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ABSTRACT 
 

 

TECHNOLOGICAL STUDIES OF MULTIDIMENSIONAL 

MAGNETOHYDRODYNAMICS AND LIQUID METALS:  

GALLIUM-INDIUM-TIN 
 

Plasma phenomenon was described in detail and the derivation of momentum and 

energy equations for magnetohydrodynamic applications is done. 

 

The effects of externally applied electric and magnetic field on the conducting fluids 

such as liquid metals or alloys  were numerically investigated. Since the code used in these 

numerical studies was in two dimensions a new original three dimensional mesh generating 

programme was developed. The adaptation to the old code was left as a future work. Not 

only benchmark problems but also different numerical problems related to liquid metals  

were solved. The problems such as liquid metal flow past a circular cylinder in open 

channels exposed to external magnetic fields and electromagnetic braking of liquid metals in 

a vertical channel and levitation were solved numerically and the effects of externally 

applied magnetic and electric fields were seen. The effects of externally applied fields on 

flow pattern were very important especially for metalurgical applications. The spatial 

discretization scheme used in this thesis was matrix distribution scheme. Dual time stepping 

was used for time discretization.  

 

In experimental works GaInSn alloy was used as a conducting medium on which 

different external effects were applied. The behaviour of GaInSn versus oxidation was 

studied, the expansion due to the heat addition was also studied in order to know how the 

surface will change under the increasing temperature and how this will affect the reflectivity 

from the surface. Under different conditions the reflectivity of GaInSn was studied. The 

reflection change because of the external heat addition, external current application, external 

magnetic field application were studied separately. As a final experiemntal study the current 

and magnetic field were applied together and again the reflectivity of GaInSn was studied. 

The effect of induced Lorentz force on reflectivity is seen. A hint which showed the 
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correlation between Lorentz force induced from the externally applied current and magnetic 

field together with normalized reflection intensity was found.   
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ÖZET 
 

 

ÇOK BOYUTLU MANYETOHİDRODİNAMİK DENKLEMLERİN 

ÇÖZÜMÜ VE SIVI METALLERİN TEKNOLOJİK İNCELENMESİ: 

GALYUM-İNDİYUM-KALAY 
 

Plazma konusu incelenip manyetohidrodinamik denklemlerden momentum ve enerji 

denklemlerinin türetilmesi yapıldı. 

 

Akışkan metal ve alaşımlar gibi iletken akışkanlara dışarıdan uygulanan manyetik ve 

elektrik alanların etkileri sayısal olarak incelendi. Sayısal çalışmada kullanılan kodun iki 

boyuttan üç boyuta çıkarılabilmesi için ağ örgüsünün yeni ve ilk çalışması olarak bilgisayar 

programı yazıldı. Bu ek programın iki boyutlu gerçek programa uyarlanması doktora sonrası 

çalışma olarak bırakıldı. Geleneksel sayısal problemlerin dışında akışkan metaller 

konusunda özgün problemler tasarlandı ve onların da sayısal çözümleri yapıldı. Akışkan 

metallerde elektromanyetik frenleme ve yine bu metallerin açık kanalda dairesel silindir 

çevresindeki akışlarının dışarıdan uygulanan elektrik ve manyetik alanlardan nasıl 

etkilendikleri incelendi.  

 

Galyum İndiyum Kalay alaşımının çeşitli dış etkilere karşı verdiği tepkiler, özellikle 

yüzeyine düşen ışığı yansıtma özellikleri incelendi. Bu deneylerde kullanılan ışık kaynağı 

görünür bölgede ışık veren bir halojen lamba idi. Bu alaşımın yüzeyinin oksitlenmesi, 

ısıtılarak sıcaklığının arttırılması, üzerinden akım geçirilmesi, manyetik alan uygulanılması 

ve hem akım hem de manyetik alanın aynı anda dışarıdan uygulanılması ile yüzeyinden 

meydana gelen ışık yansımasının nasıl değiştiği incelendi. Galyum İndiyum Kalay  

alaşımında dışarıdan aynı anda uygulanan elektrik akımı ve manyetik alanın etkileri ile 

oluşan Lorentz kuvvetinin yansıtmaya ne gibi bir etkide bulunduğu incelendi. Bu etkilerden 

ötürü Lorentz kuvveti ile normalize edilmiş ışık şiddeti arasında bir ilişki olabileceği 

görüldü. 
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1.  INTRODUCTION 

 
 

The simple word energy has a very deep meaning in daily life for our living planet. 

Since it is a very important phenomenon all the countries have their own plans and 

objectives about energy. Because of the fact that the consumption and demand for energy 

are increasing day by day nowadays, the most outstanding subject is the production of 

energy. The main sources for energy production are fossil fuels like petroleum, coal, 

natural gas etc. However, some different energy sources are also available such as nuclear 

energy, alternative energy sources like wind, solar, biomass, geothermal and hydroelectric 

energies. Energy supply and demand play a very vital role in national security and the 

economic output of every nation. Since the importance of the energy is increasing day by 

day all around the world, a lot of researchers are working to find out new reliable and 

sustainable energy sources.  

 

One of the most important energy sources is nuclear energy. Nowadays nuclear 

power reactors produce energy by taking the advantage of the physical phenomenon called 

fission, splitting up heavy nuclei such as Uranium (U) or Plutonium (Pu). Fusion, which 

has a different mechanism than fission is based on composition of some lighter nuclei. In 

order to overcome the Coulomb repulsion force between the light nuclei the ambient 

temperature must be extremely high such as  86 1010  K  to make these nuclei stick to 

each other.  Resources for fusion reaction are thought to be infinite since oceans are the 

main sources for these light nuclei which are Hydrogen (H), Deuterium (2H) and Tritium 

(3H). However controlled fusion is a very difficult task and has some technological 

inabilities at least for now. Together with fusion, fuel cycle and vacuum systems, 

microwave heating, blanket and divertor design, superconducting magnet and material 

development, plasma wall interactions are also being investigated. The main problem for 

these new fusion power reactors is to control the plasma. Basically, plasma which is 

described as the fourth state of matter will be discussed in detail in the next chapter. 

Actually it is a gas which is assumed to be neutral as a whole but has electrons and ions 

travelling freely in it. Since the ambient temperature for fusion is very high, the normal 

outcome will be the ionization process. The plasma can be obtained in different ways but 
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in every way energy supply is the essential precondition. Being an ionized gas, the plasma 

is strongly affected by the electromagnetic fields because it contains positively charged 

ions and negatively charged electrons. Plasma simulation research together with fluid 

mechanics is one of the most important fields for understanding and describing the particle 

motion under the effects of electromagnetic fields.  

 

In this thesis, firstly the concept of plasma will be discussed briefly. Some important 

definitions such as magnetic pressure, distribution function, plasma frequency, Debye 

length, plasma parameter, etc. will be mentioned. The link between the plasma and 

magnetohydrodynamics equations will be discussed. After some assumptions the resulting 

momentum and energy equations will be derived. This will be done in a systematical way. 

 

Since the particles in the plasma are assumed to be moving as in the way that the 

particles behave like fluid, the fluid properties will be studied. Since the problems which 

will be studied in this thesis are not related with the motion of the individual particles or 

molecules, some of the macroscopic properties of fluids which are relatively more 

important in studying the dynamics of fluids such as viscosity, pressure, density, 

temperature will be mentioned. Because of the fact that the fluid is assumed as a 

continuum the properties can be obtained as a result of the statistical average of the 

particles in volume under consideration. Since the dimensions of the volume under 

consideration are much more bigger than those of the individual particles the statistical 

approach is applicable. Differential and integral forms for continuity equations will be 

studied basically. Navier-Stokes equations which are governing the mathematical model 

for fluid dynamics and energy equations will also be discussed. The expressions for 

different geometries such as cylindrical and spherical cases will be given directly without 

any derivation. 

 

Both experimental and theoretical physics nowadays are trying together to describe  

this particle motion better and better. In order to prevent very high expenses of the 

experimental works scientists started to use computers instead. Over the last two or three 

decades especially the speed and capacities of computers increased dramatically. Fluid 

dynamics is used as a tool for describing the particles’ motion and it has a very important 

role in industrial processes. Since the power of computers increased nowadays scientists 
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make the calculations of fluid dynamics by using these computers. The ‘Computational 

Fluid Dynamics’ which is presented with the universally accepted acronym CFD is the 

most used research tool nowadays in science and industry related with the fluid dynamics. 

It is used in a very wide range of engineering applications such as hydrodynamic problems 

of ships, submarines, etc. (for naval engineering) design and optimizations of aircrafts, cars 

and trucks by reducing both expensive and time consuming wind tunnel tests, heating and 

air conditioning processes for the houses, blood circulation in the body, fusion plasma 

research etc. However, CFD nowadays can be thought as a mathematically sophisticated 

discipline. Previously fluid dynamics was divided into two branches, theoretical and 

experimental. However, nowadays CFD is the third and equal branch of fluid dynamics. 

CFD tries to solve the governing equations by using the numerical methods instead of 

analytical ones. In this thesis CFD and its philosophy will be studied. The space 

discretization methods such as finite difference, finite element, finite volume, boundary 

element and matrix distribution scheme will be described. The space discretization 

processes in the numerical works in this thesis are done by using matrix distribution 

scheme. The detailed description for matrix distribution sheme will be given. Dual time 

stepping method which will be used in this thesis as a time discretization procedure will 

also be studied in detail. 

 

Simulations done in this thesis will be performed by using a homemade computer 

code which will be discussed in detail here. It is desired to be expanded to three 

dimensions in the future. Actually only the mesh generation procedure for three 

dimensional studies will be presented here. The mesh which is containing three 

dimensional coordinates for every node and the formula which will be used in this process 

will be studied in detail. This will be a novel approach in which the code will be developed 

and this code is planned to be embedded in the previous original two dimensional code.  

 

Numerical simulations of some benchmark problems and originally designed 

problems will be solved in the numerical results part and the obtained outcomes will be 

discussed. Some of the benchmark problems which are  planned to be solved here are the 

steady state lid driven cavity test, the unsteady lid driven cavity test, the unsteady 

oscillatory lid driven cavity test etc. The relatively new designed problems such as vertical 

obstructed flow through the square channels, liquid metal flow past a circular cylinder in 
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open channels exposed to external magnetic field, and so on. The fluids in the problems 

solved in this thesis will be considered to be incompressible. The flow pattern will be 

assumed to be laminar except for some simulations for steady-state lid driven cavity test 

problem.  

 

As previously mentioned the energy production is a very important phenomenon. 

After the energy is extracted as heat from the reactions such as fission or fusion it is 

desired to be converted to electrical energy which is materialized by using the turbines. 

One of the most important agents during this energy conversion process is the matter 

which is used as a cooler. In some reactors instead of water the liquid metals are used as a 

cooling agent. They are chosen because of the fact that they have bigger thermal 

conductivity coefficients than that of water. However, the application areas of liquid metals 

are not restricted only to cooling. Here in this thesis, the technological applications for 

liquid metals will be mentioned and experiments will be presented in which the GaInSn 

alloy will be used. Some light reflection properties of the free surface of this alloy will be 

studied in more detail under different external effects such as temperature increase, current 

application, magnetic field application etc. The reflection dependence of Lorentz force 

induced by current and perpendicularly applied magnetic field through GaInSn alloy will 

be studied.    
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2.  CONCEPT OF PLASMA AND MAGNETOHYDRODYNAMIC   

EQUATIONS 

 
 

2.1.  The Definition 

 

As a very simple definition, plasma is an ionized gas and a collection of charged 

particles. In some sources in the literature it is also called as a fourth state of matter. 

However, its main importance comes from the fact that more than 99.9 per cent of the 

matter or the apparent universe is in this fourth state, plasma. There is an important 

formula proposed by Saha 

 

kT/U

in

i ie
n

T.
n
n 

2
3

211042                                             (2.1) 

 

where in  is the number of ionized atoms per volume )/( 3mnumber  and nn  represents the 

number of neutral atoms per volume, T  is the gas temperature in Kelvin ( )K , k  is the 

Boltzmann constant and iU  is the ionization energy of the gas. This equation  explains the 

ionization expected for a gas in thermal equilibrium at temperature .T  Actually this 

equation is obtained by rearranging the momentum equation for electron under certain 

assumptions. It provides a simplification to determine the number of electrons per volume 

en  without solving the momentum equations. As an example for the air in the ordinary 

room temperature for Nitrogen, the ratio given in Equation 2.1 turns out to be 

 

12210
n

i

n
n  

 

where 325103  mnn , KT 300  and eVU i 5.14 are used [1]. In order to have a 

plasma from a gas the heat addition method can be used. If enough energy is added to the 

solid by heating it up,  the atoms which form the crystal lattice start to go through  thermal 

motions [2] which is ended up by a phase transition such that the solid becomes liquid. If 
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the heat addition continues  the atoms start to vapourize and the gas phase is formed. The 

addition of more energy to the gas causes the gas atoms to collide with each other and this 

collective motion causes ionization of some atoms. This is a new formed state which is 

called the fourth state of matter, namely plasma. After the temperature is increased 

sufficiently then the number of neutral atoms becomes fewer than the number of the 

ionized atoms and plasma becomes fully ionized. This shows that fully ionized plasma is 

only formed at extremely high temperatures. Collective behaviour is very important in 

plasmas. Since it is composed of the charged particles, their motion can generate not only 

the current and subsequently magnetic field but also the local concentrations of positive 

and negative charges which can generate internal electric fields. These fields affect the 

motion of the other charged particles. The force which has long range and affecting the 

particles in the plasma, is the force named Coulomb Force. At the temperatures above  

K000100  most of the matters are in an ionized state. However, by using some other 

ionization mechanisms, the plasma can be formed also under K000100 . In this 

mechanism the density must be low enough in order to prevent from the recombination 

process as much as possible [3]. The name plasma, which means ‘jelly’ or ‘moldable 

substance’ in Greek, is given by the Nobel laureate Irving Langmuir [2]. In the 

laboratories,  the plasma is simply  obtained by passing  the electric current through the 

small amount of gas. The previously mentioned  method which is based on heating the 

matter is not so much preferable because the container in which the process occurs may not 

withstand the temperatures at which the plasma is formed. Additionally, during the heating 

process the container itself can vapourize and become a plasma as well. Another way of 

forming the plasma is to send the radio waves through the gas. Since the electrons absorb 

the radio waves, the ionization occurs and subsequently the plasma is formed. 

 

When protons and electrons coexist together at a sufficiently low density, this 

collection is thought to exist in equilibrium state, which is described by equilibrium 

statistical mechanics. Classical mechanics and nonrelativistic statistical mechanics, 

electromagnetism are the main areas inolved with plasma physics. The problems in 

controlled fusion reactors, astrophysics, molecular physics, magnetohydrodynamics power 

generation, contemporary  physics and an atomic physics are related directly to the plasma 

physics. As an example, in thermonuclear fusion process,  Deuterium and  Tritium ions 

which collide with the energy in the range of tens of keV can fuse and produce    
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particles and neutrons with total excess energy of 17.6 MeV ( 1.14neutronE MeV and 

53.E
p
  MeV). The energy needed for this fusion process can be obtained from the 

plasma which has the density in the range of 32010 m . 

 

High density of the Earth and its atmosphere, prevents the existence of plasma. 

However, the plasma exists in the ionosphere. In dailylifes of people the plasma is seen as 

the conducting gas inside the fluorescent tubes, as the rocket exhausts and as the flash of 

lightning bolt. 

 

Because of the fact that there are charged particles such as ions and electrons, the 

separation between them provides an electric field and the flow of these charged particles 

produces currents and magnetic fields. The electric and magnetic fields produced by the 

moving charged particles in plasma affect the other charged particles. The forces between 

the elements of plasma act on each other even at large distances. Many plasma properties 

result from the long range Coulomb interaction, such that particles may interact 

simultaneously. Table 2.1 shows some properties for different plasmas. 

 

2.2.  The Terminology for Plasma  

 

Brief introduction for the terms mostly used in plasma physics is given below. Since 

the subject of this study was not only about ‘plasma’, there is only brief   description of 

plasma terminology given in this thesis. Figure 2.1 gives the electron temperature 

dependence of plasma density.  

 

2.2.1.  Meta-Equilibrium 

 

It would be better to describe the term equilibrium before metaequilibrium. If the 

particles in plasma are not colliding with each other and the small perturbations are 

neglected, the system can be assumed to be in equilibrium. From the thermodynamical 

point of view  the electrons and ions forming the plasma system can be described with the 

Maxwellian distribution which is only related to temperature. Here the system is in 
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equilibrium with its surroundings. If the situation  that was described as an equilibrium is 

altered by the binary collisions a new state is obtained and it is named as meta-equilibrium.  

 

Table 2.1. The parameters for natural and artificial plasmas  [2] 

 

 Length 

scale ( m )          

Particle 

density ( 3m )    

Electron 

temperature (eV )      

Magnetic 

field )(T  

Interstellar gas 1610  610  1 1010  

Solar wind 1010  710  10  810  

Van Allen belts 610  910  210  610  

Earth’s ionosphre 510  1110  110  5103   

Solar corona 810  
1310  

210  
910
 

Gas discharges 210
 

1810  2  - 

Process plasmas 110
 

1810  
210  

110
 

Fusion experiment 1 2019 1010   
43 1010   5  

Fusion reactor 2  2010  
410  5  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Plasma density versus electron temperature graph [2] 
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2.2.2. Drifts Acting on the Particles in Plasma 

 

The electrons and ions have collective behaviour in the plasma. However, sometimes 

it is needed to consider the motion of individual charge or charges under the gravitational, 

magnetic and electric fields. These fields can be either time varying or static. Under 

uniform magnetic fields and if the collisions are ignored, the movement of the charged 

particle is helical in nature.  

 

Larmor radius )( La  is the radius at which the particle rotates at the cyclotron 

frequency which is given as, c  

 

cm
eB

e
c                                                          (2.2) 

 

where e  is the electron charge, B  is the magnitude of the applied magnetic field, em  is the 

mass of electron and c  is the speed of light. The rotation mentioned above is  

perpendicular to the applied magnetic field. When there are some other fields, the hellical 

motion of the charged particle can change. If the steady electric and magnetic fields are 

applied to the charged particles together, they cause a drift motion perpendicular not only 

to the magnetic field but also to electric field. The velocity expression for this drift motion 

caused by the electric and magnetic fields is given  as:  

 

2B
BEcvDEB


 

                                                     (2.3) 

 

where BE


,  are electric and magnetic fields respectively. 

 

If there is neither an electric field nor a gravitiational field, another drift velocity 

which is given as:   

 

2B
Bg

q
mcvDGB


 

                                                    (2.4) 
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must be taken into account. 

 

If the applied magnetic field is not homogeneous, another drift motion arises because 

of the gradient of B


, B


  

 

B
qB

cEv k
Grad,D


 2                                                  (2.5) 

 

where kE  is kinetic energy perpendicular to B


, q  is electrical charge and c  is the speed of 

light [3]. 

 

2.2.3.  Magnetic Pressure 

 

The confinement of plasma in most of the cases is done by using  externally applied 

magnetic field. Actually plasma has a diamagnetic nature magnetically. It tries to exclude 

the magnetic field applied to its boundary. If the static magnetic field is applied it produces 

an opposite  pressure force given as 

 

 



 2

2

8 cm
dynsBPe 

                                                  (2.6)  

 

across a surface tangent to the magnetic flux surface. This magnetic pressure force must be 

balanced in order to confine the plasma. This balance can be done by the kinetic pressure 

of the plasma which can be expressed as 

 

nkTPk                                                          (2.7) 

 

where kP  is the kinetic pressure, n  is the particle density, k  is Boltzmann’s constant and 

T  is the absolute temperature. This balance is described in the boundary between plasma 

and magnetic field. By increasing the value of magnetic pressure force by adjusting the 

magnetic field B , the plasma can be compressed and its density and temperature will 

increase. 
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Another important quantity in plasma physcics is plasma beta which is the ratio of 

plasma pressure to magnetic pressure, and it is expressed as:  

 

  



82B

kTnkTn
ressurePAppliedExternally

ressurePPlasmaInternal eeii
pl


  .                      (2.8) 

 

Pressure balance in the interface requires the condition given as : 

 

0
8

2












BnkT


.                                                 (2.9) 

 

It means that the pressure gradient at the boundary of the plasma must be zero, otherwise it 

can not be confined [3]. 

 

2.2.4.  The Distribution Function 

 

The distribution function f  which will be used intensively later in this chapter of the 

thesis is used to describe the plasma. Basically, it is the number of particles per unit 

volume in six dimensional velocity configuration phase space )( zyx dvdvdvdzdydx .  

 

Since, unfortunately it is not possible to know everything such as position and 

velocity of any individual particle in plasma, a distribution function is used as a statistical 

function in order to describe the plasma properties mentioned above. 

  

In the most detailed plasma descriptions it is desired to know the velocity and the 

location of each particle. However, it is impossible to individually follow a lot of ions and 

electrons and know their locations and velocities instantaneously even with super 

computers. The laboratory plasmas almost always obey the Maxwellian distribution, 

actually a plasma can never achieve the exact distribution but it is very close. It is usually 

necessary to define different distribution functions for each charge species, let’s say  , so 

that vdrd)v,r(fn 
  is  the number of   particles, in the volume element expressed as 
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vdrd  .   If the normalization is done, then total number of   particles in the system is 

found. The unit of the distribution function is    6333 ms)sm(mf   .  

 

For a Maxwell-Boltzmann distribution, the distribution function, f  needs 

appropriate normalization. By taking the moments of distribution function some 

macroscopic parameters of plasma system such as density, mean velocity, pressure etc. can 

be found. The expressions for density and mean velocity are given respectively below. 

 

 vdfn 
                                                      (2.10) 

 




vdf
vdvf

v 






 .                                                    (2.11) 

 

The distribution function can be used to find the value of some quantities averaged 

over the distribution. For any quantity Q , the local velocity-space average of Q , 
v

Q  is 

given as:  

 




vfd

vfQd
Q

v 3

3

.                                                 (2.12) 

 

It is useful to relate the experimental distribution function to the Maxwellian 

distribution that can fit the data better. This can be done  by describing the system which is 

a plasma having the temperature T . Otherwise if the distribution function has no relation 

with Maxwellian distribution it is purely described by only specifying the temperature [2]. 

 

2.2.5.  The Plasma Frequency 

  

Some interesting behaviours of plasma can be observed because of the fact that the 

particles affect each other with the long range forces. Actually the plasma can behave as a 

system of coupled oscillators. The  frequency of the plasma p  is the one basic 

oscillator’s frequency which is given as : 
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2
1

242 









e
pp m

nef  with the unit 





s
rad .                           (2.13) 

 

In Equation 2.13, nf p
410  Hz for electrons where n  is the particle number in 

cubic centimeter, em  is the mass of electron. p  is the frequency of the plasma giving the 

information about how electrons fluctuate in the plasma, and it also gives the information 

about the time which is required for an electron or an ion moving with thermal speed to 

cover a Debye length which will be discussed later [3]. 

 

2.2.6.  Debye Length 

 

One of the important features of plasma is that it has an ability to shield the electric 

potentials applied externally. Plasma has a fundamental property which states that if any 

additional charged particle or particles are added (immersed) to plasma, the new additional 

electric field due to the newly added particle is shielded by plasma. In order to screen the 

plasma from penetration of a new electric field caused by the newly added particle all the 

other  particles in the plasma go through new arrangements. The Debye length D  which is 

the measure of the shielding distance, is one of the important criteria for an ionised gas to 

be a plasma or not.  

 

Debye sphere, another term, is the sphere with the radius which is equal to the Debye 

length. In order to say the ionized gas is  a ‘plasma’ it must have the dimensions such as 

‘ L  ‘ which must satisfy DL   and also the number of particles in the Debye sphere, 

DN , must satisfy 1DN . If the frequency of a typical plasma is p  and the mean free 

time which is the time taken between two successive collisions with neutral atoms is mft , 

then the plasma must also satisfy the criterion which is 1mftp  otherwise the gas will 

be said to be a neutral gas instead of plasma [1, 2]. 

 

By using a little mathematical interpretation a little different definition for Debye 

length can be given as follows. The potential of a charge at rest located  in a plasma can be 

solved as follows: 
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
















D
p

rexp
r
q


                                              (2.14) 

 

where D  is Debye length which is a kind of measure of the sphere of influence of the 

given test particle in plasma. Actually D  depends on the speed of the test charge with 

respect to the plasma. As a brief example for electron-proton plasma, Debye length is 

given as : 

 

2
1

2
1

2 9.4
8
















n
T

ne
kT

D 
                                          (2.15) 

 

where n  is again the density of electrons (or ions) in 3cm , T  is temperature in K  and k  is 

Boltzmann’s constant with the value of K/ergs. 1610381  . 

 

2.2.7.  Plasma Parameter  

 

The plasma parameter, is the parameter which gives an idea about the number of 

particles in Debye sphere. The mathematical representation of the plasma parameter is: 

 

3

1

D
p n

g


 .                                                      (2.16) 

 

If the plasma description is required to be statistically correct then the Debye sphere 

must be larger and subsequently the plasma parameter, pg  must be smaller. The 

assumption for  pg  is called the ‘plasma approximation’. This parameter is one of the 

most important dimensionless parameters related to the plasma.  

 

2.2.8.  Stability of a Plasma and Controlled Thermonuclear Fusion  

 

One of the aims of the fusion plasma research is to be able to confine the plasma at a 

sufficient density and sufficient time period to make the thermonuclear fusion possible . 
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However, the energy spent in order to maintain this confinement is wanted to be less than 

the energy which  is recovered from the fusion process. The main drawbacks for this 

process are plasma instabilities. Stability theory is the most interesting part of plasma 

research. The problem is not solved totally up to now but a very intensive research is 

directed to this phenomenon. The instability actually can be defined as a small perturbation 

in plasma which is in equilibrium and the effect of this small perturbation can grow with 

time. One of the  important instabilities of plasma is configuration-space instability which 

is due to the spatial localization of particularly used devices during the confinement of 

plasma. Velocity-space instability is another important instability of plasma. When a beam 

of monoenergetic electrons is injected into a cold plasma this kind of instability occurs. 

 

2.2.9.  Collisions in Plasma 

 

Not only elastic but also inelastic collisions occur among the particles in the plasma. 

Mostly the collisions in the partially ionized gas are electron-electron, electron-ion, and 

electron-neutral collisions. The cross section term is usually used to describe the collisions 

in plasma. It gives an idea about the probability of interaction of the particles. Since the 

value of some cross sections are changed by the plasma, Coulomb cross section is defined 

C . Coulomb cross section is obtained by changing the upper limit of total cross section 

integral to Debye length [3].  

 

The mean free path, mfpl  is another important parameter in plasma physics. It is 

defined as a path length travelled by the particle before collision process occurs. 

Mathematically it is given as : 

 

cs
mfp n

l

1

                                                     (2.17) 

 

where cs  is the collision cross section. The collision frequency, C , is given as  

 

vn csC                                                          (2.18) 
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where v  is the velocity with which the incoming particle is travelling relatively to the 

target particle. The incoming particle will travel the mfpl  mean free path in time mft  

before collision.  

 

The reciprocal of this time is defined as collision frequency. Since in most cases the 

cross section is the function of velocity so the effective collision frequency is the average 

value of the product of cross section and velocity. Velocities of target particles are 

thermally distributed. The effective collision frequency is given as : 

 

  v)v(n csC  .                                                 (2.19) 

 

For incident particles the total number of events per second and per cubic centimeter 

is expressed as : 

 

2121 ,cse vnnR  .                                              (2.20) 

 

There are many important terms and parameters for plasma such as Landau damping, 

waves in plasma (e.q. ion-sound waves, plasma waves etc.), shock waves, solitary waves,  

plasma radiation (e.q. Bremstrahlung, Blackbody radiation, Impurity radiation, 

Synchrotron or Cyclotron radiation, Cherenkov radiation, diffusion and Bohm diffusion 

etc. which will not be mentioned in detail in this thesis since they are out of our scope of 

discussion. 

  

Another important process for plasma is its production. Since it does not exist as a 

normal state on the Earth it is produced depending on the aims of the researcher and 

customers. It can be produced having different densities, different temperatures, stable or 

unstable and etc. Some of the main plasma production techniques are the low pressure cold 

cathode discharge, the thermionic arc discharge, rf produced plasmas, alkali metal vapour 

plasmas, the Solar plasma, laser produced plasma etc. 

 

The measurements are also very important events for plasma technology. The 

properties of plasma such as density, temperature, thermal conductivity, radiation rate, 
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collision frequency, stability or instability are desired to be known. Actually measuring one 

of these properties can help in calculation of the other parameters. Mostly measurement of 

the current and voltage in plasma helps in understanding the other properties. There are 

some probes such as  electrostatic or Langmuir probes and magnetic probes. Some other 

methods also exist in measuring such as fast photography and atomic spectroscopy, 

radiation measurements, single particle measurements etc. The measurement techniques 

used are classified as active and passive techniques. The active technique disturbs the 

plasma and produces a perturbation after and during the measurement process. In active 

technique the plasma is directly involved in measurement. The contribution to errors is 

highly probable.  In passive technique plasma is not disturbed and the measurements are 

taken without producing any perturbation in plasma. 

 

2.3.  From Plasma Definion to Magnetohydrodynamics Equations 

 

The typical plasma density can be about 1210  ion-electron pair per .3cm  Similarly to 

the fluids the individual particles containing the plasma can be neglected. Instead of 

looking at an individual particle it is better to take account of the motion of the fluid 

elements. In an ordinary fluid the collisions between the particles keep the particles 

moving together. Plasma, as a fluid contains charged particles in frequent collisions . The 

collective particle movements  in plasma occure are similar to the movements in fluids. 

When the fluid assumption is taken into account the plasma can be thought as it is formed 

from two or more interpenetrating fluids. This theory or assumption is the simplest one and 

sometimes it is not enough for some high level researches. In that point another   theory 

comes to the help of the scientists. The name of this theory is ‘Kinetic Theory’ and it 

describes the plasma statistically. Therefore kinetic theory forces to define a distribution 

function which is called ‘the velocity distribution function’ and which is denoted as )(vf . 

Differently from the ordinary fluid theory which has only four independent variables which 

are tandzyx ,, , additionally three more variables which are velocities such as yx vv , and 

zv  will be taken into account. Most of the plasmas obey the Maxwellian distribution since 

the plasmas are in thermal equilibrium which can not be changed easily. Actually the 

density ),( trnn 
  is a function of  four scalar variables, however considering the velocity 

distributions, the number of variables increase to seven independent variables. In phase 
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space the distribution function ),,( tvrff 
  has seven independent variables which are 

t,v,v,v,z,y,x zyx . The function zyx dvdvdvtvrf ),,(   gives the number of particles which 

are located at zyx ,,  space point in time t  with velocity limits which are between xv and 

xx dvv  , yv and yy dvv  , zv and zz dvv  . Basically it gives an idea about the particle 

distribution not only in physical space but also in velocity space together. 

),,( tvrff 
 represents the same particles per volume zyx dvdvdvvd 3 . Note that the 

velocity dependence is removed by taking the moment of distribution function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Velocity space in three dimensions [1] 

 

The phase space can be defined as:  

SystemCoordinatelDimensionaSpaceVelocitylDimensionaSpacePhase 33   

 

 

 

 

 

 

Figure 2.3. Phase space description 
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Actually phase space has six dimensions which are zyx vvvzyx ,,,,, . The volume 

element is given as  rdvddV 
  in Figure 2.4. The geometrical meaning is that phase space 

occupied consists of the sum of all the individual phase space volume elements. Under the 

effect of the forces the volume of the fluid element can deform. However the magnitude of 

the volume after the deformations can be constant which leads to the fact called particle 

conservation. If no particles are lost and no particles are added to the plasma the exact 

phase space density will be conserved. 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Six dimensional phase space  

 

A number of particles in a unit volume of phase space mentioned previously is 

specified by a distribution function. 

 

vrddtvrfdn 33),,( 
                                               (2.21) 

 

where 

 

dxdydzrd 3  and zyx dvdvdvvd 3  

 

then 

 

  
















 ),,(),,(),( 3 tvrfdvdvdvvdtvrftrn zyx

                        (2.22) 

v  
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is obtained. The distribution function can be normalized as given in Equation 2.23: 

 

1),,( 3 




vdtvrf  .                                                (2.23) 

 

The unit of normalized distribution function ),,( tvrf   will be  33 ms . Consequently the 

previously known unit for distribution function  

 

),,(),(),,( tvrftrntvrf                                            (2.24) 

 

 

 

was obtained as  63 ms . By using different velocity integrals of the distribution function 

any quantity can be expressed in  t,r  space.  The average velocity, average kinetic energy 

and collision frequency expressions with the help of distribution function are given 

respectively  as :   

 




 








  vd)t,v,r(fv
)t,r(n

vd)t,v,r(f

vd)t,v,r(fv
v 3

3

3

1 






                          (2.25) 

 






 vd)t,v,r(f)mv(
)t,r(n

KE 32

2
11 

                                (2.26) 

 






 vd)t,v,r(fv
)t,r(n

nv)v(n csC
3

  .                            (2.27) 

 

The system of particles gives rise to equilibrium distribution if the system is not 

subject to external forces and if the system is in thermodynamic equilibrium. The 

equilibrium requires the temperature of heavy particles to be the same )TT( in  ; 

 33 ms   31 m  
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however, electrons temperature eT  is usually higher since they are much smaller than 

heavy particles. 

