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ABSTRACT

TECHNOLOGICAL STUDIES OF MULTIDIMENSIONAL
MAGNETOHYDRODYNAMICS AND LIQUID METALS:
GALLIUM-INDIUM-TIN

Plasma phenomenon was described in detail and the derivation of momentum and

energy equations for magnetohydrodynamic applications is done.

The effects of externally applied electric and magnetic field on the conducting fluids
such as liquid metals or alloys were numerically investigated. Since the code used in these
numerical studies was in two dimensions a new original three dimensional mesh generating
programme was developed. The adaptation to the old code was left as a future work. Not
only benchmark problems but also different numerical problems related to liquid metals
were solved. The problems such as liquid metal flow past a circular cylinder in open
channels exposed to external magnetic fields and electromagnetic braking of liquid metals in
a vertical channel and levitation were solved numerically and the effects of externally
applied magnetic and electric fields were seen. The effects of externally applied fields on
flow pattern were very important especially for metalurgical applications. The spatial
discretization scheme used in this thesis was matrix distribution scheme. Dual time stepping

was used for time discretization.

In experimental works GalnSn alloy was used as a conducting medium on which
different external effects were applied. The behaviour of GalnSn versus oxidation was
studied, the expansion due to the heat addition was also studied in order to know how the
surface will change under the increasing temperature and how this will affect the reflectivity
from the surface. Under different conditions the reflectivity of GalnSn was studied. The
reflection change because of the external heat addition, external current application, external
magnetic field application were studied separately. As a final experiemntal study the current
and magnetic field were applied together and again the reflectivity of GalnSn was studied.

The effect of induced Lorentz force on reflectivity is seen. A hint which showed the



correlation between Lorentz force induced from the externally applied current and magnetic

field together with normalized reflection intensity was found.
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OZET

COK BOYUTLU MANYETOHIDRODINAMIK DENKLEMLERIN
COZUMU VE SIVI METALLERIN TEKNOLOJIiK INCELENMESI:
GALYUM-INDIiYUM-KALAY

Plazma konusu incelenip manyetohidrodinamik denklemlerden momentum ve enerji

denklemlerinin tiiretilmesi yapildi.

Akiskan metal ve alagimlar gibi iletken akiskanlara disaridan uygulanan manyetik ve
elektrik alanlarm etkileri sayisal olarak incelendi. Sayisal calismada kullanilan kodun iki
boyuttan ii¢ boyuta ¢ikarilabilmesi i¢in ag drgiisiiniin yeni ve ilk calismasi olarak bilgisayar
programu yazildi. Bu ek programin iki boyutlu ger¢ek programa uyarlanmasi doktora sonrasi
calisma olarak birakildi. Geleneksel sayisal problemlerin disinda akigkan metaller
konusunda 6zgiin problemler tasarlandi ve onlarin da sayisal ¢oziimleri yapildi. Akiskan
metallerde elektromanyetik frenleme ve yine bu metallerin acik kanalda dairesel silindir
cevresindeki akislarinin disaridan uygulanan elektrik ve manyetik alanlardan nasil

etkilendikleri incelendi.

Galyum Indiyum Kalay alasiminin gesitli dis etkilere kars1 verdigi tepkiler, dzellikle
ylizeyine diisen 15181 yansitma Ozellikleri incelendi. Bu deneylerde kullanilan 151k kaynagi
goriiniir bolgede 151k veren bir halojen lamba idi. Bu alasimin yiizeyinin oksitlenmesi,
isitilarak sicakligmin arttirilmasi, tizerinden akim gecirilmesi, manyetik alan uygulanilmasi
ve hem akim hem de manyetik alanin ayni anda disaridan uygulanilmasi ile ylizeyinden
meydana gelen 1s1k yansimasinm nasil degistigi incelendi. Galyum Indiyum Kalay
alasiminda disaridan ayni1 anda uygulanan elektrik akimi ve manyetik alanin etkileri ile
olusan Lorentz kuvvetinin yansitmaya ne gibi bir etkide bulundugu incelendi. Bu etkilerden
otirii Lorentz kuvveti ile normalize edilmis 1s1k siddeti arasinda bir iligki olabilecegi

goriildil.
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1. INTRODUCTION

The simple word energy has a very deep meaning in daily life for our living planet.
Since it is a very important phenomenon all the countries have their own plans and
objectives about energy. Because of the fact that the consumption and demand for energy
are increasing day by day nowadays, the most outstanding subject is the production of
energy. The main sources for energy production are fossil fuels like petroleum, coal,
natural gas etc. However, some different energy sources are also available such as nuclear
energy, alternative energy sources like wind, solar, biomass, geothermal and hydroelectric
energies. Energy supply and demand play a very vital role in national security and the
economic output of every nation. Since the importance of the energy is increasing day by
day all around the world, a lot of researchers are working to find out new reliable and

sustainable energy sources.

One of the most important energy sources is nuclear energy. Nowadays nuclear
power reactors produce energy by taking the advantage of the physical phenomenon called
fission, splitting up heavy nuclei such as Uranium (U) or Plutonium (Pu). Fusion, which
has a different mechanism than fission is based on composition of some lighter nuclei. In

order to overcome the Coulomb repulsion force between the light nuclei the ambient

temperature must be extremely high such as 10% —10% X to make these nuclei stick to
each other. Resources for fusion reaction are thought to be infinite since oceans are the
main sources for these light nuclei which are Hydrogen (H), Deuterium (*H) and Tritium
(*H). However controlled fusion is a very difficult task and has some technological
inabilities at least for now. Together with fusion, fuel cycle and vacuum systems,
microwave heating, blanket and divertor design, superconducting magnet and material
development, plasma wall interactions are also being investigated. The main problem for
these new fusion power reactors is to control the plasma. Basically, plasma which is
described as the fourth state of matter will be discussed in detail in the next chapter.
Actually it is a gas which is assumed to be neutral as a whole but has electrons and ions
travelling freely in it. Since the ambient temperature for fusion is very high, the normal

outcome will be the ionization process. The plasma can be obtained in different ways but



in every way energy supply is the essential precondition. Being an ionized gas, the plasma
is strongly affected by the electromagnetic fields because it contains positively charged
ions and negatively charged electrons. Plasma simulation research together with fluid
mechanics is one of the most important fields for understanding and describing the particle

motion under the effects of electromagnetic fields.

In this thesis, firstly the concept of plasma will be discussed briefly. Some important
definitions such as magnetic pressure, distribution function, plasma frequency, Debye
length, plasma parameter, etc. will be mentioned. The link between the plasma and
magnetohydrodynamics equations will be discussed. After some assumptions the resulting

momentum and energy equations will be derived. This will be done in a systematical way.

Since the particles in the plasma are assumed to be moving as in the way that the
particles behave like fluid, the fluid properties will be studied. Since the problems which
will be studied in this thesis are not related with the motion of the individual particles or
molecules, some of the macroscopic properties of fluids which are relatively more
important in studying the dynamics of fluids such as viscosity, pressure, density,
temperature will be mentioned. Because of the fact that the fluid is assumed as a
continuum the properties can be obtained as a result of the statistical average of the
particles in volume under consideration. Since the dimensions of the volume under
consideration are much more bigger than those of the individual particles the statistical
approach is applicable. Differential and integral forms for continuity equations will be
studied basically. Navier-Stokes equations which are governing the mathematical model
for fluid dynamics and energy equations will also be discussed. The expressions for
different geometries such as cylindrical and spherical cases will be given directly without

any derivation.

Both experimental and theoretical physics nowadays are trying together to describe
this particle motion better and better. In order to prevent very high expenses of the
experimental works scientists started to use computers instead. Over the last two or three
decades especially the speed and capacities of computers increased dramatically. Fluid
dynamics is used as a tool for describing the particles’ motion and it has a very important

role in industrial processes. Since the power of computers increased nowadays scientists



make the calculations of fluid dynamics by using these computers. The ‘Computational
Fluid Dynamics’ which is presented with the universally accepted acronym CFD is the
most used research tool nowadays in science and industry related with the fluid dynamics.
It is used in a very wide range of engineering applications such as hydrodynamic problems
of ships, submarines, etc. (for naval engineering) design and optimizations of aircrafts, cars
and trucks by reducing both expensive and time consuming wind tunnel tests, heating and
air conditioning processes for the houses, blood circulation in the body, fusion plasma
research etc. However, CFD nowadays can be thought as a mathematically sophisticated
discipline. Previously fluid dynamics was divided into two branches, theoretical and
experimental. However, nowadays CFD is the third and equal branch of fluid dynamics.
CFD tries to solve the governing equations by using the numerical methods instead of
analytical ones. In this thesis CFD and its philosophy will be studied. The space
discretization methods such as finite difference, finite element, finite volume, boundary
element and matrix distribution scheme will be described. The space discretization
processes in the numerical works in this thesis are done by using matrix distribution
scheme. The detailed description for matrix distribution sheme will be given. Dual time
stepping method which will be used in this thesis as a time discretization procedure will

also be studied in detail.

Simulations done in this thesis will be performed by using a homemade computer
code which will be discussed in detail here. It is desired to be expanded to three
dimensions in the future. Actually only the mesh generation procedure for three
dimensional studies will be presented here. The mesh which is containing three
dimensional coordinates for every node and the formula which will be used in this process
will be studied in detail. This will be a novel approach in which the code will be developed

and this code is planned to be embedded in the previous original two dimensional code.

Numerical simulations of some benchmark problems and originally designed
problems will be solved in the numerical results part and the obtained outcomes will be
discussed. Some of the benchmark problems which are planned to be solved here are the
steady state lid driven cavity test, the unsteady lid driven cavity test, the unsteady
oscillatory lid driven cavity test etc. The relatively new designed problems such as vertical

obstructed flow through the square channels, liquid metal flow past a circular cylinder in



open channels exposed to external magnetic field, and so on. The fluids in the problems
solved in this thesis will be considered to be incompressible. The flow pattern will be
assumed to be laminar except for some simulations for steady-state lid driven cavity test

problem.

As previously mentioned the energy production is a very important phenomenon.
After the energy is extracted as heat from the reactions such as fission or fusion it is
desired to be converted to electrical energy which is materialized by using the turbines.
One of the most important agents during this energy conversion process is the matter
which is used as a cooler. In some reactors instead of water the liquid metals are used as a
cooling agent. They are chosen because of the fact that they have bigger thermal
conductivity coefficients than that of water. However, the application areas of liquid metals
are not restricted only to cooling. Here in this thesis, the technological applications for
liquid metals will be mentioned and experiments will be presented in which the GalnSn
alloy will be used. Some light reflection properties of the free surface of this alloy will be
studied in more detail under different external effects such as temperature increase, current
application, magnetic field application etc. The reflection dependence of Lorentz force
induced by current and perpendicularly applied magnetic field through GalnSn alloy will
be studied.



2. CONCEPT OF PLASMA AND MAGNETOHYDRODYNAMIC
EQUATIONS

2.1. The Definition

As a very simple definition, plasma is an ionized gas and a collection of charged
particles. In some sources in the literature it is also called as a fourth state of matter.
However, its main importance comes from the fact that more than 99.9 per cent of the
matter or the apparent universe is in this fourth state, plasma. There is an important

formula proposed by Saha

3
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where n, is the number of ionized atoms per volume (number/m’) and n, represents the
number of neutral atoms per volume, 7 is the gas temperature in Kelvin (K ), k is the
Boltzmann constant and U, is the ionization energy of the gas. This equation explains the

ionization expected for a gas in thermal equilibrium at temperature 7. Actually this
equation is obtained by rearranging the momentum equation for electron under certain
assumptions. It provides a simplification to determine the number of electrons per volume

n, without solving the momentum equations. As an example for the air in the ordinary

room temperature for Nitrogen, the ratio given in Equation 2.1 turns out to be

n, _
_1z10 122
n

n

where n, =3x10"m~, T=300K and U, =14.5¢V are used [1]. In order to have a

plasma from a gas the heat addition method can be used. If enough energy is added to the
solid by heating it up, the atoms which form the crystal lattice start to go through thermal

motions [2] which is ended up by a phase transition such that the solid becomes liquid. If



the heat addition continues the atoms start to vapourize and the gas phase is formed. The
addition of more energy to the gas causes the gas atoms to collide with each other and this
collective motion causes ionization of some atoms. This is a new formed state which is
called the fourth state of matter, namely plasma. After the temperature is increased
sufficiently then the number of neutral atoms becomes fewer than the number of the
ionized atoms and plasma becomes fully ionized. This shows that fully ionized plasma is
only formed at extremely high temperatures. Collective behaviour is very important in
plasmas. Since it is composed of the charged particles, their motion can generate not only
the current and subsequently magnetic field but also the local concentrations of positive
and negative charges which can generate internal electric fields. These fields affect the
motion of the other charged particles. The force which has long range and affecting the
particles in the plasma, is the force named Coulomb Force. At the temperatures above

100 000 K most of the matters are in an ionized state. However, by using some other
ionization mechanisms, the plasma can be formed also under 100000 K. In this

mechanism the density must be low enough in order to prevent from the recombination
process as much as possible [3]. The name plasma, which means ‘jelly’ or ‘moldable
substance’ in Greek, is given by the Nobel laureate Irving Langmuir [2]. In the
laboratories, the plasma is simply obtained by passing the electric current through the
small amount of gas. The previously mentioned method which is based on heating the
matter is not so much preferable because the container in which the process occurs may not
withstand the temperatures at which the plasma is formed. Additionally, during the heating
process the container itself can vapourize and become a plasma as well. Another way of
forming the plasma is to send the radio waves through the gas. Since the electrons absorb

the radio waves, the ionization occurs and subsequently the plasma is formed.

When protons and electrons coexist together at a sufficiently low density, this
collection is thought to exist in equilibrium state, which is described by equilibrium
statistical mechanics. Classical mechanics and nonrelativistic statistical mechanics,
electromagnetism are the main areas inolved with plasma physics. The problems in
controlled fusion reactors, astrophysics, molecular physics, magnetohydrodynamics power
generation, contemporary physics and an atomic physics are related directly to the plasma
physics. As an example, in thermonuclear fusion process, Deuterium and Tritium ions

which collide with the energy in the range of tens of keV can fuse and produce «



particles and neutrons with total excess energy of 17.6 MeV (E ~14.1MeV and

neutron

E, =3.5 MeV). The energy needed for this fusion process can be obtained from the

plasma which has the density in the range of 10*m ™.

High density of the Earth and its atmosphere, prevents the existence of plasma.
However, the plasma exists in the ionosphere. In dailylifes of people the plasma is seen as
the conducting gas inside the fluorescent tubes, as the rocket exhausts and as the flash of

lightning bolt.

Because of the fact that there are charged particles such as ions and electrons, the
separation between them provides an electric field and the flow of these charged particles
produces currents and magnetic fields. The electric and magnetic fields produced by the
moving charged particles in plasma affect the other charged particles. The forces between
the elements of plasma act on each other even at large distances. Many plasma properties
result from the long range Coulomb interaction, such that particles may interact

simultaneously. Table 2.1 shows some properties for different plasmas.
2.2. The Terminology for Plasma

Brief introduction for the terms mostly used in plasma physics is given below. Since
the subject of this study was not only about ‘plasma’, there is only brief description of
plasma terminology given in this thesis. Figure 2.1 gives the electron temperature

dependence of plasma density.
2.2.1. Meta-Equilibrium

It would be better to describe the term equilibrium before metaequilibrium. If the
particles in plasma are not colliding with each other and the small perturbations are
neglected, the system can be assumed to be in equilibrium. From the thermodynamical
point of view the electrons and ions forming the plasma system can be described with the

Maxwellian distribution which is only related to temperature. Here the system is in



equilibrium with its surroundings. If the situation that was described as an equilibrium is

altered by the binary collisions a new state is obtained and it is named as meta-equilibrium.

Table 2.1. The parameters for natural and artificial plasmas [2]

Length Particle Electron Magnetic
scale (m) | density (m™) | temperature (eV) | field (7))
Interstellar gas 10' 10° 1 1071
Solar wind 10'° 107 10 10°®
Van Allen belts 10° 10° 10° 10°
Earth’s ionosphre 10° 10" 107" 3x107°
Solar corona 10® 10" 10° 10”°
Gas discharges 1072 10" 2 -
Process plasmas 10™" 10" 10° 10~
Fusion experiment 1 10" —10% 10° -10* 5
Fusion reactor 2 10%° 10* 5
Fusion Fusion
Process
plasmas
>
S
N
§ Solar
Q corona
kN
S
&
=
Van
Allen
Belts
6 | Interstellar
o 1
102 10" 10° 10' 10> 10° 10" 10°
T, (eV)

Figure 2.1. Plasma density versus electron temperature graph [2]




2.2.2. Drifts Acting on the Particles in Plasma

The electrons and ions have collective behaviour in the plasma. However, sometimes
it 1s needed to consider the motion of individual charge or charges under the gravitational,
magnetic and electric fields. These fields can be either time varying or static. Under
uniform magnetic fields and if the collisions are ignored, the movement of the charged

particle is helical in nature.

Larmor radius (a,) is the radius at which the particle rotates at the cyclotron

frequency which is given as, o,

0, =— (2.2)

where e is the electron charge, B is the magnitude of the applied magnetic field, m, is the

mass of electron and ¢ 1is the speed of light. The rotation mentioned above is
perpendicular to the applied magnetic field. When there are some other fields, the hellical
motion of the charged particle can change. If the steady electric and magnetic fields are
applied to the charged particles together, they cause a drift motion perpendicular not only
to the magnetic field but also to electric field. The velocity expression for this drift motion

caused by the electric and magnetic fields is given as:

VDEB =C—— (2.3)
B

where E, B are electric and magnetic fields respectively.

If there is neither an electric field nor a gravitiational field, another drift velocity

which is given as:

- mc gx B
VDGB =~ 32

(2.4)
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must be taken into account.

If the applied magnetic field is not homogeneous, another drift motion arises because

of the gradient of B, VB

B (2.5)

where E, is kinetic energy perpendicular to B, q 1s electrical charge and ¢ is the speed of

light [3].
2.2.3. Magnetic Pressure

The confinement of plasma in most of the cases is done by using externally applied
magnetic field. Actually plasma has a diamagnetic nature magnetically. It tries to exclude
the magnetic field applied to its boundary. If the static magnetic field is applied it produces

an opposite pressure force given as

2
p=5 [dy”f} (2.6)
cm

across a surface tangent to the magnetic flux surface. This magnetic pressure force must be
balanced in order to confine the plasma. This balance can be done by the kinetic pressure

of the plasma which can be expressed as
P, =nkT (2.7)

where P, is the kinetic pressure, n is the particle density, k& is Boltzmann’s constant and

T is the absolute temperature. This balance is described in the boundary between plasma
and magnetic field. By increasing the value of magnetic pressure force by adjusting the
magnetic field B, the plasma can be compressed and its density and temperature will

Increase.
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Another important quantity in plasma physcics is plasma beta which is the ratio of

plasma pressure to magnetic pressure, and it is expressed as:

Internal Plasma Pressure — n;kT; + n kT,

_ = 2.8
P Externally Applied Pressure B2 /871 (2-8)
Pressure balance in the interface requires the condition given as :
- B?
V(nkT +—] =0. (2.9)
8

It means that the pressure gradient at the boundary of the plasma must be zero, otherwise it

can not be confined [3].

2.2.4. The Distribution Function

The distribution function f which will be used intensively later in this chapter of the
thesis is used to describe the plasma. Basically, it is the number of particles per unit

volume in six dimensional velocity configuration phase space (dxdydzdv,dv,dv.).

Since, unfortunately it is not possible to know everything such as position and
velocity of any individual particle in plasma, a distribution function is used as a statistical

function in order to describe the plasma properties mentioned above.

In the most detailed plasma descriptions it is desired to know the velocity and the
location of each particle. However, it is impossible to individually follow a lot of ions and
electrons and know their locations and velocities instantaneously even with super
computers. The laboratory plasmas almost always obey the Maxwellian distribution,
actually a plasma can never achieve the exact distribution but it is very close. It is usually

necessary to define different distribution functions for each charge species, let’s say S, so

that n, f,(7,v)drdv is the number of S particles, in the volume element expressed as
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drdv . If the normalization is done, then total number of [ particles in the system is

found. The unit of the distribution function is [f]=m™(m/s ) =|s*/m*].

For a Maxwell-Boltzmann distribution, the distribution function, f needs
appropriate normalization. By taking the moments of distribution function some
macroscopic parameters of plasma system such as density, mean velocity, pressure etc. can

be found. The expressions for density and mean velocity are given respectively below.

ng =|[fpdv (2.10)
_Ivfﬂd\j
vg = 55 (2.11)

The distribution function can be used to find the value of some quantities averaged
over the distribution. For any quantity Q, the local velocity-space average of Q, <Q>v is

given as:

_[rody

0=

(2.12)

It is useful to relate the experimental distribution function to the Maxwellian
distribution that can fit the data better. This can be done by describing the system which is
a plasma having the temperature 7 . Otherwise if the distribution function has no relation

with Maxwellian distribution it is purely described by only specifying the temperature [2].
2.2.5. The Plasma Frequency

Some interesting behaviours of plasma can be observed because of the fact that the
particles affect each other with the long range forces. Actually the plasma can behave as a

system of coupled oscillators. The frequency of the plasma @, is the one basic

p

oscillator’s frequency which is given as :
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N | —

o, :27?7; :(47me2]

m

e

with the unit [ﬂ} . (2.13)
S

In Equation 2.13, f, ~ 10*/n Hz for electrons where n is the particle number in
cubic centimeter, m, is the mass of electron. @, is the frequency of the plasma giving the

information about how electrons fluctuate in the plasma, and it also gives the information
about the time which is required for an electron or an ion moving with thermal speed to

cover a Debye length which will be discussed later [3].
2.2.6. Debye Length

One of the important features of plasma is that it has an ability to shield the electric
potentials applied externally. Plasma has a fundamental property which states that if any
additional charged particle or particles are added (immersed) to plasma, the new additional
electric field due to the newly added particle is shielded by plasma. In order to screen the
plasma from penetration of a new electric field caused by the newly added particle all the
other particles in the plasma go through new arrangements. The Debye length A, which 1s
the measure of the shielding distance, is one of the important criteria for an ionised gas to

be a plasma or not.

