to obtain the best filter for eliminating impulse noise. The
experiments yielded a detail preserving multi-stage morphological filter. The performances
of the proposed filter and median filter are compared over a set of benchmark problem
instances based on different criteria. Additionally, well-known filters in the literature are
also compared to the proposed filter. The results indicate the proposed filter outperforms
the median filter and gets very good result among the best filters known in the literature.
As a last experiment, this best filter which is obtained using images with impulsive noise is
tested over images with Gaussian noise. The experiments show that the proposed filter also
generates significantly better results when compared to the median filter for eliminating

Gaussian noise.



OZET

GENETIK ALGORITMALAR KULLANILARAK, RESIMLER
UZERINDEKI GURULTUYU AZALTMA AMACLI BiR SOFT
MORFOLOJIK FiLTRE OPTIMIiZASYONU

Sayisal goriintii kalitesi, neredeyse biitiin goriintii isleme uygulamalarinda énemli bir
sorundur. Resimler, pek cok nedenden dolay1 bozulabilirler. Goriintii kalitesini onarmak
icin; bozulmanin niteliine gore, pek ¢ok degisik yaklasim Onerilmistir. Bozulmaya yol
acan en genel problem, “impulse noise” olarak isimlendirilen, giiriiltii tiiriidiir. “Impulse
noise”, goriintiiniin iizerine dagilmis, asir1 derecede parlak ve karanlik noktalar olusmasina
sebep olur. Genelde, iyi bilinen median filtreleri, “impulse noise” giderimi i¢in tercih
edilirler. Hafif morfolojik filtreler, yakin zamanda ortaya ¢ikmislardir ve pek ¢ok ¢esitli
ama¢ icin kullanilmaktadirlar. Bu calismada, “impulse noise” giderimi i¢in, en uygun
filtreyi bulma amagh olarak; kontrol edilen bir 6grenme yontemi olarak, bir genetik
algoritma kullanilarak, hafif morfolojik filtreler iizerinde bir arama yapilmistir. Deneyler
sonucunda, detaylar1 da koruyan, ¢ok boliimlii bir morfolojik filter elde edildi. Onerilen
filtre ile median filtrelerinin sonuglari; degisik kriterlere gore, bazi 6rnek test problemleri
tizerinde karsilastirilmistir. Ek olarak, literatiirdeki bilinen filtreler ile, Onerilen filtre
karsilagtirilmigtir. Sonuglar, onerilen filtrenin, median filtreden daha iyi sonuglar aldigini
ve literatiirdeki iyi bilinen filtreler arasinda da gayet iyi sonuclar aldig1 gosteriyor. Son bir
deney olarak, “impulsive noise” kullanilarak elde edilmis en iyi filtre, Gaussian Noise
eklenmis resimler iizerinde test edildi. Bu deneyler; onerilen filtrenin, Gaussian Noise
filtrelemede de, median filtreden onemli derecede daha iyi sonuglar aldigin1 gostermis

oldu.
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1. INTRODUCTION

Noise reduction, also known as noise smoothing problem is an essential concern in
image processing. There are many causes of noise in digital images. For example,
transmitting or scanning an image can boost up the noise due to electrical interference from
the devices used. There are different types of noises dealt with in image processing such as
Gaussian noise, periodic noise or impulsive noise. Many researches have proposed a
variety of approaches for the removal of such noises. Impulsive noise is often encountered
during image transmission process [1] or malfunctioning in camera sensors or faulty
memory locations in hardware [2]. For example, modeling of the Impulsive Noise is also
studied in a paper by representing it as a discontinuous Markov process [3]. There are two
common types of impulse noise; the salt-and-pepper noise and the random-valued noise. In
an image which is corrupted by random valued noise; the noisy pixels can take any random
value, but for an image with salt-and-pepper noise; the noisy pixels can take only the
maximum and the minimum values in the dynamic range. In this study, impulsive noise
elimination problem that requires restoration of the image quality which is reduced by
white and black (salt & pepper) spots spread over the images is tackled. There are some
previous studies on this topic using different search methods. In most of the studies, the
search mechanisms are used as a trainer to optimize the filter, the candidate filters are
applied on a corrupted image; to calculate the fitnesses of the candidates, and the original
non-corrupted image is compared with the filtered corrupted images. So, by minimizing
the difference in images, it is expected that an optimized filter will be generated after some

generations.

At the beginning, 1 stage standard morphological filters are optimized for noise
filtering. Standard Genetic Algorithms (GAs) are used in the design of standard
morphological filters [4]. New adaptive morphological operators are proposed using GAs
[5]. Adaptive immune algorithms are used to optimize standard morphological filters [6].

Also, parallel GAs are used for optimizing morphological filters [7].



After soft morphological filters are found, soft flat morphological filters are
optimized for the same purpose. Some researchers expanded their previous researches into
different classes of morphological filters [8]. Some studies are done on breakdown
probability constraints and optimal soft morphology [9, 10]. Also, different optimization
methods such as simulated annealing, genetic algorithms and tabu search are studied and
compared for optimization of soft morphological filters [11, 12, 13]. Genetic algorithms
are also used for optimizing stack filters based on minimum mean absolute error (MAE)

criterion [14].

The recent studies are provided on different sizes or multiple stages of optimized
morphological filters or filters with 3-d SEs for filtering of video sequences. A two-stage
standard morphological filter is generated using GAs for noise elimination in [15]. Soft
morphological filters are also used in a study for the removal of noise from CCTV Footage
[16]. Multi-dimensional soft morphological filters are optimized using GAs for archive

film material restoration [17, 18].

For noise removal problem, direct mathematical methods are also used some studies.
To remove fixed & random valued impulsive noise on gray-scale images, edge information
of the image is estimated to be used as prior information in order to apply different filters
adaptively [19]. For removing random-valued impulsive noise on gray-scale images, an
impulse detector is used and corrupted pixels are replaced using a median-type filter [20].
For impulsive noise removal on gray-scale images, difference-type noise detector is used
and the corrupted pixels are processed by differentiating the cost-function, and a criterion
called UQI (Universal Quality Index) is used for testing purposes [21]. A statistical method
which does not require training is used for impulsive noise removal [22]. To remove fixed
& random valued impulsive noise on gray-scale images, second order difference analysis is
used for noise detection and cancellation [23]. A global-local noise detector is proposed
and an adaptive median filter is applied on the corrupted pixels in this paper [24]. An
adaptive noise detection algorithm and a non-linear low-pass filter are used to remove
high-level impulsive noise on gray-scale images [25]. An adaptive vector median filtering
method is studied to take the advantage of the optimal filtering situation and the robust
order-statistic theory [26]. A two output non-linear filter is studied which is based on the

subsequent activation of two recursive filtering algorithms that operate on different subsets



of input data [27]. A modification of the median-filter using a noise estimation mask is
presented in this paper [28]. A technique called triangular interpolants is used; this
restoration technique is applied on the detected corrupted pixels on the gray-scale images
[29]. A variation of the non-linear peak-and-valley filter is used for removing impulsive
noise [30]. A statistical method called Jarque-Bera is used to find the corrupted pixels and
the standard median filter is used to replace those pixels [31]. Statistical impulse detection
and a nonlinear filter are used for impulsive noise removal; the non-linear filter uses an
adaptive-network-based fuzzy inference system [32]. In another paper; to improve the
impulsive noise removal capability of the switching median filter, they modified it by
adding one more noise detector. The detection mechanism is based on the rank order
arrangement of the pixels in the sliding window [33]. To remove random-valued impulsive

noise, a two-phase median filter based iterative method is used in this study [34].

For the same purpose, neural networks and fuzzy methods are also used. To remove
impulsive noise on color images, neural network and fuzzy logic are used. An impulse
detector detects the corrupted pixels and the network generates a new pixel to replace it
[35]. For removing impulsive noise on gray-scale images; and adaptive fuzzy neural
network is used with the mean-squared-error (MSE) function used as the test criteria [36].
A hybrid filter which combines median filter and a neuro-fuzzy inference system is
studied; the system is trained using computer generated images [37]. Fuzzy noise detection
and fuzzy filtering is used to remove random valued impulsive noise on gray-scale images
[38]. A trained neural network is used to detect the corrupted pixels and a recursive median
filter is used on those pixels [39]. To improve the performances of impulse noise filters, a
neuro fuzzy system is trained using a computer generated image, and it is applied to the
output of an impulse filter [40]. And in another study; a neuro fuzzy system is trained
using a computer generated image, and it is applied on the corrupted image to removing
impulsive noise on gray-scale images [41]. An adaptive neural-network using unsupervised
learning is studied [42]. Adaptive neuro-fuzzy methods are used for impulsive noise
suppression from highly distorted images [43, 44]. To detect impulsive noise on images, a
neuro-fuzzy inference system is used in this study and median filter is applied to the noises
found on those images [45]. Again, for detection of the impulsive noise on images a feed
forward neural network is used and a modified version of the arithmetic mean filter is used

to remove the detected impulsive noises. Another difference of this study is the search



metrics; they used False Alarm Ratio (FAR), Missed Noise (MN) pixels and Falsely
Detected Noise (FDN) pixels [46]. To detect impulsive noise in colour images; a novel
fuzzy detector based on a fuzzy metric is used. The fuzzy detector is inspired on the recent

rank-ordered differences (ROD) statistic [47].

In this thesis, a Genetic Algorithm (GA) for optimizing a multi-stage non-flat soft
morphological filter is presented. The aim is to eliminate salt & pepper noise on images
while preserving the quality as much as possible. Different objectives are combined in a
fitness function and an appropriate representation scheme is designed to cover a broad

range of filter parameters.

The proposed filter is compared with the Median Filter and with table of results
given in this paper; “A new method for impulsive noise suppression from highly distorted
images by using Anfis” [43] which presents a filter called “Anfis-based impulsive noise
removing filter (AIF). And, that table of compared results consists of these papers &
filters: SMF [48], Iterative Median Filter (IMF) [49] and the complex structured impulsive
noise removal filters: Progressive Switching Median Filter (PSM) [49], Signal Dependent
Rank Order Mean Filter (SDROM) [50], Two-state Recursive Signal Dependent Rank
Order Mean Filter (SDROMR) [50], Impulse Rejecting Filter (IRF) [51], Non-Recursive
Adaptive-Center Weighted Median Filter (ACWM) [52] Recursive Adaptive-Center
Weighted Median Filter (ACWMR) [52], Center Weighted Median Filter (CWM) [53],
Yiiksel’s Anfis based filter (YUKSEL) [41], Russo’s fuzzy filter (RUSSO) [54] and
Histogram Based adaptive fuzzy filter (HAF) [55].

In the next section, background information about soft mathematical morphology and
genetic algorithms is given. In section 3, the representation scheme and other relevant
components of the genetic algorithms are explained in detail. In section 4, the experimental
settings used to obtain the best filter are explained and performance comparison of the
generated filter and median filter is provided over 10 different images. Also, the filters
generated for different levels of noise are compared with the latest filters presented in the
literature and the improvement of the GA and the fitness function is shown visually and

mathematically. Finally, conclusions are discussed in Section 5.