 

In Maxwell-Boltzmann statistics, the distribution function is given as 
 neA)(f nn

  where n  is energy, nA  is a normalization constant and kT1 . For an 

ideal gas system (not at very high temperatures) the velocity distribution function is given 

as  

 







 


kTmv

neA)v(f
2

2
1

                                              (2.28) 

 

and  

 

vdvfdn 3)( .                                                  (2.29) 

 

By integrating Equation 2.28 in velocity space one gets the number density as 

 

  

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
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



 zyxzyx dvdvdvvvvfn ),,(0                                     (2.30) 
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









                              (2.31) 

 

where temperature is assumed to be homogeneous in space. Note that the Cartesian 

coordinate system is assumed to perform the calculations. Thus the velocity can be given 

as: 

 

 2222
zyx vvvv                                                (2.32) 
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so that   

 
21222 )vvv(v zyx                                             (2.33) 

 

 and zyx KKK ,,  in Equation 2.31 are kinetic energies for yx,  and z  directions 

respectively. Since  

 






   2xe                                                   (2.34) 

 

 , Equation 2.31 can be written as: 

 

m
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m
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m
kTAn n

 222
0                                        (2.35) 

 

so one gets  

 

2
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2 
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
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As a result,  Maxwell-Boltzmann velocity distribution function becomes 
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By using the distribution function one can obtain different average quantities. For 

example average velocity in x  direction can be found by using the velocity distribution 

function.  
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It is obvious from symmetry that the average velocities in ,y,x  and z  directions are zero. 

 

0 zyx vvv .                                              (2.39) 

 

Velocity and speed are two different physical quantities. First of all velocity is a 

vectoral quantity and speed which is a scalar quantity is the magnitude of the velocity. One 

of the important aspects is that the average velocity for different spaces can have different 

values (Figure 2.5). Since there is no preferred direction of notation the volume element in 

velocity space is zyx dvdvdvvd 3 . For the spherical coordinate system the volume element 

in velocity space ),,( v  can be given as: 

 

dv)ddSin(vvd 23  .                                           (2.40) 

 

By taking into account the volume element given in Figure 2.2, v  can take the values 

between the limits  ,0 ,   can take the values between   ,0  and finally  can have the 

values between the limits  20,  , [2]. Since the velocity distribution is assumed to be 

isotropic the expression given in paranthesis in Equation 2.40 will have the value of 4 . 

Then the  volume element in speed space will be  

 

dvvvd 23 4 .                                                   (2.41) 

 

Let us consider two distribution functions )v(g  and )(vf  defined respectively as: 

 ),,()( tvrfvg  speed distribution,  )t,v,r(f)v(f  velocity distribution. The relation 

between these functions is )t,v,r(fv)v(g 24 . 



 

 

24 

 

 

 

 

 

 

 

 

 

Figure 2.5. The distribution functions for different spaces 

 

By using these distribution functions the particle density can be expressed in speed space 

as: 

 





000

24 dv)v(gdv)t,v,r(fdv)t,v,r(fv)t,r(n 
 .                  (2.42) 

 

Here the limits of integral are taken as the limits of the radius of sphere (Figure 2.2) in 

velocity space. The speed distribution function is thus given by 
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By using the speed distribution one can get averages of scalar quantities such as kinetic 

energy, collision frequency etc. and by using the velocity distribution the averages for 

vector quantities  such as velocity, momentum, angular momentum, etc. can be found. 

As an example, the average kinetic energy will be 
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after some  simplifications the equation becomes  

Number of particles 

Velocity 0  

Number of particles 

Speed v  
0v  0v  
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 .                                 (2.45) 

 

In order to get the integral from Equation 2.45, Gamma function:  n   is used. This  

function  is defined as 

 

!)1( nn   for ,...2,1,0n                                         (2.46) 

 

and                              

 

              
n

)n()n( 1
  for 0n .                                        (2.47) 

 

The solution for the integrals in the form of 
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 is obtained by using Gamma  function: 
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As a result, Equation 2.45 can be written as  
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                                 (2.52) 

 

so that one gets  

 

kTKE
2
3

 .                                                   (2.53) 

 

Another distribution function, )(Ef  which is the energy distribution function can be 

obtained by using the kinetic energy equation 22mvE   . The velocity expression  can be 

written as   212 mEv  . The differential of energy is mvdvdE   so that one can write 

mvdEdv   and energy distribution function can be written as:  

 

  dEEe
kT

n)E(f kTE 


21 23

0







 .                                (2.54) 

 

One of the main theorems in kinetic theory is  Liouville’s theorem. This theorem 

basically expresses the conservation of phase space density. The volume element in phase 

space can evolve under the effect of the forces in time but the volume itself and the number 

of the particles in it can remain unchanged.  

 

Liouville’s theorem actually describes the time evolution of the distribution function 

in phase space. It states that the distribution function is constant along any trajectory in 

phase space. As a result it can be easily said that the number of particles in the chosen 

system is constant in time when the system is travelling and deforming through the phase 

space (Figure 2.6). At this point some definitions which will be used in derivations later, 

will be given. 

 

:p Density with which the particles are scattered in phase space, 

:kq Generalized position coordinate, zq,yq,xq  321  (in Cartesian geometry), 

:kp Generalized momentum coordinate, zyx mvpmvpmvp  321 ,,   
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:D  Number of dimensions, 

:d Elemental volume in phase space. 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. The time evolution for the volume element in phase space 

 

The expression for the elemental volume in phase space can be given by using the 

generalized coordinates.  

  

DD dq...dqdqdp...dpdpd 2121                                      (2.55) 

 

Since the incremental volume in phase space  is defined as: 

 

 DD p...ppq...qq  2121 ,                                   (2.56) 

 

the number of systems in this volume is then DDp p...ppq...qq  2121 . 

 

 

 

 

 

 

 

Figure 2.7. The particle fluxes entering and leaving the incremental volume 
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The number of particles that enters the incremental volume per unit time is 

DDp p...ppq...qq  2121 . By using Taylor series expansion, the number of particles 

leaving the face at 11 qq   (by neglecting other terms) is 
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so the difference between the entering and leaving numbers is (by neglecting )q( 2
1 ) 
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The net rate of accumulation inside the incremental volume can be found by extending and 

adding up the result obtained in Equation 2.58 over all D2  coordinates and momenta so 

that 
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is obtained. 

 

It is very well known that ii pHq  and ii qHp  , where H  is the 

Hamiltonian operator. Then iiii ppqq    so that 



D

i
iiii ppqq

1
0  and if  

the density is given as Dp p...pp  21  then by dividing Equation 2.59 by 

DD p...pppq...qqq  321321  one can obtain 
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and  eventually Liouville  equations  is obtained as  
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In terms of total derivative the same Liouville  equations  will be written as: 
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
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D pp 
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.                                          (2.62) 

 

Equation 2.62 is the expression for conservation of phase space points. This equation 

states that the density of representative points in phase space corresponding to the motion 

of the system of particles remains constant during the motion. It means that p  is 

conserved. The complete rate of change with time, considering the explicit and implicit 

variations at a given point in phase space of a density function p  for an ensemble  of 

systems is given by an expression involving the explicit rate of change with time and 

additional function of the coordinates and momenta.  

 

If sN  is the total number of systems which is expressed as   d)t,q,p(N pD  , 

Dp N  is the probability that a system of particles will be in a region of phase space. 

 

Let us assume that the distribution function is given as follows: 

 

      ...p...ppq...qqp...ppq...qqp...ppq...qqff DsDsDsnN 321212212112121 .       (2.63) 

 

This expression gives  the number of particles per unit volume of phase space. If f  is a 

single particle distribution, 
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where 1H  is the Hamiltonian of a single system. This equation is known as Vlasov 

equation or collisionless Boltzmann equation. This result states that there is no interaction 

among the particles. However, the Boltzmann equation which includes collisions is given 

as  
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Because of the fact that most space plasmas are collisonless, the right hand side of 

the Equation 2.65 is neglected and ‘Vlasov equation’ is obtained. Vlasov equation 

conserves particles which means that time rate of change of the total number of particles is 

zero [3].  

 

By considering the collection of charged particles of one species the evolution of the 

particle distribution function can be expressed as :  
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where tf  is the explicit dependence on time and, for example,  xvtx   , 

mFtv xx  . Then Equation 2.66 becomes 
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if one takes the following gradients into consideration  
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the Vlasov equation is obtained 
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If collisions exist, i.e., 0DtDf  then  
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Boltzmann equation is obtained.  

 

It is important to note that if the force which is acting on plasma particles is given as: 
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where E


 is the electric field, B


 is the magnetic field, g  is gravitational acceleration then 

Vlasov equation given in Equation 2.68 will have the form 
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The macroscopic equations of plasma are transport equations which describe the 

flow of mass, momentum and energy. The transport phenomena are frequently used to 

identify plasma properties associated with collisional effects. Electrical conductivity, 

thermal conductivity and some other physical properties are associated with transport 

phenomena. There are two aspects for the problem in plasma transport phenomenon which 

are statistical and macroscopical approaches.  

 

Mass, momentum and energy conservations are very important physical principles 

which can be derived from the transport equations. 
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Assume that the distribution function, ),,( tvrf   for single particle species which are 

identical but indistinguishable, satisfies the Boltzmann equation. An arbitrary function 

),,( tvr 
  is also defined to give the arbitrary properties such as mass, momentum, energy, 

etc.  of the particles. The Boltzmann equation is given as: 
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Multiplying Boltzmann equation by ),,( tvr 
  and integrate over velocity space one gets: 
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Each term can be studied separately. Let us start from terms number )IV(  and )I(  . 
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Note that the following is used in these modifications: nvdtvrf  3),,(
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 and 
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. Term )II(  can be written as 
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The gradient term in Equation 2.76 can be written as  
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The last term vanishes since xv  is independent of x and its derivative is 0 . Since 
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and similarly for yv  and zv   
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are obtained. The gradient term can be written as  
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is found. Term )III(  in Equation 2.73 becomes 
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can be written. 

 

In that case the first term on the right hand side of Equation 2.84 becomes 
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The acceleration is given from Lorentz force as :    m/BvEqa
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qa                                             (2.87) 

 

  xzzxyy vBvBE
m
qa                                             (2.88) 

 

  yxxyzz vBvBE
m
qa                                             (2.89) 
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E


 is an electric field and it does not depend on zyx v,v,v  so 0 xvE , 0 yvE  and 

0 zvE . One gets 
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Finally  the term  )III(  in Equation 2.73 is obtained as: 

 

  vv anvfd.a)III(
 3 .                                  (2.93) 

 

After all the terms of Equation 2.73 are derived and this equation becomes:  

 

  


 vrr anvnvn
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
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


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)(),( .       (2.94) 

 

However, if Equation 2.94 is rearranged one gets the moment equation: 

 

  0)( 







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
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

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t
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t rvr
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


 .         (2.95) 

 

Although the microscopic distribution depends on r , v  and t  i.e., )t,v,r(f   the 

macroscopic physical parameters depend on only r  and t . Therefore they are obtained by 

integration over the entire velocity space so-called moments. Let us look at the moments 

and their results. 
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Since pv then there will be three different cases given as below. 

 

Case 1: 0mp  this is the th0  moment of equation and it gives the conservation of 

mass, 

 

Case 2: 1mp  this is the 1st moment of equation gives the conservation of 

momentum, 

 

Case 3: 2mp  this is the 2nd moment of equation gives the conservation of energy. 

 

2.3.1.  The 0th Moment ( 0mp , 1 ) 

 

If   1  is used into Equation 2.95 
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              (2.96) 

 

is found. Since 11  , 01  t  and 01  v


 

 

   nvn
t
n

r 

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                                            (2.97) 

 

is obtained.                                                

 

The term  n  is described as the rate at which particles are lost or gained due to 

the inelastic collisions in volume element rd 3 . Elastic collisions do not involve a particle 

loss or gain in volume element rd 3 , rather a loss or gain in velocity space. The particle 

loss or gain depends on the ionization, electron-ion recombination, electron attachment 

processes. 
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2.3.1.1.  Ionization 

The expression for a single ionization process can be given as :   eAAe 2 . 

Here the ionization frequency i , depends on the temperature of electrons and ions 

)T,T( ieii    where iT   and eT  are ion and electron temperatures respectively. Ionization 

serves as a gain term and iin  is the number of ions produced per second and per unit 

volume while ee n  is the number of electrons produced per second and per unit volume. 

 

2.3.1.2.  Electron-Ion Recombintion 

The term from the electron-ion recombination is a loss term. The expression for this 

process is hAAe    where h  is the Planck’s constant and   is frequency.  The 

rate of this process is directly proportional to number of electrons and ions. Mathematically 

it can be written as ie nnRate  where ie nn  and it means that 2
enRate  . Then 

formally the rate is given as 2
eRnRate   where R  is a recombination coefficient. 

 

2.3.1.3.  Electron Attachment 

Since the expression for this process is   AAe . The rate for electron-ion 

recombination iN nnRate  where subscript N is the number of neutrals in the system. 

This process can also be expressed as eAnRate   where A  is the attachment frequency. 

Using these processes, Equation 2.97 can be written as: 

 

  2
eRAieeer

e n)(nvn
dt

dn
 


                            (2.98) 

 

where dtdne  is time rate of change of the density of electrons in a small volume. 

 eer vn 
  is the term representing the flow in or out of the particles of a small volume and 

the right hand side represents the generation or loss of electrons in a small volume due to 

the elastic collisions in the system. If there is no loss and generation of particles in the 

volume considered the equation is simplified as: 
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  0 eer
e vn

dt
dn 

                                             (2.99) 

 

which is nothing but the same form for conservation of mass in fluid dynamics. 

 

2.3.2.  The 1st Moment ( 1mp , vm )  

 

This moment will give us the momentum transfer equation in fluid dynamics. The 

main expression which is Equation 2.95 now will have a different form given as: 

 

  0










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

 vvmn.)vm()vm(.a)vvm.(

t
)vm(n)vmn(

t rvr



 .  

  

Here v  is assumed to be the particle velocity in laboratory frame (instantaneous 

velocity) and it is given by 

 

VelocityRandomvv 
                                        (2.101) 

 

where ),( truv 
  defined as average velocity. If rw  is defined as peculiar velocity or 

random velocity 

 

uvvvwr


                                              (2.102) 

 

Random average velocity 0 . One can show this as follows: 

 

  0),,(),,(1),,()(1 333    vvvdtvrfvvdtvrfv
n

vdtvrfvv
n

wr

 .  (2.103) 

 

It is important to note that the thermal energy of the system kT  is proportional to 

scalar pressure, nkTP  . By using the definition for velocity given above the third term in 

Equation 2.100 can be expressed as :  

 

(2.100) 
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rrrrr wwmuum.)vvm.( 
 +2 rr wum 

                   (2.104) 

 

by relating the velocity in laboratory frame to the random and average velocities. Random 

energy rrwwm   is related to kT  and Pwwnm rr
~




 where P~  is the pressure tensor. 

 

 

 

 

 

 

 

 

Figure 2.8. The random and the average velocity plots 

 

The pressure tensor, P~ , contains a kinetic contribution and contribution from n-body 

interactions. Another name of the pressure tensor is stress tensor and its components 

specify both the direction of motion and component of momentum involved. 
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wwnmP~                                  (2.105) 

 

where the diagonal terms  

 

  zzyyxx PPP   

 

are scalar pressures. 

 

The off-diagonal elements in pressure tensor are related to the viscosity.  Shear stress 

is given as:  yvxyx   . 

  

t  

v  
Random velocity 

vu 
  
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The divergence of the pressure tensor is a vector given by 
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ẑwwẑŷwwẑx̂wwẑ
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This equation becomes 
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In that case Equation 2.100 is rearranged as: 
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The term ( I ) is equal to zero since v  is independent from t  and similarly term ( II )  is 

also zero because v  is again independent of space variables. Then  

 

   vvmnvmvmanvmn
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



 )()()(                     (2.109) 

 

is obtained. By rearranging one gets 

 

    )vm(Fnvvmn)vmn(
t r


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 .                        (2.110) 

)I(  )II(  
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Note that since     )t,r(uvfdvnv  31  then 0 vv , so that 1st term on the right 

hand side of Equation 2.109 vanishes. 

  

By using no source  continuity equation (i. e., 0 )vn.(tn 
 one can write   

 

 vnv
t

mnvnm
t r









 .                                  (2.111) 

 

Using this Equation 2.100 can be  written as:   
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The last term in Equation 2.112 can be studied separately as: 

 

     vwvwnmvvnm rrrr


                         (2.113) 

 

 

and the term )I(  can be written in a different form as 

  

vwwvvv)ww()I( rrrr


  

 

where the last two terms are zero. Now let us put these results in Equation 2.113 to get 
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Using this expression in Equation 2.112  
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)I(  
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is obtained and after cancellation is done for the second term on the left hand side and the 

last term on right hand side the simplified form is found to be: 

 

     P~)vm(Fnunm
t
umn rr 

 


                         (2.115) 

 

where  )t,r(v)t,r(u   is the average velocity. Equation 2.115 is the momentum 

conservation equation. 

  

Now the last moment of  Vlasov equation will be studied in the same manner. 

 

2.3.3.  The 2nd Moment( 2mp , 22mv ) 

 

If  22mv  is inserted into Equation 2.95 one gets 
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then the equation will have the form given as: (using v.vv 
2 ) 
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   (2.117) 

 

 

Again the terms will be studied separately. Let us start from term )I( . Here 

tandr,v  are independent variables and mass m  is assumed to be constant and uv  . 

Then  

 

   rr wu.wunmv.vnm 
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 rrrr w.uu.wu.uw.wnm 


2
                               (2.118) 

 

is found. It must be remembered that the last two terms are equal to zero. The term 

rr w.wnm   gives the scalar pressure 

 

PPPPwwwnm zyxzyx 3222                              (2.119) 

 

so  

 

Punmmvn
2
3
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1 2

2                                         (2.120) 

 

is obtained. The first term on the right hand side is directed energy and the second term is 

the thermal energy. 

 

Let us analyze term )II( . Notice that   

 

     rrr wuwuwuvv 2  

   uu.wwu.wuuwuuwww rrrrrrr
 222222   .               (2.121) 

 

In Equation 2.121 02  rwu   and   02  uuwr
  since  0rw . The term   rr wu.w 2  can 

be written as uP ~ . Here it is just the time to define a heat flux term which is the flux of 

random (thermal) energy across a surface element moving with mean velocity u . 

 

rrh wnwq  2

2
1

                                                (2.122) 

 

So that Equation 2.120 will have the form such as given in Equation 2.123 below. 
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Since   mvmvdvd 22  and energy   is defined as: 
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So Equation 2.123 becomes as: 
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Using the Lorentz force, then the acceleration will have the form as given in Equation 

2.125. 
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Let us change the velocity in Equation 2.125 by  uwr


  to get 
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Then the second term on the right hand side of Equation 2.126 can be written as 
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so that 
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is obtained. If the electric field in a moving reference  frame, E , is given as : 

 

 BuEE


                                                (2.129) 

 

and by using the definition for total derivative given by 

 

r.v
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one gets  
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where J


 is the average current density given as unqJ 
 .  

  

In Equation 2.131 the first term on the left hand side is the total rate of change of 

thermal energy of the gas in a volume element moving with mean velocity, the second term 

is the energy carried into (or out to) the moving volume element by thermal flow of atoms, 

the third term is the change of energy due to the heat flow, fourth term is the work done in 

the moving element (control volume) by the pressures on its surface. The term on the right 

hand side of equation is called Joule heating term. 

 

 If some definition such as: 

 Mass density iieem mnmn   

 Particle current density iieep vnvnJ 
  

 Mass current density iiieeem vmnvmnJ 
  

 Electric charge density iieeE qnqn   

 Electric current density iiieeeE vqnvqnJ 
  are assumed and heat flux term is 

assumed to be 0kq  together with 0E.J


. 
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Then the centre of mass velocity of the system is taken v  and new peculiar velocity 

0
ew  and 0

iw but 0 
eiiiee wmnwmn  are assumed. As an addition to the 

above assumptions  eeeee wwmnP~  and vwv ee


  , vwv ii


   are  taken into account 

one gets momentum equation in the form given as: 

 

EBJP~.
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vd
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
   .                                      (2.132) 

 

Here the momentum equation was obtained by using some assumptions described 

above. This is a relatively different derivation of momentum equation which is one the 

most important equations which were used in this thesis. During the theoretical study given 

in this chapter especially references [1-3] were used intensively. 
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3.  FLUIDS AND FLUID PROPERTIES 

 
 

The matter can exist in three different states which are solid, liquid and gas. The 

liquid and gas states together form the fluids. Typically gases are considered as  

compressible fluids and liquids as noncompressible, that means they have fixed volumes 

under the conditions of constant temperature and  pressure. Actually a fluid is a continuum 

material which can not resist the shear stress. Under the effect of some shear stress the 

fluid is deformed. The fluids are deformed continuously under the tangential (shear) 

stresses no matter how small the magnitude of the stres is. A solid, in contrary, deforms by 

the amount proportional to the stress applied, after which a static equilibrium will result. 

The magnitude of the shear stress depends on the magnitude of angular deformation [4]. 

 

Table 3.1. The states of matter and some properties [5] 

 

State 

 

Intermolecular Forces Molecular Arrangement Type of statistics required 

Solid 

 

Strong Ordered Quantum 

Liquid 

 

Medium Partially Ordered Quantum+Classical 

Gas 

 

Weak Disordered Classical 

  

The molecules composing a fluid are free to move and past each other. The 

behaviours of a fluid is defined by the set of partial differential equations called Navier-

Stokes Equations. A fluid is considered as a continuum material. The continuum 

mechanics is the science interested in continuum materials. In continuum mechanics  the 

discrete nature of fluid is ignored and the idea which says that the materials are not 

composed of discrete particles is accepted. After ignoring the atomic structure of the matter 

the modelling for large scales, which are very much greater than the interatomic distances, 

is very accurate. The physical properties which enter the interested area of continuum 

mechanics are independent from the particular coordinate system in which they are 

observed. Mathematical objects called  tensors which are independent from the coordinate 

systems are mostly used for representing these physical properties.  
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Figure 3.1. The subdivisions of continuum mechanics 

 

Since the problems of interest of this thesis are particularly related to the fluid 

dynamics,  the study of fluid in motion, our interest will not be focused on the motion of 

individual molecules, instead it would be on describing the fluid and its motion in very 

large spaces. These spaces are very much larger than the distances between atoms and 

molecules. Not only the distances but also the number of particles in the scope of interest 

are very large,  the statistical average is very meaningful in these cases. Actually the fluid 

mechanics is mathematically very complex in some cases. In order to avoid from this 

complexity a relatively modern discipline called computational fluid dynamics is used by 

the scientists and engineers. Computational fluid dynamics (CFD) is the subject of the next 

chapter . By using the mathematical models the properties of materials are calculated by 

using the statistical averages which are necessary after the material is assumed as a 

continuum. There are approximately 25105.2   molecules in a cubic meter of air at room 

temperature at sea-level, which corresponds to about 10105.2   molecules in a cube which 

has a side of 01.0 mm and the mean free path is about 8106.6  m [6]. As a conclusion the 

consideration of a fluid as a continuum is rather a highly accurate assumption.  

 

3.1.  Macroscopic Properties of Fluids 

 

Since gas and liquid states of matter form together it is very important to classify the 

meaning of the word fluid. From rheological point of view fluids can be classified as 

liquids and gases. If the spatial dimensionality is under consideration they can be one 

dimenisonal, two dimensional and three dimensional. From the temporal variation point of 

view fluids can be divided into steady and unsteady fluids. The classifications depend on 

Solid Mechanics Fluid Mechanics 

Fluid Statics 

Continuum Mechanics 

Fluid Dynamics 
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the properties of the fluids. The most important properties of the fluids can be considered 

as pressure, temperature, density, velocity, viscosity etc.  

 

3.1.1.  Viscosity 

 

One of the most important properties of the fluid is viscosity which is basically the 

willingness of fluid to flow. However, more scientifically the viscosity can be described as 

the resistance of fluid to deformation under the effect of shear stress. Since it can be 

thought as the resistance to flow, viscosity is related to the internal structure of the fluid 

under consideration. Qualitatively viscosity is a material property related to the resistance 

of fluid or alternatively is a measure of stresses exerted by a fluid on the surrounding 

media when the fluid is undergoing the deformation [7]. Since it is a scalar transport 

property, viscosity is related to the transport of momentum. Formally it gives the ratio of 

the shearing stress to the velocity gradient in the fluid. Mathematically it is given by   

 

RateShear
StressShear

                                                   (3.1) 

 

 

 

 

 

 

 

 

Figure 3.2. The velocity profile for the fluid element on which the force acts on the upper 

part 
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                                                         (3.2) 

 

The shear stress,  ,  is the stress applied tangentially to the face of material. The unit 

for shear stress is Pascal ( Pa ). Shear rate is the velocity gradient applied to the fluid and it 
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gives an idea about the rate at which the adjacent layers of fluids move with respect to each 

other. The unit for shear rate is 1s  ( )ondsec/1 . The unit for viscosity is Pascal second 

( sPa. ) or )./( smkg .  

 

Materials are classified as Newtonian and non-Newtonian depending on their  

viscosity profiles. Newtonian fluids are fluids in which the shearing stress is linearly 

related to the rate of shearing strain (Figure 3.3). 

 

 

 

 

 

 

 

 

Figure 3.3. The plot of shear stress versus shear rate for Newtonian fluids 

  

In non-Newtonian fluids the relation between shear stress and shear rate is nonlinear 

and can be time-dependent. Water, milk, gasoline, sugar solutions, minearal oils are 

examples of Newtonian fluids. The molten polymers, blood, soap, grease and paint are 

non-Newtonian fluids. 

 

The viscosity of the fluids can be studied under two parts, viscosity of liquids and 

viscosity of gases. Especially the liquids have an enourmously wide range of values of 

viscosity. The temperature is the main exterior agent which affects the viscosity in liquids. 

The increase in temperature causes the decrease in viscosity of liquids. The temperature 

dependence of viscosity for many liquids is given as  

 

T/B
l leA                                                      (3.3) 

 

where lA  and lB  are characteristic constants for liquid and T  is absolute temperature in 

Kelvins [7]. This shows that viscosity reduces very fast as temperature increases. The 

Shear 
Stress 

Shear Rate 
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viscosities of pure gases at low temperature and far away from the critical points can be 

found from so called Chapman-Enskog theory. The gas viscosity is given by  

 

Vd

/)MT(.


 2

21
610672                                             (3.4) 

 

where M  is the molecular weight, T  is the absolute temperature in  Kelvins, d  is the 

collision diameter sometimes referred to as molecular diameter in angstroms 

)mA( 10101  , V  is collision integral. From Equation 3.3 and Equation 3.4  it is seen 

that the temperature dependences of liquids and gases are different. Actually when the air 

is considered for temperatures below K3000 , the  viscosity of air is independent of the 

pressure and for this range Sutherland’s Formula can be used. 

 

4.110
10458.1

2/3
6


 

T
T

                                               (3.5) 

 

Table 3.2. Temperature dependence of the viscosity calculated from  

Equation 3.5 for air [6] 

 

)(KT  )./(105 smkg  
20 1.329 

40 2.285 
60 3.016 

80 3.624 

100 4.152 
120 4.625 

140 5.057 

160 5.456 

180 5.828 
200 6.179 

220 6.512 

240 6.829 
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The viscosity  has two different parts: dynamic viscosity and kinematic viscosity. In 

the literature the word viscosity is used instead of the dynamical viscosity. When the word 

viscosity is used it is related to dynamical viscosity unless otherwise is specified. Because 

of the fact that in fluid dynamics area, the density is a mostly used property for fluids 

instead of mass, and the ratio   frequently appears in the equations. This ratio has its 

own name called kinematic viscosity. The unit of kinematic viscosity is ./2 scm  It should 

also be noted that the temperatures given in Table 3.2 and Table 3.3 are Kelvins and 

Centigrade respectively.  

 

Table 3.3. Temperature dependence of the kinematic viscosity for different materials [8] 

 

Material  )( CT    s/cmitycosVisKinematic 2  

0 0.00125 

10 0.00123 

 

Mercury 

20 0.00117 

0 0.133 

10 0.140 

 

Air 

20 0.143 

0 0.0178 

10 0.0130 

 

Water 

20 0.0101 

0 7.34 Machine 

Oil 20 3.82 

 

3.1.2.  Pressure 

 

The definition of pressure simply is the force per unit area. The pressure of fluids, 

both liquids and gases, are due to the random motion of the particles which are atoms and 

molecules forming them. If the fluids are heated their pressures increase. The SI unit for 

pressure is 2mN or simply Pascal.  
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Figure 3.4. The pressure definiton for the container filled with liquid 

 

The pressure for point A  (Figure 3.4) which is located in the liquid with the 

density  is expressed as:  

 

atmeA PghP                                                     (3.6) 

 

where g  is the gravitational acceleration, eh  is the vertical height measured from the 

surface of the liquid and atmP  is the atmospheric pressure. The pressure in the liquid 

increases in a directly proportional manner with the depth. atmP  is the pressure due to the 

weight of the column of  air above any point in the Earth’s atmosphere. The value for the 

standard atmospheric pressure is 101.325 kPa . Manometers, elastic-type pressure gauges, 

electric type pressure gauges are devices which are used to measure the pressure. At any 

cross section the pressure generates a force which can cause the fluid particles to flow. For 

the liquids under critical point the pressure does not affect the volume too much, as a 

numerical example the change of water pressure by 1000 per cent, change the volume is 

less than 1 per cent. However, for the gases any change in pressure directly affects the 

volume [9]. The pressure has two characteristics: the pressure of the fluid acts 

perpendicularly to the wall in contact with the fluid, the pressure applied to the fluid in the 

closed vessel is transmitted to all parts at the same value with the applied pressure  

regardless of its direction [10]. 
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3.1.3.  Density 

 

The definition for density is the ratio between the mass and the volume of material or 

the mass per unit volume. For the liquids the density is a property which is assumed to be 

constant. It is considered to be indepenedent of the sample size. Actually the density can 

change as a function of time and location ),,,( tzyx   but it must be a continuous 

property. As a mathematical definition it is given as: 

 

V
m

V 


 
 lim                                                       (3.7) 

 

where m  and V are finite mass and finite volume amounts of matter.   must be chosen 

so as not to break the continuity assumption. Otherwise, the principles of the statistical 

mechanics must be utilized [9]. 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. The density as a function of the size of sample 

 

SI units for the density is 3mkg . The equation of state for gas phase relates the density to 

its pressure and temperature as: 

 

RTP                                                          (3.8) 

 

where T  is the temperature in Kelvins, P  is the pressure, R  is the gas constant which has 

a specific value for each gas and   is the density of the gas. The density is assumed to be 

  

llog  

  
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constant in the numerical simulations presented in this thesis, since the flows are 

incompressible. 

 

3.1.4.  Temperature 

 

As a definition temperature is the measure of the average kinetic energy of the atoms 

or molecules in the substance. Actually it can be thought as a property which gives the clue 

about the degree of freedom in the view of statistical  physics. Temperature is related 

directly to the heat or the thermal energy of the system. Temperature gives an idea about 

the energy of the atoms forming the system. If the heat is added to the system the random 

movement of the atoms and molecules will become more vigorous in the microscopic 

scale. Temperature is an intrinsic property of the system so it is independent of the amount 

of matter in the system or the size of the system. The temperature affects a lot of  physical 

properties of the matter such as electrical conductivity, density, phase etc. It is measured 

directly by using a thermometer, a thermopile, a termistor  etc. It affects the viscosity of 

the fluids since the viscosity of the gases increases while the viscosity of the liquids 

decreases with the increasing temperature. In gases, the increasing temperature makes the 

molecules’ movements faster and this results in the increase in viscosity. In contrast with 

liquids the molecular separation increases and this results in the decrease of the attraction 

between them. This results in the decrease in viscosity [10]. The SI unit for temperature is 

Kelvin )(K . Other temperature units which are mostly in use today are Celsius  C  and 

Fahrenheit  F . In order to convert the Celsius to Kelvin  

 

15.273)()(  CTKT                                                (3.9) 

 

and from Fahrenheit to Celsius  

 

  32
9
5)(  FTCT                                              (3.10)  

 

expressions are used. 
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Since the fluids obey the laws of physics such as conservation of mass, conservation 

of momentum and  conservation of energy, the properties of the fluids can be calculated 

and understood better from these equations. 