Debye sphere, another term, is the sphere with the radius which is equal to the Debye
length. In order to say the ionized gas is a ‘plasma’ it must have the dimensions such as

‘L ¢ which must satisfy L >> A, and also the number of particles in the Debye sphere,

N, , must satisfy N, >>1. If the frequency of a typical plasma is @, and the mean free
time which is the time taken between two successive collisions with neutral atoms is 7, ,

then the plasma must also satisfy the criterion which is @ >> 1 otherwise the gas will

prmﬁ

be said to be a neutral gas instead of plasma [1, 2].

By using a little mathematical interpretation a little different definition for Debye
length can be given as follows. The potential of a charge at rest located in a plasma can be

solved as follows:
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O, = (%) exp(— i] (2.14)

where A, is Debye length which is a kind of measure of the sphere of influence of the
given test particle in plasma. Actually A, depends on the speed of the test charge with

respect to the plasma. As a brief example for electron-proton plasma, Debye length is

given as :

A :( "sz2 :4.9@2 2.15)
8me n

where 7 is again the density of electrons (or ions) in cm®, T is temperature in K and k is

Boltzmann’s constant with the value of 1.38x10%ergs / K .

2.2.7. Plasma Parameter

The plasma parameter, is the parameter which gives an idea about the number of

particles in Debye sphere. The mathematical representation of the plasma parameter is:

(2.16)

If the plasma description is required to be statistically correct then the Debye sphere

must be larger and subsequently the plasma parameter, g, must be smaller. The
assumption for g, is called the ‘plasma approximation’. This parameter is one of the

most important dimensionless parameters related to the plasma.

2.2.8. Stability of a Plasma and Controlled Thermonuclear Fusion

One of the aims of the fusion plasma research is to be able to confine the plasma at a

sufficient density and sufficient time period to make the thermonuclear fusion possible .
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However, the energy spent in order to maintain this confinement is wanted to be less than
the energy which is recovered from the fusion process. The main drawbacks for this
process are plasma instabilities. Stability theory is the most interesting part of plasma
research. The problem is not solved totally up to now but a very intensive research is
directed to this phenomenon. The instability actually can be defined as a small perturbation
in plasma which is in equilibrium and the effect of this small perturbation can grow with
time. One of the important instabilities of plasma is configuration-space instability which
is due to the spatial localization of particularly used devices during the confinement of
plasma. Velocity-space instability is another important instability of plasma. When a beam

of monoenergetic electrons is injected into a cold plasma this kind of instability occurs.

2.2.9. Collisions in Plasma

Not only elastic but also inelastic collisions occur among the particles in the plasma.
Mostly the collisions in the partially ionized gas are electron-electron, electron-ion, and
electron-neutral collisions. The cross section term is usually used to describe the collisions
in plasma. It gives an idea about the probability of interaction of the particles. Since the
value of some cross sections are changed by the plasma, Coulomb cross section is defined

o .. Coulomb cross section is obtained by changing the upper limit of total cross section

integral to Debye length [3].

The mean free path, /,, is another important parameter in plasma physics. It is

defined as a path length travelled by the particle before collision process occurs.

Mathematically it is given as :

1

no g

L = (2.17)

where o is the collision cross section. The collision frequency, v ., is given as

V~=no,v (2.18)
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where v is the velocity with which the incoming particle is travelling relatively to the

target particle. The incoming particle will travel the /,, mean free path in time 7,4

before collision.

The reciprocal of this time is defined as collision frequency. Since in most cases the
cross section is the function of velocity so the effective collision frequency is the average
value of the product of cross section and velocity. Velocities of target particles are

thermally distributed. The effective collision frequency is given as :
v=n{o (v)v). (2.19)

For incident particles the total number of events per second and per cubic centimeter
1s expressed as :

R, =nn, <O'CSV>] (2.20)

2

There are many important terms and parameters for plasma such as Landau damping,
waves in plasma (e.q. ion-sound waves, plasma waves etc.), shock waves, solitary waves,
plasma radiation (e.q. Bremstrahlung, Blackbody radiation, Impurity radiation,
Synchrotron or Cyclotron radiation, Cherenkov radiation, diffusion and Bohm diffusion
etc. which will not be mentioned in detail in this thesis since they are out of our scope of

discussion.

Another important process for plasma is its production. Since it does not exist as a
normal state on the Earth it is produced depending on the aims of the researcher and
customers. It can be produced having different densities, different temperatures, stable or
unstable and etc. Some of the main plasma production techniques are the low pressure cold
cathode discharge, the thermionic arc discharge, rf produced plasmas, alkali metal vapour

plasmas, the Solar plasma, laser produced plasma etc.

The measurements are also very important events for plasma technology. The

properties of plasma such as density, temperature, thermal conductivity, radiation rate,
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collision frequency, stability or instability are desired to be known. Actually measuring one
of these properties can help in calculation of the other parameters. Mostly measurement of
the current and voltage in plasma helps in understanding the other properties. There are
some probes such as electrostatic or Langmuir probes and magnetic probes. Some other
methods also exist in measuring such as fast photography and atomic spectroscopy,
radiation measurements, single particle measurements etc. The measurement techniques
used are classified as active and passive techniques. The active technique disturbs the
plasma and produces a perturbation after and during the measurement process. In active
technique the plasma is directly involved in measurement. The contribution to errors is
highly probable. In passive technique plasma is not disturbed and the measurements are

taken without producing any perturbation in plasma.

2.3. From Plasma Definion to Magnetohydrodynamics Equations

The typical plasma density can be about 10 ion-electron pair per c¢m’. Similarly to
the fluids the individual particles containing the plasma can be neglected. Instead of
looking at an individual particle it is better to take account of the motion of the fluid
elements. In an ordinary fluid the collisions between the particles keep the particles
moving together. Plasma, as a fluid contains charged particles in frequent collisions . The
collective particle movements in plasma occure are similar to the movements in fluids.
When the fluid assumption is taken into account the plasma can be thought as it is formed
from two or more interpenetrating fluids. This theory or assumption is the simplest one and
sometimes it is not enough for some high level researches. In that point another theory
comes to the help of the scientists. The name of this theory is ‘Kinetic Theory’ and it
describes the plasma statistically. Therefore kinetic theory forces to define a distribution
function which is called ‘the velocity distribution function’ and which is denoted as f(v).
Difterently from the ordinary fluid theory which has only four independent variables which

are x,y, z and t , additionally three more variables which are velocities such as v , v, and

v_ will be taken into account. Most of the plasmas obey the Maxwellian distribution since

the plasmas are in thermal equilibrium which can not be changed easily. Actually the

density n =n(7,t) is a function of four scalar variables, however considering the velocity

distributions, the number of variables increase to seven independent variables. In phase
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space the distribution function f = f(#,v,t) has seven independent variables which are
X, ¥, 2,V V,, v, L. The function f (F,ﬁ,t)dvxdvydvz gives the number of particles which
are located at x, y, z space point in time ¢ with velocity limits which are between v_ and
v.+dv, v, and v +dv , v and v +dv_. Basically it gives an idea about the particle
distribution not only in physical space but also in velocity space together.

f = f(F,v,t)represents the same particles per volume d’v=dv.dv,dv.. Note that the

velocity dependence is removed by taking the moment of distribution function.

7

Figure 2.2. Velocity space in three dimensions [1]

The phase space can be defined as:

Phase Space =3 Dimensional Velocity Space+3 Dimensional Coordinate System

N

Phase Space = +

Figure 2.3. Phase space description
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Actually phase space has six dimensions which are x, y,z,v,v ,v.. The volume

element is given as dV = dvdr in Figure 2.4. The geometrical meaning is that phase space
occupied consists of the sum of all the individual phase space volume elements. Under the
effect of the forces the volume of the fluid element can deform. However the magnitude of
the volume after the deformations can be constant which leads to the fact called particle
conservation. If no particles are lost and no particles are added to the plasma the exact

phase space density will be conserved.

5 Volume

A element Exact

position of

e { ““““““ =] “particle

v
Y

HJ
dr

Figure 2.4. Six dimensional phase space

A number of particles in a unit volume of phase space mentioned previously is

specified by a distribution function.
dn= f(F,v,t0)d’rd’v (2.21)
where
d’r = dxdydz and d’v=dv dv dv.

then

n(i ) = [ fF5.0d = [dv, [dv, [dv. f(F.5.0) (2.22)
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is obtained. The distribution function can be normalized as given in Equation 2.23:
[f'(Fv,nd*v=1. (2.23)

The unit of normalized distribution function f'(7,v,t) will be [s3 [m’ ] Consequently the

previously known unit for distribution function

f(F v, t)=n(F,t)f'(F,v,t) (2.24)

fm ][>/

was obtained as [s3 / m(’]. By using different velocity integrals of the distribution function
any quantity can be expressed in (? , t) space. The average velocity, average kinetic energy

and collision frequency expressions with the help of distribution function are given

respectively as :

0

[wr (7 3.0)d* Lo

(v) == =——— [Vf(F.5,0)d (2.25)
[r7.5.00d% nrt)
| L R
(KE) = i) jw (5 ) (79,0 (2.26)
ve=nlo,, (v )v) = ﬁio\?f(ﬁﬁ,t )dv. 2.27)

The system of particles gives rise to equilibrium distribution if the system is not
subject to external forces and if the system is in thermodynamic equilibrium. The

equilibrium requires the temperature of heavy particles to be the same (7, =T;);
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however, electrons temperature 7, is usually higher since they are much smaller than

heavy particles.

In Maxwell-Boltzmann statistics, the distribution function is given as
f(e,)=A,e " where ¢, is energy, A, is a normalization constant and B =1/kT . For an

ideal gas system (not at very high temperatures) the velocity distribution function is given

as

fv)= T (228)
and
dn=f(v)d'v. (2.29)

By integrating Equation 2.28 in velocity space one gets the number density as

ny= | [ [£(vov,.v.)dv.dv dv. (2.30)
Q%2 — lmv 2 +lmv 2 +lmv.2
= J.J.J.Ane [2 oy i, /kT}dvxdvyde
=4, Te_K*/devx Te_KV/devy Te_K:/devZ (2.31)

where temperature is assumed to be homogeneous in space. Note that the Cartesian
coordinate system is assumed to perform the calculations. Thus the velocity can be given

as:

vi=v v 4] (2.32)
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so that
v =(v, +v, )" (2.33)

and K ,K ,K.  in Equation 2.31 are kinetic energies for x,y and z directions

respectively. Since

e = n/a (2.34)

, Equation 2.31 can be written as:
n= 4 \/27rkT \/27rkT \/27rkT (2.39)

m m m
o one gets
3
A =n0(2”k—Tj " (2.36)
m

As aresult, Maxwell-Boltzmann velocity distribution function becomes

1(7)= no[ﬁjze[‘zm Jir) 237

By using the distribution function one can obtain different average quantities. For
example average velocity in x direction can be found by using the velocity distribution

function.

(v,) =niAn T T Tvxf(ﬁ)d3v =
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0 K, 0 K

A % _Ky By K,
—_n kT kT kT
= vae dv, Ie dv, Ie dv,

n,

0 —00 —00

1 1

4, ( 277ij2( 27rkT]2 KT -t fir
= |—e
ny\ m m m

It is obvious from symmetry that the average velocities in x, y, and z directions are zero.

0

=0 (2.38)

—00

(v)=(v,)=(v.)=0. (2.39)

Velocity and speed are two different physical quantities. First of all velocity is a
vectoral quantity and speed which is a scalar quantity is the magnitude of the velocity. One
of the important aspects is that the average velocity for different spaces can have different
values (Figure 2.5). Since there is no preferred direction of notation the volume element in

velocity space is d’v =dv_dv dv. . For the spherical coordinate system the volume element
Y sp LAV, av, P y

in velocity space (v,0,¢) can be given as:

d3v =v2(Sin0dode )dv . (2.40)

By taking into account the volume element given in Figure 2.2, v can take the values

between the limits [0, c0], 6 can take the values between [0, 7] and finally ¢ can have the
values between the limits [0, 27z] , [2]. Since the velocity distribution is assumed to be

isotropic the expression given in paranthesis in Equation 2.40 will have the value of 4rx .

Then the volume element in speed space will be
d’v=4m’dy. (2.41)

Let us consider two distribution functions g(v) and f(v) defined respectively as:
g(v)= f(7,v,t) =speed distribution, f(v)= f(7,v,t)=velocity distribution. The relation

between these functions is g(v)=4m’ f(7,v,t).
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Number of particles NuI‘nber of particles
A A

A

0 Velocity g

<v>=0

Figure 2.5. The distribution functions for different spaces

By using these distribution functions the particle density can be expressed in speed space

as:
n(r,t)= T4m/2f(i7,17,t)dv = Tf(?,v,t)dv = Tg(v)dv. (2.42)

Here the limits of integral are taken as the limits of the radius of sphere (Figure 2.2) in

velocity space. The speed distribution function is thus given by

N | W

f(Fvit)= 4m(ﬁj L), (2.43)

By using the speed distribution one can get averages of scalar quantities such as kinetic
energy, collision frequency etc. and by using the velocity distribution the averages for
vector quantities such as velocity, momentum, angular momentum, etc. can be found.

As an example, the average kinetic energy will be

(KE);LT4;W2( m ] (lmvz]e(‘]z'”vz/’”] 5 (2.44)

after some simplifications the equation becomes



© LI
<KE>:%IV4€(2 /krjd

0

V.
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(2.45)

In order to get the integral from Equation 2.45, Gamma function: I'(n) is used. This

function is defined as
I'(n+1)=mn! for n=0,1,2,...

and

n<0.

r(n)zr(”T”) for

The solution for the integrals in the form of

2
xlle ax dx

o= 8

1s obtained by using Gamma function:

fxte™ de = Il +1)/2]
2a(n+1)/2

As a result, Equation 2.45 can be written as

_2mm™ T(5)2)
(KE) = (27kT)"* 2(m/2kT )"

2 2

r(éj :r(2+l] =12+23x/;:%x/;

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

2.51)
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<KE> . 2mm™? 3/4An 5 5
- 3/2 32 52 52 (2.52)
(27) (kT )¥* 2m*” /(24T )
so that one gets
3
(KE)= ST (2.53)

Another distribution function, f(E) which is the energy distribution function can be

obtained by using the kinetic energy equation E = mv’ / 2 . The velocity expression can be

12

written as v =(2E/m)"*. The differential of energy is dE =mvdv so that one can write

dv = dE/mv and energy distribution function can be written as:

3/2
f(E)= no(%] e 2 JEdE . (2.54)
Tt

One of the main theorems in kinetic theory is Liouville’s theorem. This theorem
basically expresses the conservation of phase space density. The volume element in phase
space can evolve under the effect of the forces in time but the volume itself and the number

of the particles in it can remain unchanged.

Liouville’s theorem actually describes the time evolution of the distribution function
in phase space. It states that the distribution function is constant along any trajectory in
phase space. As a result it can be easily said that the number of particles in the chosen
system is constant in time when the system is travelling and deforming through the phase
space (Figure 2.6). At this point some definitions which will be used in derivations later,

will be given.

p, :Density with which the particles are scattered in phase space,
q, : Generalized position coordinate, ¢, =x, q, = », q; = z (in Cartesian geometry),

p, :Generalized momentum coordinate, p, =mv,, p, =mv , p; =mv,



D : Number of dimensions,

dv :Elemental volume in phase space.

27

> <

| I

v
=Y

Figure 2.6. The time evolution for the volume element in phase space

The expression for the elemental volume in phase space can be given by using the

generalized coordinates.

dv =dpdp,..dp,dqdq,..dq, (2.55)

Since the incremental volume in phase space is defined as:

Av =Aq,Aq,..Aq,Ap,Ap,...Ap,,, (2.56)

the number of systems in this volume is then p,Ag,Aq,...Aq,Ap,Ap,...Ap,, .

T Flux in—f—

Flux out

/0 q,

q, +Aq,

> g, axis

Figure 2.7. The particle fluxes entering and leaving the incremental volume
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The number of particles that enters the incremental volume per unit time is

P,9Aq,...Aq,Ap,Ap, .. Ap,. By using Taylor series expansion, the number of particles

leaving the face at g, + Aq, (by neglecting other terms) is

P, ., 04,
p,+ o Agq, |+ qﬁgAql Aq,Aqs..AqpAp, Ap, .. Ap,, (2.57)
1 1

so the difference between the entering and leaving numbers is (by neglecting O( Aql2 ))

oq, . op
i+ql d Aq,Aq,Aq,..Aq , Ap, Ap, .. Ap . (2.58)
oq, oq,

The net rate of accumulation inside the incremental volume can be found by extending and
adding up the result obtained in Equation 2.58 over all 2D coordinates and momenta so

that

aAav) 2 &, o) (op, . op, .
( )=—Z{p{i+£]+(&; 4, + =L by | 0AG0G,- A0, 00,89, 0p, . Ap , (2.59)

1S obtained.

It is very well known that ¢, =0H/dp,and p, =0H/dq,, where H is the

D
Hamiltonian operator. Then 0g, /g, =—0p, /0p, so that » &4, /dq, +0p,/0p, =0 and if

i=1

the density is given as p, = AV/Ap,Ap,..Ap, then by dividing Equation 2.59 by

Aq,Aq,Aq,...Aq ,Ap,Ap,Ap,.. Ap,, one can obtain

olp,) _ZD:K% P Piﬂ (2.60)

ot |\ Oq, op,
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and eventually Liouville equations is obtained as

ot T\ 4 dp; p; O,

M:_i[(app oH op, 6HH _ [pa] @61

In terms of total derivative the same Liouville equations will be written as:

Dp, _p,
= [p.H] (2.62)

Equation 2.62 is the expression for conservation of phase space points. This equation
states that the density of representative points in phase space corresponding to the motion

of the system of particles remains constant during the motion. It means that p, is

conserved. The complete rate of change with time, considering the explicit and implicit

variations at a given point in phase space of a density function p, for an ensemble of

systems is given by an expression involving the explicit rate of change with time and

additional function of the coordinates and momenta.

If N, is the total number of systems which is expressed as N, = J. p,(p.q.t)dv,

P, / N, is the probability that a system of particles will be in a region of phase space.
Let us assume that the distribution function is given as follows:

fyv = 1.1@as-a,00s-2 @020, 22220 ) (@0t PP D )sen] - (263)

This expression gives the number of particles per unit volume of phase space. If f is a

single particle distribution,

or_of _
Y +[f.H,]=0 (2.64)
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where H, is the Hamiltonian of a single system. This equation is known as Vlasov
equation or collisionless Boltzmann equation. This result states that there is no interaction
among the particles. However, the Boltzmann equation which includes collisions is given

as

D
by _ (ﬁj . (2.65)
D t 5t collisions

Because of the fact that most space plasmas are collisonless, the right hand side of
the Equation 2.65 is neglected and ‘Vlasov equation’ is obtained. Vlasov equation
conserves particles which means that time rate of change of the total number of particles is

zero [3].

By considering the collection of charged particles of one species the evolution of the

particle distribution function can be expressed as :

Of ¥ ¥ Yy o oo oV Fv e

Dt ot oxot oyot ozot Ov, OfF Ov, Of Ov, Ot

where 0Of /otis the explicit dependence on time and, for example, dx/dt=v, |,

ov, /ot = F_/m . Then Equation 2.66 becomes

F
%+%v +@V,+@V"+ii+i_y+ii:0 (2.67)

oo ox ' oy’ 0z  odv,m Ov,m 0Ov,m

if one takes the following gradients into consideration
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the Vlasov equation is obtained

Df o .- , F-
L =2 4yV f+—V f=0. 2.68
Dt ot VS m S (2:68)

If collisions exist, i.e., Df /Dt # 0 then

Df _ ( LA ] (2.69)
Dt 5t collisions

Boltzmann equation is obtained.

It 1s important to note that if the force which is acting on plasma particles is given as:
F=q(E+VxB)+mg (2.70)

where E is the electric field, B is the magnetic field, g is gravitational acceleration then

Vlasov equation given in Equation 2.68 will have the form

%J;:%+W,f+%[(E+vxz§)+mg]6vf:0. 2.71)

The macroscopic equations of plasma are transport equations which describe the
flow of mass, momentum and energy. The transport phenomena are frequently used to
identify plasma properties associated with collisional effects. Electrical conductivity,
thermal conductivity and some other physical properties are associated with transport
phenomena. There are two aspects for the problem in plasma transport phenomenon which

are statistical and macroscopical approaches.

Mass, momentum and energy conservations are very important physical principles

which can be derived from the transport equations.
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Assume that the distribution function, f(7,v,t) for single particle species which are

identical but indistinguishable, satisfies the Boltzmann equation. An arbitrary function

¥ (r,v,t) is also defined to give the arbitrary properties such as mass, momentum, energy,

etc. of the particles. The Boltzmann equation is given as:

@wﬁrf av, f= (‘Sf] . (2.72)
at 5t collisions

Multiplying Boltzmann equation by ¥ (#,v,t) and integrate over velocity space one gets:

j‘f’aj;d v+ [PV fd'v+ [PaV , fd V—I‘P(Z]f\/. (2.73)
\ v )\ v ) H_/ H_/
(1) (1) (1) (1)

Each term can be studied separately. Let us start from terms number (V') and (/) .