2. BACKGROUND

2.1. SOFT MATHEMATICAL MORPHOLOGY

Mathematical morphology was first introduced as an image processing methodology
for binary images [56]. The basic operators used in mathematical morphology are ‘erosion’
and ‘dilation’ operators that accept the image itself and a ‘structuring element’ (SE), also
referred to as ‘kernel’ as input. For more details on mathematical morphology, readers can
refer to [57, 58]. Dilation causes regions of foreground pixels grow in size and holes within

those areas shrink, while erosion has a reverse effect as illustrated in Figure 2.1.

010
111]1
Dilation| =D1D}=
0| 1]0
11]1
Erosion =D1D)=

Figure 2.1. Repetitive dilation and erosion of a given binary image by a given structuring

element having the origin in the middle for 40 iterations (1:0n, 0:off)

Later, in gray-scale morphology erosion and dilation operators are replaced with
‘minimum’ and ‘maximum’ operators as the fundamental morphological operators,
respectively. There are also ‘opening’ and ‘closing’ operators which requires application of
dilation and erosion using the same structuring element in a specified order. Up to now,
mathematical morphology has been used in many different image processing applications,

ranging from noise suppression, feature extraction to object recognition.



Soft mathematical morphology introduced by Koskinen, Astola, & Neuvo [59] in
1991. In this approach, weighted order statistics is used instead of the minimum or
maximum. The main difference from the standard morphology is the division of the
structuring element into two parts; ‘hard centre’ and ‘soft boundary’. The numbers in the
hard centre part has weights greater than one, which is set by a parameter called ‘rank’ or
‘repetition parameter’. The numbers in the soft boundary part of the SE has weights equal

to one. An example soft dilation operation is illustrated in Figure 2.2.

Operation; Soft Dilation

Image Segment SE [structuring Hard/Soft Map
Element)

6 3 1 3 1 2 1 0 0

2 12 13 5 |3 |4 ERE

9 1 5 4 2 1 0 0 1

Fepetiion Parameter: 3

The Resulting List: [9, 9, 9,4, 3,12,12,12,5,5,5,7,7,7, 13, 3, 6, 6, 6]

The Sorted List: [3, 3,4,5,5,5,6,6,6,7,7,7,9,9,9,12, 12, 12, 13]

Figure 2.2. An example soft dilation operation

Given a structural element B, it is divided into two subsets and, B is divided into two

subsets: the hard centre structural element A and the soft structural elementB\A,
2 .

where A-BcZ° AcCB #9D and \ denotes the set difference. Let ® and © represent ‘soft

dilation’ and °‘soft erosion’ operations. Soft dilation and soft erosion of an image f with

rank-order 1 are defined as:

@4, (f)=max{i0(f(z—€)+A€)) | €€ F,}U

2.1
{f(z=0)+B(0)|d¢€ Fy,}



O, ., () =min{i0(f(z+€)—A(e)) | ee F,}U s
{f(z+8)—B(5)15€ Fy,} (2.2)

Where max(i) and min(i) denote the ith largest and smallest value in the set
respectively; ¢ is the repetition operator and f ) ={f V), f¥).o. fF()} (i times); FA

and FB\A represent the field of definition of A and B\A | respectively. Consequently, soft

opening (A) and soft closing (A) of an image f are defined as:
A 4 i()=®, . . (Opailf)) (2.3)

O i Ap s ()= (@54, ())4) 2.4)

It has been shown that soft morphological operations are more robust in noisy
conditions and are less sensitive to additive noise and to small variations in object shape

[60].
2.2. GENETIC ALGORITHMS

A genetic algorithm (GA) is a nature inspired and population based meta-heuristic
used in search and optimization [61]. GAs have proven success in solving different classes
of complex problems [62, 63, 64, 65]. The approach aims to improve a set of randomly
generated initial candidate solutions, referred to as ‘population’ through Darwinian
evolution as shown in the below list. A ‘chromosome’ denotes a candidate solution that is
made up of ‘genes’, where each gene receives a value from a set of ‘alleles’. For example,
using binary representation, ‘00010’ might represent a candidate solution for a problem

requiring 5 genes. Other types of representation schemes are also allowed.



Generate initial population of size N, Pi(N)l—o
Evaluate chromosomes, Py(N)l-

Repeat

Select mates M(K)

Apply Crossover, Obtain Offspring

Mutate Offspring, O(K)

Evaluate chromosomes, Oy(K)

® N AL =

Replace current population, form next population
// Pi1(N): select N from (N+K) chromosomes
9.  Until Termination Criteria are satisfied

10. Return the best chromosome

In an evolutionary cycle, a set of genetic operators, namely; ‘crossover’, ‘mutation’
and ‘replacement’ are applied to the chromosomes in that order. Good building blocks,
possibly some part of an optimal solution are kept within the population, while the poor
ones are eliminated based on a ‘fitness function’ denoting the quality of a given candidate
solution. One point crossover (1PTX) is the traditional crossover used in GAs. Two mates
are randomly selected within the population favoring better chromosomes having better
fitness values. Then the genetic material is swapped at a randomly chosen locus. For
example, assuming that ‘00010’ and ‘01001’ are selected as mates that will go through
1PTX, if the locus is randomly determined as 2, then two new chromosomes (offspring)
are generated as follows: ‘001010 x ‘111011° — “00011°, ‘11010°. Next, mutation is
applied to the offspring by perturbing the allele value at each locus to a different value in
the allele set with a given probability. In binary representation, mutation is a bit-flip
operation. For example, assuming a mutation probability of 1/5, the offspring ‘00011’

might change into ‘01010°.



3. GENETIC ALGORITHMS FOR GENERATING AN OPTIMAL
FILTER

The need to search and try different combinations of operations, structuring elements
and parameters expands the search space dramatically (2.14 x 1081) and makes the search

for the optimal soft morphological filter well suited for GAs.

In this study GAs are used as a supervised learning mechanism to generate a filter for
impulsive noise removal. The GA optimizes the parameters of the soft morphological filter

by comparing the results of the filter over a set of training images.

3.1. IMPULSIVE NOISE

In this study, salt and pepper noise is studied. The usual and effective method for
suppressing this kind of noise is generally by the use of median filter. Also, in this study, it
is accepted that the noise is distributed on each pixel over the image with equal probability,
and the generated filter will be best suitable for a trained noise level, but it can handle all

different random distributions of that noise level.

3.2. REPRESENTATION

Each candidate solution coded by a chromosome represents a different filter. In this
representation scheme, a soft morphological filter that has up to four stages can be
encoded. Each of these four stages can have different morphological operations,

parameters and structuring elements.

It is shown in a previous study [15] that having multiple stages gives better results
compared to a one-staged morphological filter. The representation scheme used in this

study can give every type of filter, so that we have a broader range of filters to choose.

In the first four genes of the chromosome, the type of the morphological operations

for each stage are coded ( 0-No Operator, 1-Erosion, 2-Dilation, 3-Opening, 4-Closing ).
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By using a ‘No Operator’ type, the corresponding stage can be eliminated, or by using one

of the other operations, the operator can be selected for the corresponding stage.

In the next four genes, the neighborhood type is coded. In this study, 4 and 8
neighborhood types are allowed. In a 4 neighborhood type, the corners of the SE are not
used, but in an 8 neighborhood type, all the nine elements in the SE are used. First of all,
these are the most common ones and some prior tests done showed that, enlarging the
search space by allowing all types of SE shapes does not give better results. For this part of
the chromosome, zero means a 4n type neighborhood; one means an 8n type

neighborhood.

The next four genes are also binary like the previous four genes. They decode the
information whether the SE is symmetric or not. In a symmetric SE, the numbers are
symmetrically placed in all planes (horizontally, vertically and diagonally). But, in a non-
symmetric SE, all the numbers are different. For this part of the chromosome, zero means a

non-symmetric SE, one means symmetric SE.

The next 36 genes represent the numbers in the structuring elements of the four
stages. 3x3 sized SEs are used in this study; which means each Structuring Element has
nine numbers in them. Each slot in an SE has a range of (-255, 255). In a previous work
[15], this range is used and it is shown that [4, 15] expanding the range of the number in
the SEs gave better results. A grayscale image has a range of (0, 255); in order to change a
black pixel (255) into a white pixel -255 have to be added, and a value of 255 have to be
added for the opposite. Therefore, to cover all the values of a grayscale image, this range is

used.

The last two parts are the parameters only used in soft morphology. The next 36
genes represent the ‘hard’ and ‘soft’ elements in the SEs. This part of the chromosome is
also binary. Each gene works for a single number in an SE. When encoding, a zero maps to

a soft element, and a one maps to a hard element.

The last four genes in a chromosome represent ‘the repetition parameter’ of ‘the rank

parameter’ for each stage. The range of each gene in this part is (1 — 9). Using one in this
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field corresponds to a standard morphological filter, other values change the operation
according to the rules defined in soft mathematical morphology. The values above eight
give the same results, because the SEs used in this study has nine numbers in them.

Therefore, the range has a maximum value of nine.
3.3. EVALUATION FUNCTION

The GA in this study is used like a training mechanism; a filter trainer for a specific
purpose which is noise elimination. The fitness calculation gives us a value that represents
the difference between the filtered noisy image and the original non-noisy image.

Therefore, the lower the difference, the better the filter will be.

This calculation is composed of four parts. The first two comparing criteria (mean-
absolute-error and mean-squared-error) are used in almost all the studies that are done on
this topic before. Shape Error criteria is a relatively new method compared to that two error
types and the brightness error is a comparison method that is used in this thesis and didn’t

used in any of the papers researched in this study.

The mean-absolute-error calculates the difference of the pixels at the same
coordinates in two images and adds all the differences and gives the mean average of that

sum. It is a very standard error criterion.

The formulas are arranged for two 8-bit gray-scale images X and its restored image

(13444

and “j”, i.e., image size is of MxN pixels.

(3444
1

Y, with pixel indices

M N

1 .. -
= 22X G D =Y. 3.1)

=l j=I

This criterion is like the mean-absolute-error, but has a difference. In here, the
squares of the differences are taken before addition. Mean-squared-error criterion
strengthens the effect of differences on the result. Each one is used in previous studies and
none of them has precedence over the other. So, in this study, both of them are used

together.
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1 M N
=y 22 (X@ =Y P (3.2)

=1 j=1

The previous criteria check pixel by pixel comparisons, but do not take the whole
image or shapes into account. In image reconstruction, that is not enough to preserve the
shapes or the details in the image. So, the Shape Error is incorporated into the fitness

function. It is first introduced in the paper [66].

1 v y
DD D IXGH-XGE =X )Y (3.3)

i=l j=1(@"j)ew

M, N, X and Y represents the same things in previous equations, y is set to 2, (i’, j’)
specifies the floating windows around (i, j) with the masking element w, which is a 3x3

window in this case.

After generating filters with the first three objectives and making some tests using
the resulting filters; it is seen that the filtered image has the necessary properties such as
smoothed noise and preserved details. But, it has a problem that the brightness of the
image is a little bit different from the original image. According to my observations, this is
because of using non-flat structuring elements. The big values can change the average

pixel value of the image.