 

3.2.  Mass Conservation: The Continuity Equation 

 

Basically conservation of mass states that the mass cannot be created or destroyed by 

the flow of  the fluid under the condition of ignoring conversion of mass to energy. 

Therefore the mass can move without being destroyed by the fluid flow. The equation 

which describes this physical principle is called the mass conservation and is also named as  

‘continuity  equation’. This is the one of the most important equations in the subject of 

fluid flows. During the derivation of this equation some mathematical models must be 

used. The same equation can be written in integral and differential forms. But  not only 

these two expressions are available but also the equation can be written in conservative and 

in nonconservative forms. In order to derive the equation in  integral form the finite control 

volume must be used. This finite control volume can be fixed in space or it can move 

together with the flow. Therefore two different expressions  for the same equation will be 

obtained. The surface bounding the control volume is called the control surface, these 

terms are very important and are used intensively during the derivation  process. 

 

3.2.1. Integral Form of Continuity Equation Obtained by Using the Stationary Finite 

Control Volume 

 

 

 

 

 

 

 

 

 

Figure 3.6. The arbitrary shape for the control volume with finite dimensions and 

stationary nature 

Control surface, S  

Control volume, V  

Flow 
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In this study the control body which is under investigation has finite dimensions and 

is fixed in space. It has an arbitrary shape and arbitrary surface. The physical principle 

which is conservation of mass for this control volume can state that [11] 

 

                                                                                                                        

(3.11) 

 

The elemental mass flow crossing the surface dS  is given as: 

 

Sd.vvdS


                                                      (3.12) 

 

where   is the density, v  is the velocity component perpendicular to the surface and dS is 

the surface element [11]. 

 

The multiplication Sdv


.  can be either positive or negative depending on the direction 

of velocity. Since Sd


 is always pointing outwards from the control volume the sign of 

multiplication depends on the velocity direction. If the velocity v  points inward, which 

means that the flow is entering the control volume, the result is negative and when the flow 

is leaving the control volume which mens that the velocity v  points outwards from the 

control volume and the result of product mentioned above is positive.  

 

If the control volume is divided into volume elements which have the elemental 

volume as dV , the  mass inside the control volume can be given as: 

 


V

T dVm  .                                                  (3.13) 

 

The rate of increase of mass in the control volume can be expressed as: 

 

  



V

inc dV
t

m  .                                              (3.14) 
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The rate of decrease of mass in the control volume can be expressed as: 

 

 



V

dec dV
t

m  .                                             (3.15) 

 

The net mass flow out of the entire control volume through the surface S  is given as: 

 


S

out Sd.vm


  .                                                (3.16) 

 

By inserting Equations 3.14, 3.15 and 3.16 into Equation 3.11 

  

 




SV

Sd.vdV
t


                                            (3.17) 

 

or  

 

0


 

V S

Sd.vdV
t


 .                                        (3.18) 

 

The last equation is the continuity equation written in integral  and in conservation 

form. Since the control volume was chosen stationary and fixed in space, the equation 

obtained is in conservation form otherwise it would be in nonconservation form.  

 

3.2.2.  Integral Form of  Continuity Equation Obtained by Using the Moving Finite 

Control Volume 

 

In this study the control volume with finite dimensions is moving together with the 

flow. The condition for this case is that the mass elements are staying in the control 

volume and the number of them does not change. This means that the mass of control 

volume does not change. As it is seen in Figure 3.7 the volume and shape of the control 

volume can change.  
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Figure 3.7. The arbitrary shape for the control volume moving together with the flow and 

finite dimensions 

 

The particles inside the control volume are fixed and have unchanging masses. This 

means that the mass is constant as the control volume is moving together with the flow.  

Therefore substantial derivatives of these unchanging masses is equal to zero. 

Mathematically this can be expressed as:  

 

0
V

dV
Dt
D  .                                                (3.19) 

 

This is another equation which is again the integral form of the continuity equation 

but in nonconservative form. Since the control volume is moving with the flow the 

equation obtained from this control volume is directly in nonconservative form [11]. 

 

3.2.3.  Differential Form of  the Continuity Equation Obtained by Using the 

Stationary Infinitesimal Small Element Model 

 

In this model, the infinitesimally small element is under consideration. This element 

does not move with the fluid, it is stationary. In order to take  the continuum assumption 

into account made previously the number of the elements inside the control volume is 

considered to be sufficiently high.   
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Figure 3.8. The shape of  infinitesimal small element fixed in space and the flow through it 

 

For a detailed study the shape of the infinitesimally small element is considered as  

given in Figure 3.8. Both the density and the velocity are functions of coordinates 

),,( zyx and time, t . In order to simplify the derivation the Cartesian coordiate system is 

under consideration. ( ),,,( tzyxuu  , ),,,( tzyxvv  , )t,z,y,x(ww  , ),,,( tzyx  ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. The plot of mass flow in and out of an infinitesimally small control element 

 

The mass flow through the left face with the surface area dxdz  is dxdzv)(  . Since 

the density and velocity depend on the spatial coordinates, the mass flow through the right 
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face is   dxdzdyy)v(v   . The same work is done for y and z  axes. As a result of 

this study with the help of the shape in Figure 3.9 outflowsnet  for each coordinate is 

written as: 

 

for direction x  

 

dxdydz
x
udydzudydzdx

x
uu










)()(])([                         (3.20) 

 

for direction y  

 

dxdydz
y
vdxdzvdxdzdy

y
vv










)()(])([                          (3.21) 

 

for direction z  

 

dxdydz
y
wdxdywdxdydz

z
ww










)()(])([  .                      (3.22) 

 

The total mass inside the infinitesimally small volume element is .dxdydz  The rate 

of increase of the mass inside the element is  

 

dxdydz
t

m inc






                                                  (3.23) 

 

and that of decrease inside the element is 

 

dxdydz
t

mdec






 .                                              (3.24) 

 

The physical principle of conservation of mass states that the time rate of decrease 

inside the fixed element must be equal to the net mass flow out of the element which is 

given as : 
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dxdydz
z
w

y
v

x
uflowmassNet 


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














)()()(                          (3.25) 

 

after the equations are written properly one gets 

 

dxdydz
t

dxdydz
z

)w(
y

)v(
x

)u(






















  .                        (3.26) 

 

Then by rewriting Equation 3.26, the continuity equation is obtained:  

 

0).( 

 v

t


 .                                                 (3.27) 

 

Equation 3.27 is a partial differential equation which is in conservative form. Since 

the control volume is infinitesimally small, the equation is directly obtained in differential 

form.  

 

3.2.4. Differential Form of  the Continuity Equation Obtained by Using the 

Infinitesimal Small Element Moving with the Flow 

 

In this model there is a infinitesimally small element which is not stationary and is 

moving together with the flow. Differently from the previous model, the fluid element has 

constant mass. The shape and the volume of the element naturally can change while 

moving with the flow.  

 

 

 

 

 

 

 

 

Figure 3.10. The shape of  infinitesimal small element moving together with the flow 

v  
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The mass element for this model can be given as: 

 

 Vm   .                                                     (3.28) 

 

Because of the fact that the mass is not changing inside the fluid element during the 

movement the rate of mass change is obviously zero. Then  

 

 0)(


Dt
mD                                                       (3.29) 

 

and by using the expression in Equation 3.28 the new form of Equation 3.29 becomes 

 

0)(


Dt
VD   
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0.  v
Dt
D 

 .                                                (3.30) 

 

The Equation 3.30 is the same as the continuity equation but in noncoservative form. 

There are four different types for continuity equation obtained above.  
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Figure 3.11. Different types of equations for continuity 

 

Actually these equations all represent the same equation with different forms. They 

can be derived from each other after some manipulations [11]. 

 

3.3.  Momentum Conservation: Navier-Stokes Equations 

 

The physical principle conservation of momentum is one of the most important 

principles used in fluid dynamics. By regarding this physical principle the set of equations  

which are called Navier-Stokes equations are obtained. These equations are named after 

French scientist Louis Marie Henry Navier and  Irish George Gabriel Stokes . Navier, who 

actively worked in bridge engineering analyzed the fluid flow assuming the force by 

repulsion and absorption between the  neighbouring molecules. Navier derived the 

equations in 1822 but he did not introduce the viscosity in his derivations. Stokes who is 

the mathematician and physicist derived the same equation in 1845 by explicitly 

introducing the viscosity in his works. By taking the Newton’s second law in mind the net 

force acting on the fluid element is given as the product of the mass of fluid element and its 

acceleration. The sources for the force acting on the fluid element are also important. 
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Figure 3.12. The forces acting on the fluid element 

 

The body forces act directly on the whole volume of the fluid element. However the 

surface forces are acting only on the surfaces where they exist. In this study the fluid 

element is assumed to move together with the flow. For a detailed investigation the fluid 

element’s shape is assumed to be as in Figure (3.13). In order to simplify the analysis, the 

derivation  will be done only for the x  component of forces.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13. The surface forces acting on the fluid element 
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Actually both the body forces and surface forces are acting on the fluid element and 

this is taken into account later in the thesis. If the  body force per unit mass, acting on the 

x  coordinate is xf  then the net body force acting on the fluid element in x  direction is 

given as: 

 

dxdydzfF xx,BNET  .                                           (3.31) 

 

The shear stresses such as xy , xz  are related to the time rate of change of the 

shearing deformation of fluid element. A normal stress which is xx  is related to the time 

rate of change of volume of the fluid element. The shear stresses in most of the viscous 

fluids are much greater than the normal stresses. Therefore normal stresses are neglected 

generally. In Figure 3.11, the stresses in the positive directions are assumed to be greater 

for convenience. The pressure forces acting in x  directions always point through the fluid 

element. By using the shape in Figure 3.11 and forces acting on it, the surface force 

equations can be written as: 

for direction x  
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Since there are not only the surface forces acting on the fluid element but also the 

body forces existing, the net force acting in x  direction is the sum of them and the 

resulting form was given  below.  

 

x,BNETX,Sx,net FFF                                            (3.33) 
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By considering the main expression for Newton’s second law maF   and the x  

component for this expression is 

  

XX maF  .                                                       (3.35) 

  

The mass in the fluid element can be expressed as 

 

  dxdydzm                                                       (3.36) 

 

and the accelaration in x  direction is  
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By combining Equations 3.34, 3.35, 3.36 and 3.37 
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and writing in a convenient way, after simplifications 
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is obtained. However this is the expression  only for the x  component of the momentum 

and y  and z  components are needed. By using the same method, one gets y  and z  

components as: 
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and z  component   
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Equations 3.38, 3.39 and 3.40 are all partial differential equations. Because of the fact that 

the fluid element was chosen as moving element, the form of these equations is non-

conservative. As a result the very well known expressions in fluid dynamics called the 

Navier-Stokes equations are obtained.  

 

If the conservation form of the Navier-Stokes equation is desired to be written, the 

procedure shown below can be used. Again the derivations is done firstly for the x  

component of the momentum. From the definition for substantial derivative  
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is obtained. By using the rule for derivative of a product 
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and rearranging one gets 
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which is the new expression for the first term on the right hand side of Equation 3.41. 

From the definition of divergence of the product of vector and scalar  
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again after rearrangement  
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).().().( vuvuuv 
                                         (3.44) 

 

is obtained. By using Equations 3.42 and 3.44 in Equation 3.41 
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is found. By doing some rearrangements in Equation 3.45 
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is found. Note that the sum in the paranthesis vanishes since it defines the continuity 

equation. As a result , Equation 3.46 is reduced to  
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Equation 3.47 is another form of Equation 3.38 and by equating them 
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is obtained. This expression is for the x  component and similarly for the y  component  
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and for the z component   
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can be written. 

 

The last three Equations 3.48, 3.49 and 3.50 are Navier-Stokes equations written in 

conservative form. These equations also define the conservation of momentum.  

  

For Newtonian fluids in which the shear stress is proportional to the time rate of 

strain, Stokes proposed to use 
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where the coefficients m  and s  are molecular viscosity coefficient and second viscosity 

coefficient respectively. 

 

Then by using the definitions given in Equations 3.51-3.56, the Navier-Stokes 

equations in conservative form can be given as below. 
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These expressions are given in Cartesian coordinate system [11]. It is useful to express 

these equations in the cylindrical ),,( zr   or spherical ),,( r  coordinates. Navier-Stokes 

equations in cylindrical cordinate system ),,( zr  which are given in reference [7] are: 
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for component   
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for component z  
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Navier-Stokes equations in spherical cordinate system ),,( r are: 

 

for component r  
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for component   
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for component   
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(3.62) 
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The derivation of Navier-Stokes equations which were given previously starts with 

Newton’s second law which is the conservation of momentum. These are nonlinear partial 

differential equations. By using these equations the liquid flow in pipes, the ocean currents, 

weather modelling, design of aircrafts and automobile surfaces and shapes can be done. By 

coupling these equations with Maxwell’s equations magnetohydrodynamic equations are 

obtained. Magnetohydrodynamics (MHD) is the simplified model of  a magnetized plasma 

in which the plasma is assumed as a single fluid which can cary current. The MHD model 

is the same with the ordinary fluid with the addition of the force caused by the magnetic 

field. MHD is interested in the fluids such as plasma, liquid metals, salt water etc. Together 

with suitable equations and boundary conditions Navier-Stokes equations can model the 

fluids accurately.  

 

3.4.  Energy Conservation 

 

The infinitesimally small volume element moving with the fluid is again under 

consideration. The energy balance for this element can be stated as [11]: 

 

    
elementfluid

theinsiderate
changeEnergy

=  

elementfluid
theenters

whichheat
offluxnetThe

+   

elementfluidtheon
forcesbodyandsurface

bothbydoneiswhich
workofratenetThe

.             (3.66) 

 

There are basically two kinds of forces acting on the fluid element, one of them is 

body force and the other one is  the net surface force as was mentioned previously. Both of 

them do work on the fluid element separately. Physically the work rate which is expressed 

in units of ondsecjoule  s/J  can also be described as the product of the force and the 

velocity acting on the direction of the force. By taking this definition into account the work 

rate due to the body force is 

 

dxdydzv.FWb
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Figure 3.14. The sketch for energy flows in and out of the fluid element 

 

The work rate due to the pressure, shear and normal stresses which are composing 

the surface forces also have an impact role on the energy balance. By taking into account 

these forces again only for particularly chosen x  direction the rate of work expression will 

be  calculated by multiplying the x  component of the velocity which is u  with the surface 

forces acting on the fluid element. First of all the net work rate due to the pressure for x  

direction is 
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dxdydz
x
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When every shear force acting on the x  direction is taken into account one can write 

 

                dxdydzu
x

)u(uW XX
XX

XXXX,S 



















 


                         (3.70) 

 

dxdydz
x

)u(W XX
XX,S 




                                           (3.71) 

 

dydxdzu
y

)u(uW YX
YX

YXYX,S 



















 


                             (3.72) 

 

dxdydz
y

)u(W YX
YX,S 




                                            (3.73) 

 

dzdxdyu
z

)u(uW ZX
ZX

ZXZX,S 


















 


                              (3.74) 

 

dxdydz
z

)u(W ZX
ZX,S 




 .                                          (3.75) 

 

By using Equations 3.69, 3.71, 3.73 and 3.75 the net work rate, 
XNET,SW  can be written 

as: 
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By rearranging Equations 3.77  
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is obtained. Similar expressions for y  and z  directions can be written. 
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for z direction 
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Then, in that case  
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is obtained. The Equations 3.82 is only for surface forces and also body force effect must 

be included. Then  
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finally ‘the net rate of work which is done by both surface and body forces on the fluid 

element is  
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After the expression for  work rate is obtained it is useful to take ‘the net flux of heat 

which enters the fluid element’ into account. The heat flux in any direciton, as a definition, 

is the energy per unit area which is perpendicular to the direction and per unit time. For 

this study the heat flux in x  direction is shown as Xq . For the fluid element considered in 

the Figure 3.14 the net heat which is transferred into the  fluid element is given as: 
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Equation 3.86 gives only the net heat which is transferred to the fluid element from 

the x direction, similarly for y  direction 
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Total heat transfer rate to the fluid element by thermal conduction is given as: 
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By using the Fourier’s law for conduction heat transfer, which states that the heat 

flux is proportional to the temperature gradient, the heat fluxes can be written as: 
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After these new definitions Equation 3.91 can be written as: 
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Volumetric heat addition rate per unit mass, M,VQ  is given as ,  
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where VQ  is the volumetric heat addition rate.  By taking the volumetric heat addition and 

conduction heats the total heat rate, TOTQ  will be written as: 
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Since we are interested in the fluid element which is moving and having a kinetic 

energy, this kinetic energy can be given as  
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where FEm  is the mass of fluid element into consideration. Therefore the word energy 

which is mentioned in ‘the rate of energy change inside the fluid element’ expression in 

Equation 3.66  represents the total energy. The kinetic energy expression by using the the 

density,  , of fluid element,    
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can be written. 

 

The fluid element contains molecules which have their own energies. The sum of all 

the molecules’ energies is the internal energy of the fluid element. This energy arises from 

the random motions of the molecules inside the fluid element. Let us give this internal 

energy per mass as m . By taking into account both the kinetic and internal energies  of 

the molecules  the total energy TOTE  of the fluid element can be written as :  
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The rate of change of the total energy will be  
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By rearranging Equations 3.102, 3.98 and 3.84  
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is obtained. 

 

This last Equation 3.103 is the defined expression of Equation 3.66. If Equation 

3.103 is written for unit volume one gets  
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Equation 3.104 found is in nonconservative form. The conservative form of the 

same equation can be written as 

(3.103) 

(3.104) 
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This equation is also called conservation of energy [11]. The equations shown in this 

chapter are the main governing equations for fluid dynamics. The numerical simulations 

are usually done in the scope of these equations. Numerical methods which can be used for 

simulations are discussed in the subsequent chapters of this thesis.  
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4.  PHILOSOPHY OF COMPUTATIONAL FLUID DYNAMICS  
 

 

The advancements in fluid dynamics started with experimental works and theoretical 

studies in the 17th century. A few centuries later another equal partner to experimental and 

theoretical fluid dynamics appeared. The name of this third approach is called 

‘computational fluid dynamics (CFD)’. Fluid dynamics had already been divided into two 

parts which are theoretical and experimental parts before the invention of the 

computational fluid dynamics. Fluid dynamics is not only used  in industrial processes 

such as steel production and metal coatings but also in transportation by cars, trains, 

aircrafts and ships. Since the fluid dynamics plays an important role in science and 

technology the solutions for governing equations are very important. CFD (computational 

fluid dynamics) utilizes the numerical methods and solves codes in order to understand 

solutions to the governing equations. By the invention of high speed computers the 

numerical accuracy increased and the numerical results began to be used heavily before 

performing experiments. Since the experiments are very expensive and time consuming 

nowadays sometimes the results obtained from numerical calculations on high speed 

computers are used. After a lot of advancement in numerical methods and computer 

program codes, CFD became an equal partner to the experimental and theoretical fluid 

dynamics. CFD can not only replace either of pure theory and pure experiment but it can 

also balance them. Historically the early developments of CFD started by the needs of 

aerodynamics studies but it is now being used in naval architecture applications, in 

environmental engineering applications such as heating, air conditioning, in industrial 

manufactoring applications such as in manufactoring in ceramic composite materials, in 

civil engineering problems involving the rheology of rivers, lakes etc., and in automobile 

and engine applications [11]. Bio-mechanical engineering also uses the CFD codes in 

simulating the blood pump which is taking the the role of the heart in process of open heart 

surgery. Nowadays, CFD is not only used as a research tool but it is also used as a design 

tool. Instead of doing real experiments one can obtain identical results  needed by using the 

computer codes. There is no need to carry this code together with someone and he/she can 

communicate with it from very very long distances by using the internet to do calculations 

remotely. Therefore CFD can be thought as a tool which replaces the money and time 

expenditure for real experiments with the numerical experiments. 
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Figure 4.1. Three branches of fluid dynamics 

 

In order to make calculations in CFD there are some processes which must be done 

previously.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. The order of CFD processes 

Pure Theory Pure Experiment 

CFD 

Geometry of problem is 
defined 

The volume occupied by fluid 
is divided into discrete cells 

Physical modelling is defined 

Boundary and initial 
conditions are defined  

Equations are solved 
iteratively as steady or 

transient state  

The solutions are stored in 
files for plotting and graphing 



 

 

84 

The order is shown in Figure 4.2. Initially,  the computational domain must be 

discretized by some space discretization methods such as finite difference, finite element, 

finite volume, boundary element method, and matrix distribution method. 

 

Figure 4.3  shows the main steps taken before the CFD process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. The map showing the processes taken before the CFD calculations [11] 
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As a result, as previously mentioned CFD has a very broaden application area 

including the aerodynamics of automobiles and aircrafts, hydrodynamics of ships, 

turbomachinery, pumps and turbines, heat transfer systems like heating and cooling 

systems, combustion, building ventilations, transport of pollutants, pipe networks, 

reservoirs, channels, flow of rivers, ocean currents, tidal flows, numerical weather 

forecasting, plasma flows, blood flow in heart and veins, circuitry cooling, etc. 

 

4.1.  The Main Properties of Numerical Solution Methods 

 

Since numerical methods are used to solve some physical problems as good as 

possible they must have some properties such as accuracy, consistency, stability, 

realizability, boundedness, etc. 

 

4.1.1.  Accuracy 

 

The word accuracy roughly shows how close the results to the real ones are. During 

the numerical solutions to the problems there are always some errors such as modelling 

errors, which arise from the difference between the real problem and  its mathematical  

representation, discretization errors, which arise from the difference between exact solution 

of algebraic equations and solutions after discretizing them and iteration errors, which are 

due to the fact that the numerical solutions are obtained after some iterations which may 

have some mathematical errors. Some of these errors are systematic and unavoidable in 

nature. 

 

The one who does the numerical solutions must be aware of the existence of these 

errors. In order to decrease the errors coming from disctretization it is better to use finer 

grids. The order of the approximation is a real measure of accuracy. The errors arising 

from the iteration processes and from rounf-off are easy to control. The main objective of 

the code developers is to have better accuracy with less effort [12]. 

 

 

 

 



 

 

86 

4.1.2.  Consistency 

 

The ‘truncation error’ as a definition is an error which arises from the difference 

between the exact equation and the discretized one. For a method to be consistent the 

truncation error must be zero when the mesh spacing 0 ix  and 0t . Even though 

the consistency is achieved it does not mean that the solution of discretized equations is the 

same as the exact solutions to the differential equations. 

 

4.1.3.  Stability 

 

If the errors are not increasing during the numerical solution process the numerical 

solution is said to be stable. If an iterative solution is stable there is no divergence from the 

correct solution.  

 

4.1.4.  Convergence 

 

For convergence, as the grid spacing goes to zero, the discretized equations should  

tend to the exact solutions of the differential equations. The consistency is useless without 

the convergence of the method. For small grids the rate of convergence is dominated by the 

order of truncation error.  

 

4.1.5.  Conservation 

 

The numerical schemes must obey the  conservation laws because of the fact that the 

governing equations solved with these methods are real conservation laws in nature.  

 

4.1.6.  Boundedness 

 

Every solution must be physically meaningful after numerical discretizations. For 

example physical properties such as density, kinetic energy, etc. must  always be positive 

in solutions. Boundedness is a difficult condition to guarantee, however there exist some 

techniques to check the physical bounds.  
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4.1.7.  Realizability 

 

The numerical solutions dealing with complex problems must be designed in a way 

that they can guarantee physically realistic solutions.  

  

4.2.  Space Discretization Techniques 

 

The task of the discretization technique is to transform the differential equations in 

the following form: 

 

))t,r(U(S
r

))t,r(U(F
t

)t,r(U
i

i 









                                   (4.1) 

 

where )t,r(U   is a vector of conserved variables,  ))t,r(U(Fi
  is the flux vector in the ir  

direction, and ))t,r(U(S   is the source term. To solve Equation 4.1 one needs to convert 

coresponding boundary conditions into a set of algebraic equations which can be solved 

numerically. A lot of physical problems deal with the equations such as in Equation 4.1. 

These equations are modelled by different conservation laws. Since everything is solved on 

discrete points during the disctretization, some discretization errors are automatically 

introduced to the solutions [13].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. The mostly used space discretization methods 
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Differently from the analytical methods which give the solutions correctly and 

accurately through the whole domain, the numerical solutions are obtained only on discrete 

points called the grid points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Two dimensional discretized solution domain 

 

A domain chosen for solution of governing differential equations is shown in Figure 

4.5, where a rectangular domain is divided into subdomains by discrete points called 

nodes. For convenience spacings x  and y  are taken as constant for simplicity. However 

sometimes it may be necessary to take them varying. The grid shown in Figure 4.5 is called 

the ‘structured grid’. In structured grids the nodes are placed regularly (i.e., x  and y are 

constant). In ‘unstructured’ grids the nodes are placed in an irregular fashion to cope with 

domains with complicated boundaries.  

 

The space discretization is done by using mostly five different techniques which are 

finite element, finite difference, finite volume, boundary element and recently developed 

matrix distribution methods. These techniques will be mentioned briefly in chronological 

order of invention of technique.  
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4.2.1.  Finite  Difference Method 

 

In 1910 at the Royal Society of London, Richardson presented a paper on the first 

‘finite difference method’ which is simply presented by the abbrevation FDM. Earlier 

applications of FDM in CFD started with Courant, Friedrichs, and Lewy in 1928, Evans 

and Harlow in 1957, Godunov in 1959, Lax and Wendroff in 1960, among others up to 

date [14]. 

 

Historically FDM has dominated the CFD community in early studies about 

discretization techniques. 

 

The finite difference method is actually based on Taylor’s series expansion  which is 

basically given as (in 1 dimension in Cartesian geometry): 
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The Taylor’s series given in Equation 4.2 is used to discretize equation on the grid shown 

in Figure 4.6. 

 

 

 

 

 

 

Figure 4.6. One dimensional finite difference grid in Cartesian coordinate system 

 

By using Taylor’s expansion and the grid shown in Figure 4.6, any function at point 

P with the coordinates ),1( ji  can be expressed around point )j,i(  as : 
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Again by  using Taylor’s expansion any quantity of point A  with the coordinates 

),1( ji  can be around point )j,i(  expressed as : 
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By taking the Equation 4.3 into account the first derivative is expressed as follows: 
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The first term on the right hand side of Equation 4.5 is the forward finite difference 

representation of the actual derivative   jixu , . The residual part of the right hand side of 

the equation (except the first term) is called as ‘truncation error’. By using the Equation 4.4 

one can write 
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showing a similar derivative which is backward. 

  

The derivatives from Equation 4.5 and Equation 4.6 can be written with first order 

accuracy as follows: 
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The method shown as Equation 4.7 is called ‘forward difference’ and the method 

shown as Equation 4.8 is called ‘backward difference’ method. There is one more method 
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obtained from the subtraction of Equation 4.4 from Equation 4.3. This method is called the 

‘central difference’  which is of second order accurate is obtained as follows: 
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The central representation given in Equation 4.11 is called ‘the second order central 

difference’ formulation. The word ‘order ‘ provides some information about the truncation 

error or the part of expansion which is neglected in the differential approximation.  

 

In order to solve Navier-Stokes equations not only the first derivative but also the 

second order derivatives are needed. By adding Equation 4.3 and Equation 4.4 the 

representation in Equation 4.12 is obtained and it is called ‘second order central second 

derivative’. 
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The equations above are written for variable x  in one dimension, the same 

representation can be used for another variable (say y ) in the same fashion. Equation 4.12 

can be written for y  in the following manner  

(4.9) 
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where  2)y(  represents the terms having 2)y(  or higher order. 

 

In addition to the equations derived the mixed derivative representations are also 

needed (for viscosity etc.) during the numerical solution processes. The derivation for the 

mixed derivative representation is relatively difficult. 

 

In order to have numerical representatıon for mixed derivatives the extra 

differentiation technique is used. By differentiating Equation 4.3 with respect to the 

variable y  one gets 
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If the same differentiation is done for  the Equation 4.4 
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is obtained. When Equation 4.16 is subtracted from Equation 4.15 one gets 
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which leads to 
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is derived. 

 

By taking out the mixed derivative which is the first term on the right hand side of 

the Equation 4.18 
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is found. In order to find the final numerical representation for mixed derivative one can 

use the following 
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In that case, one obtains 

(4.17) 
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The representation given in Equation 4.22 is called the ‘second order central 

difference for mixed derivative’. 

 

These expressions are relatively easy in comparing the numerical representations for 

derivatives in the boundaries. 

  

 

  

 

 

 

 

 

 

 

Figure 4.7. One dimensional Cartesian mesh with the boundary on the left 

 

The first derivative representation for finite difference method as forward difference 

on point 2i  shown in Figure 4.7  is easily written as: 
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The central difference which is of second order accurate formula for point 2 can not 

be written since the point 1 which is outside the solution domain is needed. The 

information about node number 1 is generally known from the domain which surrounds the 

left side of node 2 . It is easily seen that Taylor series expansion does not provide the 

solution for second order accurate finite difference representation. In order to have the 
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solutions for boundaries the polynomial approach can be used. The second order 

polynomial representation of u  is given similar to [11] as: 

 

)x(xCxBAu ppp
32  .                                   (4.24) 

 

Taking 0x  for node number 2, xx   for node number 3, xx  2  for node number 4, 

xx  3  for node number 5…. By taking these values into account one can write : 
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Using Equations 4.25-4.27 one can find 
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By taking the derivative of Equation 4.24 at node number 2 with respect to x , 
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is obtained since 0x  for node number 2. Using these results in Equation 4.28 one gets:  
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which shows that the second derivative can be defined as in Equation 4.30 with second 

order accuracy if two more nodes are used within the domain. 
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Since the node points, which were used during the derivation of the expression given 

as Equation 4.30, are only on one side of the boundary, these kinds of representations are 

called ‘one sided differences’. The similar equations are not only  used for the boundaries 

but also they can be used in the internal nodes.  

 

During the derivation of Equation 4.30 only three nodes were used. However more 

nodes can be used for the same derivations and mostly more  accurate results can be 

obtained. However, the order of accuracies in the interior and in the boundaries must be the 

same. 

 

Using the definitions so far one can solve one dimensional heat conduction given in 

as in  Equation 4.31 [11]. 

 

2

2

x
T

t
T

t 






                                                     (4.31) 

       

Here )t,x(T  represents the temperature and it is a function of both displacement x  

and time t . In addition, t  is the thermal diffusivity coefficient which is assumed to be 

constant for simplification. Also the displacements between the nodes for x  and for t  are 

chosen to be equal, see Figure 4.8. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. Two dimensional solution domain which can represent the example given as 

Equation 4.31 
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Left hand side of Equation 4.31 can be represented as  
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and right hand side as 
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Inserting Equation 4.32 and Equation 4.33 into Equation 4.31 one gets 
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After some rearrangements, Equation 4.34 turns into  
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where time discretization is 1st order accurate and space discretization is of 2nd order 

accurate. Finite difference method is not only the oldest but also is the easiest method used 

for simple geometries for solutions of partial differential equations. The main disavantage 

of the method is the unapplicability to the complex geometries since indexing becomes 

extremely difficult. 

 

 

 

 

(4.35) 
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4.2.2.  Finite Element Method 

 

One of the most important discretization techniques is finite element method (with  

abbrevation FEM). This method is based on the idea which breaks the domain into a set of 

discrete elements that are generally unstructured. In two dimensions they are usually 

triangles or quadrilaterals, in three dimensions they are tetrahedra or hexahedra. The most 

important feature of the technique is that the equations are multiplied by a basis functions 

before they are integrated over the entire domain [12]. In 1956 in the Aeronautical Science 

Journal the first FEM studies were published by Turner, Glough, Topp and Martin. This 

work was done for the applications to aircraft stress analysis. The first one of the main 

advantages of finite element method is the applicability to any arbitrary shape and 

dimensions. The shape can be made of different materials and their properties can be 

nonhomogeneous (depending on location) or anisotropic (depending on the direction). 

Finite element method converts the governing equations to the matrix equations which can 

be solved numerically. FEM solves a set of related equations by approximating continuous 

field variables as a set of field variables at discrete points previously named as nodes. FEM 

solutions are achieved by either eliminating the differential equation completely (steady 

state problems), or rendering the partial differential equations PDE,  into an equivalent 

ordinary differential equations which is then solved using standard techniques such as 

finite differences.  

 

 

 

 

 

 

 

Figure 4.9. Different shapes for finite elements with corner nodes 

 

One of the biggest advantages of finite element method is the applicability to the problems 

with very great complexity  and unusual geometry. The solution for the problem given in 

Equation 4.1 is considered in the form given below. 
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where r  is the position vector, iU  is the value of U  in the node i , n  is the number of the 

nodes and finally )(rNi

  are the nodal basis functions which have the propery given as in 

Equation (4.37). 