(1V )= J“P( ]dv- n(7,t (3F) (2.74)

(1)= j\}fafcﬁ dtJ‘(‘Pf)d%J‘ fdv— (( )) - n< T> (2.75)

Note that the following is used in these modifications: J. f(Fv,)d’v=n and

J.‘Pf(?,ﬁ,t)cfv =n(¥). Term (1l ) can be written as
(11)=[W5V, fd*v =V, [ Wifd’v - nV, %) (2.76)
The gradient term in Equation 2.76 can be written as

5V f= vaf o o

+
" Ox & oy oz
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6f 3 3 ov 3
Yy d =—|Yv fd'v —v d’v— | =—=Yfd
. f o) f S [T,
The last term vanishes since v, 1s independent of x and its derivative is 0 . Since

J.‘va@cfv :i[n(‘va)]—n<a—\va> (2.77)
ox ox

Oox

and similarly for v, and v,

j‘va %dﬂ/ = %[n(‘?vy )]—n<%—;}:vy> (2.78)
J.‘P g d3 ;[ (wv,)]- n< > (2.79)

are obtained. The gradient term can be written as

or

J"I’Vﬁrfd}v:ij‘z"vvd3v+ij‘{’vd3v+ij‘z”vchv—n alPv +alpv,+alpvz (2.81)
ox” oy° 0z Y0z

X

ox oy

then

(W59, @'y =V, [Wifd*v-n(V,¥.5) (2.82)



34

is found. Term (/I ) in Equation 2.73 becomes

(lll)=aV f=a, A +a, 2 (2.83)
v, oy, ov.
then
'[‘Pﬁﬁvfcfv:j‘{’ a(i+a,i+a,i v (2.84)
“ov, Tov,  Cov,
0 0 a
b 4 Y dv. — —(Ya,_)d 2.85
j a, jav a.flv, _Lfavx( a,)dv, (2.85)

can be written.

In that case the first term on the right hand side of Equation 2.84 becomes

of - 0 , 0 da g
Ya, —d'v=—|f—(Ya, )d'v=—-n{—(¥ =— =+ 2.86
J % oy Y ffavx( a,)d*v n<6v ( ax)> n< 5t gy ) 389

X X

The acceleration is given from Lorentz force as: a = q[E +V X E]/ m then a

-2L[E +(Bv,-Byv.) (2.87)

le

-L[E +(Bv.-Bv,) (2.88)

le

~L[E +(Byv,-Bw,) (2.89)

le
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E is an electric field and it does not depend on v, v,, v, s0 OE/0v, =0, 0E/0v, =0 and

OE/dv. =0. One gets

JWQY%SVZ—H ava—lp (2.90)
S ov, S ov,

J"Pa,icfv:—n a,a—lp (2.91)
"o, "o,

[¥a. %SV =-n{a, el : (2.92)
T OV, ov,

Finally the term (/I ) in Equation 2.73 is obtained as:

(1) = [¥av, fd*v=-n(av,¥). (2.93)

v

After all the terms of Equation 2.73 are derived and this equation becomes:

n(7, 1)(5% ) = %(n<‘f’>) - n<‘2—f> +V, () -n(V ) -n(aV #). (2.94)

However, if Equation 2.94 is rearranged one gets the moment equation:

g(nm)_nm_ﬂ+<v,w>+<aﬁvw>+<aw>}+6,.(n<sva>)=o. (2.95)

Although the microscopic distribution depends on 7, v and ¢ ie., f(7,v,t) the

macroscopic physical parameters depend on only 7 and ¢. Therefore they are obtained by
integration over the entire velocity space so-called moments. Let us look at the moments

and their results.
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Since ¥ o v* then there will be three different cases given as below.

Case 1: p, =0 this is the 0” moment of equation and it gives the conservation of

mass,

Case 2:p, =1 this is the 1¥ moment of equation gives the conservation of

momentum,

Case 3: p, = 2 this is the 2" moment of equation gives the conservation of energy.
2.3.1. The 0™ Moment (p,, =0, ¥ =1)

If ¥ =1 isused into Equation 2.95

0 ol

(1) n{<5> +{V,15)+(a v, 1)+ (51}} +V,(n(1))=0 (2.96)
is found. Since (1) =1, 61/6r=0 and V,1=0
M4 ((n))= nl(5)] (2.97)

1s obtained.

The term n[<5 >] is described as the rate at which particles are lost or gained due to

the inelastic collisions in volume element d’r . Elastic collisions do not involve a particle
loss or gain in volume element d’r, rather a loss or gain in velocity space. The particle
loss or gain depends on the ionization, electron-ion recombination, electron attachment

processes.
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2.3.1.1. Ionization
The expression for a single ionization process can be given as :e” + 4 — A" +2e".

Here the ionization frequency v,, depends on the temperature of electrons and ions
v,=v,(T,,T ) where T, and 7, are ion and electron temperatures respectively. lonization
serves as a gain term and v;n, is the number of ions produced per second and per unit

volume while v, n, is the number of electrons produced per second and per unit volume.

2.3.1.2. Electron-Ion Recombintion

The term from the electron-ion recombination is a loss term. The expression for this

process is e + A~ — A+hv where h is the Planck’s constant and v is frequency. The

rate of this process is directly proportional to number of electrons and ions. Mathematically

it can be written as Rateoc nn, where n, =n, and it means that Rateocn,’. Then

formally the rate is given as Rate = ap ne2 where o p 1s a recombination coefficient.

2.3.1.3. Electron Attachment

Since the expression for this process is e + 4 — A . The rate for electron-ion
recombination Rate o n,n, where subscript N is the number of neutrals in the system.
This process can also be expressed as Rate =v ,n, where v, is the attachment frequency.

Using these processes, Equation 2.97 can be written as:

dn,

. +V, (ne¥)) = n(vi =v 4 ) - agng? (2.98)

where dn,/dt is time rate of change of the density of electrons in a small volume.

ﬁr«neﬁe» is the term representing the flow in or out of the particles of a small volume and

the right hand side represents the generation or loss of electrons in a small volume due to
the elastic collisions in the system. If there is no loss and generation of particles in the

volume considered the equation is simplified as:
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“+V, (<neve>) =0 (2.99)

which is nothing but the same form for conservation of mass in fluid dynamics.

2.3.2. The 1* Moment (p,, =1, ¥ =mv)

This moment will give us the momentum transfer equation in fluid dynamics. The

main expression which is Equation 2.95 now will have a different form given as:

g(n(nw) )- nR a(gf) > H(V,.(mi5)) + (@ (m¥ ) +(5(mv ))} +V, (n(mvv))=0.(2.100)

Here v is assumed to be the particle velocity in laboratory frame (instantaneous

velocity) and it is given by

V= <17> + Random Velocity (2.101)

where <17> =u(r,t) defined as average velocity. If w, is defined as peculiar velocity or

random velocity
w,=v—(V)=v—i (2.102)
Random average velocity=0. One can show this as follows:
(i) = % [G-()fFE,0d Y= %[[ﬁf(?, 50dv— [ () f(7,5,0dv]=(7)~(7)=0. (2.103)

It is important to note that the thermal energy of the system kT is proportional to
scalar pressure, P = nkT . By using the definition for velocity given above the third term in

Equation 2.100 can be expressed as :
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(V,.(m5)) =V, (miiii) +V , (miv, 0, ) 42V (miiss, ) (2.104)

r r

by relating the velocity in laboratory frame to the random and average velocities. Random

energy mw, w, is related to k7 and nm<fvr er> = P where P is the pressure tensor.

A Random velocity

Figure 2.8. The random and the average velocity plots

The pressure tensor, P, contains a kinetic contribution and contribution from n-body
interactions. Another name of the pressure tensor is stress tensor and its components

specify both the direction of motion and component of momentum involved.

P xx P Xy P Xz
P =nm(w,w.)=| Py P, P, (2.105)
P zx P zy P zz
where the diagonal terms
Py =P vy = P,

are scalar pressures.

The off-diagonal elements in pressure tensor are related to the viscosity. Shear stress

is given as: 7, =—u(ov, /oy).
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The divergence of the pressure tensor is a vector given by

XW WX XW WY XW W, Z

- 0. O . O .|| A A R .

Vv .. —Xx+—y+—z lyw o wx yw w w w.z |. 2.106

’ (ax ayyaz]yﬂ’tyﬂyffyi (2100
IW. WX ZW. W)Y IW. W.Z

V4 X V4 V4

ol
I

This equation becomes

v P . 0 . 0 -
P = awxwxx+5wywxx+awzwxx +

9 .0 . B )
—W W, P+ —W W P+ —w_w, P |+
(6x Wy YTy Y TN yy] . (2.107)

., 0 R . R
—W W, Z+—W W, Z+—ZW W, Z
(6)6 x "z By y "z PR MG

In that case Equation 2.100 is rearranged as:

ﬁ(n(mﬁ)) = n{<m> + (V. (miv)) +(aV, (mi)) + <5(m17)>} —V,(n(mvv)). (2.108)

ot ot
\ ) H_J
(1) (1)

The term (/) is equal to zero since v is independent from ¢ and similarly term (17 ) 1is

also zero because v is again independent of space variables. Then

%(n<m17>) = n[<a6v (m17)> + <5(m17)>]— Y, (n(mvv)) (2.109)

is obtained. By rearranging one gets

%(n@nv) )+ ¥, (n(mvv))= nkﬁ> +(5(m? ). (2.110)
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Note that since (V) = (l/n)J. vfd*v =1i(F,t) then 6(v)/ov =0, so that I term on the right

hand side of Equation 2.109 vanishes.

By using no source continuity equation (i. e., on/dt + 6.( nv ) =0 one can write

%"m@ —mn §<§>(Vr<"<v>>)- (2.111)

Using this Equation 2.100 can be written as:

o(v -
mnﬂ - m<\7>(Vr <n<\7>>) = [< > <5(mv)>] (nm(vv>) : (2.112)
The last term in Equation 2.112 can be studied separately as:

-V, (nm<\7v>) =V [nm(wr )(wr )] (2.113)

(1)
and the term (/) can be written in a different form as
(1) = (35, ) +((7)(5)) + (7)3, )+ (. (7))
where the last two terms are zero. Now let us put these results in Equation 2.113 to get
=V, [, 75,) + (Y5 = =V, B = (am(5) . 5) = )T (7).
Using this expression in Equation 2.112

o(v

mna_>-m<v>(vr<n<a>>):n[<ﬁ>+<5(ma>>]-vr13-(nm<a>wa> (3T, am(7)) 2.114)

t
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1s obtained and after cancellation is done for the second term on the left hand side and the

last term on right hand side the simplified form is found to be:

mn(Z—L;+nm(ﬁ§r):n[<15>+<5(m17)>]—quB (2.115)

where u(7,t)=(v(r,t)) is the average velocity. Equation 2.115 is the momentum

conservation equation.

Now the last moment of Vlasov equation will be studied in the same manner.

2.3.3. The 2" Moment(p,, =2, ¥ = mv*/2)

If ¥=m? / 2 is inserted into Equation 2.95 one gets

ey (20} o (905) 4 (@9,9) [+ 9. lte)=0 2o

then the equation will have the form given as: (using v> = V.V )

%(n@j})+n{<(a(%;/2)>+<§,(%mvzj>+<ﬁ§v(émv21>}+
(1) V(n<(% mv2]a>] o

(11)

(2.117)

Again the terms will be studied separately. Let us start from term (/). Here
v,r and t are independent variables and mass m 1is assumed to be constant and <v> =u.

Then
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(o, o, )+ (i) + (3w, i) + (i, )) (2.118)

is found. It must be remembered that the last two terms are equal to zero. The term

nm(ﬂzr .W,) gives the scalar pressure

nm(w? +w} +w?) =P, + P, + P, =3P (2.119)
SO
1 2
n{ —my? :nmu—+2P (2.120)
2 2 2

is obtained. The first term on the right hand side is directed energy and the second term is

the thermal energy.

Let us analyze term (/I ). Notice that

(vi9) = (G +w, i +w, i+, )) =
<wffvr +wlii +utw, +ui + 200, i )w, +2(w, g),;> : (2.121)
In Equation 2.121 (u*w,) =0 and (2(w, )ii) = 0 since <W,> =0 . The term 2(i#, i Jw, can

be written as Pi . Here it is just the time to define a heat flux term which is the flux of

random (thermal) energy across a surface element moving with mean velocity u .
- I 5.
q, = Enwrwr (2.122)

So that Equation 2.120 will have the form such as given in Equation 2.123 below.
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2 2 -
O3 p lanlav [ Lo V491G, +2 i+ 7™M L B | 0. (2.123)
o\ 2 2 2 2 2

Since d / ah/(mv2 / 2): mv and energy &~ is defined as:

So Equation 2.123 becomes as:

%+n<a(mv)>+?,(g*g)+6rqh +v,(Pii)=0. (2.124)

Using the Lorentz force, then the acceleration will have the form as given in Equation

2.125.
i=2L(E+vxB) (2.125)
m
Let us change the velocity in Equation 2.125 by (er +u ) to get
a:%[%(wrm)xza . (2.126)
Then the second term on the right hand side of Equation 2.126 can be written as
n<ﬁ(mv)> = nm<[% [E +(w, +1i)x E’ﬂ(ﬂ/r + ﬁ)> (2.127)
so that

n(a(mv)) = nm<% |Eii + (i x E’)I]> (2.128)



is obtained. If the electric field in a moving reference frame, E”, is given as :

E* = E+(ixB)
and by using the definition for total derivative given by

d

—+17.§r
dt ot

one gets

ddiﬁ*a,amrqh +v,(Pi)=J.E"
t

where J is the average current density given as J = nqu .
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(2.129)

(2.130)

(2.131)

In Equation 2.131 the first term on the left hand side is the total rate of change of

thermal energy of the gas in a volume element moving with mean velocity, the second term

is the energy carried into (or out to) the moving volume element by thermal flow of atoms,

the third term is the change of energy due to the heat flow, fourth term is the work done in

the moving element (control volume) by the pressures on its surface. The term on the right

hand side of equation is called Joule heating term.

e [fsome definition such as:

e Mass density p,, =n,m, +n;m;
e Particle current density J p =N <\7e> + ni<\7l->
e Mass current density J,, = n,m, <\7e> +n;m; <‘7i>

e Electric charge density pp =n,q, +n;q;

e Electric current density J = neqe<\7e> + nl.qi{\?l.) are assumed and heat flux term is

assumed to be §, = 0 together with J.E* =
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Then the centre of mass velocity of the system is taken v and new peculiar velocity
<w:> #0 and <wl*> # 0 but neme<w:>+ nl.ml.<w:> # 0 are assumed. As an addition to the
above assumptions P, = neme<w:w:> and v, =w, -V, v, =w, —V are taken into account
one gets momentum equation in the form given as:

v -

pmjz—v.ﬁ+jx[?+peﬁ' . (2.132)
t

Here the momentum equation was obtained by using some assumptions described
above. This is a relatively different derivation of momentum equation which is one the
most important equations which were used in this thesis. During the theoretical study given

in this chapter especially references [1-3] were used intensively.
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3. FLUIDS AND FLUID PROPERTIES

The matter can exist in three different states which are solid, liquid and gas. The
liquid and gas states together form the fluids. Typically gases are considered as
compressible fluids and liquids as noncompressible, that means they have fixed volumes
under the conditions of constant temperature and pressure. Actually a fluid is a continuum
material which can not resist the shear stress. Under the effect of some shear stress the
fluid is deformed. The fluids are deformed continuously under the tangential (shear)
stresses no matter how small the magnitude of the stres is. A solid, in contrary, deforms by
the amount proportional to the stress applied, after which a static equilibrium will result.

The magnitude of the shear stress depends on the magnitude of angular deformation [4].

Table 3.1. The states of matter and some properties [5]

State | Intermolecular Forces | Molecular Arrangement | Type of statistics required

Solid Strong Ordered Quantum
Liquid Medium Partially Ordered Quantum+Classical
Gas Weak Disordered Classical

The molecules composing a fluid are free to move and past each other. The
behaviours of a fluid is defined by the set of partial differential equations called Navier-
Stokes Equations. A fluid is considered as a continuum material. The continuum
mechanics is the science interested in continuum materials. In continuum mechanics the
discrete nature of fluid is ignored and the idea which says that the materials are not
composed of discrete particles is accepted. After ignoring the atomic structure of the matter
the modelling for large scales, which are very much greater than the interatomic distances,
is very accurate. The physical properties which enter the interested area of continuum
mechanics are independent from the particular coordinate system in which they are
observed. Mathematical objects called tensors which are independent from the coordinate

systems are mostly used for representing these physical properties.
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Continuum Mechanics

[ |
Solid Mechanics Fluid Mechanics
v

Fluid Statics Fluid Dynamics

Figure 3.1. The subdivisions of continuum mechanics

Since the problems of interest of this thesis are particularly related to the fluid
dynamics, the study of fluid in motion, our interest will not be focused on the motion of
individual molecules, instead it would be on describing the fluid and its motion in very
large spaces. These spaces are very much larger than the distances between atoms and
molecules. Not only the distances but also the number of particles in the scope of interest
are very large, the statistical average is very meaningful in these cases. Actually the fluid
mechanics is mathematically very complex in some cases. In order to avoid from this
complexity a relatively modern discipline called computational fluid dynamics is used by
the scientists and engineers. Computational fluid dynamics (CFD) is the subject of the next
chapter . By using the mathematical models the properties of materials are calculated by

using the statistical averages which are necessary after the material is assumed as a
continuum. There are approximately 2.5x10% molecules in a cubic meter of air at room
temperature at sea-level, which corresponds to about 2.5x10" molecules in a cube which

has a side of 0.01 mm and the mean free path is about 6.6x10°*m [6]. As a conclusion the

consideration of a fluid as a continuum is rather a highly accurate assumption.

3.1. Macroscopic Properties of Fluids

Since gas and liquid states of matter form together it is very important to classify the
meaning of the word fluid. From rheological point of view fluids can be classified as
liquids and gases. If the spatial dimensionality is under consideration they can be one
dimenisonal, two dimensional and three dimensional. From the temporal variation point of

view fluids can be divided into steady and unsteady fluids. The classifications depend on
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the properties of the fluids. The most important properties of the fluids can be considered

as pressure, temperature, density, velocity, viscosity etc.
3.1.1. Viscosity

One of the most important properties of the fluid is viscosity which is basically the
willingness of fluid to flow. However, more scientifically the viscosity can be described as
the resistance of fluid to deformation under the effect of shear stress. Since it can be
thought as the resistance to flow, viscosity is related to the internal structure of the fluid
under consideration. Qualitatively viscosity is a material property related to the resistance
of fluid or alternatively is a measure of stresses exerted by a fluid on the surrounding
media when the fluid is undergoing the deformation [7]. Since it is a scalar transport
property, viscosity is related to the transport of momentum. Formally it gives the ratio of

the shearing stress to the velocity gradient in the fluid. Mathematically it is given by

_ Shear Stress

= 3.1
H Shear Rate (-1

Yo

Figure 3.2. The velocity profile for the fluid element on which the force acts on the upper

part

Fl/A
‘Lt:
ul y,

(3.2)

The shear stress, 7, is the stress applied tangentially to the face of material. The unit

for shear stress is Pascal ( Pa ). Shear rate is the velocity gradient applied to the fluid and it
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gives an idea about the rate at which the adjacent layers of fluids move with respect to each
other. The unit for shear rate is s~ (1/second ). The unit for viscosity is Pascal second

(Pa.s)or (kg/m.s).

Materials are classified as Newtonian and non-Newtonian depending on their
viscosity profiles. Newtonian fluids are fluids in which the shearing stress is linearly

related to the rate of shearing strain (Figure 3.3).

Shear A
Stress

»

Shear Rate

Figure 3.3. The plot of shear stress versus shear rate for Newtonian fluids

In non-Newtonian fluids the relation between shear stress and shear rate is nonlinear
and can be time-dependent. Water, milk, gasoline, sugar solutions, minearal oils are
examples of Newtonian fluids. The molten polymers, blood, soap, grease and paint are

non-Newtonian fluids.

The viscosity of the fluids can be studied under two parts, viscosity of liquids and
viscosity of gases. Especially the liquids have an enourmously wide range of values of
viscosity. The temperature is the main exterior agent which affects the viscosity in liquids.
The increase in temperature causes the decrease in viscosity of liquids. The temperature

dependence of viscosity for many liquids is given as
p=deB /T (3.3)

where A4; and B; are characteristic constants for liquid and 7' is absolute temperature in

Kelvins [7]. This shows that viscosity reduces very fast as temperature increases. The
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viscosities of pure gases at low temperature and far away from the critical points can be

found from so called Chapman-Enskog theory. The gas viscosity is given by

(MT)I/Z

p=2.67x10"° (3.4)

where M is the molecular weight, 7' is the absolute temperature in Kelvins, o, is the
collision diameter sometimes referred to as molecular diameter in angstroms
(1°’4=10""m), Q, is collision integral. From Equation 3.3 and Equation 3.4 it is seen

that the temperature dependences of liquids and gases are different. Actually when the air

is considered for temperatures below 3000 K, the viscosity of air is independent of the

pressure and for this range Sutherland’s Formula can be used.

T3/2
=1.458x10"° ———— 3.5
# T+110.4 (3-)

Table 3.2. Temperature dependence of the viscosity calculated from

Equation 3.5 for air [6]

T'(K) 1x10° (kg /m.s)
20 1.329
40 2.285
60 3.016
80 3.624
100 4.152
120 4.625
140 5.057
160 5.456
180 5.828
200 6.179
220 6.512
240 6.829
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The viscosity has two different parts: dynamic viscosity and kinematic viscosity. In
the literature the word viscosity is used instead of the dynamical viscosity. When the word
viscosity is used it is related to dynamical viscosity unless otherwise is specified. Because
of the fact that in fluid dynamics area, the density is a mostly used property for fluids

instead of mass, and the ratio u/p frequently appears in the equations. This ratio has its

own name called kinematic viscosity. The unit of kinematic viscosity is cm® /s. It should
also be noted that the temperatures given in Table 3.2 and Table 3.3 are Kelvins and

Centigrade respectively.