This problem is tried to be handled with two different methods, one of them is the
Brightness Error Criteria. The other method will be explained in the Fitness Calculation
Section. The Brightness Error Criteria simply calculates the absolute value of the
difference between the average pixel value of the input image and the output image. By
embedding this objective into the fitness function, the search is biased into a direction
where the brightness of the resulting image will be close to the original image’s brightness

value.

ff[MiNZZX(’ n} [MLNZZY@ n] (3.4)

i=1 j=1 i=1 j=1

.



13

The first problem solved when combining these objectives in one fitness function is
the scaling problem. The scaling is important to equalize the impact of the objectives on
the fitness value. To scale them, each objective is divided by the maximum possible value

they can give in an extreme case.

For Mean-Squared and Mean-Absolute-Error criteria, the extreme case is a
comparison of two images; that if one image has a black pixel, the other one must have a
white pixel at the same location and vice versa. The example images for this case are given
in Figure 3.1. Mean-Squared-Error calculates a difference of 65025; Mean-Absolute-Error
calculates 255 for this case. So, the values of these objectives are divided with these values

in the fitness calculation.

Figure 3.1. An example extreme case for MSE and MAE criteria

According to the tests done, the extreme case for the Shape Error Criteria is a case
that each image has only horizontal or only vertical black lines on a white background with
one pixel gap between them starting from one end and ending at the other end. But each
image has the black lines where the other image has gaps (white lines). The example
images for this case are given in Figure 3.2. This situation also fits the extreme case for the
MSE and MAE criteria. The Shape Error Criteria calculates a difference of 1238 in a

situation like this for two 100x100 images.

In this example; each image has a white background, but the first image has black
lines in the even valued columns, whereas the second image has black lines in the odd
valued columns. Therefore, these images are appropriate for the extreme cases of MSE,

MAE and Shape Error criteria.



14

|

Figure 3.2. An example extreme case for the shape error criteria

The extreme case for Brightness Error Objective is a situation where one image is
completely black and the other is completely white. This objective returns a value of 255

for this situation.

So the scaled fitness function looks like this:

(XY=

4
i=1

5.f, (3.5)

At the beginning of this study, a single non-noisy image with a size of 100x100 and a
100x100 20% impulsive noise added version of that image is given as an input into the
GA. At each fitness calculation for each candidate filter, the filter is applied to the noisy
image. The fitness value will be the difference of the original image and the resulted image

according to the four objectives defined before.

But, using a single image gives a filter that is best suitable for an image with similar
attributes like the training image. So, it is seen that to achieve a generalized filter, more
than one image is needed for the training phase. In this study, three different 100x100 sized
images are used for the fitness calculation. The fitness of each candidate filter is calculated
with the same way described before, and the average value of these calculations made up

the final fitness value.

> F(X,Y)

; 3.6
/o (3.6)

3
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Using more than a single image for the fitness calculation is the second method for
solving the Brightness Error Problem. The three images are selected specially for this
purpose. The average pixel value of a grayscale image ranges between (0, 255). If this
range is divided into four equal parts, each part has a range of 64. Therefore, the three
images used here have average pixel values of 64, 128 and 192 individually. The aim here
is to adapt the filter for different brightness conditions incorporating with the brightness

error criteria.
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4. COMPUTATIONAL RESULTS

4.1. EXPERIMENTAL DATA AND SETTINGS

4.1.1. Training Set

The three Images used for the training of the filters are shown in the Figure 4.1. This
figure only shows the images that have 20% level of noise. But for the last test which is
explained in the Section 4.4, the same images are used but with noise levels ranging from
10% to 90%.

These three Images are cropped from the Flowers, Mandrill and Lena Images. Small
Images are used in the training because; GA takes too much time when bigger sized
Images are used. And the main difference between these Images is described at the end of
the previous Section. They have different average brightness values (64, 128 and 192)
which we think that will help the GA to generate a filter that is not dependent on the
brightness of an image. The training Images and their source images are illustrated in

Figures 4.1 —4.5.

X1 (64), Xz (128), X3 (192)

X'l? X:a X3
20% salt&pepper noise added versions

Figure 4.1. Three training images (noisy and clean versions)



Figure 4.3. The cropped part of the Baboon image (170, 17) — (269, 116)
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Figure 4.4. The cropped part of the Lena image (212, 213) — (311, 312)
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27 (3x9) Noisy training images for all levels of noises used (10%-90%)

5

Figure 4
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For the training phase; the GA parameters shown in the Table 4.1 are used. The
MATLAB GA Library is used as the backbone of the GA, but the population generation
operation, fitness function, cross-over and the mutation operators are written as customized

functions and called from the GA Library.

Table 4.1. Genetic Algorithm Parameters

Population Size: 50

Termination Criteria: Number of Generations (1000)

Selection Method: Tournament Selection (Size 4)

Cross-Over Method: Scattered Crossover

Mutation: Simple Mutation (1 / ChromosomeLength =1/ 88)

An Initial Population with a size of 50 individual is randomly generated according to
the value ranges of each gene. To simply explain scattered cross-over; a vector with a size
of 88 is formed with random values of O and 1. After this operation, the corresponding
genes which have a value of 1 in the vector are swapped within parents. Therefore, the

children are formed after this swapping operation.

To generate a final filter; the GA is run with the same parameters and with the same
training images for 30 runs. At each run, a different random seed is used. After 30 runs are
finished; the fitness values of the final filters for all runs are collected and the filter with

the best fitness value is selected as the generated filter.

4.1.2. Test Set

In the Figure 4.6., the non-noisy Images used in the tests are shown. To fit them in a

page; all of them are scaled. The original sizes are as follows:

Camera (256x256), Bridge (256x256), Peppers (512x512),
Reptile (441x331), Parrots (384x256), Airplane (512x512),
Mandril (350x350), Lena (512x512), Boat (512x512), GoldHill (512x512)
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Figure 4.6. All 10 non-noisy test images
(Camera, Bridge, Peppers, Reptile, Parrots, Airplane, Mandrill, Lena, Boat, Goldhill)
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4.1.3. Image Properties

In this part; the properties of both the training and test images are presented. Two

types of image properties are calculated and showed here.

One is called histogram; the histogram of an image refers to a histogram of the pixel
intensity values. The histogram is a graph showing the number of pixels in an image at
each different intensity value found in that image. For an 8-bit grayscale image there are
256 different possible intensities, and so the histogram will graphically display 256

numbers showing the distribution of pixels amongst those grayscale values.

The other critera is called Average Pixel Value; which is simply the average value

of the sum of all the pixels of an image.

The main aim of showing these properties is to highlight the difference of the
training images and test images. And it is shown that the cropped training images do not
carry the same properties with the original test images as it can be seen from the

histograms and average pixel values in the Table 4.2 and Figures 4.7 — 4.19.
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Figure 4.7. Histogram data of the Airplane image
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Figure 4.8. Histogram data of the Baboon image
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Figure 4.9. Histogram data of the Boat image
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Figure 4.10. Histogram data of the Bridge image
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Figure 4.11. Histogram data of the Camera image
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Figure 4.12. Histogram data of the Goldhill image
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Figure 4.13. Histogram data of the Lena image
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Figure 4.14. Histogram data of the Parrots image
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Figure 4.15. Histogram data of the Peppers image
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Figure 4.16. Histogram data of the Reptile image
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Figure 4.17. Histogram data of the X, training image
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Figure 4.18. Histogram data of the X, training image
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Figure 4.19. Histogram data of the X3 training image

Table 4.2. Average pixel values (brightness values) for all images

Image Name | Average Pixel Value
airplane 178.68
baboon 129.81
boat 136.14
bridge 113.88
camera 118.72
goldhill 112.21
lena 124.04
parrots 109.56
peppers 120.29
reptile 125.47
X training 63.77
X, training 128.61
X3 training 192.53
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4.2. DOES GENETIC ALGORITHM IMPROVE THE FILTER?

In this part of the testing; what we aim is to prove that our GA and the fitness

function really improve a filters capability of noise removal and shape preservation.

Therefore, to show this; we stop the GA runs at some intervals and take the soft
morphological filter formed at those generations and applied them to a noisy Lena Image
and calculated the MSE, MAE and Peak Signal to Noise Ratio (PSNR) Values of the

filtered Images. The results of these experiments can be seen in Figures 4.20 — 4.25.

The results clearly showed that, the GA and the fitness function we had used
improves a filter through the generations according to these criteria. Also, when we look at
the images filtered by the filters from different generations of the GA; we can see clearly
that the Image quality is increasing and the noise density is decreasing when the Filters

from the future generations are used.

The Filter is generated with the same method and parameters used in the previous
tests; by using three different Images with different brightness values and using the same
fitness function. We had used 20% noisy versions of the training images, and also for
testing the generated filters 256x256 sized Lena Image is used with a noise level of 20%.

The MSE Value of the noisy Image is 3767,6.
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Figure 4.21. MSE value change over generations
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Figure 4.23. PSNR value change over generations
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Figure 4.24. The original and the 20% noisy Lena images

Figure 4.25. Filtered Lena image over generations of GA (1,10,100,1000th generations)
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4.3. COMPARISON TO THE MEDIAN FILTER FOR A SINGLE NOISE LEVEL

To test the generated filter, it is applied on ten different images. The generated filter
is illustrated in Tables 4.3 — 4.4. In this experiment; each image is corrupted with 20% of
salt & pepper noise. But, to achieve statistically significant results, 30 different noisy
variations of the images are generated; each having the same percentage of noise, but with
different random noise distributions. The filter is applied on each of those images and the
resulting images are compared with the original non-corrupted ones using the objectives

defined in the fitness function.

The same operations are done using the 3x3, 4x4 and 5x5 median filters on the same
images. For the performance test of the generated filter, the average and the best results
taken from the median filters are compared with our filter’s results and the outcomes of

these experiments are shown in Tables 4.5 — 4.6.

The results showed that, according to mean-squared-error and shape error criteria,
the generated filter gave better results in both average and best values for all images.
According to mean-absolute-error criteria, the result is almost the same, for only one of the
images; the 3x3 median filter gave a better result. According to brightness error criteria, for
half of the images the generated filter gave better results than all sizes of median filters, but
for the other images it could not. So, this is the worst criteria for our filter, but according to
this criterion it can be considered as equal to the median filter. Therefore, when we look at
the results in general, the generated filter outperforms the median filter in a significant

way.