 

ijji rN )(                                                       (4.37) 

 

where ij  is Kronecker delta function. )(rNi

  is the function whose geometrical shape is 

given in Figure 4.9. The expression given in Equation 4.1 is transformed to the equivalent 

integral formulation by the help of  the definition given in Equation 4.36. Then expression 

is found by replacing U  by Equation 4.36 and integrating Equation 4.31 over the solution 

domain,  , after being multiplied by weight function iw . 
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In Equation 4.38 the index, i , changes from 1 to the number of nodes. Every node 

has  its own value related to the Equation 4.38. The two equations, Equation 4.1 and 

Equation 4.38 are equivalent if and only if Equation 4.38 holds for all possible choises of 

the weight function [13]. The weight function jw and its first order derivatives must be 

integrable [15].  

 

If the weight function jw  are identical with the basis functions )(rNi

 then the 

classical Galerkin finite element method is obtained. If the functions, )(rNi

  and )r(w j
 , 

are not identical the Petrov-Galerkin finite element method is obtained.  
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Figure 4.10. The shape of linear nodal basis function 

 

The solution domain in two dimensions given in Figure 4.10 is divided to finite elements 

which are triangles in this example. The steady advection equation given by  

 

0
dx
du                                                         (4.39) 

 

is considered and its FEM representation is desired to be written in one dimensional 

Cartesian grid shown in Figure 4.6. Multiplying Equation (4.39) by )x(wi  and taking 
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If  Galerkin method (i. e., )()( xNxw ii  ) is used on a structured grid, Equation 4.40 for 

the node i  becomes  
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The result obtained in Equation 4.41 is similar to the result obtained by using Finite 

Difference Method in Equation 4.11. 

 

 

 

 

 

 

 

 

Figure 4.11. Basis functions (piecewise linear and tent shaped) for the nodes with numbers 

betweeen 3i  and 3i  

 

There is one dimensional solution domain in Figure 4.11 in which the finite elements 

are  placed between two neighbouring nodes.  

 

Actually the applications of finite element methods are divided into three main 

categories. The first part which mostly uses the finite element method is based on the 

problems called ‘equilibrium problems’ which are also called as ‘time-independent 

problems’. The second part of the problems are eigenvalue problems dealing with the solid 

mechanics and mostly fluid mechanics. The third category is time dependent or 

propagation problems in continuum mechanics. Considering all categories one finds out 

that finite element method is mostly used in the areas such as fluid mechanics, heat 

transfer, solid mechanics, electromagnetism, etc. 

 

Comparing with finite difference method, finite element method contains more 

complex algebra but this property makes finite element method more useful for the 

multidimensional and arbitrary geometries. 

 

4.2.3.  Finite Volume Method 

 

Finite volume method (FVM) basically utilizes the integral form of governing 

equations. The solution domain  in this method is divided into the control volumes in finite 
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numbers. Then the conservation equations are applied to each control volume . The 

computational node is located at the centre of the control volume and the computations are 

done at that point. The need for knowing the variable values at the surface of the control 

volumes to get fluxes is established by using the interpolation in terms of the nodes located 

in the centres [12]. 

 

The finite volume approach is mostly the simplest one for programming but requires 

several neighbouring cells for defining higher order fluxes at the interfaces between cells. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12. The typical rectangular control volumes in a Cartesian grid 

 

In order to understand the method better it is useful to take the Equation 4.1 into 

account again. The basis of finite volume method is that the differential form of 

conservation law is integrated after the equation is transformed to integral form. The 

integration is done over the control volume. Integrating Equation 4.1 within control 

volume one gets: 
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by taking the advantage of Gauss’ theorem for flux integration.  
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In Equation 4.43 ext
in  is the component of the unit outward vector in direction i ,  U


 

is the vector containing the conserved variables, iF


 is the flux vector and  S


 is the source 

vector. 

 

The conservative form of  Equation 4.39 can be written as : 
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dx
df

dx
du L                                                   (4.43) 

 

which gives 
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after finite volume integral is taken. 

  

 

 

 

 

 

 

 

 

 

Figure 4.13. Control volume and its unit outward normals 

 

 

 

 

 

 

Figure 4.14. Finite volume grid in one dimension 
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For the grid shown in Figure 4.14, the flux function, uf L                                        

for  the grid point i  leads to : 
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Since the physical quantities are defined in nodes 2112  i,i,i,i,i  the flux at the 

boundary between i  and 1i  can be taken as  
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and similarly 
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which concludes that they are the second order accurate discretizations. 

 

The accuracy of discretization not only depends on the definition of the flux function 

but also it depends on the numerical integration used [13]. 

 

Using the finite difference method is very difficult when the coefficients of equations 

have discontinuities. However, for finite volume method these discontinuities will not be a 

very big problem if the solution domain is divided in such a way that the discontinuities are 

on the boundaries of the control volumes. From the industrial point of view, finite volume 

method is known as the cheap and robust discretization method. Actually  for high order 

polynomials finite element is better [16]. The main disadvantage of finite volume method 

against finite difference method is that the orders higher than second order are more 

difficult to develop in three dimensions. This is the result of the need for three levels of 

approximations which are interpolation, differentiation and integration. 
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4.2.4.  Boundary Element Method 

 

The numerical discretization of boundary integral equations are called the boundary 

element method. The boundary element method (BEM) is a numerical analysis technique 

used to obtain solutions to the partial differential equations of a variety of physical 

problems with well defined boundary conditions. The first prominent development in 

boundary element method is done in 1963 by the Jaswon and Symm [17]. In their study the 

linear, uniform elements and constant potentials were chosen. The integral equations that 

are based on the Laplace equation are solved by using Simpsons algorithm [18]. In 1963 

Jaswon and Ponter in 1967 Hess and Smith have also worked hardly on the boundary 

element method for different physical problems [19, 20]. 

 

The formulation of boundary element method is based on the boundary integral 

equations. In this method, the boundaries are reduced by one which leads to the reduction 

of the number of space dimensions by one. The differential equation defined over the 

entire domain is transformed into a surface integral over the surface domain that enclosed 

entirely the solution domain. The surface itself is then divided into the elements called the 

boundary elements. The major advantage of this method over the finite element method is 

that the discretization is done only on the surfaces. Therefore the number of the elements 

are much less than that of the finite element method. The major disadvantage is the 

difficulty in dividing the surface  into elements for nonuniformly shaped domains [21]. 

One of the advantages over the other techniques is that it works well on the geometries 

with voids and holes [22]. 

 

 

 

 

 

 

 

 

Figure 4.15. The solution domain with volume V and discretized surface covered with 

boundary elements 
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To understand the method it is better to assume two different and arbitrary functions 

which obey the conditions given in the reference [17]. These functions are fu  and *
fu . 

The function fu  is the variable which is desired to be calculated in reality. The choice of 

the functions can simplify the complex nature of the equations wanted to be solved. By 

writing the net flux which is flowing through the boundary in the direction of the normal 

vector  
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and the similar expression for the *
fu  is given as : 
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By using Green’s  equation [21] one can write 
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where V  is the volume of the solution domain and S  is the surface covering the solution 

domain. 

 

 

 

 

 

 

 

 

Figure 4.16. Source point and field point on the domain divided 

 into the boundary elements 
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Point ‘ P ’ which is called the source point can be chosen everywhere in the solution 

domain. However, in order to form the integral equation it is chosen on the boundary for 

simplicity. After some definitions given in [17], )p(u f  becomes  

 

 
S S

f
*

ff
*

ff dSqudSuq)p(u .                                      (4.51) 

 
*

fu and *
fq are geometric functions depending only on r  which is the distance between 

the source point and the point where the effect of the source is wanted to be calculated. For 

examle for the isotropic domains *
fu can be given as : 
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and  for *
fq  
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                                 (4.53) 

 

is obtained. 

 

Since the source point P  can be chosen everywhere in the domain )p(u f  is 

multiplied by the function )( pc  which depends on the geometrical position of the source 

point in the domain. The mathematical definition of )( pc  is given as: 

 



2

)( pc                                                      (4.54) 

 

where   is the angle related to the part of the source point located in the solution domain. 
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Figure 4.17. The values of )( pc  for different geometries 

 

If the source point is chosen to be in the solution domain 1)( pc , if it is out of the 

solution domain 0)( pc . 

 

After the multiplication with )( pc  is done the integral equation is obtained as: 

 

 
S S

*
f

*
ff qdSuudSq)p(u                                        (4.55) 

 

This Equation (4.55) can relate all the nodes to each other. After the solution domain is 

discretized as shown in the Figure 4.16, the boundary integral expression will be  

 

 
S

if
*

f
S

if
*

ff dSqudSuq)p(u)p(c .                            (4.56) 

 

The flux of any boundary can be found by doing interpolations. Then the system of 

equations is transformed to the matrix representations and finally is solved. 

 

Relatively the boundary element method is a new method for discretization 

compared to the previously mentioned methods. It has some advantages like less time 

requirement for modelling, the dimensions of the boundaries are reduced by one, for the 

same accuracy compared with the other methods the element number is less and the 

computer time used is prominently less, etc. However, there are also some disadvantages in 

the method such as the need for more complex mathematics, the domains like shells are 

2
1)( pc  

4
1)( pc  

4
3)( pc  
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difficult domains for solving because of the fact that the elements and nodes are very near 

each other and this affects the accuracy of solutions, the matrix obtained from the set of 

equations is not symmetric and there are no zero valued elements. 

   

As a result for the discretization methods mentioned above there are some 

advantages and disadvantages against each other in different ways.  

 

4.2.5.  Matrix Distribution Scheme 

 

This method is a relatively new technique for space discretization. It can be used in 

MHD equations instead of some conventional discretization techniques such as finite 

difference, finite element, finite volume. The numerical simulations in this thesis are done 

in the scope of this matrix distribution scheme. The step by step calculations of MHD 

equations used in this work are shown below. The main assumption in this scheme is that 

the value of U


 is changing linearly within the triangles (Equation 4.57). The fluctuations 

due to these changes are distributed at every node of each triangle by ‘distribution matrix’ 

which will be introduced later in this section.  

 

 



n

i
ii )t(U)r(N)t,r(U

1

                                          (4.57) 

 

In Equation 4.57, )t(Ui  is the value of )t,r(U   at node numbered i  and )r(Ni
  is the 

linear shape function. If it is assumed that two dimensional space is under consideration 

then the Equation 4.59 can be written  as: 

 





n

i
ii )t(U)y,x(N)t,y,x(U

1
                                      (4.58)  

 

where j,ijji )y,x(N   and j,i  is Kronecker delta function. Equation 4.1 is in 

conservative form. The quasi-linear form of it can be written as in Equation 4.59 where A  

and B  are Jacobian matrices.  
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         (4.59) 

 

If the pseudo time rate is ignored for now at least and it is multiplied with lN  and 

integrated the result over the area of triangle given as  , will become as: 
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 .              (4.60) 

 

By rearranging the Equation 4.60 a more compact form is obtained  
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 .                  (4.61) 

 

By using the definition given in Equation 4.58, the new form for Equation 4.61  
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is obtained. Here the sum inside every triangle runs from 1 to 3, which are the node 

numbers of the triangle. The global system can be written by a result of summation over 

the individual triangle T  and the final expression can be written in the following way: 
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.(4.63) 

 

Before proceeding it is better to give some definitions here. If the two dimensional spatial 

domain  , has a triangular shape shown as in Figure 4.18, and 1, 2 and 3 are the local 

node numbers of the triangle, the inward scaled normals  with the length of corresponding 

faces are given as: 
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ŷ)xx(x̂)yy(n 23321 
                                      (4.64) 

 

ŷ)xx(x̂)yy(n 31132 
                                       (4.65) 

 

ŷ)xx(x̂)yy(n 12213 
 .                                    (4.66) 

 

The triangle with the inward normals is shown in the Figure 4.18. [13, 23]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18. Triangle with inward scaled normals 

 

The general formulation for the inward normals  is given as: 

 

ŷ)xx(x̂)yy(n kjkji 
 .                                     (4.67) 

 

Note that the sum for these three normals vanishes ,  

 

ŷ)xx(x̂)yy(ŷ)xx(x̂)yy(ŷ)xx(x̂)yy(nnn 122131132332321 
  

 

the result became  

 

0321  nnn  .                                                 (4.68) 
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This can be written in general representation as: 

 

0
3

1


i
in .                                                      (4.69) 

 

 
 

Figure 4.19. Unstructured triangular mesh filling the solution domain 

 

The shaded area in Figure 4.19, is called the median dual cell or Veroni area surrounding 

the node i . The represenattion of  Veroni area is given with the symbol i . 

 

In order to distinguish  the flow direction being inflow and outflow, or the nodes 

being upstream or downstream it is useful to define the scalar ‘inflow parameter’ which is 

mostly given as : 

 

ii n.k 


2
1

                                                       (4.70) 

 

where the 


 is constant speed vector in the scalar problem 0 U.U t


  (Figure 4.20). 

 



 

 

113 

For inflow face: 0ik then i  is downstream node, and for outflow face: 0ik  then 

i  is upstream node [23]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20. One-inflow triangle (upper triangle) with inflow point shown as ‘in’ and two-

inflow triangle with output point shown as ‘out’. In both cases the arrow indicaties the  

direction  of the streamline 

 

By using the result obtained in Equation 4.69 one can show that 

 

0
3
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ii

ik .                                                      (4.71) 

 

For one-inflow triangles only one of the inflow parameters is positive and the other two are 

negative, for two-inflow triangles two of the inflow parameters are positive and one is 

negative. By using the definitions given, the gradient of any linearly varying quantity 

within the triangle can be  expressed as: 
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where T  is the area of triangle T . Note that the vector sign above U shows that U  is a 

vector of variables, but the vector sign above  (nabla) shows that it is a regular gradient. 

 

The left hand side of Equation 4.63 can be expressed again in the following manner, 
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and as a result 
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is obtained.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21. The geometrical relation between T  and l  

 

If some attention is given to the right hand side of the Equation 4.63 and lN  is 

taken as unity and using the Gauss theorem  
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is obtained. Another way for obtaining the same result is substituting Equation 4.60 (by 

using k  instead of i  as an index) into the flux integral,  
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Since it is linear the gradient of  the shape function is constant over T , it can be 

expressed as: 
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and by taking Tkk x
nxN  2 and Tkk y

nyN  2  then Equation 4.74 becomes  
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where     
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is called the ‘cell residual’ and lB  is the distribution matrix. The cell residual is small in 

regions of smooth flow and it gives the measure of the accuracy of the discrete solution 

very precisely. The distribution matrix is used to distribute the total residual to the nodes in 

appropriate manner. There are some different methods for defining the distribution matrix. 
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The mostly used numerical schemes which will not be mentioned in detail are listed as 

follows:  

 

N- Scheme which is the residual distributon formulation of the first-order upwind 

method. It is only the first order accurate scheme. The distribution matrix expression for 

this scheme is given as: 
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where 2)BnAn(K
yx kki   is the flux matrix whose eigensystem determines the spatial 

variation of flow quantities at node i . The superscript n  represents the time level. 

 

The PSI (Positive Streamwise Invariant) or limited N- Scheme suggests the 

distribution matrix expression as : 
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The requirement for continuity is satisfied by this scheme [24].  

 

The LDA (Low Diffusion A)- Scheme is a linear upwind scheme which satisfies the 

linearity preservation property. The expression for the distribution matrix is given as: 

 


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iLDA
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B
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 .                                          (4.82) 

 

The Galerkin Scheme is obtained by choosing the the weight functions identical to 

the nodal basis functions. The distribution coefficients are : 
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IBGAL
i 3

1
                                                     (4.83) 

 

where I  is the identity matrix.  

 

This scheme is unstable for convection type of problems. In order to stabilize this 

scheme some dissipation terms are added and new schemes are obtained [13]. 

 

The SUPG (Streamline Upwind Petrov Galerkin) -Scheme is one of the schemes 

which added some dissipation terms to the Galerkin method and the expression for this 

method is given as: 

 

T

i
t
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KIB
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3
1                                               (4.84) 

 

where t  is the positive parameter with the dimension of  time [25]. 

  

The Lax-Wendroff – Scheme which is the scheme used in this thesis has the 

expression for the distribution matrix given as: 

 

l
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i KIB
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
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1                                                (4.85) 

 

where   is found from the maximum eigenvalues of lK  and it is called cell based time 

step. This is different from nodal time step and if they are chosen to be equal this will be 

the time accurate version for the scheme. Here the term   ll K 2  represents the Lax-

Wendroff dissipation term.  

 

There are different types of distribution matrices iB  and they are used to distribute 

the total fluctuation to three nodes of the triangle by appropriate fractions. Eventually they 

all have to satisfy the condition: 
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 1 kji BBB .                                                (4.86) 

 

How these distributions are done is shown in Figure 4.22. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22. Basic distribution scheme for residual distribution processes 

 

The Equation 4.79 can be shown in different form as: 
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The last term on the right hand side of  Equation 4.61 which is the source term and it 

can be taken as the arithmetic average of the values at the nodes  k,j,i  which belong to 

the triangle T  and can be expressed: 
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After all the terms are expressed the final expression for the residual at the node l of 

triangle T  is defined as: 
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where vS


 is the viscous term  [26]. 

 

The solution procedure starts with the calculation of residual given in Equation 4.89 

and it is distributed to three nodes of triangles that are visited once at each time step. The 

analytical boundary conditions are applied by just assigning analytical values at the 

boundary nodes. The outgoing or zero normal derivative boundary conditions are done by 

doing no action for these variables at the boundary nodes. The inherent structure of the 

matrix distribution scheme updates the variables to their correct values automatically. 

  

After the space discretization technique used in this work is introduced in detail it is 

time to mention about the time discretization technique used here. 

 

4.3.  Dual Time Stepping for Time Discretization 

 

By using the preconditioning techniques the careful change for the time evolution of 

the equations can be obtained. If the time accurate solutions are desired then the procedure 

must be applied as pseudo time iterations at each real time step. Another way of saying is 

that when the real time advancement is applied, pseudo iterations only creating the 

iterations between real time steps in order to reach steady state. In this thesis dual time 

stepping method was used with pseudo time iterations and real time iterations. This is 

shown by the dimensionless MHD equations which can  be written in the following 

compact form  

 

                                                                                                   .                                 (4.90) 

 

The better representation of this expression in which the preconditioning matrix is included 

can be given as: 
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where mP  is called preconditioning matrix. Constructing the preconditioning matrix is 

very important research area in computational fluid  dynamics. It is modifying the time 

derivative in equations.  In order to get rid of the mP  in the first term of Equation 4.91 the 

equation is multiplied by the inverse of the mP . The best thing here is that this 

multiplication does not affect the the sources and time evolution of U


. This procedure 

only modifies the Jacobian matrices changing their eigen-structure. After divergence 

condition is satisfied by pseudo iterations then the new time level is reached. 

 

4.4.  Multistep Methods  for Time Integration 

 

Euler method, midpoint method and Runge-Kutta method are the most common 

methods for solving the initial value problems. Initial value problems are solved basically 

by using ‘one–step methods’ and ‘multi-step methods’ which differ from each other by the 

fact that the one-step methods depend only on the value of only one old point, whereas in 

multi-step methods more points are used. In one-step method the value of )t(y i 1 depends 

only on the value of )t(y i  and in multi-step method the value of )t(y i 1  depends on the 

previous values of )t(y i , )t(y i 1 , )t(y i 2 ,… see Figure 4.23. 

 

 

 

 

 

 

 

 

 

Figure 4.23. One-step method (left) and multi-step method (right) representations 

 

Euler method is the simplest method using the procedure of marching a small step at 

a time on the right hand side in order to approximate the solution on left hand side of the 

Equation 4.92. It is a first order accurate method. In order to understand this method a brief 

description is given as follows: 
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The problem to be solved is ))t(y,t(fdt)t(dy  . The unknown value of )t(y  

where 0tt   is desired to be obtained. The initial value of )t(y 0  is given implicitly. In 

order to determine the value of it approximately the starting point is the rate of change of 

y  at time 0t , which can be represented as: 

 

)y,t(f))t(y,t(f
dt

)t(dy
0000

0  .                                    (4.92) 

 

If this rate change is constant in time then the value of )t(y  will be found exactly on times 

after 0t : 

 

)tt)(y,t(fy)t(y 0000  .                                        (4.93) 

 

A new ‘small’ number th  which is called the time step is defined as follows: 

 

               thtt  01   

 thtt  12                                                          (4.94) 

                                                                        

                                                              tii htt  1  

 

By using the definition given in  Equation 4.94 

 

                                 )tt)(y,t(fyy)t(y 0100011     

 

and consequently 

 

th)y,t(fyy 0001                                               (4.95) 

 

is obtained. This is the approximate value of y  at time 1t , 11 y)t(y  . The approximate 

expression for 1y  was obtained and then the rate given by )y,t(f 11  is used in 
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)tt)(y,t(fy)t(y 1111   for 1tt  . By defining next time step as: tt hthtt 2012   

then  

 

th)y,t(fy)tt)(y,t(fyy 111121112                            (4.96) 

 

is found. Thus, by using Equation 4.94 and Equation 4.95 the general form for Euler 

method can be written as  

 

tnnnnn h)y,t(fyy)t(y   11                                    (4.97) 

 

where tn nhtt  0  and ...,,,n 3210   

 

In midpoint method the time step defined as th  as done previously for Euler method 

is divided into two equal parts so that spatial accuracy of the numerical solutions is 

increased. After  this  definition the general expression for midpoint method can be written 

as: 
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2211   .                    (4.98) 

 

This method is not so stable and small perturbations in initial values gives rise to 

growing oscillations. In general, the higher the accuracy, the greater number of function 

evaluations are necessary.  In this thesis, neither Euler nor midpoint methods were used. 

Runge-Kutta method which is probably the most popular method in engineering was used 

in this thesis. The name of the method comes from the names of two German 

mathematicians who developed this method. Runge-Kutta method is essentially an attempt 

to match a more complex Euler-like formula to a fourth order Taylor method. This method 

has a high order of accuracy and can be used for time integration. There are several Runge-

Kutta methods however the most popular ones are second and fourth order method. In 

general Runge-Kutta method gives more accurate solutions than the other numerical 

methods especially compared with Euler’s method. However, the implementation of the 

method is also more complex than the others. In this work the pseudo time iterations were 
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done by using   Runge- Kutta algorithm. The method is self-starting method which can 

change the step size of integration as often and by the size and by as much as required. One 

of the main disadvantages of the method is that it requires more function evolutions per 

step than linear multi-step methods do [27]. As an example the fourth order Runge-Kutta 

method requires four evaluations on the right hand side of expression per step size th . 

Runge-Kutta method is expressed as: 
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This method will be used to integrate following equation 

 

)U(f
dt
Ud 


                                                    (4.100) 

 

where U


 is vector of nodal states and )U(f


 is the discretized spatial part. In this study 

the )U(f


 is represented by )U(sRe


 which is the residual. 

 

The stagem Runge-Kutta time integration algorithm is given as  follows: 

 

                                                             n)( UU


0   

)U(sRetUU )k(k)()k( 10 


  where m,...,,k 321                  (4.101) 

                                                            )m(n UU


1  

 

where n  is the counter used for counting the consecutive time levels, k  are constant 

numbers changing between 0  and 1 depending on the characteristic of the method used. 
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t  is the time step. If Runge-Kutta method is used for iterations, this is the local time step 

used to speed up the convergence to the steady-state.  

 

Table 4.1. Coefficients for multi stage Runge-Kutta integration [13] 

 

1m  0011 .       

2m  7001 .  0012 .      

3m  2801 .  6102 .  0013 .     

4m  1601 .  3202 .  5703 .  0014 .    

5m  1001 .  2102 .  3403 .  5504 .  0015 .   

6m  0701 .  1402 .  2303 .  3404 .  5305 .  0016 .  

 

The real time derivative in Equation 4.90 can be approximated such as done in 

reference [28] as follows  
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and pseudo time iterations were approximated by a third order Runge-Kutta algorithm. 

After the pseudo iterations converges such as 0 U


, the time accurate solution 

  ),,U(sRetUIm
22 


  is recovered from the Equation (4.90). ),,U(sRe 22 


 is 

expressed as: 
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This is called the ‘ residual vector’ which in this thesis is discretized by using matrix 

distribution scheme which is described in detail previously. After combining the real time 

and pseudo time levels  
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is obtained. In Equation (4.104) nU


 and 1nU


 do not change in pseudo iterations. In order 

to make the real-time derivative term explicit in pseudo iterations Equation 4.104 can be 

written as: 
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where  
mI   is called the modified diagonal matrix and is given as: 
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where I  is the unit matrix. Since the residual requires implicit treatment, the accuracy of 

pseudo time derivative is improved by the following third- order Runge-Kutta method. 

After this treatment the residual calculation for the next pseudo time iteration is more 

accurate. By using the parameters given in the Table 4.1. 
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The new pseudo values 11  m,nU


 are obtained from m,nU 1


 in three steps as shown in the 

algorithm given as Equation 4.107. After pseudo iterations converge m,nm,n UU


 11  so 

that 0 )U(sRe


 the desired second-order accurate solution is obtained at new time level 

from 
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or  
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In this part of the thesis the space and time discretization techniques used in order to 

solve the equations are described. The spatial discretization method which is the matrix 

distribution was used in the numerical simulations. The time integration method was 

Runge-Kutta method. The numerical results obtained for different problems and given in 

‘Numerical Problems and Results’ part of the thesis were found in very good agrement 

with the references. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

127 

5.  THE CODE AND ITS FEATURES 

 
 

In order to solve the  incompressible MHD (Navier-Stokes and Maxwell’s) equations  

on structured and unstructured meshes with triangular mesh elements a new generation and 

original code was used. The two dimensional code which was running in Cartesian 

coordinate system was used for simulations. Since the code was running on two 

dimensions, the first step which is the mesh generation procedure for three dimensions was 

finished. As a postdoctoral study the mesh generation part is planned to be adapted to the 

original code. 

 

5.1.  Code Properties 

 

5.1.1.  General Properties 

 

The code is a two-dimensional incompressible (constant  mass density) magneto-

hydrodynamic code which can be used to solve the steady state (time independent) and 

transient magnetized or neutral convection problems with or without the effect of  heat 

transfer. By using the numerical method which is called ‘Matrix Distribution Scheme’, and 

was described in previous chapter, Navier-Stokes and Maxwell’s equations in two 

dimensions in Cartesian coordinate system can be solved numerically. The code can be run 

under the Linux operating system. In order to start running the console should be used 

under Linux operating system.   

 

In computational fluid dynamics, the commercial solvers or codes operate as ‘black 

box’ which obtain the raw output data correspoding to a set of numbers that give the values 

of each field variable at each point of mesh. Some of the popular commercial codes are 

Ansys, Fluent, and Flowscience. Informally, CFD which is the acronym for the 

Computational Fluid Dynamics that is the science which can make numerical expriments 

on computers is sometimes used as ‘colourful fluid dynamics’. This name comes from the 

fact that the codes provide very colourful graph plots as a result of the solved problem. 

These colourful plots are very helpful for easy analysis of the results.  
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In this non-commercial and original code which initial version was implemented as 

in reference [26], the solutions are done and the results were collected in the data files 

which contain only the numbers, or the results are shown on the screen with some graphs 

changing simultaneously. The refresh time of the graphs can be given by the user by 

specifying  the step numbers  for  iteration. The code provides the plots such as: shaded 

contour plots in which the areas with the same colour represents the same  mathematical 

value for a calculated field variable such as velocity, temperature, pressure, etc. (Figure 

5.1). Vector plots which show the vector quantities such as velocity, electric and magnetic 

fields lines are also drawn by the code (Figure 5.2). The magnitude of the vectors are 

directly related  to the calculated magnitude of the variable. The vectors are giving an idea 

about the direction of the variable. The mesh plots which are showing the computational 

mesh are also a part of the code used. The computational elements are visualized by mesh 

plots (Figure 5.3).     

 

 
 

Figure 5.1. Shaded contour plots for the pressure and temperature 



 

 

129 

 
 

Figure 5.2. Vector plot for the velocity 

 

 
 

Figure 5.3. Unstructured mesh plot done by the code 

 

The code has very friendly graphical user interface. It is used to create complex 

meshes, the boundary and initial conditions can be specified by the user directly, colour 

vector graphs can be created etc. This code utilizes the matrix distribution scheme which is 

running on the structured and unstructured triangular meshes. For time discretization the 

dual time stepping with multidimensional Runge-Kutta algorithm was used. The  code can 

easily be used for simulating the nonlinear time dependent evolution for heated and 

magnetized liquids, natural convection with internal heat generation and absorption, 

conductive fluids under the electric and magnetic fields, etc. 
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There is a first step display on the screen in order to start the code in Figure  5.4. 

After the the code was started to execute another menu appears on the screen (Figure 5.5).  

There are some control buttons such as quit (quitting from execution), generate mesh 

(generates the mesh for solution domain), run (starts simulation done by the code), pause 

(pauses the execution), graph (it gives the permission for choosing the graphs which can be 

displayed on the screen) on the menu. 

 

 
 

Figure 5.4. A snapshot showing starting step of the code 

 

5.1.2.  Using The Code and Mesh Generation  
 

 
 

Figure 5.5. Control buttons for the code 
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5.1.2.1.  Structured Mesh Generation  

In order to solve the problem numerically firstly the mesh must be generated. 

Structured and unstructured triangular meshes can be generated by the code but also three 

dimensional (tetrahedron) mesh is also wanted to be embedded in the code as a 

postdoctoral study. After the generation of the mesh the screen is seen as in  Figure 5.6.   
 

 
 

Figure 5.6. Menu for mesh generation process 

 

There are five different stuctured grid types in the code. They have different forms 

which are shown in the Figure 5.7. 

 

                 

 

 

 

 

Figure 5.7. Grid types for structured mesh 

 

After the mesh type was chosen, the dimensions for the solution domain (Xmin, 

Xmax, Ymin, Ymax) and maximum node (the specific points on which the discrete 

solutions are done) numbers for different dimensions (Imax for x  coordinate and Jmax for 

Iso-new type      Left running      Iso-b type           Iso-p type    Right running 
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y  coordinate)  are also put externally. The next step is deciding about maximum boundary 

number for the solution domain and the boundary numbers for the corner nodes. 

 

5.1.2.2. Unstructured Mesh Generation  

  Not only structured meshes but also unstructured meshes can be used for the 

computer simulation of the problem in the code. The unstructured mesh can be generated 

after  it is chosen from the menu shown in the Figure 5.6. After unstructured mesh is 

chosen another different menu will appear on the screen. It is given below in Figure 5.8. 
 

 
 

Figure 5.8. Parameters used for creating the unstructured mesh 

 

For creating the unstructured mesh there are three different parts which must be 

filled. In the first part  the number of the node, x  cordinate value,  y  coordinate value, 

displacement dx and the number of the boundary which own the nodes mentioned must be 

given. In the second part the number of segments must be given. In the last part for 

creating the unstructured mesh the boundary segments must be put in proper way.  

 

5.1.3.  Example Problem  

 

To understand the descriptions given above the example below will be very useful. 

Let us give the initial values and boundary conditions for the one of the very well known 

benchmark problem. The formal name for this problem can be called as ‘Lid driven cavity 
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test’. In this problem  the sliding upper lid which has the constant velocity  u  on the upper 

boundary drives the circulation in the cavity Figure 5.9.  

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.9. Scheme for the lid driven cavity test 

 

 
 

Figure 5.10. Scheme for the lid driven cavity test after the maximum node  numbers are 

given and structured mesh type was chosen 

 

In Figure 5.10, there are the nodes, the node numbers (only for  the first row and the 

half of the second row), assigned boundary numbers (numbers in the circles) and the 

structured mesh for the solution domain. Before start the code the important boundary and 

u 

y 

x 

No slip boundary condition on the walls 
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initial conditions must be considered and it is better to see all these things together on the 

solution domain.  

 

5.2.  Running the Code   

 

After the steps in the example are completed another important step is the next. Here 

the simulation almost will start. However some blank spaces  must be filled. Before code 

starts solving  the problem the scheme in the Figure 5.11 is displayed on the screen. 

 

 
 

Figure 5.11. Scheme for running part of the code 

 

At that point first of all the problem type (Navier- Stokes, MHD, Electromagnetic 

Braking etc.) must be chosen. Then the order of Runge-Kutta algorithm, temperature, 

salinity existences, the initial conditions such as pinit (initial pressure), uinit (the initial 

value for x component of the velocity), vinit (the initial value for y component of the 

velocity), Ra (Rayleigh number), Pr (Prandtl number),  Tinit (initial temperature) etc. must 

be chosen and filled in the blanks. After all the requirements which are the initial 

conditions, boundary conditions, problem type, order for Runge-Kutta method etc. are 

finished the code is ready to start running. As a last step pushing the ‘Run’ button will start 
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the code to simulate the problem. During the simulation the graphs on the screen can also 

be controlled. In order to change the graphs on the screen firstly the button with the name  

‘Pause’ is pushed and then the button with the name ‘Graph’. Then another one menu 

appears on the screen (Figure 5.12). Here the graph selection for different graphs  (vector 

graph of velocity, colour graph of pressure, color graph of temperature, vector graph of 

magnetic field, colour graph of density, vorticity, energies  etc.) can be done and also the 

graph refresh intervals can be chosen in proper and desired way. By putting the thick sign 

in the blank squares the graphs which are wanted to be seen during the execution  of the 

code will be chosen and step by step changes can be observed on the screen easily. 