Table 3.3. Temperature dependence of the kinematic viscosity for different materials [8]

Material T(C) Kinematic Viscosity (cm2 /s)
0 0.00125
Mercury 10 0.00123
20 0.00117
0 0.133
Air 10 0.140
20 0.143
0 0.0178
Water 10 0.0130
20 0.0101
Machine 0 7.34
Oil 20 3.82

3.1.2. Pressure

The definition of pressure simply is the force per unit area. The pressure of fluids,
both liquids and gases, are due to the random motion of the particles which are atoms and

molecules forming them. If the fluids are heated their pressures increase. The SI unit for

pressure is N / m* or simply Pascal.
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Figure 3.4. The pressure definiton for the container filled with liquid

The pressure for point A4 (Figure 3.4) which is located in the liquid with the
density p is expressed as:

P, = pgh, +F, (3.6)

tm

where g is the gravitational acceleration, %, is the vertical height measured from the

surface of the liquid and P, 1is the atmospheric pressure. The pressure in the liquid

tm

increases in a directly proportional manner with the depth. P, is the pressure due to the

am
weight of the column of air above any point in the Earth’s atmosphere. The value for the
standard atmospheric pressure is 101.325 kPa . Manometers, elastic-type pressure gauges,
electric type pressure gauges are devices which are used to measure the pressure. At any
cross section the pressure generates a force which can cause the fluid particles to flow. For
the liquids under critical point the pressure does not affect the volume too much, as a
numerical example the change of water pressure by 1000 per cent, change the volume is
less than 1 per cent. However, for the gases any change in pressure directly affects the
volume [9]. The pressure has two characteristics: the pressure of the fluid acts
perpendicularly to the wall in contact with the fluid, the pressure applied to the fluid in the
closed vessel is transmitted to all parts at the same value with the applied pressure

regardless of its direction [10].
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3.1.3. Density

The definition for density is the ratio between the mass and the volume of material or
the mass per unit volume. For the liquids the density is a property which is assumed to be
constant. It is considered to be indepenedent of the sample size. Actually the density can

change as a function of time and location p = p(x,y,z,t) but it must be a continuous

property. As a mathematical definition it is given as:

p = lim =2 (3.7)

where Am and AV are finite mass and finite volume amounts of matter. & must be chosen
so as not to break the continuity assumption. Otherwise, the principles of the statistical

mechanics must be utilized [9].

»

log/

Figure 3.5. The density as a function of the size of sample

SI units for the density is kg/ m’ . The equation of state for gas phase relates the density to

its pressure and temperature as:

P=pRT (3.8)

where T is the temperature in Kelvins, P is the pressure, R is the gas constant which has

a specific value for each gas and p is the density of the gas. The density is assumed to be
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constant in the numerical simulations presented in this thesis, since the flows are

incompressible.
3.1.4. Temperature

As a definition temperature is the measure of the average kinetic energy of the atoms
or molecules in the substance. Actually it can be thought as a property which gives the clue
about the degree of freedom in the view of statistical physics. Temperature is related
directly to the heat or the thermal energy of the system. Temperature gives an idea about
the energy of the atoms forming the system. If the heat is added to the system the random
movement of the atoms and molecules will become more vigorous in the microscopic
scale. Temperature is an intrinsic property of the system so it is independent of the amount
of matter in the system or the size of the system. The temperature affects a lot of physical
properties of the matter such as electrical conductivity, density, phase etc. It is measured
directly by using a thermometer, a thermopile, a termistor etc. It affects the viscosity of
the fluids since the viscosity of the gases increases while the viscosity of the liquids
decreases with the increasing temperature. In gases, the increasing temperature makes the
molecules’ movements faster and this results in the increase in viscosity. In contrast with
liquids the molecular separation increases and this results in the decrease of the attraction

between them. This results in the decrease in viscosity [10]. The SI unit for temperature is

Kelvin (K'). Other temperature units which are mostly in use today are Celsius (C) and
Fahrenheit (°F ) In order to convert the Celsius to Kelvin

T(K)y=T(C)+273.15 (3.9)
and from Fahrenheit to Celsius

T(C)= g[T(°F)—32] (3.10)

expressions are used.
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Since the fluids obey the laws of physics such as conservation of mass, conservation
of momentum and conservation of energy, the properties of the fluids can be calculated

and understood better from these equations.

3.2. Mass Conservation: The Continuity Equation

Basically conservation of mass states that the mass cannot be created or destroyed by
the flow of the fluid under the condition of ignoring conversion of mass to energy.
Therefore the mass can move without being destroyed by the fluid flow. The equation
which describes this physical principle is called the mass conservation and is also named as
‘continuity equation’. This is the one of the most important equations in the subject of
fluid flows. During the derivation of this equation some mathematical models must be
used. The same equation can be written in integral and differential forms. But not only
these two expressions are available but also the equation can be written in conservative and
in nonconservative forms. In order to derive the equation in integral form the finite control
volume must be used. This finite control volume can be fixed in space or it can move
together with the flow. Therefore two different expressions for the same equation will be
obtained. The surface bounding the control volume is called the control surface, these

terms are very important and are used intensively during the derivation process.

3.2.1. Integral Form of Continuity Equation Obtained by Using the Stationary Finite

Control Volume

Control surface, S

P
<
<

N\ i Flow

— o Control volume, V

1
L A A

N

?

Figure 3.6. The arbitrary shape for the control volume with finite dimensions and

stationary nature
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In this study the control body which is under investigation has finite dimensions and
is fixed in space. It has an arbitrary shape and arbitrary surface. The physical principle

which is conservation of mass for this control volume can state that [11]

The decrese rate Net mass flowout of
of mass inside the the control volume by G.11)
control volume crossing the surface
The elemental mass flow crossing the surface dS is given as:
pvdS = pv.dS (3.12)

where p is the density, v is the velocity component perpendicular to the surface and dS is

the surface element [11].

The multiplication ¥.dS can be either positive or negative depending on the direction
of velocity. Since ds is always pointing outwards from the control volume the sign of
multiplication depends on the velocity direction. If the velocity v points inward, which
means that the flow is entering the control volume, the result is negative and when the flow
is leaving the control volume which mens that the velocity v points outwards from the

control volume and the result of product mentioned above is positive.

If the control volume is divided into volume elements which have the elemental

volume as dV , the mass inside the control volume can be given as:

myp =[[[pdV . (3.13)
Vv

The rate of increase of mass in the control volume can be expressed as:

mmczgwpdrf. (3.14)
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The rate of decrease of mass in the control volume can be expressed as:
) 0
Mgee =——|[[pdV . (3.15)
oty

The net mass flow out of the entire control volume through the surface S is given as:
g = || PV.dS . (3.16)
S

By inserting Equations 3.14, 3.15 and 3.16 into Equation 3.11

-l pav =|[ pvds (3.17)
or
%mpdm”pa.dﬁzo. (3.18)

The last equation is the continuity equation written in integral and in conservation
form. Since the control volume was chosen stationary and fixed in space, the equation

obtained is in conservation form otherwise it would be in nonconservation form.

3.2.2. Integral Form of Continuity Equation Obtained by Using the Moving Finite

Control Volume

In this study the control volume with finite dimensions is moving together with the
flow. The condition for this case is that the mass elements are staying in the control
volume and the number of them does not change. This means that the mass of control
volume does not change. As it is seen in Figure 3.7 the volume and shape of the control

volume can change.
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Figure 3.7. The arbitrary shape for the control volume moving together with the flow and

finite dimensions

The particles inside the control volume are fixed and have unchanging masses. This
means that the mass is constant as the control volume is moving together with the flow.
Therefore substantial derivatives of these unchanging masses is equal to zero.

Mathematically this can be expressed as:
D
— dV =0. 3.19
1 J [p (3.19)

This is another equation which is again the integral form of the continuity equation
but in nonconservative form. Since the control volume is moving with the flow the

equation obtained from this control volume is directly in nonconservative form [11].

3.2.3. Differential Form of the Continuity Equation Obtained by Using the

Stationary Infinitesimal Small Element Model

In this model, the infinitesimally small element is under consideration. This element
does not move with the fluid, it is stationary. In order to take the continuum assumption
into account made previously the number of the elements inside the control volume is

considered to be sufficiently high.
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Figure 3.8. The shape of infinitesimal small element fixed in space and the flow through it

For a detailed study the shape of the infinitesimally small element is considered as
given in Figure 3.8. Both the density and the velocity are functions of coordinates

(x,y,z)and time, ¢. In order to simplify the derivation the Cartesian coordiate system is

under consideration. (v = u(x, y,z,t), v=v(x,y,z,t), w=w(x,y,z,t), p = p(x,y,2,t))

w z
A [pw+@dz]dxdy
A
[pu + de]dydz
v T ox
Il
’ | '
o(pv
(pv)dxdz — > [pv+ (a/; ) dyldxds
dy
_____________ N >y
4
(pu)dydz
(pw)dxdy

Figure 3.9. The plot of mass flow in and out of an infinitesimally small control element

The mass flow through the left face with the surface area dxdz is (pv)dxdz . Since

the density and velocity depend on the spatial coordinates, the mass flow through the right
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face is [pv + (6( ov)/ 6y)dy]dxdz. The same work is done for y and z axes. As a result of
this study with the help of the shape in Figure 3.9 netoutflows for each coordinate is

written as:

for direction x

[pu+ de]dydz —(pu)dydz = dedydz (3.20)
ox ox
for direction y
[pv+ M dyldxdz — (pv)dxdz = M dxdydz (3.21)
oy y
for direction z
[pw+ @ dzldxdy — (pw)dxdy = @ dxdydz . (3.22)
z Y

The total mass inside the infinitesimally small volume element is pdxdydz. The rate

of increase of the mass inside the element is
. op
Mine = —— dxdydz (3.23)
ot
and that of decrease inside the element is
. op
Mdec = —dedydz . (3.24)

The physical principle of conservation of mass states that the time rate of decrease
inside the fixed element must be equal to the net mass flow out of the element which is

given as :
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Net mass flow = Apu) + Apv) + opw) dxdydz (3.25)
ox oy oz

after the equations are written properly one gets

opu) , 0pv)  OPY) vz =~ P dvayi (3.26)
Ox oy 0z ot

Then by rewriting Equation 3.26, the continuity equation is obtained:

P () -
V(P =0. (3.27)

Equation 3.27 is a partial differential equation which is in conservative form. Since
the control volume is infinitesimally small, the equation is directly obtained in differential

form.

3.2.4. Differential Form of the Continuity Equation Obtained by Using the

Infinitesimal Small Element Moving with the Flow

In this model there is a infinitesimally small element which is not stationary and is
moving together with the flow. Differently from the previous model, the fluid element has
constant mass. The shape and the volume of the element naturally can change while

moving with the flow.

>, e '
| >V
— -IM
=
- > > —

Figure 3.10. The shape of infinitesimal small element moving together with the flow
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The mass element for this model can be given as:

Sm = pdV . (3.28)

Because of the fact that the mass is not changing inside the fluid element during the

movement the rate of mass change is obviously zero. Then

D(6m)
Dt

0 (3.29)

and by using the expression in Equation 3.28 the new form of Equation 3.29 becomes

D(psV) _
Dt

0

D(pSV) _ 5, Dp DOV
Dt Dt Dt

oo, f1 @],
Dt oV Dt

=P 4 oV =0. (3.30)

The Equation 3.30 is the same as the continuity equation but in noncoservative form.

There are four different types for continuity equation obtained above.
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Continuity Equation: Mass Conservation

4

5754 0 - D - P (o bp +pVi=0
J;J.pvdS+5J‘IJ;[pdV—O Ftwpdrf_o = VP =0 o TPV
Integral and Integral and Partial differential and Partial differential
conservative form nonconservative form conservative form and nonconservative
form

Figure 3.11. Different types of equations for continuity

Actually these equations all represent the same equation with different forms. They

can be derived from each other after some manipulations [11].

3.3. Momentum Conservation: Navier-Stokes Equations

The physical principle conservation of momentum is one of the most important
principles used in fluid dynamics. By regarding this physical principle the set of equations
which are called Navier-Stokes equations are obtained. These equations are named after
French scientist Louis Marie Henry Navier and Irish George Gabriel Stokes . Navier, who
actively worked in bridge engineering analyzed the fluid flow assuming the force by
repulsion and absorption between the neighbouring molecules. Navier derived the
equations in 1822 but he did not introduce the viscosity in his derivations. Stokes who is
the mathematician and physicist derived the same equation in 1845 by explicitly
introducing the viscosity in his works. By taking the Newton’s second law in mind the net
force acting on the fluid element is given as the product of the mass of fluid element and its

acceleration. The sources for the force acting on the fluid element are also important.
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F =ma
. |
Surfacet Forces Body%orces
Pretsure ) AV isctus Electromignetic Force' Gravitationil Force
Shear ) Normal

Figure 3.12. The forces acting on the fluid element

The body forces act directly on the whole volume of the fluid element. However the
surface forces are acting only on the surfaces where they exist. In this study the fluid
element is assumed to move together with the flow. For a detailed investigation the fluid
element’s shape is assumed to be as in Figure (3.13). In order to simplify the analysis, the

derivation will be done only for the x component of forces.

pdydz
4
T (sz + a;—z"dz]dxdy T dydz

: f

/— .

7

Kl/ / (ryx+ar—yxdy]dxdz
0y

dy

------------------------------ >y

I

T_ dxdy

0
x (Txx + 0T dx]dydz A ( p+ P dx]dydz
Ox ox

Figure 3.13. The surface forces acting on the fluid element
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Actually both the body forces and surface forces are acting on the fluid element and
this is taken into account later in the thesis. If the body force per unit mass, acting on the

x coordinate 1s f_ then the net body force acting on the fluid element in x direction is

given as:
FpNET,x = pf ydxdydz . (3.31)

The shear stresses such as 7,,, 7. are related to the time rate of change of the

shearing deformation of fluid element. A normal stress which is 7 is related to the time

rate of change of volume of the fluid element. The shear stresses in most of the viscous
fluids are much greater than the normal stresses. Therefore normal stresses are neglected
generally. In Figure 3.11, the stresses in the positive directions are assumed to be greater
for convenience. The pressure forces acting in x directions always point through the fluid
element. By using the shape in Figure 3.11 and forces acting on it, the surface force
equations can be written as:

for direction x

6p arxx ﬁfyx
Foo=\p—|p+—dx||dydz+||7  +——dx|-7 _|dydz+||7  +——dy|—7  |dxdz+
' ox ox T oy ”

Kru + a;—x dzj -7 }dxdy. (3.32)

z

Since there are not only the surface forces acting on the fluid element but also the
body forces existing, the net force acting in x direction is the sum of them and the

resulting form was given below.

Foetx =Fs x + FpNET x (3.33)

Foo=| =P O O O \givae 4 of dvdyd: (3.34)
) ox  Ox oy 0z }
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By considering the main expression for Newton’s second law F = ma and the x

component for this expression is

F.=ma,. (3.35)

The mass in the fluid element can be expressed as

m = pdxdydz (3.36)
and the accelaration in x direction is
Du
a, =— . 3.37
= (3.37)

By combining Equations 3.34, 3.35, 3.36 and 3.37

op Ot,, Ot ot Du
_P T O O gz 4 pf dvdydz = pddydz
{ ox x| oy 62} v+ pf dxdydz = pxdydz =

and writing in a convenient way, after simplifications

Du _ {_ op 0ty 0T, 07,

- " 3.38
Dr | & ox | oy az} A (3-38)

is obtained. However this is the expression only for the x component of the momentum
and y and z components are needed. By using the same method, one gets y and z

components as:

y component of momentum

}+gﬂ (3.39)
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and z component

@_{_6_17_'_ ot,, N or, Ort,

= +
Dt

+ . 3.40
&z o | ox ay}pfz (3:40)

Equations 3.38, 3.39 and 3.40 are all partial differential equations. Because of the fact that
the fluid element was chosen as moving element, the form of these equations is non-
conservative. As a result the very well known expressions in fluid dynamics called the

Navier-Stokes equations are obtained.
If the conservation form of the Navier-Stokes equation is desired to be written, the
procedure shown below can be used. Again the derivations is done firstly for the x

component of the momentum. From the definition for substantial derivative

Du ou -
- =4 oW Vu 3.41
P =P TP (3.41)

is obtained. By using the rule for derivative of a product

opu) _ ou 3p
ot ot ot

and rearranging one gets

o _olpw) 5 (3.42)
o a o

which is the new expression for the first term on the right hand side of Equation 3.41.

From the definition of divergence of the product of vector and scalar
V.(puv) = uV.(pv) + (pv).Vu (3.43)

again after rearrangement
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(PV).Vu = V.(puv) —uV.(pV) (3.44)

is obtained. By using Equations 3.42 and 3.44 in Equation 3.41

Du  0(pu) op = - =
eV AP Ol v —uVv. 3.45
P o= o 4 (puv) —uV.(pv) (3.45)

is found. By doing some rearrangements in Equation 3.45

Du _o(pu) _

o o [a—pﬁ.(pa)}%.(pua) (3.46)

Ot

is found. Note that the sum in the paranthesis vanishes since it defines the continuity

equation. As a result , Equation 3.46 is reduced to

Du _d(pu) & -
Dr - 5 + V.(puv) (3.47)

Equation 3.47 is another form of Equation 3.38 and by equating them

o(pu)
ot

_6_p+ 0T N 0T, N ot,,
ox oy oz

+V.(puv) = { } of. (3.48)

is obtained. This expression is for the x component and similarly for the y component

o(pv)
ot

op Or, Ot, 01,
-+ + +
oy 0oy ox 0z

+V.(pv9) = { } o, (3.49)

and for the z component

6(pw) v, = ap 6Tzz 6T)(Z aTYZ
+ V. =|-—+ + + + 3.50
o VW) { " T Ty | ©.50)
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can be written.

The last three Equations 3.48, 3.49 and 3.50 are Navier-Stokes equations written in

conservative form. These equations also define the conservation of momentum.

For Newtonian fluids in which the shear stress is proportional to the time rate of

strain, Stokes proposed to use

to = A (V)42 (3.51)
ox
~ ov

Ty =A(VYV)+2u, — (3.52)
ay
~ ow

7, =A(VY)+2u, — (3.53)
Oz
ov Ou

Tyy =Ty ,um(ax ay] ( )
ou ow

= = — — 3.55

Tyxs =Ty ‘um(ﬁz ax] ( )
ow oOv

_ _ hdidhad 3.56

Ty, =Ty ,um(ay 62] ( )

where the coefficients u, and A, are molecular viscosity coefficient and second viscosity

coefficient respectively.

Then by using the definitions given in Equations 3.51-3.56, the Navier-Stokes

equations in conservative form can be given as below.
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a(pu)  o(pn’) dpuwv) dpuw) _ p g[w zua_u]+g N
ot ox oy oz ox Ox ox) oy ox Oy
L9 6u
62 (3.57)
opv)  opw) o) apw) __p of fov au)] of o0 v
ot ox oy oz oy Ox ox Oy oy oy
L9 0 6w ow v ov v, 358
| T )P (3.58)
a(pw)  d(puw) d(pw) Apw') __p D (a_u a_w) Lo fow, o
ot ox oy oz 0z Ox 0z Ox oy oy 0Oz
+i(m + zua_wj o, (3.59)
0z oz

These expressions are given in Cartesian coordinate system [11]. It is useful to express

these equations in the cylindrical (r,6,z) or spherical (r,0,¢) coordinates. Navier-Stokes

equations in cylindrical cordinate system (7,6, z) which are given in reference [7] are:

for component r

ov, ov, v, Ov, vg2 ov, op
Jo, +v, + -ty " |=—+
ot or r 00 r 0z

or
(3.60)
i(__( )] 1 62v,_£6v9+6v .
or\r o 2000 o0 o |
for component 0
p(a;_g-i_vraaﬁ-i_v_gaavé _VrVH +VZ ag@]:_lg_g+
t r r r z v (3.61)

0 1 621/9 2 ov, 621/9
—| = — -——X+ +
{ar(ra (rv 9)] 292 200 o2 |TPE0

zZ



for component z

ov. oV, v, Ov, ov, op
Jo, +v, +—=—=+v,
ot or r 00 0z

15( v, ]+L62v2+62vz .
H r or or r? 06* 0z* PE: -

Navier-Stokes equations in spherical cordinate system (7,0, ¢) are:

for component r

- =——+
oo " or r 00 rSin0 o¢ r or

< Li(rv) + ! i(SinBav’]— Lo, +
Harl o' ) i sing o0 00 ) rsin0 og® | ¥

for component 0

2 2
p[@v ov +v_96vr N Ve OV, Vo TV ] op

+
ot " or | r 00 rSin@ op - , - 00

1 o(,ov) 1 a( 1 o
LoD L Sin6
“{ﬂ Gr(r 61/} 72 69(51119 2 S )j
2Cos @ Ov, N
0 risin’o o | T PE

2
p[@ve ov, +v_96v9 LV ov, IAZIIY COl@JZ _l@_er

1 9%, L2
2Sin’0 04> 1’

ov,
0

for component ¢

ot or r 00 rSin 0¢ r r rSin@ O0¢
1 of ,0v) 1 a[ 1 @ . j
ro—I+ == ——\W,Sinf) | +
”L 6r[ arJ 50 5 20 "+5"0)

r

+ + —2
r’Sin’0 0¢>  r*Sin6 04 r’Sin’0 0¢

1 52V¢ 2 Ov 2Cos6 0v,
a2 Pg,

72

(3.62)

(3.63)

(3.64)

(3.65)
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The derivation of Navier-Stokes equations which were given previously starts with
Newton’s second law which is the conservation of momentum. These are nonlinear partial
differential equations. By using these equations the liquid flow in pipes, the ocean currents,
weather modelling, design of aircrafts and automobile surfaces and shapes can be done. By
coupling these equations with Maxwell’s equations magnetohydrodynamic equations are
obtained. Magnetohydrodynamics (MHD) is the simplified model of a magnetized plasma
in which the plasma is assumed as a single fluid which can cary current. The MHD model
is the same with the ordinary fluid with the addition of the force caused by the magnetic
field. MHD is interested in the fluids such as plasma, liquid metals, salt water etc. Together
with suitable equations and boundary conditions Navier-Stokes equations can model the

fluids accurately.