Table 4.3. The Chromosome of the generated filter for 20% impulsive noise

35

Operation Sequence 4 0 4 0
Neighbourhood 0 0 0 1
Symmetric 1 1 1 0
Structuring Elements | 156| -10| 227| -13| -15 77 73| -194 17
169 -43] 231| 206 -203] -153| -230 57( 247
102 -11| 157 -33| -10| 208| 113 -248| 104
351 -66] -250 91 -128( 122 -195| 183] -204
Hard Soft Map 1 0 1 0 0 0 1 0 0
1 1 0 0 1 1 1 1 1
1 0 0 0 0 0 1 0 1
1 0 1 1 1 0 0 0 1
Rank 3 3 2 8

Table 4.4. The generated filter for 20% impulsive noise

1st Stage : Soft Closing

-10
-13 -15 -13
-10
1 0 1
0 0 0
1 0 0

Repetition Parameter : 3

2nd Stage : Soft Closing

-11
-33 -10 -33
-11
1 0 0
0 0 0
1 0 1

Repetition Parameter : 2
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Table 4.5. Average values taken from the test done with 30 different noisy variations of the
images (first 5 images)

(The training images are portions of the Lena, Mandrill and Flowers images)

MAE MSE Shape Error Brightness Error

Baboon Image | Average | StdDev | Average | StdDev | Average | StdDev | Average | StdDev
Our Filter 10,72 0.02( 300,25 1.80 64,66 0.12 0,32 0.07

3x3 Median 11,74 0.03] 392,60 3.99 75,18 0.26 0,43 0.08
4x4 Median 14,43 0.03| 491,62 2.70 77,68 0.12 0,64 0.07
5x5 Median 14,69 0.03( 502,10 3.97 79,06 0.15 0,72 0.08

Boat Image | Average | StdDev | Average | StdDev | Average | StdDev | Average | StdDev

Our Filter 3,67 0.01 58,84 0.82 26,18 0.12 0,20 0.02
3x3 Median 4,22 0.02] 123,17 3.06 38,74 0.41 0,12 0.04
4x4 Median 6,17 0.02( 176,19 2.34 38,81 0.16 0,17 0.03
5x5 Median 5,76 0.03 151,44 3.35 37,84 0.26 0,04 0.02

Bridge Image | Average | StdDev | Average | StdDev | Average | StdDev | Average | StdDev
Our Filter 8,55 0.03 184,34 2.52 49,64 0.22 0,23 0.08

3x3 Median 9,76 0.05( 289,72 6.65 62,90 0.57 0,39 0.10
4x4 Median 12,48 0.04( 374,73 3.43 64,32 0.20 0,78 0.09
5x5 Median 12,47 0.04] 373,07 4.70 64,06 0.26 0,90 0.09

Flowers Image | Average | StdDev | Average | StdDev | Average | StdDev | Average | StdDev
Our Filter 4,68 0.02 79,60 1.44 28,14 0.20 1,16 0.03

3x3 Median 4,01 0.02] 119,47 3.47 38,60 0.58 0,09 0.03
4x4 Median 5,99 0.02] 160,71 1.48 37,24 0.12 0,21 0.03
5x5 Median 5,44 0.02( 131,49 1.64 35,19 0.16 0,49 0.03

Goldhill Image | Average | StdDev | Average | StdDev | Average [ StdDev [ Average | StdDev
Our Filter 3,95 0.01 49,56 0.80 25,04 0.13 0,06 0.02

3x3 Median 4,58 0.02 111,79 2.97 37,89 0.42 0,21 0.03
4x4 Median 6,15 0.02| 122,13 1.61 34,36 0.13 0,41 0.02
5x5 Median 5,99 0.02| 121,17 3.70 34,97 0.36 0,51 0.03
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Table 4.6. Average values taken from the test done with 30 different noisy variations of the
images (last 5 images)

(The training images are portions of the Lena, Mandrill and Flowers Images)

MAE MSE Shape Error Brightness Error

Lena Image | Average | StdDev | Average | StdDev | Average | StdDev | Average | StdDev

Our Filter 2,52 0.01 31,91 0.66 18,34 0.14 0,03 0.02
3x3 Median 2,79 0.02 79,87 3.05 30,59 0.54 0,17 0.03
4x4 Median 4,53 0.02] 120,77 1.85 29,15 0.17 0,31 0.03
5x5 Median 3,81 0.02 79,73 2.98 25,94 0.39 0,40 0.03

Peppers Image | Average | StdDev | Average | StdDev | Average | StdDev | Average | StdDev
Our Filter 2,53 0.01 31,21 1.22 18,21 0.27 0,16 0.02

3x3 Median 2,80 0.02 78,96 3.59 31,03 0.60 0,11 0.03
4x4 Median 4,41 0.01( 131,34 2.44 30,40 0.21 0,12 0.02
5x5 Median 3,55 0.02 67,40 2.44 24,68 0.35 0,25 0.03

Parrots Image | Average | StdDev | Average | StdDev | Average | StdDev | Average | StdDev
Our Filter 3,05 0.02 77,08 1.73 31,40 0.24 0,13 0.04

3x3 Median 3,36 0.03| 125,00 4.35 40,50 0.55 0,09 0.05
4x4 Median 4,69 0.03| 150,92 3.79 39,89 0.30 0,29 0.04
5x5 Median 4,29 0.04( 141,83 5.02 40,10 0.40 0,26 0.05

Camera Image | Average | StdDev | Average | StdDev | Average | StdDev | Average | StdDev
Our Filter 5,27 0.04( 169,86 3.74 46,61 0.35 0,16 0.07

3x3 Median 5,94 0.07( 276,02 10.15 59,91 0.89 0,58 0.09
4x4 Median 8,19 0.05| 414,40 6.75 64,48 0.37 1,28 0.08
5x5 Median 7,77 0.06( 373,53 8.06 62,85 0.48 1,20 0.09

Airplane Image | Average | StdDev | Average | StdDev | Average | StdDev | Average | StdDev
Our Filter 2,90 0.01 47,02 1.15 21,77 0.22 0,23 0.02

3x3 Median 3,21 0.02] 110,46 3.46 35,58 0.54 0,20 0.04

4x4 Median 5,20 0.02( 191,47 3.51 36,24 0.26 0,21 0.03

5x5 Median 4,52 0.02( 128,10 3.22 32,54 0.34 0,14 0.04
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4.4. COMPARISON OF THE EVOLVED FILTERS TO THE STATE-OF-THE-
ART FILTERS

In the previous part of the tests; we had generated a filter for a single level of noise
and test that filter for that specific level of noise which it is trained for. But, in this part of

the testing; we had changed this approach.

In this part, for 9 different levels of noise (10% - 20% - 30% - ... — 90%), 9 different
filters are generated. This is done by using the same 3 Images, different versions of those
Images are generated with those levels of noise and they are given as inputs to the GA.
And the filter is generated with the same fitness function and with the same methods as the
previous tests. The GA is again ran for 30 separate times and the filter resulted from the

best fit generation is used for testing purposes.

At first 3 images are generated for the 3 small test Images which has a 10% level of
noise. And the GA is run for those 6 Images (3 non-noisy, 3 noisy) for 30 runs, after those

runs; the filter from the best generation is taken out for testing.

For testing; 3 Images are used; Lena, Peppers, Mandrill which are shown in the
Figure 4.26. These images are selected because they are the mostly used Images in the
Literature and we have extensive test results for those Images in the Literature. But, at this
point; we need to generate noisy versions of these Images which has the same Mean-

Squared-Error Value.

Therefore, by using computational brute-force try-and-error approach, 9 different
versions of those 3 Images with different levels of noise from 10% to 90% are generated.
But those noisy Images are generated in such a way that they will have the same MSE

Values with the Images used in the test results seen in the Literature.

After generating all those noisy Images for 9 levels of noise, the filter generated by
using images with 10% level of noise is applied on each of them, and the 27 different

results are collected for 3 Images x 9 different levels of noise.
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Figure 4.26. 512x512 Lena, Mandrill, Peppers images

These whole set of operations are also repeated for other levels of noise. Therefore, 9
different filters are generated by training the GA for 9 different levels of noise. And, those

filters are applied on those 3 Images with noise levels ranging from (10% - 90%).

You can see all the results taken from this test in the Tables 4.7 — 4.12. At each page,
the test results for a specific image are presented. In the “Our Method” part; you can see
the MSE values of the images filtered by the filters generated by our GA with different
training noise levels. For our method; the best filter results for each level of noise are
marked as bold. And, in below, the MSE values of the images filtered by the filters in the

literature can be seen.

From these results; there is more than one conclusion that we can perceive. The first
one is; in most cases, the filters generated with our method give their best results at the

noise level that they are generated.

The second conclusion is, our filter does not give the best results among all the
filters, but if we look at the results of each for their generated noise level, it can be
observed that our method gets a rank in the best 3 or 4 filters among the state-of-the-art
filters in the literature as illustrated in Table 4.13 and Figure 4.27. The values in Table 4.13
are formed with the values taken from the Tables A.1 — A.3. Each approach is ranked from
1 (best) to 14 (worst) based on the MSE values, and then the average ranking of each
approach is plotted for each test image considering different levels of noise. This of course

requires prior knowledge about the level of the noise that we have for a given filter.
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Table 4.7. Comparison of our approach to the other approaches from literature based on
MSE values for the Lena image - Part |

(The training images are portions of the Lena, Mandrill and Flowers images)

10 20 30 40 50
Noisy image | 1852,70|3767,60 | 5563,60 | 7451,50 | 9268,40
Our Method| 63,96 93,12 129,28 | 162,34| 206,68
10% | 63,96 125,41 336,90| 823,43| 1717,71

20% | 67,64 93,12| 151,24| 296,04| 659,00

30% | 79,71| 101,04| 136,61| 224,36| 447,25

40% | 95,13| 108,01| 129,28 | 171,60| 275,60

50% | 128,16| 138,57| 157,62| 188,62| 257,80

60% | 120,30| 130,94| 142,82| 162,34| 206,68

70% | 230,67 | 233,72| 254,33| 260,33| 305,43

80% | 215,40| 220,46| 227,01| 243,98 | 265,07

90% | 281,29| 291,88| 306,34 | 338,26| 387,36

AIF| 12,46| 24,13 4744 71,68 114,05

IMF| 124,05| 140,06| 158,84| 203,36| 261,87

SMF - 3x3| 87,09| 148,82| 353,46| 958,83| 2046,10
PSM| 54,92| 85,76| 132,48 | 272,63| 647,30
SDROM | 60,52| 136,35| 408,80|1105,70| 2339,10
SDROMR | 56,79 91,21 171,88| 287,33| 553,76
IRF| 61,15] 127,84 366,24 | 981,06 | 2098,80

ACWM| 5197| 121,51 367,27| 993,73 | 2119,40
ACWMR| 4695| 85,67 170,71| 299,57| 536,23
CWM | 76,27| 259,94 727,17|1729,30| 3273,40
YUKSEL| 63,63| 94,21| 151,67| 256,73| 417,24
RUSSO| 51.45| 111,90 208,57| 346,21 | 605,95
HAF| 12,53 24,66| 49,61 83,16| 121,66
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Table 4.8. Comparison of our approach to the other approaches from literature based on

MSE values for the Lena image - Part II

(The training images are portions of the Lena, Mandrill and Flowers images)