 

 
 

Figure 5.12. The graph selection  menu 

 

 
 

Figure 5.13. The schemes on the computer screen when the code is running 
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During the execution of the code  the screen is seen like in the Figure 5.13.  

 

5.3.  Three Dimensional Mesh Generation Procedure 

  

Since all the things are observed in three dimensions in the real life, another  

challenge is wanted to be realized. This challenge is to expand the code in three 

dimensions. Instead of the triangles now the tetrahedra will be used. In order to reach this 

purpose firstly the mesh generation menu of the code is changed and  the ‘3D mesh’ part is 

added (Figure 5.14).   

 

 
 

Figure 5.14. The new mesh generation part including the 3D mesh choice       
 

 
 

Figure 5.15. Menu for deciding about the size of the solution domain and number of nodes 

for the 3D mesh 
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In order to get this three dimensional objective firstly the tetrahedra geometry was 

studied and understood. Then the cube which has six tetrahedra in it is chosen as primitive 

cell which will form the whole mesh that will fill the whole solution domain. This cube can 

be named as a ‘molecule’. By adding the molecules in a suitable manner the whole mesh is 

planned to be attained. The number of every node is wanted to be generated automatically 

by the code and  an expression for doing this numbering in three dimensions was found. 

This expression is a function of the maximum numbers of the nodes in x , y  and z  

directions. Maximum node number for x  direction is given as I, maximum node number 

for y  direction is given as  J and maximum node number for z  direction is given as K. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16. The shape and node number expression for every node in one molecule 
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The molecule shown above will be broken into six pieces which are all  tetrahedra. 

The shape for every singular tetrahedral forming the molecule is given below together with 

the node number expressions formulated by us.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17. The first and second tetrahedra for the molecule 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18. The third and fourth tetrahedra for the molecule 
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Figure 5.19. The fifth and sixth tetrahedra for the molecule. 

 

Since it is very difficult  to imagine the mesh shape by using only the drawn graphs 

above as an additional work real molecules were built by using the cardboard (Figure 

5.21). They are built in order to use them as a model when the computer code is written for 

the three dimensional mesh. By using the model it is relatively easy to see the needed 

properties of the tetrahedra. It is easy to see which triangular faces of tetrahedra coincide 

with the other mutual faces. Since they are neighbours the information will be transmitted 

between them directly. It is also easy to calculate the areas for  the four faces of the 

tetrahedra and also the volumes of every tetrahedron separately. Also the normal vectors 

are needed to be calculated for every face of the tetrahedron. Most of these things are done 

and ready in the code. Also in order to check the calculations of the volumes the total 

volume form the whole three dimensional mesh is calculated and is compared with the 

summation of every tetrahedron’s volume separately and results are very encouraging. To 

generate the mesh in three dimensions all the node numbers must be known and must be 

put in the suitable order. The expression for automatical node number generation is 

checked also in the way shown in the Figure 5.20. The arbitrary nodes are chosen and by 

using the expression which was kIJijI   the node numbers can be found. They are 

compared with the real node numbers. The results are exactly right. 
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Figure 5.20. The expression for node number control ( I=10, J= 7 and K=3) 
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The step by step advance of the proccess in which the real three dimensional model was 

built is given in the Figure 5.21. 

 

   

   

   
 

Figure 5.21. The process for making the model for three dimensional molecule 

 

   

   
 

Figure 5.22. Three dimensional mesh structure  preparation in order to see the orientation 

of the molecules 
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Figure 5.23. Three dimensional  view of one molecule and its tetrahedron 

shaped elements  

 

After the shapes of all the molecules and tetrahedra were seen the computer code is 

written for these new elements.  

 

As it is seen above the three dimensional geometry was seen obviously and three 

dimensional mesh generating procedure was finished. The code which is producing the 

node coordinates, calculates the volume of each tetrahedron, the four surfaces of each 

tetrahedron, the inward normal vectors magnitude and vectoral coordinates, etc. is 

originally developed. It is given in Appendix A. The adaptation of this code to the main 

solver is left as a postdoctoral study. 

 

As it was said before, the main feature of the code can be summarized as: it has a 

very user friendly graphical user interface (GUI), it can run for steady and transient 

problems, it can create color and vector graphs, structured and unstructured meshes can be 

created, the initial and boundary conditions can be specified easily.  

 

The solver used here most importantly provides flexibility of creating the meshes 

(both structured and unstructured), specifying the initial and boundary conditions, starting 

stopping and pausing the calculations, displaying desired colourful and vector images on 

the screen.  
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In the numerical part of the thesis benchmark problems such as the steady-state  lid-

driven cavity, the unsteady lid-driven cavity, unsteady oscillatory lid-driven cavity test, 

vertical obstructed flow through square channels, natural flow in thermally driven cavity 

by different side wall temperatures, liquid metal flow past a circular cylinder in open 

channels exposed to external magnetic field, electromagnetic braking of liquid metals in 

vertical channels and levitation  were solved by using this code.  
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6.   NUMERICAL PROBLEMS AND RESULTS 

 
 

6.1.  The System of Equations Used in Numerical Solutions 

 

The equations which are to be solved in this thesis are Navier-Stokes plus Maxwell 

equations which are the magnotohydrodynamic (MHD) equations. During the simulation 

of physical problems some assumptions will be done. The flow will be considered as 

incompressible and the fluid to be electrically conductive in some problems. The equations 

for continuity, momentum and energy can be given respectively as: 

 

                         (6.1) 

 

                                                                                                                                (6.2) 

 

    (6.3) 

 

(6.4) 

 

where v  is the velocity, P  is the pressure,   is the density,   is the viscousity, jgg ˆ
  

is the gravitational acceleration, LF


 is Lorentz force , e  is the charge density, TE


is the 

total (external+internal) electric field, TB


 is total magnetic field, TJ


 is total  current 

density, vC  is the specific heat, Tk  is thermal conductivity, T  is temperature, and   is 

electrical resistivity [29]. The last term in Equation 6.4 is called Joule heating term. It 

occurs in the equations due to the heating effect of the currents passing through the 

conductive fluid. The Maxwell equations which are the set of four equations that are used 

to describe all the known electromagnetic phenomena on the macroscopic  scale must be 

related to the Navier-Stokes equations.  Since the flow is assumed to be conductive  TJ


, 

the total current density term makes a link to (Equation 6.7) the Maxwell’s equations 

which can be given as: 
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   (6.5) 

 

(6.6) 

 

(6.7) 

 

 (6.8) 

 

where MAGS


  is the source term driving the magnetic field, 0  is the magnetic 

permeability, B


 is the magnetic field.  It is known that the total current density also 

satisfies Ohm’s law given in the form :  

 
TTT BvEJ


                                                  (6.9) 

 

where TJ


, TE


, and TB


 are total current density, total electric field and total magnetic field 

respectively which can be given as: 

 

 extT JJJ


                                                      (6.10) 

 
extT EEE


                                                     (6.11) 

 
extT BBB


 .                                                   (6.12) 

 

Since the externally applied electric and magnetic fields can affect the current density their 

effects must also be taken into account during the calculations. If there are external effects 

existing there, the Maxwell equations written below  must also be satisfied. 
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0

.

 ext

extE 


                                                    (6.15) 

 
extext JB


0                                                 (6.16) 

 

As previously said, Navier-Stokes and Maxwell equations are linked with the total current 

density TJ


 and this leads to the charge conservation equation which can be given as : 

 

0

 TJ.

t
q 

                                                   (6.17) 

 

0

 extext J.

t
q 

.                                               (6.18) 

 

The Equation 6.17 says that the both 0 TJ.


 and 0 extJ.


 under the condition that 

internal and external charges are constant in number and are not changing in time [6]. The 

definition of current density given in Equation 6.9 includes the effects of both external 

electric and magnetic fields existing around the flow itself. In order to represent MAGS


 in 

more correct form it must include  the external magnetic field as in the form given below 

in Equation 6.19. 

 

)Bv(S ext
MAG


                                            (6.19) 

 

Here an assumption can be easily done since the localized charge neutrality the internal 

electric field can be neglected comparing  with the externally applied electric field so that 

the Equation 6.11 can be rewritten as :  

 
extextT EEEE


 .                                            (6.20) 

 

Since in this thesis we are interested in low speed flows, the temperature effect on the 

density can have a significant effect. Because of the fact that the gravitational forces can be 

in comparable ranges with the inertia and viscous forces the temperature which will affect 



 

 

147 

the density and implicitly the gravitational force will play an important role in calculations. 

To take the temperature effect into account the Boussinesq approximation named for 

Joseph Valentin Boussinesq is used. The concentration and pressure also can have some 

effect on the density. In this approximation the variation of the density is neglected 

everywhere except in the buoyancy term since the little temperature change results with a 

little change in density which affects the buoyancy which is driving the motion.  The 

mathematical representation for Boussinesq approximation is given as:    

 

  00 1 TTT                                                (6.21) 

 

where   
P,CT T  01 is the expansion coefficient due to temperature. As an 

example the  coefficient of volume expansion of water at C20  is 16 )(10210  CT
  

[30]. Note that 0  and 0T  are reference density and reference temperature respectively. In 

some sources they are called the ambient density and temperature. The  Equation 6.2 with  

a little rearrangement will have the form as: 

 

 

                                            (6.22) 

 

After the Boussinesq approximation is taken into accout one can write 

 

 )()( 000 TTgPPgP T  


.                              (6.23) 

 

For Equation 6.24 one can take gyP 0  and  0 xP  because of the fact that 

gyP 00  . Before all the open form of MHD equations are written, the dimensionless 

form must be defined. The equations can produce useful solutions only when they are 

written in dimensionless forms in terms of some parameters. The number of these flow 

parameters depends on the number of equations used. The dimensionless form of the 

quantities can be written as: 

 

.FvgPv.v
t
v

L








 

 2



 

 

148 
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c
t TT

TT



  

 

where P  and t  are dimensionless pressure and temperature respectively, hT  is ‘hot wall’ 

cT  is ‘cold wall’ temperatures. The other dimensionless parameters are  

  

   
0t
tt  , 

0
  , 

0r
rr 



 , 

0v
vv 



 , 

0E
EE 



 , 

0B
BB 



 . 

      

In MHD equations there are some important parameters. One of the most important 

numbers is Reynold’s number, which is a unitless number, mathematically defined as:  

 


00vLRe                                                         (6.24) 

 

where 0L  is characteristic length )(m , 0v  is velocity )/( sm  and   is kinematic viscosity 

)/( 2 sm . Reynold’s number basically gives the ratio between the inertial  and  viscous 

forces in flow. It is mostly used in prediction of the flow nature if it is laminar or turbulent. 

Since turbulent regime is different in some properties from the laminar flow it is important 

to distinguish the flow type in engineering in order to avoid from the increased viscous 

losses. In turbulent flows the viscous loses are generally much higher then those in laminar 

flow. 

 

 
 

Figure 6.1. Diagram of flow regimes in pipe flow 

 

Flow  2000Re  4000  



 

 

149 

Another parameter is called ‘magnetic Reynold’s number’. Basically it is the ratio of 

the induced magnetic field to the applied magnetic field [31]. 

 

(6.25) 

 

Prandtl number, Pr  is the ratio of momentum diffusivity to the thermal diffusivity. 

If the value of  Prandtl number is small it means that the heat diffusses more quickly than 

the diffusion of momentum. It also gives the information about the velocity and heat 

boundary layers ratio. If 1Pr  the boundary layers coincide. The mathematical 

representation is given as: 

 

(6.26) 

 

where   is kinematic viscosity and t  is thermal diffusivity. 

 

Eckert number is another dimensionless parameter which gives the ratio between the 

kinetic energy of the flow to the boundary layer enthalpy. 

  

(6.27) 

 

where pC  is the heat capacity under constant pressure and T  is the temperature 

difference. 

 

Rayleigh number, Ra , which has a mathematical expression as : 

 

(6.28) 

 

where g  is gravitational acceleration,  T  is thermal expansion coefficient,   is kinematic 

viscosity and t  is thermal diffusivity constant. Rayleigh number physically gives an idea 

if the heat transfer is due to the conduction or convection in fluid. It is mostly used in heat 

transfer and free convection calculations.  
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Hartmann number, Ha  is a dimensionless number defining the relative importance 

of the forces due to the magnetic induction to the viscous forces. It is the ratio of the 

magnetic forces to the viscous forces.  

  

(6.29) 

 

where 0B  is magnetic field,  0L  is characteristic length,   is electrical conductivity and 

  is dynamical viscosity coefficient. The relation between Hartmann number and 

Reynold’s number is given with the ‘interaction parameter’, N ,  

 

Re
HaN

2
  .                                                     (6.30) 

 

Actually 'N' can be defined as the ratio  between the electromagnetic forces and 

inertial forces. By using the defined dimensionless parameters and approximations the final 

MHD equations for incompressible flow are written in two dimensional Cartesian 

geometry as [29]:  

 

(6.31) 

 

 

(6.32) 

 

 

(6.33) 

 

 

(6.34) 

 

 

(6.35) 
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(6.36) 

 

(6.37) 

 

In Equations from 6.31 to 6.37 there are some new terms, such as   which is 

pseudo-time, 2  which is magnetic relaxation constant, 2  is an artificial compressibility 

parameter, and m  is an artificial magnetic relaxation function. Since we are interested in 

the incompressible fluids the artificial compressibility parameter defined here has a 

significant meaning. This parameter is firstly defined by Chorin [32] in order to be used in 

the modification of the continuity equation. In incompressible flows the pressure is 

affected instantaneously by the disturbance in flow. However, with the effect of artificial 

compressibility there is a time lag between the flow disturbance and its effect on the 

pressure. The artificial compressibility relaxes the strict condition for mass conservation in 

each step. In order to have time- dependent solutions for this method, an iterative method 

can be applied to each physical step by satisfying the continuity equation. Mathematically 

the effect of artificial compressibility parameter can be shown as : 

 

v.P 
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
 2


                                                   (6.38) 

 

where  k̂wĵvîuv 
 . 

  

Eventually the need for artificial compressibility parameter is coming from the desire 

to use the incompressible fluids in algorithms  obtained for the compressible fluids.  

In Equation 6.36, there is m  artificial magnetic relaxation function. This function is also 

used to correct the magnetic fields in the same way that the artificial pressure corrects the 

velocity fields. These newly introduced parameters are used to satisfy the divergence 

constraints   )B.,v.( 00 
  by solving the equations in  subiterations in each time 

step. After the sub iterations converge  0 .,e.i , pressure and artificial magnetic 

relaxiation function are having the values which are used in correcting the magnetic fields 

and velocities in order to satisfy the divergence conditions. 
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Figure 6.2. Dual time stepping sheme for a 2 dimensional mesh where  

  is the pseudo time step and t is real time step 

 

In numerical time derivatives it is better to utilize the implicit time stepping by 

Newton type of algorithm. Since in this thesis not only structured but also unstructured 

mesh types are used and this algorithm is very complicated for unstructured triangular 

meshes. This is the main reason for using the explicit multistage Runge-Kutta algorithm in 

pseudo time stepping. The time discretization process will be mentioned later in a more 

intensive manner. By using the dimensionless parameters the  dimensionless MHD 

equations can be written in the following compact form: 

 

(6.39) 
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(6.40) 

 

is the conservative state vector of fluid variables in which P  is dimensionless pressure, u  
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xB  and yB  are the x  and y  components of the magnetic field and the last term m , is the 

artificial magnetix relaxation function. In Equation 6.39 there is a diagonal matrix which is 

used to eliminate the pressure and artificial magnetic relaxation functions from the real 

time advancements. So the diagonal matrix mI  is given in the form as: 

 

                                                                                                                               (6.41) 

 

A  and B  are Jacobian matrices which include the coefficients of  xU 


 and 

 yU 


directions respectively. TS


 is the total source vector which has viscous and 

external parts and can be given as: 
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By using the definition given above Jacobian matrices in Equation 6.39  can be written as: 
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and source vectors are given as 
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So that the explicit form of Equation 6.39 is  
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Equation 6.43 is the final equations which are to be solved. Note that there are two newly 

defined artificial parameters, 2 , the artificial compressibility parameter and m , the 

artificial magnetic relaxation function which are used in correction of velocity fields and 

magnetic fields respectively. The pressure P  which was related to the artificial 

  (6.43) 
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compressibility parameter such as given in Equation 6.38 and artificial magnetic relaxation 

function are put only in pseudo time derivation part in equation and they are eliminated 

from the real time derivation parts by using the diagonal unit matrix. By using the defined 

equations above the numerical problems below were solved by using matrix distribution 

scheme which is explained in the previous chapter. 

 

6.2.  Numerical Tests 

 

6.2.1.  The Steady State Lid Driven Cavity Test 

 

This  is the classical two dimensional lid-driven cavity test. It is assumed there is no 

heat transfer  and externally applied electromagnetic fields. There is a sliding lid on the 

upper boundary which has a constant horizontal velocity (i.e. 1u ) in x  direction. This 

sliding lid generates a circulation in the cavity. The solution domain for this test was 

chosen as a square-shaped cavity which is filled with isotropic triangles with 4141  nodes 

(Figure 6.3). Starting with no flow initial condition within the cavity, this test problem was 

run for Re=100, Re=400, Re=1000, and Re=5000 together with no-slip wall conditions (i.e. 

1 vu ) on the walls of the cavity and u=1,v=0 condition along its upper boundary. The 

resulting velocity vectors within the cavity, after steady state is achieved at t =2, are shown 

in Figure 6.4. There are velocity profiles for four different Re (Reynolds) numbers. As can 

be seen, the constant flow along the upper lid drives the flow circulation whose centers 

shift as the Re number is increased.  

 

 
 

Figure 6.3. Solution domain shape for the lid driven cavity test problem 
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Figure 6.4. The velocity vectors formed in the square shaped cavity 

 

As it is seen in Figure 6.4 for different Reynolds numbers the velocity vectors have 

different shapes. The centres of circulations for different Reynolds numbers took shape in 

different places in the cavity. It seems that for high Reynolds numbers the circulation 

center can coincide with the centre of square shaped cavity and the corner circulating 

regions on the bottom get similar. 
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Figure 6.5. uy   and xv   profiles passing through the midpoint of the cavity 

 

In order to see the convergence of the numerical solutions, the same problem for 

different mesh types is solved. The generated meshes were 8181,4141,2121  . There 

are  y  profile of  velocity u  and x  profile of  velocity v  passing at the midpoint of the 

cavity presented in Figure 6.5 (a) and (b) respectively. As seen, the mesh gets finer the 

solutions converged to the correct solution. There were some deviations in Figure 6.5 (a) 

especially for y  profile of u  velocity between the limits 0.3 -0 for y  , and -0.4-0 for u  

values. However, the differences got smaller as the mesh was refined. 

 

 
 

Figure 6.6. Divergence – time graph for three different mesh types 
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In order to see how the divergence decreases depending on time and depending on 

the mesh types the graph in Figure 6.6 was drawn. It is easily seen that for finer meshes the 

divergence decreases quickly. The results were found in very good agreement with 

references [6] and [33]  . 

 

6.2.2. The Unsteady Lid Driven Cavity Test 

 

In this test problem the boundary and initial conditions were chosen as the same as in 

the steady state lid driven cavity test. The problem was solved for two different Reynolds 

numbers, the cavity had again the square shape. However, the investigated property of the 

fluid was the velocity behaviour of the mid point of the cavity. The problem was solved by 

using relatively fine mesh which was 8181 . The velocity in this problem had a step 

shape which was given as 00  tforu  and 01  tforu . The results shown that the 

velocity was nearly constant after t=5 for the flow with Reynolds number 100 , but it was 

not possible to say the same thing for the flow with Reynolds number 400. The velocity in 

the centre decreased up to t=5 and it increased later. There was a something like a turning 

point for velocity values at centre at that time .  

 

 
 

Figure 6.7. u centre – time graph for flows with two different Reynolds numbers 

 

The results were found in very good agreement with reference[33]. 
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6.2.3.  The Unsteady Oscillatory Lid Driven Cavity Test 

 

Differently from the previous tests there were periodic velocity in the upper 

boundary. The  flow inside the cavity was controlled by the velocity which had a 

sinusodial profile. The velocity function on the upper boundary was assumed to be 

Costu)t(u 0 . Since the profile of the velocity driving the fluid is periodic, the oscillatory 

solutions will be formed in the cavity. In this problem the drag on the upper boundary was 

calculated by using the following formula which is   
1

0
dxyuD . In order to see how 

the drag is changed depending on time for different meshes ( 13313365653333  ,, ) . 

The results were given in Figure 6.8. 

 

 
 

 

Figure 6.8.  Drag on lid – time graph for different meshes 

 

In this problem Reynolds number was taken to be  400. Not only for different meshes but 

also for different time steps the same problem was solved. In this part the mesh was 

constant and was taken to be 6565  additionally  time steps were chosen to be 010.t   

050.t,  and 10.t   . The results were presented in Figure 6.9. 
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Figure 6.9.  Drag on lid – time graph for different time steps  

 

In conclusion these results were found in very good agreement with the results given in 

the reference [34]. 

 

 
 

Figure 6.10.  Iteration number graph for different time steps 

 

 The iteration number decreased for smaller time steps as seen in Figure 6.10. 
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6.2.4.  Vertical Obstructed Flow Through the Square Channels 

 

In this test problem the flow in channel was investigated. The flow here was driven 

by the pressure difference. This kind of problems are very important in pipe flows, internal 

flow cavities etc. The solution domain had an aspect ratio 4. The x  component of the mesh 

was between 0-1 and, y  component was between 0-4. One important point here is that the 

mesh was made finer at the top and at the bottom of the channel (Figure 6.11 (a)). The 

mesh node numbers were chosen to be 4121 , 100Re , 102   and 720.Pr  . The 

boundary conditions were given in the following manner: no slip condition for the walls 

 00  v,u , there was open outlet in the right wall and its velocity there was 1u , the 

pressure at the upper boundary was 0 and the pressure in the bottom boundary was set to  

-1. This pressure gradient will drive the flow through the  negative y  )y(   direction. 

When there is no obstruction in the channel the vertical parabolic velocity profile bends 

towards the opening on the side wall and a small circulation region was created on the 

lower left corner as clearly seen from Figure 6.12(b). 

 

 
 

Figure 6.11. (a) The structured mesh grid finer at the bottom and at the top (b) The 

pressure contours in the vertical channel 
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Another interesting challenge occurs for the same test when some obstructions are 

put in the channel. In this test the obstructions were rectangular in shape. The velocity 

profiles in the channel without obstruction, with obstuction on the left and with the 

obstuction on the right walls separately were shown in Figure 6.12. The velocity profiles 

were found different for these three different cases. These results can be helpful for 

designing the pipes because the nature of the flow is seen easily in this simulation. 

 

 
 

Figure 6.12. (a) The vertical natural flow with the presence of the obstacle on the left wall 

(b) The vertical natural flow without the presence of the obstacle (c) The vertical natural 

flow with the presence of the obstacle on the right wall 

 

6.2.5. Natural Flow in Thermally Driven Cavity by Different Side Wall Temperatures 

 

This is the classical benchmark problem of  Davis [35]. The test is about the natural 

convection heat transfer inside the cavities. It is very important in a wide range of 

applications such as room insulation, ventilation etc. In this test problem 710.Pr   was 
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taken and the left wall was kept hot, the right was kept cold, 410Ra and 510Ra  were 

taken, artificial compressibility parameter was chosen to be 1002  . The test was solved 

on 6161  isotropic mesh. In this problem naturally circulating flow was developed 

because of the temperature gradient existing between the walls. The temperature contours 

for two different Ra numbers were shown in Figure 6.13. 

 

 
 

Figure 6.13. Temperature profile for (a) 410Ra  and  (b) 510Ra  for thermally driven 

cavity 

 

 
 

Figure 6.14. The view of the programme when the problem was solving 



 

 

164 

Numerical solutions for this test agreed very well with the results in reference [35]. 

 

 
 

Figure 6.15. L2 norm of  residual – time graph for different orders of Runge-Kutta method 

 

In order to see the residual drop for different Runge-Kutta orders, the problem was 

solved from 2nd to 5th order. The solutions reach the steady state when the L2 norm of 

residuals droped to 7  as seen in Figure 6.15. It was seen that there were some 

fluctuations for second order of Runge-Kutta level but the other levels had nearly the same 

profiles. These results were used in order to compare the different orders of Runge-Kutta 

discretization method. 

 

6.2.6.  Liquid Metal Flow Past a Circular Cylinder in Open Channels Exposed to 

External Magnetic Field 

 

This is one of the relatively new test problems which can be thought as an original 

one. In this test the conducting incompressible liquid metal flow past a circular cylinder 

when the medium includes both vertical and parallel magnetic fields. The flow around the 

cylinder becomes unstable and vortices start to shed from the cylinder surface behind 

which a periodic flow is obtained for both 100Re  and 400Re . It was shown in this 

test that such flows can be stabilized by using an externally applied magnetic field. The 
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cylinder with a radius of unity was placed at 0x  and 0y  in a computational domain 

of 51554 .x.   and 5454 .y.  . The inflow boundary condition was used on the 

left surface with 101  y,xB,v,u  and reflecting boundary conditions were used on the 

upper and lower boundaries with 10  y,xB,v . The right boundary was chosen to be  the 

outgoing boundary on which no condition was imposed on velocity but 1y,xB  was taken 

when magnetic fields exist. The cylinder surface was taken as no-slip boundary with 

0 vu  and 1, yxB . This problem was run for three different cases which were with no 

magnetic field, with a parallel field (in x  direction) and with that in y  direction for 

100Re  and 400Re . The interaction parameters, N , were chosen to be  

2500625000100 .,.,.,  corresponding to Hartmann numbers of 55210 ,.,,  respectively and 

magnetic Reynolds number was 510 . These parameters were chosen to compare the 

results with those presented by [36] who solved the problem with only a horizontal 

magnetic field (i.e. 0xB and with only 100Re  ); however, the effects of vertical field 

were also examined additionally in this work. Figure 6.16 shows the time behavior of x -

velocity contours at times 1501209060300 ,,,,,t   for  100Re  and 400Re  with no 

magnetic field . 

 

 
 

Figure 6.16. The contour graphs and time behaviour of u - velocity  for two different 

Reynolds numbers when no magnetic field exists, 0N , 0Ha  
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From the results, temporal behavior of the solutions at 100Re  and 400Re  for 

)Ha(.N 5250   showed that the vertical magnetic field eliminates oscillations for 

100Re  but does not eliminate for 400Re  as seen in Figure 6.17. 

 

 
 

Figure 6.17. The contour graphs and time behaviour of u - velocity  for two different 

Reynolds numbers when a perpendicular field , yB , exist for 250.N   which  

corresponds to 5Ha  

 

Horizontal magnetic field ( 00  xy B,B ) with different Hartmann numbers  

(different strengths) was applied to the same problem for 100Re . Even at lower 

Hartmann numbers eliminated the oscillations as it is seen in Figure 6.18. The important 

effect of magnetic field on the conducting fluid is its ability to create an extra drag on the 

immersed body by adding extra viscosity in the fluid. These effects are of great importance 

especially for metal casting in atmospheric pressures and thin film deposition in vacuum 

chambers. 
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Figure 6.18. The time behaviour of the flow around the cylinder at different 

interaction parameters for 100Re  and 00  Bx,By  

 

Vertically applied magnetic field results are relatively new in comparing with the 

results for horizontally applied magnetic field  that were found in very good agreement 

with  reference [36]. 

 

6.2.7.  Electromagnetic Braking of Liquid Metals in a Vertical Channel and 

Levitation 

 

The flow control of liquid metals is important especially for both heat transfer 

problems and MHD generator problems  flow control has very high importance. In the 

reference [37] it is proposed that in order to slow down or levitate liquid metals both 

externally applied DC electric and perpedicularly applied magnetic fields can be used.  If 

the strenghts for externally applied fields are appropriate, the liquid metal flowing down 
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( y  direction)  through a rectangular channel can be slowed down. In the work done in 

reference [37], the averaged vertical velocity, which reached its steady value of −1.5m/s 

dropped to zero exhibiting a series of damped oscillations when perpendicular electric and 

magnetic fields were switched on. The same numerical experiment was done here with 

two-dimensional simulation. In order to understand the shape of the problem better, three 

dimensional structure of the liquid metal flow control region was shown in Figure 6.19. 

The rectangular solution domain was shown in Figure 6.20. 

 

 
 

Figure 6.19. The proposed shape of a system for electromagnetic braking test 

problem 

 

 
 

Figure 6.20. Two dimensional view of solution domain  
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Figure 6.21. The top view of the solution domain in which the directions of 

externally applied fields were depicted 

 

External magnetic field was applied perpendicular ( x direction) to the flow direction 

( y  direction) through coils and the external electric field was applied in z direction 

(perpendicular to solution domain). In that case, the direction of BE


  force opposes the 

gravitational force, which is in y  direction. The externally applied electric and magnetic 

field vectors and the coil-winding directions were shown in Figure 6.21 as top view. 

Analytically the external magnetic field is given as the following by solving 02  zA


 

where zA


 is the vector potential satisfying AB ext


  where extB


  satisfies  0 extB


 

and 0 extB.


. The solution to the vector potential is )y(Sin)x(CoshA ffz   where 

f  is a free parameter. The value of this parameter can be adjusted according to suitable 

boundary conditions.  

 

In that case, the external field becomes  

 

)y(Cos)x(CoshBB ff
ext
x 0                                      (6. 44) 

 

and  

 

 )y(Sin)x(SinhBB ff
ext
y 0                                      (6. 45)  
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where 10 B  was taken.  

 

Figure 6.22  gives the temperature contours, standard vertical parabolic velocity 

vectors and the vector graph of total magnetic field within the solution domain (with 

1f ) just after the switch was turned on at t =2. Since at that instant the internal 

magnetic field is negligible in comparison with the external one; hence, Figure 6.22 (c) can 

be considered to be the graph of only extB


. 

 

 

 
 

 

Figure 6.22. Temperature profile, velocity and magnetic field vectors in the channel just 

after external fields were turned on 

 

The initial conditions were taken as ,mRe,Ra,Re 51001000   

0050720 .t,.Pr     when the externally applied fields were turned on by a switch 

Temperature 

a) 

Magnetic Field Velocity 

b) c) 
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when the vertical flow was 51.v  . As the initial condition steady vertical flow under 

gravity can be provided or it can be obtained by running the code without fields. After a 

prescribed time by switching on the fields the vertical flow was modified. It began to 

display small oscillations whose intensity and period depend on the interaction parameter, 

N  and the strength of external electric field, i.e. 0E , and that of the external magnetic 

field, 0B . As the boundary conditions, no-slip )v,u( 00   and constant temperature 

).T( 50  were applied along the walls at 5.0x . These walls were assumed to be non-

ferromagnetic and non-conducting (i.e. 0 xB


). The top boundary which is the inlet 

was considered to be at constant temperature  )T( 1  and pressure )P( 0 , the bottom 

boundary was taken as outgoing boundary at which pressure was defined to be 1P . 

The other fields were kept untouched. In this case, the pressure difference and gravity 

cause the increase in vertical downward flow and external fields slow it down in a short 

span of time after the switch is turned on.  

 

A DC electric field perpendicular to solution domain was applied by connecting the 

electrodes (Figures 6.19 and 6.21). The magnetic field was also applied simultaneously by 

turning on coil currents. Since the electric field was perpendicular to the solution domain, 

one needs no boundary condition for electric field. Note that the hydrodynamic flow state 

can be obtained in two different ways before the application of external fields. In the first, 

a homogeneous vertical velocity ).v,u( 510   can be given everywhere in the mesh as 

the initial condition. In that case, the code converges quickly to the homogeneous parabolic 

velocity profile as shown in Figure 6.22 (b). In the second, zero velocity and constant 

pressures on the top and bottom boundaries )Pbottom,Ptop( 10   can be given as the 

boundary condition. In that case, hydrodynamic convergence takes time (as shown in 

Figure 6.23).  
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Figure 6.23. The effect of the interaction parameter, N , on the vertical velocity when 

external electric and magnetic fields are turned on at 2t  simultaneously 

 

The time dependence of the vertical velocity at the centre of exit after its steady 

value which was 51.vy   changed when the switch was turned on, as shown in Figure 

6.23. When the external fields were applied, the vertical flow slowed down and stopped 

after a short time period after passing through minor oscillations. This behaviour is obvious 

from Figure 6.23 with two different values of interaction parameters, 2N  and 50.N  . 