3.4. Energy Conservation

The infinitesimally small volume element moving with the fluid is again under

consideration. The energy balance for this element can be stated as [11]:

The net fluxof The net rate of work

Energy change ) o
heat which which is done by both
rate inside the = + . (3.66)
) enters the surface and body forces
fluid element ) )
fluid element on the fluid element

There are basically two kinds of forces acting on the fluid element, one of them is
body force and the other one is the net surface force as was mentioned previously. Both of
them do work on the fluid element separately. Physically the work rate which is expressed
in units of joule/second (J/s) can also be described as the product of the force and the
velocity acting on the direction of the force. By taking this definition into account the work

rate due to the body force is

W), = pF Vdxdydz . (3.67)
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Figure 3.14. The sketch for energy flows in and out of the fluid element

The work rate due to the pressure, shear and normal stresses which are composing
the surface forces also have an impact role on the energy balance. By taking into account
these forces again only for particularly chosen x direction the rate of work expression will
be calculated by multiplying the x component of the velocity which is # with the surface
forces acting on the fluid element. First of all the net work rate due to the pressure for x

direction is

Ws, p= {up — (up + @ﬂdxdydz (3.68)
X
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Wy o= —%dxdydz . (3.69)

When every shear force acting on the x direction is taken into account one can write

Ws,xx = |:(MTXX +

Ws,xx =

W, :Hmm .

WS,YX =

O(T yytt)
X

dedydz
ox

o(uty, )
Oy

] —UTyy }dydxdz

ATw) ey
y

zZ

Wy = Kurzx +%] —UT,y }dzdxdy

Ws,zx =

o) v |
0

z

] —UT }dxdydz

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

By using Equations 3.69, 3.71, 3.73 and 3.75 the net work rate, WSy NET can be written

as:

WS,NETX = WS,P + WS,XX + WS,YX + WS,ZX

S,NETy O

By rearranging Equations 3.77

(3.76)

__O(up) ddydz + o( Taxxu ) dxdydz + @ dxdydz +@dxdydz. (3.77)
X Y z



_(up) N O(T yytt) N O(Tyt) + a(TZXu)}dxdde

W p—l
SNy { Ox ox oy oz

is obtained. Similar expressions for y and z directions can be written.

For y direction

_0(wp)  O(txyv) , O(Twv) O(TyV) dxdydz
6); ox ay 0z

WS,NETy = {

for z direction

W p—l
S { oz Ox oy oz

Then, in that case

WS,NET = WS,NETX + WS,NETy + WS,NETZ

i [ ow) ara) aen) )],
ox ox oy oz

Aw) , Ary) ryv)  ATv)]
oy ox oy 0z

{_ d(wp) . (T, W) N o(ty,w) + a(rzzw)}}dxdydz

oz ox oy oz

3 o(wp ) L (T y,w) n oty W) + otz }dxdydz.
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(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

is obtained. The Equations 3.82 is only for surface forces and also body force effect must

be included. Then

Wner =+Ws neT + W)

(3.83)
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finally ‘the net rate of work which is done by both surface and body forces on the fluid

element is

i [Lew) o aewn) )],
ox ox oy oz

_0(w)  A(tyv) O(tyy) Ayv)|, (3.84)
oy ox oy 0z

{— 6(;" ) a(fa’z LZ a”g;w) + a”gj ") }dxdydz + pF Fdxdydz.

After the expression for work rate is obtained it is useful to take ‘the net flux of heat
which enters the fluid element’ into account. The heat flux in any direciton, as a definition,
is the energy per unit area which is perpendicular to the direction and per unit time. For
this study the heat flux in x direction is shown as ¢, . For the fluid element considered in

the Figure 3.14 the net heat which is transferred into the fluid element is given as:

O, =g dvdz— (qx 4 ag_x dx]dydz (3.85)
X
: 0q x
0, =-% ixaydz. (3.86)
ox

Equation 3.86 gives only the net heat which is transferred to the fluid element from

the x direction, similarly for y direction

O, == 4vayas (3.87)
dy
and for z direction
0, = -2 g (3.88)

1574
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Total heat transfer rate to the fluid element by thermal conduction is given as:

QT = QX +QY + QZ (3.89)
0, =20 geyz - %17 gayaz ~ A ey (3.90)
ox ay Oz
0, =| - %x _%v %z 4, (3.91)
ox Oy Oz

By using the Fourier’s law for conduction heat transfer, which states that the heat

flux is proportional to the temperature gradient, the heat fluxes can be written as:

Gy = —ka—T (3.92)
ox

gy = —ka—T (3.93)
y

q, = —ka—T. (3.94)
Oz

After these new definitions Equation 3.91 can be written as:

. o(,oT o[, ol o(,oT
0, = l:a (k gj + {5@( 5]} + {g (k E]ﬂdxdydz . (3.95)

Volumetric heat addition rate per unit mass, Q'V, ., 1s given as,

0, =0y, pdxdydz (3.96)
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where QV is the volumetric heat addition rate. By taking the volumetric heat addition and

conduction heats the total heat rate, QTOT will be written as:

QTOT = QV - QT (3.97)

) = 00T |0, 0T |90, 0T 2
Oror =9 m pdxdde{ o (k 6x]_{ o (k o ﬂ{& (k = mdxdyd . (3.98)

Since we are interested in the fluid element which is moving and having a kinetic

energy, this kinetic energy can be given as
Ey, = —mpv (3.99)

where m,, is the mass of fluid element into consideration. Therefore the word energy

which is mentioned in ‘the rate of energy change inside the fluid element’ expression in
Equation 3.66 represents the total energy. The kinetic energy expression by using the the

density, p, of fluid element,
1
E. = > pdxdydzv’ (3.100)

can be written.

The fluid element contains molecules which have their own energies. The sum of all
the molecules’ energies is the internal energy of the fluid element. This energy arises from
the random motions of the molecules inside the fluid element. Let us give this internal

energy per mass as &,,. By taking into account both the kinetic and internal energies of

the molecules the total energy E,,, of the fluid element can be written as :

1
E,pp = (gm +§v2]pdxdydz. (3.101)
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The rate of change of the total energy will be

D D 1 5
—F _—| &, +—V dxdydz . 3.102
e TOT—Dt[ mt5 ]P lydz ( )

By rearranging Equations 3.102, 3.98 and 3.84

E(gm +%\72}pdxdydz =0, pdxdydz +

ECRE ]

|:_ o(up) " O(T yyu) " O(tyu) " 8(TZXM)}+
ox ox Oy 0z (3.103)
_ o(wp) + O(T yv) + o(tyv) + O(T4v) +
oy Ox Oy 0z
_0(wp) + T y,w) " oty,w) " ot yw) dxdydz +
Oz 0x oy Oz

pF Vdxdydz

1s obtained.

This last Equation 3.103 is the defined expression of Equation 3.66. If Equation

3.103 is written for unit volume one gets

L Hka_fy Hk@ij} P(ka_fm .
2 ' Ox Ox oy oy Oz Oz
_ o(up ) + O(Tyyu) n O(Tyu) n O(tyu) 4
Ox Ox oy 0z

Lo0w), Aryv) , Aryv)  Atyv)],
oy Ox 10)% oz

(3.104)

_awp) | Aegw) ATpw) Ayl 5
Oz Ox ay 2 o

Equation 3.104 found is in nonconservative form. The conservative form of the

same equation can be written as
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alort sl 12
ST

_Oup)  O(txxu) O(tyxu) O(tzxu) |, (3.105)
ox ox oy oz
_00wp) , O(txyv)  O(tyyv) O(tzyv)|,
oy ox oy oz
_O(wp)  O(txzw) O(tyzw) O(tzzw) ¢ pFF
oz ox oy oz o

This equation is also called conservation of energy [11]. The equations shown in this
chapter are the main governing equations for fluid dynamics. The numerical simulations
are usually done in the scope of these equations. Numerical methods which can be used for

simulations are discussed in the subsequent chapters of this thesis.
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4. PHILOSOPHY OF COMPUTATIONAL FLUID DYNAMICS

The advancements in fluid dynamics started with experimental works and theoretical
studies in the 17" century. A few centuries later another equal partner to experimental and
theoretical fluid dynamics appeared. The name of this third approach is called
‘computational fluid dynamics (CFD)’. Fluid dynamics had already been divided into two
parts which are theoretical and experimental parts before the invention of the
computational fluid dynamics. Fluid dynamics is not only used in industrial processes
such as steel production and metal coatings but also in transportation by cars, trains,
aircrafts and ships. Since the fluid dynamics plays an important role in science and
technology the solutions for governing equations are very important. CFD (computational
fluid dynamics) utilizes the numerical methods and solves codes in order to understand
solutions to the governing equations. By the invention of high speed computers the
numerical accuracy increased and the numerical results began to be used heavily before
performing experiments. Since the experiments are very expensive and time consuming
nowadays sometimes the results obtained from numerical calculations on high speed
computers are used. After a lot of advancement in numerical methods and computer
program codes, CFD became an equal partner to the experimental and theoretical fluid
dynamics. CFD can not only replace either of pure theory and pure experiment but it can
also balance them. Historically the early developments of CFD started by the needs of
aerodynamics studies but it is now being used in naval architecture applications, in
environmental engineering applications such as heating, air conditioning, in industrial
manufactoring applications such as in manufactoring in ceramic composite materials, in
civil engineering problems involving the rheology of rivers, lakes etc., and in automobile
and engine applications [11]. Bio-mechanical engineering also uses the CFD codes in
simulating the blood pump which is taking the the role of the heart in process of open heart
surgery. Nowadays, CFD is not only used as a research tool but it is also used as a design
tool. Instead of doing real experiments one can obtain identical results needed by using the
computer codes. There is no need to carry this code together with someone and he/she can
communicate with it from very very long distances by using the internet to do calculations
remotely. Therefore CFD can be thought as a tool which replaces the money and time

expenditure for real experiments with the numerical experiments.
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Figure 4.1. Three branches of fluid dynamics

83

In order to make calculations in CFD there are some processes which must be done

previously.

Geometry of problem is
defined

A 4

The volume occupied by fluid
1s divided into discrete cells

A 4

Physical modelling is defined

Boundary and initial
conditions are defined

A 4
Equations are solved
iteratively as steady or
transient state

\4

The solutions are stored in
files for plotting and graphing

Figure 4.2. The order of CFD processes
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The order is shown in Figure 4.2. Initially, the computational domain must be
discretized by some space discretization methods such as finite difference, finite element,

finite volume, boundary element method, and matrix distribution method.

Figure 4.3 shows the main steps taken before the CFD process.

Fundamental Physical

Principles
v v
Mass Conservation Momentum Conservation Energy Conservation
A\ 4
Flow
Models

L

A 4 A 4 l

Moving Fluid Fixed Fluid Fixed Control Moving Control
Element Element Volume (finite Volume (finite
(inifinitesimally (inifinitesimally volume) volume)
small volume) small volume)

A 4
Governing Equations
(Mass, Momentum and Energy
Conservation)

A 4

Governing Normalized
Equations suitable for CFD

Figure 4.3. The map showing the processes taken before the CFD calculations [11]
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As a result, as previously mentioned CFD has a very broaden application area
including the aerodynamics of automobiles and aircrafts, hydrodynamics of ships,
turbomachinery, pumps and turbines, heat transfer systems like heating and cooling
systems, combustion, building ventilations, transport of pollutants, pipe networks,
reservoirs, channels, flow of rivers, ocean currents, tidal flows, numerical weather

forecasting, plasma flows, blood flow in heart and veins, circuitry cooling, etc.

4.1. The Main Properties of Numerical Solution Methods

Since numerical methods are used to solve some physical problems as good as
possible they must have some properties such as accuracy, consistency, stability,

realizability, boundedness, etc.

4.1.1. Accuracy

The word accuracy roughly shows how close the results to the real ones are. During
the numerical solutions to the problems there are always some errors such as modelling
errors, which arise from the difference between the real problem and its mathematical
representation, discretization errors, which arise from the difference between exact solution
of algebraic equations and solutions after discretizing them and iteration errors, which are
due to the fact that the numerical solutions are obtained after some iterations which may
have some mathematical errors. Some of these errors are systematic and unavoidable in

nature.

The one who does the numerical solutions must be aware of the existence of these
errors. In order to decrease the errors coming from disctretization it is better to use finer
grids. The order of the approximation is a real measure of accuracy. The errors arising
from the iteration processes and from rounf-off are easy to control. The main objective of

the code developers is to have better accuracy with less effort [12].
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4.1.2. Consistency

The ‘truncation error’ as a definition is an error which arises from the difference
between the exact equation and the discretized one. For a method to be consistent the

truncation error must be zero when the mesh spacing Ax, - 0 and Az — 0. Even though

the consistency is achieved it does not mean that the solution of discretized equations is the

same as the exact solutions to the differential equations.

4.1.3. Stability

If the errors are not increasing during the numerical solution process the numerical
solution is said to be stable. If an iterative solution is stable there is no divergence from the

correct solution.

4.1.4. Convergence

For convergence, as the grid spacing goes to zero, the discretized equations should
tend to the exact solutions of the differential equations. The consistency is useless without
the convergence of the method. For small grids the rate of convergence is dominated by the

order of truncation error.

4.1.5. Conservation

The numerical schemes must obey the conservation laws because of the fact that the

governing equations solved with these methods are real conservation laws in nature.

4.1.6. Boundedness

Every solution must be physically meaningful after numerical discretizations. For
example physical properties such as density, kinetic energy, etc. must always be positive
in solutions. Boundedness is a difficult condition to guarantee, however there exist some

techniques to check the physical bounds.
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4.1.7. Realizability

The numerical solutions dealing with complex problems must be designed in a way

that they can guarantee physically realistic solutions.
4.2. Space Discretization Techniques

The task of the discretization technique is to transform the differential equations in

the following form:

6U(?,t)+6E(U(F,t))
ot or.

1

= S(U(7.t)) (4.1)

where U(7,t) is a vector of conserved variables, F,(U(7,t)) is the flux vector in the 7,
direction, and S(U(7,t)) is the source term. To solve Equation 4.1 one needs to convert
coresponding boundary conditions into a set of algebraic equations which can be solved
numerically. A lot of physical problems deal with the equations such as in Equation 4.1.
These equations are modelled by different conservation laws. Since everything is solved on
discrete points during the disctretization, some discretization errors are automatically

introduced to the solutions [13].

Fundamental Space
Discretization Methods

[ ] o

Finite Finite Finite Boundary i Matrix i
Difference Element Volume Element ' Distribution E
Method Method Method Method | Scheme

Figure 4.4. The mostly used space discretization methods
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Differently from the analytical methods which give the solutions correctly and
accurately through the whole domain, the numerical solutions are obtained only on discrete

points called the grid points.

y
A
Ax
‘z‘—l,j+1 hz',j+1 i+Lj+1 [ i+2,j+1
i-1j ‘i,j .i+1,j .?+2,j
Ay
o ® o
i-1,j-1 i, j—1 i+1,j-1 | i+2,j-1
_?i—l,j—2 ?z’,j—2 $i+1,j—2 ?zlz,j—z

Figure 4.5. Two dimensional discretized solution domain

A domain chosen for solution of governing differential equations is shown in Figure
4.5, where a rectangular domain is divided into subdomains by discrete points called
nodes. For convenience spacings Ax and Ay are taken as constant for simplicity. However
sometimes it may be necessary to take them varying. The grid shown in Figure 4.5 is called
the ‘structured grid’. In structured grids the nodes are placed regularly (i.e., Ax and Ay are
constant). In ‘unstructured’ grids the nodes are placed in an irregular fashion to cope with

domains with complicated boundaries.

The space discretization is done by using mostly five different techniques which are
finite element, finite difference, finite volume, boundary element and recently developed
matrix distribution methods. These techniques will be mentioned briefly in chronological

order of invention of technique.
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4.2.1. Finite Difference Method

In 1910 at the Royal Society of London, Richardson presented a paper on the first
‘finite difference method” which is simply presented by the abbrevation FDM. Earlier
applications of FDM in CFD started with Courant, Friedrichs, and Lewy in 1928, Evans
and Harlow in 1957, Godunov in 1959, Lax and Wendroft in 1960, among others up to
date [14].

Historically FDM has dominated the CFD community in early studies about

discretization techniques.

The finite difference method is actually based on Taylor’s series expansion which is

basically given as (in 1 dimension in Cartesian geometry):

_ of  Of () & (Ax) o"f (Axy
f(x+Ax)—f(x)+8xAx+ax2 5 +6x3 o +"'+6x” R 4.2)

The Taylor’s series given in Equation 4.2 is used to discretize equation on the grid shown

in Figure 4.6.

i=3,j i-2,j i-1j iLj i+l i+2,j  i+3,)
—=? ¢
A

P

Figure 4.6. One dimensional finite difference grid in Cartesian coordinate system

By using Taylor’s expansion and the grid shown in Figure 4.6, any function at point

P with the coordinates (i +1, j) can be expressed around point (7, ) as :

ui+],j:ul.,j+(au] .Ax+(62u] .(Ax)2+(63u] .(Ax)3+m+(6”u] .(Ax)n.(4.3)

5 ox? l 2
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Again by using Taylor’s expansion any quantity of point 4 with the coordinates

(i—1, j)can be around point (i, j ) expressed as :

ox /). .

T— —(a—“]ld Ax+ (aZ”L. (Ax) —(63”1’/(“)3 TR (a"z]i’j.(m)" (44)

(6_14] My mWy (QPu) (&) (Qu) (A) (0w (Ax)” @)
ox ), Ax o) 2 o), 6 o \&") a0

The first term on the right hand side of Equation 4.5 is the forward finite difference
representation of the actual derivative (Ou/ 6x)[’j . The residual part of the right hand side of

the equation (except the first term) is called as ‘truncation error’. By using the Equation 4.4

one can write

[a_u] My Tty (O} (&) (Ow) (Ax) o (w) (AT o
ox Ax axz i,j' 7 6x3 i,j- 6 o i,j, "y .

iJj

showing a similar derivative which is backward.

The derivatives from Equation 4.5 and Equation 4.6 can be written with first order

accuracy as follows:

a_u . Ui — U,
=——+0(Ax) (4.7)
ox ), Ax
Ou U = U,
M T T @A), 4.8
( ale.j L 0(Ax) (4.8)

The method shown as Equation 4.7 is called ‘forward difference’ and the method

shown as Equation 4.8 is called ‘backward difference’ method. There is one more method
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obtained from the subtraction of Equation 4.4 from Equation 4.3. This method is called the
‘central difference’ which is of second order accurate is obtained as follows:

u —-u. ., .=

i-1,j

2 2 3 3 n n
u; +(6_u] Ax + g L; (Ax) + 0 zl (Ax) +...+ O'u (Ax) _
: ox ), ; ox g 2 Ox g 6 A" ,on /

i+l,j

3 3
—u, = 2(6—“] N iR IG5
g ox ), ') 6 (4.10)

ou Uiy ~ Ui 2
— | =L = L O(Ax)". 4.11
(6}(1]. 2Ax (Ax) 11

The central representation given in Equation 4.11 is called ‘the second order central
difference’ formulation. The word ‘order ‘ provides some information about the truncation

error or the part of expansion which is neglected in the differential approximation.

In order to solve Navier-Stokes equations not only the first derivative but also the
second order derivatives are needed. By adding Equation 4.3 and Equation 4.4 the
representation in Equation 4.12 is obtained and it is called ‘second order central second

derivative’.

[&] _ Ui, ML o000 4.1
1]

The equations above are written for variable x in one dimension, the same

representation can be used for another variable (say y ) in the same fashion. Equation 4.12

can be written for y in the following manner
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2 u. . —2“. .+u. P

[6 u} _ i,j+l1 i,j i,j—1 +@(Ay)2 (4.13)
2 2

") (4v)

where ©(Ay )2 represents the terms having ( Ay )2 or higher order.

In addition to the equations derived the mixed derivative representations are also
needed (for viscosity etc.) during the numerical solution processes. The derivation for the

mixed derivative representation is relatively difficult.

In order to have numerical representation for mixed derivatives the extra
differentiation technique is used. By differentiating Equation 4.3 with respect to the

variable y one gets

5 2 3 3 " !
i Ui =U; +(6_uj Ax + 0"u (Ax) + ou (Ax) +..+ 0'u (Ax) (4.14)
ay \J \J Ox y ax2 y 2 6x3 Y 6 ox” g n!

2 3 2 4 3
(a—u] :(a—u] +(6u] Ax+( 6u2] (&x) +( 6u3] (&x) +....(4.15)
oy Y oy i oyox i 0yox i 2 0yox i 6

If the same differentiation is done for the Equation 4.4

2 3 2 4 3
(a—“] :(a—“] _(a “] Ax+( 6“2] (ax) +( 2 ”3] @& (4.16)
oy y oy i 0yox i 0yox i 2 0yox i 6

is obtained. When Equation 4.16 is subtracted from Equation 4.15 one gets
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oyox ). ovax? ) 2 o) . 6 (4.17)

Ayox | oox? ). . 2 |oxd) . 6

which leads to

2 4 3
(a—“] —(a—“] :2(a “] Ax+( ‘ “3] (&) (4.18)
oy iy oy y 0yox i Oyox i 6

1s derived.

By taking out the mixed derivative which is the first term on the right hand side of

the Equation 4.18

(4.19)

0yox 2Ax oyox’ 12

(azu] _(ZL,;(ZLW _( o'u ] (ax)°

i,

is found. In order to find the final numerical representation for mixed derivative one can

use the following

u. . —u. .
(6_1/!] _ i+1,j+1 i+1,j-1 +@(Ay)2 (4.20)
ay i+l 24y

u._ . —u._ P
ul ML ML a2 (4.21)
oy i1, 2Ay

In that case, one obtains
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2 u. . —u. 1 — u._ . —u._ P
[6 u} _ i+1,j+1 i+1,j-1 ( i—1,j+1 i-1,j 1)+@(Ax,Ay)2. (4.22)

0yox 2Ax.2Ay

LJj

The representation given in Equation 4.22 is called the ‘second order central

difference for mixed derivative’.

These expressions are relatively easy in comparing the numerical representations for

derivatives in the boundaries.