60

70

80

90

Average

Noisy image

11152,00

13078,00

14769,00

16804,00

9300,76

Our Method

356,48

629,36

1235,10

2356,58

10%

3417,09

5735,92

8579,54

12308,65

3310,87

20%

1668,65

3487,04

6238,84

10310,34

2297,21

30%

1171,02

2744,55

5369,45

9653,81

1992,81

40%

600,56

1650,92

3627,65

7965,03

1462,42

50%

519,31

1330,86

3280,31

8206,04

1420,78

60 %

370,18

1022,40

2851,88

7606,07

1261,42

70%

381,12

842,92

2045,64

5043,67

959,85

80%

356,48

629,36

1332,46

3726,48

721,75

90 %

521,77

762,78

1235,10

2356,58

648,23

AlIF

153,18

204,08

276,45

383,37

142,98

IMF

491,57

1402,70

3971,50

10140,00

1877,11

SMF - 3x3

3856,60

6769,10

9938,00

14269,00

4269,67

PSM

1938,30

5036,00

9495,10

14862,00

3613,83

SDROM

4322,30

7404,70

10619,00

14831,00

4580,83

SDROMR

1071,80

2452,10

5615,90

13152,00

2605,86

IRF

3918,50

6821,70

9982,40

14290,00

4294,19

ACWM

3951,00

6859,10

10015,00

14311,00

4310,00

ACWMR

1007,80

2042,30

4230,20

9975,40

2043,87

CWM

5431,60

8350,40

11291,00

15060,00

5133,23

YUKSEL

647,59

970,07

1375,40

1968,40

660,55

RUSSO

1114,90

2175,50

4372,30

8848,00

1981,64

HAF

154,23

221,77

463,38

491,17

180,24
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Table 4.9. Comparison of our approach to the other approaches from literature based on
MSE values for the Mandrill image - Part I

(The training images are portions of the Lena, Mandrill and Flowers images)

10 20 30 40 50
Noisy image | 1766,50 | 3585,30 | 5351,70 | 7093,50 | 8898,20
Our Method | 193,38| 250,13| 308,52| 361,50 423,27
10% | 193,38 273,47| 486,69 928,09| 1909,83

20% | 216,13| 250,13| 311,09| 452,69| 858,00

30% | 248,72 270,17| 308,52| 392,61| 646,38

40% | 279,36 296,53| 320,37| 361,50 487,28

50% | 335,46| 347,61| 366,95| 386,44 | 448,94

60% | 332,773| 340,80| 354,34| 370,92 423,27

70% | 403,74| 409,45| 420,37| 430,45| 472,66

80% | 391,25| 398,22| 408,75| 420,01 | 455,22

90% | 410,60| 417,88| 431,38 | 449,19| 496,96

AIF| 31,16 70,37| 113,88 | 164,86| 220,92

IMF| 324,10| 340,02| 358,99| 386,60| 456,02

SMF - 3x3| 271,04| 329,47| 560,00|1094,30| 2184,30
PSM| 108,39| 147,80| 205,12| 335,73| 736,27
SDROM | 165,39| 259,65| 544,67|1187,70| 2443,10
SDROMR | 171,74| 224,09 312,82| 429,68| 692,46
IRF| 171,56| 252,63 | 497,92|1071,00| 2190,20
ACWM| 12594| 215,00| 470,31|1052,30| 2180,10
ACWMR| 115,20| 176,27| 263,32| 381,32| 620,87
CWM| 184,00 348,50| 836,76|1795,20| 3319,70
RUSSO| 46,95 85,67| 170,71| 299,57| 536,23
YUKSEL| 76,27| 259,94| 727,17|1729,30| 3273,40
HAF| 31,77\ 72,04 115,01 172,19| 227,46
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Table 4.10. Comparison of our approach to the other approaches from literature based on

MSE values for the Mandrill image - Part II

(The training images are portions of the Lena, Mandrill and Flowers images)

60

70

80

90

Average

Noisy image

10623,00

12415,00

14201,00

15998,00

8881,36

Our Method

521,01

749,35

1115,79

1856,10

10%

3407,13

5459,72

8321,25

11616,21

3259,59

20%

1753,92

3251,77

5943,98

9561,00

2259,89

30%

1310,97

2605,18

5182,08

8980,67

1994,56

40%

835,22

1777,41

3818,16

7306,28

1548,25

50%

650,10

1334,54

3438,57

7207,29

1451,64

60 %

573,06

1165,95

3019,14

6854,64

1343,55

70%

555,06

875,49

2027,21

4792,20

1038,73

80%

521,01

778,69

1443,19

3269,92

808,71

90 %

571,95

749,35

1115,79

1856,10

650,01

AlIF

293,77

370,09

461,06

599,19

258,37

IMF

657,79

1653,40

4082,50

9688,00

1994,16

SMF - 3x3

3836,80

6583,00

9739,10

13720,00

4257,56

PSM

1932,40

5146,60

9665,40

14527,00

3644,97

SDROM

4264,30

7185,30

10451,00

14272,00

4530,35

SDROMR

1122,90

2482,90

5432,60

12614,00

2609,24

IRF

3856,00

6614,30

9786,60

13742,00

424247

ACWM

3851,70

6620,20

9798,60

13749,00

4229,24

ACWMR

975,77

1888,50

3713,40

8619,00

1861,52

CWM

5272,30

8037,50

10960,00

14346,00

5011,11

RUSSO

1007,80

2042,30

4230,20

9975,40

2043,87

YUKSEL

5431,60

8350,40

11291,00

15060,00

5133,23

HAF

301,71

387,19

482,01

611,48

266,76
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Table 4.11. Comparison of our approach to the other approaches from literature based on
MSE values for the Peppers image - Part |

(The training images are portions of the Lena, Mandrill and Flowers images)

10 20 30 40 50
Noisy image | 1940,10 | 3988,80 | 5897,70 | 7914,50 | 9960,80
Our Method | 59,68 95,49 131,67 179,93| 232,53
10% | 59,68 141,56| 335,98| 896,96| 2002,49

20% | 6595| 95,49| 141,92| 330,03| 799,81

30% | 7851 101,45| 131,67| 233,20 516,94

40% | 112,00| 125,67| 142,25| 190,90 313,82

50% | 142,05| 162,01| 176,23 | 213,34| 276,59

60% | 132,36| 143,66| 152,65 179,93 232,53

70% | 254,87 267,27| 270,68| 306,71| 350,39

80% | 363,50| 369,63| 376,93| 399,49| 423,48

90% | 759,92| 769,86| 778,24| 811,31| 876,05

AIF| 12,95| 28,77 52,32| 8396| 123,28

IMF| 123,82| 149,80 190,54 | 249,05| 335,41

SMF -3x3| 77,69| 160,17| 389,36|1021,90| 2161,00
PSM| 5524| 94,58| 159,79| 301,41| 714,25
SDROM | 63,70| 195,43 | 482,43|1240,30| 2528,90
SDROMR | 61,34 149,97 268,08| 474,06 750,02
IRF| 60,14| 182,08| 437,96|1126,40| 2299,90
ACWM| 55,70| 181,99| 442,58|1139,30| 2317,90
ACWMR| 54,51| 142,14| 259,92| 463,44| 727,67
CWM | 84,55| 303,75| 818,32|1860,70| 3557,80
YUKSEL | 228,79| 321,47| 467,54 670,77| 946,99
RUSSO| 72,12] 160,29 297.64| 507,32| 820,94
HAF| 18,03 39,12 67,14 96,36| 137,03
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Table 4.12. Comparison of our approach to the other approaches from literature based on

MSE values for the Peppers image - Part II

(The training images are portions of the Lena, Mandrill and Flowers images)

60

70

80

90

Average

Noisy image

11929,00

13993,00

15930,00

17908,00

9940,21

Our Method

403,68

829,00

1806,19

3267,65

10%

3695,31

6464,19

9521,83

13342,63

3646,07

20%

1851,95

4166,26

7234,87

11588,18

2627,47

30%

1225,95

3183,28

6046,20

10606,69

2212,42

40%

657,04

1880,93

4304,51

8589,78

1631,73

50%

517,54

1604,82

4129,07

9010,14

1623,23

60 %

403,68

1260,99

3487,42

8291,24

1428,51

70%

470,06

946,16

2570,58

5990,11

1142,75

80%

514,31

829,00

1806,19

4365,73

944,91

90 %

990,60

1355,43

1938,14

3267,65

1154,81

AlIF

171,87

233,66

331,48

487,90

169,58

IMF

667,77

1693,60

4329,20

10742,00

2053,47

SMF - 3x3

4151,50

7271,20

10690,00

15164,00

4565,20

PSM

1952,20

5280,30

9673,30

15099,00

3703,34

SDROM

4674,00

7960,80

11444,00

15787,00

4930,73

SDROMR

1568,00

3167,30

6270,00

13218,00

2880,75

IRF

4309,50

7444,10

10835,00

15306,00

4666,79

ACWM

4333,40

7471,50

10859,00

15324,00

4680,60

ACWMR

1395,30

2753,00

4820,70

10357,00

2330,41

CWM

5858,40

8999,30

12226,00

16049,00

5528,65

YUKSEL

1343,80

1852,70

2468,70

3267,10

1285,32

RUSSO

1420,30

2528,40

4767,70

9732,40

2256,35

HAF

219,60

288,96

378,12

520,49

196,09
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Table 4.13. Average rank of each filter over all noisy images

(The training images are portions of the Lena, Mandrill and Flowers images)

Lena|Mandrill | Peppers
Our Method 4,44 5,11 3,56
AIF 1,00 1,00 1,00

IMF 6,78 7,11 5,78

SMF - 3x3 10,56 10,33 9,78
PSM 7,56 6,89 6,33
SDROM 12,11 11,11 12,44
SDROMR 7,22 7,44 7,56
IRF 10,56 9,89 10,44

ACWM 10,78 9,11 10,89
ACWMR 5,67 5,11 5,78
CwWM 13,78 13,11 13,67
YUKSEL 5,33 4,56 8,33
RUSSO 7,22 12,22 7,44
HAF 2,00 2,00 2,00
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Figure 4.27. Comparison of our approach to the other approaches in literature based on the
average rankings over all noisy data using MSE values for a given image

(Here, the filters of our method are used on the noise level that they are trained for)
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In general, there is no prior knowledge regarding the noise level for a given image,
hence we compare the performance of different filters generated using our approach at
different noise levels as illustrated in Table 4.14 and Figure 4.28. The below table is
formed with the values taken from the Tables A.4 — A.6. The results indicate that the filter

obtained by using training instances with 60% noise yields a better average performance.

Table 4.14. Average rank of each filter over all noisy images

(The training images are portions of the Lena, Mandrill and Flowers images)

Lena | Mandrill | Peppers
10% 15,44 15,00 14,11

20% 12,56 12,33 11,11
30% 10,78 11,33 9,44
40% 8,33 9,67 7,67
50% 9.44 9,89 8,78

60 % 7,56 8,67 6,67
70% 10,67 10,56 9,56
80% 9,11 9,33 10,22

90 % 11,44 10,67 13,22

AlIF 1,00 1,00 1,00

IMF 10,44 10,78 9,67

SMF - 3x3 17,56 17,11 16,44
PSM 12,22 10,89 10,89
SDROM 18,78 17,33 19,11
SDROMR 11,56 11,33 12,33
IRF 17,11 16,11 17,11
ACWM 17,22 15,22 17,56
ACWMR 9,78 7,89 10,11
CWM| 20,89 19,89 20,78
YUKSEL 7,56 7,56 13,00
RUSSO 11,56 18,44 12,22
HAF 2,00 2,00 2,00
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Figure 4.28. Average performance ranking of the filters, which are obtained by using the

training instances with a given noise level, over all noisy data

And as the last part of the comparisons; as shown in Table 4.15 and Figure 4.29
which are formed with the values taken from the Tables A.7 — A.9. A comparison using
the filter generated by training over images with 60% noise yields a comparable

performance to the existing approaches. Still, the state of the approaches cannot be beaten.