For small value of interaction parameter, 50.N  ,  a better control with less oscillations 

was obtained. After running this problem with different N  values it was found that the 

optimum value is 40.N  . The time rate of central vertical velocity at the outlet with 

40.N   and its long time behaviour were presented  in Figure 6.24. 
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Figure 6.24. Vertical velocity profile and its long-time behaviour with 4.0N  

when the external fields are applied at 40t  after steady state is reached 

 

As can be seen, as far as the external fields are kept on, the flow remains stopped at the 

outlet of the channel for a very long time. In this part of the thesis some benchmark and 

newly designed  test problems were implemented and meaningful results were taken.  
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7.  TECHNOLOGICAL AND EXPERIMENTAL  STUDIES  

 
 

7.1.  Liquid Metals: General Information 

 

Great progress has been made in the area of industrial technology of metallurgy in 

the second part of the 20th century. Particularly in the area of high quality metallic 

materials there was a great need for knowledge about the physical properties of liquid 

metals and alloys. Many elements are metallic in liquid states. Especially over the last 

three decades, researchers have made a lot of studies in order to understand the processing 

mechanism of the liquid metals. Since these materials have a very important place in 

industry and technology  liquid metals deserved these studies and investigations. The 

properties such as thermal and electrical conductivities, surface tension, atomic structure, 

density, viscosity  etc. are very important for technological developments. Unfortunately 

the behaviours of liquids can be explained with a greater difficulty in comparison with the 

behaviours of solids.  Sometimes it can be said that the liquids have intermediate properties 

between the solids and gases. The diffusivities of liquids are higher but the viscosities are  

lower than those of the solids. However, the densities of two states of metals near to their 

melting point differ by only 52   per cent [38]. The best known liquid metal is Mercury 

(Hg). It has a long-time stability against the effects arising from the environment. However 

it has a poisonous nature. Therefore Hg is not prefered by the scientists who are doing the 

experiments in order to understand the nature of liquid metals. It can be said that the 

structure of liquids resemble the structure of the amorphous solids. The structures of 

liquids are described by using the pair distribution functions mathematically but they will 

not be mentioned in this thesis. The pair distribution function gives an idea about the 

probability of finding another atom at the same time interval  from the reference atom at 

any chosen distance. There is another one function which is called the pair potential which 

is the potential energy between an atom and its surroundings. The pair potential can be 

measured experimentally and by the help of it the pair distribution function can be 

calculated. The very well known Lennard-Jones potential is one of the examples for pair 

potentials. The difficulties for explaining the structure of alloys increase very considerably 

since the need for the functions mentioned above increase in number. As an example for 

binary alloys the number of distribution functions is three because the first distribution 
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function is for the first metal, the second is for the second metal and the third one is for 

interaction of atoms for two different metals.  

  

One of the most important properties of metals and alloys is their density. 

Unfortunately the experimental data for every liquid metal or alloy are not easily obtained 

because they have some disadvantages such as chemical reactivity at their liquid states. 

There are some experimental methods which can be used to measure the density of liquid 

metals such as Archimedean Method, Pycnometric Method, Dilatometric Method, 

Manometric Method etc. [38]. Experimentally it is found that the density of the liquid 

metals and alloys have linear temperature dependence. The temperature gradient in liquids 

causes the transport process. The very well known transport processes are mass transport 

which is related to diffusion, momentum transfer which is related to the viscosity and the 

energy transport related to the thermal conduction. Another one of the important properties 

of liquids is their viscosity which can be thought as a friction between the atoms. Viscous 

forces arise as a result of the rate of momentum interchange between the atoms. There are 

some different methods used for viscosity measurements. They are the rotational method in 

which the viscosity can be calculated from the torque source used in the experiment, 

oscillating-plate method in which there is a plate immersed in the liquid metal and the 

motion of this plate is resisted by the force exerted by the liquid metal. Another one 

method is called ‘oscillating vessel method’ in which the liquid is put in the vessel which is 

suspended to the torsional suspension and  damping of oscilation due to the energy 

dissipation and absorption within the liquid  is observed. The  last method which is 

mentioned here is called capillary method in which the viscosity is determined by 

measuring and using the flow times of the  liquid flowing through the capillary. Together 

with experimental measurements there are some theoretical expressions for viscosity 

calculations. Some of these equations such as Born and Green equation are based on the 

pair distribution function,  some of them are based on a moment method and the hard-

sphere theory. For liquid alloys the viscosity calculations are very difficult since the atomic 

masses and atomic sizes are different and the interaction between them is not very well 

mathematically describable. The viscosity of metals such as Iron, Bismuth, Nickel, and 

Zinc is inversely proportional to the  temperature.  
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The diffusion, which is described as transfer of mass from one to another place in 

atomic scales. For example the diffusion of reactant species is a very important for the 

liquid metals which can make heterogeneous reactions. The diffusion of solvents can 

change the rate of the chemical reactions. Actually diffusion occurs as a result of  density 

gradient and  concentration gradient. The SI unit for diffusion is timelength2 , )sm( 2 . 

Some of the methods used for calculating the diffusion are shear-cell method which is used 

for mesurements at low temperatures, the plane source method, diffusion couple method  

which is mostly used for two metal samples which melt at the similar temperatures, etc. 

There is a direct proportion between the temperature and diffusion.  

 

Table 7.1. The temperature and corresponding diffusion values of  Iron , Fe [38] 

 

Temperature (°C) Diffusion ( 12910  sm ) 

1600 4.91 

1700 5.85 

1800 6.90 

1900 8.08 

2000 9.46 

 

Not only the properties mentioned above but also the electrical and thermal 

conductivities of metals are very important for technology. In solid states of metals both 

the electrical and thermal conductivities are high. Freely moving electrons and conduction 

electrons are mostly responsible for both conductivities. Electrical conductivities of liquid 

metals are very important in electromagnetic stirring, electrical furnace steelmaking, etc. 

The thermal conductivities of liquid metals are very important in some different areas. One 

of the important application areas is where heat is removed from nuclear reactors with 

mostly known name ‘cooling’. The electrical resistivities of most metals differ between 

their solid and liquid phases just above melting point by 3251 ..   times. The disordered 

arrangement of ions in liquid state cause to increase in the electrical resistivity. The ratio of 

resistivity of liquid state to resistivity at solid state is 182.  for In and 102.  for Sn. Similar 

to electrical conductivity the thermal conductivities of liquid metals are less because of 
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their disordered arrangement in comparing with the crystalline solid metals regular 

arrangement. 

 

Temperature gradient in the liquid metal causes a thermoelectric current and by 

applying magnetic fields externally, Lorentz force is induced. The thermoelectric effect 

might change the flow pattern and the heat transfer in the presence of a magnetic field. 

Instead of thermoelectric current, direct application of DC electric current and magnetic 

field is one of the alternatives to produce the electromagnetic force for the material 

processing [39]. DC electric current can be used under a magnetic field for the surface 

wave suppression of molten metal. The conclusion was done that the combination of 

magnetic field and electric current  can  affect and can cause  the suppression of the surface 

wave [40]. The Lorentz force can be put as an external force term in the momentum 

equation. It is a very nice tool to play with in order to control the flow. It can be arranged 

as needed and it generates a contactless action which is perfectly controllable. Different 

magnetic fields can be used for different purposes. Such as : DC fields are used for flow 

damping, AC fields with low frequencies are used for stirring and pumping of liquid 

metals, AC fields with high frequencies can be used for heating, melting and levitations. 

Combined fields, AC and DC are used in crystal growth processes. 

 

If electrically conductive  fluids which are exposed to magnetic fields are moving, 

additional currents are induced. These induced currents give rise to additionally induced 

magnetic fields. Magnetic Reynolds number,  is the ratio of the induced magnetic field to 

applied magnetic field. A motor driven propeller can reach rotation rates up to 2000 rpm 

which corresponds to a magnetic Reynolds number of approximately 40.  [31]. 

 

The electric current density can be determined by Ohm’s law. 

  

)Bv(J P


                                                 (7.1) 

 

where J


, v , B


 are current density, velocity and magnetic field respectively. P  is  

electric potential  which is determined by solving the Poisson equation. 
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)Bv(P


 2                                                    (7.2) 

 

 

During the interaction of flow and magnetic field,  the currents are induced in the fluid and 

they cause Joule dissipation or Joule heating. 

 

7.2.  Technological Applications 

 

Parallel to improvements in computer performance the heat generation in the chips 

also increases. This is a big problem for operating performance of computer chips. Cooling 

with liquid metals is one of the newest methods. The dimensions of central processing 

units (CPU) are decreasing but on the contrary, the heat generation increases. In order to 

extract this heat some cooling materials such as oil, water, organic fluids can be used. 

Because of the fact that, the thermal conductivity of liquid metals are higher they are 

preferable than the other cooling materials. Additionally to high thermal conductivity 

liquid metals can be pumped effectively by using electrohydrodynamic micro pumps, 

electrowetting pumps and peristaltic pumps. The liquid metals have low viscosity, heat 

capacity, low melting point etc.  Temperature change can easily affect the properties 

mentioned above. Gallium is the metal which expands during cooling process. During the 

solid-liquid phase transition most of the metals exhibit a volume increase about 83.  per 

cent as an average [38]. Gallium has also antimicrobial effects. In order to increase the 

conductivity of liquid metals or alloys in some sources it is proposed a new method in 

which depends on some nano particles addition. As an example the  thermal conductivity 

for Gallium is mKW28  [41] and the thermal conductivity of water is mKW.60  [42]. 

One of the main problems for cooling is the pumping procedure. There are some 

conventional pumps such as mechanical and peristaltic pumps. However, the high density 

of liquid metals is the main drawback in pumping. One of the most popular pumps used to 

drive the liquid metals is magnetohydrodynamic pumps which do not have any moving 

parts which will not give rise to the noise production. However, there is one important 

drawback in liquid metal cooling. If the ambient temperature is low such as almost C0  

the liquid metal can freeze. However it is obvious that computers won’t be put in very cold 

places with an ambient temperature near the freezing point of liquid metal used. 
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There  are some technological applications in which different liquid metals are used. 

Some of the inventions mentioned below are patented. 

 

1. Liquid Metal Solar Power System: The aim of this system is to get the electricity 

from solar energy. There is a transparent reflector envelope through which a reflective 

liquid metal can be circulated in the improved solar collector (U. S. Patent 4 454 865). 

 

2. Liquid Metal Heat Exchanger: Effective heat exchange is a very important process 

especially in fast breading reactors. The liquid metal heat exchanger is used to transfer the 

heat from primary liquid metal reactor coolant to suitable secondary liquid metal. The heat 

exchanger here is contructed with improved maintenance and repair features and reduced 

thermal stresses (U. S. Patent 3 656 543). 

 

3. Liquid Metal Capacitively Monitored Sensors: The measurable changes in 

capacitance of the devices occur when the liquid metal move in response of stimulus. The 

capacitive sensors using liquid metals can be fabricated by using high technology devices 

(US 2007/0125178 A1). 

 

4. Liquid Metal Electrical Contact Compositions: These compositions are mostly 

useful for high current applications  in order to get effective current transfer (U. S. Patent 5 

281 364). 

 

5. Tokamak  with Liquid Metal Toroidal Field Coil: This device can be used to 

produce a toroidal plasma with the help of the electric current which is passed through the 

liquid metal over a conductive path. The liquid metal is used to form coils for developing 

the toroidal magnetic fields (U. S. Patent 4 305 783). 

 

6. Liquid Metal Electric Current Limiter: This device utilizes the electromagnetic 

pinch effect. The pinch effect can be described as the reduction of the cross section of the 

fluid. This causes a very big increase in the resistance. The cross section reduction of the 

liquid metal is the result of the Lorentz force produced by the current flowing through the 

liquid metal and  magnetic field. After short circuit effect finished differently from 

mechanically restored limiters the liquid metal current limiters healing themselves. As a 
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result these kinds of devices can be used in protecting the people, animal and equipment 

against the problems may occur due to the high electrical currents [43]. 

 

7. Liquid Metal Microstrips: Microstrips are some kind of transmission lines for 

delivering the microwave frequency signals. The advantage of these microstrips is their 

tunability due to the fluidic nature of the liquid metals [44]. 

 

There are some other application areas such as liquid metal  radio frequency 

reflective and absorptive switches, Mercury free liquid metal thermometers etc. 

 

In order to use the liquid metals some other inventions are also needed, there are 

some of them given below. 

 

1. Liquid Metal Level Indicator: This device is made of  a number of separate, 

substantially identical coils supported in a vertical array and adapted to be extended to a 

liquid metal bath. In order to indicate the liquid level the change at the impedance of the 

coils due  to the presence of liquid metal surrounding them is used. The liquid metal which 

surrounds the coils changes the inductance of the coil. The level of the liquid is detected by 

sensing the change in  inductance or the corresponding change in impedance (U. S. Patent 

4 007 636). 

 

2. Liquid Metal Droplet Generator: These droplet generators are used when the small 

quantities of metal are desired. As a methodology the magnetic pressure of the current 

which is flowing through  the liquid metal is used. This current is separating the small 

amounts of the liquid metal. Later these small drops are directed  through the orifice (US 

2006/0102663 A1). 

 

3. Liquid Metal Mechanical Pump: This pump is used for pumping the liquid metals. 

This kind of inventions are reduced the drawbacks of the other types  of  mechanical 

pumps by preventing the damage of the upper mechanical bearing and seal (U. S. Patent 4 

511 315). 
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4. Electromagnetic pumps for liquid metals: This device can be used especially in the 

nuclear power engineering in order to pump the liquid metal which is the responsible agent 

for heat carrying in nuclear reactors. It can be used also for transporting the molten metals 

in the area of metallurgy ( U. S. Patent 3 708 246). 

 

5. Electromagnetic stirring pump for liquid metals: This pump is used for stirring or 

circulating the liquid metals in a vessel. The pump is put in the immersion box which is 

metal resistant. It can be immersed in the bath by suspension device. These pumps have an 

increased importance in the technology. They are suitable for long-term use. An 

electromagnetic pump has an approximately horizontal pump channel with the openings on 

two opposite sides. The advantage of this stirring pump is that no moving parts come into 

contact with metal melt and this prevents the system from many problems (U. S. Patent 4 

668 170). 

      

7.3.  General Study of GaInSn Alloy 

 

The experiments in this thesis were done by using the eutectic alloy GaInSn. This 

alloy is  formed from Gallium, Indium and Tin. For alloys the composition of the layers 

which form the surface can have some differences from the layers inside the bulk.  The 

density of GaInSn is higher than these of Na, Li or NaK etc. but eventually Hartmann and 

Steward numbers are lower. If the GaInSn is exposed to the air it is easily oxidized to form 

32OGa . Oxidized thin layer can easily be removed by cleaning. GaInSn can wet easily to 

the glass surfaces. Contrarily to Ga, GaInSn is not  chemically reactive and it is compatible 

with plastics and metals. However, GaInSn is reactive especially to Al [45].  If  GaInSn is 

spoiled at room temperature it would not evolve any constituent metal vapour. It has been 

adopted as a replacement for Mercury in oral thermometers and has been successfully used 

as a dental filling alloy. The spilled GaInSn can be cleaned by mechanical means such as 

spatula, plastic scoop and then soap and water or other commercial cleaners to clean the 

floor. GaInSn is a good choice to study liquid metal flow without the safety concerns of 

high temperature operation [46]. During the experimental work with liquid metals 

chemical reactions between liquid metals and air, reactions between liquid metals and 

water, liquid metals and CO2 etc. must be taken into account. Direct energy releases can 

occur from chemical reactions which can lead to the increse in temperature and pressure. 
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As a result of chemical reactions the possibility of H2 gas release  can be dangerous during 

the experiments. 

 

GaInSn is corrosive, non-flammable or explosive alloy. If it comes to contact with 

the skin it can easily be cleaned by using water and soap. If it comes to contact with the 

eyes it is better to wash them with warmish water. During the washing the eyelid must be 

opened. If it is not used it is better to keep GaInSn in closed container which must be 

placed in dry and cool place. It is suggested to use the rubber protective gloves during the 

experiments. GaInSn is an odourless alloy, the colour is silvery, it does not have fire 

promoting properties. It is insoluble in water or in organic solvents. If GaInSn comes into 

contact with Al and water is added subsequently, exothermic reactions can be seen. 

Actually it is not miscible with water. As a cleansing material, %2  hydroclorid acid heated 

up to C60  can be used. Since it has a very low vapour pressure its risk of toxicology is 

negligible. If it is handled in unpacked conditions the purity and degree of quality will 

decrease, it is easily oxidized. There are some melting point values for different alloys and 

the alloys from GaInSn alloy family.  

 

Table 7.2. Some melting point values for different alloys [47] 

 

Alloy Melting Point (°C) 

GaIn15Sn13Zn1 3 

Ga62.5In21.5Sn16 10.7 

GaIn10Sn60 12 

Ga75In25 16 

GaZn16In12 17 

GaSn8 20 

GaIn25Sn13 5 

Ga69.8In17.6Sn12.6 10.8 

GaIn29Zn4 13 

GaSn12 17 

GaZn5 25 

K78Na22 -11.1 
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Table 7.3. The physical properties for different metals and GaInSn alloy 

 

Composition Ga67In20.5Sn12.5 Ga Li Hg Na 

Melting Point (°C) 10.5 29.8 180.5 -38.8 97.8 

Boiling Point (°C)  1300 2204 1342 357 883 

Density (kg/m3) 6360 6080 534 1353 927 

Conductivity (Ω-1m-1) 3.1106 3.7106 2.8106 1.0106 3.7107 

Viscosity (m2/s) 2.9810-7 3.2410-7 6.410-7 13.510-7 7.410-7 

Surface Tension (N/m) 0.533 0.7 0.35 0.5 0.2 

Sound Speed (m/s) 2730 2860 4500 1450 2550 

Water compatibility Insoluble Insoluble                Reactive Soluble Reactive 

 

The viscosity value for Ga67In20.5Sn12.5 is given by UCLA (University of California, 

Los Angeles) and surface tension is given by PPPL (Princeton Plasma Physics Laboratory) 

[48]. 

 

7.4.  Experiments With GaInSn 

  

7.4.1.  Thermal Expansion of GaInSn 

 

The GaInSn alloy used in these experiments was purchased from MCP HEK  GmbH 

Kaninchenborn 24-28D-23560 Lübeck, Germany. Some of the physical properties for the 

alloy which was used in the experiments were given below in Table 7.4. These values were 

provided by the manufacturer mentioned above. 

 

In this preliminary experiment the constant volume glass chamber  with volume of 

mlVg 100  was filled with GaInSn alloy. Additionally the connecting rubber tubing 

which was used to make connection between the spherical glass chamber and the scale 

shown in Figure 7.2 is also filled with GaInSn. The volume of this tubing was mlVt 30 . 

The experiment was done under the constant ambient temperature of CTa
25 . 
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Table 7.4. The physical properties for GaInSn used in the experiments in this thesis 

 

Eutectic Temperature (°C) 10.7 

Melting Point (°C) 11 

Boiling Point (°C)  1300 

Density (kg/m3) at 20 °C 6440 

Electrical Conductivity (S.m-1) at 20 °C 3.46106 

Viscosity (Pa.s) at 20 °C 0.0024 

Surface Tension (N/m) at 20 °C 0.718 

Vapour pressure (Torr) at 5000 °C 810  

Water compatibility Insoluble 

Organic Solvents compatibility Insoluble 

Thermal Conductivity (W.m-1.K-1) 16.5 

Specific Electrical Resistance (Ω.mm2 m-1) 0.435 

Specific Heat liquid (J/g.°C) 0.34 

Specific Heat solid (J/g.°C) 0.32 

Latent Heat (J/g) 67.8 

 

 

 
 

Figure 7.1. The photograph of the experimental setup 
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Figure 7.2. The representation of the experimental setup 

 

The temperature measurements were done by using  Protek multimeter which had the 

thermocouple with the range from 17 to )Fto(C  200001200  with resolution C1  and 

F1 , and accuracy %3 . The multimeter can be connected to PC by using RS-232 serial 

port and the data were collected by its own software.  

 

The total initial volume of GaInSn which was filled in both glass chamber and tubing 

was  

 

tg VVV 0  

                                               mlmlmlV 130301000                                           (7.3) 

.l.V 13000   
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Figure 7.3. The linear nature of GaInSn alloy under heating process 

 

During the heating process the level (height) of GaInSn in the scale was measured as 

a function of the temperature change. The results were presented in Figure 7.3. As  seen, 

the height increases linearly as temperature gets higher. The expression for volume 

expansion or thermal expansion is given as : 

 

TVV T  0                                                     (7.4) 

 

where V  is the volume increase, T  is thermal expansion coefficient, 0V  is initial 

volume of alloy which filled the spherical chamber and tubing, and T  is the temperature 

difference. The inner radius of the scale r  was mm1 . Since the shape of the glass scale is 

cylindrical the volume change can be given as  

 

2r.hV e   .                                                  (7.5) 
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So that 2
0 r.hTV eT    or 2

000 r/)TT(Vhh Tee    by solving these equations 

one can calculate the thermal expansion coefficient.  

 

By using the data given in Figure 7.3 and the equations between Equation 7.3 and 7.5 

T  was found as K. 510910   with 5%  difference from the reference value given in [49]. 

This shows that the experiment done to find the thermal expansion coefficient was 

accurate. 

 

The coefficient of expansion of Hg and the GaInSn were found suitable to be used in 

thermometers. Geratherm Medical AG (Geratherm Medical AG, Fahrenheitstrasse 198716 

Geschwenda, Germany) is one of the manufacturers of Mercury free thermometers in 

which GaInSn is used.  From the Figure 7.3 it is seen that the temperature dependence of 

GaInSn is linear (direct proportion between the expansion and temperature) at least for the 

temperature limits used in this thesis. This expansion coefficient will be used later in the 

experiments in which the dependence of reflection to temperature change in GaInSn will 

be studied.  

 

In this part of the experiment the characterization graphs for the light source used in 

these experiments are given. Three different detectors were used for measuring the light 

properties of  the lamp. They were a UV-Vis spectrometer, a luxmeter and a thermopile.   

 

    
 

Figure 7.4. The lamp  and electronic transformer used in the experiments  

 related to GaInSn alloy (Halogen lamp 12V, 20W, Osaka Light) 
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Figure 7.5. The experimental setup for investigating the light source’s (halogen lamp) light 

intensity versus displacement from UV-Vis spectrometer’s detector 

 

7.4.2.  UV-Vis Measurements 

 

In this experiment the light intensity from the halogen lamp (see Figure 7.4) was 

measured as a function of distance by the spectrometer as shown in Figure 7.5. The UV-

Vis  results are given in Figure 7. 6. 
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Figure 7.6. The intensity of light versus wavelength depending on the distance between the 

ligth source and UV-Vis detector 
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Figure 7.7. The maximum intensity values of every spectrum  versus different distances 

between light source and UV-Vis detector 

 

As seen the whole spectrum reduces when the distance from light source increases. It 

can be seen that the maximum intensity reduces exponentially with the distance from the 

light source as shown in Figure 7.7. Note that the background light intensity is nearly 

constant and very small for all wavelengths. The UV-Vis spectrometer produced by BAKI 

at Kocaeli University, Turkey used in these experiments had the resolution of 

mm/lines600  diffraction grating density, m100 slit aperture, mm100 focal length, and 

aperture ratio 933.fl . 

  

7.4.3.  Luxmeter Measurements 

 

  The same experiment was done by using a luxmeter as light detector (Figure 7. 8).  

The luxmeter with product number 07137-00 is provided by the manufacturer PHYWE, 

Germany. It is a hand-held instrument which is used to measure the light intensity both in 

laboratory or outdoors. Some of  the important properties of the instrument are  large liquid 

crystal display (40 x 50 mm), analog bar display with a very good resolution (2 per cent), 



 

 

190 

data interface (RS-232) for transmitting the measured values to a computer, 

microprocessor control of all measuring, operating and evaluating functions etc. The probe 

for luxmeter which is Selenium-PN planar-photoelement with colourfilter was also 

manufactured by PHYWE with the product number 12107-01. 

 

     
a-)                                                             b-) 

Figure 7.8. The view of  a-) the  luxmeter and probe which were used in the experiments  

b-) the experimental setup 
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Figure 7.9. The light intensity detected by luxmeter versus distance between 

 light source and luxmeter 
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Similar to the measurements with UV-Vis the intensity decreases exponentially with 

the distance from the light source. 

 

7.4.4.  Thermopile Measurements 

 

Thermopile was also used to detect or at least to have an idea about the irradiated 

light change depending on the distance  from the light source. The experimental setup is 

given in Figure 7.10. The thermopile is the device which is used as a radiation sensor. The 

thermopile used in this experiment is produced by PHYWE company with production 

number 08479-00. It works in a very broad spectral area from UV to far IR longwave. The 

thermopile was connected to the universal measuring amplifier  with production number 

13626-93 and can be used for DC and AC voltage amplification. The amplification factor 

was 310  during the experiment. The results obtained from this experiment were given 

below in Figure 7.11. 

 

 
 

Figure 7.10. Experimental setup in which the thermopile was used 
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Results of these lamp characterization processes also showed that the light intensity 

emitted by the light source (lamp) decreases exponentially as the distance from the lamp 

increases. However, the results taken by the thermopile were more interesting. The results 

taken by thermopile did not change significantly in the first cm4  distance. This is due to 

the circular detector area of thermopile having a relatively big diameter ( mmd 10 ). The 

radiation emitted from the light source has shined on this area without any significant loss. 

All the experiment about the characterization of the light source were done in total 

darkness. The light source was put into the holder which was formed from two concentric 

cylinders. The light was emmitted from the tip of the black coloured cylinder with 

diameter mmdl 8  (Figure 7.8(b), 7.10) and whole light was directly sent through the 

detectors. During the experiments the light source and the detectors were aligned along a 

straight line carefully. 
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Figure 7.11. The voltage data taken from the thermopile versus  distance  

between light source and thermopile 
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After the results obtained here it is decided to put the light source as  near as possible 

to the surface of GaInSn where the light will be reflected. The arrangement of the 

experimental setup affected the distance between the lamp and studied surface appreciably. 

 

It was interesting that the results for both experiments done by UV-Vis spectrometer 

and luxmeter were found similarly. This shows that the UV-Vis spectrometer gives light 

intensity as the dimensions of lux. The results were put in the same graph as can be seen in 

Figure 7. 12. 
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Figure 7.12. The comparison of UV-Vis spectrometer and luxmeter results 

 

The results taken from UV-Vis spectrometer and luxmeter were very similar to each 

other. As a conclusion it can easily be said that the quantities which were measured from 

the luxmeter and UV-Vis spectrometer used in these experiments are the same.  

 

After the investigations about the light source and spectrometer was completed the 

other experiments were conducted. 
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7.4.5.  Oxidation of GaInSn Surface 

 

One of the main experiments which is done in this thesis is checking the temperature 

dependence of  reflectivity of GaInSn. The surface of the reflecting media is a most 

important  agent in these kinds of experiments. The experiment was done  to see if GaInSn 

is oxidized easily under normal room conditions by studying the reflectivity of its surface. 

Oxidation process depends on the humidity conditions of the experimental environment. In 

this experiment the oxidation process of GaInSn was studied in laboratory with the 

ambient temperature of CTa
225  and humidity of %552  . In order to understand if 

the surface is oxidized the halogen lamp was used as a light source (see Figure 7.4)  and 

UV-Vis spectrometer was used as a detector. The light was sent on to the surface of 

GaInSn and its spectrum was monitored by an emmision spectrometer developed at 

Kocaeli University, Turkey by BAKI and the data were recorded. The surface of the alloy 

previously was very smooth and the reflection from this surface can be considered as 

‘specular reflection’ (Figure 7.13). After oxidation started there were some contaminations 

on the surface which caused to diffuse reflection (Figure 7.14). Since during the 

experiment the locations of the lamp and detector are kept constant, the surface changes 

will affect the intensity of reflected light detected by the UV-Vis spectrometer and  

recorded by PC. In this experiment the reflected light’s  spectrum was recorded depending 

on different time intervals  (Figure 7.15). It is seen from Figure 7.15 that the spectrum of 

reflected light intensity decreases with time. However, the intensity of the reflected light 

did not change significantly after approximately 400  hours when the initial value was 

taken at unoxidized state. It can be concluded that the surface shape of the GaInSn was not 

changing very significantly after a certain time. Figure 7.16 shows an exponential decay of 

spectrum maximum at nm740  as a function of time. This shows an exponential increase in 

surface oxidation. This time can be thought as a time instance until which the whole 

surface is totally oxidized. The oxidation changes not only the surface shape of GaInSn but 

also its viscosity. The dominantly responsible agent for oxidation in GaInSn is Ga. The 

possible states for Ga with increasing valence can be given as                   

  

 2
3

32
321

2
10


  xn GaOOOHGa~OGaOGaOHGa~)OGa(Ga . 
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The most stable oxide phase for Ga is 32OGa  and less stable one is  OGa2 . In and 

Sn are nearly stable in their metallic states which means that they are not so much 

responsible for oxidation. The increase in humidity causes an increase in oxidation and  

eventually an increase in viscosity. The oxide thickness changes rapidly in wet conditions. 

High humidity results in a further growth of the oxide films. Actually the humidity effect is 

more significant than time for oxidation of GaInSn alloy. The change in structure of an 

alloy may be also seen. Since the humidity was almost constant at laboratory where the 

experiment was done the only change of oxidation can be assumed to be dependent on time 

[50].   

 

             
 

Figure 7.13. Specular reflection 

 

 
 

Figure 7.14. Diffused reflection 
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Figure 7.15. The intensity of the reflected light depending on the time elapsed 
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Figure 7.16. The maximum intensity values for the spectra of 

reflected light depending on time elapsed 
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                                          a-)                                                         b-) 

Figure 7.17. The  surface difference on an a-) oxidized and b-) cleaned surface of GaInSn 

alloy 

 

   
                                       a-)                                                         b-) 

Figure 7.18. GaInSn alloy  a-) totally oxidized b-) half oxidized and  

half cleaned surface  

 

Since the surface of GaInSn was oxidized relatively fast as seen in the experiment 

done and described above, the reflection experiments in air are suggested to be done as 

quickly as possible to prevent this additional effect. Otherwise, vacuum is needed to 

eliminate oxidation. There are oxidized shapes of GaInSn in Figures 7.17 and 7.18.  
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7.4.6.  Reflection from GaInSn Surface 

  

Light scattering experiments are very important especially in physics because of the 

fact that they can be used in determining the structure of matter under interest. At the 

beginning of the twentieth century Ernest Rutherford designed an experimental setup in 

order to understand the structure of the atom. Scattering is often accompanied by 

absorption. Both of them remove energy from a beam of light which is traversing  the 

medium. Extinction occurs after scattering and absorptions were occurred and the beam is 

attenuated. This can be  formulated  for these processes easily as 

 

AbsorptionScatteringExtinction  .                                 (7.6) 

 

In the experiments related to the scattering  the most important property of scattered 

wave is thought to be its intensity. Intenstiy can be described as  the energy flux per unit 

area. Some amount of the total energy of the incident wave will be absorbed by the plane 

on which the wave is falling. The other part of the energy of the incident wave will be 

carried by the scattered wave or let us say by  the reflected wave.   

 

All the problems in theoretical optics are problems in Maxwell’s theory. One of the 

most important outcomes of Maxwell’s equations is that the light does not carry only the 

energy but also the momentum. The direction of momentum is the same with the direction 

of propagation of a wave. The amount of momentum is given as  

 

cEnergyMomentum                                               (7.7) 

 

where c  is the speed of the light. Some amount of the momentum of the incident wave is 

given to the scatterd particles. A certain force is exerted on the scattering particles in the 

same direction of propagation of the incident light. This phenomenon is also known as 

‘radiation pressure’. For a highly conducting medium, like metallic conductors the fields 

applied by outside sources can penetrate into a skin depth of the conducor. The fields 

below the skin are virtually zero [51](Figure 7.19). 
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Figure 7.19. The skin condition at the boundary of conductor and air [51] 

 

The boundary  condition on the liquid metal surface is given by 

 

qsJ
c

Hn
 4

1                                                      (7.8) 

 

where  1H


 is the magnetic field strength in medium 1 and qsJ


 is quasi-surface current. The 

magnetic field strength in y direction can be written as 

 

 dzI
c

H xy
4

1                                                   (7.9) 

 

and 

 

  dzIJ gtanqs


.                                                   (7.10) 

 

where gtanI


 is the tangential component of the volume current. The quasi-surface current 

can be formed by integrating the tangential components of the volume current over the 

skin  
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depth of the skin. During the same time the normal components of the volume current 

exists  which cause to the actual surface charges. If the metal is assumed to be a perfect 

conductor then the qsJ


 is an actual surface current. The boundary condition for an electric 

field is given by [51] as 

 

01  En
                                                      (7.11) 

  

where n  is the normal vector as shown in Figure 7.19. The tangential components of the 

volume currents when integrated over the depth of the skin is forming the quasi-surface 

current.  