1 2 3 4 ?5 *6 ' 7

*
|II|||||III|||U§||IIIIIIIII

Tt

=

i

Figure 4.7. One dimensional Cartesian mesh with the boundary on the left

The first derivative representation for finite difference method as forward difference

on point i =2 shown in Figure 4.7 1is easily written as:

6_1/[ _ Uz —uy
(asz == o). (4.23)

The central difference which is of second order accurate formula for point 2 can not
be written since the point 1 which is outside the solution domain is needed. The
information about node number 1 is generally known from the domain which surrounds the
left side of node 2. It is easily seen that Taylor series expansion does not provide the

solution for second order accurate finite difference representation. In order to have the
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solutions for boundaries the polynomial approach can be used. The second order

polynomial representation of u is given similar to [11] as:
2 3
u=A4,+B,x+C,x" +O(Ax™ ). (4.24)

Taking x =0 for node number 2, x = Ax for node number 3, x = 2Ax for node number 4,

x =3Ax for node number 5.... By taking these values into account one can write :

u, =4, (4.25)
uy = A, +B,Ax+C,(Ax) (4.26)
u4:AP+Bp(2Ax)+Cp(2Ax)2. (4.27)
Using Equations 4.25-4.27 one can find
—3u, +4u, —u

B = 2 24, 4.28
r 2Ax (428)

By taking the derivative of Equation 4.24 at node number 2 with respect to x,

ou O(Ax) 3

(5]2 :Bp+2Cpxx=0 =B,+0(Ax”) (4.29)

is obtained since x = 0 for node number 2. Using these results in Equation 4.28 one gets:

_3 Ay —
(a—“] ST T T | gop) (4.30)
ox 2 2Ax

which shows that the second derivative can be defined as in Equation 4.30 with second

order accuracy if two more nodes are used within the domain.
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Since the node points, which were used during the derivation of the expression given
as Equation 4.30, are only on one side of the boundary, these kinds of representations are
called ‘one sided differences’. The similar equations are not only used for the boundaries

but also they can be used in the internal nodes.

During the derivation of Equation 4.30 only three nodes were used. However more
nodes can be used for the same derivations and mostly more accurate results can be
obtained. However, the order of accuracies in the interior and in the boundaries must be the

same.

Using the definitions so far one can solve one dimensional heat conduction given in

as in Equation 4.31 [11].

oT 0T
p—— at
ot Ox?

(4.31)

Here 7T'(x,t) represents the temperature and it is a function of both displacement x
and time ¢. In addition, «, is the thermal diffusivity coefficient which is assumed to be

constant for simplification. Also the displacements between the nodes for x and for ¢ are

chosen to be equal, see Figure 4.8.

At

k o ——0—0—9

k-1 0—0—0—0—9

® *—0—0 0>
i-1 i i+l

Figure 4.8. Two dimensional solution domain which can represent the example given as

Equation 4.31



Left hand side of Equation 4.31 can be represented as

(6T]k T -k (oY A (8T A
— | = + —+ +
ot At ot ) 2 ot’ 6

1 i i

and right hand side as

T\ T —2rh+Th (0T Ax
2 | = 2 + 4 +
ox Ax ox 12

i i

Inserting Equation 4.32 and Equation 4.33 into Equation 4.31 one gets

o) 6 Ax?

i

ot’

i

At 2

1

After some rearrangements, Equation 4.34 turns into

2

T -TF (T -21f +T) Ka%]" At (aﬁ]" AL }
—~ + - A=

ot? ot’

i

o*T\" Ax?
e T +..1=0
x i

At Ax? 6

i

i (62T]k At (63T ]" AP T*, - 2T + T, (64T]k AX?
+ + o +
X .
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(4.32)

(4.33)

. (4.34)

(4.35)

where time discretization is 1% order accurate and space discretization is of 2" order

accurate. Finite difference method is not only the oldest but also is the easiest method used

for simple geometries for solutions of partial differential equations. The main disavantage

of the method is the unapplicability to the complex geometries since indexing becomes

extremely difficult.
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4.2.2. Finite Element Method

One of the most important discretization techniques is finite element method (with
abbrevation FEM). This method is based on the idea which breaks the domain into a set of
discrete elements that are generally unstructured. In two dimensions they are usually
triangles or quadrilaterals, in three dimensions they are tetrahedra or hexahedra. The most
important feature of the technique is that the equations are multiplied by a basis functions
before they are integrated over the entire domain [12]. In 1956 in the Aeronautical Science
Journal the first FEM studies were published by Turner, Glough, Topp and Martin. This
work was done for the applications to aircraft stress analysis. The first one of the main
advantages of finite element method is the applicability to any arbitrary shape and
dimensions. The shape can be made of different materials and their properties can be
nonhomogeneous (depending on location) or anisotropic (depending on the direction).
Finite element method converts the governing equations to the matrix equations which can
be solved numerically. FEM solves a set of related equations by approximating continuous
field variables as a set of field variables at discrete points previously named as nodes. FEM
solutions are achieved by either eliminating the differential equation completely (steady
state problems), or rendering the partial differential equations PDE, into an equivalent
ordinary differential equations which is then solved using standard techniques such as

finite differences.

e

Figure 4.9. Different shapes for finite elements with corner nodes

One of the biggest advantages of finite element method is the applicability to the problems
with very great complexity and unusual geometry. The solution for the problem given in

Equation 4.1 is considered in the form given below.
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U(F,1) = ZN (U (1) (4.36)

where 7 is the position vector, U, is the value of U in the node 7, n is the number of the

nodes and finally N,(7) are the nodal basis functions which have the propery given as in

Equation (4.37).

N.() =8, (4.37)

where &, is Kronecker delta function. N,(7) is the function whose geometrical shape is

given in Figure 4.9. The expression given in Equation 4.1 is transformed to the equivalent
integral formulation by the help of the definition given in Equation 4.36. Then expression
is found by replacing U by Equation 4.36 and integrating Equation 4.31 over the solution

domain, Q, after being multiplied by weight function w,.

a n
J;) 5(; NU)w,dQ + J;}[

‘ZFA' w dQ = [[SwdQ . (4.38)
7, Q

k

In Equation 4.38 the index, i, changes from 1 to the number of nodes. Every node
has its own value related to the Equation 4.38. The two equations, Equation 4.1 and
Equation 4.38 are equivalent if and only if Equation 4.38 holds for all possible choises of

the weight function [13]. The weight function w,and its first order derivatives must be

integrable [15].

If the weight function w, are identical with the basis functions N, (7)then the
classical Galerkin finite element method is obtained. If the functions, N,(¥) and w,(7 ),

are not identical the Petrov-Galerkin finite element method is obtained.
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Figure 4.10. The shape of linear nodal basis function

The solution domain in two dimensions given in Figure 4.10 is divided to finite elements

which are triangles in this example. The steady advection equation given by
u a _ 0 (4.39)

is considered and its FEM representation is desired to be written in one dimensional

Cartesian grid shown in Figure 4.6. Multiplying Equation (4.39) by w,(x) and taking

#(x)=3 N, (x)$,(x) one ges

x)
$dQ=0. (4.40)

v (
dx

jwi(x)ui

If Galerkin method (1. e., w;(x) = N,(x)) is used on a structured grid, Equation 4.40 for

the node i becomes

u(¢i+1 _¢i—]) _

: 0. (4.41)
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The result obtained in Equation 4.41 is similar to the result obtained by using Finite

Difference Method in Equation 4.11.

Figure 4.11. Basis functions (piecewise linear and tent shaped) for the nodes with numbers

betweeen i —3 and i +3

There is one dimensional solution domain in Figure 4.11 in which the finite elements

are placed between two neighbouring nodes.

Actually the applications of finite element methods are divided into three main
categories. The first part which mostly uses the finite element method is based on the
problems called ‘equilibrium problems’ which are also called as ‘time-independent
problems’. The second part of the problems are eigenvalue problems dealing with the solid
mechanics and mostly fluid mechanics. The third category is time dependent or
propagation problems in continuum mechanics. Considering all categories one finds out
that finite element method is mostly used in the areas such as fluid mechanics, heat

transfer, solid mechanics, electromagnetism, etc.

Comparing with finite difference method, finite element method contains more
complex algebra but this property makes finite element method more useful for the

multidimensional and arbitrary geometries.

4.2.3. Finite Volume Method

Finite volume method (FVM) basically utilizes the integral form of governing

equations. The solution domain in this method is divided into the control volumes in finite
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numbers. Then the conservation equations are applied to each control volume . The
computational node is located at the centre of the control volume and the computations are
done at that point. The need for knowing the variable values at the surface of the control
volumes to get fluxes is established by using the interpolation in terms of the nodes located

in the centres [12].

The finite volume approach is mostly the simplest one for programming but requires

several neighbouring cells for defining higher order fluxes at the interfaces between cells.

»
>

v
=

Figure 4.12. The typical rectangular control volumes in a Cartesian grid

In order to understand the method better it is useful to take the Equation 4.1 into
account again. The basis of finite volume method is that the differential form of
conservation law is integrated after the equation is transformed to integral form. The
integration is done over the control volume. Integrating Equation 4.1 within control

volume one gets:

| %J v + § F.ndov = [ S,dv (4.42)
Vv

oV Vv

by taking the advantage of Gauss’ theorem for flux integration.
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ext
i

In Equation 4.43 n" is the component of the unit outward vector in direction i, U

is the vector containing the conserved variables, F; is the flux vector and S is the source

vector.

The conservative form of Equation 4.39 can be written as :

dup _df, _ (4.43)
dx  dx
which gives
§ fin.dov =0 (4.44)
ov
after finite volume integral is taken.

Figure 4.13. Control volume and its unit outward normals

Ax
< | t—e > o | o—| >
_|5_z!2 3= TG Tivr Ty iv2 T
1—= == == i+— i+—= i+=
2 2 2 2 2

Figure 4.14. Finite volume grid in one dimension
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For the grid shown in Figure 4.14, the flux function, f, =u¢

for the grid point i leads to :
fL(i+%)_fL(i—]E):0' (4.45)

Since the physical quantities are defined in nodes i—2,i—1,7,i+1,i+2 the flux at the

boundary between i and i +1 can be taken as

JLti) L

friis)) = +O(Ax)? (4.46)
2

and similarly

Srei) Y fLiia
Jipd)= =T oA (4.47)
2

which concludes that they are the second order accurate discretizations.

The accuracy of discretization not only depends on the definition of the flux function

but also it depends on the numerical integration used [13].

Using the finite difference method is very difficult when the coefficients of equations
have discontinuities. However, for finite volume method these discontinuities will not be a
very big problem if the solution domain is divided in such a way that the discontinuities are
on the boundaries of the control volumes. From the industrial point of view, finite volume
method is known as the cheap and robust discretization method. Actually for high order
polynomials finite element is better [16]. The main disadvantage of finite volume method
against finite difference method is that the orders higher than second order are more
difficult to develop in three dimensions. This is the result of the need for three levels of

approximations which are interpolation, differentiation and integration.
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4.2.4. Boundary Element Method

The numerical discretization of boundary integral equations are called the boundary
element method. The boundary element method (BEM) is a numerical analysis technique
used to obtain solutions to the partial differential equations of a variety of physical
problems with well defined boundary conditions. The first prominent development in
boundary element method is done in 1963 by the Jaswon and Symm [17]. In their study the
linear, uniform elements and constant potentials were chosen. The integral equations that
are based on the Laplace equation are solved by using Simpsons algorithm [18]. In 1963
Jaswon and Ponter in 1967 Hess and Smith have also worked hardly on the boundary

element method for different physical problems [19, 20].

The formulation of boundary element method is based on the boundary integral
equations. In this method, the boundaries are reduced by one which leads to the reduction
of the number of space dimensions by one. The differential equation defined over the
entire domain is transformed into a surface integral over the surface domain that enclosed
entirely the solution domain. The surface itself is then divided into the elements called the
boundary elements. The major advantage of this method over the finite element method is
that the discretization is done only on the surfaces. Therefore the number of the elements
are much less than that of the finite element method. The major disadvantage is the
difficulty in dividing the surface into elements for nonuniformly shaped domains [21].
One of the advantages over the other techniques is that it works well on the geometries

with voids and holes [22].

Figure 4.15. The solution domain with volume J and discretized surface covered with

boundary elements
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To understand the method it is better to assume two different and arbitrary functions

which obey the conditions given in the reference [17]. These functions are u, and uf*.
The function u, is the variable which is desired to be calculated in reality. The choice of

the functions can simplify the complex nature of the equations wanted to be solved. By
writing the net flux which is flowing through the boundary in the direction of the normal

vector

£

O G (4.49)
= =Vu, n. .
i@ =5 1
By using Green’s equation [21] one can write
[u, Vou,av—[u,vu dv ={u,q,dS~[q, uds (4.50)
vV Vv N N

where V' is the volume of the solution domain and § is the surface covering the solution

domain.

_, Field Pont, |

I

Souce 4 1
Point » ——

Figure 4.16. Source point and field point on the domain divided

into the boundary elements
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Point © P’ which is called the source point can be chosen everywhere in the solution
domain. However, in order to form the integral equation it is chosen on the boundary for

simplicity. After some definitions given in [17], u (' p) becomes
u,(p)+[a, ugdS=[u,q,ds. (4.51)
s s

u f* and ¢ f*are geometric functions depending only on 7 which is the distance between
the source point and the point where the effect of the source is wanted to be calculated. For

. . . * .
examle for the isotropic domains u, can be given as :

* 1 1
u, =—1In| — 4.52
T on (F] (4.52)
and for qf*
f
. = —_— = rn_+rn 453
qj 6r 6}1 2W2(x x Yy ( )

1s obtained.

Since the source point P can be chosen everywhere in the domain u,(p) is

multiplied by the function c¢(p) which depends on the geometrical position of the source

point in the domain. The mathematical definition of ¢(p) is given as:

c(p)= % (4.54)

where 0 is the angle related to the part of the source point located in the solution domain.
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T

=3 o(n)= o(n)=>

Figure 4.17. The values of ¢(p) for different geometries

If the source point is chosen to be in the solution domain ¢(p) =1, if it is out of the

solution domain c¢(p) =0.

After the multiplication with c(p) is done the integral equation is obtained as:
u,(p)+[q, uds={u,qds (4.55)
S S

This Equation (4.55) can relate all the nodes to each other. After the solution domain is

discretized as shown in the Figure 4.16, the boundary integral expression will be

o(phu(p)+Y. [a, u,dS =Y [u,q,ds,. (4.56)

The flux of any boundary can be found by doing interpolations. Then the system of

equations is transformed to the matrix representations and finally is solved.

Relatively the boundary element method is a new method for discretization
compared to the previously mentioned methods. It has some advantages like less time
requirement for modelling, the dimensions of the boundaries are reduced by one, for the
same accuracy compared with the other methods the element number is less and the
computer time used is prominently less, etc. However, there are also some disadvantages in

the method such as the need for more complex mathematics, the domains like shells are
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difficult domains for solving because of the fact that the elements and nodes are very near
each other and this affects the accuracy of solutions, the matrix obtained from the set of

equations is not symmetric and there are no zero valued elements.

As a result for the discretization methods mentioned above there are some

advantages and disadvantages against each other in different ways.
4.2.5. Matrix Distribution Scheme

This method is a relatively new technique for space discretization. It can be used in
MHD equations instead of some conventional discretization techniques such as finite
difference, finite element, finite volume. The numerical simulations in this thesis are done
in the scope of this matrix distribution scheme. The step by step calculations of MHD

equations used in this work are shown below. The main assumption in this scheme is that
the value of U is changing linearly within the triangles (Equation 4.57). The fluctuations

due to these changes are distributed at every node of each triangle by ‘distribution matrix’

which will be introduced later in this section.
—_— n —_—
U(7.t) = Y Ni(F)Us(1) (4.57)
i=1

In Equation 4.57, U;(t) is the value of U(r,t) at node numbered i and N;(7) is the

linear shape function. If it is assumed that two dimensional space is under consideration

then the Equation 4.59 can be written as:

Ulxy.t)= SNi(x,yJUi(1) (4.58)
=1

where N;(x;,y;)=06;; and 6;; is Kronecker delta function. Equation 4.1 is in

conservative form. The quasi-linear form of it can be written as in Equation 4.59 where A

and B are Jacobian matrices.
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+A——+B——=57 (4.59)

If the pseudo time rate is ignored for now at least and it is multiplied with N; and

integrated the result over the area of triangle given as €2, will become as:

HN a0 = ”NA%ZdQ ijB%(y]dQ+gN,§TdQ. (4.60)

By rearranging the Equation 4.60 a more compact form is obtained

v

fgj( ]d ”N( %U]dﬂ +[[N,5,de . (4.61)

By using the definition given in Equation 4.58, the new form for Equation 4.61

Q(NIZ:‘,NI-Z—? HN ZN( aaU ]dQ+HN S NSdQ  (4.62)

y

is obtained. Here the sum inside every triangle runs from 1 to 3, which are the node
numbers of the triangle. The global system can be written by a result of summation over

the individual triangle 7' and the final expression can be written in the following way:

;{Q(N,gzv oU, ]d HN ZN (A—+Baai]dﬂ +J!.N,Z::Ni§TdQ}.(4.63)

y

Before proceeding it is better to give some definitions here. If the two dimensional spatial
domain (2, has a triangular shape shown as in Figure 4.18, and 1, 2 and 3 are the local
node numbers of the triangle, the inward scaled normals with the length of corresponding

faces are given as:



i =(yy —y3)X+(x3-x3 )y
iy =(y3 =y )X+(x; —x3)p
fig =(y1 = Yo )X +(xp —x1)y.

The triangle with the inward normals is shown in the Figure 4.18. [13, 23].

=y

Figure 4.18. Triangle with inward scaled normals

The general formulation for the inward normals is given as:

n,=(y, _yk))e-i_(xj =X )Y

Note that the sum for these three normals vanishes ,

n,+n, +n, =

the result became

n +n,+n, =0.

111

(4.64)

(4.65)

(4.66)

(4.67)

SIS forf 5@ s ool 3o

(4.68)
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This can be written in general representation as:

i, =0, (4.69)
1

1

X/

_/

.
N\

Figure 4.19. Unstructured triangular mesh filling the solution domain

3

The shaded area in Figure 4.19, is called the median dual cell or Veroni area surrounding

the node i. The represenattion of Veroni area is given with the symbol Q. .

In order to distinguish the flow direction being inflow and outflow, or the nodes
being upstream or downstream it is useful to define the scalar ‘inflow parameter’ which is

mostly given as :

A7 (4.70)

where the 1 is constant speed vector in the scalar problem U ANVU =0 (Figure 4.20).
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For inflow face: k; > 0 then i is downstream node, and for outflow face: k; <0 then

i is upstream node [23].

Figure 4.20. One-inflow triangle (upper triangle) with inflow point shown as ‘in’ and two-
inflow triangle with output point shown as ‘out’. In both cases the arrow indicaties the

direction of the streamline

By using the result obtained in Equation 4.69 one can show that

M
i
I
(@]

4.71)

~.
Il
~

For one-inflow triangles only one of the inflow parameters is positive and the other two are
negative, for two-inflow triangles two of the inflow parameters are positive and one is
negative. By using the definitions given, the gradient of any linearly varying quantity

within the triangle can be expressed as:

. - 3
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where Q. is the area of triangle 7'. Note that the vector sign above U shows that U is a

vector of variables, but the vector sign above V (nabla) shows that it is a regular gradient.

The left hand side of Equation 4.63 can be expressed again in the following manner,

308U, 3 oU., 3.Q.  oU.
SINYN == [[| X NN, —-dQ =Yy Y =T5,—- (473
T o i=1 ot T o \i=l Ot Tel i=1 3 ot
and as a result
3. U, oU
ZH(NIZNI-—&I =Q,— (4.74)
T i=l1

1S obtained.

Figure 4.21. The geometrical relation between 2, and €2,

If some attention is given to the right hand side of the Equation 4.63 and N, is

taken as unity and using the Gauss theorem
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- - B ~ 3 B B
H(Aa—U-i-Ba—U]dQ = j; (Fdnx + Gdny): Z(AkUknk +BkUknk ) (4.75)
ol Ox oy S0 =1 ‘ ‘

is obtained. Another way for obtaining the same result is substituting Equation 4.60 (by

using k instead of i as an index) into the flux integral,

3 0N, - 3 0N, -
ZHN{AZ kU, +BY —LU, 4o . (4.76)
TO k=1 Ox k=1 Oy

Since it is linear the gradient of the shape function is constant over 7', it can be

expressed as:

VN, =—ii, (4.77)

and by taking ON, /ox=n, [2Q, and ON, /0y =n, [2Q, then Equation 4.74 becomes

3.on, - n, 2.
ZHN{A,(ZﬁU,{ +Bkﬁ2Uk:|dQ =

T O k=1 T k=1 (478)
{L”N,dQ}ReST =B, Res,
Qs
where
3
1 -
Res, = E(Ankx + By )Uk (4.79)
k=1

is called the ‘cell residual’ and B; is the distribution matrix. The cell residual is small in

regions of smooth flow and it gives the measure of the accuracy of the discrete solution
very precisely. The distribution matrix is used to distribute the total residual to the nodes in

appropriate manner. There are some different methods for defining the distribution matrix.
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The mostly used numerical schemes which will not be mentioned in detail are listed as

follows:

N- Scheme which is the residual distributon formulation of the first-order upwind
method. It is only the first order accurate scheme. The distribution matrix expression for

this scheme is given as:

BN __ 1 max(0,K; )
Resy Y max(0,K ;)
J

> min(0,K ; )(U' ~U") (4.80)
j

where K; =(Any +Bny ) / 2 is the flux matrix whose eigensystem determines the spatial

variation of flow quantities at node i. The superscript n represents the time level.

The PSI (Positive Streamwise Invariant) or limited N- Scheme suggests the

distribution matrix expression as :

max(0,B" )
> .
Zmax( 0,B))

m=1

PSI
B =

1

(4.81)

The requirement for continuity is satisfied by this scheme [24].

The LDA (Low Diffusion A)- Scheme is a linear upwind scheme which satisfies the

linearity preservation property. The expression for the distribution matrix is given as:

Bt _ max(0,K,)
l Zmax(O,Kj) '
J

(4.82)

The Galerkin Scheme is obtained by choosing the the weight functions identical to

the nodal basis functions. The distribution coefficients are :
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B — %1 (4.83)

where / is the identity matrix.