(The training images are portions of the Lena, Mandrill and Flowers images)

Table 4.15. Average rank of each filter over all noisy images

Lena | Mandrill | Peppers

Our Method - 60% 5,33 6,00 4,56
AIF 1,00 1,00 1,00

IMF 6,78 6,89 5,67

SMF - 3x3| 10,44 10,11 9,67
PSM 7,56 6,89 6,33
SDROM | 12,11 11,00 12,33
SDROMR 7,22 7,33 7,44
IRF| 10,44 9,78 10,33
ACWM| 10,67 9,11 10,89
ACWMR 5,67 5,11 5,67
CWM| 13,67 13,11 13,56
YUKSEL 5,00 4,56 8,22
RUSSO 7,11 12,11 7,33
HAF 2,00 2,00 2,00

16
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Figure 4.29.

training for each image with the given noise level
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Comparison of approaches using average ranking of that are obtained after
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4.5. PERFORMANCE OF THE BEST EVOLVED FILTER

As we had concluded from the results presented at the end of the previous Section.
According to the average ranking between the filters generated with training data which
has noise level in the range (10% - 90%). It is seen that the filter trained with images that
has a noise level of 60% gets the best average ranking result through the other filters

generated. The filter is illustrated in the Tables 4.16 — 4.17.
Therefore, in this Section, the filter generated with 60% level of noise is presented
and the Clean, Noisy and Filtered Versions of the three test Images processed by this filter

are shown in the Figures 4.30 — 4.32.

Table 4.16. The Chromosome of the generated filter for 60% impulsive noise

Operation Sequence 0 3 4 4
Neighbourhood 0 1 1 1
Symmetric 0 1 1 1

Structuring Elements | 169| 103 -17| 122 78 242 228| -105 18
-6 4 -25 -5 -1| -156] -190| -36| 152
9 11| 163 13| -229( -101| 128] -250 -4
4 41 -250 38 12 62 55( -177 82

Hard Soft Map 0 1 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Rank 8 5 5 4




Table 4.17. The generated filter for 60% of impulsive noise

1st Stage : Soft Opening

6 4 6
5 -1 5
6 4 6
0 0 0
0 0 0
0 0 0

Repetition Parameter : 5

2nd Stage : Soft Closing

9 11 9
13 -229 13
9 11 9
0 0 0
0 0 0
0 0 0

Repetition Parameter : 5

3rd Stage : Soft Closing

1 1 1
38 12 38
1 1 1
0 0 0
0 0 0
0 0 0

Repetition Parameter : 4
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Figure 4.30. Filtered Lena images with noise levels (10% - 90%) with the filter trained

with 60% level of noise
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Figure 4.31. Filtered Mandrill images with noise levels (10% - 90%) with the filter trained

with 60% level of noise
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Figure 4.32. Filtered Peppers images with noise levels (10% - 90%) with the filter trained

with 60% level of noise
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4.6. PERFORMANCE OF THE BEST FILTER OVER THE TRAINING IMAGES

In this part; the selected best filter which is trained at 60% Noise Level is applied to
the 3 training Images. With this test; our aim is to show that the trained filter is also got
good results with the training images itselves. Since, those images are used to rank and
evolve the filter during generations of the GA; it is expected to have good results when the
filter is applied on the training images. And from the results seen in the Tables 4.18 and
Figure 4.33; the result of the filtering of the training images is really good both in its own

context and also compared to other images.

First, salt&pepper noise ranging between (10%-90%) is applied on the training
images which give us nine different noisy images for each training image. After generating
the noisy Images, the select filter is applied on each of them. In the below table and figure;
the difference between the filtered and the original images are listed with mean-squared-
error criteria. Also, the results for the Lena, Mandrill and Peppers Images are also listed

here.

Table 4.18. Selected filter results on the training images & Lena, Mandrill, Peppers images
(MSE criteria)

(The training images are portions of the Lena, Mandrill and Flowers images)

Noise Level X (64)] X,(128)| X;5(192) Lena| Mandrill| Peppers
10% 67,96 398,44 117,84 120,30 332,73 132,36
20% 73,82 409,86 135,27 130,94 340,80 143,66
30% 81,44 428,39 147,90 142,82 354,34 152,65
40% 123,53 471,58 163,77 162,34 370,92 179,93
50% 142,09 523,40 194,39 206,68 423,27 232,53
60% 246,46 812,96 319,86 370,18 573,06 403,68
70% | 1443,61| 1280,15| 1015,76| 1022,40| 1165,95| 1260,99
80% | 3482,46| 309532 3112,49| 2851,88| 3019,14| 3487.42
90% | 8607,60| 7454,19| 8238,67| 7606,07| 6854,64| 8291,24

Average | 1585,44| 1652,70| 1493,99| 1401,51| 1492,76| 1587,16
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Figure 4.33. Selected filter results on the training images & Lena, Mandrill, Peppers
images (MSE criteria)
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4.7. PERFORMANCE OF THE BEST FILTER OVER THE IMAGES WITH
GAUSSIAN NOISE

In this part; a completely different noise type is used. Although our filter is trained
on impulsive noise added images; we want to test and see the capabilities of the generated

filter for Gaussian noise added images, also.

In salt and pepper noise (impulsive noise), pixels in the image are very different in
color or intensity from their surrounding pixels; the defining characteristic is that the value
of a noisy pixel bears no relation to the color of surrounding pixels. Generally this type of
noise will only affect a small number of image pixels. When viewed, the image contains
dark and white dots, hence the term salt and pepper noise. Typical sources include flecks

of dust inside the camera, or with digital cameras, faulty CCD elements.

In Gaussian noise, each pixel in the image will be changed from its original value by
a (usually) small amount. A histogram, a plot of the amount of distortion of a pixel value
against the frequency with which it occurs, shows a normal (Gaussian) distribution of
noise. While other distributions are possible, the Gaussian distribution is usually a good
model, due to the central limit theorem that says that the sum of different noises tends to

approach a Gaussian distribution.

Gaussian noise is applied on the 10 test images used in the previous Sections and the
3 training images. The Variance range of the applied Gaussian noise is ranging from 10%
to 90%. After that; the 3 by 3 median filter and the selected filter which is trained at 60%
Noise Level is applied to all these images and the results are recorded according to mean-
squared-error criteria. The outcomes of this experiment are illustrated in the Tables 4.19 —

4.22

The noise is generated using MATLAB Application with the imnoise function, the
default mean value is used and the variance value is given within the range of (10 — 90).
The test results show that, our method also can eliminate Gaussian noise and gets

significantly better results than the median filter for all images and all noise levels.
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Table 4.19. Selected filter results on the Gaussian Noise added training images & 10 test
images (MSE criteria)

(The training images are portions of the Lena, Mandrill and Flowers images)

Noise
Variance 10% 20% 30% 40% 50% 60% 70% 80% 90% | Average
img64 302.72 | 559.33 747.73 | 754.74 1202.27 1298.77 1488.67 1215.65 1668.23 | 1026.46

imgl28 661.18 | 906.44 | 1147.19| 1375.37 1624.70 1757.60 1895.79 2307.44 2209.89 | 1542.85

imgl192 359.50| 535.06| 727.85| 914.04 1141.13 1152.28 1468.60 1683.09 1572.46 | 1061.56

airplane 383.56 | 58442 759.72| 928.64 1076.05 1245.39 1369.31 1567.58 1718.49 | 1070.35

baboon 669.45| 90742 | 1117.78 | 1358.77 1558.14 1722.10 1985.51 2123.05 2301.10 | 1527.03
Boat 37443 | 597.75| 816.50| 983.35 1174.31 1382.08 1561.87 1721.68 1904.98 | 1168.55
Bridge 595.42 | 82847 | 1062.75| 1223.51 1407.05 1656.60 1790.70 1962.27 2159.26 | 1409.56
camera 545.62 | 756.17 | 1010.60 | 1187.30 1337.88 1531.73 1705.44 1916.04 2114.30 | 1345.01

goldhill 325.73 | 54398 | 747.81| 953.63 1118.93 1323.80 1475.47 1684.21 1824.55 | 1110.90

Lena 308.85| 52790 | 72342| 93392 1119.14 1313.05 1510.73 1668.58 1833.52 | 1104.35

parrots 35741\ 57278 | 771.17| 961.73 1186.96 1399.18 1551.92 1702.00 1931.74 | 1159.43

peppers 331.10 | 544.61 | 75296| 955.84 1124.76 1294.10 1496.64 1634.10 1807.25 | 1104.59

Reptile 45273 | 686.63 | 912.97 | 1127.09 1278.18 1543.82 1690.18 1891.15 2096.32 | 1297.67

Average 43598 | 657.77| 869.11 | 1050.61 1257.65 1432.35 1614.68 1775.14 1934.01
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Table 4.20. Median filter (3x3) results on the Gaussian Noise added training images & 10
test images (MSE criteria)

(The training images are portions of the Lena, Mandrill and Flowers images)

Noise
Variance 10% 20% 30% 40% 50% 60% 70% 80% 90% | Average
img64 909.55 | 174822 | 2452.59 2734.47 3828.18 4074.30 4691.99 | 4568.32 | 5436.86 | 3382.72

imgl28 145047 | 2418.05| 3142.61 3914.83 4552.98 4990.00 5520.60 | 6044.87 | 6033.31 | 4229.75

imgl192 1090.06 | 1871.08 | 2583.58 3195.85 4127.17 4353.75 5200.18 | 5635.15 | 5783.14 | 3760.00

airplane 997.83 | 1774.03 2420.66 3051.72 3615.02 4177.64 4618.51 | 5091.66 | 5506.52 | 3472.62

Baboon 1381.58 | 2371.85| 3169.12 3879.83 4476.66 5020.10 5534.81 | 5859.28 | 6181.43 | 4208.30

Boat 1098.32 | 1973.75 2753.08 3395.05 3999.15 4544.46 5011.39 | 5449.46 | 5853.64 | 3786.48

Bridge 1272.02 | 2148.68 | 2923.09 3574.60 4134.96 4707.06 5118.28 | 5523.57 | 5890.17 | 3921.38

Camera 1195.71 | 2083.94| 2911.73 3550.43 4140.22 4666.16 5012.47 | 552232 5975.54 | 3895.39

goldhill 1078.75 | 1988.35 2741.33 3418.36 4008.90 4530.13 4973.23 | 5402.85 | 5803.29 | 3771.69