 

As an experimental study about reflection from GaInSn surface there were four 

different cases done. In the first case no external magnetic field and current was applied 

through the alloy but only the temperature was changed by heating it up. In the second case 

the current was applied through the alloy but the temperature was kept constant and 

external magnetic field was not applied. In this experiment different current values were 

applied under the same conditions and the reflectance was studied. One additional 

experiment was also done to check if the alloy was affected only by an externally applied 

magnetic field alone. The change in reflectance for different valued magnetic fields were 

studied. In the other case both magnetic field and current were applied externaly through 

the alloy and the reflection from surface was observed. In the last case again externally 

applied magnetic field and current were used but here the direction of the current was 

inverted.  

 

7.4.6.1  Temperature Dependence  

In this experiment the setup shown in Figure 7. 20 was used. GaInSn was heated up 

by using the heater seen from Figures 7. 20 and 21. The alloy was put into the glass 

container and during the heating process the reflection data against temperature were 

taken. The light source was the same as in the previous experiment which was 12 VDC,  20 

W Halogen lamp. 
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Figure 7.20. The setup of temperature dependence of reflectivity experiment   

 

 
 

Figure 7.21. The photograph of the experimental setup for temperature dependence 
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UV-Vis spectrometer was used to collect the spectrum data for  the reflected light. 

The multimeter connected to the thermocouple  was used to take the temperature data. It 

was connected to the computer by using the serial RS 232 port in order to record the data.  
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Figure  7.22. The reflectance spectrum taken for different temperatures of GaInSn alloy 

 

Before the heating process started GaInSn volume inside the glass plate was 

ltV 2
0 10  and after the heat addition finished the change in volume due to the expansion 

was lt.V 2100130   which corresponded to mm.10  rise in surface level of GaInSn 

(Figure 7. 23). This level change will change the data taken by the fixed UV-Vis detector 

and stable light source. Due to the  finite size of UV-Vis detector this level change may be 

effective in observations. 

 

In reflection there are a lot of additional effects. In some cases such as described in 

the previous experiment the surface can have temporal changes such as oxidation. If 

roughness of surface increases the energy scatters in different directions. The real surfaces 

can not be known in a very detailed way  so it is difficult to give any deterministic 

equation. 
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Figure 7.23. The effect of surface layer level change on the intensity detected 
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Figure 7.24. The maximum values for different spectra with different temperatures 
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Maximum values for reflection spectra for different temperatures were given in the 

table below (Table 7.5). The results did not show any wavelength shift for maximum 

reflected values from surface depending on temperature increment. Therefore it can be said 

that the temperature increase of GaInSn alloy did not affect remarkably the maximum 

reflection wavelength. 

 

Table 7.5. Maximum reflection values for different temperatures and corresponding 

wavelengths 

 

Temperature 

(°C) 

Maximum Reflection Value  

(a. u.) 

Corresponding Wavelength 

(nm) 

71 2269 739.811 

94 2147 741.645 

139 1912 739.105 

161 1680 742.21 

170 1331 739.105 

181 1081 743.057 

186 635 744.895 

189 425 739.246 

 

 

The graph drawn in order to see the temperature and maximum reflection value’s 

wavelength is given as in Figure 7.25. 

 

During the experiment the incident angle for light was chosen to be 45 and the UV-

Vis spectrometer’s detector was also placed in order to have the same angle of 45 . During 

the heating process occuring under air pressure the physical properties of GaInSn may 

change and especially surface tension will be changed. By adding more heat to the alloy it 

will cause its surface tension to decrease. 
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Figure 7.25. Temperature dependence of wavelength of maximum intensity of reflected 

light 

  

The bulk structures of liquid metals and simple dielectric liquids are similar. 

However, at the surface of  liquid metals there is an oscillatory electron density profile 

normal to the surface. This phenomenon comes from the fact that the interactions at the 

surface are changing from metallic interactions in liquid phase to Van der Wals 

interactions in gas phase. Actually the surface of elemental liquid metal can easily be  

modified by adding a second or third liquid metal such as in GaInSn alloy. The interactions 

between these different atoms may lead to directional bonding. The surface of alloy is very 

much affected by the properties of different atoms. The presence of oxygen in gas phase 

can affect the the compounds of ternary alloy GaInSn differently. For example the 

oxidation of Ga forms a homogeneous layer but oxidation of In forms nonhomogeneous 

island-like shapes [52]. Actually below activation pressure which is given as 

Torr.~ 61005   the pure liquid Sn does not react with oxygen. If once the oxidation 

started it proceeds even if the pressure is less than critical or not. The oxidation of liquid 

Sn appears in the shape of islands  which have very rough surfaces. The surface oxide on 
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liquid Ga is amorphous [53]. Since there are different structures, In has many free electrons 

in its liquid state contrarily Ga has partially localized electrons due to their covalent bonds. 

After the alloying process the reflectivity differs from the reflectivity of any individual 

metal surface forming an alloy. There are many parameters which can affect the 

reflectivity such as the density of surface adlayer, electron density and sizes of atoms. The 

electron density of In is 5 per cent larger than that of Ga.  

 

The results obtained in these experiments showed that the reflected light intensity 

decreased with increasing temperatures. According to reference [54] liquid eutectic 

systems are not completely mixed but they consist of some regions rich with one 

component and the other with the others. There were large concentration fluctuations. By 

increasing the temperature of the alloy the atoms are redistributed and heterogeneity 

decreases. The interatomic distances also decrease. The last distribution of the elements in 

the alloy will change the electron density profile wich can affect the reflection of the light 

considerably. The number of electrons can change the energy of incident light during  the 

reflection process. The absorbed energy from the incoming light will increase with the 

increase of the number of electrons accumulated at the top of the surface of reflectance 

which will lead to the decrease of the intensity after reflection. The results shown in Figure 

7.22 and 7.24 are in good agreement with this explanation. Second effect can be the 

expansion of the alloy itself by heating. The level of surface of the alloy will change and 

the reflected light will be directed to a different direction in which the detector does not 

stay (Figure 7.23). The level change of the surface of GaInSn alloy was calculated to be 

mm.10  in this experiment by using the expansion coefficient calculated previously. This 

effect also must be taken into account. Actually the structure of the alloy can also change 

with increasing temperature  and this can affect the reflection. However, the temperature 

change during the heating process in this experiment was kept in a very narrow range 

which was between C18971  this effect will be less significant with the other mentioned 

above.  

 

The surface tension of GaInSn alloy also decreases with increasing temperature even 

though Gallium makes  an increase in In-Sn alloy surface tension [55].  
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The agitation of the surface of an alloy by temperature decreased the intensity of 

reflected light. There is a graph given below as Figure 7.26 taken from [56] in which the 

electron density profile change is given for liquid-vapour interface of Gallium. 

 

 
 

Figure 7.26. The electron density profile for density liquid-vapour interface  

of Gallium [56] 

 

In Figure 7.26 it is seen that the electron density )(z  for lquid metal which is Gallium has 

an oscillatory nature. However, a more important thing which is very remarkable is the 

value of  )(z  which is bigger on the surface than the bulk  electron density Bulk . This 

means that the number of electrons accumulated on the surface is more that that are in the 

bulk of liquid metal. 

 

It is obvious that the heating process can modify this density. This can easily be seen 

from the reflected light’s intensity change as a function of temperature in Figure 7.22 and 

7.24. These results agree also with  [57] in which it is said that by increasing the 

temperature of illuminated surface generally is accompanied with the decrease in 

reflectivity. 
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Since the effect of the gravity makes the surface of a liquid smooth and 

macroscopically flat there are thermally induced capillary fluctuations in the height of the 

surface. The dominant effect which decreased the reflection from GaInSn surface must be 

this capillary wave effect. According to [58] the surface of liquid can be roughened by 

thermally induced capillary waves. The contribution of capillary is determined by using the 

balance between the thermal energy kT  with the surface tension   and gravity. The 

formula showing the relation between the temperature and capillary width is given as  

 











min

max
cw k

k
lnkT




2
2
0

2                                            (7.12) 

 

in [58 ] and [59] where 0  is the intrinsic contribution A..( 0270370   for Ga ) ,    is 

surface tension, maxk  and mink  are short and long wavelengths respectively  

 

1261 
 A.

d
kmax

                                               (7.13) 

 

where d  is the molecular size. 

 

gkmin                                                    (7.14) 

 

where   is mass density difference. 

 

For an alloy such as GaIn the electron density profile can be modified in the way in 

which the contribution of each element can be added to each of the layers in the expression 

given as  

 

 


 









 


0
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2
1

2 j j
InInGaGa

j

)jdz(exp)z(f)j(n)z(f)j(nd)z(


        (7.15) 
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where d  and j  defined similarly as for pure Ga, )z(f In  and )z(fGa  are the electron 

density distributions for atomic In and Ga respectievely. The number densities in each 

layer are given by InjIn nx)j(n   and GajGa n)x()j(n  1  with jx  the concentration of 

In in the thj  layer [59]. 

 

  
 

Figure 7.27. Electron density profiles for liquid Ga at room temperature [59]   

 

 
 

Figure 7.28. Models of the electron density profiles for GaIn alloy compared  

to pure Ga [59] 
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The electron density ratios for Ga and GaIn alloys which are given in Figure 7.27 and 

Figure 7.28 are taken from the reference [59]. These results are similar to the results of 

reference [56] which are given in Figure 7.26. It can be easily said that the electron density 

at the surface of both liquid metal (Ga) and liquid alloy (GaIn) has higher values from the 

bulk electron density. Since the alloy used in the experiments in this thesis is GaInSn its 

electron density profile can be assumed to be similar to that which was given in Figure 

7.28.  

 

The reflection expression given in [59] is  

 
2

0

1
 dze

dz
)z(d

)q(Rf)q(R ziq
zz

z



                               (7.16) 

 

where )( zqRf  is Fresnel reflectivity, zq  is the wave vector. From this equation it is seen 

that reflection is directly proportional to the density gradient of electrons. If the density 

gradient increases the reflectivity will increase meaning that the reflected intensity will 

increase. By heating the alloy this gradient can be less since heating the alloy will cause a 

more homogeneous distribution of  electrons on the surface and bulk. Therefore the 

maximum peak at 0z  which is given in Figure 7.28  will decrease. This will result with 

decreasing reflection and reflection intensity detected by UV-Vis will decrease as it was 

seen from the experimental results in Figure 7.22 and Figure 7.24.  

 

However, it is also seen from Equation 7.12 that increasing temperature results with 

the increase at surface roughening which leads to decrease in reflectance. By comparing 

two effects mentioned above the dominant one must be the capillary wave effect since it is 

changing directly the shape of the reflection surface. The change in electron density profile 

will also affect the reflectance but probably less than the one previously mentioned. 

 

Not only the effects mentioned above can change the reflectivity but also the light 

falling on the surface can corrugate the surface of liquid metal [60] which will also have 

similar effects on the  reflecivity. The spatially periodic heating due to applied irradiation 

occurs which causes the evaporation of the surface which results with stimulated growth of 
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the corrugation. However, the light source in our experiment was a W20 halogen lamp 

operating in the range of visible spectrum, the effect can be neglected during this 

experiment. 

 

Actually it is very difficult to say that the specular reflection can exist for heated  

liquid surfaces [61]. 

 

The maximum intensity values for different temperatures were also studied. It was 

found that in the etween the temperature limits used in this thesis there were no significant 

changes in the wavelengths for  the intensity maxima (Figure 7.22). 

 

Similar tests were also carried out by different groups but they used  X-ray sources in 

order to study the reflectance from liquid metal surfaces [59]. However, in that study the 

light source was a halogen lamp which had the wavelengths in visible region of 

electromagnetic spetrum. The results as mentioned above were found in good agreement 

with these obtained by the groups which mostly using X-ray scattering.  

 

It must be noticed that before reflection experiment starts the surface of GaInSn was 

cleaned by using thin clean glass spatula like material in order to remove any macroscopic 

oxide particles formed there. 

 

7.4.6.2  Current Dependence  

In this experiment the reflection from the surface of GaInSn is monitored 

continuously during the application of external current. Actually only current was applied 

through the GaInSn, the ambient temperature was not changed CTa
225  and 

humidity was measured as %552  . The applied current values were chosen to be 50, 80 

and 100 A. During the experiment two different geometries were used as given in Figure 

7.29 and Figure 7.30. 

 

 

 

 

 



 

 

212 

 

 

  

 

 

 

 

 

 

 

 

Figure 7.29. The top view of the electrodes’ locations  for the first part of the  

experiment (case A) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.30. The top view of the electrodes’ locations for the second part of the experiment 

(case B) 

 

The intensity changes for both cases (A and B)  are given below in Figure 7.31 and Figure 

7.32. 
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Figure 7.31. Intensity of reflected light versus wavelength graph for case A 
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Figure 7.32. Intensity of reflected light versus wavelength graph for case B 
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Figure 7.33. Maximum intensity of reflected light versus current graph for case A 
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Figure 7.34. Normalized intensity of reflected light versus current graph for case A 
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Figure 7.35. Maximum intensity of reflected light versus current graph for case B 
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Figure 7.36. Normalized intensity of reflected light versus current graph for case B 
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Figure 7.37. Normalized intensity versus current graph for case A and case B 

 

Results obtained from the application of current showed that the reflection decreased 

with increasing current similar to the reflection dependence of temperature. It will not be 

an overstatement to say that with increasing current the temperature of the alloy will 

increase due to Joule heating. This temperature increase can again generate capillary wave 

effect which will decrease the intensity of reflected light. However, fast moving electrons 

due to the applied current can produce diffuse scattering on the surface and they can form 

some instabilities which can also decrease the reflection.  

 

The Figures between 7.33 and 7.36 are showing similar results for both current 

application geometries (case A and case B). The normalized intesities were calculated by 

dividing each spectrum to the maximum intensity of the spectrum taken without current 

application for case A and case B separately. Figure 7.37 shows similar profiles for 

different application geometries. 
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In order to check the reflection polarization from the GaInSn surface two different 

polarizers were put in the opposite ends of the container filled with GaInSn. The light was 

sent through the first polorizer. In order to send the light through the polarizer easily the 

angle of light falling on the surface of GaInSn alloy was  arranged to be 30 , first polarizer 

angle was set to 0 . Second polarizer which is put in front of the UV-Vis spectrometer’s 

detector which was also arranged to be 30  with the horizontal. Polarization angle second 

polarizer was firstly arranged to be 0 . It was desired to change the second polarizer’s 

angle between 900   in order to see if there is maximum intensity value for reflected 

light different from 0  polarization. The experimental setup is given in Figure 7.38 and a 

photograph of the experiment is given in Figure 7.39.  
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Figure 7.38. The schematic view for light source, detector, polarizers and GaInSn chamber 

 

This part of the experiment was done with three different cases. In first case no 

current was applied through the GaInSn, in second case A60  current, and in the third case 

A100  current was applied through the alloy. The polarizer in front of the light source 
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(polarizer 1) is set to be at 0  and it wasn’t changed during the experiment. The second 

polarizer (polarizer 2) in front of the UV-Vis detector was previously set to 0  then its 

polarization angle is changed to 30 , 45 , 60 , 75  and 90  angles. The results are given 

below. 

 

 
 

Figure 7.39. The photograph of the experiment for polarization study 
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Figure 7.40. Intensity versus wavelength graph for no current application 
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Figure 7.41. Intensity versus wavelength graph for 60 A current applied throug GaInSn 
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Figure 7.42. Intensity versus wavelength graph for 100 A current applied through GaInSn 

alloy 
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The polarising filter used in this experiment is used to produce and determine the 

linearly polarized light. It has 90 /  degrees range with diameter mm32  and product 

number was 08610-00. Manufacturer is PHYWE. From the graphs given as in Figure 7.33, 

7.34 and 7.35 it is obviously seen that when the current flowing through GaInSn alloy 

increases the intensity of reflected light decreases. In the first part of polarization 

experiment when no current was applied, the intensities decreased when the angle of 

polarizer 2 increased. According to Malus’ law the intensity of the light can be calculated  

 

 2
0CosI)(I                                                   (7.17) 

 

where 0I  is the initial intensity and   is the difference of angle between the first 

polarization direction and the direction of the axis of the polarizer. 

 

It is seen that when the angle of polarizer 2 is changed and if there is no polarization 

after scattering from the surface of GaInSn the intensity of light must decrease. The results 

when the current is passing through GaInSn showed different character from the results 

obtained for currentless experiment. It can be said that after reflection from the surface 

there is polarization of the light when curent is flowing through the alloy. This part of 

experiment can be studied by using more sensitive devices since the change of the nature 

of scattering is seen. However, since the detector used here is measuring the intensity of 

the total light falling on the aperture the effect of polarization will not be taken into 

account. The total amount of the reflected light will be measured during the experiments. 

 

If the attention is focused on the current application part it was seen that by 

increasing current the reflection intensity decreased. For two different arrangements of 

electrodes the same decreasing nature was seen. However, in case B there are some 

perturbations at current flow due to the electrodes positions. This perturbation can affect 

the reflectance. In case B the intensities of reflectances were observed higher than these in 

case A. Since the electrodes’ positions were changed this caused an obligatory 

rearrangement of the chamber filled with GaInSn. Therefore it was meaningful to compare 

their maximum intensity ratios. The results were given in Table 7.6. It was seen that the 

intensity change in case B is more significant from case A for currents with magnitudes 
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A50  and A80 . This can be because of perturbated and nonhomogeneous motion of 

electrons for case B. For high enough currents this effect is seen to be decreased as given 

in the results for A100 current application for both cases.  

 

Table 7.6. Comparison of the intensity ratios for cases A and B 

 

Current Geometry max.Amax.A II 050  max.Amax.A II 080  max.Amax.A II 0100  
Case A 0.96 0.91 0.83 
Case B 0.94 0.90 0.84 

 

The current magnitude increase caused the decrease in reflected light intensity. The 

current increase will heat up GaInSn resulting with capillary wave effect which will 

decrease the reflection. This kind of heating is called Joule heating. This heating term was 

mentioned in the previous chapters and in Equation 2.131 and Equation 6.4. 

 

7.4.6.3  Magnetic Field Dependence  

AC magnetic fields with high frequencies can be used to control and shape the 

surfaces of liquid metals [62]. For high values of magnetic fields the observed waves 

occured on the surface are structured. High frequency magnetic field can create 

electromagnetic pressure which can be used in shape forming of liquid metals. The 

instabilities formed on the surface of liquid metals can be controlled by the externally 

applied magnetic fields. This kind of control can be used in the metallurgical Technologies 

especially in levitation, cold crucible etc.  

 

In this part of the experiment only externally applied magnetic field was changed, 

temperature was kept constant and no current was applied through GaInSn alloy. The 

externally applied magnetic fields were constant in time (DC). The magnitudes of 

magnetic fields were measured by using PHYWE produced teslameter with product 

number 13610-93. The operating temperature range is C405  , relative humidity %80 , 

accuracy for used DC magnetic fields were %2 . Together with the teslameter a 

tangential Hall probe was also used and it was also produced from the same company with 

production number 13610-02. The experiment was done with both detectors UV-Vis and 

luxmeter. The light source was arranged in the way that  the incoming light is making 45  
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with the surface of the GaInSn. The data for reflected light were collected for different 

arrangements of luxmeter which was moved from 20  to 90  with 5 degree increases of  

the reflection surface. For different magnetic field values applied externally the same 

procedure was repeated and the results were presented in the figures given below. 

 

The magnetic fields were generated by using the home made electromagnet which is 

shown in Figure 7.43 and 7.44. The effect of DC magnetic field on stationary and 

currentless GaInSn must be negligible. Since there are randomly moving free electrons in 

GaInSn alloy Lorentz force which can act on these electrons will be isotropical and the 

effect of it can be reduced by its differently directed components. In order to undertstand 

the properties of the electromagnet which was used in these experiments some preliminary 

experiments were done and the results are given below in Figure 7.45-7.47.  
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Figure 7.43. The dimensions for the electromagnet used in the experiments 

 

 
 

Figure 7.44. The photograph of the electromagnet 
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Figure 7.45. Magnetic field change with respect to the applied current when the 

 displacement between the coils is set to be constant at 4 cm 
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Figure 7.46. Voltage drop between two ends of the coils versus current 

 (two coils were connected in series) 
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Figure 7.47. Magnetic field strength change versus the displacement of coils when the 

current was set to be constant at 35 ADC 

 

In this experiment only the magnetic field effect on reflection was studied by using 

the experimental setup given in Figure 7.48. Different magnetic fields were applied to 

GaInSn alloy. At the same time the light from halogen lamp was sent on the surface of it. 

The reflected light was detected by using two different detectors which were luxmeter and 

UV-Vis spectrometer. 

 

During the experiments the light source was directed to GaInSn surface with 45  

above the horizontal. In the first part of the experiment luxmeter’s direction was changed 

from  20  to 90  above the horizontal. The luxmeter direction was changed by 5 . After 

the angle of luxmeter was arranged the reflectance was measured in two different cases. In 

the first case the magnetic field is applied and the reflectance was measured. In second 

case the magnetic field is turned off and again the reflectance was measured. Externally 

applied  magnetic field strenghts were mT202 , mT304 , mT406 , mT500 , and 

mT600 . The results for this procedure were given between Figure 7.49-7.53. 
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Figure 7.48. Experimental set up for studying magnetic field effect 
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Figure 7.49. The intensity versus angle of detector graph for magnetic field with the value 

of  mTB ext 202  
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Figure 7.50. The intensity versus angle of detector graph for magnetic field with  

the value of  mTB ext 304  
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Figure 7.51. The intensity versus angle of detector graph for magnetic field with  

the value of  mTB ext 406  
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Figure 7.52. The intensity versus angle of detector graph for magnetic field with the value 

of  mTB ext 500  
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Figure 7.53. The intensity versus angle of detector graph for magnetic field with  

the value of  mTB ext 600  
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The reflection results before and after an external magnetic field is applied were 

found similar to each other. In order to see how they differ from each other BoffBon  ratio 

versus angle graphs were drawn as a function of angle for each externally applied magnetic 

field used in previous experiment.  
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Figure 7.54. The intensity ratio off
ext

on
ext BB  for mTB ext 202  versus angle of detector 

graph  

 

20 30 40 50 60 70 80 90

Angle,  degrees)

0

0.2

0.4

0.6

0.8

1

In
te

ns
ity

 R
at

io
 (B

on
/B

of
f)

 
 

Figure 7.55. The intensity ratio off
ext

on
ext BB  for mTB ext 304  versus angle of detector 

graph  
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Figure 7.56. The intensity ratio off
ext

on
ext BB  for mTB ext 406  versus angle of detector 

graph  
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Figure 7.57. The intensity ratio off
ext

on
ext BB  for mTB ext 500  versus angle of detector 

graph  
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Figure 7.58. The intensity ratio off
ext

on
ext BB  for mTB ext 600  versus angle of detector 

graph  

 

After the last five graphs are drawn it is seen that the effect of magnetic field is very 

less and maximum difference for these data is about 6  per cent in favour of Bon  which 

means that magnetic field is turned on.  

 

The same experiment was repeated by using UV-Vis detector. The difference in this 

experiment from the previous one is that the UV-Vis angle was also kept constant at 45  

with the horizontal. The intensities of reflected light were taken versus wavelength.  

 

Since in the previous experiment it was seen that the reflectance from GaInSn alloy 

surface was not so much affected by the externally applied DC magnetic field in this 

experiment the same was tested and the data were collected by using UV-Vis spectrometer. 

 

After the intensities of reflected light were taken as a function of wavelength the 

intensity ratio fluctuation were also checked. The intensity ratio versus wavelength graph 

were also drawn below.   
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Figure 7.59. The intensity versus wavelength graph for magnetic field with the value of  

mTB ext 200  
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Figure 7.60. The intensity ratio off
ext

on
ext BB  for mTB ext 200  versus wavelength graph 
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Figure 7.61. The intensity versus wavelength graph for magnetic field with the value of  

mTB ext 300   
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Figure 7.62. The intensity ratio off
ext

on
ext BB  for mTB ext 300  versus wavelength graph 
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Figure 7.63. The intensity versus wavelength graph for magnetic field with the value of  

mTB ext 400  
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Figure 7.64. The intensity ratio off
ext

on
ext BB  for mTB ext 400  versus wavelength graph 
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Figure 7.65. The intensity versus wavelength graph for magnetic field with the value of  

mTB ext 500  
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Figure 7.66. The intensity ratio off
ext

on
ext BB  for mTB ext 500  versus wavelength graph 
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Figure 7.67. The intensity versus wavelength graph for magnetic field with the value of  

mTB ext 600  
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Figure 7.68. The intensity ratio off
ext

on
ext BB  for mTB ext 600  versus wavelength graph 



 

 

236 

When the light interacts with matter either reflection or absorption or both can 

happen. The effect of stationary magnetic field on the reflectance from GaInSn alloy 

surface was studied and there wasn’t seen a very significant change but some fluctuations 

were found especially for small wavelengths.  

 

In contrary to the stationary magnetic fields the alternating magnetic fields affect the 

surface of liqiuid metals. In [63] three different kinds of instabilities were observed. They 

were long-wavelength instability which is producing the deformation on the surface of 

alloy, surface waves instability and electromagnetic pinch which is developing a pinch 

channel inside the alloy.  

 

Actually high frequency electromagnetic fields can be used to reduce the convective 

heat losses within melts [64]. However, in this thesis both the electric current and magnetic 

field used were stationary (DC) but their strengths were changed externally. If there was a 

propagation direction for fluid and the magnetic field was applied parallel to it there could 

be the damping effect for waves on surface. The perpedicularly applied magnetic field does 

not have this effect [65].  

 

7.4.6.4  Dependence on Both Magnetic Field and Current Applied Together   

As was seen in the experiments done previously the current was strongly affecting 

the measured reflectance intensity from the surface of GaInSn. However, the  stationary 

magnetic field effect was not so much significant. In this part of the experiment both 

current (DC) and magnetic field (DC) were applied through the GaInSn alloy. The 

externally applied current and magnetic field were applied perpendicularly to each other. 

The experimental setup is also given in Figure 7.69. Figure 7.70 gives the photograph for 

the same experimental setup. There were two different cases as shown in Figure 7.71      

and  Figure 7.72. In this experiment the current value was kept constant at A20 . The 

externally applied magnetic fields were ,mT,mT,mT,mT 500400300200  and mT600 . 

The light source was again halogen lamp, the detector was UV-Vis spectrometer, magnetic 

field was measured with the same teslameter used in previous experiments.  

 

In this experiment due to the effects of current and magnetic field Lorentz force will 

be induced. Actually the induced Lorentz force can excite the waves on the surface. These 
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waves are dependent on current frequencies for low current values. For high currents the 

frequency dependence is negligible and nearly stationary waves can be formed on the 

surface of an alloy [62]. However, in this experiment the current was constant in value 

( A20 ) and it was DC. Induced Lorentz force will affect the charged particles inside the 

GaInSn alloy. The movement of electrons will be dominated by this force. The moving 

electrons will be accumulated in different places inside the chamber carrying GaInSn alloy. 

This accumulation and movement of electrons will affect also the reflectance from the 

surface of an alloy. The reflectance spectra for  case I and case II are given below from 

Figure 7. 73 to Figurer 7.77. 

 

 
 

Figure 7.69. Experimental set up for studying  Lorentz force effect 
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Figure 7.70. Photograph of experimental set up for studying  Lorentz force effect 

 

 

Case I 

 

 

 

 

 

 

 

Figure 7.71. The scheme for externally applied magnetic field and current together with the 

direction of induced Lorentz force and electrons’ velocity (case I) 

 

 

Case II 

 

 

 

 

 

 

 

Figure 7.72. The scheme for externally applied magnetic field and current together with the 

direction of induced Lorentz force and electrons’ velocity (case II) 
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Figure 7.73.  The reflectance versus wavelength graph for mTB ext 200  magnetic field 

and A20  current 
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Figure 7.74.  The reflectance versus wavelength graph for  mTB ext 300  magnetic field 

and A20  current 
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Figure 7.75. The reflectance versus wavelength graph for mTB ext 400  magnetic field 

and A20  current 
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Figure 7.76.The reflectance versus wavelength graph for mTB ext 500  magnetic field 

and A20  current 
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Figure 7.77.  The reflectance versus wavelength graph for mTB ext 600  magnetic field 

and A20  current 

 

As it is seen from the figures above there are three different spectra. Two of them 

represents case I and case II. The third spectrum was taken when the current and magnetic 

field were not applied. This spectrum is given as AI,mTB 00   at the legends of the 

graphs. In the figures above there is an expression given as ‘opp. dir.’ which means 

opposite direction and represents the current application direction given in case II. 

 

Since the magnetic field change is strictly related to the geometry of the 

electromagnet it would be meaningful to normalize these data as given below. The 

geometry of electromagnet affects the measured intensities strongly. As an example when 

the magnetic field strength is wanted to be increased then the coils of electromagnet must 

be moved near each other and this can have an additional and significant effect. The light 

which is scattered from GaInSn surface can be reflected again from the coils which are 

placed near each other and this will change the data taken from the detector. However, for 

every different magnetic field the geometry is kept unchanged and the effect for three 
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spectra taken will be the same in amount. Therefore the rational change of reflectance can 

be more meaningful. The normalization is done in order to eliminate this additional effect. 
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Figure 7.78. The normalized intensity versus wavelength graph for mTB ext 200  

magnetic field and A20  current  

 

300 350 400 450 500 550 600 650 700 750 800 850

Wavelength,  nm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 In
te

ns
ity

B=0mT, I=0A
B=300mT, I=20A Case I
B=300mT, I=20A Case II

 
 

Figure 7.79. The normalized intensity versus wavelength graph for mTB ext 300   

magnetic field and A20  current 
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Figure 7.80. The normalized intensity versus wavelength graph for mTB ext 400  

magnetic field and A20  current 
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Figure 7.81. The normalized intensity versus wavelength graph for mTB ext 500   

magnetic field and A20  current 
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Figure 7.82. The normalized intensity versus wavelength graph for mTB ext 600   

magnetic field and A20  current 

 

In case I the mobile electrons were accumulated mostly at the top surface of GaInSn 

alloy. They were moving  very fast in the opposite direction of externally applied current. 

The continuous disturbances occured in molecular level at liquid surface. When the 

Lorentz force is upward and is larger than gravity instabilities such as Rayleigh-Taylor 

instability starts to occure on the surface [65]. Evidently there were some magnetic fields 

also induced inside the alloy due to externally applied current but they can be neglected 

since the externally applied magnetic fields. The instabilities on the surface caused the 

decrease of intensity of reflected light which was falling on UV-Vis detector. The diffused 

reflection occured on the disturbed surface of GaInSn. 

 

On the contrary in case II induced Lorentz force was in z  direction which forced 

mobile electrons to move through the bulk of GaInSn alloy and accumulate at the bottom. 

This kind of application may smooth the surface. As a result the diffused reflection pattern 

can change to the reflection type more similar to specular one which occurs on smooth 

surfaces. During this experiment the data were collected in very small time intervals such 
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as ~ 15 seconds. Otherwise high valued direct current can heat up the GaInSn alloy and 

significant additional effect current can occur. 

 

Since the current applied is constant ( A20  DC) the only change in Lorentz force 

which is acting on the particles inside the GaInSn alloy is due to the change in externally 

applied magnetic field. The simplified expression for the Lorentz force is given as  

 

)Bv(qFL


                                                     (7.18) 

 

where q  is the charge of the particle moving with the velocity v  under the influence of 

magnetic field B . In both cases here (case I and case II) the applied current and magnetic 

fields are perpendicular to each other. Therefore the effect of Sin  of the angle between 

current and magnetic field is unity. Since the number of moving charges inside GaInSn can 

be assumed to be constant and also the applied current which was driving the particles was 

constant the change of the magnetic field will dominate the Lorentz force magnitude. 

Under these conditions, Lorentz force will  become as qvBFL   and not the exact 

numerical value for it but  LF  for mT200  can be assumed to be  1LF  where the same 

force for mT300 , mT400 , mT500  and mT600  will have the values 12 51 LL F.F  , 

13 2 LL FF  , 14 52 LL F.F  , and 15 3 LL FF   respectively. These values were collected in the 

Table 7. 7. 

 

Table 7. 7. Externally applied magnetic field and the changes in Lorentz force comparing 

with the Lorentz force for mT200 magnetic field  

 

Magnetic Field (mT) Lorentz Force 

200 1LF  

300 151 LF.  

400 12 LF  

500 152 LF.  

600 13 LF  
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Since the graphs obtained from the results are similar in shape the differences 

between the peak values for every graph were calculated in order to see if there is a 

correlation depending on the Lorentz force acting. There were two different variables 1nI , 

2nI  defined here. This definition can be seen in the graph given as in Figure 7.83. 1nI   is 

the difference between maxima of normalized intensities for case II application and value 

taken without applying any current and magnetic field externally. Similarly 2nI  is the 

difference between maxima of normalized intensities for case I application and value taken 

without applying any current and magnetic field externally. Note that the magnitudes for 

the Lorentz forces for the same applied magnetic field will have the same value but 

different directions for case I  and case II. The results for 1nI  and 2nI  are given in Table 

7.8. 