This scheme is unstable for convection type of problems. In order to stabilize this

scheme some dissipation terms are added and new schemes are obtained [13].

The SUPG (Streamline Upwind Petrov Galerkin) -Scheme is one of the schemes
which added some dissipation terms to the Galerkin method and the expression for this

method is given as:

K,
BSUre :%I+r =i (4.84)

where 7, is the positive parameter with the dimension of time [25].

The Lax-Wendroff — Scheme which is the scheme used in this thesis has the

expression for the distribution matrix given as:

B =L AT g (4.85)
320,

where A7 is found from the maximum eigenvalues of K, and it is called cell based time

step. This is different from nodal time step and if they are chosen to be equal this will be

the time accurate version for the scheme. Here the term (A7/2Q, )K, represents the Lax-

Wendroft dissipation term.

There are different types of distribution matrices B, and they are used to distribute

the total fluctuation to three nodes of the triangle by appropriate fractions. Eventually they

all have to satisfy the condition:
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B, +B,+ B, =1. (4.86)

How these distributions are done is shown in Figure 4.22.

Distribution of residual to each node

In 1D In 2D In3D

v
R RI
; / es \¢ / es \

Figure 4.22. Basic distribution scheme for residual distribution processes

The Equation 4.79 can be shown in different form as:

3 —
Res, =Y KU, . (4.87)

k=1

The last term on the right hand side of Equation 4.61 which is the source term and it
can be taken as the arithmetic average of the values at the nodes (i, j,k) which belong to

the triangle 7" and can be expressed:
=L 7 K (4.88)

After all the terms are expressed the final expression for the residual at the node /of

triangle 7 1s defined as:
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Res, = QL{B,ZS“K,(U,( +(S)+ 5} (4.89)
!

where §v is the viscous term [26].

The solution procedure starts with the calculation of residual given in Equation 4.89
and it is distributed to three nodes of triangles that are visited once at each time step. The
analytical boundary conditions are applied by just assigning analytical values at the
boundary nodes. The outgoing or zero normal derivative boundary conditions are done by
doing no action for these variables at the boundary nodes. The inherent structure of the

matrix distribution scheme updates the variables to their correct values automatically.

After the space discretization technique used in this work is introduced in detail it is

time to mention about the time discretization technique used here.
4.3. Dual Time Stepping for Time Discretization

By using the preconditioning techniques the careful change for the time evolution of
the equations can be obtained. If the time accurate solutions are desired then the procedure
must be applied as pseudo time iterations at each real time step. Another way of saying is
that when the real time advancement is applied, pseudo iterations only creating the
iterations between real time steps in order to reach steady state. In this thesis dual time
stepping method was used with pseudo time iterations and real time iterations. This is
shown by the dimensionless MHD equations which can be written in the following
compact form

%+1m%+A%+B%:§T _ (4.90)
The better representation of this expression in which the preconditioning matrix is included

can be given as:

P, = +1,—+A—+B-~ =57 (4.91)
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where P, is called preconditioning matrix. Constructing the preconditioning matrix is
very important research area in computational fluid dynamics. It is modifying the time
derivative in equations. In order to get rid of the P, in the first term of Equation 4.91 the
equation 1s multiplied by the inverse of the P,. The best thing here is that this
multiplication does not affect the the sources and time evolution of U . This procedure

only modifies the Jacobian matrices changing their eigen-structure. After divergence

condition is satisfied by pseudo iterations then the new time level is reached.

4.4. Multistep Methods for Time Integration

Euler method, midpoint method and Runge-Kutta method are the most common
methods for solving the initial value problems. Initial value problems are solved basically
by using ‘one—step methods’ and ‘multi-step methods’ which differ from each other by the
fact that the one-step methods depend only on the value of only one old point, whereas in

multi-step methods more points are used. In one-step method the value of y(7,,, )depends
only on the value of y(t,) and in multi-step method the value of y(¢,, ) depends on the

previous values of y(¢, ), y(t,_,), y(t._,).... see Figure 4.23.

Figure 4.23. One-step method (left) and multi-step method (right) representations

Euler method is the simplest method using the procedure of marching a small step at
a time on the right hand side in order to approximate the solution on left hand side of the
Equation 4.92. It is a first order accurate method. In order to understand this method a brief

description is given as follows:
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The problem to be solved is dy(t)/dt= f(t,y(t)). The unknown value of y(7)

where ¢ >t is desired to be obtained. The initial value of y(¢,) is given implicitly. In

order to determine the value of it approximately the starting point is the rate of change of

v at time ¢,, which can be represented as:

@g“zfnwwn»zfaw%» 4.92)

If this rate change is constant in time then the value of y(¢) will be found exactly on times
after ¢, :

W)=Yy + [t )(t—1,). (4.93)

A new ‘small’ number 4, which is called the time step is defined as follows:

t,=t,+h,
=t +h (4.94)
t,=t,_ +h,
By using the definition given in Equation 4.94
V) =n =20+ [ty )(t = 1)
and consequently
V1= Yo+ S (1, v )l (4.95)

is obtained. This is the approximate value of y at time ¢,, y(t, ) = y,. The approximate

expression for y, was obtained and then the rate given by f(¢,,y,) is used in
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y(t)=y+ f(t,y)(t—t ) for t >¢t . By defining next time step as: ¢, =¢ +h, =t, +2h,

then
Yy =i+ ftLy ), =t )=y + f(t, n)h (4.96)

is found. Thus, by using Equation 4.94 and Equation 4.95 the general form for Euler

method can be written as
Wt )= Y =Y, (1,5, )h, (4.97)
where ¢, =t,+nh, and n=0,1,2,3...

In midpoint method the time step defined as /4, as done previously for Euler method

is divided into two equal parts so that spatial accuracy of the numerical solutions is
increased. After this definition the general expression for midpoint method can be written

as:

h h
Y e e e L e A S AUV LS (4.98)

This method is not so stable and small perturbations in initial values gives rise to
growing oscillations. In general, the higher the accuracy, the greater number of function
evaluations are necessary. In this thesis, neither Euler nor midpoint methods were used.
Runge-Kutta method which is probably the most popular method in engineering was used
in this thesis. The name of the method comes from the names of two German
mathematicians who developed this method. Runge-Kutta method is essentially an attempt
to match a more complex Euler-like formula to a fourth order Taylor method. This method
has a high order of accuracy and can be used for time integration. There are several Runge-
Kutta methods however the most popular ones are second and fourth order method. In
general Runge-Kutta method gives more accurate solutions than the other numerical
methods especially compared with Euler’s method. However, the implementation of the

method is also more complex than the others. In this work the pseudo time iterations were
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done by using Runge- Kutta algorithm. The method is self-starting method which can
change the step size of integration as often and by the size and by as much as required. One
of the main disadvantages of the method is that it requires more function evolutions per
step than linear multi-step methods do [27]. As an example the fourth order Runge-Kutta

method requires four evaluations on the right hand side of expression per step size #,.

Runge-Kutta method is expressed as:

y(tn+] ) ~ yn+] =

1 1
f(tn’yn)_'_zf(tn +§ht’yn +§htf(tn’yn))+
ey 21 (t Ly +lhf(t Ly +lhf(t )+ 4.99)
yn 6 t n 2 t’yn 2 t n 2 t’yn 2 t n’yn
1 1 1 1
f(tn +ht’yn +htf(tn +5ht’yn +5htf(tn +§ht’yn +5htf(tn’yn))))
This method will be used to integrate following equation
‘;—Itjz f(U) (4.100)

where U is vector of nodal states and f( U ) 1s the discretized spatial part. In this study

the f(U ) is represented by Res"(U ) which is the residual.

The m — stage Runge-Kutta time integration algorithm is given as follows:

U =g
U =0 +a*AtRes" (U™ ) where k=1,2,3,..m (4.101)

Un+] — U(m)

where n is the counter used for counting the consecutive time levels, a* are constant

numbers changing between 0 and 1 depending on the characteristic of the method used.
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At 1s the time step. If Runge-Kutta method is used for iterations, this is the local time step

used to speed up the convergence to the steady-state.

Table 4.1. Coefficients for multi stage Runge-Kutta integration [13]

m=1 | qg'=1.00

m=2|q" =070 | a*=1.00

m=3|¢g' =028 | a®=061 |a’®=1.00

m=4|qg'=0.16 | ¢*=032 |a’=057 | a*=1.00

m=51¢g' =010 | a’*=021 |a’=034 |a*=055 | a’=1.00

m=6|q'=007 |a’=014 |a’=023 | a*=034 | a’=053 | a®=1.00

The real time derivative in Equation 4.90 can be approximated such as done in

reference [28] as follows

aU 3 iy 1 iy 1 iy > n—1

—=—U" -U")-—(U"-U" 4.102
ot 2At( / 2At( / ( )
and pseudo time iterations were approximated by a third order Runge-Kutta algorithm.
After the pseudo iterations converges such as OU /61' — 0, the time accurate solution
1,(00/0t)=Res(U,p*,57 ) is recovered from the Equation (4.90). Res(U,B%,57) is
expressed as:

oUu oU

Res(U,B*,6%)=8" —4—-B—. (4.103)
ox oy

This is called the © residual vector’ which in this thesis is discretized by using matrix
distribution scheme which is described in detail previously. After combining the real time

and pseudo time levels

T n+l,m+l _ T n+lm
U g [m[ 3

- - 1 - -
A (Un+] _Un)__(Un _Un—] ):l :Resn+],m+] (4104)
T

2At 2At
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is obtained. In Equation (4.104) U" and U"" do not change in pseudo iterations. In order
to make the real-time derivative term explicit in pseudo iterations Equation 4.104 can be

written as:

=-I
AT

Un+],m+] _ Un+],m
[2At QA

- - 1 -~ -
i(UnH _Un)__(Un _Un—] ):|+Regn+],m+] (4105)

where [ is called the modified diagonal matrix and is given as:

-1
Il = {1 +3[£]1m} I, (4.106)
2\ At

where / is the unit matrix. Since the residual requires implicit treatment, the accuracy of
pseudo time derivative is improved by the following third- order Runge-Kutta method.
After this treatment the residual calculation for the next pseudo time iteration is more

accurate. By using the parameters given in the Table 4.1.

U(O) :Un+],m
UV =U" +0.28A7 Res (U, U",U"")
U® =0 +0.61At Res" (U™, U",U"") (4.107)

U(3) :U(O) +ATR€S*(U(2),(jn,Un_] )(jn+],m+]

where

* T * 3 i+l rn 1 rn rn—1 n+l,m+1
Res (U )=-I | —(U" -U" )——(U"-U + Res"" . 4.108
(U) m[zAt( ) 2At( )} ( )

The new pseudo values U™ are obtained from U™ in three steps as shown in the
algorithm given as Equation 4.107. After pseudo iterations converge U™ —U"" so
that Res”( U ) — 0 the desired second-order accurate solution is obtained at new time level

from
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I, v _ Res(U ) (4.109)
ot
or
T+l S T 2 1 T2 Q2
U =U —E(U -U )+§Atlm Res(U,*,5%). (4.110)

In this part of the thesis the space and time discretization techniques used in order to
solve the equations are described. The spatial discretization method which is the matrix
distribution was used in the numerical simulations. The time integration method was
Runge-Kutta method. The numerical results obtained for different problems and given in
‘Numerical Problems and Results’ part of the thesis were found in very good agrement

with the references.
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5. THE CODE AND ITS FEATURES

In order to solve the incompressible MHD (Navier-Stokes and Maxwell’s) equations
on structured and unstructured meshes with triangular mesh elements a new generation and
original code was used. The two dimensional code which was running in Cartesian
coordinate system was used for simulations. Since the code was running on two
dimensions, the first step which is the mesh generation procedure for three dimensions was
finished. As a postdoctoral study the mesh generation part is planned to be adapted to the

original code.

5.1. Code Properties

5.1.1. General Properties

The code is a two-dimensional incompressible (constant mass density) magneto-
hydrodynamic code which can be used to solve the steady state (time independent) and
transient magnetized or neutral convection problems with or without the effect of heat
transfer. By using the numerical method which is called ‘Matrix Distribution Scheme’, and
was described in previous chapter, Navier-Stokes and Maxwell’s equations in two
dimensions in Cartesian coordinate system can be solved numerically. The code can be run
under the Linux operating system. In order to start running the console should be used

under Linux operating system.

In computational fluid dynamics, the commercial solvers or codes operate as ‘black
box” which obtain the raw output data correspoding to a set of numbers that give the values
of each field variable at each point of mesh. Some of the popular commercial codes are
Ansys, Fluent, and Flowscience. Informally, CFD which is the acronym for the
Computational Fluid Dynamics that is the science which can make numerical expriments
on computers is sometimes used as ‘colourful fluid dynamics’. This name comes from the
fact that the codes provide very colourful graph plots as a result of the solved problem.

These colourful plots are very helpful for easy analysis of the results.
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In this non-commercial and original code which initial version was implemented as
in reference [26], the solutions are done and the results were collected in the data files
which contain only the numbers, or the results are shown on the screen with some graphs
changing simultaneously. The refresh time of the graphs can be given by the user by
specifying the step numbers for iteration. The code provides the plots such as: shaded
contour plots in which the areas with the same colour represents the same mathematical
value for a calculated field variable such as velocity, temperature, pressure, etc. (Figure
5.1). Vector plots which show the vector quantities such as velocity, electric and magnetic
fields lines are also drawn by the code (Figure 5.2). The magnitude of the vectors are
directly related to the calculated magnitude of the variable. The vectors are giving an idea
about the direction of the variable. The mesh plots which are showing the computational
mesh are also a part of the code used. The computational elements are visualized by mesh

plots (Figure 5.3).

01849
0728
01608
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0 366
0245
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00029

0 01 0Z0Y 04050607 0803 1

Figure 5.1. Shaded contour plots for the pressure and temperature
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The code has very friendly graphical user interface. It is used to create complex

meshes, the boundary and initial conditions can be specified by the user directly, colour

vector graphs can be created etc. This code utilizes the matrix distribution scheme which is

running on the structured and unstructured triangular meshes. For time discretization the

dual time stepping with multidimensional Runge-Kutta algorithm was used. The code can

easily be used for simulating the nonlinear time dependent evolution for heated and

magnetized liquids, natural convection with internal heat generation and absorption,

conductive fluids under the electric and magnetic fields, etc.
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There is a first step display on the screen in order to start the code in Figure 5.4.
After the the code was started to execute another menu appears on the screen (Figure 5.5).
There are some control buttons such as quit (quitting from execution), generate mesh
(generates the mesh for solution domain), run (starts simulation done by the code), pause
(pauses the execution), graph (it gives the permission for choosing the graphs which can be

displayed on the screen) on the menu.

X

Home

MandrakeExpert +
n CI- kenang@ HASAN: homekenan - Konsola - Konsole
File Sessions Settings Help

Mandrake Oniine

e

MandrakeStore

Figure 5.4. A snapshot showing starting step of the code

5.1.2. Using The Code and Mesh Generation

|Ed== kenan@ HASAN. fhomelkenan - Konsole - Konsole
File Sessions Settings Help

Figure 5.5. Control buttons for the code
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5.1.2.1. Structured Mesh Generation

In order to solve the problem numerically firstly the mesh must be generated.
Structured and unstructured triangular meshes can be generated by the code but also three
dimensional (tetrahedron) mesh is also wanted to be embedded in the code as a

postdoctoral study. After the generation of the mesh the screen is seen as in Figure 5.6.

b Corserate Mesh
E —Mesh type—
i® Ssuctuned mesh

Quit I~ Ungtnsctured mesh
| Genarale Math Stuctumd mesh panametars
E Gl type

Eun (" 1)Right I HLet [ Hko-b [ dHkop T 5 Eo-new
—[ IMAX |21 JMAK [31 CAUTION: Must be odd numbers for leo-Mesh

Gragh
Nmin 000 wmax [100 ymin [0.00 vz [100

[~ Blocks [~ Boundanes

Mesh Bofiom Profle Setection |0 Madmum bowndary rumber |4 i

i Mo Bolom Profile |"'—’3_|‘_"‘_ Cormer Nodes

1: Sine Bump (<AL v10.1D Seuli oo
2 Circle Bump  =[0.4], w$0,1]) 1.00 1.00
3 Linsar Aamp (<[0,4], y[B10 L e

4: Triangulas Bump (440,41, w[0,1])

Figure 5.6. Menu for mesh generation process

There are five different stuctured grid types in the code. They have different forms

which are shown in the Figure 5.7.

Iso-new type  Left running  Iso-b type Iso-p type Right running

Figure 5.7. Grid types for structured mesh

After the mesh type was chosen, the dimensions for the solution domain (Xmin,
Xmax, Ymin, Ymax) and maximum node (the specific points on which the discrete

solutions are done) numbers for different dimensions (Imax for x coordinate and Jmax for
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y coordinate) are also put externally. The next step is deciding about maximum boundary

number for the solution domain and the boundary numbers for the corner nodes.

5.1.2.2. Unstructured Mesh Generation

Not only structured meshes but also unstructured meshes can be used for the
computer simulation of the problem in the code. The unstructured mesh can be generated
after it is chosen from the menu shown in the Figure 5.6. After unstructured mesh is

chosen another different menu will appear on the screen. It is given below in Figure 5.8.

R Gonerate biesh
Merih dyper
I~ Structured mesh

[% Uestneciuend mesh

Unsiructurad mesh paramebars
Number of paints 16
Hodes which defing ®w boundary
: 2433003 10, D000
0. 00
0. 100G

roumber of sagmants |16
~Boundary segments

Figure 5.8. Parameters used for creating the unstructured mesh

For creating the unstructured mesh there are three different parts which must be
filled. In the first part the number of the node, x cordinate value, y coordinate value,
displacement dx and the number of the boundary which own the nodes mentioned must be
given. In the second part the number of segments must be given. In the last part for

creating the unstructured mesh the boundary segments must be put in proper way.
5.1.3. Example Problem
To understand the descriptions given above the example below will be very useful.

Let us give the initial values and boundary conditions for the one of the very well known

benchmark problem. The formal name for this problem can be called as ‘Lid driven cavity
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test’. In this problem the sliding upper lid which has the constant velocity # on the upper

boundary drives the circulation in the cavity Figure 5.9.

_
No slip boundary condition on the walls

Figure 5.9. Scheme for the lid driven cavity test

_ C S
1555

—_—

[ )

dx

Figure 5.10. Scheme for the lid driven cavity test after the maximum node numbers are

given and structured mesh type was chosen

In Figure 5.10, there are the nodes, the node numbers (only for the first row and the
half of the second row), assigned boundary numbers (numbers in the circles) and the

structured mesh for the solution domain. Before start the code the important boundary and
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initial conditions must be considered and it is better to see all these things together on the

solution domain.

5.2. Running the Code

After the steps in the example are completed another important step is the next. Here

the simulation almost will start. However some blank spaces must be filled. Before code

starts solving the problem the scheme in the Figure 5.11 is displayed on the screen.
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Figure 5.11. Scheme for running part of the code

At that point first of all the problem type (Navier- Stokes, MHD, Electromagnetic
Braking etc.) must be chosen. Then the order of Runge-Kutta algorithm, temperature,
salinity existences, the initial conditions such as pinit (initial pressure), uinit (the initial
value for x component of the velocity), vinit (the initial value for y component of the
velocity), Ra (Rayleigh number), Pr (Prandtl number), Tinit (initial temperature) etc. must
be chosen and filled in the blanks. After all the requirements which are the initial
conditions, boundary conditions, problem type, order for Runge-Kutta method etc. are

finished the code is ready to start running. As a last step pushing the ‘Run’ button will start
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the code to simulate the problem. During the simulation the graphs on the screen can also
be controlled. In order to change the graphs on the screen firstly the button with the name
‘Pause’ is pushed and then the button with the name ‘Graph’. Then another one menu
appears on the screen (Figure 5.12). Here the graph selection for different graphs (vector
graph of velocity, colour graph of pressure, color graph of temperature, vector graph of
magnetic field, colour graph of density, vorticity, energies etc.) can be done and also the
graph refresh intervals can be chosen in proper and desired way. By putting the thick sign
in the blank squares the graphs which are wanted to be seen during the execution of the

code will be chosen and step by step changes can be observed on the screen easily.

¥l Graphics Options ™ =

—Draw graph
[V wector graph of Velocity
[»* Color graph of Pressure
v Color graph of Temperature
I vector graph of Magnetic Field
¥ Color graph of Density
I Color graph of Beta
I~ Color graph of Mach Number
I Color graph of Divergence-8
" Max Div-Error
" Lz-Norm I 'EE ™ VORTICITY
I~ Energies I PB I DIv-V
I Dot Graph

Refresh color graphs at each IS steps
Refresh wvector graphs at each IS steps
Maximum vector length |20

I Display mesh

Figure 5.12. The graph selection menu

Figure 5.13. The schemes on the computer screen when the code is running



During the execution of the code the screen is seen like in the Figure 5.13.

5.3. Three Dimensional Mesh Generation Procedure
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Since all the things are observed in three dimensions in the real life, another

challenge is wanted to be realized. This challenge is to expand the code in three

dimensions. Instead of the triangles now the tetrahedra will be used. In order to reach this

purpose firstly the mesh generation menu of the code is changed and the ‘3D mesh’ part is

added (Figure 5.14).

B Generate Mesh
Besh typer
* Struchaed mash
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Figure 5.14. The new mesh generation part including the 3D mesh choice
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Figure 5.15. Menu for deciding about the size of the solution domain and number of nodes

for the 3D mesh
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In order to get this three dimensional objective firstly the tetrahedra geometry was
studied and understood. Then the cube which has six tetrahedra in it is chosen as primitive
cell which will form the whole mesh that will fill the whole solution domain. This cube can
be named as a ‘molecule’. By adding the molecules in a suitable manner the whole mesh is
planned to be attained. The number of every node is wanted to be generated automatically
by the code and an expression for doing this numbering in three dimensions was found.

This expression is a function of the maximum numbers of the nodes in x, y and z
directions. Maximum node number for x direction is given as I, maximum node number

for y direction is given as J and maximum node number for z direction is given as K.