Lena 1076.21 | 1976.67 | 274791 3426.39 4005.04 4514.01 5031.98 | 5421.99 | 5847.27 | 3783.05

Parrots 114540 | 2015.13| 2779.76 3403.56 4069.62 4608.53 5019.09 | 5412.01 | 5901.68 | 3817.20

peppers 1056.29 | 1928.59 | 2674.93 3355.15 3923.60 4388.27 4888.37 | 5276.31 | 5718.97 | 3690.05

Reptile 1186.30 | 2157.44| 2974.18 3692.85 4237.71 4855.69 5285.85| 5694.84 | 6097.56 | 4020.27

Average 1149.12 | 2035.06 | 2790.35 3430.24 4086.09 4571.55 5069.75 | 5454.05| 5848.41

Table 4.21. Comparison of the average values of Median Filter (3x3) and selected filter
results for each Gaussian Noise variance (MSE criteria)

(These values are taken from the Table 4.14 & 4.15)

(The training images are portions of the Lena, Mandrill and Flowers images)

Our Method | Median Filter
10% 435.98 1149.12
20% 657.77 2035.06
30% 869.11 2790.35
40% 1050.61 3430.24
50% 1257.65 4086.09
60% 1432.35 4571.55
70% 1614.68 5069.75
80% 1775.14 5454.05
90% 1934.01 5848.41
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Table 4.22. Comparison of the average values of Median Filter (3x3) and selected filter

results for each image (MSE criteria)

(These values are taken from the Table 4.14 & 4.15)

(The training images are portions of the Lena, Mandrill and Flowers images)

Our Method | Median Filter
img64 1026.46 3382.72
img128 1542.85 4229.75
img192 1061.56 3760.00
airplane 1070.35 3472.62
baboon 1527.03 4208.30
Boat 1168.55 3786.48
Bridge 1409.56 3921.38
Camera 1345.01 3895.39
goldhill 1110.90 3771.69
Lena 1104.35 3783.05
Parrots 1159.43 3817.20
peppers 1104.59 3690.05
Reptile 1297.67 4020.27
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S. CONCLUSION

In this thesis, an evolutionary approach is used to generate a noise filter which is
based on soft mathematical morphology. The generated filter is best suitable for a level of
salt & pepper noise, but it can also be classified as a generalized filter, too; because it can

be used for every different image having different shapes and tones.

The aim in this study is to fulfill two goals. The first goal is to minimize the level of
noise; the second one is to preserve the details. Both of them are achieved by using an
appropriate representation which allows multi-stage filters with a wide range of structuring

elements and by combining four different objectives in the fitness function.

And, also in the first of the testing, we had proved that the GA and the fitness
function we had used improve a soft morphological filter both visually and also by means

of some most used image comparison criteria.

The first comparisons are done with the median filter which is the most known filter
for impulsive noise suppression. The results show that the filter generated in this study

outperforms the median filer significantly.

In the next part of the testing, we had generated filters for different levels of noise
and compared those filters with the best filters known in the literature. The results showed
that the method we had used helps us to generate filters that are best suitable for specific
level of noise. Our filter didn’t out perform all the filters in the literature, but it got a rank

in the best 3 or 4 filters according to the MSE criterion.

Although our filter is specifically trained for impulsive noise, we had tested and
shown the results of the effects of the generated filter on Gaussian Noise added images.
And, the selected filter also outperformed the Median Filter significantly for all images and

noise levels tested.
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Within this study; we had seen the effectiveness of the soft morphological filters for
impulsive noise problem on images and we had also seen the effect of Genetic Algorithms
on generating a multi-stage filter. A new fitness function with different criterions is used

and its effects on the generated filters are tested.

At this point, it can be accepted that this method has proved itself. It can be used to
as a tool for impulsive noise suppression on images. The generated filters for different
noise levels can be embedded into an application for the users to select. Or those filters can
be embedded into an application which detects the level of noise on images and select the

best one from the list of filters that our GA generated.
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Table A.1. Comparison of our approach to the other approaches in the literature based on

the average rankings over all noisy data using MSE values for the Lena image

(Here, the filters of our method are used on the noise level that they are trained for)

(The training images are portions of the Lena, Mandrill and Flowers images)

Noise Level| 10| 20| 30| 40| 50| 60| 70| 80| 90| Rank |Average | STDEV
Our Method| 11| 6| 4| 3| 3| 3| 3| 3| 4 3 4,44 2,65
AIF| 1 1 1 1 1 1 1 1 1 1 1,00 0,00

IMF| 14| 12| 6| 4| 4| 4| 5| 5| 17 5 6,78 3,70
SMF-3x3| 13| 13| 10| 10| 10| 10| 10| 10| 9 10| 10,56 1,42
PSM| 6| 4| 3| 6/ 9| 9 9| 9| 13 9 7,56 3,09
SDROM| 8| 11| 13| 13| 13| 13| 13| 13| 12 13 12,11 1,69
SDROMR| 7| 5| 8 7| 7| 7| 8| 8| 8 8 7,22 0,97
IRF| 9| 10| 11} 11| 11| 11| 11} 11| 10 11 10,56 0,73
ACWM| 5| 9| 12} 12| 12| 12| 12} 12| 11 12] 10,78 2,39
ACWMR| 3| 3| 7| 8| 6] 6| 6| 6| 6 7 5,67 1,66
CWM| 12| 14| 14| 14| 14| 14| 14| 14| 14 14 13,78 0,67
YUKSEL| 10| 7| 5| 5| 5| 5| 4| 4| 3 4 5,33 2,06
RUSSO| 4| 8| 9| 9| 8/ 8 7| 7| 5 6 7,22 1,72
HAF| 2| 2| 2| 2 2, 2| 2| 2| 2 2 2,00 0,00
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Table A.2. Comparison of our approach to the other approaches in the literature based on

the average rankings over all noisy data using MSE values for the Mandrill image

(Here, the filters of our method are used on the noise level that they are trained for)

(The training images are portions of the Lena, Mandrill and Flowers images)

Noise Level| 10| 20| 30| 40| 50| 60| 70| 80| 90|Rank |Average |STDEV
Our Method | 12| 8| 6| 5| 3| 3| 3| 3| 3 3 5,11 3,14
AIF| 1 1 1 1 1 1 1 1 1 1 1,00 0,00

IMF| 14| 13| 8| 7| 4| 4| 4| 5@ 5 5 7,11 3,89
SMF-3x3| 13| 12| 12| 11| 10| 9, 9| 9| 8 11 10,33 1,73
PSM| 5| 4| 4| 4| 8| 8 8| 8| 13 8 6,89 2,98
SDROM| 8| 10| 11| 12} 12| 12| 12| 12| 11 12] 11,11 1,36
SDROMR| 10| 7 7| 8| 7| 7| 7\ 7| 17 7 7,44 1,01
IRF| 9| 9| 10| 10| 11| 11} 10| 10, 9 10 9,89 0,78
ACWM| 7 6] 9| 9| 9| 10| 11} 11| 10 9,11 1,69
ACWMR| 6| 5| 5| 6| 6| 5| 5| 4| 4 4 5,11 0,78
CWM| 11| 14| 14| 14| 14| 13| 13| 13| 12 13 13,11 1,05
YUKSEL 31 3| 3| 5| 6| 6] 6] 6 6 4,56 1,51
RUSSO| 4| 11| 13| 13| 13| 14| 14| 14| 14 14 12,22 3,23
HAF| 2| 2| 2 2| 2| 2| 2 2| 2 2 2,00 0,00
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Table A.3. Comparison of our approach to the other approaches in the literature based on

the average rankings over all noisy data using MSE values for the Peppers image

(Here, the filters of our method are used on the noise level that they are trained for)

(The training images are portions of the Lena, Mandrill and Flowers images)

Noise Level| 10| 20| 30| 40| 50| 60| 70| 80| 90|Rank |Average |STDEV
Our Method| 6| 4| 3| 3| 3| 3| 3| 3| 4 3 3,56 1,01
AIF| 1 1 1 1 1 1 1 1 1 1 1,00 0,00

IMF| 13| 6| 5| 4| 4| 4| 4| 5| 17 5 5,78 291

SMF - 3x3| 11 & 9 10| 10| 10| 10| 10| 10 10 9,78 0,83
PSM| 4| 3| 4, 5| 5| 9 9 9| 9 9 6,33 2,60
SDROM| 9| 12| 13| 13| 13| 13| 13| 13| 13 13 12,44 1,33
SDROMR| 8| 7 7| 7| 7| 8| 8| 8| 8 8 7,56 0,53
IRF| 7| 11| 10| 11| 11| 11| 11| 11| 11 11 10,44 1,33
ACWM| 5| 10| 11| 12| 12| 12} 12| 12| 12 12| 10,89 2,32
ACWMR| 3|, 5| 6| 6| 6| 6| 7| 7| 6 7 5,78 1,20
CWM| 12| 13| 14| 14| 14| 14| 14| 14| 14 14| 13,67 0,71
YUKSEL| 14| 14| 12| 9| 9| 5| 5| 4| 3 4 8,33 4,30
RUSSO| 10 9| 8| 8| 8| 7| 6] 6| 5 6 7,44 1,59
HAF| 2| 2| 2 2| 2| 2| 2 2| 2 2 2,00 0,00
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Table A.4. Average performance ranking of the filters, which are obtained by using the

training instances with a given noise level, over all noisy data for the Lena image

(The training images are portions of the Lena, Mandrill and Flowers images)

Noise Level | 10| 20| 30| 40| 50| 60| 70| 80| 90|Rank|Average|STDEV
Our Method

10% | 11| 12| 17| 17| 17| 17| 17| 16| 15| 17| 1544 2,35

20% | 12| 6| 7| 13| 16| 15| 15| 15| 14| 14| 12,56 3,64

30% | 14| 8| 5| 7| 11| 14| 14| 13| 11 13| 10,78 3,38

40% | 16| 9| 3| 4, 7| 9| 10| 9| 8 9 8,33 3,74

50% | 19| 16| 9| 5| 4, 7| 8| 8| 9 8 9,44 4,93

60% | 17| 14| 6| 3, 3| 4| 7| 7| 7 7 7,56 4,85

70% | 21| 20| 15| 10| 8| 5| 5| 6| 6 6| 10,67 6,40

80% | 20| 19| 14| 8, 6| 3| 3| 4| 5 5 9,11 6,79

90% | 22| 22| 16| 15, 9| 8| 4| 3| 4 41 11,44 7,55

AIF| 1 1 1 1 1 1 1 1 1 1 1,00 0,00

IMF| 18| 17| 10 6| 5| 6| 9| 10| 13| 10| 10,44 4,72

SMF-3x3| 15| 18| 18| 18| 18| 18| 18| 18| 17| 18| 17,56 1,01

PSM| 6| 4| 4| 11| 15| 16| 16| 17| 21 16| 12,22 6,24

SDROM| 8| 15| 21| 21| 21| 21| 21| 21| 20| 21 18,78 4,49

SDROMR| 7| 5| 12| 12| 13| 12| 13| 14| 16| 15| 11,56 3,43

IRF| 9| 13| 19| 19| 19| 19| 19| 19| 18| 19| 17,11 3,62

ACWM| 5| 11| 20| 20| 20| 20| 20| 20| 19| 20| 17,22 5,45

ACWMR| 3| 3| 11| 14| 12| 11| 11} 11| 12| 12 9,78 3,96

CWM| 13| 21| 22| 22| 22| 22| 22| 22| 22| 22| 20,89 2,98

YUKSEL| 10| 7| 8| 9| 10| 10| 6| 5| 3 3 7,56 2,51

RUSSO| 4| 10| 13| 16| 14| 13| 12| 12| 10| 11| 11,56 3,40

HAF| 2| 2| 2 2, 2| 2| 2 2| 2 2 2,00 0,00
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Table A.5. Average performance ranking of the filters, which are obtained by using the

training instances with a given noise level, over all noisy data for the Mandrill image