 

 
 

Figure 7.83. Normalized intensity differences for peak values of different spectra taken 

during the Lorentz force effect study 

 

As it seen from  Figure 7.84 a correlation between normalized intensity difference 

and Lorentz force can be investigated. By using more sensitive devices this correlation can 

be found and it can be represented as a constant number which can be found from the slope 

of these kinds of graphs. Actually the Lorentz force can have an effect also on the electric 
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resistance of the liquid metals [66]. This can be seen as an additional effect during the 

experiments related to liquid metals were conducted. This area deserves more and careful 

study. 

 

Table 7.8. The Lorentz force and intensity differences table 

 

Lorentz Force 1nI  2nI  

1LF  0.286 -0.180 

151 LF.  0.259 -0.391 

12 LF  0.340 -0.409 

152 LF.  0.350 -0.550 

13 LF  0.155 -0.741 
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Figure 7.84. Normalized intensity difference versus Lorentz force graph 
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From the results obtained in this thesis it will not be an overstatement to say that 

there is an interesting physics hidden on the surface of liquid metals and alloys. The 

surfaces of liquids can have different structure from their bulks. The surface tension plays 

an important role in limiting the mobility of particles on the surface. However, the 

interatomic interactions are effective in microscopic structure of a bulk. These interatomic 

stuctures are strongly dependent on electronic structure [67].  

 

Experimental investigations about the surfaces of liquid metals are an open area and 

is still largerly unexplored. The information about the surface is much more needed for the 

solution of reflection problems. Not only more experiments are needed but also a 

consistent fluid theory including ions and electrons should be investigated.   
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8.  CONCLUSION 

 
 

In this thesis, both theoretical and numerical studies with some experimental work 

were done. Firstly the very important physical phenomenon called as ‘plasma’ was studied 

in detail and connection between the plasma and Navier-Stokes equations (the governing 

equations for fluid dynamics) was studied. The terminology for plasma was given briefly. 

Under the title of ‘From Plasma Definition to Magnetohydrodynamics Equations’ the 

derivation of momentum equation was done by using a relatively different way from the 

derivations done in literature. This work is carried out under considerations of some 

assumptions which were mentioned in the thesis. The theoretical parts were given by using 

especially references [1-3]. 

 

Since the link between plasma and fluid was studied  the properties of the fluid 

equations were also given in more detail by using especially reference [11]. The 

explanations for momentum and energy conservation equations were given in an 

explanatory way under the scope of reference [11].  

 

Computational fluid dynamics and its properties were studied. Different space 

discretization methods were described in detail together with time discretizations. Matrix 

distribution scheme which was used as a space discretization method in the numerical 

simulation in this thesis was described together with dual time stepping procedure. Runge-

Kutta method was also mentioned.  

 

The two dimensional code which was used in numerical simulations was described in 

depth. The novel three dimensional mesh generation procedure was constructed and the 

original mesh generation programme was developed. This newly developed part of the 

programme will be embedded in the two diemensional original programme as a future 

work.  

 

Numerical tests were done and the results for benchmark problems were compared 

with those of the references. The results were found in very good agreement with the 

results in references. Additionally to the benchmark problems originally designed 
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problems were also solved. Seven different test problems were discussed in detail in this 

thesis. 

 

 This thesis was not only about the theoretical studies in plasma physics and 

numerical studies in MHD but it also contains a very broad experimental part as was 

emphasized previously. The experimental part for this thesis is about the GaInSn alloy. 

The reflectance from the surface of GaInSn was especially studied in detail. Differently 

from the experiments in literature in which especially the x-ray wave is used as a reflecting 

electromagnetic wave, a halogen lamp which emits the light in the visible spectrum was 

used. The UV-Vis spectrometer was used as a main detector. However, in some 

experiments a luxmeter and a thermopile were also used as light detectors. The thermal 

expansion for GaInSn has checked firstly in order to be aware of the expansion of an alloy 

during the experiments in which high currents were used. Because of the fact that the 

currents will heat GaInSn alloy it can expand in volume and this can affect the intensity of 

reflected light detected. One of the most important environmental effects which is 

oxidation was also discussed since it can change the surface of the reflecting agent. The 

reflectance for GaInSn as a function of temperature, current application, magnetic field 

application, both current and magnetic field application were studied. It was seen that the 

reflectance of GaInSn alloy decreased with increasing temperature. These results were in 

good agreement with the results of literature in which for similar experiments the light 

source was x-ray. During the DC current applcation it was seen that the reflectance of an 

alloy also decreased. The polarization of light after reflection from the surface of GaInSn 

alloy was also studied and for small angles the possibility for polarization is seen however 

more sensitive experimental setup is needed. The DC magnetic field applications  did not 

give big effect of the reflectance from the surface. The reflectance of GaInSn surface was 

so much affected when perpendicular current and magnetic field were applied at the same 

time. In this experiment the direction of magnetic field was kept constant during the 

change of direction of the current by 180 . Depending on the direction of  Lorentz force 

induced after current and magnetic field are applied together the reflection from the surface 

of GaInSn was changed considerably. When the Lorentz force direction was in positive z  

direction the reflectance decreased on the contrary when Lorentz force is in negative z  

direction the reflectance increased. It was seen that the perpendicularly applied current and 

magnetic field affected the reflectance considerably. It was noticed that the direction of 
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Lorentz force had two different effects on reflection from GaInSn alloy surface depending 

on the direction of the force. These effects were explained by the movement of the 

electrons inside the alloy mentioned. The electrons freely moving in liquid metals are 

strongly affected by the induced Lorentz forces. 

 

Actually the mechanical vibrations during the experiments were not eliminated 

totally. It had an additional effect in the experiments together with the geometrical 

orientation of the experimental setup and devices. They also caused some restrictions and 

additional effects during the experiments.  
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APPENDIX A: Computer Code 
 

 

This algorithm is used in three dimensional mesh generation procedure. It can be run 

under Linux computer operating systems (such as Fedora) or it can be also run under 

Windows XP, Windows 7 by using ‘c programming language’ compilers such as Dev C++ 

4.9.9.2. Firstly it is wanted from the user to define the maximum node numbers for x , y  

and z  directions respectively when the code is run. In order to define the solution domain 

both minimum and maximum values (Xmin and Xmax) for each direction can be given 

from user  and the step length sizes can be automatically calculated by the code. However, 

in this version of the code the step lengths are manually given by the user. The code creates 

a data file named as ‘nodnokoor1.dat’ in which the node number, x  coordinate of the node 

, y  coordinate of the node and z  coordinate of the node are written. By using these 

coordinates the quantities such as the node numbers, which are calculated automatically by 

using the equation kIJijI   described intensively in ‘Three Dimensional Mesh 

Generation Procedure’ part of the thesis, the volume of each tetrahedron, four surface areas 

of each tetrahedron, the inward normal vectors for each surface. In order to check at least 

the volume calculations corrections the total volume of solution domain is compared by 

using the sum of the volumes of each tetrahedron in solution domain at the end of the code.  

 

This code is planned to be adapted to the code which was used in the numerical 

simulations in this thesis (see 5. The Code and its Features part of the thesis). However, 

this adaptation is left as a postdoctoral study. 

 

Since 3 dimensional mesh generating code developed in this thesis is relatively long 

only the part of it was given below. The whole code is in the compact disc given 

additionally together with the thesis.  
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       Algorithm A.1: Computer code for three dimensional mesh generation 

 

#include<stdio.h> 

#include<math.h> 

#define FILENAME "nodnokoor1.txt" 

main() 

{ 

float Nodx[22000],Nody[22000],Nodz[22000]; 

long Nodeno; 

long k,j,i; 

float dx,dy,dz,Vtotal,Vkontrol,Vfark,Vbirmolekul,V; 

long IMAX,JMAX,KMAX,T,M,MOL,Tmax; 

long Tetra_node0[20000],Tetra_node1[20000],Tetra_node2[20000], 

Tetra_node3[20000]; 

float Tetra_hacim[10000],yuzey_norm0_X[40000],yuzey_norm0_Y[40000], 

yuzey_norm0_Z[40000]; 

float yuzey_alan0[20000],yuzey_alan1[20000],yuzey_alan2[20000], 

yuzey_alan3[20000]; 

long Tetra_yuzey0[20000],Tetra_yuzey1[20000],Tetra_yuzey2[20000], 

Tetra_yuzey3[20000]; 

long yuzey_node0[21000],yuzey_node1[21000],yuzey_node2[21000], 

yuzey_node3[21000]; 

float Ax,Bx,Ay,By,Az,Bz; 

float adxcoord,adycoord,adzcoord;  

float bdxcoord,bdycoord,bdzcoord;  

float cdxcoord,cdycoord,cdzcoord; 

float vekcarpx,vekcarpy,vekcarpz,scacarp; 

FILE *nodnokoor1; 

nodnokoor1=fopen(FILENAME,"w"); 

printf("Enter IMAX:\n"); 

scanf("%d",&IMAX); 

printf("Enter dx:\n"); 

scanf("%f",&dx); 
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printf("Enter JMAX:\n"); 

scanf("%d",&JMAX); 

printf("Enter dy:\n"); 

scanf("%f",&dy); 

printf("Enter KMAX:\n"); 

scanf("%d",&KMAX); 

 

printf("Enter dz:\n"); 

scanf("%f",&dz); 

for(k=0;k<KMAX;k++) 

     for(j=0;j<JMAX;j++) 

         for(i=0;i<IMAX;i++) 

           {  Nodeno=j*IMAX+i+k*IMAX*JMAX; 

              Nodx[Nodeno]=dx*i; 

              Nody[Nodeno]=dy*j; 

              Nodz[Nodeno]=dz*k; 

              fprintf(nodnokoor1,"%d        %f %f %f 

\n\n",Nodeno,Nodx[Nodeno],Nody[Nodeno], 

Nodz[Nodeno]); 

            } 

 fclose(nodnokoor1); 

nodnokoor1=fopen(FILENAME,"r"); 

for(k=0;k<KMAX;k++) 

    for(j=0;j<JMAX;j++) 

         for(i=0;i<IMAX;i++) 

            { Nodeno=j*IMAX+i+k*IMAX*JMAX; 

              fscanf(nodnokoor1,"%d        %f %f %f 

\n\n",&Nodeno,&Nodx[Nodeno],&Nody[Nodeno],&Nodz[Nodeno]);       

              } 

Vtotal=0; 

Vkontrol=0; 

Vbirmolekul=0; 

Tmax=0; 
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MOL=0;            

i=0; 

j=0; 

k=0; 

V=0; 

M=0;                            

T=0;    

for(k=0;k<KMAX-1;k++) 

    for(j=0;j<JMAX-1;j++) 

         for(i=0;i<IMAX-1;i++) 

{ 

 printf("i=%d j=%d k=%d  \n\n ",i,j,k);  

 printf("%d. Tetranin Hesaplamalari \n ",T); 

 printf("--------------------------  \n");         

   Tetra_node0[T]=j*IMAX+i+k*IMAX*JMAX; 

   Tetra_node1[T]=j*IMAX+(i+1)+k*IMAX*JMAX; 

   Tetra_node2[T]=(j+1)*IMAX+i+k*IMAX*JMAX; 

   Tetra_node3[T]=j*IMAX+i+(k+1)*IMAX*JMAX; 

printf("%d . tetranin node 0 i =%d nolu noddur\n",T,Tetra_node0[T]);  

printf("%d . tetranin node 1 i =%d nolu noddur\n",T,Tetra_node1[T]);   

printf("%d . tetranin node 2 si=%d nolu noddur\n",T,Tetra_node2[T]);   

printf("%d . tetranin node 3 u =%d nolu noddur\n\n",T,Tetra_node3[T]);  

adxcoord=Nodx[Tetra_node0[T]]-Nodx[Tetra_node3[T]]; 

adycoord=Nody[Tetra_node0[T]]-Nody[Tetra_node3[T]]; 

adzcoord=Nodz[Tetra_node0[T]]-Nodz[Tetra_node3[T]]; 

bdxcoord=Nodx[Tetra_node1[T]]-Nodx[Tetra_node3[T]]; 

bdycoord=Nody[Tetra_node1[T]]-Nody[Tetra_node3[T]]; 

bdzcoord=Nodz[Tetra_node1[T]]-Nodz[Tetra_node3[T]]; 

cdxcoord=Nodx[Tetra_node2[T]]-Nodx[Tetra_node3[T]]; 

cdycoord=Nody[Tetra_node2[T]]-Nody[Tetra_node3[T]]; 

cdzcoord=Nodz[Tetra_node2[T]]-Nodz[Tetra_node3[T]]; 

vekcarpx=bdycoord*cdzcoord-cdycoord*bdzcoord; 

vekcarpy=bdzcoord*cdxcoord-bdxcoord*cdzcoord; 
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vekcarpz=bdxcoord*cdycoord-bdycoord*cdxcoord; 

scacarp=adxcoord*vekcarpx+adycoord*vekcarpy+adzcoord*vekcarpz; 

Tetra_hacim[T]=sqrt(scacarp*0.1666666667*scacarp*0.1666666667);  

        printf("%d. tetranin hacmi = %f \n\n",T,Tetra_hacim[T]);  

        Vbirmolekul=Tetra_hacim[T]+Vbirmolekul;  

Tetra_yuzey0[T]=0+M*18; 

printf("%d. tetranin ilk yuzeyi = %d numarali yuzeydir 

\n",T,Tetra_yuzey0[T]);  

Tetra_yuzey1[T]=7+M*18; 

printf("%d. tetranin ikinci yuzeyi = %d numarali yuzeydir 

\n",T,Tetra_yuzey1[T]);  

Tetra_yuzey2[T]=8+M*18; 

printf("%d. tetranin ucuncu yuzeyi = %d numarali yuzeydir 

\n",T,Tetra_yuzey2[T]);  

Tetra_yuzey3[T]=12+M*18; 

printf("%d. tetranin dorduncu yuzeyi = %d numarali yuzeydir 

\n\n",T,Tetra_yuzey3[T]);  

 Nodeno=j*IMAX+i+k*IMAX*JMAX; 

  yuzey_node0[Tetra_yuzey0[T]]=Nodeno; 

  printf(" yuzey %d in 0. nodu=%d nolu 

noddur\n",Tetra_yuzey0[T],yuzey_node0[Tetra_yuzey0[T]]); 

 yuzey_node1[Tetra_yuzey0[T]]=j*IMAX+(i+1)+k*IMAX*JMAX; 

  printf(" yuzey %d in 1. nodu=%d nolu 

noddur\n",Tetra_yuzey0[T],yuzey_node1[Tetra_yuzey0[T]]); 

 yuzey_node2[Tetra_yuzey0[T]]=j*IMAX+i+(k+1)*IMAX*JMAX; 

  printf(" yuzey %d in 2. nodu=%d nolu noddur 

\n\n",Tetra_yuzey0[T],yuzey_node2[Tetra_yuzey0[T]]); 

  yuzey_node0[Tetra_yuzey1[T]]=Nodeno; 

  printf(" yuzey %d in 0. nodu=%d nolu 

noddur\n",Tetra_yuzey1[T],yuzey_node0[Tetra_yuzey1[T]]); 

 yuzey_node1[Tetra_yuzey1[T]]=(j+1)*IMAX+i+k*IMAX*JMAX; 

  printf(" yuzey %d in 1. nodu=%d nolu 

noddur\n",Tetra_yuzey1[T],yuzey_node1[Tetra_yuzey1[T]]); 
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 yuzey_node2[Tetra_yuzey1[T]]=j*IMAX+i+(k+1)*IMAX*JMAX; 

        printf(" yuzey %d in 2. nodu=%d nolu noddur 

\n\n",Tetra_yuzey1[T],yuzey_node2[Tetra_yuzey1[T]]); 

        yuzey_node0[Tetra_yuzey2[T]]=Nodeno; 

       printf(" yuzey %d in 0. nodu=%d nolu noddur 

\n",Tetra_yuzey2[T],yuzey_node0[Tetra_yuzey2[T]]); 

 

 yuzey_node1[Tetra_yuzey2[T]]=j*IMAX+(i+1)+k*IMAX*JMAX; 

  printf(" yuzey %d in 1. nodu=%d nolu noddur 

\n",Tetra_yuzey2[T],yuzey_node1[Tetra_yuzey2[T]]); 

     yuzey_node2[Tetra_yuzey2[T]]=(j+1)*IMAX+i+k*IMAX*JMAX; 

        printf(" yuzey %d in 2. nodu=%d nolu noddur 

\n\n",Tetra_yuzey2[T],yuzey_node2[Tetra_yuzey2[T]]); 

 yuzey_node0[Tetra_yuzey3[T]]=j*IMAX+(i+1)+k*IMAX*JMAX; 

  printf(" yuzey %d in 0. nodu=%d nolu noddur 

\n",Tetra_yuzey3[T],yuzey_node0[Tetra_yuzey3[T]]); 

 yuzey_node1[Tetra_yuzey3[T]]=(j+1)*IMAX+i+k*IMAX*JMAX; 

  printf(" yuzey %d in 1. nodu=%d nolu noddur 

\n",Tetra_yuzey3[T],yuzey_node1[Tetra_yuzey3[T]]); 

 yuzey_node2[Tetra_yuzey3[T]]=j*IMAX+i+(k+1)*IMAX*JMAX; 

        printf(" yuzey %d in 2. nodu=%d nolu noddur 

\n\n",Tetra_yuzey3[T],yuzey_node2[Tetra_yuzey3[T]]); 

Ax=Nodx[yuzey_node2[Tetra_yuzey0[T]]]-

Nodx[yuzey_node0[Tetra_yuzey0[T]]]; 

printf(" Yuzey %d nin A vektorunun  x coord=%f\n",Tetra_yuzey0[T],Ax); 

Ay=Nody[yuzey_node2[Tetra_yuzey0[T]]]-

Nody[yuzey_node0[Tetra_yuzey0[T]]]; 

printf(" Yuzey %d nin A vektorunun  y coord=%f\n",Tetra_yuzey0[T],Ay); 

Az=Nodz[yuzey_node2[Tetra_yuzey0[T]]]-

Nodz[yuzey_node0[Tetra_yuzey0[T]]]; 

printf(" Yuzey %d nin A vektorunun  z coord=%f\n\n",Tetra_yuzey0[T],Az); 

Bx=Nodx[yuzey_node1[Tetra_yuzey0[T]]]-

Nodx[yuzey_node0[Tetra_yuzey0[T]]]; 
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printf(" Yuzey %d nin B vektorunun  x coord=%f\n",Tetra_yuzey0[T],Bx); 

By=Nody[yuzey_node1[Tetra_yuzey0[T]]]-

Nody[yuzey_node0[Tetra_yuzey0[T]]]; 

printf(" Yuzey %d nin B vektorunun  y coord=%f\n",Tetra_yuzey0[T],By); 

Bz=Nodz[yuzey_node1[Tetra_yuzey0[T]]]-

Nodz[yuzey_node0[Tetra_yuzey0[T]]]; 

printf(" Yuzey %d nin B vektorunun  z coord=%f\n\n",Tetra_yuzey0[T],Bz); 

vekcarpx=0; 

vekcarpy=0; 

vekcarpz=0; 

vekcarpx=Ay*Bz-By*Az;   

vekcarpy=Az*Bx-Ax*Bz; 

vekcarpz=Ax*By-Ay*Bx; 

yuzey_norm0_X[Tetra_yuzey0[T]]=vekcarpx;    

printf(" Normal vektorun x coor =%f   

\n",yuzey_norm0_X[Tetra_yuzey0[T]]); 

yuzey_norm0_Y[Tetra_yuzey0[T]]=vekcarpy;    

printf(" Normal vektorun y coor =%f   

\n",yuzey_norm0_Y[Tetra_yuzey0[T]]); 

yuzey_norm0_Z[Tetra_yuzey0[T]]=vekcarpz;   

printf(" Normal vektorun z coor =%f   

\n\n",yuzey_norm0_Z[Tetra_yuzey0[T]]);  

yuzey_alan0[Tetra_yuzey0[T]]=0.5*sqrt(vekcarpx*vekcarpx+ 

vekcarpy*vekcarpy+vekcarpz*vekcarpz);    

printf("%d ci yuzeyin alani 

=%f\n\n",Tetra_yuzey0[T],yuzey_alan0[Tetra_yuzey0[T]]);  

Ax=Nodx[yuzey_node1[Tetra_yuzey1[T]]]-

Nodx[yuzey_node0[Tetra_yuzey1[T]]]; 

printf(" Yuzey %d nin A vektorunun  x coord=%f\n",Tetra_yuzey1[T],Ax); 

Ay=Nody[yuzey_node1[Tetra_yuzey1[T]]]-

Nody[yuzey_node0[Tetra_yuzey1[T]]]; 

printf(" Yuzey %d nin A vektorunun  y coord=%f\n",Tetra_yuzey1[T],Ay); 

Az=Nodz[yuzey_node1[Tetra_yuzey1[T]]]-
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Nodz[yuzey_node0[Tetra_yuzey1[T]]]; 

printf(" Yuzey %d nin A vektorunun  z coord=%f\n\n",Tetra_yuzey1[T],Az); 

Bx=Nodx[yuzey_node2[Tetra_yuzey1[T]]]-

Nodx[yuzey_node0[Tetra_yuzey1[T]]]; 

printf(" Yuzey %d nin B vektorunun  x coord=%f\n",Tetra_yuzey1[T],Bx); 

By=Nody[yuzey_node2[Tetra_yuzey1[T]]]-

Nody[yuzey_node0[Tetra_yuzey1[T]]]; 

printf(" Yuzey %d nin B vektorunun  y coord=%f\n",Tetra_yuzey1[T],By); 

Bz=Nodz[yuzey_node2[Tetra_yuzey1[T]]]-

Nodz[yuzey_node0[Tetra_yuzey1[T]]]; 

printf(" Yuzey %d nin B vektorunun  z coord=%f\n\n",Tetra_yuzey1[T],Bz); 

vekcarpx=0; 

vekcarpy=0; 

vekcarpz=0; 

vekcarpx=Ay*Bz-By*Az; 

vekcarpy=Az*Bx-Ax*Bz; 

vekcarpz=Ax*By-Ay*Bx; 

yuzey_norm0_X[Tetra_yuzey1[T]]=vekcarpx;   

printf(" Normal vektorun x coor =%f   

\n",yuzey_norm0_X[Tetra_yuzey1[T]]); 

yuzey_norm0_Y[Tetra_yuzey1[T]]=vekcarpy;   

printf(" Normal vektorun y coor =%f   

\n",yuzey_norm0_Y[Tetra_yuzey1[T]]); 

yuzey_norm0_Z[Tetra_yuzey1[T]]=vekcarpz;   

printf(" Normal vektorun z coor =%f   

\n\n",yuzey_norm0_Z[Tetra_yuzey1[T]]); 

yuzey_alan1[Tetra_yuzey1[T]]=0.5*sqrt(vekcarpx*vekcarpx+ 

vekcarpy*vekcarpy+vekcarpz*vekcarpz); 

printf("%d ci yuzeyin alani 

=%f\n\n",Tetra_yuzey1[T],yuzey_alan1[Tetra_yuzey1[T]]);  

Ax=Nodx[yuzey_node1[Tetra_yuzey2[T]]]-

Nodx[yuzey_node0[Tetra_yuzey2[T]]]; 

printf(" Yuzey %d nin A vektorunun  x coord=%f\n",Tetra_yuzey2[T],Ax); 
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Ay=Nody[yuzey_node1[Tetra_yuzey2[T]]]-

Nody[yuzey_node0[Tetra_yuzey2[T]]]; 

printf(" Yuzey %d nin A vektorunun  y coord=%f\n",Tetra_yuzey2[T],Ay); 

Az=Nodz[yuzey_node1[Tetra_yuzey2[T]]]-

Nodz[yuzey_node0[Tetra_yuzey2[T]]]; 

printf(" Yuzey %d nin A vektorunun  z coord=%f\n\n",Tetra_yuzey2[T],Az); 

 

Bx=Nodx[yuzey_node2[Tetra_yuzey2[T]]]-

Nodx[yuzey_node0[Tetra_yuzey2[T]]]; 

printf(" Yuzey %d nin B vektorunun  x coord=%f\n",Tetra_yuzey2[T],Bx); 

By=Nody[yuzey_node2[Tetra_yuzey2[T]]]-

Nody[yuzey_node0[Tetra_yuzey2[T]]]; 

printf(" Yuzey %d nin B vektorunun  y coord=%f\n",Tetra_yuzey2[T],By); 

Bz=Nodz[yuzey_node2[Tetra_yuzey2[T]]]-

Nodz[yuzey_node0[Tetra_yuzey2[T]]]; 

printf(" Yuzey %d nin B vektorunun  z coord=%f\n\n",Tetra_yuzey2[T],Bz); 

vekcarpx=0; 

vekcarpy=0; 

vekcarpz=0; 

vekcarpx=Ay*Bz-By*Az; 

vekcarpy=Az*Bx-Ax*Bz; 

vekcarpz=Ax*By-Ay*Bx; 

yuzey_norm0_X[Tetra_yuzey2[T]]=vekcarpx;   

printf(" Normal vektorun x coor =%f   

\n",yuzey_norm0_X[Tetra_yuzey2[T]]); 

yuzey_norm0_Y[Tetra_yuzey2[T]]=vekcarpy;    

printf(" Normal vektorun y coor =%f   

\n",yuzey_norm0_Y[Tetra_yuzey2[T]]); 

yuzey_norm0_Z[Tetra_yuzey2[T]]=vekcarpz;   

printf(" Normal vektorun z coor =%f   

\n\n",yuzey_norm0_Z[Tetra_yuzey2[T]]); 

yuzey_alan2[Tetra_yuzey2[T]]=0.5*sqrt(vekcarpx*vekcarpx+ 

vekcarpy*vekcarpy+vekcarpz*vekcarpz); 
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printf("%d ci yuzeyin alani 

=%f\n\n",Tetra_yuzey2[T],yuzey_alan2[Tetra_yuzey2[T]]);  

Ax=Nodx[yuzey_node2[Tetra_yuzey3[T]]]-

Nodx[yuzey_node0[Tetra_yuzey3[T]]]; 

printf(" Yuzey %d nin A vektorunun  x coord=%f\n",Tetra_yuzey3[T],Ax); 

Ay=Nody[yuzey_node2[Tetra_yuzey3[T]]]-

Nody[yuzey_node0[Tetra_yuzey3[T]]]; 

printf(" Yuzey %d nin A vektorunun  y coord=%f\n",Tetra_yuzey3[T],Ay); 

Az=Nodz[yuzey_node2[Tetra_yuzey3[T]]]-

Nodz[yuzey_node0[Tetra_yuzey3[T]]]; 

printf(" Yuzey %d nin A vektorunun  z coord=%f\n\n",Tetra_yuzey3[T],Az); 

Bx=Nodx[yuzey_node1[Tetra_yuzey3[T]]]-

Nodx[yuzey_node0[Tetra_yuzey3[T]]]; 

printf(" Yuzey %d nin B vektorunun  x coord=%f\n",Tetra_yuzey3[T],Bx); 

By=Nody[yuzey_node1[Tetra_yuzey3[T]]]-

Nody[yuzey_node0[Tetra_yuzey3[T]]]; 

printf(" Yuzey %d nin B vektorunun  y coord=%f\n",Tetra_yuzey3[T],By); 

Bz=Nodz[yuzey_node1[Tetra_yuzey3[T]]]-

Nodz[yuzey_node0[Tetra_yuzey3[T]]]; 

printf(" Yuzey %d nin B vektorunun  z coord=%f\n\n",Tetra_yuzey3[T],Bz); 

vekcarpx=0; 

vekcarpy=0; 

vekcarpz=0; 

vekcarpx=Ay*Bz-By*Az; 

vekcarpy=Az*Bx-Ax*Bz; 

vekcarpz=Ax*By-Ay*Bx; 

yuzey_norm0_X[Tetra_yuzey3[T]]=vekcarpx;  

printf(" Normal vektorun x coor =%f   

\n",yuzey_norm0_X[Tetra_yuzey3[T]]); 

yuzey_norm0_Y[Tetra_yuzey3[T]]=vekcarpy;    

printf(" Normal vektorun y coor =%f   

\n",yuzey_norm0_Y[Tetra_yuzey3[T]]); 

yuzey_norm0_Z[Tetra_yuzey3[T]]=vekcarpz;   
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printf(" Normal vektorun z coor =%f   

\n\n",yuzey_norm0_Z[Tetra_yuzey3[T]]); 

yuzey_alan3[Tetra_yuzey3[T]]=0.5*sqrt(vekcarpx*vekcarpx+ 

vekcarpy*vekcarpy+vekcarpz*vekcarpz); 

printf("%d ci yuzeyin alani 

=%f\n\n",Tetra_yuzey3[T],yuzey_alan3[Tetra_yuzey3[T]]); 

T=T+1;    

printf("%d. Tetranin Hesaplamalari \n ",T); 

printf("--------------------------  \n"); 

  Tetra_node0[T]=j*IMAX+(i+1)+k*IMAX*JMAX; 

  Tetra_node1[T]=(j+1)*IMAX+i+k*IMAX*JMAX; 

  Tetra_node2[T]=(j+1)*IMAX+(i+1)+k*IMAX*JMAX; 

             Tetra_node3[T]=(j+1)*IMAX+(i+1)+(k+1)*IMAX*JMAX; 

printf("%d . tetranin node 0 i =%d nolu noddur\n",T,Tetra_node0[T]); 

printf("%d . tetranin node 1 i =%d nolu noddur\n",T,Tetra_node1[T]);   

printf("%d . tetranin node 2 si=%d nolu noddur\n",T,Tetra_node2[T]);   

printf("%d . tetranin node 3 u =%d nolu noddur\n\n",T,Tetra_node3[T]);   

adxcoord=Nodx[Tetra_node0[T]]-Nodx[Tetra_node3[T]]; 

adycoord=Nody[Tetra_node0[T]]-Nody[Tetra_node3[T]]; 

adzcoord=Nodz[Tetra_node0[T]]-Nodz[Tetra_node3[T]]; 

bdxcoord=Nodx[Tetra_node1[T]]-Nodx[Tetra_node3[T]]; 

bdycoord=Nody[Tetra_node1[T]]-Nody[Tetra_node3[T]]; 

bdzcoord=Nodz[Tetra_node1[T]]-Nodz[Tetra_node3[T]]; 

cdxcoord=Nodx[Tetra_node2[T]]-Nodx[Tetra_node3[T]]; 

cdycoord=Nody[Tetra_node2[T]]-Nody[Tetra_node3[T]]; 

cdzcoord=Nodz[Tetra_node2[T]]-Nodz[Tetra_node3[T]]; 

vekcarpx=bdycoord*cdzcoord-cdycoord*bdzcoord; 

vekcarpy=bdzcoord*cdxcoord-bdxcoord*cdzcoord; 

vekcarpz=bdxcoord*cdycoord-bdycoord*cdxcoord; 

scacarp=adxcoord*vekcarpx+adycoord*vekcarpy+adzcoord*vekcarpz; 

 Tetra_hacim[T]=sqrt(scacarp*0.1666666667*scacarp*0.1666666667);

  printf("%d. tetranin hacmi = %f \n\n",T,Tetra_hacim[T]); 

     Vbirmolekul=Tetra_hacim[T]+Vbirmolekul;  
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Tetra_yuzey0[T]=3+M*18;  

printf("%d. tetranin ilk yuzeyi = %d numarali yuzeydir 

\n",T,Tetra_yuzey0[T]); 

Tetra_yuzey1[T]=4+M*18;  

printf("%d. tetranin ikinci yuzeyi = %d numarali yuzeydir 

\n",T,Tetra_yuzey1[T]); 

Tetra_yuzey2[T]=9+M*18;  

printf("%d. tetranin ucuncu yuzeyi = %d numarali yuzeydir 

\n",T,Tetra_yuzey2[T]);  

Tetra_yuzey3[T]=13+M*18;  

printf("%d. tetranin dorduncu yuzeyi = %d numarali yuzeydir 

\n\n",T,Tetra_yuzey3[T]); 

 

printf("KONTROL HACMI =%f\n\n",Vbirmolekul); 

MOL=((IMAX-1)*(JMAX-1))*(KMAX-1); 

Tmax=MOL*6; 

Vtotal=(dx*(IMAX-1))*(dy*(JMAX-1))*(dz*(KMAX-1)); 

printf("Meshin Toplam Hacmi=%f \n\n ",Vtotal); 

printf("Toplam Molekul sayisi=%d\n\n",MOL); 

printf("Toplam Tetrahedral sayisi=%d\n\n",Tmax); 

Vfark=Vtotal-Vbirmolekul; 

printf("Vfark=Vtotal-Vkontrol\n\n"); 

printf("%f=%f-%f\n\n",Vfark,Vtotal,Vbirmolekul);  

printf("Vfark=%f",Vfark); 

fclose(nodnokoor1);  

 

} 
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