(J+1)I+(1-1)+(k+1)1] (J+1)I+1+(k+1)IJ

(G- 1)+ (k+1)1J

|
|
|
|
|
|
|
|
|
|
|
;
| JIHIH(k+1)1T
|

|

|

|

|

G+ D)I+i+kIJ

’(j+1)l+(i-1)+kIJ

’
’
’
’

iT+(i-1)+k1T KT

Figure 5.16. The shape and node number expression for every node in one molecule
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The molecule shown above will be broken into six pieces which are all tetrahedra.
The shape for every singular tetrahedral forming the molecule is given below together with

the node number expressions formulated by us.

G+ D)I+i+(k+ DI

A+G-1)+ (k+1)1

p\ “

(- 1)+k1J

G+ D)I+G-1)+k1]

(- 1)+k1T JI+H+KLT JIHIHKI

Figure 5.17. The first and second tetrahedra for the molecule

7+ D)I+i+(k+ DI

(+G-1)+ (k+1

KDL /

G+DIHG-1)+ &

JH+KIT KT

Figure 5.18. The third and fourth tetrahedra for the molecule
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=
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Figure 5.19. The fifth and sixth tetrahedra for the molecule.

Since it is very difficult to imagine the mesh shape by using only the drawn graphs
above as an additional work real molecules were built by using the cardboard (Figure
5.21). They are built in order to use them as a model when the computer code is written for
the three dimensional mesh. By using the model it is relatively easy to see the needed
properties of the tetrahedra. It is easy to see which triangular faces of tetrahedra coincide
with the other mutual faces. Since they are neighbours the information will be transmitted
between them directly. It is also easy to calculate the areas for the four faces of the
tetrahedra and also the volumes of every tetrahedron separately. Also the normal vectors
are needed to be calculated for every face of the tetrahedron. Most of these things are done
and ready in the code. Also in order to check the calculations of the volumes the total
volume form the whole three dimensional mesh is calculated and is compared with the
summation of every tetrahedron’s volume separately and results are very encouraging. To
generate the mesh in three dimensions all the node numbers must be known and must be
put in the suitable order. The expression for automatical node number generation is
checked also in the way shown in the Figure 5.20. The arbitrary nodes are chosen and by

using the expression which was jl+i+klJ the node numbers can be found. They are

compared with the real node numbers. The results are exactly right.
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The step by step advance of the proccess in which the real three dimensional model was

built is given in the Figure 5.21.

i
i
i
]
E
i
F)

Figure 5.21. The process for making the model for three dimensional molecule

Figure 5.22. Three dimensional mesh structure preparation in order to see the orientation

of the molecules
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Figure 5.23. Three dimensional view of one molecule and its tetrahedron

shaped elements

After the shapes of all the molecules and tetrahedra were seen the computer code is

written for these new elements.

As it is seen above the three dimensional geometry was seen obviously and three
dimensional mesh generating procedure was finished. The code which is producing the
node coordinates, calculates the volume of each tetrahedron, the four surfaces of each
tetrahedron, the inward normal vectors magnitude and vectoral coordinates, etc. is
originally developed. It is given in Appendix A. The adaptation of this code to the main

solver is left as a postdoctoral study.

As 1t was said before, the main feature of the code can be summarized as: it has a
very user friendly graphical user interface (GUI), it can run for steady and transient
problems, it can create color and vector graphs, structured and unstructured meshes can be

created, the initial and boundary conditions can be specified easily.

The solver used here most importantly provides flexibility of creating the meshes
(both structured and unstructured), specifying the initial and boundary conditions, starting
stopping and pausing the calculations, displaying desired colourful and vector images on

the screen.
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In the numerical part of the thesis benchmark problems such as the steady-state lid-
driven cavity, the unsteady lid-driven cavity, unsteady oscillatory lid-driven cavity test,
vertical obstructed flow through square channels, natural flow in thermally driven cavity
by different side wall temperatures, liquid metal flow past a circular cylinder in open
channels exposed to external magnetic field, electromagnetic braking of liquid metals in

vertical channels and levitation were solved by using this code.



144

6. NUMERICAL PROBLEMS AND RESULTS

6.1. The System of Equations Used in Numerical Solutions

The equations which are to be solved in this thesis are Navier-Stokes plus Maxwell
equations which are the magnotohydrodynamic (MHD) equations. During the simulation
of physical problems some assumptions will be done. The flow will be considered as
incompressible and the fluid to be electrically conductive in some problems. The equations

for continuity, momentum and energy can be given respectively as:

Vi=0 (6.1)
o _=_| = . . =
p5+vv.v +VP=uVv+pg+F (6.2)
Fy=p BT +J7 BT (63)
or ¢ 2 T 7T
pCv[§+VVT] =k, V' T+nJ"-J (6.4)

A

where Vv is the velocity, P is the pressure, p is the density, u is the viscousity, g = —gj
is the gravitational acceleration, F, 1 1s Lorentz force , p, is the charge density, ET s the

total (external+internal) electric field, BT s total magnetic field, JT is total current

density, C, i1s the specific heat, k, is thermal conductivity, 7 is temperature, and n is

electrical resistivity [29]. The last term in Equation 6.4 is called Joule heating term. It
occurs in the equations due to the heating effect of the currents passing through the
conductive fluid. The Maxwell equations which are the set of four equations that are used

to describe all the known electromagnetic phenomena on the macroscopic scale must be
related to the Navier-Stokes equations. Since the flow is assumed to be conductive JT,
the total current density term makes a link to (Equation 6.7) the Maxwell’s equations

which can be given as:
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V.-B=0 (6.5)

. 66)

VB g 67)

B G T x By~ V2B = Syc (638)
ot Mo

where EMAG is the source term driving the magnetic field, u, is the magnetic

permeability, B is the magnetic field. It is known that the total current density also

satisfies Ohm’s law given in the form :

nJT =ET +vx BT (6.9)

where J T E " and B" are total current density, total electric field and total magnetic field

respectively which can be given as:

JT=J+J (6.10)
E' =E+E*™ (6.11)
B" =B+ B*". (6.12)

Since the externally applied electric and magnetic fields can affect the current density their
effects must also be taken into account during the calculations. If there are external effects

existing there, the Maxwell equations written below must also be satisfied.

VxE® =0 (6.13)

V.B* =0 (6.14)
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VE" =P (6.15)
&
Vx B = u,J (6.16)

As previously said, Navier-Stokes and Maxwell equations are linked with the total current

density JT and this leads to the charge conservation equation which can be given as :

%, 57 =0 (6.17)
ot
W 5 jer = (6.18)
ot

The Equation 6.17 says that the both V.J” =0 and V.J* =0 under the condition that
internal and external charges are constant in number and are not changing in time [6]. The

definition of current density given in Equation 6.9 includes the effects of both external
electric and magnetic fields existing around the flow itself. In order to represent Sy, 4 in

more correct form it must include the external magnetic field as in the form given below

in Equation 6.19.
S =-Vx(VxB™) (6.19)
Here an assumption can be easily done since the localized charge neutrality the internal

electric field can be neglected comparing with the externally applied electric field so that

the Equation 6.11 can be rewritten as :
E"=E+E®“ ~E™. (6.20)
Since in this thesis we are interested in low speed flows, the temperature effect on the

density can have a significant effect. Because of the fact that the gravitational forces can be

in comparable ranges with the inertia and viscous forces the temperature which will affect
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the density and implicitly the gravitational force will play an important role in calculations.
To take the temperature effect into account the Boussinesq approximation named for
Joseph Valentin Boussinesq is used. The concentration and pressure also can have some
effect on the density. In this approximation the variation of the density is neglected
everywhere except in the buoyancy term since the little temperature change results with a
little change in density which affects the buoyancy which is driving the motion. The

mathematical representation for Boussinesq approximation is given as:
p=pl-B(T-T,) (6.21)

where B, =—(1/p, \op/oT l - p1s the expansion coefficient due to temperature. As an

example the coefficient of volume expansion of water at 20°C is B7 =210x 1076 ¢ C)_l
[30]. Note that py and Ty are reference density and reference temperature respectively. In

some sources they are called the ambient density and temperature. The Equation 6.2 with

a little rearrangement will have the form as:

o _- _ - _ I
p[a—‘; + vV.v} + VP - pg = /,sz + Fr. (6.22)
After the Boussinesq approximation is taken into accout one can write
VP~ pog=V(P~Py)=glpr (T -Tp)]. (6.23)

For Equation 6.24 one can take 0P/dy = p,g and 0OP/dx =0 because of the fact that
Py = ppgy . Before all the open form of MHD equations are written, the dimensionless

form must be defined. The equations can produce useful solutions only when they are
written in dimensionless forms in terms of some parameters. The number of these flow
parameters depends on the number of equations used. The dimensionless form of the

quantities can be written as:
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T-T,
P':i, et: c
F T, —T.

where P’ and 6, are dimensionless pressure and temperature respectively, 7}, is ‘hot wall’

T, is ‘cold wall’ temperatures. The other dimensionless parameters are

In MHD equations there are some important parameters. One of the most important

numbers is Reynold’s number, which is a unitless number, mathematically defined as:

Lyv,

Re= (6.24)

L

where L, is characteristic length (m), v is velocity (m/s) and v is kinematic viscosity

(m2 /s). Reynold’s number basically gives the ratio between the inertial and viscous

forces in flow. It is mostly used in prediction of the flow nature if it is laminar or turbulent.
Since turbulent regime is different in some properties from the laminar flow it is important
to distinguish the flow type in engineering in order to avoid from the increased viscous
losses. In turbulent flows the viscous loses are generally much higher then those in laminar

flow.

Re~2000 ~4000

Figure 6.1. Diagram of flow regimes in pipe flow



149

Another parameter is called ‘magnetic Reynold’s number’. Basically it is the ratio of
the induced magnetic field to the applied magnetic field [31].

V. L
R, =p,0V,L, = FoZo
n

(6.25)

Prandtl number, Pr is the ratio of momentum diffusivity to the thermal diffusivity.
If the value of Prandtl number is small it means that the heat diffusses more quickly than
the diffusion of momentum. It also gives the information about the velocity and heat
boundary layers ratio. If Pr=1 the boundary layers coincide. The mathematical

representation is given as:

Pr=— (6.26)

S

where v i1s kinematic viscosity and ¢, is thermal diffusivity.

Eckert number is another dimensionless parameter which gives the ratio between the

kinetic energy of the flow to the boundary layer enthalpy.

(6.27)

where C, is the heat capacity under constant pressure and AT is the temperature
difference.
Rayleigh number, Ra, which has a mathematical expression as :

_ gﬂTATL?)
va

Ra (6.28)

t

where g is gravitational acceleration, [, is thermal expansion coefficient, v is kinematic
viscosity and «, is thermal diffusivity constant. Rayleigh number physically gives an idea

if the heat transfer is due to the conduction or convection in fluid. It is mostly used in heat

transfer and free convection calculations.
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Hartmann number, Ha is a dimensionless number defining the relative importance
of the forces due to the magnetic induction to the viscous forces. It is the ratio of the

magnetic forces to the viscous forces.
Ha = ﬂNRe = B()LO /1/O'/u (629)

where B, is magnetic field, L is characteristic length, o 1s electrical conductivity and
u 1s dynamical viscosity coefficient. The relation between Hartmann number and

Reynold’s number is given with the ‘interaction parameter’, NV,

Ha2
Re

N =

(6.30)

Actually 'N'can be defined as the ratio between the electromagnetic forces and
inertial forces. By using the defined dimensionless parameters and approximations the final
MHD equations for incompressible flow are written in two dimensional Cartesian

geometry as [29]:

' OB B
a_u+a_u+ua_u+v%+ai LBJ}T _y_a_x :val/l (631)
or ot ox oy Ox R, ox oy R,
' 0B, OB RO
X P O N | Py OB gy RO 63
or ot ox oy oy R, ox Oy R, PR,

_ Ry
R,R.P.

00 060 9 0 1
—t+—+u—+Vv—=

(6.33)
or ot ox R,P.

2
V20+NE[EeXt +(uB," —vB," )2}

B, 0B, oB," 0B, 0
0B, " OB, _BxT a—u+u x —ByT 6_u+v X4 Y _ ! VZBXT (6.34)
or ot ox ox dy db & R,

oB. OB oB." oB,"
r B g OB g OB W L gapr (g3
or | ot x o Yoy oy oy R, 7
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oB
W, +52(6B" + y]

ot ox Oy - (6.36)
ot ox Oy

In Equations from 6.31 to 6.37 there are some new terms, such as 7 which is

pseudo-time, o 2 which is magnetic relaxation constant, [ 2 is an artificial compressibility
parameter, and v, is an artificial magnetic relaxation function. Since we are interested in

the incompressible fluids the artificial compressibility parameter defined here has a
significant meaning. This parameter is firstly defined by Chorin [32] in order to be used in
the modification of the continuity equation. In incompressible flows the pressure is
affected instantaneously by the disturbance in flow. However, with the effect of artificial
compressibility there is a time lag between the flow disturbance and its effect on the
pressure. The artificial compressibility relaxes the strict condition for mass conservation in
each step. In order to have time- dependent solutions for this method, an iterative method
can be applied to each physical step by satisfying the continuity equation. Mathematically

the effect of artificial compressibility parameter can be shown as :

P _ g2y (6.38)
ot

where v =ui +vj+wk .

Eventually the need for artificial compressibility parameter is coming from the desire
to use the incompressible fluids in algorithms obtained for the compressible fluids.

In Equation 6.36, there is v, artificial magnetic relaxation function. This function is also

used to correct the magnetic fields in the same way that the artificial pressure corrects the

velocity fields. These newly introduced parameters are used to satisfy the divergence
constraints  ( Vi=0,V.B=0 ) by solving the equations in subiterations in each time
step. After the sub iterations converge (i.e.,d/07 — 0), pressure and artificial magnetic

relaxiation function are having the values which are used in correcting the magnetic fields

and velocities in order to satisfy the divergence conditions.
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Time
A

Figure 6.2. Dual time stepping sheme for a 2 dimensional mesh where

At 1s the pseudo time step and At is real time step

In numerical time derivatives it is better to utilize the implicit time stepping by
Newton type of algorithm. Since in this thesis not only structured but also unstructured
mesh types are used and this algorithm is very complicated for unstructured triangular
meshes. This is the main reason for using the explicit multistage Runge-Kutta algorithm in
pseudo time stepping. The time discretization process will be mentioned later in a more
intensive manner. By using the dimensionless parameters the dimensionless MHD
equations can be written in the following compact form:

oU oU oU oU ET (6.39)

—+1l,—+A—+B—-=
ot ot ox oy

where

- T
U=[P.uv0,B.B .y, (6.40)

is the conservative state vector of fluid variables in which P’ is dimensionless pressure, u

is the x component and v is the y component of velocity, 8 is dimensionless temperature
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By and B, arethe x and y components of the magnetic field and the last term v, , is the

artificial magnetix relaxation function. In Equation 6.39 there is a diagonal matrix which is
used to eliminate the pressure and artificial magnetic relaxation functions from the real

time advancements. So the diagonal matrix /,, is given in the form as:

I, = diag [0,1,1,1,1,1,0] . (6.41)

A and B are Jacobian matrices which include the coefficients of (6(? /6x) and

(6(7 /6y)directions respectively. §T is the total source vector which has viscous and

external parts and can be given as:
S, =8 +8, (6.42)

By using the definition given above Jacobian matrices in Equation 6.39 can be written as:

o B> 0o 0 0 0 0]
NB
1 u 0 0 0 )
Rem
0o 0 u o0 0 B o
A: Rem ’
0 0 u 0 0 EB
0o -8 0 0 u 0 1
0 0 -B" 0 0 u 0
0o 0 0 048 0 0|
0o o B> 0 0 0 O |
NB
0 v 0 0 —20 0
Rem
NB
0 0 v 0 —= 0 0
B = Rem
0 0 v 0 0 EB,
0 -B" 0 0 v 0 0
0 -B" 0 0 v 1
0 0 0 8 0 0 |
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0 0

(Rev2u)" (- NBe /R, oB<" Jox—aBe Joy)

(Rev?v) (NBe /R, \oB Jox - 8B [ay)+ Ra6] Pr Re?

S, =|(RePrv?o)" |, S =|  NE|EZ, (uBy—va)2+(qux’—ij’“)]

(r,v?B.)' 0
(r, VB )] 0

L . L 0 .
So that the explicit form of Equation 6.39 is
L 000]\(7)1;0_P_00ﬁ20]\(7)1§00_f’_
Iu 000 =0 0 v 0 0=—=200
u u Rem u &m u
v v NR % NR %
é9+lmé9+00 u 00 25 0fo| J1J0 0 v 0220 0p ]
o g 1100 0 w0 0 ERX, 110 0 0 v 0 0EB,
Bl || [0B 0 0w 0 1||gllo-F 00 v o0 o0f]p
" y|[000 B 00 w of| tlo0 B0 o0 v 1|,
""" loo o0& 0 o] oo o0& 00|
e 1 . ]

(Rev2u) (- NB*JR,, ) (0B [ox - 0B Joy)

(Rev?v)" | |(NB/R,,)(0B" Jox— B [oy)+ Ra6] Pr Re?
(RePrv6)' |+|  NE|EZ, +(uB, —vB,) + (B —vB )] (6.43)
(r,v?B,)" 0
(R, V*B )‘ 0

i I 0 |

Equation 6.43 is the final equations which are to be solved. Note that there are two newly

defined artificial parameters, [32, the artificial compressibility parameter and v, , the

artificial magnetic relaxation function which are used in correction of velocity fields and

magnetic fields respectively. The pressure P’ which was related to the artificial
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compressibility parameter such as given in Equation 6.38 and artificial magnetic relaxation
function are put only in pseudo time derivation part in equation and they are eliminated
from the real time derivation parts by using the diagonal unit matrix. By using the defined
equations above the numerical problems below were solved by using matrix distribution

scheme which is explained in the previous chapter.

6.2. Numerical Tests

6.2.1. The Steady State Lid Driven Cavity Test

This is the classical two dimensional lid-driven cavity test. It is assumed there is no
heat transfer and externally applied electromagnetic fields. There is a sliding lid on the
upper boundary which has a constant horizontal velocity (i.e. # =1) in + x direction. This
sliding lid generates a circulation in the cavity. The solution domain for this test was
chosen as a square-shaped cavity which is filled with isotropic triangles with 41x 41 nodes
(Figure 6.3). Starting with no flow initial condition within the cavity, this test problem was
run for Re=100, Re=400, Re=1000, and Re=5000 together with no-slip wall conditions (i.e.
u =v =1) on the walls of the cavity and u=1,v=0 condition along its upper boundary. The
resulting velocity vectors within the cavity, after steady state is achieved at # =2, are shown
in Figure 6.4. There are velocity profiles for four different Re (Reynolds) numbers. As can
be seen, the constant flow along the upper lid drives the flow circulation whose centers

shift as the Re number is increased.

Figure 6.3. Solution domain shape for the lid driven cavity test problem
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Figure 6.4. The velocity vectors formed in the square shaped cavity
it is seen in Figure 6.4 for different Reynolds numbers the velocity vectors have

As

different shapes. The centres of circulations for different Reynolds numbers took shape in
different places in the cavity. It seems that for high Reynolds numbers the circulation

center can coincide with the centre of square shaped cavity and the corner circulating

regions on the bottom get similar.
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Figure 6.5. y —u and v — x profiles passing through the midpoint of the cavity

In order to see the convergence of the numerical solutions, the same problem for

different mesh types is solved. The generated meshes were 21x21,41x41, 81x81. There

are y profile of velocity u and x profile of velocity v passing at the midpoint of the

cavity presented in Figure 6.5 (a) and (b) respectively. As seen, the mesh gets finer the

solutions converged to the correct solution. There were some deviations in Figure 6.5 (a)

especially for y profile of u velocity between the limits 0.3 -0 for y , and -0.4-0 for u

values. However, the differences got smaller as the mesh was refined.

Divergence

0

Mesh Size
. —21x21
-2 ool e f ]
_3 --"""8])[8]

Figure 6.6. Divergence — time graph for three different mesh types
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In order to see how the divergence decreases depending on time and depending on
the mesh types the graph in Figure 6.6 was drawn. It is easily seen that for finer meshes the
divergence decreases quickly. The results were found in very good agreement with

references [6] and [33] .

6.2.2. The Unsteady Lid Driven Cavity Test

In this test problem the boundary and initial conditions were chosen as the same as in
the steady state lid driven cavity test. The problem was solved for two different Reynolds
numbers, the cavity had again the square shape. However, the investigated property of the
fluid was the velocity behaviour of the mid point of the cavity. The problem was solved by
using relatively fine mesh which was 81x81. The velocity in this problem had a step
shape which was given as u =0 fort <0 and u =1 fort>0. The results shown that the
velocity was nearly constant after t=5 for the flow with Reynolds number 100 , but it was
not possible to say the same thing for the flow with Reynolds number 400. The velocity in
the centre decreased up to t=5 and it increased later. There was a something like a turning

point for velocity values at centre at that time .

Og
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5 - i
g F
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time

Figure 6.7. u centre — time graph for flows with two different Reynolds numbers

The results were found in very good agreement with reference[33].
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6.2.3. The Unsteady Oscillatory Lid Driven Cavity Test

Differently from the previous tests there were periodic velocity in the upper
boundary. The flow inside the cavity was controlled by the velocity which had a
sinusodial profile. The velocity function on the upper boundary was assumed to be
u(t)=u,Cost . Since the profile of the velocity driving the fluid is periodic, the oscillatory

solutions will be formed in the cavity. In this problem the drag on the upper boundary was

1
calculated by using the following formula which is D = j(&u/ 9y)dx . In order to see how
0

the drag is changed depending on time for different meshes (33 x33, 65x65,133x133) .

The results were given in Figure 6.8.
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Figure 6.8. Drag on lid — time graph for different meshes

In this problem Reynolds number was taken to be 400. Not only for different meshes but
also for different time steps the same problem was solved. In this part the mesh