(The training images are portions of the Lena, Mandrill and Flowers images)

Noise Level | 10| 20| 30| 40| 50| 60| 70| 80| 90|Rank|Average|STDEV
Our Method

10% | 12| 13| 17| 16| 16| 16| 16| 15| 14| 15| 15,00 1,66

20% | 13| 8| 7| 15| 15| 14| 14| 14| 11 13| 12,33 3,00

30% | 14| 12| 6| 10| 12| 13| 13| 12| 10, 12| 11,33 2,40

40% | 16| 14| 9| 5 8| 9| 9| 9| 8 8 9,67 3,32

50% | 19| 18| 12| 8| 4| 7| 7| 71| 7 7 9,89 5,30

60% | 18| 17| 10 6, 3| 6| 6| 6| 6 6 8,67 5,32

70% | 21| 21| 14| 13| 7| 4| 5| 5| 5 5| 10,56 6,93

80% | 20| 20| 13| 11| 5| 3| 4| 4| 4 4 9,33 6,96

90% | 22| 22| 15| 14, 9| 5| 3| 3| 3 3| 10,67 7,89

AIF| 1 1 1 1 1 1 1 1 1 1 1,00 0,00

IMF| 17| 16| 11| 9| 6| 8| 8| 10| 12| 10| 10,78 3,70

SMF -3x3| 15| 15| 20| 19| 18| 17| 17| 17| 16| 19| 17,11 1,69

PSM| 5| 4| 4| 4| 14| 15| 15| 16| 21 16| 10,89 6,60

SDROM| 8| 10| 19| 20| 20| 20| 20| 20| 19, 20| 17,33 4,77

SDROMR| 10| 7| 8| 12| 13| 12| 12| 13| 15| 14| 11,33 2,55

IRF| 9| 9| 18| 18| 19| 19| 18| 18| 17| 18| 16,11 4,08

ACWM| 7| 6| 16| 17| 17| 18| 19| 19| 18| 17| 15722 5,04

ACWMR| 6| 5, 5| 7| 11| 10| 10| 8| 9 9 7,89 2,26

CWM| 11| 19| 22| 22| 22| 21| 21| 21| 20| 21 19,89 3,48

RUSSO| 3| 3| 3| 3| 10| 11| 11| 11| 13} 11 7,56 4,39

YUKSEL| 4| 11| 21| 21| 21| 22| 22| 22| 22| 22| 1844 6,46

HAF| 2| 2| 2 2, 2| 2| 2 2| 2 2 2,00 0,00
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Table A.6. Average performance ranking of the filters, which are obtained by using the

training instances with a given noise level, over all noisy data for the Peppers image

(The training images are portions of the Lena, Mandrill and Flowers images)

Noise Level | 10| 20| 30| 40| 50| 60| 70| 80| 90|Rank|Average|STDEV
Our Method

10%| 6| 7| 14| 17| 17| 17| 17| 16| 16| 17| 14,11 4,43

20% | 10| 4| 4| 10| 13| 15| 15| 15| 14| 15| 11,11 4,48

30% | 13| 5| 3| 6| 9| 10| 14} 13| 12| 13 9,44 3,97

40% | 15| 6| 5| 4, 5| 7| 10| 9| 8 9 7,67 3,39

50% | 18| 14| 8| 5| 4, 6| 7| 8| 9 8 8,78 4,49

60%| 17| 9| 6| 3, 3| 3| 5| 7| 7 7 6,67 4,42

70% | 20 18| 12| 9| 7| 4| 4| 6| 6 4 9,56 5,92

80% | 21| 21| 15| 11, 8| 5| 3| 3| 5 3] 10,22 7,24

90% | 22| 22| 21| 16 15| 9| 6| 4| 4 5| 13,22 7,63

AIF| 1 1 1 1 1 1 1 1 1 1 1,00 0,00

IMF| 16| 10, 9| 7| 6| 8| 8| 10| 13| 10 9,67 3,12

SMF-3x3| 12| 12| 16| 18| 18| 18| 18| 18| 18| 18| 16,44 2,60

PSM| 4| 3| 7| 8| 10| 16| 16| 17| 17| 16| 10,89 5,71

SDROM| 9| 17| 20| 21| 21| 21| 21| 21| 21| 21 19,11 4,01

SDROMR| 8| 11| 11| 13| 12| 14| 13| 14| 15| 14| 12,33 2,12

IRF| 7| 16| 17| 19| 19| 19| 19| 19| 19| 19| 1711 3,95

ACWM| 5| 15| 18| 20| 20| 20| 20| 20| 20| 20| 17,56 5,00

ACWMR| 3| 8| 10| 12| 11| 12| 12| 12| 11| 12| 10,11 2,98

CWM| 14| 19| 22| 22| 22| 22| 22| 22| 22| 22| 20,78 2,73

YUKSEL| 19| 20| 19| 15| 16| 11| 9| 5| 3 6| 13,00 6,30

RUSSO| 11| 13| 13| 14| 14| 13| 11| 11| 10| 11| 1222 1,48

HAF| 2| 2| 2 2, 2| 2| 2 2| 2 2 2,00 0,00
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Table A.7. Comparison of approaches for the Lena image using average ranking of that are
obtained after training for each image with the given noise level

(The training images are portions of the Lena, Mandrill and Flowers images)

Noise Level| 10| 20| 30| 40| 50| 60| 70| 80| 90|Rank |Average | STDEV

Our Method

60% | 13| 10| 4, 3| 3| 3| 4, 4| 4 4 5,33 3,61

AIF 1 1 1 1 1 1 1 1 1 1 1,00 0,00

IMF| 14| 12| 6| 4| 4| 4| 5 5| 17 5 6,78 3,70

SMF -3x3| 12| 13| 10| 10| 10| 10| 10, 10| 9 10 10,44 1,24

PSM| 6| 4| 3| 6| 9 9 9| 9| 13 9 7,56 3,09
SDROM| 8| 11| 13| 13| 13| 13| 13| 13| 12 13 12,11 1,69
SDROMR| 7| 5| 8| 7| 7| 7| 8| 8| 8 8 7,22 0,97
IRF| 9| 9| 11} 11| 11| 11| 11} 11| 10| 11 10,44 0,88
ACWM| 5| 8| 12| 12} 12| 12| 12| 12| 11 12 10,67 2,50
ACWMR| 3 3| 7| 8| 6| 6/ 6| 6| 6 7 5,67 1,66

CWM| 11| 14| 14| 14| 14| 14| 14| 14| 14 14 13,67 1,00

YUKSEL| 10| 6| 5| 5| 5| 5| 3| 3| 3 3 5,00 2,18

RUSSO| 4| 7| 9| 9 8 & 7| 7| 5 6 7,11 1,69

HAF| 2| 2| 2\ 2 2| 2| 2| 2 2 2 2,00 0,00
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Table A.8. Comparison of approaches for the Mandrill image using average ranking of that
are obtained after training for each image with the given noise level

(The training images are portions of the Lena, Mandrill and Flowers images)

Noise Level| 10| 20| 30| 40| 50| 60| 70| 80| 90|Rank | Average | STDEV
Our Method
60% | 14| 13 7 5 3 3

W
w
w
W

6,00 4,47

AIF 1 1 1 1 1 1 1 1 1 1 1,00 0,00

IMF| 13| 12| 8| 7| 4| 4| 4| 5| 5 5 6,89 3,48
SMF -3x3| 12| 11| 12| 11| 10| 9| 9| 9| & 11 10,11 1,45
PSM| 5| 4| 4| 4| 8| 8| 8| 8| 13 8 6,89 2,98
SDROM| 8| 9| 11| 12| 12| 12| 12| 12| 11 12 11,00 1,50
SDROMR | 10| 7| 6| 8| 7 7| 7| 7| 17 7 7,33 1,12
IRF| 9| &| 10| 10| 11| 11| 10| 10| 9 10 9,78 0,97
ACWM| 7| 6] 9 9/ 9| 10| 11| 11| 10 9 9,11 1,69
ACWMR| 6 5| 5| 6| 6, 5| 5| 4| 4 4 5,11 0,78

CWM| 11| 14| 14| 14| 14| 13| 13| 13| 12| 13 13,11 1,05
RUSSO| 3, 3| 3] 3| 5| 6/ 6| 6] 6 6 4,56 1,51

YUKSEL| 4| 10| 13| 13| 13| 14| 14| 14| 14| 14 12,11 3,30
HAF| 2| 2| 2\ 2 2| 2| 2| 2 2 2 2,00 0,00
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Table A.9. Comparison of approaches for the Peppers image using average ranking of that

are obtained after training for each image with the given noise level

(The training images are portions of the Lena, Mandrill and Flowers images)

Noise Level| 10| 20| 30| 40| 50| 60| 70| 80| 90|Rank|Average | STDEV
Our Method
60% | 13| 5| 3| 3| 3| 3| 3| 45 4 4 4,56 3,24
AIF| 1 1 1 1 1 1 1 1 1 1 1,00 0,00
IMF| 12| 6| 5| 4| 4| 4| 4| 5| 7 5 5,67 2,60
SMF -3x3| 10| 8| 9| 10| 10| 10| 10| 10| 10| 10 9,67 0,71
PSM| 4| 3| 4| 5 5| 9| 9/ 91 9 9 6,33 2,60
SDROM| 8| 12| 13| 13| 13| 13| 13| 13| 13| 13| 12,33 1,66
SDROMR| 7| 7, 7( 7| 7, 8| 8| 8| 8 8 7,44 0,53
IRF| 6| 11| 10| 11| 11} 11| 11| 11| 11 11 10,33 1,66
ACWM| 5| 10| 11| 12} 12| 12| 12} 12| 12| 12| 10,89 2,32
ACWMR| 3| 4| 6/ 6| 6| 6/ 7| 17| 6 7 5,67 1,32
CWM| 11| 13| 14| 14| 14| 14| 14| 14| 14| 14| 1356 1,01
YUKSEL| 14| 14| 12| 9| 9| 5| 5| 3| 3 3 8,22 4,44
RUSSO| 9| 9| 8| 8| 8 7| 6| 6 5 6 7,33 1,41
HAF| 2| 2| 2| 2| 2| 2| 2| 2 2 2 2,00 0,00
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